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Abstract

GitHub is an online platform that hosts millions
of projects. Many of these projects have the same
topic or share the same goal. Finding similar pro-
jects which can be used as role models, inspiration
or examples can help developers meet their require-
ments faster and more efficiently. Previous studies
have been successful in finding similar GitHub pro-
jects, but they do not share how well their proposed
metrics indicate similarity.
Our research and analysis seek to find the contri-
bution of source code identifiers to overall project
similarity. We define project similarity and define
each type of identifier we evaluate. After these
steps, we extract the defined types of identifiers
from a list of projects. From this list of projects, we
use twenty projects as queries for our analysis. We
then analyze all identifiers using techniques such
as TF-IDF and LSA. Our findings are that com-
bining all types of identifiers results in the highest
chance of having the same topic when looking at
the most similar project. We also find that split-
ting each identifier on its casing and combining all
split identifiers results in the highest chance that the
most similar project found is similar. We therefore
see that source code identifiers are reasonably con-
tributing to overall project similarities.
Keywords— GitHub, similar projects, source code iden-
tifiers, language processing, text analysis

1 Introduction
Platforms like GitHub provide easy access to millions of
open-source software development projects. It is widely used
by developers to share code and contribute to projects. Due to
the vast amount of public projects and repositories available
[4], navigating all these projects and repositories can be quite
a challenge.

When working on a software project, developers can often
find themselves in unknown territory and might not directly
know how to continue with their project. It can therefore be
relevant to find similar projects that can be used as role mod-
els, examples, or even inspiration. This allows developers to
use techniques or patterns from similar projects. Existing re-
search, such as MudaBlue [5], CLAN [6], RepoPal [10] and
CrossSim [7], already propose different solutions to finding
similar projects or repositories. Their findings describe for
example categorizing multiple projects based on their shared
goals or by finding similarity indices which indicate how two
or more projects score in terms of similarity. Almost all of
these tools claim they can outperform each other, but none of
them indicate how well their methods contribute to the overall
project similarity. This paper focuses on one set of identifiers,
source code identifiers, to be used as a metric for finding sim-
ilar projects. Source code identifiers are identifiers that are
manually defined by the programmer. This raises the main
research question:

How do source code identifiers contribute to simil-
arities among different GitHub projects?

To find an answer to this main research question, we pro-
pose three secondary research questions. We study how well
source code identifiers indicate similarity to find whether or
not there is a contribution. Additionally, we investigate how
well source code identifiers help in finding a similar project
with the same topic. Finally, we are interested in the contri-
bution of splitting identifiers based on their casing, and if this
helps in indicating similarity.

This paper is directed at analyzing the impact of source
code identifiers on overall project similarity. Together with
four other papers, this paper aims to find an answer to the
question: Which other GitHub projects are similar to yours?

We focus on analyzing the importance of source code iden-
tifiers when finding similar projects. GitHub stores all source
code in repositories. Because we have to extract identifiers
from this source code and analyze these identifiers, we ad-
here to the methodology described below.

We clone a set of repositories and collect all source code
files from these repositories. We then extract source code
identifiers from these repositories by parsing the source code
into Concrete Syntax Trees (CSTs). By performing natural
language processing techniques such as lemmatization, stem-
ming and Latent Semantic Analysis (LSA) to model top-
ics, we identify relationships between different projects. We
extract the most similar project and compare this match to
manually labeled test data. We analyze how often a match is
successful or has the same topic. Additionally, we identify
the importance of naming conventions by looking at identifi-
ers that are split based on their casing. This splitting is done
based on the casing found in different identifiers.

Since this research focuses on the contribution of source
code identifiers to the overall project similarity, we first need
to establish what we consider as project similarity. We then
define a list of source code identifiers which we will use as a
base of our evaluation. Finally, we define how we will split
our identifiers and which naming conventions we are con-
sidering. Establishing the actual significance of source code
identifiers will help to better understand how projects relate
to each other and how their overall similarity can be modeled.

Results show that source code identifiers do contribute to
finding similar projects. We further explore these results by
analyzing the success rate of finding a similar project with
the same topic and finding a similar project that is considered
similar by manual evaluation. Source code identifiers are suc-
cessful in finding a similar project with the same topic in 95%
of the queries, with the 95% confidence interval being [0.85,
1.05]. Their success rate in finding a similar project is 60%
with the 95% confidence interval being [0.38, 0.82]. Further-
more, our evaluation finds that splitting identifiers improves
precision by 10% and can result in a better match.

All resources used and mentioned in this paper are pub-
lished to Zenodo [2].



2 Background and Related Work
2.1 Background
GitHub. GitHub1 is a web-based platform for software de-
velopment and version control. It focuses on collaboration
and allows software developers to store and manage their
code. It uses Git, a tool that is mainly used for tracking
changes in files, and adds many features on top of these Git
features, such as bug tracking, feature requests, task manage-
ment, and wikis.

As of November 2023, GitHub has over 420 million total
repositories, of which more than 284 million are public [4].

Concrete syntax trees. Concrete syntax trees are used to
represent the syntax of source code in a tree form. Each node
in the tree is either a root node, branch node, or leaf node.
The leaf nodes contain data that directly relates to the original
source code. The trees contain all elements that can be found
in the original source code. These can include for example:
keywords, operators, parentheses, commas, and semicolons.
They are often used by IDEs for tasks like syntax highlighting
and code formatting.

Tree-sitter. Tree-sitter is a parsing library for programming
languages. It can be used for a large amount of both object-
oriented and non-object-oriented programming languages,
such as Java, C#, and Python. 2 It parses source files and
generates concrete syntax trees to represent the source code
file. These syntax trees allow the tool to be used for primarily
syntax highlighting.

TF-IDF. The TF-IDF score helps identify the importance
of a term within a document while still considering its im-
portance across a set of documents. The TF-IDF score for a
term in a document is obtained by multiplying its term fre-
quency (TF) and its inverse document frequency (IDF). The
term frequency measures how often a term appears in a doc-
ument. It is calculated by dividing the amount of times the
words occur in a document by the total amount of terms in
that document:

TF(t , d) =
Number of times t appears in d

Total number of terms in d

The inverse document frequency measures the importance
of a term across multiple documents. Words that appear more
often are seen as less important and therefore given a higher
IDF score. It is calculated by taking the logarithm of the total
number of documents in a corpus (set of documents) divided
by the number of documents containing a specific term and
adding one:

IDF(t ,D) =
Total number of document in corpus D

Total number of documents containing t + 1

The TF-IDF score is then calculated by multiplying the TF
value and the IDF value:

TF-IDF(t , d ,D) = TF(t , d)× IDF(t ,D)

1https://github.com/
2https://tree-sitter.github.io/tree-sitter/

Latent Semantic Analysis. Latent Semantic Analysis is a
technique in natural language processing that can identify
hidden relationships between terms in a set of documents
(corpus). It is commonly used to perform document clus-
tering, document summarization, and topic extraction. It can
calculate the similarity between documents by representing
them in a reduced semantic space, capturing the underlying
hidden relationships between documents.

2.2 Related Work
MUDABlue. MUDABlue is a tool that automatically cat-
egorizes software systems [5]. It focuses on source code
identifiers to try and identify the topics of a software sys-
tem. It uses latent semantic analysis to determine relation-
ships between identifiers and thus can determine if multiple
pieces of software systems have the same topic and/or are
similar to each other. It does not rely on pre-defined category
sets. The categories are generated purely by the source code
that is inputted. MUDABlue helps to find similar repositor-
ies by looking at its source code, but it does not look into how
well source code identifiers contribute to similarity.
CLAN. CLAN is an application that detects similar Java
applications by looking at their semantic anchors, mainly API
calls [6]. It argues that if the same API calls are used in two
different applications, their similarity index should be higher
than for applications that do not share any API calls. Their
tool can be run on Java applications and according to their
findings, it performs with a higher precision than MUDABlue
[6].
RepoPal. RepoPal is a tool proposed by Y. Zhang et al. [10]
that can find similar repositories based on three heuristics.
These heuristics are:

1. Projects that are starred by the same users within a short
period are likely to be similar to one another.

2. Projects that are starred by similar users are likely to be
similar to one another.

3. Projects whose README files contain similar contents
are likely to be similar to one another.

They calculate two relevance scores based on these three
heuristics and based on these calculated scores, they have
built RepoPal, a recommendation system to detect similar re-
positories.
CrossSim. CrossSim is a tool used for identifying similar
projects [7]. It makes use of graphs to represent open-source
software. This graph includes relationships between projects.
These relationships include project dependencies, shared de-
velopers, user stars, relationships between users and projects,
and more. Their dataset3 compares the results of MUD-
ABlue, CLAN, RepoPal and CrossSim and they find that
their tool outperforms the other tools.

3 Methodology
3.1 Experimental setup
In order to successfully find the significance of source code
identifiers in the similarity between GitHub projects, the

3https://github.com/crossminer/CrossSim/tree/master/dataset/
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Figure 1: Methodology flow

methodology is divided into three parts. As shown in figure
1, the three parts consist of data collection, data processing,
and evaluation. Before any data collection or processing is
done, we have to specify some definitions.

3.1.1 Definition of source code identifiers
This paper focuses on similar projects and source code iden-
tifiers. To find similar projects, we first have to define what
similarity amongst GitHub projects is. The following defini-
tion is used for evaluation:

Two or more GitHub projects are similar to each
other if they share at least one topic and have at
least something in common.

This statement can be interpreted as follows: if two or more
projects share a topic, they are more similar to each other than
they are similar to projects without this topic. Additionally,
two or more projects are more similar if they have the same
goal. As an example, a goal can be that two or more pro-
jects provide examples for Spring Boot. A project can contain
multiple topics and these topics are manually defined by the
project admin/owner. By using a GitHub search tool, which
will be discussed in section 3.1.3, it is easy to generate a list
of generally similar projects based on our definition. This is
done by inputting a topic.

This research limits itself to the evaluation of Java pro-

jects. Since Java contains multiple different types of identifi-
ers, we have to find a suitable definition for what we consider
as source code identifiers. In short, we are only considering
identifiers that are manually defined by the programmer. The
following types of identifiers meet this criteria:

Global variables: Global variables in Java source code
are considered variables that can be accessed (at least)
from anywhere within the same class. They are
defined outside of methods. In the example in fig-
ure 2, the variables globalString, globalInt and
globalIdentifier are considered global variables.
There is no distinction between modifiers.

Local variables: Local variables are variables that can only
be accessed from inside specific functions. In the example in
figure 2, the variables localString and x are considered
local variables, although the latter will be rejected in future
steps due to its length.

Class names: Class names are the identifiers defined by the
user to identify a class. In the example in figure 2, the identi-
fier ExampleClass is considered a class name.

Method names: Method names are the identifiers used in a
class to identify its methods and/or functions. In the example
in figure 2, the identifier exampleMethod is considered a



public class ExampleClass {
private String globalString;
public static int globalInt;
public OtherClass globalIdentifier;

private void exampleMethod(String parameterString) throws IOException {
String localString = ’example’;
int x = 0;
return x;

}
}

Figure 2: Example source code to help identify source code identifiers

method name. There is no distinction between its access mod-
ifiers, return type, or any other modifiers.
Parameters: Parameters are identifiers passed to a func-
tion or method. In the example in figure 2, the identifier
parameterString is considered a parameter. There is no
distinction between its possible types.
Type identifiers: The final identifiers that could be con-
sidered a source code identifier are type identifiers. Although
they are not used in this paper, it might be worthwhile men-
tioning these identifiers since they could help contribute to
the final results. They are currently not used because, in
Java, type identifiers often refer to either internal objects or
external libraries. Since the focus of this research is purely
local source code, these are neglected. In the example in fig-
ure 2, the identifiers String, int and OtherClass are
considered type identifiers.

We also evaluate whether combining these identifiers influ-
ences the output. This results in a new class: all.

3.1.2 Definition of naming conventions
Programmers tend to use different casings and naming con-
ventions in terms of identifiers. To evaluate whether these
different casings impact the contribution of source code iden-
tifiers, we analyze the normalized identifiers and the non-
normalized identifiers. We define the normalized identifiers
as split identifiers and the non-normalized identifiers as non-
split identifiers. The identifiers are split using the regular ex-
pression shown in figure 3, which supports all the casings
described next.

(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a
-z])|_|-

Figure 3: Regular expression for splitting identifiers

Snake Case: Snake Case uses an underscore to distinguish
its words. An example would be snake_case_example.
In the regular expression used, underscores are a criterion for
splitting the identifiers.
Camel Case: Camel Case uses lowercase for its first word.
The first letter of all other words is capitalized. This results
in camelCaseExample.

Pascal Case: Pascal Case is similar to Camel Case. The
difference between the two is that the first letter is capitalized
as well. An example is PascalCaseExample. The first
part of the regular expression is able to recognize Camel Case
and Pascal Case.

3.1.3 Data Collection
The data collection process makes use of a GitHub search
tool proposed by the SEART (SoftwarE Analytics Research
Team) group [3]. This tool makes it possible to search Git-
Hub projects based on multiple inputs such as topics, number
of commits, programming language, number of issues, and
more. It is capable of generating a CSV output that contains
all matching projects with its metadata. We then evaluate the
list of projects and all repositories are cloned to a temporary
folder. By making use of TreeSitter, we generate a CST to
successfully find matching identifiers. To successfully parse
the source code into CSTs, a Java implementation of Tree-
sitter, found on GitHub 4, is used. It is compiled on a Unix-
based operating system and requires additional grammar for
each desired programming language. The current compila-
tion of the library includes support for Java, C#, and JavaS-
cript. A fork of the Java implementation of Tree-sitter includ-
ing the used grammars is published to Zenodo [2]. The CST
is then traversed while maintaining the current and previous
states. This allows us to pinpoint the exact location of the
identifier, thereby enabling the detection of the type of source
code identifier. By utilizing our definition of source code
identifiers, we extract all relevant identifiers. Subsequently,
these identifiers are stored in lists categorized by type and per
project. The next step splits identifiers based on their casings,
as described previously. This allows the analyzing tool to find
hidden semantics in both the original data and the modified
data. Both types are considered to find a precise conclusion.

The data is finally stored in two separate folders: one folder
contains the original data, while the other contains the data
with the identifiers being split.

3.1.4 Data Processing
We carefully clean the data obtained from the first part us-
ing existing libraries from Python’s Natural Language Toolkit
(NLTK) [1]. Identifiers are stemmed and lowercased to bet-
ter identify similarities. The collection of pre-processed data

4https://tree-sitter.github.io/tree-sitter/



Scale Description Score
Dissimilar The two projects are completely different 1
Neutral The two projects share a little in common 2
Similar The two projects share something in common 3

Highly similar The two projects share many things in common
and can be considered the same 4

Table 1: Similarity scores as listed in CrossSim [7]

is then converted into a matrix of TF-IDF features using
SciKit’s TfidfVectorizer [8]. This vectorizer makes it pos-
sible to filter out words. Words that occur less than two times
or occur in more than fifty percent of the documents are ig-
nored. This generates a bag of words, which contain the set
of all words paired with their TF-IDF value. The result-
ing data is then analyzed using LSA, which utilizes SciKit’s
TruncatedSVD [8]. This SVD performs dimensionality re-
duction on the previously found data and results in a LSA
matrix. Since this matrix is not interpretable by humans, it
can be useful to use tools to visualize this data. The optional
visualization step is therefore introduced to plot the data to
manually evaluate clusters. t-SNE [8] is used to visualize the
high-dimensional data. We then create a 2D plot and visu-
alize these results to show clustering based on LSA together
with TF-IDF.

In an approach proposed by Sun et al. [9], LSA is not
used, but instead a cosine similarity matrix is generated to
find similar projects. Their input consists of description files
and source code files. Instead of extracting specific source
code identifiers, their proposed solution uses full source code
files. They remove words shorter than three characters and
remove numbers and other meaningless identifiers. Our pro-
posed method uses LSA combined with TF-IDF on the type
of identifiers defined in section 3.1.1.

3.1.5 Datasets
A dataset generated by the GitHub Search Tool is used for
our analysis. The dataset contains 570 repositories of five dif-
ferent categories. Twenty of these repositories are randomly
selected and used as queries. For each query, the most similar
repository is selected for evaluation. The dataset and queries
are published online [2].

3.2 Research Questions
As mentioned previously, the main research question for this
paper is:

How do source code identifiers contribute to simil-
arities among different GitHub projects?

To successfully answer the main research question, we pro-
pose the following secondary research questions:

Q1. How well do source code identifiers indicate
similarities between GitHub projects?
This research question helps to answer the main research
question by looking at whether source code identifiers are a
good indicator for measuring similarity. We are interested in
this because it will help to determine whether or not source
code identifiers contribute at all. Our goal is to find a confid-
ence interval that indicates how successful our analysis is in

finding a similar project. Our method starts after we have fol-
lowed the data collection and data processing steps described
in figure 1. After we obtain our LSA matrix, we calculate
the cosine similarity using SciKit’s Pairwise Metrics [8]. For
each query, we find the most similar project. The results are
then stored for manual evaluation.

Each match is compared to manual labeling done by a total
of two experienced Java developers, including the author. All
the labeling done by one developer has been checked by the
other developer to ensure consistency. Potential conflicts are
discussed and resolved in such a way that there are no dis-
agreements. It is checked if the two projects have similarities
by looking at the projects’ goals. If the projects share the
same goal or implement the same algorithm for a different
resource, the match is classified as either similar or highly
similar, depending on how well they match. If the two pro-
jects do not have anything in common, they are classified as
dissimilar. If they share only little in common, for example,
if they are both extensions for some software but do not share
the same type of extension or goal, the match is classified as
neutral. If the match is classified as dissimilar or neutral, the
match is considered a false positive. If the match is classi-
fied as similar or highly similar, it means that in the case of
that specific match, source code identifiers are an indicator of
similarity, and are therefore considered a true positive. The
scores given by the Java developers range from one to four
and are the same as the similarity scores used in CrossSim
[7]. For reference, table 1 lists the four similarity scores.

For all matches, we evaluate how many of them have been
classified as similar or highly similar. For each type of iden-
tifier, both split and non-split, as well as all identifiers com-
bined, we calculate the confidence intervals. Section 4 high-
lights all relevant results.

Q2. Do source code identifiers help find a similar project
with the same topic?

This research question helps to answer the main research
question by determining whether source code identifiers are a
good indicator for finding a similar project that has the same
topic. As described in 3.1.4, the data processing step intro-
duces an optional step to visualize our data. The plots gener-
ated using t-SNE are used to manually interpret our data. We
also analyze the matches by comparing the topic of the query
with the topic of the match. We are calculating the confid-
ence intervals for the binary values [0, 1] with 0 equalling
non-matching topics and 1 equalling matching topics. Sec-
tion 4 highlights all relevant results.



(a) t-SNE performed on the LSA matrix for combined identifiers (b) t-SNE performed on the LSA matrix for combined split
identifiers

Figure 4: t-SNE plots showing clustering and topics as target labels

Type Mean Count Standard deviation Confidence α= 0.05
all 0.55 20 0.5104 0.2237
all_split 0.60 20 0.5026 0.2203
class_names 0.35 20 0.4894 0.2145
class_names_split 0.60 20 0.5026 0.2204
global_variables 0.40 20 0.5026 0.2204
global_variables_split 0.50 20 0.5130 0.2248
local_variables 0.35 20 0.4894 0.2145
local_variables_split 0.45 20 0.5104 0.2237
method_names 0.35 20 0.4894 0.2145
method_names_split 0.45 20 0.5104 0.2237
parameters 0.40 20 0.5026 0.2203
parameters_split 0.40 20 0.5026 0.2203

(a) Results for project similarity

Type Mean Count Standard deviation Confidence α= 0.05
all 0.95 20 0.2236 0.0980
all_split 0.80 20 0.4104 0.1799
class_names 0.70 20 0.4702 0.2061
class_names_split 0.80 20 0.4104 0.1799
global_variables 0.80 20 0.4104 0.1799
global_variables_split 0.80 20 0.4104 0.1799
local_variables 0.85 20 0.3663 0.1606
local_variables_split 0.95 20 0.2236 0.0980
method_names 0.90 20 0.3078 0.1349
method_names_split 0.80 20 0.4104 0.1799
parameters 0.85 20 0.3663 0.1606
parameters_split 0.80 20 0.4104 0.1799

(b) Results for topic matching

Table 2: Analysis for each type of identifier for similar repositories and matching topics

Q3. What are naming conventions in source code and how
do naming conventions of source code identifiers
contribute to the similarities between GitHub projects?
Naming conventions among source code identifiers can im-
pact similarity scores. By looking at both split and non-split
data we can conclude whether it is better to use the raw or pro-
cessed data to find project similarity. The methodology used
in research question 1 and research question 2 is repeated for
the split identifiers. We then compare the results of the non-
split identifiers to the results of the split identifiers. This al-
lows us to find their contributions to the overall similarity.

4 Results
The following section highlights all relevant results to the sec-
ondary research questions proposed in Section 3.

Q1. Table 2a displays the results from the similarity eval-
uation described previously. This table has been visualized
into a bar chart that shows the confidence intervals. This
can be seen in figure 5. This table and figure show the aver-
age amount of times the most similar project found is labeled
similar or highly similar using the manual labeling described
previously for each of the twenty query projects. Each bar
in figure 5 shows the type of identifier with its casing being
either split or non-split. When combining all split identifiers,
or looking at the split class names, we see that their influence

on similarity is the highest. Both succeeded in 60% of the
queries, with a 95% confidence interval of 0.6 ± 0.22. This
shows that combining and splitting all source code identifiers
can correctly indicate similarity with a confidence interval of
[0.38, 0.82] and are therefore useful for finding similar pro-
jects.

Q2. Initial plots generated using t-SNE shown in figure 4
show that LSA is useful for correctly finding a project with
the same topic. Projects that are closer to each other are more
related to each other than projects further away. Figure 4a
shows the results generated by our analysis for the combined
identifiers visualized in 2D. The plots show projects with each
color representing the actual topic to which the project be-
longs. The right plot shows the same clustering where each
color represents the predicted topic. Although the colors are
different for both plots, one can see that most clusters share
a color and are thus identified correctly. Figure 4b shows the
same visualization for the combined split identifiers.

Table 2b displays the results from the topic evaluation de-
scribed previously. This table is visualized using bar charts
which can be seen in figure 6. Figure 6 displays the average
amounts with their confidence intervals of correctly identi-
fied topics in the query set of twenty projects. As one can
see, considering the types of identifiers, the combined identi-
fier all, together with the split identifier local variables, per-
forms the best. They both result in a 95% correctness aver-



Figure 5: Results for finding a similar project Figure 6: Results for finding a project with matching topic

age with a 95% certainty that their confidence interval is 0.95
± 0.098. In general, all types of identifiers, either split or
non-split, perform well in correctly matching with a project
having the same topic. The only type of identifier that per-
forms worse than the others is class names. We can therefore
say that source code identifiers do strongly help in finding a
similar project with the same topic.

Q3. When looking at our findings for Q1 we can see that
in general, splitting the identifier results in a higher chance of
finding a similar project. On average, this results in a 10%
higher chance of finding a similar project compared to non-
split identifiers. Although not splitting the identifiers can help
find similar projects, it is generally more useful to split the
identifiers. Results for Q2 show that not splitting the identifi-
ers might result in a better chance of finding a similar project
with the same topic. On average, not splitting the identifi-
ers results in a 1.5% higher chance of finding a similar pro-
ject with the same topic. Since splitting the identifiers res-
ults in a 10% higher chance of finding a similar project and
non-splitting the identifiers results in a 1.5% higher chance of
finding a similar project with the same topic, we find that, in
general, splitting the identifiers yields better results.

5 Responsible Research
5.1 Reproducibility
This research relies on existing implementations of tech-
niques such as TF-IDF and LSA, and language processing
techniques for stemming and tokenization. For each exist-
ing implementation used, we reference the original library
to ensure reproducibility. Additionally, all resources used to
conduct our analysis are published to Zenodo [2], including
all source code and datasets. The results are published for
people who want to either use the results or conduct their ex-
periments based on our results.

Some existing implementations require specific paramet-
ers. Using different parameters can impact the outcome of
the analysis. Parameters that directly impact the results are
mentioned in this paper. Parameters that only affect visu-
alizations have not been discussed but can be found in the
published source code. These parameters do not affect the
outcome of this research but can influence one’s perspective
of the plotted results.

The evaluation of this research is done by manually la-
belling data using a set scale of scores. This process uses

two experienced Java developers, including the author. Both
the author and the other developer used the same approach
and discussed matches that were unclear. This ensures that
bias is minimized. All manually labelled data is published as
well.

Each step in the methodology, every metric, and all evalu-
ation steps to obtain our results have been described in detail
in such a way that it is possible to reproduce this research.

5.2 Threats to validity
Our definition of similarity and our definition of naming con-
ventions are carefully crafted using common findings in pro-
gramming. Small changes in these definitions can impact the
results and therefore change the outcome of our analysis. It is
therefore important to adhere to the definitions presented in
this paper when using our dataset or results as a base.

The plots presented in figure 4 are created using dimen-
sionality reduction performed using t-SNE. However, this
does mean that another iteration can result in small changes
in these plots. These plots are only used as an initial inter-
pretation of the results, and the exact results are presented in
table 2.

Our evaluation required a set of twenty queries which are
then used to generate the results discussed previously. This
set of queries is randomly generated, and selecting a different
set of queries can affect the outcome of this experiment.

A small number of mistakes made in labelling the data can
minimally affect the results, but because two people were in-
volved in performing this task, errors are minimized.

6 Discussion
6.1 Reflection on results
The results mentioned previously show that source code iden-
tifiers contribute to GitHub project similarity. These conclu-
sions have been made by visualizing data generated by TF-
IDF and LSA as well as comparing our similarity results to
a manually labeled dataset. Results from CrossSim [7] show
that MudaBlue [5], CLAN [6], RepoPal [10] and CrossSim
[7] all succeed in finding similar repositories, with some tools
performing better than the others. In particular, MudaBlue
uses source code identifiers to categorize software systems.
These results, however, do not show which type of source
code identifiers contribute the most, whether it is useful to



split identifiers, and whether their contributions are meaning-
ful. Our results show that source code identifiers do contrib-
ute to finding similar repositories, and we further evaluate the
results to find the performance of each metric, both split and
non-split.

Our analysis shows that for all combined non-split identi-
fiers, the most similar project has a matching topic in 95%
of the cases with reasonably high confidence. A reason that
non-split identifiers might perform better than split identifiers
in this scenario is that projects that share the same topic of-
ten tend to use the same method names or parameter names.
Splitting these identifiers can cause a match to be too general.
Therefore, not splitting the identifiers increases precision and
results in a higher average.

Splitting the identifiers improves the ability to determine
the most similar project. An explanation for this would be
that non-split identifiers are generally too rare and not found
in a lot of other projects. Splitting these identifiers therefore
results in multiple words which can yield multiple matches
and therefore show a more suitable match. There is a smaller
chance that their topics are the same but a higher chance that
they share the same goal.

Our results show that source code identifiers do contribute
to finding similar repositories and similar repositories with
matching topics. This would indicate that in general, source
code identifiers are a reasonable metric for measuring sim-
ilarity. An explanation for these results would be that most
projects that have a similar goal implement the same types of
functionality and therefore often tend to use the same identi-
fier names. Combining all these identifiers results in a bigger
set of words that are being matched and therefore usually res-
ults in a better match. This explains why the combined set
all split performs the best. There are more words to match on
and therefore a higher match precision.

6.2 Future Work
During our initial definition of source code identifiers, we
mentioned type identifiers, but did not consider this a source
code identifier. Results show that combining all identifiers
yields the highest success rate, but the impact of type identifi-
ers is not known. A recommendation is therefore to research
the influence of type identifiers on the similarity in GitHub
projects. The analysis conducted in this paper consists of 570
projects of which twenty are used as queries. Analyzing a lar-
ger set of projects and/or queries can have a positive or negat-
ive impact on the results. Another recommendation is there-
fore to research the effect of a larger test set and query set on
this analysis. It might also be worthwhile looking into differ-
ent clustering techniques that can either improve or worsen
the topic clustering results. Therefore, it can be interesting to
research how well different clustering techniques can model
GitHub projects when only looking at source code identifiers.

The identifier extractor used in this paper is published on-
line [2]. This extractor works but does currently not use er-
ror handling to its full potential. We, therefore, recommen-
ded further developing this tool to make extracting identifiers
faster and error-free. Our final recommendation is to com-
bine our research with the research of other team members
to find a high-performing metric for finding similar GitHub

repositories.

6.3 Conclusions
Finding similar GitHub projects can be useful in software de-
velopment, as these can be used as role models, examples,
or inspiration. Existing research shows that different meth-
ods proposed (MudaBlue [5], CLAN [6], RepoPal [10],
CrossSim [7]) succeed in finding similar repositories, but
do not indicate how well their proposed metric performs in
terms of overall project similarity. Since this research fo-
cuses solely on source code identifiers, we seek to find the
contribution of source identifiers to similarities among differ-
ent GitHub projects. We first create a definition for project
similarity and find which identifiers we are considering. Our
proposed method collects data from different GitHub projects
by cloning the projects and parsing the source code into Con-
crete Syntax Trees to extract the defined identifiers. We then
perform natural language processing techniques on this data
to find hidden relationships between different projects.

Our analysis shows that source code identifiers can be a key
feature in identifying similar projects. We define similarities
in GitHub projects and the types of identifiers that we con-
sider in this paper. Furthermore, we seek to find an answer to
the main research question:

How do source code identifiers contribute to simil-
arities among different GitHub projects?

We analyze the effectiveness of source code identifiers
in indicating similarity. Additionally, we investigate how
well source code identifiers help in finding a similar project
with the same topic. Finally, we are interested in evaluating
whether splitting identifiers based on their casing can help in-
dicate similarity.

Combined and split source code identifiers, on average,
contribute about 60%, with a 95% confidence interval ranging
from 38% to 82%, to these similarities. Evaluating all types
of identifiers analyzed results in finding that combining all
identifiers yields the best results. We have analyzed whether
splitting identifiers impacts similarity results and have found
this to be true in a positive sense.

Furthermore, we have found that source code identifiers are
useful in finding a similar repository with a matching topic.
Results show that combining all identifiers results in a 95%
correctness average with a 95% certainty that their confidence
interval is 0.95 ± 0.098.

We can conclude that based on our analysis, source code
identifiers are a reasonable metric for finding similar projects
and therefore do contribute to similarity.
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