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1
Introduction

1.1 Introduction
Intrusion detection systems (IDSs) are critical components of modern cybersecurity that aim to identify
and prevent unauthorised access to computer systems, networks, and other digital systems. A key challenge
in developing effective IDSs is the ability to accurately identify anomalous behaviours and attacks, which
can be difficult due to the high variability and complexity of the data. To address this challenge, machine
learning (ML) techniques have been widely adopted in IDSs [1], with gradient boosting decision trees
(GBDTs) being one of the promising techniques in this domain [2]. GBDTs are ensemble methods that
combine weak learners (typically decision trees) into a strong learner by iteratively fitting the error of the
previous learners. GBDTs have been shown to achieve high performance and robustness on tabular data [3].
However, these models face some difficulties when applied to dynamic real-world environments.

One significant challenge of intrusion detection in dynamic real-world environments, is the ever-evolving
nature of threats. Attackers are constantly developing new tactics and techniques to evade detection,
making it difficult for intrusion detection systems to keep up [4]. Another challenge in intrusion detection
is the high rate of false positives, which can lead to alert fatigue and make it difficult for security teams
to prioritise and respond to real threats. While false negatives can have a severe impact on the digital
infrastructure one tries to protect, causing real-life consequences, such as personal data theft or fraudulent
transactions. In response, IDS must be regularly updated and improved to stay ahead of evolving threats.
Moreover, intrusion detection datasets frequently exhibit significant class imbalance due to challenges in
obtaining adequate ground truth data on attack instances [4]. As a consequence, a minority class is present,
which is of particular interest in the IDS. Although there has been research on imbalanced datasets for
several decades, Das et al.[5] contend that it remains a complex challenge in the present era.

To address these challenges, techniques have been developed to adapt GBDTs to dynamic or non-
stationary environments. The current state-of-the-art technique is the Adaptive Iterations [6] (AdIter)
method. However, this technique assumes that the labels of data samples are available immediately after
prediction. This assumption is unrealistic in the intrusion detection setting and many other domains, where
obtaining labels is time-consuming and costly. A human expert, often referred to as the oracle in ML, has
to determine the final true label of the sample. Hence, typical real-world ML tools have to operate under
limited label availability.

In this thesis, we propose a novel elastic gradient boosting decision tree algorithm that addresses these
limitations by using a novel uncertainty estimation method that gives an indication of the severity of the
drift and copes with limited label availability. We evaluate our method on synthetic and real-world datasets
and compare it with state-of-the-art methods. We show that our method achieves comparable accuracy
and higher robustness than the existing methods in under limited label availability.

1.2 Motivation
GBDTs have demonstrated suitability for use in industrial applications due to their state-of-the-art
performance in making point predictions on structured and tabular data [3]. These models exhibit

1



1.2. Motivation 2

robustness to heterogeneous features [7] and have been shown to be competitive in terms of prediction
speed and training time, often outperforming other methodologies [8, 9]. As a result, GBDTs present a
valuable area of research for further investigation.

Machine learning models have evolved from static analytics tools to dynamic systems that can process
incoming data on demand in real-world applications. However, this also poses a challenge of dealing
with the variation of the prediction tasks due to the changing data over time. An open-world setting is
considered to be a dynamic or non-stationary environment where an unseen sample can be supplied to the
input of the model, an instance that is unlabeled and is not in the distribution of the training samples
seen [10]. These non-stationary environments increase the risk of misclassification, particularly in critical
safety domains such as automotive, healthcare, and cybersecurity. Deployed models in an open-world
setting under real-world data can experience a changing distribution of the data over time, causing a
decrease in accuracy [11].

In the context of intrusion detection, the adversarial objective of avoiding detection further exacerbates
the non-stationary nature of the environment. The changes in the environment or distribution can be
called the dataset shift [12, 13]. There are multiple types of these dataset shifts, including covariate, prior
probability and concept shifts. The general definition for data shift, as Moreno-Torres et al. [13] define it,
is ”Dataset shift appears when training and test joint distributions are different”.

Dataset shift and concept drift have similar definitions in the literature, to distinguish these two, this
work uses the distinction mentioned in [14]. Shift is considered to be related to batch learning where all
data is in memory. While drift corresponds to the stream learning scenario, where data has a sequential
order and is not necessarily fully stored in memory nor processed all at once.

In this work, we focus on concept drift as we are interested in the stream learning scenario. Stream
learning is a more realistic scenario when considering real-world applications and machine learning used in
business processes, such as intrusion detection systems, because with these real-world applications new data
arrives every minute and needs to be processed quickly to enable fast and effective decision-making [15].

Concept drift is a phenomenon that occurs in non-stationary environments, where the change or drift
leads to a decrease in the performance of the model [14]. An example of types of drifts can be seen in
Figure 1.1c. Here we can see that some types of drifts do not result in a change of the optimal decision
boundary and therefore no decrease in the performance is encountered Figure 1.1b, this is sometimes also
called virtual drift. While other types do decrease performance Figure 1.1c, also called real concept drift.

(a) Normal data

(b) No change in optimal decision boundary (c) A change in the optimal decision boundary

Figure 1.1: Types of drifts. Source: [14]

As concept drifts occur over time, generally a distinction is made between various types based on
the speed of the change. Two often mentioned types in literature are abrupt (sudden) and incremental
concept drift, depicted in Figures 1.2. Let us say we indicate the two concepts that might characterise the
distribution as C1 and C2. With this, we can describe the types of speed of change in the following ways.
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(a) Abrupt drift (b) Incremental drift

Figure 1.2: Different types of drifts that can affect the data stream. Source: [16]

• Abrupt drift is a sudden change in the underlying concept of the data, as illustrated in Figure 1.2a.
Initially, the data follows the distribution of concept C1. At a certain point in time, the concept
shifts abruptly to C2, and the data follows the new distribution thereafter.

• Incremental drift is a gradual change in the underlying concept of the data, as illustrated in Figure
1.2b. Initially, the data follows the distribution of concept C1. At a certain point in time, the concept
begins to change slowly towards C2, and the data reflects this transition. During this period, the
concept is a mixture of the distributions of C1 and C2.

Challenges Adaptation is crucial for preserving the predictive accuracy and reliability of models in
dynamic environments. A trivial method to adapt models to concept drifts over time is to retrain the
model periodically, which can be costly and inefficient for large models and datasets. Additionally, this
approach is only robust if the retraining frequency is high enough, as the occurrence of concept drift is
unknown. On the other side, this can result in unnecessary retraining. To limit unnecessary retraining,
a reactive method is required, where in response to detecting a real concept drift the model should be
adapted. The challenge here is to detect and respond to the drift promptly, where the timely detection
of the drift depends on the speed of change and the appropriate response to the change on the optimal
decision boundary. Another challenge indicated by [6] is adaption on different severities of drift, as different
severities require a suitable adjustment of the model.

Adaptation of gradient boosting models To prevent unnecessary retaining alternative methods have
been proposed that update the existing model instead of replacing it. Updating an existing model poses
the challenge of balancing stability and plasticity. Stability refers to preserving relevant and recurrent
knowledge, while plasticity refers to discarding outdated knowledge and incorporating new experience [14].

Most ensemble learning methods for non-stationary environments use passive adaptation techniques [17].
These techniques assume that concept drift can happen at any time and continuously learn from the
input [18]. They balance stability and plasticity by dynamically adding and removing weak learners or
assigning weights based on their performance. Gradient boosting algorithms are powerful techniques for
static data analysis of both regression and classification problems, but they are harder to adapt in the same
way as other ensemble techniques, due to their sequential architecture. In gradient boosting algorithms, the
trees are dependent on each other, so adapting individual weak learners (trees) would affect the subsequent
trees. This necessitates a gradient-boosting specific adaptation technique that can cope with different
types and severities of concept drift. Overestimating the concept drift severity can result in discarding
useful knowledge, while underestimating it can prevent the model from adapting quickly to new concepts,
resulting in poor stability and plasticity, respectively.

Limited Labels Several methods exist for detecting concept drifts, but adaptation techniques for gradient
boosting models are scarce [15] and limited by the assumption of immediate true label availability. This
assumption is unrealistic [19] and impractical in many real-world scenarios, where obtaining true labels
is difficult due to various factors, such as limited labelling resources, high labelling costs, or the inherent
delay in label acquisition. This practical limitation of data streams is commonly referred to as verification
latency [20]. Current adaptation techniques for GBDTs are therefore unsuitable for real-time streaming
applications, where decisions need to be made in near real-time without waiting for all labels to become
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available. Note that selection bias can induce concept drift itself as well. As Moreno-Torres et al. [13]
explain, shifts can be caused by sample selection bias and by non-stationary environments. This implies
that the effect of selecting samples to be labelled should be considered when assessing concept drift based
on these samples.

In this work, we use the general definition of verification latency to define the limited labels in a specific
and precise manner, as follows: Given a data stream, we consider this stream in batches of data arriving
sequentially. In addition, we have a labelling budget that is expressed as the number of samples that can
be labelled before the arrival of the next batch of samples. Then the labelling budget limits the number of
labels available to adjust the model for any given batch. Therefore, the number of available labels is given
by the number of samples of this batch that have a verification latency shorter than the arrival time of the
next batch. Furthermore, we assume a constant budget over time.

The combination of challenges including, the timely detection and proper reaction based on the speed
and severity of the drift, the stability-plasticity dilemma [21, 14], which states the balance between
retaining and replacing knowledge in the model, and the limited availability of labels directly after the
prediction time, indicate the progress that can be made. Hence, there is a need for adaptation techniques
that can handle missing labels and enable gradient boosting models to cope with concept drifts in a timely
and efficient manner.

1.3 Problem Statement

1.3.1 Informal problem formulation
To illustrate the challenge of adapting to concept drift under limited labels, we present the following scenario.
We review the state-of-the-art passive adaptation method for gradient boosting, Adaptive Iterations [6].
This method employs the Elastic Gradient Boosting Decision Tree (eGBDT) [22] technique to determine
the extent of the adaptation based on the change in data. It estimates the drift magnitude according to
the loss of the available labels.

Assume we have a stream of data from which samples arrive sequentially and we collect them in a
batch until a predefined size, after which we initiate the collection of the next (second) batch. Suppose an
eGBDT model is trained on the first batch, resulting in a model with τ trees as illustrated in Figure 1.3a.
Then the model predicts on the samples in the second batch as soon as the collection is completed. After
this step, we aim to adjust the model based on the most recent data, namely the data in the second batch.
The eGBDT does this by first reducing the size of the tree sequence in the model to a subsequence, which
we call pruning the model. This pruned model is depicted in Figure 1.3b.

To decide how to prune the model, the method uses the loss of each subsequence. As all the labels
of the second batch become available after prediction, the method can compute the loss on this batch
for each subsequence of trees. Using Figure 1.3a as an example, all the subsequences start with the first
weak learner ha

1 and may end with any other weak learner. The subsequence of ha
k consists of all weak

learners between and including ha
1 and ha

k. The loss, also known as the residuals, of this subsequence is then
obtained by the root mean squared error of the predictions on the batch of data compared to labels. The
best performing subsequence with the minimal loss among all other subsequences determines the pruning
point. By this method, the model is reduced to this best performing subsequence. In the example, the best
subsequence ends at ha

k and is therefore reduced to this subsequence shown in Figure 1.3b. By using this
loss the size of the pruning is related to the magnitude of the drift in data.

After this pruning step, the model is either adjusted by appending new trees or fully retrained, depending
on the number of remaining trees and a user-defined threshold. Appending new trees is called learning
continuation and the result is shown in Figure 1.3c. Retraining the model is done based on only this new
(second) batch of data, resulting in a completely new tree sequence depicted in Figure 1.3d.

This method, however, presupposes that the ground truth labels of each new batch are immediately
accessible after prediction, which contradicts our setting of limited labels. With a restricted labelling
budget, we can only approximate the drift magnitude with a subset of the ground truth labels for each
batch. Suppose we can acquire only 15% of the ground truth labels for each batch before the arrival of the
next batch. This may result in over-estimation or under-estimation of the drift magnitude.
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(a) Initial model

(b) Pruned model

(c) Adapted model (d) Retrained model

Figure 1.3: Adaptation cycle of the eGBDT model.

In the scenario of over-estimation of the drift, the number of pruned trees based on this subset exceeds
the optimal number. In Figure 1.3b, the resulting tree sequence will be shorter than the optimal pruning at
learner ha

k. This implies that the model is actually discarding knowledge that is relevant, and this adversely
affects the stability of the model. Moreover, if the resulting tree sequence is below the retraining threshold,
the model will retrain, which is redundant. This redundant retraining can impair the performance of
the model, as one assumes that the drift is sufficiently large that the previous knowledge is no longer
relevant, while this may not be true, resulting in omitting useful information that may cause the model to
underperform. An additional consequence of redundant retraining in real-world scenarios is the cost, the
cost of labelling all the required samples and tuning the model.

Conversely, with the underestimation of the drift, the number of pruned trees based on this subset falls
short of the optimal number. This underestimation of the drift severity may hinder the model’s ability to
adapt to concept changes. In this scenario, the model’s plasticity decreases and it retains irrelevant or
conflicting knowledge and may not retrain when actually necessary. Another drawback of under-estimation
is the ever-increasing length of the tree sequence. As this increases the inference time.

To conclude, while the current state-of-the-art can adapt GBDT’s to changing data over time to stabilise
its performance and obviate periodic retraining, it may fail where only a limited amount of labels are
available for each batch. Where the erroneous estimation of the required adaptation of the model may
entail redundant retraining or inadequate adaptation of the model, potentially decreasing performance.

1.3.2 Formal problem formulation
Non-stationary environments Formally we define the problem of a non-stationary environment as
follows, inspired by Bayram et al. [14]. Given an initial training dataset Dtr = (xi, yi)

N
1 for N ≥ 1 where

xi = {x1
i , ..., x

k
i } is an arbitrary input vector of k features and yi ∈ R is the target value. Where Xi in

Dtr are independent and identically distributed random variables (i.i.d.). We define the initial stationary
distribution Ptr(x, y) as the joint distribution of the input and the target at time step t = 0, on our dataset
Dtr.

For the data stream in this non-stationary environment, we have a potentially unbounded sequence
of discrete data samples. Each sample is associated with a time stamp arriving in sequential order and
the stream is defined as a sequence of < si, si+1, . . . , sn, . . . >, where each element sj = (xj , yj) is a new
sample. Note that at arrival y is unknown. This sequence of samples can be considered as the test set,
Dtst. The concept drift in this environment considers the changes in statistical distributions of the data
over time. Let us define Pt(x, y) as the joint distribution of the input and the target at time step t, from
which sequence element st is a sample and Pt+w(x, y) as the joint distribution after the w time window
has passed. Concept drift then occurs when Pt(x, y) 6= Pt+w(x, y).
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Adaptation To adjust the model to this changing data distribution Pt(x, y)→ Pt+w(x, y), we consider
an adaptation technique. As the state-of-the-art adaptation technique of the gradient boosting models, we
review the elastic approach [22].

Let us say we train a gradient boosting decision tree on dataset Dtr = {si, . . . , st}, with distribution
Ptr(x, y), resulting in a model of τ trees,

Fτ (x) =

τ∑
i=1

hi(x) + ȳ (1.1)

where ȳ is the mean of the labels for Dtr and the initial prediction of the model. hi(x) represents the i tree
in the sequence. We will explain the training of these models in more detail in Section 3.2, where Equation
3.1 describes the same function.

After training the model a batch of samples of the stream comes in, defined as Dnew = {st+1, . . . , sj},
with Pt+1(x, y). First, the model makes predictions on these samples, resulting in ŷ. Following the
prediction, the elastic algorithm expects to receive the true labels y from an oracle, to adjust the model.

To determine how much the model needs to be adjusted to keep the performance on the same level.
The algorithm aims to find the best performing (sub-)sequence of trees for the new data batch. The best
performing (sub-)sequence with the minimal error is selected in the following manner,

Ielastic = argmin
τ∈Z+

τ≤T

MA(Rτ ) (1.2)

where Ielastic is the GBDT tree index, T is the maximum number of trees, MA is the mean absolute
function and Rτ = {riτ}Dnew

i=1 are the ’pseudo-residuals’ for all trees in the model for each sample in the
new batch. Given by,

Rτ = y − Fτ (x) (1.3)
where y is the true label.

The resulting model after pruning based on the new batch Dnew is then FIelastic
(x). After which new

trees are added or the model is retrained as explained in Section 1.3.1.

Limited labels When considering the case of limited label availability, we do not assume that all labels
of a batch will be available at the adaptation time of the algorithm. We define this limited label availability
in terms of verification latency and labelling budget (capacity).

Considering verification latency, the true labels are not available or only for a limited number of
samples with an arbitrary delay. In this work, we consider a limited number of labels of samples of a
batch to be available determined by a homogenous labelling budget over time. Given an arbitrary batch
Db = {si, . . . , si+w}, with |Db| = Nb and a user-defined labelling budget β for time step i until i + w.
Where we define txi as the timestamp where xi of sample si arrives and tyi as the timestamp of the arrival
of the true label yi by the oracle [23]. With

txj < txk for j < k ∈ N>0 ∧ txi < tyi for i ∈ N>0

and where the verification latency lsi of a sample si, is defined by lst = tyi − txi . Then for n samples of Db

we have,
{lsi < txi+w+1 − txi }ni , n ≤ β ≤ Nb (1.4)

Which simplifies to
{tyi < txi+w+1}ni , n ≤ β ≤ Nb (1.5)

Since we are only concerned with whether the delay is smaller or larger than txi+w+1 − txi , the exact
delay is irrelevant for the setting. Therefore, we use the term limited labels, as this captures the essence of
the setting.

To determine Ielastic, the true labels of all the samples in Dnew are required, indicating the difficulty of
adaptation in the case of limited label availability. When drastically reducing the number of available true
labels, the estimation of Ielastic may not be accurate, resulting in over-estimation or under-estimation of
the drift severity. This may lead to the underperformance of the model after adaptation and therefore this
demonstrates the need for an algorithm that is more appropriate for a setting with limited label availability.



Setting and assumptions

We address the problem of gradient boosting adaptation under the following setting and assumptions: (1)
the verification latency is finite and bounded, meaning that some labels will be available after a certain
delay; (2) the oracle provides accurate labels that match the true class of the samples; (3) the concept
drifts are either abrupt, incremental or gradual, and they occur over different time intervals; (4) no label
noise, concept evolution or deletion are present in the data; (5) the initial training samples are independent
and identically distributed (i.i.d.); (6) a stationary data set is available for the initial training of the model;
and (7) we do not consider specific techniques for active learning in this research, as we assume random
sample selection will be sufficient to evaluation our novel method.

1.4 Research questions
The problem formulation addresses the challenges of gradient boosting models in non-stationary environ-
ments. In real-world applications, the true labels are often unavailable directly after the time of prediction,
which exacerbates the difficulties of adapting to concept drifts. Where concept drifts can affect the
prediction performance of the model. The current state-of-the-art gradient boosting adaptation technique
cannot handle limited labels. This leaves a gap in the research and, as such, the main purpose of this
research can be described by the following main and sub-questions:

• How to reliably adapt GBDTs under limited labels?
A few relevant sub-research questions that can support this main research question are;

RQ1 How can the stability and plasticity of the model be balanced over time when adapting to concept
drift under limited labels?

RQ2 How can the severity of the concept drift be accurately determined under limited labels?
RQ3 Which concept drift scenarios are the most challenging for adaptation under limited labels?

1.5 Contributions
The main contributions of this thesis are as follows:

• We propose a novel elastic gradient boosting decision tree algorithm, elastic CatBoost with Uncertainty
(eCBU), that employs a novel sequential uncertainty estimation method to cope with concept drift
under limited labels. This algorithm utilises a proxy of the error for the pruning by applying sequential
uncertainty estimation. As this proxy relies on more data when label availability is limited, compared
to the state-of-the-art methods, it enhances the stability of the pruning of the model. Making it less
susceptible to the selection of the limited labels.

• We conduct extensive experiments on synthetic and real-world datasets and compare our method with
state-of-the-art methods. We demonstrate that our method attains comparable accuracy and superior
robustness to the existing methods under limited labels. This showcases that our novel method is
applicable in real-world settings, including intrusion detection. For this intrusion detection scenario,
we apply our method on a widely used public dataset and report the results on a proprietary dataset.

1.6 Outline
The report is organised as follows. Chapter 2 reviews the related work on tree-based algorithms, drift
detection, model adaptation, and uncertainty quantification for data stream learning. Chapter 3 introduces
the preliminaries, including the notation, terminology, and background knowledge. Chapter 4 presents the
proposed method for elastic GBDT with uncertainty-based drift adaptation, and explains its rationale,
intuition, and algorithmic details. Chapter 5 describes the evaluation framework, including experimental
setup, evaluation metrics, baseline methods, and the datasets. Chapter 6 reports the empirical results of
the experiments, highlights the key characteristics of the graphs and interprets the results in relation to the
research questions, and hypotheses. Chapter 7 discusses the results and the method based on its strengths,
weaknesses, implications, and limitations. Chapter 8 concludes the report and provides recommendations
and suggestions for future research directions.
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2
Related Work

2.1 Drift Detection
To reduce the problem of the decreasing performance of a model under non-stationary environments, we
need to be able to detect these dataset drifts. In Open-world Machine leaning (OWML) [10] literature,
this is often referred to as Out-of-distribution (OOD) detection [24]. In other works, Novelty, Anomaly
and Outlier detection are argued to be similar to Out-of-distribution detection [25]. These techniques are
often considered on single samples while drift detection is more often considered in the context of multiple
samples at once.

Pimentel et al. [26] refer to the problem of novelty detection as “Novelty detection can be defined as the
task of recognising that test data differ in some respect from the data that are available during training.”
In this review, multiple categories of novelty detection techniques are presented that aim to detect this
scenario for various Machine Learning (ML) techniques. Some of the approaches declared in this work
are probabilistic, distance-based, reconstruction-based, domain-based and information-theoretic novelty
detection.

A related topic, which is often used as a synonym to novelty detection, is anomaly detection [26].
Multiple definitions of both can be found in the work by Xia et al. [27]. Different to novelty detection,
anomalies are abnormal patterns in the data that are not a new type of class or input but are rather
outliers [28]. Detected anomalies are therefore sometimes not incorporated into the model after detection.
However, techniques used to detect novelties will often be similar to the ones used to detect anomalies.
The most frequently mentioned application in literature for anomaly detection is intrusion detection [29].

To give an indication of how this detection is done we will elaborate on some of the most widely used
detection techniques for concept drift. More drift detection methods can be found here [30]

2.1.1 Detection Techniques
Drift Detection Method (DDM) [31] aims to detect changes in the data distribution to identify the
concept drift. The method tracks the error rate of the model as new data arrive. It raises a warning and
saves the current model if the error rate increases beyond a threshold. When the error rate increases further
the method switches to the saved model, using confidence intervals to determine the thresholds. With
these error rates, it effectively detects the concept that may occur.

ADaptive WINdowing (ADWIN) [32], similar to DDM this technique uses the error rate as well to
detect a difference in data distribution. This method uses windows over the data to detect differences. It
assumes that the data within the window are stationary and divides the window into two sub-windows.
The method performs a statistical test to compare the sub-windows and raises a detection warning if they
differ significantly.

Uncertainty Drift Detection (UDD) [17] is an unsupervised method that uses uncertainty as a metric
for detecting drift. This method is interesting because it correlates with our work. It uses the ADWIN
algorithm but instead of the error rate, it uses uncertainty as the metric for the windows.

8



2.2. Model adaptation 9

However, to be able to learn under the concept drift and keep the performance of the model at the
same level after concept drift has been detected, we need to understand and adapt as well.

2.1.2 Understanding Concept drift
As explained by [33] , learning under concept drift consists of three parts, namely detection, understanding
and adaptation. Under detection we understand detection when a concept drift has occurred, as explained in
the concept drift section this can be done in many different ways. In the understanding part of the progress
falls determining the severity and the regions of the concept drift. By gaining a better understanding
of the concept drift the adaptation on the specific concept drift can be improved, resulting in better
performance. At last, the adaptation involves the progress of adapting the model. Depending on the
type and characteristics of the concept drift the model can be tuned or retrained. Both of these have
their advantages and disadvantages. Additionally, for some models tuning is inherently difficult due to the
architecture of the model.

2.2 Model adaptation
Model adaptation under concept drift is the task of updating machine learning models to cope with changes
in the data distribution over time, which may affect the accuracy and performance of the models. This
model adaptation is sometimes also referred to as, learning with concept drift [15, 33]. Model adaptation
under concept drift can be achieved by various strategies, such as:

• Updating the model with new data, by retraining the model from scratch.
• Using ensemble methods, where the models are selected, weighted, or updated based on their relevance

to the current data.
• Employing online learning algorithms, where the model is trained on streaming data and adapts to

concept drift by using global optimization techniques, such as continuation or shrinkage.

The literature contains various active and passive adaptation techniques for concept drift [18], but the
application of gradient boosting to cope with concept drift is less developed [15]. A few methods that use
GBDTs and adapt to concept drift are discussed here.

Ensemble approaches Ensemble methods for handling concept drift can be classified into two types:
active ensemble with drift detection and adaptation, and passive ensemble with forgetting strategy. The
active type depends on a mechanism that detects the drift and triggers the model update accordingly.
Passive handling methods however assume concept drift will occur at some moment and continuously add
new data when it arrives.

Streaming Gradient Boosting algorithm (SGM) [34] adapts gradient boosting to the online setting,
where the data arrives in batches and the weak learners are updated with new data. SGM also uses
global optimization techniques known as continuation, which constrain and relax the difference between
the learned and the behavior policies, to escape local optima and reduce the error in policy evaluation.
However, while this method learns from new batches continuously it does not specifically adapt to concept
drift that may occur.

OnlineBoosting [35] utilises the Adaptive Boosting (AdaBoost) [36] model in an online version capable
of handling data stream learning. It adds ADWIN as a detector to deal with concept drift. However, these
online learning techniques generally have lower performance than regular GBDTs. Making this method a
less good option compared to our selected method.
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2.3 Uncertainty Quantification
Uncertainty quantification (UQ) is the scientific process of quantifying, characterizing, and propagating
uncertainties in both computational and real world systems. It aims to assess the likelihood of various
outcomes under incomplete or imprecise knowledge of the system parameters or inputs. For instance,
predicting the outcome of a coin flip requires accounting for the uncertainty in the coin’s physical properties
and initial conditions, which may influence the probability of obtaining heads or tails. UQ seeks to model
and estimate these uncertainties and provide probabilistic predictions.

The objective of UQ with machine learning models is to infer predictive distributions that capture
the uncertainty in the model parameters or outputs, instead of point estimates that ignore it. These
uncertainties can be beneficial for decision-making, risk assessment, or model calibration. Learning
predictive distributions with exact Bayesian predictors can be computationally prohibitive and inefficient
for complex problems. Therefore, several approximation techniques have been developed to achieve similar
goals with lower computational costs. Some additional approaches can be found here [37, 38] .

Gaussian Processes This technique [39, 40] is a non-parametric Bayesian method that defines a prior
distribution over functions, rather than over parameters or outputs. The prior distribution is specified
by a kernel function that encodes the similarity or correlation between any two points in the input space.
Gaussian Processes can fit the observations exactly and provide posterior predictions with uncertainty
estimates. They are adaptable and expressive, as various kernels can be chosen or inferred from data.

Monte Carlo Dropout This technique [41, 42] is an approximation technique that uses dropout
as a Bayesian inference tool for neural networks. It randomly deactivates neurons in a neural network
during both training and testing phases. Each dropout configuration represents a different sample from
the approximate parametric posterior distribution over the network parameters or outputs. Monte Carlo
Dropout allows stochastic predictions that can be regarded as samples from a probabilistic distribution.

Ensemble Distribution Distillation This technique [43, 44] is a compression technique that transfers
the distribution of the predictions from an ensemble of neural networks, instead of only the mean prediction,
into a single network. Ensemble Distribution Distillation allows a single network to preserve both the
enhanced classification performance of ensemble distillation and the information about the variability of
the ensemble, which is beneficial for uncertainty estimation.

UQ has many applications in various domains and tasks, such as computer vision, natural language
processing, reinforcement learning, healthcare, robotics, finance and cybersecurity. Some examples of UQ
applications are:

• Anomaly detection: UQ can help identify inputs that are likely to be misclassified by a classifier,
such as ambiguous or noisy data. UQ can also help detect out-of-distribution inputs that are outside
the scope or domain of the classifier, such as adversarial examples or novel classes.

• Active learning: UQ can help select informative inputs for labelling or querying in an active learning
setting, where data is scarce or expensive to obtain. UQ can measure the uncertainty or informativeness
of each input and prioritise the ones that are expected to reduce the uncertainty or increase the
accuracy of the model.

• Exploration-exploitation trade-off: UQ can help balance exploration and exploitation in reinforcement
learning, where an agent needs to learn from its interactions with an environment. UQ can quantify
the uncertainty or novelty of each state-action pair and guide the agent to explore new or uncertain
regions while exploiting known or rewarding regions.

2.3.1 Uncertainty Quantification for GBMs
For GBMs, uncertainty quantification is still an emerging field and only a few approaches have been
suggested. Models that naturally provide uncertainty estimates over the outputs are Bayesian methods,
but exact Bayesian approaches are often intractable. However, there are some interesting methods that can
provide UQ in GBMs.
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Natural Gradient Boosting (NGBoost) [45] uses a multiparameter boosting approach to model its
conditional distribution, making it able to do probabilistic regression. In essence, each parameter of the
output distribution has its own sequence of trees, the natural gradient optimises each set of sequential trees
for these parameters together. This approach makes it possible to model any type of distribution, while in
practice the time complexity of the prediction increases as the required number of parameters increases
(typically two parameters are needed). However, this approach of modelling the probabilistic regression only
captures the aleatoric uncertainty. Additionally, compared to other state-of-the-art GBMs[46] (CatBoost,
etc.), NGBoost tends to underperform for point-predictions [47].

CatBoost with uncertainty For the sake of completeness, CatBoost with Uncertainty (CBU)[7], utilises
an ensemble of GBMs to determine the epistemic uncertainty by the ’disagreement’ between the multiple
models. As the computation of this approach may be costly, they suggest using the ensemble nature of
GBMs to estimate the uncertainty. The virtual ensembles of CBU use “truncated” sub-models of a single
GBM model as elements of an ensemble to estimate the epistemic uncertainty. This framework can be
applied to any GBM, however, it is limited in the quality of the uncertainty.

PGBM Probabilistic Gradient Boosting Machine (PGBM) [48] aims at determining the probabilistic
regression that reflects the uncertainty in the model, by considering the leaf weights in the trees as random
variables. PGBM is able to model different sets of posterior distributions while using only one GBM
model. However, it does not examine the difference between aleatoric and epistemic uncertainty. Making it
difficult to detect anomaly samples with confidence. While tree-based models are often picked for their
interpretability, this approach reduces of ease of explainability by making the weights random variables.

Tree Flow More recently, a different approach has been introduced: Tree Flow [49]. It combines a GBDT
with a conditional variant of normalizing flow to create the capability of modelling different distributions
for the uncertainty than only a Gaussian. However, this approach can be challenging to tune and the
shallow feature extractor based on an NN in combination with the two other elements makes it hard to
explain the output in terms of the input.

IBUG Instance-Based Uncertainty estimation for Gradient-boosted regression trees (IBUG) [47], can
be applied on any GBM. It uses a similarity measure between samples based on the number of the same
occurrences samples have in leaves throughout the ensemble (sequence of trees). Nonetheless, this technique
is slow at making predictions compared to other techniques (CatBoost, NGBoost), which can be a real
problem in safety-critical environments. More importantly, it relies on the tuning of three hyperparameters
in order to function properly, especially the ’k’ parameter can take time to tune. Additionally, this approach
only focuses on the predictive uncertainty and not specifically on epistemic uncertainty.

KGB The Kernel Gradient Boosting (KGB) [50] method proposes that by making certain assumptions,
a GBM can be transformed into a kernel-based method that converges to a Gaussian Process’ posterior
mean. This enables the GBM to function as a posterior sampler, and by using Monte-Carlo estimation,
one can estimate the variance and uncertainty of a prediction. Ustimenko et al. assume proper random
and oblivious trees to establish the theoretical basis for KGB, and they demonstrate empirically that it
outperforms SGB and SGLB. They mentioned that the SGB is bound because the limiting distribution
concentrates on the minimum of RMSE obtained via the Gradient Flow-like dynamics [51]. Similarly,
the SGLB cannot converge faster than the Euler-Maryama method. The KGB method is not limited by
these factors and therefore has better performance. However, computing the kernel requires combining all
possible tree structures, which is infeasible. To overcome this limitation, the authors use an ensemble of
KGB models, similar to CBU, to estimate uncertainty.

cSGLB Cyclical Stochastic Gradient Langevin Boosting (cSGLB) [52] improves the virtual ensemble of
CBU. It does this inspired on [53], this method uses a cyclical exploration and sampling phase to decrease
the dependencies between the virtual members of the ensemble, depicted in Figure 2.1. This method
shows comparable performance with an ensemble of around 5 SGLB models. By only using one model, the
computational load is reduced drastically. However, to increase the independencies between the virtual



ensemble members longer sequences are needed. This suggests that the cSGLB is more prone to overfitting
than regular SGLB and may therefore underperform in certain scenarios.

Figure 2.1: Illustration of cyclical schedule of the cSGBL method. Source: [52]
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3
Preliminaries

In this chapter, we provide an overview of the technical background especially relevant to our novel method
that aims to answer our research question. We first introduce gradient boosting, a machine learning
technique that builds an ensemble of weak learners, usually decision trees, to form a strong learner that
can achieve high accuracy for both regression and classification problems. We then discuss the challenges
posed by non-stationary environments, where the data distribution or the underlying concept may change
over time. This phenomenon, known as concept drift, can impair the performance of gradient-boosting
models and necessitate frequent retraining or adaptation. After this, we revisit existing methods of model
adaptation of gradient boosting models which are the building blocks of our approach. The methods aim at
continuously finding the best sequence of weak learners on changing concepts over time. Finally, we show
the chosen method of uncertainty quantification in gradient boosting models, which is utilised to provide
our novel sequential uncertainty estimation. Uncertainty may arise from various sources, such as parameter
estimation, input variability, model inadequacy, and numerical errors. The uncertainty quantification
field aims to characterise and estimate the uncertainties and provide probabilistic information about the
outcomes and the confidence of the predictions.

3.1 Tree-based algorithms
Tree-based algorithms use decision trees as their structural foundation. In a decision tree, each node is a
decision on a certain feature in the dataset and each terminal node is associated with a class. A sample
traverses through the tree based on the decision nodes and the feature values of the sample, reaching a
terminal node that determines the class of the sample. For regression problems, these classes are scalar
values.

To have a model that can predict an output for a new instance the model needs to be fit to the
available data, this is done during training. While training the decision nodes for each consecutive split are
determined by splitting criteria. The goal of a decision node is to increase the homogeneity of the split sets
of samples. Often referred to as the information gain. To quantify the inhomogeneity or impurity, metrics
such as entropy, Gini impurity or Twoing criterion are used [54]. The difference between the entropy of the
dataset before the split and the weighted combination of the entropy of the datasets after the split reflects
the information gain. These decision trees are used in the machine learning technique applied in this work,
namely gradient boosting decision trees.

3.2 Gradient Boosting
Gradient Boosting Decision Trees (GBDT) [55] are a type of ensemble learning method that combines
multiple weak prediction models, such as decision trees, to create a strong predictive model. GBDTs
optimise the model by iteratively adjusting the weights, an additive manner, of each model based on the
errors of the previous iterations, using the gradient descent algorithm to minimise a loss function.

Assume we have a dataset of i.i.d. samples DN = (xi, yi)
N
1 for N ≥ 1 from DN ∼ D where D is a

training data distribution, xi = {x1
i , ..., x

k
i } is an arbitrary input vector of k features and yi ∈ R is the
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output or target value. Gradient boosting aims to approximate the F ∗(x) : Rk → R that maps input
instances x to its output y, by minimizing the expected loss L(F |D) = ED[`(F (x), y)]. It does this by
building a function by the following additive approach,

Fτ (x) = Fτ−1(x) + ρτhτ (x), (3.1)

where ρτ is the weight of function hτ (x). The function hτ : Rk → R is a base predictor, in this case,
a shallow tree. The space of possible weaker learners is defined by H := {hs(x, φs) : Rk → R, s ∈ S},
where S is a finite index set and hs linearly depends on its parameters φs. The parameters of a model Fτ

are denoted by θτ . The decision tree recursively partitions the feature space into disjoint regions. Each
final region or terminal Rj has an estimated response y value assigned for that region. The tree can be
represented in the following way,

h(x) =

J∑
j=1

φj1(x ∈ Rj), (3.2)

where J is the number of nodes, φj represents the estimated response values for terminal nodes and
decision values for nonterminal nodes. The indicator function 1(·) has a value of 1 or zero depending on
the evaluation of the arguments. These base learners are subsequently minimizing the loss for each greedy
step by,

(ρτ , hτ (x)) = argmin
ρ,h∈H

N∑
i=1

`(Fτ−1(xi) + ρh(xi), yi), (3.3)

where h0 is an initial guess and {hτ}T1 are successive increments. The consecutive hτ base learners are
minimised on the ’pseudo-residuals’ derived from the preceding base learner. The ’pseudo-residuals’ are a
vital part of the GBDT adaptation algorithm and will be elaborated on in Section 3.4. The intermediate
targets are determined by the following gradient-descent,

−gτ (xi, yi) =

[
∂`(F (xi), yi)

∂F (xi)

]
F (x)=Fτ−1(x)

(3.4)

A common method to determine the next base learner is by using a least-squares approximation,

hτ (x) = argmin
h∈H

N∑
i=1

[−gτ (xi, yi)− h(xi)]
2 (3.5)

Subsequently, a line search is done to optimise ρτ . To reduce the chance of overfitting most methods use a
learning rate as a shrinkage method [46] Fτ (x) = Fτ−1(x)− ερτhτ (x), where ε = (0, 1]. Moreover, most
well-known libraries use additional regularisation methods.

This powerful approach has led to the development of several improvements of the algorithm over the
past years, including Stochastic Gradient Boosting (SGB) [56], Categorical Boosting (CatBoost) [57]
and Stochastic Gradient Langevin Boosting (SGLB) [58]. An elaborate analysis of CatBoost in multiple
domains can be found here [59]

Note that in our approach we use Stochastic Gradient Boosting, where this method applies stochastic
gradient descent to gradient boosting by using a random subset of the data to fit each weak learner, rather
than the whole data. This reduces the correlation between the learners and improves the generalization
performance of the ensemble. SGB also introduces randomness in the selection of features or split points
for each tree, further increasing the diversity and robustness of the sequence of weak learners. As will be
explained in Section 3.5.1, this stochastic plays a vital role in enabling the chosen uncertainty quantification
method.

3.3 Concept Drift

3.3.1 Formal definition of Drift
In these non-stationary environments, this work talks about data streams, these streams are potentially
unbounded sequences of discrete data samples. Each is associated with a time stamp arriving in sequential
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order and is defined as a sequence of < s1, s2, . . . , sn, . . . >, where each element sj = (xj , yj) is a new
sample. This sequence of samples can be considered as the test set, Dtst. The concept drift in this
environment considers the changes in statistical distributions of the data over time. Let us define Pt(x, y)
as the joint distribution of the input and the target at time step t, from which sequence element st is a
sample and Pt+w(x, y) as the joint distribution after the w time window has passed. Note that in Bayesian
Decision Theory Pt(x, y) = Pt(y|x)× Pt(x) = Pt(x|y)× Pt(y) [60]. Concept drift then occurs when

Pt(x, y) 6= Pt+w(x, y) (3.6)

To differentiate between occasional anomalies and a drift, w is considered to be longer than one time-point
[61]. Therefore we have w ∈ Z+ ∧ w > 1.

Other and more specific types of drift consider different probability distributions as well. This work
differentiates between two types of drifts, ones that directly affect the prediction performance and ones
that do not, depicted by Figure 1.1c and Figure 1.1b respectively. The first type that affects the prediction
performance, is considered to be a change in the posterior probability distribution

Pt(y|x) 6= Pt+w(y|x) (3.7)

While for the second type, scenarios where,

Pt(y|x) = Pt+w(y|x) ∧ Pt(x) 6= Pt+w(x), (3.8)

hold, this does not directly influence the prediction performance. One type of drift that is left out of
consideration is the prior-probability shift. Defined as,

Pt(y) 6= Pt+w(y) (3.9)

This type of drift can have an effect on the prediction performance, however, these are scenarios where
only the prior of the labels shows significant change. The flipping of the complete set of labels and
concept-evolution and deletion are left out of consideration. Section 5.3.3 elaborates on why this choice has
been made.

A more elaborate taxonomy of the various types of drift defined by the difference in changing probability
distribution can be found in the work by Bayram et al. [14]

3.3.2 Change of the Concept
As these events of concept drift happen over time, We consider two types of the speed of change, in this
work, namely, sudden, incremental concept drift [62]. The types shown in Figures 1.2 can formally be
defined by Equation 3.10 and Equation 3.11 for sudden and incremental concept drift respectively. In
these equations, the P0(x, y) and P1(x, y) distributions represent the concepts C1 and C2 of the figures
displaying the concepts.

• Sudden concept drift

Pj(x, y) =

{
P0(x, y), if j < t

P1(x, y), if j ≥ t
(3.10)

• Incremental concept drift

Pj(x, y) =


P0(x, y), if j < t1

(1− α)P0(x, y) + αjP1(x, y), if t1 ≤ j < t2

P1(x, y), if t2 ≤ j

(3.11)

where,
αj =

j − t1
t2 − t1

(3.12)
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3.4 Model adaptation
The general goal of model adaptation is to learn the drift and ensure that the loss of a learning model is
continuously optimised when concept drift occurs. The works by Sun et al. [63] and Wang et al. [22] describe
the objective of model adaptation in the following manner. Given a batch of data samples D = {st, . . . , si},
st = (xt, yt), drawn from the same joint distribution Pt(x, y) at time step t. We aim at minimizing the loss
`(F (x), y) by continuously finding the best model:

F t = argmin
F∈H

E(x,y)∈Pt(x,y)[`(F (x), y)], (3.13)

where H is the hypothesis set and E(·) denotes the expected value. If we consider a sequence of Pt(x, y)
over time, where Pt(x, y) 6= Pt+w(x, y) may occur in the sequence, the goal of dynamically adapting the
model on this sequence is given by,

min
F 1,...,F t,...

∑
t

E(x,y)∈Pt(x,y)[`(F
t(x), y)] (3.14)

Equation 3.14 shows the selection of a model at each time step t that minimises the loss the most. To cope
with different types of the speed of change described in Section 3.3.1 and depicted in Figure 1.2 model
adaptation method continuously adapt based on incoming data.

Wang et al. [6] identify the problem of the rising loss affected by concept drift, where the learner is not
adjusted to the concept drift Pt(x, y) 6= Pt+w(x, y), by the increase of the loss after the change of concept.
Let us say we have `t = `t(F (x), y) for time t then the loss for `t+w = `t+w(F (x), y) will increase, i.e.

`t < `t+w. (3.15)

This problem of the rising loss is later used in a method to determine the local-minimum learner and with
it, the severity of the drift, explained in Section 3.4.2.

The goal of adaptation is to reduce the loss to the same level as before the occurrence of drift. If the
adjusted model is given by F ′(x) then the loss for time t+ w will be `t+w′

(F ′(x), y). Then the aim of the
adaptation would be:

`t+w′
(F ′(x), y)− `t ≤ 0 < `t+w − `t (3.16)

3.4.1 Incremental GBDTs
To adapt the model to new patterns that occur in data streams due to concept drift, GBDTs need to adjust
the sequence of trees. Incremental learning is a method of doing this update by adding trees at the end
of the sequence, also known as learning continuation. Given the same scenario as above where we have
batch Dinit = {si, . . . , st}, Dnew = {st+1, . . . , sj} and a model F t

τ (x) trained on Dinit. Then L new trees
are added based on samples {(xi, ri(τ+L))}Dnew

i=1 , resulting in, similar to Equation 3.1,the following model,

F t+1(x) = Fτ+L(x) = Fτ+L−1(x) + ρτ+Lhτ+L(x) (3.17)

Note that all the ’pseudo-residuals’ for sequence length τ are denoted by Rτ = {riτ}Dnew
i=1 . To incrementally

tune the model this procedure is executed repeatedly for each new batch in the data stream. The pseudocode
for this method is shown in Algorithm 1. Note that generally, either or both regularization and stochasticity
are added by methods mentioned in Section 3.2, therefore Equation 3.17 and Algorithm 1 are simplifications.

3.4.2 eGBDT
Elastic Gradient Boosting Decision Tree (eGBDT) [22] uses the incremental GBDT as an integral part of
its algorithm. As a GBDT model makes predictions by adding up the outputs of a series of trees. The
method can update the model by adding new trees based on new data or removing the last few trees to go
back to a previous state of optimization. The eGBDT method updates the model and detects changes
in the data distribution by finding the tree that minimises the error. The goal is the same as described
by Equation 3.13. Finding the minimal (pseudo-)residuals to reduce the sequence of trees is described in
Section 1.3.2. Where the Ielastic is the resulting length of the reduced model, obtained by Equation 1.2.
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Algorithm 1: Incremental GBDT
Init: Dinit, Dnew

Parameters:
Parameters GBDT, GBDTparm

Num of incremental trees, L
Result: Model FT+L(x)

1 build FT (x) on Dinit with GBDTparm

2 for l← 1 to L do
3 RT+l−1 ← compute pseudo-residuals by FT+l−1(x) on Dnew

4 hT+l ← fit hT+l(x) on {(xi, ri(T+l−1))}Dnew
i=1

5 FT+l(x)← update according to Eq. 3.17
6 end
7 return FT+L(x)

The search for the minimal (pseudo-)residuals, can be described by the gradient-drift learner and the
local-minimum learner [6]. The gradient-drift learner is given in a similar notion as the rising loss problem,
only here we consider the weak learners. Given a model FT (x) with weak learners {hτ}Tτ=1, where the
expected loss for a hτ is E[`τ ] = E[`(hτ (x), y)], then the gradient-drift learner is described as follows:

E[`tτ ] ≤ E[`tτ−1] ∧ E[`t+1
τ ] > E[`t+1

τ−1] (3.18)

The local-minimum learner precedes these drift learners and can be found where the expected loss is
minimal:

hτ (x) = argmin
τ

E[`(Fτ (x), y)] (3.19)

New trees are added by the incremental GBDT algorithm after pruning the model. Through the
combination of pruning and the addition of trees, the model dynamically adapts to drifts that may occur.
Algorithm 2 shows the procedure including the call to the Algorithm 1 as a subroutine.

Algorithm 2: Elastic GBDT
Init: Trained GBDT: FT (x), Data: Dnew

Parameters: N/A
Result: Adjusted model FT ′(x)

1 predict with FT (x) on Dnew

2 (Rτ )
T
τ=1 ← calculate residuals for all trees on Dnew . by Eq. 1.3

3 τ ← find tree index with minimal mean absolute residual . by Eq. 1.2
4 if τ < T then
5 retrain GBDT FT (x) on Dnew

6 return FT (x) as FT ′(x)

7 else
8 FT ′(x)← Fτ (x) . remove redundant trees
9 FT ′′(x)← run subroutine Alg. 1 without the first line on FT ′(x), Dnew

10 return FT ′′(x) as FT ′(x)

11 end

From the procedure in Algorithm 2 we can see that if Ielastic is smaller than a predefined threshold the
model will be retrained on the new batch. If this is the case, the authors say that there is a significant
concept drift and retraining is needed. When the drift is less severe the model will be pruned and L number
or trees are added by Algorithm 1. The threshold is set equal to the initial number of trees T , by the
author of the method, but can be changed.
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3.4.3 AdIter
The Adaptive Iterations (AdIter) [6] method is an adjustment on the eGBDT and tries to determine more
accurately how many trees, also called iterations, need to be added in the case of tuning the model. The
authors mention this problem as finding the appropriate number of trees under concept drift. It does
this by having an ensemble of multiple GBMs and adjusting them with different amounts of trees. The
models that predict the true labels are considered well-adjusted and, therefore, the number of added trees
is considered appropriate. Each model in the ensemble is an elastic GBDT.

To allow the loss resulting from the concept drift to reduce to pre-drift levels, L trees will be added to
help tune the model. The problem is how to determine an appropriate number for L. This problem is
formulated as,

L = argmin
L

`(FT+L(x)), (3.20)

where FT+L(x) is the model after tuning.

Algorithm 3: Adaptive Iterations GBDT
Init: Stream data: D
Parameters:
Set of Config, {eGBDT

(m)
parm}Mm=1

Initial training batch size, batchinit

Sliding batch size, batchslide

Initial number of iterations T
Result: Predictions {Ŷbatchslide

}
1 for eGBDT

(m)
parm in {eGBDT

(m)
parm}Mm=1 do

2 build eGBDT F (m) on Dbatchslide

3 end
4 while D has next batch Dbatchslide

do
5 for m = 1 to M do
6 Ŷm ← F (m)(Dbatchslide

) . save prediction vector
(run Alg. 2 as subroutine)

7 F
(m)
τ ← prune F (m)(x) on Dbatchslide

8 if τ < T then
9 retrain F (m)(x) on Dbatchslide

10 else
11 tune F

(m)
τ (x) on Dbatchslide

12 end
13 end
14 Ŷbatchslide

← majority vote on {Ŷm}Mm=1 . by Eq. 3.21
15 end
16 return {Ŷbatchslide

} . prediction results on all batches

AdIter aims at handling the problem of determining the best number of L for different degrees of the
severity of the concept drift by an ensemble defined as {F (m)(x)}Mm=1 where each eGBDT in the ensemble
has a different parameter for L, by {L1, L2, . . . , Lm}Mm=1. The resulting prediction of the ensemble is
determined by a majority vote,

Ŷ =

{
0, if

∑
i 1(Ŷi = 0) ≥

∑
i 1(Ŷi = 1)

1, else
, (3.21)

where Ŷi is denoted as the prediction by the ith model in the ensemble and 1(·) is the indicator function.
Algorithm 3 gives the complete procedure of the AdIter algorithm.
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3.5 Uncertainty quantification
In general, uncertainty in models arises when the model is under a shifted dataset, events of anomalies,
noise or overlapping classes [41]. Its estimate can be used to indicate the models’ confidence on a particular
sample and so to detect an anomaly or novelty.

In Bayesian statistics, uncertainty can be modelled with the posterior distribution [40]. If we consider
H to be the hypothesis space of probabilistic predictors, where h is a hypothesis in that space that maps
an instance x to a target y, then we can formulate the following posterior distribution, p(h|D) = p(D|h)p(h)

p(D) .
Here D is the data distribution, where (x, y) ∼ D. The p(h) is the prior, which is the pre-known knowledge
about the modelling. p(D|h) is the likelihood function of h, meaning how likely is the data if modelled
by this hypothesis. However, in practice, we do not know the exact distribution of D and determining it
by the integral over the space H is intractable. Therefore we seek alternative approaches to approximate
the posterior distribution and thereby the uncertainty quantification. We elaborate in more detail on the
modelling of uncertainty in Bayesian theory in Appendix A.1.1.

Uncertainty can be split into two parts, aleatoric and epistemic uncertainty. Aleatoric uncertainty is
also known as data uncertainty and is not a property of the model, it’s caused by noise or overlapping
classes [64, 41]. Due to its origin, this part of the uncertainty is irreducible. Still, it is useful to know this
part of the uncertainty especially if safety-critical decisions are based on the output of the model and the
data is not perfectly controllable. Epistemic uncertainty is the uncertainty that arises due to the lack
of knowledge in the model, it is also known as knowledge uncertainty. This part is reducible, making it
possible to improve the model’s performance and therefore making it interesting to quantify and determine
its origin. However, this part of the uncertainty is significantly harder to determine well.

Specifics of epistemic uncertainty Hüllermeier et al. [40] differentiate between model uncertainty
and approximation uncertainty as parts of epistemic uncertainty. Where model uncertainty is about the
type of model used, so linear regression model, Gaussian process, GBDT, etc. The other part refers to the
uncertainty on the approximation of the best function to model the prediction. In this work we will be
looking at the approximation uncertainty part and neglect the model uncertainty part, as we assume that
the model architecture namely, GBDTs, is capable and flexible enough.

3.5.1 Uncertainty Quantification by Ensembles
There are several techniques to determine the uncertainty in predictions made by machine learning models.
Some relevant methods are described in Section 2.3. In this work, however, we consider the ensemble
method to quantify the uncertainty, specifically a GBDT uncertainty quantification ensemble technique [7].
This approach uses multiple models with different seeds to represent a part of the hypothesis space. The
multiple outcomes of the model together form the posterior.

Let us first define how the posterior distribution can be estimated by a Bayesian ensemble. Consider an
ensemble of M number of probabilistic models {P (y|x; θ(m))}Mm=1 sampled from the posterior p(θ|D), note
that the θ is the representation of the hypothesis in the space of probabilistic predictors. In this case a
Bayesian learner. The uncertainty can be estimated by the difference in predictions made by the models in
the ensemble, as each model P (y|x; θ(m)) produces different predictions. This difference in prediction is a
result from the stochasticity introduced by the SGB explained in Section 3.2. These models are trained
on in-domain data and therefore yield a particular range of behaviours for this type of data, while it
has an ’undefined’ behaviour for out-of-distribution data. Due to this combination of stochasticity and
’undefined’ behaviour the predictions on out-of-distribution data will be diverse and consistent on in-domain
data for an ensemble of probabilistic models [43]. The intuition behind this statement is explained in
the introduction of this section. As the exact Bayesian inference is often intractable, methods have been
proposed to approximate the posterior.

To approximate the uncertainty by using the probabilistic gradient boosting models we use the following
method. Note that in Section 3.2 it was explained that, the final GBDT model F (x) given by Equation 3.1
is a sum of decision trees (weak learners) and the parameters of the full model are denoted by θ.

Let us take an ensemble of GBDT probabilistic predictors {P (y|x; θ(m))}Mm=1. Malinin et al. [43] state
that given the posterior distribution p(θ|D) the predictive posterior of the ensemble can be obtained by



taking the expectation with respect to the models in the ensemble:

P (y|x,D) = Ep(θ|D)[P (y|x; θ)] ≈ 1

M

M∑
m=1

P (y|x; θ(m)), θ(m) ∼ p(θ|D) (3.22)

According to the information theory [65], the Shannon entropy [66] is a measure of the uncertainty of a
discrete probability distribution. It computes the expected amount of information or surprise contained by
an event, given all possible outcomes. The entropy of the predictive posterior reflects the total uncertainty
in the predictions, as shown by [64, 67]:

H[P (y|x,D)] = EP (y|x,D)[−lnP (y|x,D)] (3.23)

The total predictive uncertainty is obtained in the following manner:

Up(y|x; θ) = H[P (y|x,D)] ≈ H[ 1
M

M∑
m=1

P (y|x; θ(m))] (3.24)

This uncertainty type contains both the aleatoric and the epistemic uncertainty. Where the aleatoric is
derived by the following equation:

Ua(y|x; θ) = EP (θ,D)[H[P (y|x, θ)]] ≈ 1

M

M∑
m=1

H[P (y|x; θ(m))] (3.25)

The estimate of the epistemic uncertainty can be obtained by subtracting the expected data uncertainty
from the total uncertainty estimate, as formulated in Equation 3.26. This is known as the difference of the
mutual information between the parameters θ and y.

Ue(y|x; θ) = I[y, θ|x,D]︸ ︷︷ ︸
Epistemic Uncertainty

= H[P (y|x,D)]︸ ︷︷ ︸
Total Uncertainty

− EP (θ,D)[H[P (y|x, θ)]]︸ ︷︷ ︸
Expected Aleatoric Uncertainty

≈ H[ 1
M

M∑
m=1

P (y|x; θ(m))]− 1

M

M∑
m=1

H[P (y|x; θ(m))]

(3.26)

This shows how we can approximate the different types of uncertainty by the ensemble technique. Note
that for the sake of readability, a somewhat simplified notation U(x) for Up(y|x; θ) is occasionally used. It
should be clear from the context on which learner θ the uncertainty is based.
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4
Elastic gradient boosting decision trees under

limited labels

In this section, we will present the main contributions of this thesis, which is a novel method that aims to
adapt better under limited label availability.

4.1 Approach overview
To give an intuition of the novel algorithm we propose, which provides a proxy for the severity of the
drift that may occur in data streams in a non-stationary environment, we build on the example of model
adaptation explained in the informal problem formulation, Section 1.3.1.

As explained in that section, the current state-of-the-art adaptation method AdIter employs eGBDT as
its technique to prune the model. The eGBDT technique aims to dynamically adapt a GBDT-based model
to concept drift over time. We can divide the scenario of eGBDT described in the problem formulation
into three logical consecutive steps. First, the model is trained on initial data, then the model is pruned
based on a new batch, and finally, the model is adapted or retrained based on the same new batch.

With the eGBDT algorithm, this pruning step dynamically adapts to the severity of the concept drift.
This part of the algorithm is responsible for the estimation of the severity of drift as well as for maintaining
the stability and plasticity of the model under the changing environment. The amount of pruning is based
on the loss over all the tree (sub-)sequences of the model, which depends on the batches of data that
originate from a data stream. The objective of the pruning is to continuously minimise the loss for each
new batch of data.

A limitation of this method, however, is the requirement for the true labels of all the samples in a batch.
To determine the pruning point, the method requires that all the true labels arrive before the next batch
to be able to adapt well. When the number of samples that are available before the next batch arrives is
limited, however, this method is prone to over-estimation or under-estimation of the drift severity, resulting
in a model that is not pruned correctly and therefore may have disadvantages such as excessive retraining
or underperformance.

To make this pruning more accurate given only a limited number of true labels for each batch, we
introduce our elastic CatBoost with Uncertainty (eCBU) approach. This approach uses uncertainty
quantification to estimate the pruning that is performed without the use of any labels. This approach differs
in the pruning step compared to the eGBDT approach and resembles the other steps compared to AdIter.
As explained in Section 3.4.3, AdIter uses an ensemble of GBDTs to make the final prediction. Our method
utilises an ensemble as well.

The same consecutive steps of eGBDT apply to eCBU as well. For the first step of training the initial
model, eGBDT uses a single model, while our method with eCBU uses an ensemble of models, as depicted
in Figure 4.1a. Each of the GBDT models in the ensemble has the same length.

For the second step, eGBDT evaluates the residuals for all (sub-)sequences and prunes the model to
the (sub-)sequence with the minimum loss. With eCBU, we assess the uncertainty for all (sub-)sequences
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by the ensemble and prune the model to the (sub-)sequence with minimum uncertainty. We measure
the uncertainty of each (sub-)sequence by quantifying the disagreement among predictions by models in
the ensemble that have the same length. To estimate this uncertainty, we need a probabilistic predictor,
therefore we use a classifier instead of a regressor as used for eGBDT.

(a) Initial model

(b) Pruned model

(c) Adapted model (d) Retrained model

Figure 4.1: Adaptation cycle of the eCBU model.

For instance, if we want to know the uncertainty for the (sub-)sequence until tree hk, depicted in
Figure 4.1a, with ensemble size M . We predict with each model {F (m)

k }Mm=1. We then measure the
uncertainty at point k by the disagreement between the predictions. By doing this for every (sub-)sequence
we can determine the minimal learner and thus the pruning point. If the ensemble has the lowest uncertainty
at hk, we prune the ensemble of models from this learner onwards, as illustrated in Figure 4.1b. The
single sequence is a simplification of the full ensemble as shown in Figure 4.1a. By using this measure of
sequential uncertainty we can quantify the best pruning point due to the change of uncertainty given by
this new batch of unlabeled data.

For the third step, the model is tuned with a user-defined parameter L or retrained. Where L denotes
the number of trees added by learning continuation. Similar to eGBDT and AdIter, if the pruning exceeds
the threshold the model is retrained otherwise the learning continuation is applied, as shown in Figure 4.1d
and Figure 4.1c, respectively.

4.2 Model Architecture
In this section, we will explain the technical details of our novel approach as well as the design choices and
the multiple versions of the algorithm.

The general model architecture of our approach functions similarly to the AdIter method described
in Section 3.4.3. The objective of our method is to improve the estimation of the severity of the concept
drift under limited label availability and by doing this minimise unnecessary retraining of the model and
maximise the predictive performance of the model. However, as explained our novel method is different in
some aspects from the AdIter. While eCBU also utilises an ensemble of GBDTs, this method uses this
ensemble for a different purpose. AdIter uses the ensemble to facilitate multiple different sizes of L to
make the adjustment more flexible. Where eCBU uses the ensemble to estimate the uncertainty for each
(sub-)sequence. How this uncertainty estimation relates to our objective of model adaptation and which
techniques will be used for this are explained next.
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4.2.1 Connecting Uncertainty and Concept Drift
So far, we have provided a comprehensive description of concept drift and uncertainty quantification, but
we have not yet directly explored the link between them. Based on several works [68, 67], we have evidence
to suggest that there is a correlation between them. Moreover, many other works indicate the relation
between Out-of-Distribution (OOD) sample detection and uncertainty [41, 40, 69, 52]. This is a significant
addition because samples from a different concept and hence, Equation 3.6, a different distribution, can
be regarded as OOD-samples. The work of [67] proposes, by their experiments, that it is beneficial to
decompose the uncertainty into an epistemic and an aleatoric component. They show that OOD-samples
are characterised by having a high epistemic uncertainty and a low aleatoric uncertainty. A more direct
connection is made by [68], who confirm that the model’s confidence can be an unsupervised indicator of
the presence of drift.

As we assume that somewhere during the arrival of new batches from a data stream the concept will
change Pt(x, y) 6= Pt+w(x, y), resulting in Pt(y|x) 6= Pt+w(y|x) we want to adjust the predictive posterior
to this new distribution Pt+w(y|x). The predictive posterior for the ensemble obtained by Equation 3.22, by
taking the entropy of this posterior we can generate an estimation of the uncertainty about the predictions.
By minimising the entropy we can find a model that has the most proper predictive posterior given the new
batch of data. To estimate this predictive posterior we need probabilistic predictors, in the next section we
elaborate on the probabilistic predictors used.

4.2.2 Probabilistic predictor
The eGBDT and AdIter methods are both regression models where all the targets are either 0 or 1. The
authors of the methods use this regression prediction and assign them to a particular class based on a
threshold. For these methods pruning is done based on the residuals, the difference between the prediction
and the label, for each tree in the sequence of trees of the regression model. To estimate the uncertainty
for a regression GBDT however, we need to estimate both the mean and the standard-deviation of the
posterior distribution [43]. NGBoost solves this for regression by using two sequences, together they model
the distribution. However, under continuous learning, this model becomes unstable.

To avoid this instability, we propose eCBU as a classification model that can estimate uncertainty more
reliably in continuous learning settings. Unlike the regression case, where we need to use NGBoost to
estimate the uncertainty, we can directly obtain the uncertainty from the predicted probabilities of the
classification model. For a general GBDT classification model, this probability is obtained by the fraction
of training samples of the class in a leaf. Therefore, we do not require NGBoost for classification.

4.2.3 Sequential uncertainty
As mentioned in the related work, Section 2.1, there are methods that are able to detect concept drift in
an unsupervised manner. In work [17], where the uncertainty is used to detect concept drift, the detection
is triggered by the magnitude of the uncertainty. However, it is not straightforward how to infer the
adaptation size of a GBDT model from the magnitude of the change of the uncertainty relative to a
reference frame. Therefore, we need a metric that can measure the drift severity in an unsupervised way
and directly correlates to the adaptation needed. To measure the severity, we use the same intuition as in
eGBDT, where the best-performing (sub-)sequence of trees is given by Ielastic, similar to Equation 1.2.
The resulting pruning size is a proxy for the drift severity, as a larger drift would require less retention of
the original sequence of trees (plasticity) and a smaller drift would require more preservation of the prior
knowledge in the model (stability).

To address the problem introduced in our problem formulation we introduce sequential uncertainty.
This sequential uncertainty is the uncertainty for each (sub-)sequence with different lengths in increasing
order of an ensemble of GBDT models.

As our method works with classification models we have probabilistic predictors at our disposal. Let us
denote our ensemble of probabilistic predictors, GBDT classifiers, by {P (y|x; θ(m))}Mm=1, where M is the
size of the ensemble, similar to Section 3.5. For this complete ensemble of models, θ(M) represents the
parameters of the ensemble F (M)(x), where T are the number of weak learners in the model, denoted by
h
(m)
τ .
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To determine the uncertainty for an arbitrary τ ∈ T (M), for ensemble F (M)(x), we estimate the
uncertainty in the same manner as Equation 3.24, the parameters for the (sub-)sequences are denoted by
θ
(M)
τ . Only here τ can denote any F

(M)
τ (x). We define the approximation of the predictive uncertainty on

the predictions by the ensemble for a given τ by:

Up(y|x; θ(M)
τ ) ≈ H[ 1

M

M∑
m=1

P (y|x; θ(m)
τ )] (4.1)

The approximation of the expected aleatoric uncertainty for a given τ is obtained by:

Ua(y|x; θ(M)
τ ) ≈ 1

M

M∑
m=1

H[P (y|x; θ(m)
τ )] (4.2)

Finally, the approximation of the epistemic uncertainty for a given τ is obtained by:

Ue(y|x; θ(M)
τ ) ≈ H[ 1

M

M∑
m=1

P (y|x; θ(m)
τ )]︸ ︷︷ ︸

Total Uncertainty

− 1

M

M∑
m=1

H[P (y|x; θ(m)
τ )]︸ ︷︷ ︸

Expected Aleatoric Uncertainty

(4.3)

4.3 Unsupervised pruning
In this section, we will elaborate on how we exploit the relationship between uncertainty and concept drift
and introduce rising uncertainty and the uncertainty drift learner.

With this relation between the occurrence of concept drift and the magnitude of the uncertainty, seek
to exploit this correlation with our novel method. By looking at the difference between the uncertainty
for a given batch of data over the sequence of trees we aim to find the optimal learner. This is the same
objective as stated by Equation 3.13, only our pruning approach is unsupervised, making it able to work
with the same level of accuracy for any number of true labels at its disposal.

Rising uncertainty Now let us restate the problem of the rising loss, Equation 3.15, to rising uncertainty.
Here we use U(x) as a simplification of Up(y|x; θ(M)) for a given ensemble of models F (M)(x), obtained
by Equation 3.24. As explained in Section 3.5 the uncertainty is expected to grow for samples that fall
out of the distribution. The rising loss is affected by concept drift Pt(x, y) 6= Pt+w(x, y), where the model
is not adjusted. Our proposed rising uncertainty is inspired by this effect, as the output of a learner is
’undefined’ for the distribution Pt+w(x, y) the disagreement between learners is likely to increase. The
effect of the increase of estimation of the uncertainty when concept drift occurs and its correlation with the
loss is empirically shown in [68] and used in various other works as explained in Section 4.2.1. As there is a
high statistical coupling between the occurrence of concept drift and the uncertainty in the predictions
made, we use this correlation to propose rising uncertainty.

Formally we state, given a ensemble GBDT classifier model F (M)(x), trained on D ∼ Pt(x, y) and
U t(x) for time t and if Pt(y|x) 6= Pt+w(y|x) then the uncertainty U t+w(x) for time t+w will rise with high
likelyhood, U t(x) < U t+w(x).

The goal of adaptation is to reduce the uncertainty to the same level as before the occurrence of drift.
If the adjusted model is given by F ′(M)(x) and the uncertainty for time t+ w will be U ′t+w(x). Then the
aim of the adaptation would be,

U t+w′
(x)− U t(x) ≤ 0 < U t+w(x)− U t(x) (4.4)

Uncertainty-Drift Learner With this rising uncertainty and the high correlation between the uncertainty
and the occurrence of concept drift, we seek to explore extending rising uncertainty over the sequence of
trees in the ensemble. Similar to the gradient-drift learner described in Section 3.4.2 by Equation 3.18, we
formulate an uncertainty-drift learner.
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The gradient-drift learner is the tree in the GBDT sequence for which the loss is smaller than the
preceding trees before the occurrence of concept drift and larger after the occurrence of concept drift.
Without concept drift, the loss decreases until the end of the sequence as later trees minimise smaller and
smaller losses, making them more specific for the current concept. Based on the loss, the gradient-drift
learner (tree) directly succeeds the local-minimum learner Equation 3.19. With our uncertainty-drift
learner, we expect that because of the correlation between the loss (error) and the uncertainty [70], an
uncertainty-drift learner will also occur under concept drift. Where an uncertainty-drift learner is a learner
of an ensemble F (M)(x) for which the uncertainty is lower than its predecessor, before the concept drift
and higher after.

Again given an ensemble GBDT classifier models F (M)(x), trained on D ∼ Pt(x, y) we can obtain the
uncertainty U t

τ (x) for an arbitrary τ , by Equation 4.1. We formulate an Uncertainty-Drift Learner to be
the following:

E[U t
τ (x)] ≤ E[U t

τ−1(x)] ∧ E[U t+1
τ (x)] > E[U t+1

τ−1(x)] (4.5)

In Section Section 6.3 we show empirically to which extent this uncertainty-drift learner is present under
concept drift.

Local-Minimum Learner Having determined the goal of the adaptation by the rising uncertainty. Our
objective becomes finding the minimum learner that precedes the uncertainty-drift learner and reduces the
uncertainty back to the original level. Where local-minimal learner is searched by the loss for eGBDT in
Eq. 3.19, we use the uncertainty. The following equation gives us the learner (tree),

h(M)
τ (x) = argmin

τ
U(y|x; θ(M)

τ ) (4.6)

Having determined the local-minimum learner, we can prune the model to remove the uncertainty-drift
learners succeeding this learner. By pruning the model with this method, we have determined a proxy for
the severity of the drift with no labels.

Pruning by uncertainty types Our chosen method of uncertainty quantification is capable of estimating
multiple types of uncertainty. Therefore, we can utilise these types to perform the unsupervised pruning.
In our explanation of determining the local-minimum learner by uncertainty, we use predictive uncertainty.
As this uncertainty encapsulates both the epistemic and aleatoric uncertainty, this is a good proxy for the
loss and, therefore, a good metric to determine the pruning.

The aleatoric uncertainty only encapsulates the uncertainty that is related to the data and does not
directly consider the knowledge of the probabilistic predictor. Therefore, we decided not to prune based on
only the aleatoric uncertainty. As the epistemic uncertainty reflects the absence of knowledge in the model
for a given sample, we do use this type to determine our local-minimal learner. Many works [40, 52, 69, 71]
emphasise the usefulness of this type of uncertainty when aiming to detect out-of-distribution samples.
As the samples originating from a different concept are out-of-distribution samples, we use this type of
uncertainty next to predictive uncertainty to determine the local-minimum learner.
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4.4 The algorithm
The algorithmic structure of eCBU is very similar to the algorithm of AdIter, Algorithm 3 and is shown in
Algorithm 4. The main difference between the algorithms is their use of the ensemble of eGBDT models.
Where the AdIter uses the ensemble for their adaptive learning continuation, we use it for our sequential
uncertainty estimation.

In Algorithm 4 we first train the ensemble of eGBDTs on the initial training set available, as shown in
lines 1 to 3. After this step the algorithm will aim to continuously adjust the model to keep performance
on par, this objective is described by Equation 3.14. At line 4 we see that the algorithm runs while new
batches come in for our data stream. Line 5 until 7 shows the prediction of the individual models on
the current batch of data. These predictions are later used to make the final prediction shown at line
16. Then on line 8, the algorithm determines how much the models in the ensemble should be pruned by
Equation 4.6, and prunes the models. Depending on the algorithm settings this can be either done based
on the (total) predictive uncertainty or the epistemic uncertainty. This results in the desired length τ of the
sequences in the ensemble. At last, from line 9 until 15 the models are then either fully retrained or tuned
depending on the threshold, which is set to T . As our method is designed for a setting with limited label
availability, the tuning at line 13 is done on the subset of the current batch for which labels are obtained by
an oracle limited by the labelling budget. The retraining however needs to be done on the complete batch
or more data, otherwise, the model will not be adapted well to the current concept and under perform.

Algorithm 4: Elastic CatBoost Uncertainty
Init: Stream data: D
Parameters:
Set of Config, {eGBDT

(m)
parm}Mm=1

Initial training batch size, batchinit

Sliding batch size, batchslide

Initial number of iterations T
Result: Predictions {Ŷbatchslide

}
1 for eGBDT

(m)
parm in {eGBDT

(m)
parm}Mm=1 do

2 build eGBDTF (m) on Dbatchslide

3 end
4 while D has next batch Dbatchslide

do
5 for m = 1 to M do
6 Ŷm ← F (m)(Dbatchslide

) . save prediction vector
7 end
8 F

(M)
τ (x)← prune F (M)(x) on Dbatchslide

. by Eq. 4.6
9 for m = 1 to M do

10 if τ < T then
11 retrain eGBDT F (m)(x) on Dbatchslide

. collect all labels by an oracle
12 else
13 tune F

(m)
τ (x) on D′

batchslide
. subset labelled by an oracle, based on budget β

14 end
15 end
16 Ŷbatchslide

← majority vote on {Ŷm}Mm=1 . by Eq. 3.21
17 end
18 return {Ŷbatchslide

} . prediction results on all batches

4.4.1 Implementation details
Our implementation of all GBDT models is based on the CatBoost library that is known to achieve
state-of-the-art results in a variety of tasks [57]. In our implementation we use the shrinking, learning
continuation and uncertainty calculation capabilities, making the codebase for the algorithm light and
robust.
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4.5 RQ 1: Stability and Plasticity
In this section, we address the following sub-question: How can the stability and plasticity of the model be
balanced over time when adapting to concept drift under limited labels?

To answer this question, we first revisit the stability-plasticity dilemma that we discussed in the problem
formulation. This dilemma refers to the trade-off between preserving valuable knowledge (stability) and
adapting to new concepts (plasticity) [21, 14]. This task becomes even more difficult when the true labels
are limited or scarce, as the information available for adapting is reduced. Unlike the existing methods
eGBDT and AdIter, which use all the true labels and thus have perfect information, our method relaxes
this assumption and prunes in an unsupervised manner without requiring any true labels.

To ensure the plasticity of the model, we adopt the same approach as eGBDT and AdIter. As the data
arrives in batches of samples, the model is updated every batch. Similar to Equation 3.14, the aim is to
continuously find the best model given this stream of batches. For these methods, the only objective for
this continuous adaptation is to minimise the loss. However, for our method this objective is twofold: the
objective during pruning is to minimise the uncertainty, and during learning continuation, it is to minimise
the loss on the available labels. This combination provides the plasticity of the model. Our method has
the same level of freedom for the plasticity. The model can be reduced to a sequence length below the
retraining threshold, resulting in the retraining of the model and enabling it to adapt to a completely new
concept.

However, if the model is retrained on every batch, it would never retain any information and therefore
be unstable. Similarly, if it would always apply learning continuation without pruning any trees, it would
grow indefinitely, which is also not stable and reduces its plasticity.

By using unsupervised pruning, the model becomes more stable given limited labels, as the pruning
is independent of the number of labels available. The advantage here is that the algorithm always uses
the information of all samples in a batch, so the uncertainty does not change if the number of limited
labels changes. However, to have a stable pruning, our uncertainty estimation also needs to be stable under
model adaptation. We empirically demonstrate the robustness of the uncertainty estimation in Section 6.2,
by using the robustness metric explained in Section 5.2.5.

4.6 RQ 2: Severity of the drift
In this section, we elaborate on how our novel method addresses the following sub-question:

How can the severity of the concept drift be accurately determined given limited labels?

To be able to reliably adapt the model under concept drift, it is important to be able to accurately
determine the severity of the drift. The severity of the drift reflects how much different the new concept
is compared to the former concept. If the drift is severe, the model needs to change a lot to be able to
perform well on the new concept. If, on the other hand, the drift is not that severe, the model does not
need to be changed that much. If the severity is estimated well for all severities of concept drifts, the model
can adapt well to the changing environment while keeping unnecessary retraining limited. Therefore, it is
important to be able to determine the severity of the drift well.

The current methods, eGBDT and AdIter, use the loss on the true labels available to determine the
severity of the drift. As a sequence of trees of a GBDT model additively minimises the loss on a given
dataset explained in Section 3.2, the trees at the end of the sequence will be more specific for the concept
as later trees minimise a smaller and smaller loss. Therefore, if the algorithms prune more trees from the
end of the sequence, the estimation of the drift is said to be more severe. By this analogy, these algorithms
determine the severity of the drift by the number of trees pruned. However, as we know from the work
of Moreno-Torres et al. [13], concept drifts can be caused by sample selection bias or by non-stationary
environments. This implies that the effect of selecting samples to be labelled should be considered when
assessing concept drift based on these samples.

As our setting is a more realistic real-world setting where only a limited number of true labels are
available during the adaptation step, this selection bias will influence the detection of the drift. When the
available labels are very limited, this selection bias will induce the appearance of concept drift based on



the loss metric used in the eGBDT and AdIter methods. To prevent the selection bias from influencing
the determination of the severity on the drift, our method uses all samples available in an unsupervised
manner. With this approach, the selection of samples does not influence the pruning step of the algorithm
and, therefore, can not cause the appearance of concept drift while not present. However, to determine if
the pruning by the uncertainty described by Equation 4.6 is accurate, we empirically show the effect of
unsupervised pruning in Section 6.3.
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5
Evaluation

This chapter presents the evaluation of the proposed method for solving the problem formulated in
Section 1.3.1. The proposed method is compared with the original method and other baselines in the
context of limited labels. The experiments are based on two types of datasets: synthetic and real-world.

In the synthetic experiments, we apply the methods to several synthetic datasets that simulate different
types of drift scenarios. We know the timing and nature of the drifts in these datasets, which allows us
to assess how well the methods can detect and adapt to them. To ease the comparison process with the
original method, we report similar metrics and graphs. Additional metrics and graphs are used to test the
stability and plasticity of the combination of the predictive and uncertainty estimation performance.

In the real-world experiments, we apply the methods to one dataset that was used in the original work
and two datasets from the domain of intrusion detection. These datasets have different characteristics
and challenges that test the robustness and generalizability of the methods. We use the same metrics and
graphs as in the synthetic experiments to compare the methods.

The rest of this chapter is organised as follows: Section 5.1 describes the synthetic and real-world
datasets used in the evaluation; Section 5.2 explains the metrics used to measure the performance of the
methods; Section 5.3 presents the experimental design and settings.

5.1 Datasets
In this section, we describe the datasets that we use to evaluate our method. We use two types of datasets:
synthetic and real-world. Synthetic datasets are generated by different methods that simulate concept drift
or its absence. We know the exact nature and timing of the concept drift in these datasets. Real-world
datasets are collected from various domains and applications. We do not know the exact concept drift
in these datasets, if any. Hence, for these datasets, we focus on the temporal evolution of the model’s
predictive performance. All datasets involve binary classification tasks.

5.1.1 Synthetic data
The datasets used include the six synthetic datasets used by Wang et al. [6]. These datasets differ in the
severity of the drift and the speed of the change of the drift. Further specifics on these datasets can be
found in the paper by Wang et al. [6], in the explanations below and in an overview given in Table 5.1.
The ratio column in the table specifies the ratio between the two classes.

These datasets are generated by a generator function that can be found in the documentation of
scikit-multiflow1. However as the data from these generators have some random element, we will be using
the datafiles from AdIter, to ease the comparison. These files can be found in their library2. The purpose
of using these six synthetic datasets is to evaluate the performance of our proposed method on different
kinds of concept drift and intensities. As well as to test if the method is applicable to datasets that are
free of concept drift.

1https://scikit-multiflow.readthedocs.io/en/stable/index.html
2https://github.com/kunkun111/AdIter
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SEAa This dataset is generated by the SEAGenerator [72] and contains 3 attributes and 2 classes. Each
attribute is numeric between 0 and 10. There are 10,000 samples in this dataset which contains 3 abrupt
concept drifts. Each batch contains 100 samples and the drift occurs at the 25th, 50th and 75th data
batches.

RTG is generated by Random Tree Generator. A decision tree is built where the split nodes are chosen
from randomly selected attributes, and the leaves are assigned to different classes. The concepts and classes
are derived from a tree structure, which should favour decision tree learners. This dataset does not exhibit
any concept drift.

RBF & RBFr The Radial Basis Function (RBF) generator is used to create the RBF and RBFr datasets
with 10 features each. The number of centers are varied to create different concept drift situations in the
data. RBF has 50 centers and all of them drift slowly with a margin of 0:0001. RBFr has 50 centers too,
but only 10 of them drift faster with a margin of 0:01.

HYP is generated by a hyperplane generator [73] , which mimics incremental drift. Hyperplanes can
model concepts that change over time, because we can adjust the direction and location of the hyperplane
smoothly by changing the weights of the dimensions.

AGRa simulates the data stream with abrupt drift by using the AGRAWAL generator [74] . Similar to
the SEAa dataset the concept drift occur on the 25th, 50th and 75th data batches, only more drastically.
This dataset contains, 10,000 samples, 6 nominal and 3 continuous attributes, and 2 classes.

Synthetic Samples Features Class Ratio Batch size Drift type
SEAa 10,000 3 2 1:1 100 Abrupt
RTG 10,000 10 2 1:1 100 No
RBF 10,000 10 2 1:1 100 Incremental
RBFr 10,000 10 2 1:1 100 Incremental
HYP 10,000 10 2 1:1 100 Incremental

AGRa 10,000 9 2 1:1 100 Abrupt

Table 5.1: Seven Synthetic Datasets

5.1.2 Real world data
To show the function of the novel method on real-world data, we test the model on three real-world datasets.
One of those, namely Electricity, is used by the AdIter paper as well. The other two datasets are related to
our case study of intrusion detection. These datasets are real-world datasets, for which we do not know the
nature nor the timing of the concept drifts that may occur. An overview of the details of these datasets
can be found in Table 5.2. Similar to the table about the synthetic datasets the ratio column refers to the
ratio between the two classes in the dataset.

Electricity This dataset is widely used and describes the Australian New South Wales Electricity Market.
It has a binary target variable, which represents the direction of the electricity price change over time. The
dataset contains 45,312 observations with various features, we initially set the batch size to 100.

NSL-KDD One of the few publicly available data sets for network-based anomaly detection systems
is KDDCup99 [75], which contains a mixture of benign and attack traffic in a simulated environment.
However, this dataset suffers from a high degree of redundancy among the records [76]. To overcome this
limitation, we use the NSL-KDD3 dataset by [77] instead. This dataset includes 67,343 samples of normal
network traffic data and 58,630 attack data samples. These attacks include DOS, U2R, R2L and Probe.
To simulate our stream-based scenario with this dataset we consider this training set in batches of size 100.

3https://www.unb.ca/cic/datasets/nsl.html
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IDS dataset This dataset is a proprietary dataset of IDS alerts from a large organization collected
over three months. The dataset comprises alerts from four different security detection systems: SIEM,
UEBA, EDR, and IN-HOUSE. The original dataset has 113 alerts corresponding to real attacks, which are
augmented using SMOTE. The final dataset contains 1,192 mainly synthetic attack samples and has a 2%
attack rate. The stream is based on the last month of this dataset and contains 11 real attacks.

Real-world Samples Features Class Ratio Batch size
Electricity 45,312 8 2 0.73:1 100

NSL-KDD [75] 125,973 41 2 0.46:1 100
IDS (private) 55,615 32 2 0.02:1 100

Table 5.2: Three real-world datasets

5.2 Metrics
This section describes the evaluation metrics for the experiment on both synthetic and real-world datasets.
The metrics are consistent with those used by the original AdIter, namely Accuracy, F1-score, and Matthew
correlation coefficient. We use similar metrics as the original work that introduced AdIter, such as Accuracy,
F1-score and the Matthew correlation coefficient. Additionally, Balanced Accuracy is employed and a
minor modification is made to adapt to the IDS dataset. Finally, the details of the robustness metric are
given, which enables the assessment of both uncertainty quality and predictive performance simultaneously.

5.2.1 Classification
Let’s first look and an ordinary confusion matrix for binary classification in Table 5.3. Each cell in the
matrix is calculated by summing the predictions that fall in that category, by the following general formula
for multi-class classification:

Kij =
∑
k

1(yk = i)1(pk = j), (5.1)

where k is the number of samples on which a prediction are made. yk is the actual label of the kth sample
and pk is the prediction. Table 5.3 shows how the confusion matrix looks for binary classification directly
followed from Equation 5.1.

Actual Class
Positive Negative

Predicted Class Positive K11 True Positive (TP) K21 False Positive (FP)
Negative K12 False Negative (FN) K22 True Negative (TN)

Table 5.3: Confusion matrix for binary classification

Accuracy Accuracy is a common metric for evaluating the performance of a classifier. It is defined as
the ratio of correctly classified instances to the total number of instances. Given by,

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

5.2.2 F-beta score
The Fβ is a popular metric for binary classification and was introduced in [78]. The score calculates the
harmonic mean of precision and recall and is non-symmetric meaning one class is selected as the class of
interest. The metric is defined by Equation 5.3, where β is set based on the required importance of the
precision and recall. For the commonly used F1 score this β is set to 1, giving ’equal’ weight. For higher
and lower values of β recall or precision will have more influence on the resulting metric, respectively.
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Fβ = (1 + β2)
Precision ∗Recall

β2 ∗ Precision+Recall
, (5.3)

where if we take class 1 (positive class) to be our class of interest we have,

Precision =
TP

TP + FP
, (5.4)

Recall =
TP

TP + FN
(5.5)

The precision in Equation 5.4 gives the fraction of positive predicted samples that actually belong to
the positive class. While the recall in Equation 5.5 gives the fraction of the positive samples that are
predicted correctly. Values of this metric range between 0 and 1, where better performance is indicated by
larger values.

In Section 5.2.5 we use this same intuition to calculate a robustness metric for evaluating the uncertainty
and predictive performance together.

5.2.3 Matthew correlation coefficient
As mentioned a frequently used metric is accuracy. Although this metric is generally applicable, it is
inadequate for imbalanced data, where some classes have significantly fewer samples than others. This
metric tends to overlook the model’s performance on the minority classes in such scenarios. Therefore,
researchers have suggested some balanced alternatives of these metrics, which account for the weight
(frequency of samples) of each class.

The Matthew Correlation Coefficient (MCC) [79] is a metric used to evaluate the predictive performance
of binary classification models. It takes into account all the entries of the confusion matrix to provide
a measure of the quality of a model’s predictions and is designed to give a fairer score on imbalanced
datasets [80, 81].

The MCC ranges from -1 to 1, with 1 indicating perfect prediction, 0 indicating random prediction,
and -1 indicating total disagreement between prediction and observation. It is calculated as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.6)

However, despite its advantages on imbalanced data, it is undefined if there are no positive samples.
This scenario may happen in our experiments on the private IDS dataset. We will elaborate on this further
in the next section.

5.2.4 Balanced Accuracy
Balanced Accuracy [82] is a metric design for imbalanced datasets. It is the arithmetic mean of the
sensitivity and specificity. The sensitivity is the proportion of positive samples that are correctly predicted
out of all positive predictions. The specificity is the same ratio only for the negative class. The sensitivity
is defined by the same formula as the recall, Equation 5.5, and the specificity is defined as the recall if we
take 0 to be our class of interest, defined by

Specificity =
TN

(TN + FP )
(5.7)

The Balanced Accuracy is given by,

Balanced Accuracy =
Sensitivity + Specificity

2
(5.8)

However, in our assessment of the private IDS dataset, the stream of samples is very unbalanced
resulting in batches of data that do not contain any positive (attack) samples. If no positive samples are
present, the sensitivity rate of the balanced accuracy becomes undefined. As we would like to visualise the
performance of these experiments by a continuous line, we suggest an adjusted balanced accuracy to avoid
the metric from being undefined.
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Adjusted Balanced Accuracy To give continuous lines in our graphs on batches that contain only
one class. We suggest using only the specificity if the positive class is missing. This metric shows the true
negative rate of the model, showing how many of the samples were correctly classified in that batch. If
in a later batch, both negative and positive samples occur we can use the balanced accuracy where both
classes have equal weight. This adjusted balanced accuracy is used in our plots in Figure 6.7, and shows a
continuous line without any interruptions.

5.2.5 Robustness metric
As we are interested in the predictive and uncertainty quantification performance under concept drift, we
need a metric that can accurately review the combination of these outputs in this challenging setting.

The area under the retention curve (R-AUC), explained in detail in [64], can be used to evaluate both
the robustness to distributional drift and the quality of the uncertainty estimates. The retention curve
shows the mean error over the dataset as a function of the fraction of the dataset retained. Ideally, the
uncertainty should be aligned with this curve. R-AUC can be improved by either reducing the overall error
of the model or by producing uncertainty estimates that better correlate with error. However, a potential
drawback of these curves is that they may be more sensitive to the predictive performance than to the
uncertainty quality.

To address this issue, Malinin et al. [70] proposed uncertainty-based F1-retention curves. For binary
classification, we define an error criterion based on the logloss. We say that the prediction is said to be
acceptable if its logloss ε is below a certain error threshold Te. This can be expressed by using,

ATe(x) =

{
1, if ε(x) ≤ Te

0, else
(5.9)

Then, these acceptability labels are used to assess how well the model’s uncertainty estimates U(x)
can indicate the acceptability of a prediction. A threshold Tu on the uncertainty score is set, such
that predictions with higher uncertainty are considered poor and predictions with lower uncertainty are
considered acceptable. These acceptability labels based on uncertainty are given by the following equation,

ATu
(x) =

{
1, if U(x) ≤ Tu

0, else
(5.10)

In contrast to Malinin et al. [70], who apply their metric to models that predict on static datasets. We
compute the metric over the batches of a stream, as we are interested in the stability of the model over
time. To make use of their metric we combine the predictions and uncertainty estimation of all the samples
in each batch into one set. This set is used to get the final robustness metric.

Consider a dataset of size N the ’true’ acceptability labels for this set are given by {ATe(xi)}Ni=1 and
the uncertainty acceptability labels are given by {ATu(xi)}Ni=1. By these two sets, we can determine the
’precision’ and ’recall’ to calculate the F1-score, similar to Section 5.2.2 for all the uncertainty thresholds,

Pi =

∑N
j=1ATe

(xj) · ATUi
(xj)

Nb − i
, (5.11)

Ri =

∑N
j=1ATe

(xj) · ATUi
(xj)∑N

j=1ATe(xj)

, (5.12)

where the final F1-score can be obtained in a similar way as Eq. 5.3,

F1i =
2 · Pi ·Ri

Pi +Ri
(5.13)

Note that we determine each F1i with the uncertainty threshold of Ui in decreasing order. The resulting
curve shows all the scores {F1i}Ni=1 opposed to the selection of the samples that are considered acceptable
by the uncertainty threshold, 1− i

N .
To compare the curves and measure the variation over the batches, we use the area under the retention

curve as our final metric, denoted by F1-AUC.4.
4https://github.com/Shifts-Project/shifts
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An example of the retention curves is depicted in Figure 5.1. This figure shows three retention lines.
The green line shows the optimal retention line where the uncertainty estimation aligns perfectly with the
error rate, in our case the logloss. The blue line shows the ’random’ baseline, where the uncertainties are
completely uncorrelated with the error. The orange line is a model showing the correlation between the
errors and uncertainty predicted. The x-axis is the retention fraction, meaning the number of elements
considered to be acceptable given the uncertainty. The y-axis gives the F1-score resulting from Equation 5.13
for each retention fraction. The area under the curve for the optimal and model curves are shown in the
legend.

The intuition of these curves can be described in the following manner. The F1-score is based on the
precision and recall given by the acceptable predictions. For high retention fractions, we accept predictions
for all below a high uncertainty, which implies that more predictions will be accepted. However, as we can
see from the ‘optimal’ curve, if the predictions are accepted that should not be accepted based on their
‘true’ acceptance, i.e. the error, the F1-score decreases. A better model would more closely resemble this
optimal curve. Our plots in Section 6.2 follow the same structure.

Figure 5.1: The retention curves of the optimal baseline (green), a model (orange) and random (blue).
Source [70]

5.3 Experimental Design

5.3.1 Plasticity and Stability under adaptation
This section presents the methodology that aims to evaluate our first research sub-question: How can the
stability and plasticity of the model be balanced over time when adapting to concept drift under limited
labels?

Because our novel method prunes the model by using uncertainty estimation, the stability and plasticity
of the model are dependent on the quality of this estimation. Poor uncertainty estimation will result in
inaccuracy pruning and may cause the model to adapt poorly when concept drift arises. To assess the
stability and plasticity of our novel method we need to be able to quantify the quality of our uncertainty
estimation under continuous learning.

As explained in the metrics Section 5.2.5, a robustness metric can be used that aims to assess the joined
predictive and uncertainty estimation performance. To assess the stability over time we use this metric
where we compare the performance of our method with the optimal and random curves. The closer our
curve is to the optimal curve the higher the correlation between the error and the uncertainty estimation.
Because we aim to use our uncertainty estimation as a proxy of the loss this will give a good indication of
the validity of our approach. Our method works on a stream we therefore combine all results into one set
after all batches have been processed. The assessment is done on this combined set.

As we also would like to know if our method can provide stable uncertainty estimation under limited
labels, we repeat the same experiment under a limited budget. The limited labelling budgets used are
a 100%, 15%, 10% and 5% of the labels in each batch. We elaborate on the choice of these budgets in
Section 5.3.2. The experiments are done on the SEAa dataset, as we know that this dataset contains
concept drift and it is one of the most widely used synthetic datasets in concept drift literature [18]. Note
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in our reporting of the results the value for Te is set to 1 for determining the retention curve, this is the
same as the default value the authors use for the metric. The uncertainty used in the metric is the total
predictive of the eCBU method.

We hypothesise that our novel method can balance the stability and plasticity of the model over time
by using the uncertainty to adapt to concept drift, as the limited budget would have minimal impact on
the quality of the uncertainty estimation because the uncertainty is obtained based on unlabeled data.

5.3.2 Adaptation under limited labels
This section presents the methodology that aims to evaluate our second research sub-question: How can
the severity of the concept drift be accurately determined under limited labels?

To evaluate the performance of our novel method in detecting the concept drift under limited labels, we
first establish a baseline. This baseline compares the accuracy, the number of pruned trees and the number
of retrains over the batches, of each method on each synthetic dataset. The goal of our method while under
limited label availability, is to reduce the number of unnecessary retrains, as retraining involves selecting
specific data or acquiring additional labels. This should be achieved while maintaining a comparable level
of accuracy. After having established our baselines, we can evaluate the AdIter and our novel method with
only limited labels.

Sample selection In an active learning approach, one aims to find the most useful sample(s) to use for
training a model given a set of samples. Having selected this subset an oracle will label these instances
and the model can be trained on these. In most real-world scenarios this oracle is a human determining
the label for the given samples, as streams can consist of many samples and human label capacity will be
limited, one wants to limit the number of samples that need to be labelled. When concept drift occurs,
some of the incoming samples reflect the new concept more closely than others. In this case, active learning
techniques aim at answering the question; How can we use an active learning approach to select a subset of
these samples that can contribute the most to adapting to the drift while limiting the cost of labelling?

This question is beyond the scope of this work, but there are various existing methods in the literature
that address it [83, 84, 16, 85, 86, 87]. The field of active learning can be divided into informativeness-
based and representative-based selection. Both of these types of techniques have their advantages and
disadvantages. To simulate the ’realistic’ scenario of only limited label availability, without using a specific
active learning method, and to minimise the influence of labelling selection influencing the concept drift
detection in our experiments, we select samples in a random manner. The number of selected samples by
this random selection method depends on the labelling budget.

Labeling budget To determine which labelling budgets are relevant to test, we refer to the work of
Krawczyk et al. [88]. In this work, the authors found through an empirical analysis of multiple datasets
under concept drift that, by reducing the number of labelled samples to 15% of the incoming data, the
performance of models generally does not show a significant decrease when under these concept drifts.
With these insights, we consider interesting labelling budgets to be 15% and below, as we assume by these
findings the classifier will be able to reliably detect and adapt given more than 15% of the labels.

As the number of true labels available in a batch is limited by the user-defined labelling budget as
defined by Equation 1.4. We consider multiple sizes of the labelling budget β = {15%, 10%, 5%}. The
question here is whether we can accurately determine the severity of the drift using no labels and in
comparison to this limited budget.

Quantifying severity We quantify the severity of the concept drift by the number of trees that are
pruned from the model. To assess the accuracy of the pruning, we compare it with the baseline methods
that have access to all the labels. If the pruning exceeds a certain threshold, the model triggers a retraining
process. Hence, overestimating or underestimating the severity of the concept drift can lead to excessive or
insufficient retraining, respectively. We evaluate these two scenarios by contrasting the methods under
limited labels with the baseline methods, which we assume to provide the optimal estimation of the ‘true’
severity of the concept drift, given their full label availability. Note that, regardless of the labelling budget,
retraining the model always uses the labels of the entire batch. This is a necessary condition for the



adaptive learning algorithms to cope with severe concept drift, requiring fully changing the concept, which
demands more labelled data for effective adaptation. However, selecting and labelling data for retraining is
costly in real-world scenarios, therefore our objective is to minimise the frequency of retraining.

5.3.3 Challenging scenarios
This section presents the methodology that aims to evaluate our third research sub-question: Which concept
drift scenarios are the most challenging for adaptation under limited labels?

The purpose of this research question is to explore the capability of our method on more challenging
real-world datasets and with this assess the practicality of the approach in real-world scenarios. To evaluate
this we use three real-world datasets, namely one Electricity dataset which is also used in the work that
introduced AdIter and two intrusion detection datasets. We elaborate in more detail on the specifics of
these datasets in Section 5.1.2.

We selected the Electricity dataset because it is one of the most commonly used datasets in the literature
related to concept drift. This gives our work a broad base to be able to be compared with. For this reason
of comparability, we report the performance on this dataset on multiple metrics explained in Section 5.2.

Next to this, we are interested in the intrusion detection setting as introduced in the introduction of
the thesis. This setting is a challenging scenario as it is the objective of the hacker to make their attack
look like benign data and continuously adjust their strategy to obtain this goal, effectively creating concept
drift. Another challenge that adds to the complexity of intrusion detection is the rarity of attack events,
creating an imbalance between attack data and benign data. The combination of these challenges makes
this setting additionally interesting for our method in a real-world case.

With these challenging scenarios we seek to explore the impact limiting the label availability has on the
performance of the AdIter method and if our method is able to cope with these. We evaluate this in a
similar manner as our ’Adaptation under limited labels’ evaluation. We take the AdIter method with access
to 100% of the labels when adapting as the baseline for the pruning, retraining and performance. Each of
the methods is tested on the same limited number of samples as explained in the previous section, 15%, 10%
and 5%. For these cases, we are interested if the AdIter method initiates more retraining processes than
the baseline indicating over-estimation of the drift. On the other side, we are interested in the performance
of methods as this indicates how well the model can adapt to the real-world stream and indicates if the
methods work while the data are imbalanced.

The experiments that will done on publicly available datasets are very similar to the experiments done
in the work that introduced the AdIter method. The initial model is trained on the same number of
samples in each batch that originate for the stream. For the private IDS dataset, however, we opt for a
more realistic scenario that more closely resembles how it is done in practice. As this dataset contains
3-months of IDS alerts, we train the model on two months of data including the SMOTE data. To test
the performance of the model we then evaluate it on the last month in the order the alerts have arrived
without any SMOTE samples. The process of training the model with more than only a hundred samples
when there is access to more data more closely resembles a real-world scenario.

We expect that our method will perform similarly despite the number of labels available. But as the
number of labels is further limited, the adjustment of the model can be done less well, despite the same
level of information at pruning. As we expect that our method will be influenced less compared to the
AdIter method and therefore will not over-estimate or under-estimate as much as the AdIter method, we
also expect that it will do a better job of reducing the number of false negatives, reducing alert fatigue.

5.3.4 Experimental setup
The methods are (re-)implemented and tested with the library of Catboost [57] version 1.2. Implemented
in python 3.9. Experiments on the private dataset are run on a company computing cluster.

All experiments, excluding the private dataset, are run on a laptop with these specifications:

• CPU/GPU: AMD Ryzen 7 5700U with Radeon Graphics
• RAM: 16.0 GB
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6
Results & Discussion

This chapter presents our results, starting with our baseline experiments to examine the slight difference
between our baseline adaptation method and the original work. Then, we show results related to our first
research question regarding the stability and plasticity of our method. Here, we show the robustness of
the prediction and uncertainty quantification performance over time. After these results, we highlight the
performance of the baselines on various labelling budgets as well as our novel method. Concluding this
chapter with results on real-world datasets.

6.1 Baseline
As we re-implement the AdIter algorithms with the CatBoost library to use as a base for our eCBU
method, we provide the baseline result for this method. We evaluate our proposed method on all synthetic
datasets from the work of Wang et al. [6] and compare it with their results. The adaption behaviour of our
implementation of the AdIter method on all synthetic datasets is shown in Figure 6.1. The performance of
both implementations can be found in Table 6.1.

To get the most similar result on both implementations. We use the same hyperparameters as used in
the original work that was implemented with the sklearn library1. Namely, (max depth = 4, subsample
rate= 0.8, learning rate = 0.01) which are specifically mentioned by in the work by Wang et al. [6]. Next
to these, we use the default hyperparameters used with the sklearn library. The initial number of trees
(iterations) is the same as the original work, iterations = 200.

However, due to the implementation dissimilarity, there are small differences. One of those differences
is that CatBoost uses symmetric trees, and requires one to use this when using model shrinking. Another
difference is the values used for L in our experiments. Instead of using the set of {L1 = 25, L2 = 50, L3 =
75, L4 = 100, L5 = 125} parameters, where each Li defines the number of trees added when applying
learning continuation, we use {L1 = 5, L2 = 10, L3 = 15, L4 = 20, L5 = 25}. However, as pointed out by
the authors of the AdIter method [6] the accuracy on the synthetic datasets is not significantly influenced
by reducing the setting to a smaller number of iterations. Still, for the inference, the length of the sequence
of trees influences the speed. To minimise the time the algorithm takes while keeping the accuracy on par
we therefore pick these smaller sizes for L. Note that for the eCBU method we use (L = 25) for all our
experiments, by doing so our method has the same capability of plasticity as the AdIter method.

Each figure in Figure 6.1 consists of two subplots that illustrate the performance of the adaptation
algorithm over the order batches from the data stream. The upper subplot displays the total number of
trees (solid red line) after pruning, the initial number of trees and the retraining threshold (dashed blue
line), and the number of pruned trees (solid green line) for each batch. The shaded areas around the solid
lines represent the standard deviation of the results obtained from three repetitions of the experiments with
different random seeds but identical generator settings. The lower subplot shows the prediction accuracy
(solid blue line) for each batch, along with its standard deviation (shaded area).

1https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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(a) SEAa (b) RTG

(c) RBF (d) RBFr

(e) HYP (f) AGRa

Figure 6.1: AdIter on six synthetic datasets, with all labels available. The dotted line indicates the
retraining threshold.
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Table 6.1 displays the accuracies for the AdIter method on six synthetic datasets. The first row are the
accuracies given by Wang et al. [6]. The second row is our Catboost implementation of regression AdIter.
Again the standard deviations for each of our experiments are obtained by three repetitions.

Methods SEAa RTG RBF RBFr HYP AGR
AdIter [6] 83.51 ± 0.86 65.96 ± 6.33 76.50 ± 1.47 82.03 ± 1.76 86.93 ± 2.56 78.42 ± 1.13

AdIter (ours) 84.43 ± 2.66 67.01 ± 3.68 85.43 ± 3.54 82.46 ± 3.24 82.03 ± 3.00 85.89 ± 2.30

Table 6.1: Accuracy of AdIter for both the original work and our CatBoost implementation, denoted in
percentage (%). The best accuracy for each dataset is highlighted in bold.

.

From Figure 6.1 we can see that with our implementation retraining is only triggered for the AGR
dataset. We see this as the number of rest trees gets below the blue dotted line, surpassing the retraining
threshold. The points at which the retraining is triggered are the same at which the severe abrupt concept
drifts occur, namely at the 25th, 50th and 75th batches. This is in line with what is presented in the work
that introduced the AdIter method. If we look at the number of trees in the sequence indicated by the red
line, all grow and stabilise, except for the behaviour on the RBF dataset. This is the same behaviour as
the original work. The number of trees the algorithm grows to however is for all but RBF a bit higher,
around 100 trees more. This behaviour can be explained by the slide differences between the libraries used.

In terms of accuracy, which is shown in Table 6.1, our implementation performs better on most datasets
except for the HYP dataset. This is most likely caused by the Catboost library as this generally outperforms
the sklearn library, additionally, the number of trees in the sequence is slightly high with our implementation
which can also cause an increase in performance.

Besides these slight differences, as we are mainly interested in the functioning of the algorithm under
limited labels and given that for our implementation the adaptation behaviour is very similar, we can safely
say that we can use this implementation as a baseline for our eCBU method. And because the AdIter is
now implemented with the same library as the eCBU method can compare their performance well.
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6.2 Plasticity and Stability under adaptation
As explained in our experimental design section we asses the stability and plasticity of our model, with the
robustness metric 5.2.5. The curves of the multiple labelling budgets tested are shown in Figure 6.2. From
these figures we can see that for all the labelling budgets tested the uncertainty estimation our method
eCBU provides an uncertainty estimation that is positively correlated with the loss while under model
adaptation and is better than random choice. From Figure 6.2a we see that the orange curve obtains a
ROC-F1 score of around 0.45 and lies above the random curve. This shows that the uncertainty estimation
is useful as a potential proxy for the loss. The same can be seen for the other labelling budgets.

Under the second research question, we seek to understand the stability and plasticity of our method
that performs both prediction and uncertainty quantification. For the stability of our model, we use the
retention curve to see the correlation between the F1-score and the retention fraction.

(a) 100% labels (b) 15% labels

(c) 10% labels (d) 5% labels

Figure 6.2: The retention curves with various label availability of the optimal baseline (green), eCBU
(orange) and random (blue).

6.3 Adaptation under limited labels
In this section, we show the results concerning the second research sub-question How can the severity of
the concept drift be accurately determined under limited labels?

In this section, we first show the problem that arises when applying the AdIter method under limited
label availability, by the number of retraining done on our synthetic datasets. After this, we show the
behaviour of the AdIter method and our eCBU method by similar curves introduced in Section 6.1. Finally,
we give the accuracies obtained by the different methods and briefly discuss the results shown in this
section.
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Retraining Under the second research question, we aim to examine the effect of the limited labels on
the existing method and whether our method provides an improvement. As a hypothesis in our problem
formulation, we suggested that the AdIter method would be susceptible to under or over-estimation of the
drift when lowering the number of labels available during adaptation. To test this hypothesis we evaluate
the method under different labelling budgets and look at the behaviour and performance of the algorithm.
When the algorithm overestimates the drift it would initiate unnecessary retraining of the model.

Based on our established selection techniques and labelling budget range. We have the following results,
with three repetitions of each experiment, shown in Figure 6.3. This plot shows the percentage of batches
that initiate the retraining process. We can see that for each dataset the more the labelling budget decreases
the more the percentage of retraining batches increases. As the 100% blue bars indicate how often the
retraining is initiated in our baseline case we see that for all synthetic datasets and all labelling budgets
the retraining increases. If we have a closer look at dataset RTG, for this dataset we know that no concept
drift occurs in the stream of data, however, the retraining process is initiated up to 70% of the time for
a labelling budget of 5%. Based on this complete view of the different concept drift tested we can say
that the AdIter method is pruning too much given the actual drift that occurs in the datasets and thus
over-estimates the severity of the concept drift under labelling budgets that are 15% or smaller. With this,
we can say that as we hypothesised this problem indeed occurs.

Figure 6.3: The percentage of batches triggering retraining, for the labelling budgets, 100%, 15%, 10% and
5%. For the six synthetic datasets.

Pruning curves To show the behaviour of the pruning and continuous learning under limited labels of
AdIter and our method we show the curves on three of the six datasets on a labelling budget of 5%. For
datasets SEAa, RTG and HYP with abrupt, no and incremental concept drift, respectively. Similar to the
graphs in Figure 6.1, the graphs in Figure 6.5 consist of the number of rest trees, the number of pruned
trees, the retraining threshold and accuracy lines. With their shaded areas to indicate the variation between
the three repetitions. The eCBU method shown uses sequential epistemic uncertainty as by the accuracy
performance metric shown in Table 6.5 this type slightly outperforms the total predictive uncertainty type.

From these figures, we see that accurate pruning with the AdIter method is difficult. The method often
prunes the sequence of trees such that the number of rest trees is below the retraining threshold. The
extensive pruning causes the model to retrain frequently while this is not necessary if we compare this with
the baseline. This is the same observation as made with the Figure 6.3.

Whereas our method resembles the baselines of these curves given in Figure 6.1 more closely. From the
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(a) SEAa - AdIter (b) SEAa - eCBU Epistemic

(c) RTG - AdIter (d) RTG - eCBU Epistemic

(e) HYP - AdIter (f) HYP - eCBU Epistemic

Figure 6.4: AdIter and eCBU on synthetic datasets SEA, RTG, HYP with a labelling budget of 5%
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rest tree curves of the eCBU algorithm we see that despite that the method has only access to 5% of the
labels, each of the curves follows a more similar profile as the baseline and does not retrain as much. We
see that our method does not overestimate or underestimate the drift severity. We can infer this as the red
lines, showing the number of trees, do not grow more rapidly than the baselines.

The accuracy curves in Figure 6.5 give an indication that the performance of the methods is similar. A
more complete overview of all the accuracies on the various labelling budgets and methods, including both
the eCBU by predictive and epistemic sequential uncertainty, can be found in Table 6.2.

If we compare the accuracy with the obtained by the AdIter method and the two types of the eCBU
method we notice that they are comparable. With the exception of the AGR dataset which we will address
later. Despite these similarities in accuracy, the AdIter requires a lot more labelling cost as it constantly
retrains the full model, which uses all labels in a batch. Retraining is always done on the full batch, as we
assume that when the algorithm initiates the retraining the concept has changed severely, One would like
to collect all the data for this concept and therefore would invest the time to acquire these labels. These
plots show the impracticality of the current method in a real-world scenario, where labelling and retraining
are costly. Our method, however, does not overestimate or underestimate the drift severity. We inferred
this by looking at the number of trees after pruning. The method achieves comparable accuracy while
keeping retraining to a minimum and therefore putting less stress on the acquisition of labels.

One might notice that the accuracies in Table 6.2 are not very different. This is because the retraining
is always done on the full batch, as we assume that for a severe concept drift that requires retraining the
model, one would like to collect all the data for this concept drift and therefore invest the time to acquire
these labels. However, it is interesting to see that for eCBU the accuracies do not decrease much while
using only the given budget of labels and not retraining once.

As mentioned, the only noticeable difference in performance is on the AGR dataset which has severe
abrupt drifts. If we look at Figure 6.5 we can see the pruning done over time for this dataset. The left
figure displaying the results of the AdIter method shows clearly the point where concept drift occurs. For
the eCBU method, the rest trees curve flattens at the moment of the first concept drift, indicating that
more pruning is done after this point. However, the pruning does not exceed the retraining threshold. This
modest pruning might be caused by a modest increase in uncertainty due to this concept drift. As the
correlation between the error and the uncertainty is not perfect, the uncertainty estimation will naturally
dampen extreme events.

(a) AGR - AdIter (b) AGR - eCBU Epistemic

Figure 6.5: The AdIter and eCBU epistemic methods on the AGR severe abrupt drift dataset with 100%
of the labels

By this evaluation, we can conclude that given these synthetic datasets, the sequential uncertainty
estimation gives a better proxy for the drift severity than AdIter method under limited labels, excluding
severe abrupt drift.
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Methods Budget SEAa RTG RBF RBFr HYP AGR

AdIter

100% 84.43 ± 2.66 67.01 ± 3.68 85.43 ± 3.54 82.46 ± 3.24 82.03 ± 3.00 85.89 ± 2.30
15% 83.38 ± 2.72 63.39 ± 4.83 77.90 ± 3.51 77.90 ± 3.47 80.17 ± 3.20 84.56 ± 2.68
10% 83.55 ± 2.94 63.16 ± 4.65 78.87 ± 4.20 78.02 ± 3.58 79.10 ± 3.48 84.39 ± 2.47
5% 83.15 ± 2.87 62.09 ± 4.62 81.72 ± 3.80 77.46 ± 3.77 76.97 ± 3.47 84.20 ± 3.03

eCBU
Total

100% 83.58 ± 2.87 65.96 ± 3.72 85.61 ± 4.36 82.50 ± 3.50 82.49 ± 2.88 60.61 ± 3.50
15% 82.12 ± 3.03 61.57 ± 4.35 74.12 ± 3.95 75.58 ± 3.69 79.66 ± 3.33 59.43 ± 3.34
10% 80.93 ± 3.41 60.23 ± 4.66 69.81 ± 3.97 73.72 ± 3.84 77.93 ± 3.34 59.26 ± 3.45
5% 78.55 ± 4.00 60.53 ± 4.70 66.97 ± 3.44 69.32 ± 3.98 66.30 ± 4.53 62.17 ± 6.58

eCBU
Epistemic

100% 84.22 ± 2.67 68.06 ± 3.39 82.12 ± 3.32 82.33 ± 3.37 82.14 ± 2.67 73.44 ± 3.36
15% 80.62 ± 2.84 64.23 ± 4.71 76.67 ± 3.69 78.81 ± 3.83 78.84 ± 3.17 64.71 ± 3.56
10% 80.31 ± 3.13 62.24 ± 4.40 73.91 ± 3.88 77.65 ± 3.58 78.83 ± 3.02 61.22 ± 3.64
5% 80.91 ± 3.55 62.15 ± 4.16 72.15 ± 3.36 75.87 ± 3.40 76.04 ± 3.74 60.05 ± 3.53

Table 6.2: Accuracy, with random sample selection, for AdIter, eCBU total predictive uncertainty and
eCBU epistemic uncertainty. For the eCBU method, we highlighted the best performance for each labelling
budget and dataset.

6.4 Challenging scenarios
In this section, we show the results concerning the third research sub-question. Which concept drift
scenarios are the most challenging for adaptation under limited labels?

This research question relates to the usefulness of the method on real-world data where concept drift
might occur. As we do not know if or when concept drift occurs in these datasets we evaluate in comparison
with the performance of the baseline. Our baseline is, just as with the synthetic datasets, the AdIter
method with 100% of the labels available. First, we evaluate the AdIter method under limited labels and
asses how much retraining is done. In Figure 6.6 we notice that with 100% labels available the algorithm
only consistently retrains the model on the Electricity dataset. This indicates that for only this dataset
there might be severe concept drift. For the others, it seems not to be necessary to retrain the model in
order to keep its performance on the same level.

As we are interested in the performance of AdIter and our method under limited labels, we assess
these methods again under 15%, 10% and 5% labelling budget. From the figure discussed, Figure 6.6, we
can observe that for the NSL-KDD dataset, the retraining is not initiated much more when decreasing
the available labels. The AdIter method stays fairly stable when limiting the number of labels for these
datasets. However, when looking at the retraining percentage for the Electricity and private IDS dataset
we notice an increase as we decrease the number of available labels. The percentage increases modestly for
the Electricity dataset but increases to over 50% for the private IDS dataset when under 5% limited labels.

Electricity Table 6.3 shows the performance of the methods on the Electricity dataset by the MCC
score. As the dataset is not perfectly balanced as with the synthetic datasets we use the MCC metric.
From this table, we can observe that most scores are reasonably similar. However, the total predictive
version of eCBU shows the best performance under the most limited budget.

Methods 100% 15% 10% 5%
AdIter 56.97 56.92 56.12 49.49
eCBU Total 50.88 55.13 52.59 54.30
eCBU Epistemic 56.25 56.55 54.46 47.60

Table 6.3: Performance on the Electricity dataset expressed in MCC (%).

NSL-KDD Table 6.4 shows the performance of the methods on the NSL-KDD dataset by the MCC
score. Similar to the Electricity dataset we use this metric as the dataset is not balanced. From this table,
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Figure 6.6: The percentage of batches by which retraining was initiated, for the labelling budgets, 100%,
15%, 10% and 5%. For the three real-world datasets.

we can observe that the eCBU method with epistemic uncertainty retains the most stable accuracy over all
labelling budgets. On this dataset, it is interesting to see that for the AdIter method, the over-estimation
which we have seen on all other datasets does not occur when limiting the number of labels.

Methods 100% 15% 10% 5%
AdIter 89.39 80.43 78.88 82.50
eCBU Total 90.76 84.74 78.68 77.04
eCBU Epistemic 88.38 84.78 82.51 81.93

Table 6.4: Performance on the NSL-KDD dataset expressed in MCC (%).

Proprietary IDS data The last dataset we test is the private company dataset on intrusion detection
systems. As explained in the evaluation Section 5.3.3, the training process reflects a real scenario more
closely. With this experiment, we use more data for the initial training. An additional difference from
the previous two experiments is that we are using another metric. In this experiment, we use an adjusted
version of the Balanced Accuracy, explained in Section 5.2.4. And report the number of attacks detected as
well as the true negative rate.

From Table 6.5 we can see that the performance with our method is better under limited labels compared
to the AdIter method while this method retrains frequently over time. To see more clearly what the
behaviour of our method is compared to AdIter we provide the rest tree and pruning curve supported by
the balanced accuracy in Figure 6.7. These figures show the graphs for the predictive uncertainty type of
the eCBU method, figures on the epistemic version can be found in Appendix B.

From Figure 6.7, we can see that, the same as we observed by Figure 6.6, the AdIter prunes more as the
number of available labels decreases. On the contrary, the eCBU method shows a more similar ’rest tree’
curve of the batches compared with the baseline. We think that the rest three curves for the eCBU method
shows these difference in growing and flatling because of the random sample selection. In our experiments
on real-world datasets, we do not use any repetitions of the experiment with other seeds. The effect of some
curves that flatline more while others grow more might be influenced by the particular samples selected.

When we look at the Balanced Accuracy lines shown in blue, in Figure 6.7, we notice that all have
dips in between batches 40 and 60. These dips indicate the wrong classification of positive samples. As we
are, next to limiting the number of false negatives, mainly interested in the number of attacks correctly



classified by the model over all the batches, we show the number of correctly classified positive samples in
Table 6.6. From this table, we can see that the AdIter method identifies the most attack samples. This
most likely is caused by the constant retraining of the model by AdIter, restoring knowledge in the model
to a more balanced scenario. On the contrary, in the eCBU method, the number of trees is mostly growing
and causing more overfitting on the majority class. This effect can also be seen in Table 6.7, which shows
the true negative rate. This table shows that the eCBU, when using predictive uncertainty, correctly
classifies up to 96% of the negative samples while performing the least on the attack samples.

Methods 100% 15% 10% 5%
AdIter 87.00 83.41 84.49 80.77
eCBU Total 87.40 87.94 95.30 93.29
eCBU Epistemic 89.34 85.23 85.62 82.45

Table 6.5: Performance on the proprietary IDS dataset expressed in adjusted Balanced Accuracy metric
(%).

Methods 100% 15% 10% 5%
AdIter 7 8 10 10
eCBU Total 7 10 6 7
eCBU Epistemic 9 8 7 10

Table 6.6: Number of attack samples classified correctly out of 11 attack samples in the proprietary IDS
dataset.

Methods 100% 15% 10% 5%
AdIter 88.44 83.77 83.93 80.72
eCBU Total 88.64 86.64 96.61 94.81
eCBU Epistemic 89.30 85.58 85.91 81.13

Table 6.7: The true negative rate (specificity) on the proprietary IDS dataset in percentages (%).

Overall, our introduced method does not generally underperform in comparison to the existing passive
adaptation method AdIter on these three real-world datasets. On the Electricity and NSL-KDD datasets,
the predictive performance is very comparable, while eCBU does not unnecessarily retrain the model.
Moreover, our method is not prone to overestimation on the proprietary dataset as AdIter is under limited
labels. However, in order to be less prone to overfitting on the majority class, we need to be more selective
when selecting samples to be labelled
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(a) AdIter - 100% labels (b) eCBU - 100% labels

(c) AdIter - 15% labels (d) eCBU - 15% labels

(e) AdIter - 10% labels (f) eCBU - 10% labels

(g) AdIter - 5% labels (h) eCBU - 5% labels

Figure 6.7: AdIter and eCBU on the IDS proprietary dataset with all labels available (a) and (b), 15%
labelling budget (c) and (d), 10% labelling budget (e) and (f) and 5% labelling budget (g) and (h)



7
Closure

This chapter provides a summary of the main findings and contributions of the research, as well as a
discussion of the limitations and suggestions for future work. The chapter begins by revisiting the research
question and aims that guided the study, and highlighting how they were addressed by method and
experiments. The chapter then acknowledges the limitations of the research design and method, and
how they may have affected the validity and reliability of the results. Finally, the chapter presents some
recommendations for future research that can build on the findings and address the gaps of this study. The
chapter concludes with a brief summary of the main points.

7.1 Main insights
In this section, we summarise the main insights of our study and answer the research questions that
motivated our work. Our main research question was: How to reliably adapt GBDTs under limited labels?
To answer this question, we proposed a novel elastic gradient boosting decision tree algorithm that uses
a sequential uncertainty estimation method to cope with concept drift and limited label availability in
dynamic environments. We evaluated our algorithm on synthetic and real-world datasets and compared it
to the Adaptive Iterations (AdIter) method. With our experiments, we aimed to answer the sub-questions
resulting in an answer to the main question.

To answer the first sub-question, we conducted experiments on a synthetic dataset containing abrupt
drift with different degrees of limited labels. We showed that our algorithm can provide accurate uncertainty
estimations while continuously adapting the model to samples from a stream. This shows that despite
these adaptations, the uncertainty estimation remained useful. This useful uncertainty estimation provided
the method with the ability to balance the stability and plasticity of the model by using the sequential
uncertainty estimation method when adjusting to concept drift under limited labels. This supports the
adaptation of the model when needed.

To answer the second sub-question, we analysed the performance of the AdIter method on synthetic
datasets, containing various types of concept drift. We found that the AdIter method tends to overestimate
the concept drift on these synthetic datasets when given only a limited number of labels. We found that
our algorithm has difficulty detecting big changes in the data, such as severe abrupt drifts. We observed
that on the AGR dataset, which had severe abrupt drifts, our algorithm failed to detect the drift and was
not able to adapt. This shows that our algorithm has limitations in handling extreme cases of concept drift.
However, we also found that our algorithm can handle other types of concept drift, such as incremental or
less severe abrupt, better than the AdIter method. And works much better when no concept drifts occur.
However as indicated by the number of trees in the model when using eCBU it might also be more prone
to underestimating drift, giving the model less chance to adapt well to new concepts. With this, we show
that in most cases our algorithm can more accurately determine the severity of the concept drift under
limited labels using the sequential uncertainty.

To answer the third sub-question, we identified the most challenging scenarios for adaptation under
limited labels. To see whether our algorithm is applicable to real-world scenarios, we tested it on several
real-world datasets, including intrusion detection. We observed that our algorithm is more stable and
robust when given only a limited number of samples, and does not retrain when not necessary. We also
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observed that our algorithm achieves comparable performance to the AdIter method on real-world datasets.
With these insights, we answered our main research question by proposing a novel elastic gradient boosting
decision tree algorithm that can reliably adapt to most concept drift types under limited labels.

7.2 Limitations & Future Work
In this section, we discuss the limitations of our study and the implications of our method for theory and
practice. First, we start by pointing out the limitations of our study. After this, we discuss the limitations
of our introduced method, which are either due to the architecture of the algorithm, used methods or
observations based on experiments. Then we present some recommendations for future research and how
our method can be improved.

7.2.1 Limitations of the study
In this study, we make a few assumptions most of which are pointed out in the introduction chapter
in Section 1.3 under ’setting and assumptions’. Other assumptions and limitations of the study will be
addressed here.

As our study revolves around concept drift adaptation with limited labels, the choice of labels has an
influence on all the results. The selection of these labels influences both the detection and adjustment of the
model. In this study, we chose to select our samples at random. In experiments that included repetitions,
this effect is minimal. However, for other experiments, we need to keep in mind that this impacts the
results, making them less generalisable. To mitigate this effect, repetitions of the same experiments should
be done using different seeds for the random selection.

Another limitation of this sample selection method is that random selection does not provide us with
an accurate reflection of reality. In most realistic scenarios, one would choose an active learning approach
to select appropriate samples. The plasticity of the model while using eCBU can be increased when using
proper active learning as the samples resemble more information about the concept drift, making the
adjustment more rigorous in that direction while keeping it also stable through sequential uncertainty-based
pruning. It might be that representative-based is even better in this case as it resembles more the whole
batch and therefore the concept.

Another limitation of the work is the absence of a small sensitivity study conducted. To investigate if
lowering the retraining threshold solves the problem of successive retraining of the model, we conducted a
small analysis. Through this analysis, we concluded that when doing so, the problem is still present. By
lowering the retraining threshold to near zero, we reduce the plasticity of the model such that it can not
reliably adapt to concept drift anymore. However, a full and detailed enough experiment on this is absent
due among other things to scarcity of time; therefore, this is a limitation of our study

7.2.2 Limitations of eCBU
Our proposed method has several limitations that we discuss in this section. The most significant limitation
is the insufficient pruning of the tree sequence when facing severe abrupt concept drift. We show in
Section 6.3 that the eCBU method does not prune enough trees to trigger retraining, which would improve
the model’s predictive performance.

Another limitation is the inability to handle concept drifts that involve concept evaluation or deletion,
as these require the true label for detection. The AdIter method, which uses the loss on the labels, can
detect these types of concept drift. Moreover, our method is restricted to classification GBDT models and
cannot handle regression tasks.

The eCBU method employs the ensemble of GBDTs differently. For eCBU, the pruning point is
determined collectively for all models in the ensemble. This reduces some of the flexibility that the
AdIter method offers. In that method, each individual model has a different number of trees used for
the adaptation, determined by parameter L. The pruning point is determined for each individual model,
resulting in potentially different lengths of models. For our method, parameter L can still vary, but its
effect is smaller.
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Finally, another limitation is the accuracy of the uncertainty estimation. Literature has provided us
with more accurate uncertainty estimation techniques for GBDTs that use the ensemble technique and
can provide epistemic uncertainty. There are more accurate uncertainty estimation techniques for GBDTs
that use the ensemble technique and can provide epistemic uncertainty as well. Two works KGB [50] and
SGLB [58] provide more guarantees on the posterior estimation, enhancing the uncertainty estimation’s
reliability. However, these methods require a more complex GBDT model, making the learning continuation
more complicated than trivial for SGB. This, along with Malinin et al. [7] stating that using SGLB does
not significantly improve the uncertainty estimation to be useful in practice. However, this is not clear for
KGB, showing a potential limitation of our method.

7.2.3 Future Work
Abrupt drift To overcome the inability of our method to cope with severe abrupt drifts, we could
combine our method with UDD [17], which uses the uncertainty estimation to monitor the concept drift
and trigger retraining of the model when a significant change is detected. This way, we could leverage
the advantages of both methods: UDD would provide the sensitivity to abrupt drifts, while eCBU would
provide the stability and plasticity to other drifts.

Model flexibility To reduce the problem of reduced flexibility due to collective pruning, we could extend
our method to prune groups of ensembles within a larger ensemble. This would allow us to have different
pruning points for different groups of models, increasing the flexibility and diversity of the ensemble.
Moreover, this could also improve the accuracy of the uncertainty estimation, as it would reduce the
correlation between the models.

Active learning To address the issue of realistic sample selection, we could adopt an active learning
approach. By using either informative-based or representative-based [87] methods, samples could be more
carefully selected and contribute more to the performance of the model. This could both improve the value
of research as well as the practical application.

We believe that these directions for future work could enhance the performance and applicability of our
method for handling concept drift under limited labels. We leave these extensions as future work.

7.3 Conclusion
In this thesis, we proposed a novel elastic gradient boosting decision tree algorithm that adapts various
types of concept drift as well to dynamic real-world environments for intrusion detection under limited
labels. Our algorithm uses a novel sequential uncertainty estimation method that indicates the severity of
the drift without using any labels.

We evaluated our algorithm on synthetic and real-world datasets and compared it with a state-of-the-art
method, the AdIter method. We demonstrated that our algorithm can balance the stability and plasticity
of the model, more accurately determine the severity of most types of concept drifts, and handle various
types of real-world scenarios under limited label availability.

However, our method has limitations as well. The most significant limitation is the inability to cope
with severe abrupt drift. To mitigate this limitation, we suggested combining our method with a concept
drift detection method in future work, combining their advantages.

Our work has several implications for both research and practice. For research, our work opens up new
directions for exploring the estimation of severity in an unsupervised manner making adaptation techniques
for gradient boosting decision trees in dynamic real-world environments more feasible. For practice, our
work provides a practical step forward for intrusion detection systems or any other applications that involve
a classification task in non-stationary stream-based environments with tabular data.
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A
Additional details

A.1 Uncertainty Quantification

A.1.1 Bayesian Uncertainty
In Bayesian statistics, uncertainty can be modelled with the posterior distribution [40]. If we consider H
to be the hypothesis space of probabilistic predictors, where h is a hypothesis in that space that maps an
instance x to a target y. Then we can formulate the following posterior distribution,

p(h|D) = p(D|h)p(h)
p(D)

(A.1)

here D is data distribution, where (x, y) ∼ D. The p(h) is the prior, which is the pre-known knowledge
about the modelling. p(D|h) is the likelihood function of h, meaning how likely is the data if modelled by
this hypothesis. The unconditional probability of the data, p(D), can be modelled by,

p(D) =
∫

p(D|h)p(h)dh (A.2)

However, this integral is over all possible values of h which is intractable in general. As a result, the
posterior is considered to be proportional to the numerator of equation A.1.

p(h|D) ∝ p(D|h)p(h) (A.3)

This posterior distribution gives the likelihood of the model on the data and therefore reflects the
knowledge in the model and epistemic uncertainty. The predictive posterior distribution is the former
posterior under the mapping of the prediction h→ p(y|x, h). So,

p(y|x) =
∫
H
p(y|x, h)dP (h|D) (A.4)

This posterior takes all possible models and averages them out to get the predictive posterior, in practice,
this is often difficult and computationally costly. Therefore generally one hypothesis is used.

hmap = argmax
h∈H

p(h|D) (A.5)

The highest posterior probability is adopted, as one wants to maximize the probability of the hypothesis
given the data. This way the hypothesis can model the data best.

Unfortunately, due to the averaging effect of Eq. A.4, the aleatoric and epistemic uncertainty is no
longer distinguishable. The same holds for Eq. A.5, due to only using one hypothesis. This shows the
intractable nature of exact Bayesian uncertainty, however, there are methods to approximate this predictive
posterior.
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B
Results

B.0.1 Challenging concept drifts

(a) eCBU Epistemic - 100% labels (b) eCBU Epistemic - 15% labels

(c) eCBU Epistemic - 10% labels (d) eCBU Epistemic - 5% labels

Figure B.1: eCBU Epistemic on the IDS proprietary dataset with all labels available.
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Figure B.2: bar plot ecbu total uncertainty

Figure B.3: bar plot ecbu knowledge uncertainty
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