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Abstract

In this thesis, an algorithm to model the magnetic perturbation field caused by ships is designed and im-
plemented. A systematic description of methods used for modelling the magnetic signature of ships is
given. The algorithm fits coefficients of a prolate spheroidal harmonic expansion of the scalar potential
of the magnetic field using a least angle regression method (LARS) modified to implement Lasso regu-
larisation. A Monte Carlo method with model selection based on Akaike’s information criterion (AIC) is
used to select optimal parameters specifying the prolate spheroidal coordinate system centred on the
ship. Furthermore, a method to restrict the degree and order of the harmonic expansion is presented
and an extension of the scikit-learn module in Python is given. The predictive power of the model was
verified using simulated test data, which showed that the designed model is able to make adequate
predictions, but improvements are needed. Different analyses on the inputs of the model showed that
the model is succesful for low levels of noise, but is susceptible to overfitting for higher levels of noise.
Several recommendations for further research are made.
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1
Introduction

Naval mines are still an active threat. On the one hand, recent news reports of naval mines being
fished up in the North Sea (such as [2]) show that naval mines from passed wars still pose a threat to
for example civilian ships. On the other hand, a massive anti-naval mine drill by the Chinese People’s
Liberation Army Navy, just as recently as 2018 [3], shows naval mines still play an active roll in modern
(naval) warfare. Protecting ships from naval mines is therefore still crucial for safety at sea.

The Netherlands Organisation for Applied Scientific Research (TNO) is working together with the
Delft University of Technology in this area. They are working on advanced numerical models that predict
the interactions of ships with the electromagnetic field. These interactions make ships susceptible to
detection by naval mines.

1.1. Magnetic signature
The three typical components of a defence against naval mines are minesweeping, minehunting and
the reduction of a vessel’s signature. Minesweeping is the oldest method of the three. Essentially, a
ship (or more recently a helicopter) drags a wire through the water to either trigger the mine or cut the
line holding it in place. This is a crude, yet effective method.

Minehunting, on the other hand, is a more precise practice: mines are actively sought out. After
detection, a diver or an unmanned underwater vehicle (UUV) either dismantles the mine or safely
detonates it.

The third component is the reduction of a ship’s signature. The term ‘signature’ was first used to re-
fer to a vessel’s underwater acoustic pressure field, by which it could be detected or even distinguished
[4, p. 1]. Similarly, the spatial and temporal distribution of a ship’s magnetic field is referred to as the
magnetic signature. It is this magnetic signature that naval mines can detect and more advanced sys-
tems can distinguish between them and select a programmed target. Reducing the magnetic signature
could therefore ideally make the ship ‘magnetically invisible’ for naval mines.

Since electromagnetic fields cannot be seen by the naked eye, finding and eliminating its sources might
prove to be difficult. Four sources of the magnetic signature of a naval vessel can be discerned:
1. ferromagnetism induced by the Earth’s magnetic field;
2. eddy currents caused by rotation in the Earth’s magnetic field;
3. electric currents caused by natural electrochemical corrosion or cathodic prevention thereof;
4. currents in the electric appliances.

Only the first of these sources is considered in this thesis, since the other sources provide either an
unreliable or small contribution to the total signature and would therefore not be of interest to mine
system designer [4, p. 1-2].

1



2 1. Introduction

(a) The USS West Virginia undergoing a deperming treatment in the
drive-in facility of the Naval Submarine Base Kings Bay. Source:
United States Navy

(b) The HMAS Melbourne undergoing a close-wrap deperming treat-
ment. Source: Royal Australian Navy

Figure 1.1: Vessel going through different deperming methods. (a) shows the drive-in method and (b) shows the close-wrap
method.

Low-alloy steels are the most commonmaterials used in ship construction and finds use in the ship’s
hull, internal structure and machinery. As opposed to stainless steel (more than 10% chromium), low-
alloy steel is ferromagnetic. Even when ferromagnetic steel is not used in the hull, most machinery still
depends on this material to work properly and thus ships always contain ferromagnetic steel in practice.
This steel has a high magnetic permeability, and therefore interacts strongly with the Earth’s magnetic
field [5, p. 10-12]. It is this interaction that results in the measurable disturbance in the magnetic field
that constitutes the majority of the vessel’s magnetic signature.

1.2. Deperming and degaussing
The total magnetic signature of a ship can be separated into a permanent and an induced magneti-
sation. The processes in which these two types of magnetisation are reduced are called deperming
and degaussing. The deperming process aims to reduce the permanent magnetisation as much as
possible and the degaussing process is used to remove the induced magnetisation and the remainder
of the permanent magnetisation.

At a microscopic level, ferromagnetic material are composed of so-called magnetic domains. Within
these magnetic domains, the magnetisation is uniform. Under the influence of mechanical stress,
high temperatures or large magnetic fields, these domains can reorient themselves, which results in
a permanent magnetisation or perm. Vessels are subjected to these stresses during construction, but
also during their deployment [5, p. 16]. This means that the reduction of this permanent magnetisation
to acceptable levels must be carried out multiple times in the ship’s lifetime.

In the deperming process, the ship is placed within a set of coils that, when powered, create a strong
magnetic field that reorients the permanent magnetic signature of a ship. This process takes multiple
iterations, since measurements need to be taken of the new magnetic signature.

Deperming usually takes one of three forms: drive-in, over-run and close-wrap [6, p. 186]. For
the drive-in method, a permanent construction of treatment coils is needed (see Fig. 1.1a). The ship
then enters the facility from one end, where it is treated and can then leave. The over-run set-up has
treatment coils on the seabed over which the ship transits multiple times for a successful treatment.
The close-wrap system requires the coils to be wrapped around the vessel (see Fig. 1.1b).

If the deperming treatment is successful, the permanent magnetisation is reduced to an acceptable
level and the magnetic signature is dominated by the induced magnetisation. Since the induced mag-
netisation is dependent on the size and polarity of the Earth’s magnetic field relative to the ship, which
changes with the position of the ship on the Earth’s surface, the reduction of the induced field must

https://www.navy.mil/view_image.asp?id=244756
https://news.navy.gov.au/en/Sep2013/Fleet/413/HMAS-Melbourne-makes-amend-of-her-magnetic-ways.htm


1.3. Signature measurements 3

be carried out actively. The degaussing process seeks to create an equal, but opposite magnetic field
with respect to the induced magnetic field and the remainder of the perm. The superposition of the two
fields, ideally results in a net zero field making the ship ‘magnetically invisible’.

The system exists of current loops in the ship, that can cancel the induced magnetic field and the
remaining perm when powered correctly. Three different types of coils can be discerned: the M-, A- and
L-coils [5, p. 43-48]. Each coil is actually made of smaller loops, enabling more precise cancellation of
the magnetisation due to local irregularities. The M-loops can compensate the vertical component of
the induced magnetic field. The A- and L-loops cancel out the athwart and longitudinal components.

1.3. Signature measurements
To check whether the degaussing system is working properly, measurements of the magnetic field
around a vessel need to be taken. Usually, this is done by moving the ship over a sensor array or
having the ship in-place over a grid of sensors on the seabed [5, p. 49]. If a linear array is chosen, the
time series data are translated to a spatial pattern. This method is expensive, because a permanent
setup is required. The alternative of these permanent installations is the use of temporarily placed
sensors. Some implementations of this method require divers to place the sensors and calibration of
the range itself before any measurements can be taken. Other systems still require specifically trained
crew members and the calibration. This method is therefore quite time consuming: it may take two
days to set up and one day to dissemble [7, p. 4].

A more cost-effective method has been proposed [8]: taking measurements of the magnetic field
with a drone above the ship. Translation of the magnetic field measurements to underneath the ship is
needed as an additional step to make conclusions about the current perm and the effectiveness of the
degaussing system.

The main advantages of the use of drones include that drones are easily deployed, which reduces
time spent on these measurements, and that this system is portable. Drones would make a brief check
of a ship’s perm a possibility, only necessitating the need to return to a deperming facility when needed.
If the ship is at rest, a drone could be launched to take measurements of the magnetic field around the
ship. With the use of positioning systems such as GPS, accelerometers and gyroscopes, an image
of the field around the ship can be created. Moreover, the possibility of calibration of the degaussing
system and an increased ability to assess the mine risk during a mission, make this a very attractive
alternative.

1.4. Research aim
In this thesis, the possibility of the use of drones in the magnetic ranging process will be explored. The
main research aim is to conclude to the possibilities and limitations of magnetic ranging with drones.
To this end, three questions are formulated:

• What are the relevant aspects that come into play when magnetic ranging is performed by a
drone?
Answering this question entails investigating the usual magnetic ranging process and exploring
the differences when ranging is not performed below, but above the source. These include errors
due to positioning and the magnetic field of the drone itself.

• How can these aspects be implemented into a model?
To answer this question, a prediction model of the magnetic field underneath ships will be devel-
oped. The input will constitute field measurements performed in the region accessible to drones.
The quality of the prediction model will be investigated by applying the model to different simula-
tions of measurement data, since currently no publicly accessible data sets exist.

• What are the dependencies of the model’s performance?
An analysis on the model is performed to investigate its sensitivity to the noise level on the inputs
and to offsets in certain parameters.



4 1. Introduction

In Chapter 2, the relevant magnetostatic theory and the prolate spheroidal coordinate system and its
harmonic functions are discussed. The definition of the forward problem is formulated in Chapter 3. In
4, the inverse problem is defined and the conditions for the well-posedness of the problem are explored.
The problem at hand will turn out to be linear to a certain extent, opening up the possibility for the use
of regression methods and the regularisation thereof. These methods are discussed in Chapter 5. In
Chapter 6, the optimisation of the hyperparameters used in the regression are discussed. Chapter 7
treats the selection of the optimal model from models developed in earlier Chapters. The acquired
knowledge from the previous Chapters is combined in Chapter 8, where the complete model design
and implementation is discussed, with some analysis methods. The simulation of the test data is
discussed in Chapter 9. The results are presented in Chapter 10. The discussion of the results and
the conclusions are given in Chapters 11 and 12.



2
Magnetostatics

To understand the observed magnetic field caused by the magnetisation of a ship, the theory of mag-
netism must first be discussed. The theory described in the following, was largely based on [1]. Even
though virtually everyone is familiar with the basic concept of magnetism, the underlying principles and
theories are not as easily understood. Magnetic fields cannot be seen by the naked eye, smelled or
tasted. It is the interaction with materials that provide an opening into discovering its secrets.

2.1. Magnetic theory
The magnetic field and its electric counterpart interact with electrically charged particles. This interac-
tion is captured by the electromagnetic force, or Lorentz force [1, p. 212]:

F = 𝑞E+ 𝑞v × B,

where F [N] is the force vector, 𝑞 [C] is the charge of the particle, E [N/C] is the electric field vector,
v [m/s] is the velocity vector and B [T] is the magnetic field vector.

Contrary to stationary charges, moving charges produce not only an electric field E, but also a
magnetic field B [1]. These magnetic fields are, together with electric fields, governed by Maxwell’s
equations:

∇ ⋅ E = 𝜌
𝜖ኺ
, (Gauss’ law)

∇ ⋅ B = 0, (Gauss’ law for magnetism)

∇ × E = −𝜕B𝜕𝑡 , (Faraday’s law)

∇ × B = 𝜇ኺJ+ 𝜇ኺ𝜖ኺ
𝜕E
𝜕𝑡 . (Ampère’s law)

Here 𝜌 [C/mኽ] is the charge density, 𝜖ኺ [C/Nmኼ] is the permittivity of vacuum, J [A/mኼ] is the total current
density and 𝜇ኺ [N/Aኼ] is the permeability of vacuum .

Ampère’s law unveils the sources of the magnetic field: current densities and changing electric fields.
This explains a magnetic field arising from a current loop, but the field generated by a permanent
magnet is not as easily related to this law since there are no changing electric fields and no apparent
currents. However, when a magnetic material is investigated at an atomic level, minuscule currents
are discovered: electrons orbiting around atoms and showing a spin. These bound electrons generate

5



6 2. Magnetostatics

a magnetic field. When oriented randomly, the resulting fields cancel out, but when all electrons are
aligned, such as in a permanent magnet, a permanent magnetic field arises.

The magnetic moment m [Amኼ] is introduced to describe the orientation and magnitude of the
magnetic field originating from objects (e.g. current loops, molecules, planet cores). This quantity is
often referred to as the magnetic dipole moment, because for large distances from the source or a
sufficiently small source, the dipole moment is the dominant term. In other circumstances, more terms
are needed to describe the magnetic field accurately [1, p. 254].

A magnetic dipole is an infinitesimally small current loop or a north and south pole infinitesimally
close together. On a macro scale, electrons orbiting atoms are approximate magnetic dipoles. The
alignment of magnetic moments is described with the magnetisation M [A/m], which is the magnetic
dipole moment per unit volume. The relation to the bound current is given by

J = ∇ ×M.

The remainder of the currents, the free current J፟, is actually what is experimentally controllable.
The magnetic field due to the free current is described with the auxiliary field H [A/mኼ]. It is defined as

H ≡ 1
𝜇ኺ
B−M. (2.1)

As it turns out, for most materials (para- and diamagnetic but not ferromagnetic materials) the magneti-
sation is proportional to the magnetic field:

M = 𝜒፦H,

where 𝜒፦ is the dimensionless quantity denotes the magnetic susceptibility. It then follows that in a
material with magnetic susceptibility 𝜒፦ the relation between the magnetic and auxiliary field is given
by

B = 𝜇ኺ(1 + 𝜒፦)H = 𝜇H, (2.2)

where 𝜇 is called the permeability of the material. For magnetic fields outside of magnetic materials,
this expression can be simplied to

B = 𝜇ኺH. (2.3)

This expression is valid for the remainder of this thesis.
For the sake of consistency and clarity, it is noted that in the literature both the B-field and theH-field

are often referred to as themagnetic field. In this thesis, the nomenclature of [1] is followed: the B-field
is referred to as the magnetic field and the H-field is referred to as the auxiliary field.

The magnetic field of a magnetised object can be analysed using a multipole expansion. The total field
is then considered to be a sum of different components: the multipole terms. The first four multipole
terms are the monopole, dipole, quadrupole and the octopole. The magnetic monopole has so far not
been observed, but would be an isolated north or south pole. The dipole is already described above.
From the description of the monopole, it can be seen that a dipole is a combination of two monopoles
of different sign. This method of construction is followed for higher order multipoles: a quadrupole is
a combination of two dipoles oriented oppositely and an octopole is constructed of two quadrupoles in
the same manner.

This analysis method is especially useful when the magnetic field is described using potentials,
which is the focus of Section 2.2. Each multipole term can then be described using harmonic functions.
This is a central concept in this thesis and is explored in Section 2.3.
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2.2. Derivation of scalar potential
In the mathematical analysis of the problem, it is preferable to use a scalar potential as opposed to a
vector potential. This preference is due to the apparent ease of dealing with scalars contrary to dealing
with vectors. The scalar potential is used as a step in the calculation of the auxiliary field, which, as
a more elegant quantity to work with, simplifies some calculations. However, it is important to note
that the scalar potential can only be used under certain strict conditions, which will be discussed in this
section.

As discussed in Chapter 1, this thesis will be limited to the contribution of the ferromagnetism in-
duced by the Earth’s magnetic field to the magnetic signature. Since the Earth’s magnetic field can be
considered locally uniform, the induced magnetic field will be regarded as time-invariant for the purpose
of this thesis. Therefore, the problem is studied within the realm of magnetostatics. Here, the terms in
the Maxwell equations with time derivatives are eliminated.

Moreover, the principle of superposition can be applied to electromagnetic fields due to the linearity
of the Maxwell equations. This principle dictates that any two fields, say Bኻ andBኼ, that obey Maxwell’s
equations, can be summed and the resulting field B = Bኻ+Bኼ also obeys Maxwell’s equations. Under
this principle, the magnetic field around ships can be decomposed into the Earth’s magnetic field and
the induced magnetic field. So from now on, the induced magnetic and auxiliary fields are simply
referred to as the magnetic and auxiliary fields. All in all, the set of partial differential equations we are
concerned with is reduced to:

∇ ⋅ B = 0, (2.4)
∇ × B = 𝜇ኺJ. (2.5)

In the region where these equations will be evaluated, there are no free currents. If the total current
density J is then written as the sum of the bound currents J and free currents J፟, (2.5) can be written
as

∇ × B = 𝜇ኺJ + 𝜇ኺJ፟ = 𝜇ኺ∇ ×M+ 𝜇ኺJ፟ . (2.6)

Finally, since the auxiliary field and magnetic field will be evaluated in regions without free currents, it
follows that

∇ ×H = ∇ × ( B𝜇ኺ
−M) = J፟ = 0.

By applying Stokes’ theorem, it is noted that for any given surface 𝑆 without free currents,

0 = ∫
ፒ
(∇ ×H) ⋅ n̂𝑑𝑠 = ∫

Ꭷፒ
H ⋅ 𝑑l,

which implies that H is a conservative vector field in the absence of free charges. Therefore, H can be
expressed as the gradient of a scalar potential Ψ:

H = −∇Ψ. (2.7)

The divergence of H then yields:

∇ኼΨ = −∇ ⋅H = ∇ ⋅M− ∇ ⋅ B𝜇ኺ
= ∇ ⋅M, (2.8)

where both the definition of H from (2.1) and Gauss’ law for magnetism from (2.4) were used. The
result is Poisson’s equation with source term ∇⋅M. This formulation of Ψ is reminiscent of the definition
of the electric potential 𝑉 [1, p. 84]:

∇ኼ𝑉 = −𝜌/𝜖ኺ.
Here, 𝜌 is the charge density as in (2.4). Analogously, we could introduce magnetic charge density
𝜌፦ [T/m]:

𝜌፦ = −∇ ⋅M.
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Then, (2.8) would read:
∇ኼΨ = −𝜌፦ .

Even though magnetic charges are not thought to be physical, magnetic charges can help to interpret
multipoles as was done in the previous section.

Outside magnetised materials the magnetisation is equal to zero so the Laplace equation is ob-
tained:

∇ኼΨ = 0. (2.9)

The scalar potential Ψ fully defines the magnetic field, because the auxiliary field can be related to the
magnetic field with (2.3) The goal is now to find those functions Ψ(𝑥, 𝑦, 𝑧), such that an expression of
the magnetic field can be given.

2.3. Prolate spheroidal harmonic expansion
2.3.1. Prolate spheroidal coordinates
The scalar potential Ψ must satisfy the Laplace equation in (2.9). Solutions of the Laplace equation
are called harmonic functions, so Ψ can be represented by harmonic functions outside magnetised
materials. An analytic expression of the scalar potential can therefore be found for a volume outside a
ship.

Since the geometry of ships can be approximated with an ellipsoid, because of their ‘cigar’ shape,
the natural choice of coordinate system is the prolate spheroidal system. Prolate spheroidal coordinates
produce ellipsoidal surfaces and this system has an orthogonal set of solutions for the Laplace equation
(2.9) as will be discussed in the next subsection. Therefore, if a ship is placed in an ellipsoid, the
magnetic field can be modelled outside of this ellipsoid. To express the scalar potential in the largest
possible volume, and therefore as close to the ship as possible, this ellipsoid must be the smallest
surface enclosing the ship.

The transformation to cartesian coordinates (𝜉, 𝜂, 𝜙) ⟶ (𝑥, 𝑦, 𝑧) from [9] is used. It is given by

𝑥 = 𝐿𝜉𝜂, (2.10a)

𝑦 = 𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ) cos𝜙, (2.10b)

𝑧 = 𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ) sin𝜙, (2.10c)
with 𝐿 > 0, 𝜉 ≥ 1, −1 ≤ 𝜂 < 1 and 0 ≤ 𝜙 < 2𝜋.

The focal length of the system is 2𝐿. For sufficiently large 𝜉, the ellipsoidal surface described by the
coordinates approaches a sphere. This behaviour is useful since for sufficiently large distances a
magnetic source can be approximated as a point source and the shape matters less.

The transformation from cartesian coordinates to the prolate spheroidal system for a given value of
𝐿 is given by

𝜉 = 𝑟ዅ + 𝑟ዄ
2𝐿 = √(𝑥 + 𝐿)ኼ + 𝑦ኼ + 𝑧ኼ +√(𝑥 − 𝐿)ኼ + 𝑦ኼ + 𝑧ኼ

2𝐿 , (2.11a)

𝜂 = 𝑟ዅ − 𝑟ዄ
2𝐿 = √(𝑥 + 𝐿)ኼ + 𝑦ኼ + 𝑧ኼ −√(𝑥 − 𝐿)ኼ + 𝑦ኼ + 𝑧ኼ

2𝐿 , (2.11b)

𝜙 = Arg(𝑦 + 𝑖𝑧). (2.11c)

Here, 𝑟ዅ and 𝑟ዄ are the distances from the foci located on the negative and positive 𝑥-axis respectively
and Arg(𝑦 + 𝑖𝑧) gives the principle angle between the 𝑦- and 𝑧-coordinate.

A visualisation of prolate spheroidal coordinates is given in Fig. 2.1. For 𝐿 = 5 m, two surfaces
are plotted: one for 𝜉 = 1.5 and one for 𝜂 = 0.5. It is noted that it is common practice to orient the
coordinate system in the context of magnetic ranging such that the horizontal plane at 𝑧 = 0 mcoincides
with the water surface and such that the positive 𝑧-axis points into the water. This makes no difference
mathematically.
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Figure 2.1: Visualisation of prolate spheroidal coordinates with ፋ   m. The blue surface is described by (ኻ., ᎔, Ꭻ) and the
orange surface by (, ኺ., Ꭻ) and the path drawn in dark blue ends at the point (ኻ., ኺ., ኺ.).

To find the divergence and Laplacian of the scalar potential, these two operators need to be expressed
in the prolate spheroidal coordinates defined above. Prolate spheroidal coordinates are a type of curvi-
linear coordinates, which means that the general procedure of finding the necessary expression of the
needed operators from [1] can be followed. The gradient of a function 𝑓 is given by

∇𝑓 = 1
ℎ
𝜕𝑓
𝜕𝜉 �̂�𝜉𝜉 +

1
ℎ᎔
𝜕𝑓
𝜕𝜂�̂�𝜂𝜂 +

1
ℎᎫ
𝜕𝑓
𝜕𝜙�̂�𝜙𝜙,

where ℎ፮ and û denote the scale factor and the unit vector for a coordinate 𝑢, respectively. The position
vector r is given by

r = 𝐿(
𝜉𝜂

√(𝜉ኼ − 1)(1 − 𝜂ኼ) cos𝜙
√(𝜉ኼ − 1)(1 − 𝜂ኼ) sin𝜙

)

and its derivative with respect to a coordinate 𝑢 has length magnitude ℎ፮ and direction û. So from the
partial derivatives of r with respect to each coordinate

𝜕r
𝜕𝜉 = 𝐿

⎛
⎜

⎝

𝜂
𝜉√ኻዅ᎔Ꮄ

Ꮄዅኻ cos𝜙

𝜉√ኻዅ᎔Ꮄ
Ꮄዅኻ sin𝜙

⎞
⎟

⎠

, 𝜕r
𝜕𝜂 = 𝐿

⎛
⎜

⎝

𝜉
−𝜂√ Ꮄዅኻ

ኻዅ᎔Ꮄ cos𝜙

−𝜂√ Ꮄዅኻ
ኻዅ᎔Ꮄ sin𝜙

⎞
⎟

⎠

, 𝜕r
𝜕𝜙 = 𝐿√(𝜉

ኼ − 1)(1 − 𝜂ኼ) (
0

− sin𝜙
cos𝜙

) ,

the scale factors and unit vectors are obtained:

ℎ = 𝐿√𝜂ኼ +
𝜉ኼ(1 − 𝜂ኼ)
𝜉ኼ − 1 = 𝐿√𝜉

ኼ − 𝜂ኼ
𝜉ኼ − 1 , �̂�𝜉𝜉 = √ 𝜉

ኼ − 1
𝜉ኼ − 𝜂ኼ

⎛
⎜

⎝

𝜂
𝜉√ኻዅ᎔Ꮄ

Ꮄዅኻ cos𝜙

𝜉√ኻዅ᎔Ꮄ
Ꮄዅኻ sin𝜙

⎞
⎟

⎠

=
⎛
⎜⎜

⎝

𝜂√ Ꮄዅኻ
Ꮄዅ᎔Ꮄ

𝜉√ ኻዅ᎔Ꮄ
Ꮄዅ᎔Ꮄ cos𝜙

𝜉√ ኻዅ᎔Ꮄ
Ꮄዅ᎔Ꮄ sin𝜙

⎞
⎟⎟

⎠

;
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ℎ᎔ = 𝐿√𝜉ኼ +
𝜂(𝜉ኼ − 1)
1 − 𝜂ኼ = 𝐿√𝜉

ኼ − 𝜂ኼ
1 − 𝜂ኼ , �̂�𝜂𝜂 = √ 1 − 𝜂

ኼ

𝜉ኼ − 𝜂ኼ
⎛
⎜

⎝

𝜉
−𝜂√ Ꮄዅኻ

ኻዅ᎔Ꮄ cos𝜙

−𝜂√ Ꮄዅኻ
ኻዅ᎔Ꮄ sin𝜙

⎞
⎟

⎠

=
⎛
⎜⎜

⎝

𝜉√ ኻዅ᎔Ꮄ
Ꮄዅ᎔Ꮄ

−𝜂√ Ꮄዅኻ
Ꮄዅ᎔Ꮄ cos𝜙

−𝜂√ Ꮄዅኻ
Ꮄዅ᎔Ꮄ sin𝜙

⎞
⎟⎟

⎠

;

ℎᎫ = 𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ), �̂�𝜙𝜙 = (
0

− sin𝜙
cos𝜙

) .

The gradient of a function 𝑓 in prolate spheroidal coordinates is then given by

∇𝑓 = 1
𝐿 (�̂�𝜉𝜉

√ 𝜉
ኼ − 1
𝜉ኼ − 𝜂ኼ

𝜕𝑓
𝜕𝜉 + �̂�𝜂𝜂

√ 1 − 𝜂
ኼ

𝜉ኼ − 𝜂ኼ
𝜕𝑓
𝜕𝜂 + �̂�𝜙𝜙

1
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜕𝑓
𝜕𝜙) .

The Laplacian of a function 𝑓 is given by

∇ኼ𝑓 = 1
ℎℎ᎔ℎᎫ

[ 𝜕𝜕𝜉 (
ℎ᎔ℎᎫ
ℎ

𝜕𝑓
𝜕𝜉 ) +

𝜕
𝜕𝜂 (

ℎℎᎫ
ℎ᎔

𝜕𝑓
𝜕𝜂) +

𝜕
𝜕𝜙 (

ℎℎ᎔
ℎᎫ

𝜕𝑓
𝜕𝜙)]

= 1
𝐿ኼ(𝜉ኼ − 𝜂ኼ) [

𝜕
𝜕𝜉 ((𝜉

ኼ − 1)𝜕𝑓𝜕𝜉 ) +
𝜕
𝜕𝜂 ((1 − 𝜂

ኼ)𝜕𝑓𝜕𝜂) +
𝜕
𝜕𝜙 (

𝜉ኼ − 𝜂ኼ
(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜕𝑓
𝜕𝜙)] (2.12)

2.3.2. Prolate spheroidal harmonics
The method of separation of variables will be applied to find the solution Ψ to the Laplace equation
(2.9) in prolate spheroidal coordinates (𝜉, 𝜂, 𝜙). This method requires the partial differential equation to
be linear and homogeneous with linear homogeneous boundary conditions.

The partial differential equation (PDE) in (2.9) expressed in prolate spheroidal coordinates using
the expression of the Laplacian in (2.12) is given by

0 = 1
𝐿ኼ(𝜉ኼ − 𝜂ኼ) [

𝜕
𝜕𝜉 ((𝜉

ኼ − 1)𝜕Ψ𝜕𝜉 ) +
𝜕
𝜕𝜂 ((1 − 𝜂

ኼ)𝜕Ψ𝜕𝜂 ) +
𝜕
𝜕𝜙 (

𝜉ኼ − 𝜂ኼ
(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜕Ψ
𝜕𝜙)] . (2.13)

This PDE is clearly linear in Ψ and homogeneous, which follows from the linearity of the partial deriva-
tives and the lack of constant terms.

The boundary conditions have not been explicitly stated yet. Firstly, for a large distance from the
origin, it is required that the potential goes to zero. At a large distance from the origin, 𝐿 is relatively
small compared to 𝑥, 𝑦 and 𝑧, so from (2.11a) it follows that 𝜉 → ∞ with increasing distance from the
origin. The corresponding boundary condition is given in (BC1).

Also, the scalar potential is periodic in 𝜙 with period 2𝜋, because a rotation of the system of coor-
dinates over 2𝜋 gives the original system. In other words, the scalar potential translated over a value
𝑘 ⋅2𝜋 in the 𝜙-coordinate must result in the same function value, where 𝑘 can be any integer. This peri-
odicity condition is formulated in (BC2). Furthermore, for physical reason it required that Ψ is bounded
for 𝜉 > 1.

The boundary conditions for (2.13) are as follows:

Ψ → 0 as 𝜉 → ∞; (BC1)
Ψ(𝜉, 𝜂, 𝜙) = Ψ(𝜉, 𝜂, 𝜙 + 𝑘 ⋅ 2𝜋) 𝑘 ∈ ℤ. (BC2)

The conditions for separation of variables are thus satisfied.
The following substitution is made in (2.13):

Ψ(𝜉, 𝜂, 𝜙) = Ξ(𝜉)Η(𝜂)Φ(𝜙). (2.14)
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Next, after dividing the result of the substitution by Ψ, the partial differential equation to solve reads

1
Ξ
d
d𝜉 ((𝜉

ኼ − 1)dΞ
d𝜉 ) +

1
Η
d
d𝜂 ((1 − 𝜂

ኼ)dΗ
d𝜂 ) +

𝜉ኼ − 𝜂ኼ
(𝜉ኼ − 1)(1 − 𝜂ኼ)

1
Φ
dኼΦ
d𝜙ኼ = 0

(𝜉ኼ − 1)(1 − 𝜂ኼ)
𝜉ኼ − 𝜂ኼ [1Ξ

d
d𝜉 ((𝜉

ኼ − 1)dΞ
d𝜉 ) +

1
Η
d
d𝜂 ((1 − 𝜂

ኼ)dΗ
d𝜂 )] = −

1
Φ
dኼΦ
d𝜙ኼ = 𝜆.

The differential equation
dኼΦ
d𝜙ኼ = −𝜆Φ

is investigated first. To have physical meaning, Φ is assumed to be a real function, so 𝜆 is assumed to
be real too. If 𝜆 < 0, then Φ(𝜙) = 𝐴᎘e√ዅ᎘Ꭻ+𝐵᎘eዅ√ዅ᎘Ꭻ solves the differential equation. However, since
Ψmust be periodic in 𝜙, Φmust be too. Only the trivial solution where 𝐴 = 𝐵 = 0 solves the differential
equation when 𝜆 < 0.

For 𝜆 = 0, the solution takes the form Φ(𝜙) = 𝐴᎘𝜙 + 𝐵᎘. Again, 𝐴᎘ = 0 because of the period-
icity, but 𝐵᎘ can take any value. Finally, if 𝜆 > 0, the differential equation has a solution of the form
Φ(𝜙) = 𝐴᎘ sin(√𝜆𝜙)+𝐵᎘ cos(√𝜆𝜙). It is noted that this solution is also valid if 𝜆 = 0, since sin(0) = 0
and cos(0) = 1. The imposed periodicity condition requires that √𝜆 ∈ ℤ, since the sine and cosine
functions are periodic with period 2𝜋 so the scaling factor √𝜆 over 𝜙 must be by an integer. The value
√𝜆 is then written as √𝜆 = 𝑚. It follows that

Φ(𝜙) = 𝑠፦፧ sin𝑚𝜙 + 𝑐፦፧ cos𝑚𝜙.

The use of the superscripts and subscripts will become apparent later.
The inverse of the prefactor in the left-hand side of the partial differential equation can be rewritten

as Ꮄዅ᎔Ꮄ
(Ꮄዅኻ)(ኻዅ᎔Ꮄ) =

ኻ
Ꮄዅኻ +

ኻ
ኻዅ᎔Ꮄ . The radial and azimuthal part of the differential equation can now be

separated as follows:

1
Ξ
d
d𝜉 ((𝜉

ኼ − 1)dΞ
d𝜉 ) −

𝑚ኼ
𝜉ኼ − 1 = −

1
Η
d
d𝜂 ((1 − 𝜂

ኼ)dΗ
d𝜂 ) +

𝑚ኼ
1 − 𝜂ኼ = 𝜈,

which results in the following two differential equations:

(1 − 𝜉ኼ)d
ኼΞ
d𝜉ኼ − 2𝜉

dΞ
d𝜉 + (𝜈 −

𝑚ኼ
1 − 𝜉ኼ)Ξ = 0, and

(1 − 𝜂ኼ)d
ኼΗ
d𝜂ኼ − 2𝜂

dΗ
d𝜂 + (𝜈 −

𝑚ኼ
1 − 𝜂ኼ)Η = 0.

These are both Legendre equations which are only stable if 𝑣 is of the form 𝑛(𝑛 + 1) [10, p. 338-339].
Legendre equations have solutions P፦፧ and Q፦፧ , the associated Legendre functions of the first and
second kind respectively of the 𝑛-th degree and 𝑚-th order [9, p. 322].

The Legendre equation has singular points at ±1. The associated Legendre function P፦፧ (𝑥) of
the first kind is bounded on the interval 𝑥 ∈ [−1, 1], while the associated Legendre function of the
second kind Q፦፧ (𝑥) is unbounded at 𝑥 = ±1. Using the definition from [9, p. 322], P፦፧ (𝑥) is defined for
|1 − 𝑥ኼ| < 2 and Q፦፧ (𝑥) for |𝑥| > 1. The associated Legendre functions of the first and second kind
are used as the azimuthal and radial functions from (2.14), respectively.

Now that the appropriate functions have been found, the scalar potential can be expressed as
follows:

Ψ =
ጼ

∑
፧ኻ

፧

∑
፦ኺ

Q፦፧ (𝜉)P፦፧ (𝜂) [𝑐፦፧ cos(𝑚𝜙) + 𝑠፦፧ sin(𝑚𝜙)] . (2.15)

The coefficients 𝑐፦፧ and 𝑠፦፧ are the multipole expansion coefficients for each degree and order. The
zeroth degree relates to the monopole term, the first degree to the dipole term, etc. The orders relate
to the orientation of each multipole.
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Note that all 𝑠ኺ፦ are multiplied by 0 since sin𝑚𝜙 = 0 for 𝑚 = 0. Moreover, 𝑐ኺኺ represents the
magnetic monopole, which has not been found in nature [1, p. 253]. Therefore, the sum over 𝑛 begins
at 𝑛 = 1.

An expression for the magnetic field B in terms of the multipole coefficients 𝑐፦፧ and 𝑠፦፧ can be found
by substituting the expression of the scalar potential Ψ given in (2.15) in (2.7). This gives

B = 𝜇ኺH =−
𝜇ኺ
ℎ
𝜕Ψ
𝜕𝜉 �̂�𝜉𝜉 −

𝜇ኺ
ℎ᎔
𝜕Ψ
𝜕𝜂 �̂�𝜂𝜂 −

𝜇ኺ
ℎᎫ
𝜕Ψ
𝜕𝜙�̂�𝜙𝜙

= − 𝜇ኺ
�̂�𝜉𝜉
𝐿
√ 𝜉

ኼ − 1
𝜉ኼ − 𝜂ኼ

ጼ

∑
፧ኻ

፧

∑
፦ኺ

Qᖣ፦፧ (𝜉)P፦፧ (𝜂) [𝑐፦፧ cos(𝑚𝜙) + 𝑠፦፧ sin(𝑚𝜙)]

− 𝜇ኺ
�̂�𝜂𝜂
𝐿
√ 1 − 𝜂

ኼ

𝜉ኼ − 𝜂ኼ
ጼ

∑
፧ኻ

፧

∑
፦ኺ

Q፦፧ (𝜉)Pᖣ
፦
፧ (𝜂) [𝑐፦፧ cos(𝑚𝜙) + 𝑠፦፧ sin(𝑚𝜙)] (2.16)

− 𝜇ኺ
�̂�𝜙𝜙
𝐿

1
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

ጼ

∑
፧ኻ

፧

∑
፦ኺ

𝑚Q፦፧ (𝜉)P፦፧ (𝜂) [𝑠፦፧ cos(𝑚𝜙) − 𝑐፦፧ sin(𝑚𝜙)] .

.



3
Forward Problem

In the previous chapter, the theoretical basis for the model was developed. The relevant magnetostatic
theory and the prolate spheroidal coordinate system were investigated and expressions for the mag-
netic field and scalar potential in terms of prolate spheroidal harmonics were found. In this Chapter,
the exact problem is formulated.

The research aim is to create a prediction model of the magnetic field underneath a source, based
on field measurements above the source. The model will be split in two parts. Firstly, the magnetic
source will be described based on the set of field measurements. The field underneath the ship will
then be predicted based on the description of the magnetic source.

Interestingly, the two steps are each others’ inverses: the first step takes field measurements and
produces a description of the source, while the second step uses a description of the source to predict
the magnetic field. These two will be called the forward and inverse problems.

3.1. Scalar potential
In the forward direction, the objective is to find the magnetic field vector from a known magnetic source
at either one location or at a set of locations. One of the assumptions made in section 2.2 was that in
the evaluated region no free currents exist. This means that the set of positions for which the field will
be predicted, cannot contain positions that contain free currents and thus lie outside the encapsulating
ellipsoid.

In Chapter 2 it was shown that any magnetic source inside an ellipsoid can be represented outside
the ellipsoid by the complete set of multipole coefficients 𝑐፦፧ and 𝑠፦፧ . Since the far-field is adequately
described by lower order terms, a sufficiently precise prediction may be achieved by terminating the
infinite sum. The sum over the Legendre functions from (2.15) is terminated at degree 𝑛 = 𝑁 and the
order may not exceed 𝑚 = 𝑀. Since the largest order must also be lesser than or equal to the degree
𝑛, the order𝑚 can take values𝑚 = 0,… ,min(𝑛,𝑀). The terminated scalar potential Ψፍ,ፌ is thus given
by

Ψፍ,ፌ(𝜉, 𝜂, 𝜙) =
ፍ

∑
፧ኺ

min(፧,ፌ)

∑
፦ኺ

Q፦፧ (𝜉)P፦፧ (𝜂) [𝑐፦፧ cos(𝑚𝜙) + 𝑠፦፧ sin(𝑚𝜙)] . (3.1)

The predicted scalar potential at a certain point (𝜉, 𝜂, 𝜙) is a linear combination of the multipole
terms weighted with the coefficients. The forward problem is therefore linear in the coefficients 𝑐፦፧ and
𝑠፦፧ , and for 𝐽 observations we can formulate the problem in matrix form:

ΨΨΨፉፍ,ፌ = Aጕ𝛽𝛽𝛽ፍ,ፌ . (3.2)

13



14 3. Forward Problem

HereΨΨΨፉፍ,ፌ is the 𝐽 × 1 vector with 𝐽 predicted observations of the scalar potential terminated at degree
𝑛 ≤ 𝑁 and order 𝑚 ≤ 𝑀.

The multipole coefficients are contained in the vector 𝛽𝛽𝛽ፍ,ፌ. As discussed in section 2.3.2, the
monopole term 𝑐ኺኺ and the terms 𝑠ኺ፧ are irrelevant for this problem and are therefore eliminated from
this vector. The vector is given by

𝛽𝛽𝛽ፍ,ፌ = (𝑐ኺኻ 𝑐ኻኻ 𝑠ኻኻ 𝑐ኺኼ 𝑐ኻኼ 𝑠ኻኼ 𝑐ኼኼ ⋯ 𝑐ፌፍ 𝑠ፌፍ )
ፓ
. (3.3)

The matrix Aጕ is the matrix with the multipole terms. For each observation Ψ፣ at (𝜉፣ , 𝜂፣ , 𝜙፣) with
𝑗 = 0,… , 𝐽 − 1, the matrix elements A፣ᑞᑟ and A፣፬ᑞᑟ as follows:

A፣ᑞᑟ = Q፦፧ (𝜉፣)P፦፧ (𝜂፣) cos(𝑚𝜙፣),

A፣፬ᑞᑟ = Q፦፧ (𝜉፣)P፦፧ (𝜂፣) sin(𝑚𝜙፣).

The matrix Aጕ is then

Aጕ =
⎛
⎜
⎜
⎜

⎝

AኺᎲᎳ
⋯ Aኺᑞᑟ Aኺ፬ᑞᑟ ⋯ Aኺᑄᑅ

Aኺ፬ᑄᑅ
⋮ ⋮ ⋮ ⋮ ⋮

A፣ᎲᎳ
⋯ A፣ᑞᑟ A፣፬ᑞᑟ ⋯ A፣ᑄᑅ

A፣፬ᑄᑅ
⋮ ⋮ ⋮ ⋮ ⋮

AፉዅኻᎲᎳ
⋯ Aፉዅኻᑞᑟ

Aፉዅኻ፬ᑞᑟ
⋯ Aፉዅኻᑄᑅ

Aፉዅኻ፬ᑄᑅ

⎞
⎟
⎟
⎟

⎠

. (3.4)

The matrix has 𝐽 rows. If 𝑁 ≤ 𝑀, then the termination of the sum at order 𝑀 is inconsequential.
Each degree 𝑛 that is evaluated before termination, has a term with coefficient 𝑐ኺ፧ and for each order
0 < 𝑚 ≤ 𝑛, the terms with coefficients 𝑐፦፧ and 𝑠፦፧ are added to the sum. The total number of coefficients
is then given by ∑ፍ፧ኻ(2𝑛+1) = 𝑁(𝑁+2). If 𝑁 > 𝑀, then for every degree 𝑛 that is larger than𝑀, only
2𝑀+1 coefficients are added, totalling𝑀(𝑀+2)+(2𝑀+1)(𝑁−𝑀) = −𝑀ኼ+2𝑁𝑀+𝑁+𝑀. The total
number of coefficients 𝑘 is given by

𝑘 = {𝑁(𝑁 + 2), 𝑁 ≤ 𝑀
−𝑀ኼ + 2𝑁𝑀 +𝑁 +𝑀, 𝑁 > 𝑀

. (3.5)

The matrix Aጕ is therefore a 𝐽 × 𝑘-matrix.

3.2. Magnetic field
The same procedure can be followed for themagnetic fieldB. The terminated prediction of themagnetic
field is given by

Bፍ,ፌ =− 𝜇ኺ
�̂�𝜉𝜉
𝐿
√ 𝜉

ኼ − 1
𝜉ኼ − 𝜂ኼ

ፍ

∑
፧ኺ

min(፧,ፌ)

∑
፦ኺ

Qᖣ፦፧ (𝜉)P፦፧ (𝜂) [𝑐፦፧ cos(𝑚𝜙) + 𝑠፦፧ sin(𝑚𝜙)]

− 𝜇ኺ
�̂�𝜂𝜂
𝐿
√ 1 − 𝜂

ኼ

𝜉ኼ − 𝜂ኼ
ፍ

∑
፧ኺ

min(፧,ፌ)

∑
፦ኺ

Q፦፧ (𝜉)Pᖣ
፦
፧ (𝜂) [𝑐፦፧ cos(𝑚𝜙) + 𝑠፦፧ sin(𝑚𝜙)] (3.6)

− 𝜇ኺ
�̂�𝜙𝜙
𝐿

1
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

ፍ

∑
፧ኺ

min(፧,ፌ)

∑
፦ኺ

𝑚Q፦፧ (𝜉)P፦፧ (𝜂) [𝑠፦፧ cos(𝑚𝜙) − 𝑐፦፧ sin(𝑚𝜙)] .

However, since the B-field is a vector field, each directional component is treated as a separate obser-
vation.
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With the definition of the unit vectors, each matrix element for the cartesian directions can be cal-
culated. They are given as follows:

A፣፱,ᑞᑟ =−
𝜂፣
𝐿
𝜉ኼ − 1
𝜉ኼ − 𝜂ኼQ

ᖣ፦
፧ (𝜉፣)P፦፧ (𝜂፣) cos(𝑚𝜙፣) −

𝜉፣
𝐿
1 − 𝜂ኼ
𝜉ኼ − 𝜂ኼQ

፦
፧ (𝜉፣)Pᖣ

፦
፧ (𝜂፣) cos(𝑚𝜙፣)

A፣፱,፬ᑞᑟ =−
𝜂፣
𝐿
𝜉ኼ − 1
𝜉ኼ − 𝜂ኼQ

ᖣ፦
፧ (𝜉፣)P፦፧ (𝜂፣) sin(𝑚𝜙፣) −

𝜉፣
𝐿
1 − 𝜂ኼ
𝜉ኼ − 𝜂ኼQ

፦
፧ (𝜉፣)Pᖣ

፦
፧ (𝜂፣) sin(𝑚𝜙፣)

A፣፲,ᑞᑟ =−
𝜉፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ cos𝜙፣Qᖣ
፦
፧ (𝜉፣)P፦፧ (𝜂፣) cos(𝑚𝜙፣)

+
𝜂፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ cos𝜙፣Q፦፧ (𝜉፣)Pᖣ
፦
፧ (𝜂፣) cos(𝑚𝜙፣)

− 1
𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ)

sin𝜙፣𝑚Q፦፧ (𝜉)P፦፧ (𝜂) sin(𝑚𝜙፣)

A፣፲,፬ᑞᑟ =−
𝜉፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ cos𝜙፣Qᖣ
፦
፧ (𝜉፣)P፦፧ (𝜂፣) sin(𝑚𝜙፣)

+
𝜂፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ cos𝜙፣Q፦፧ (𝜉፣)Pᖣ
፦
፧ (𝜂፣) sin(𝑚𝜙፣)

+ 1
𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ)

sin𝜙፣𝑚Q፦፧ (𝜉)P፦፧ (𝜂) cos(𝑚𝜙፣)

A፣፳,ᑞᑟ =−
𝜉፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ sin𝜙፣Qᖣ
፦
፧ (𝜉፣)P፦፧ (𝜂፣) cos(𝑚𝜙፣)

+
𝜂፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ sin𝜙፣Q፦፧ (𝜉፣)Pᖣ
፦
፧ (𝜂፣) cos(𝑚𝜙፣)

+ 1
𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ)

cos𝜙፣𝑚Q፦፧ (𝜉)P፦፧ (𝜂) sin(𝑚𝜙፣)

A፣፳,፬ᑞᑟ =−
𝜉፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ sin𝜙፣Qᖣ
፦
፧ (𝜉፣)P፦፧ (𝜂፣) sin(𝑚𝜙፣)

+
𝜂፣
𝐿
√(𝜉ኼ − 1)(1 − 𝜂ኼ)

𝜉ኼ − 𝜂ኼ sin𝜙፣Q፦፧ (𝜉፣)Pᖣ
፦
፧ (𝜂፣) sin(𝑚𝜙፣)

− 1
𝐿√(𝜉ኼ − 1)(1 − 𝜂ኼ)

cos𝜙፣𝑚Q፦፧ (𝜉)P፦፧ (𝜂) cos(𝑚𝜙፣).

The matrix AB is then given by

AB = 𝜇ኺ

⎛
⎜
⎜
⎜

⎝

Aኺ፱,ᎲᎳ
⋯ Aኺ፱,ᑞᑟ Aኺ፱,፬ᑞᑟ ⋯ Aኺ፱,ᑄᑅ

Aኺ፱,፬ᑄᑅ
Aኺ፲,ᎲᎳ

⋯ Aኺ፲,ᑞᑟ Aኺ፲,፬ᑞᑟ ⋯ Aኺ፲,ᑄᑅ
Aኺ፲,፬ᑄᑅ

Aኺ፳,ᎲᎳ
⋯ Aኺ፳,ᑞᑟ Aኺ፳,፬ᑞᑟ ⋯ Aኺ፳,ᑄᑅ

Aኺ፳,፬ᑄᑅ
⋮ ⋮ ⋮ ⋮ ⋮

Aፉዅኻ፳,ᎲᎳ
⋯ Aፉዅኻ፳,ᑞᑟ

Aፉዅኻ፳,፬ᑞᑟ
⋯ Aፉዅኻ፳,ᑄᑅ

Aፉዅኻ፳,፬ᑄᑅ

⎞
⎟
⎟
⎟

⎠

(3.7)

and the problem in matrix form is formulated as

Bፉፍ,ፌ = AB𝛽𝛽𝛽ፍ,ፌ . (3.8)
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The matrix AB is a 3𝐽×𝑘-matrix, where 𝑘 is given in (3.5). The vector of coefficients is the same vector
as for the forward problem for the scalar potential given in (3.3). As noted earlier, the prediction vector
Bፉፍ,ፌ is defined as

Bፉፍ,ፌ = (Bኺ፱ Bኺ፲ Bኺ፳ ⋯ B፣፱ B፣፲ B፣፳ ⋯ Bፉዅኻ፱ Bፉዅኻ፲ Bፉዅኻ፳ )
ፓ
. (3.9)

Forward problem
Given is a set of 𝐽 points (𝜉፣ , 𝜂፣ , 𝜙፣) in a prolate spheroidal coordinate system with a focal length
2𝐿 outside an ellipsoid encapsulating the source. Furthermore, the vector of specified multipole
coefficients 𝛽𝛽𝛽ፍ,ፌ is known.

Find the auxiliary field vector Bፉፍ,ፌ for the 𝐽 points as defined in (3.9) with the source specified
by 𝛽𝛽𝛽ፍ,ፌ.

The magnetic field B in a plane at 𝑧 = 15 m is visualised in Fig. 3.1 for a dipole with 𝑐ኺኻ = 1 and
all other coefficients set to 0 and 𝐿 = 50 m. Plots of other multipole configurations are included in
Appendix A in Fig. A.1 to A.5. For each configuration, each component and the magnitude of the total
field are given in a contour plot.
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Figure 3.1: Contour plot of the ፱-, ፲- and ፳-components and the field strength of the magnetic field B at ፳  ኻ m and
ዅኻኺኺ m ጾ ፱, ፲ ጾ ኻኺኺ m generated by a source with ᎲᎳ  ኻ and all other coefficients set to ኺ and ፋ  ኺ m.



4
Inverse Problem

4.1. Definition of the inverse problem
The objective of the inverse problem is to find the coefficients that describe the source adequately from
field measurements. For the purpose of generality, the coordinates at which the field measurements
are taken are given in cartesian coordinates. The extra step of finding the optimal parameters defining
a prolate spheroidal coordinate system is therefore added to the problem. These parameters are the
centre point (𝑥ኺ, 𝑦ኺ, 𝑧ኺ) and the focal length 𝐿. It is assumed that the foci of the prolate spheroidal
coordinate system are positioned on the 𝑥-axis of the cartesian coordinate system, thus there is no
parameter specifying the orientation of prolate spheroidal system needed.

The set of field measurements {B፣|𝑗 = 0,… , 𝐽 − 1} is a set of vectors. The same transformation as
in (3.9) is used such that the vector Bፉ is the vector with all field measurements as components and is
defined by

Bፉ = (Bኺ፱ Bኺ፲ Bኺ፳ ⋯ B፣፱ B፣፲ B፣፳ ⋯ Bፉዅኻ፱ Bፉዅኻ፲ Bፉዅኻ፳ )
ፓ
. (4.1)

The objective is to find an accurate representation of the source given by the vector 𝛽𝛽𝛽 containing the
set of predicted coefficients.

Moreover, since the number of coefficients describing the source is unknown, the number of coef-
ficients for which the source is adequately described by the model in the regions that are of interest
needs to be determined. For now it is assumed that the optimal number of coefficients is 𝑘, given by
(3.5) for a certain 𝑁 and 𝑀. The modelled field is then represented by B.

Inverse problem
Given is a set of 𝐽 positions (𝑥፣ , 𝑦፣ , 𝑧፣) outside an ellipsoid encapsulating the magnetic source
and a collection of magnetic field measurements B፣.

Find the parameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ and the vector 𝛽𝛽𝛽 of multipole coefficients 𝑐፧፦ and 𝑠፧፦ as
defined in (3.3).

4.2. Well-posedness
While the forward problem formulated in the previous chapter can be solved with relatively straight-
forward methods, the inverse problem cannot. The reason for this can be found in the nature of inverse
problems: only observations are known and all conditions contributing to these observations must be
found. It might, for example, not be known whether a solution exists and, if it does exist, whether it is
unique.

17
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These concepts relate to the quality of a problem, which is referred to as the well-posedness of a
problem. For any inverse problem of the form

A𝛽𝛽𝛽 = Bፉ (4.2)

where A ∈ ℝኽፉ×፤, 𝛽𝛽𝛽 ∈ ℝ፤ and Bፉ ∈ ℝኽፉ, the mathematician Hadamard qualified it to be well-posed if
[11, p. 18]:
1. the solution exists;
2. the solution in unique;
3. 𝛽𝛽𝛽። → 𝛽𝛽𝛽 if Bፉ። → Bፉ, A𝛽𝛽𝛽። = Bፉ። and A𝛽𝛽𝛽 = Bፉ.

For a linear problem such as (4.2), the first two conditions imply that the matrix A is invertible. More
generally, these first two conditions ensure that a problem has a satisfying and unambiguous solution.
The third condition is equivalent to the condition that the solution is stable. This ensures that if the
inputs are changed slightly, the outputs will not change extremely.

If one of the Hadamard conditions is not satisfied, a problem is called ill-posed. In that case, finding
the solution tends to be difficult, but additional conditions can be imposed on the problem to help
approximate the solution.

An inverse as in (4.2) can be classified as one of three cases [11, p. 4]. In the first case 3𝐽 = 𝑘.
This results in a square matrix A. If the columns of the matrix are linearly independent, the matrix is
invertible and the problem has the unique solution AዅኻBፉ. This would be the ideal case. However,
due to uncertainties in the measurement data, errors are easily propagated to the solution. Also, the
positions of measurements must be chosen such that the resulting matrix has linearly independent
columns. Otherwise, the solution is either non-existent or non-unique.

In the second case 3𝐽 > 𝑘, which gives an overdetermined system. A solution generally does not
exist, but a ‘closest’ solution might be determined. When the measurements contain errors, regression
methods (see Chapter 5) are often employed to find such a closest solution.

In the final case, the system is underdetermined (3𝐽 < 𝑘). The matrix A is then necessarily linearly
dependent and if a solution exists, it is non-unique.

The problem described in this thesis is considered ill-posed. Due to possible random errors in the
measurement data, the solution 𝛽𝛽𝛽 must be approximated for a given prolate spheroidal coordinate
system. Furthermore, the measured magnetic field might be described in different prolate spheroidal
coordinate systems, with each a different solution 𝛽𝛽𝛽. Different methods are employed to resolve the
ill-posedness.

4.3. Overview of methods
In the next chapters, the methods used to solve this inverse problem are discussed. Firstly, the regres-
sion method and regularisation is discussed in Chapter 5. This step is used to find stable solutions of
the linear system of equations from (4.2). Such a linear system requires a known number of coefficients
𝑘. However, since 𝑘 is unknown in practice, an upper bound on the largest number of coefficients is
sought in Chapter 6. Moreover, the focal length 𝐿 of the coordinate system in Section 2.3.1 is not known
a priori. These parameters are found by sampling them at random and estimating the optimal values.
This is also discussed in Chapter 6.

These methods produce a set of possible models, from which one is to be selected. This is dis-
cussed in Chapter 7. A complete overview of the incorporation of these methods into the model is given
in Chapter 8.



5
Regression Method

This chapter is concerned with the regressionmethod. Regression is an umbrella term used to refer to a
class of methods that attempt to find the relation between a dependent variable and a set of independent
variables. The dependent variable for the problem at hand is the vector of magnetic field measurements
Bፉ. The independent variables for this problem are the individual multipole fields, represented by the
elements of the matrix AB (from now on, simply referred to as A). Finally the relation between the
dependent variable and the independent variables is given by the unknown parameters, which are for
this problem the multipole coefficients 𝑐፦፧ and 𝑠፦፧ in 𝛽𝛽𝛽.

5.1. Residuals
The difference between the predicted field B̂(𝑥, 𝑦, 𝑧) and the measured field B(𝑥, 𝑦, 𝑧) at each position is
called a residual. The relation between the field measurements and the predicted multipole coefficients
is given by

Bፉ = B̂ፉ +𝜖𝜖𝜖 = A𝛽𝛽𝛽 + 𝜖𝜖𝜖. (5.1)

Here, 𝜖𝜖𝜖 is the 𝐽 × 1 vector of residuals. Each component of 𝜖𝜖𝜖 is assumed to be normally distributed
with mean 0 and standard deviation 𝜎፣. Furthermore, the residuals are assumed to be caused by two
sources: the measurement uncertainty in the field measurements and the uncertainty in the position of
the measurement.

The residuals due to the error in the field measurement are assumed to be normally distributed
with standard deviations 𝜎Bᑩ , 𝜎Bᑪ and 𝜎Bᑫ . However, as will be discussed in Chapter 9, common
magnetometers have equal noise levels for each component of the magnetic field. Therefore, it can be
assumed that 𝜎Bᑩ = 𝜎Bᑪ = 𝜎Bᑫ , which will be referred to as 𝜎B1. Then

𝜖B,ኻ, 𝜖B,ኼ, … , 𝜖B,ኽፉ
i.i.d.∼𝑁(0, 𝜎ኼB),

where 𝜖B,፣ represents the residual in the 𝑗-th element of Bፉ due to the measurement error by the mag-
netometer.

While the measurement error directly affects the measured value of the magnetic field, the positioning
error needs to be propagated to the magnetic field to see the effect: a wrong measurement of the
position causes predictions to be made for the wrong points in space. There are two different paths to
propagate the positioning error: estimation of the error caused by a wrong position through interpolation

1The standard deviation of the measurement of each component of the magnetic field B is not to be confused with the standard
deviation of the magnitude of B  (Bᑩ ,Bᑪ ,Bᑫ). The standard deviation of the magnitude is not used in this thesis.

19



20 5. Regression Method

B፱

𝑥

B፱

𝑥𝑥 + 𝛿𝑥

Bᖣ
፱

𝛿B፱

Figure 5.1: Sketch of the propagation of error ᎑፱ in the measurement of Bᑩ at position ፱ using the calculus approach. The
function Bx is given in a certain ፲፳-plane and is represented by the black line. The tangent of Bᑩ in point ፱ is represented by
the cyan line and the propagated error ᎑Bᑩ is given in orange.

of the measurements or estimation of the errors in each matrix element. The former is chosen, because
it is simpler.

An example is given to illustrate this method: instead of having measured B፱ at a certain position
with coordinate 𝑥, the measurement was performed at coordinate 𝑥+𝛿𝑥. This results in an error in the
measurement equal to

𝛿B፱ = B፱(𝑥 + 𝛿𝑥) − B፱(𝑥) ≈ 𝛿𝑥
𝜕
𝜕𝑥B፱(𝑥).

An indicative sketch of this error propagation method is given in fig. 5.1.
This method of propagation of the positional errors is called the calculus approach, which can be

used for multi-variable functions [12, p. 43]. For the 𝑗-th element of Bፉ, the residual 𝜖፣ has standard
error

𝜎ኼ፣ = 𝜎ኼ፱ (
𝜕B፣
𝜕𝑥 )

ኼ

፱ᑛ ,፲ᑛ ,፳ᑛ
+ 𝜎ኼ፲ (

𝜕B፣
𝜕𝑦 )

ኼ

፱ᑛ ,፲ᑛ ,፳ᑛ
+ 𝜎ኼ፳ (

𝜕B፣
𝜕𝑧 )

ኼ

፱ᑛ ,፲ᑛ ,፳ᑛ
+ 𝜎ኼB, (5.2)

where B፣ is either B፱, B፲ or B፳, dependent on which of these the 𝑗-th element represents.
If the measurements are performed in a grid in the 𝑥𝑦-plane with regular spacing, then the numerical

derivative can be used to find the partial derivatives in (5.2). The central difference formulae [13, p. 27]
are given by

𝜕B፣
𝜕𝑥 ≈

B፣(𝑥 + ℎ፱) − B፣(𝑥 − ℎ፱)
2ℎ , (5.3)

𝜕B፣
𝜕𝑦 ≈

B፣(𝑦 + ℎ፲) − B፣(𝑦 − ℎ፲)
2ℎ , (5.4)

where ℎ፱ and ℎ፲ are the grid spacing in their respective directions.
Since the grid does not extend into the 𝑧-direction, this method cannot be used directly to approxi-

mate the partial derivatives with respect to 𝑧. However, Maxwell’s equations can be used to find these
partial derivatives. Firstly, (2.4) produces

𝜕B፳
𝜕𝑧 = −𝜕B፱𝜕𝑥 −

𝜕B፲
𝜕𝑦 . (5.5)
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In regions without magnetised materials and free currents, (2.6) can be reduced to

∇ × B = (
𝜕B፲
𝜕𝑧 − 𝜕B፳𝜕𝑦 ) x̂− (

𝜕B፳
𝜕𝑥 − 𝜕B፱𝜕𝑧 ) ŷ− (

𝜕B፱
𝜕𝑦 −

𝜕B፲
𝜕𝑥 ) ẑ = 0.

The partial derivatives with respect 𝑧 can be obtained from the previous relation:

𝜕B፱
𝜕𝑧 = 𝜕B፳

𝜕𝑥 (5.6)

𝜕B፲
𝜕𝑧 = 𝜕B፳

𝜕𝑦 . (5.7)

The last obstacle that stands in the way of using the numerical derivatives defined above is that
the calculation would require the true magnetic field values at the given positions. This might result
in a more complex implementation of the methods in this chapter. However, it will be argued that
the numerical derivatives based on the measurements instead of the true values are a good enough
approximation. To this end, the conditions

ℎ፱ ≫ 𝜎፱ and ℎ፲ ≫ 𝜎፲

are imposed. These conditions imply that the error in the partial derivatives of the the central difference
formulae in (5.3) and (5.4) is mainly due to the size of ℎ፱ and ℎ፲ and not the error in the position of the
measurement of B.

In conclusion, the partial derivatives of each component of the magnetic field B with respect to the
cartesian coordinates can be numerically approximated from a grid of field measurements. Then, the
standard errors 𝜎ኼ፣ in each element B፣ of the vector with magnetometer measurement components Bፉ
can be calculated using (5.2).

5.2. Least squares regression
Since this problem is linear, a linear regression method can be used to find the coefficients. A very
common method is the method of ordinary least squares (OLS) which seeks to minimise the residuals
[14, p. 564-572]. The goal is to find the vector 𝛽𝛽𝛽 of given length 𝑘 for which the function

𝑆(𝛽𝛽𝛽) = ‖𝜖𝜖𝜖‖ኼ = ‖Bፉ − A𝛽𝛽𝛽‖ኼ = (Bፉ − A𝛽𝛽𝛽)ፓ (Bፉ − A𝛽𝛽𝛽)

is minimal. The function 𝑆(𝛽𝛽𝛽) is minimised by

𝛽𝛽𝛽 = (AፓA)ዅኻ AፓBፉ

provided that A has independent columns. If A is itself invertible, then (AፓA)ዅኻ Aፓ = Aዅኻ. This means
that the inverse problem is either solvable using OLS or is ill-posed.

The method of ordinary least squares is, however, too simplistic: this method is biased towards those
points with large standard errors in the residuals. By simply minimising the norm of the residuals, the
most gain can be obtained from minimising the residuals with large standard deviations, since these
tend to have larger values. A weighted least squares fit resolves this problem.

In this method, each residual is normalised as follows

̃𝜖፣ =
𝜖፣
𝜎፣
=
B፣ − B̂፣
𝜎፣

.

The objective function then becomes

𝑆(𝛽𝛽𝛽) = ‖�̃�𝜖𝜖‖ኼ = (Bፉ − A𝛽𝛽𝛽)ፓW (Bፉ − A𝛽𝛽𝛽) ,
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where the matrixW is a diagonal matrix with

W፣፣ =
1
𝜎ኼ፣
.

This matrix is referred to as the weight matrix.

The method of ordinary least squares and weighted least squares are prone to overfitting. Overfitting
can occur when some of the independent variables have no predictive relation with the dependent
variable. If more variables are fit than can actually predict the dependent variable, overfitting occurs.
This results in a smaller deviation from 0 by the residuals. Since both ordinary and weighted least
squares minimise the residuals, these methods are susceptible to overfitting.

An example of overfitting is when linearly dependent data with errors is fit to a quadratic function.
Especially for a small sample size, the coefficient describing the quadratic dependence will likely be
unequal to zero. In this example, this is a result of the errors and not of an underlying quadratic
dependence.

For the problem in this thesis, this happens inevitably: the coefficients that describe the source
are unknown and the set of independent variables will therefore necessarily contain variables with no
predictive power. The result is that the magnetic field caused by the source is well described in the
measurement points, but other points and especially points in other planes might not be well described
by the coefficients.

5.3. Regularisation
As mentioned in the previous section, a solution of any inverse problem is either ill-posed or solvable by
the method of ordinary (or weighted) least squares. Moreover, these least squares regression methods
are susceptible to overfitting. Adding new information to the problem could help solve the ill-posedness
or reduce the error due to overfitting. This process is called regularisation.

In the illustrative example of overfitting in the previous section where a quadratic function was fit on
linearly dependent data, eliminating the coefficient describing the quadratic dependence would have
resolved overfitting. This process is called variable selection and can help resolve not only overfitting
but also the ill-posedness of an underdetermined system.

For an underdetermined system, the columns of the linear operator (in matrix form) are not indepen-
dent. Therefore, the uniqueness of the solution required for well-posedness is not achieved. Variable
selection reduces the number of columns in the operator and could force uniqueness.

To do this, a regularising function 𝑅(𝛽𝛽𝛽) is added to the least squares objective function. This function
imposes extra information on the solution. The new objective function is

𝑆(𝛽𝛽𝛽) = (Bፉ − A𝛽𝛽𝛽)ፓW (Bፉ − A𝛽𝛽𝛽) + 𝛼𝑅(𝛽𝛽𝛽), (5.8)

where the hyperparameter 𝛼 ≥ 0 controls the strength of regularisation. Also, the residuals have been
weighted by matrix W. If 𝛼 = 0, then the objective function is the same as for WLS (or OLS if the
matrix W is the identity matrix). For increasing 𝛼, the regularisation function becomes increasingly
more dominant.

Usually, the regularisation function takes the form of a norm on the vector space ℝ፤. Two common
functions are the 𝐿ኻ- and the squared 𝐿ኼ-norm given by

||𝛽𝛽𝛽||ኻ =
፤ዅኻ

∑
።ኺ
|𝛽።| (5.9a) ||𝛽𝛽𝛽||ኼኼ =

፤ዅኻ

∑
።ኺ
|𝛽።|ኼ. (5.9b)

The former is called Least absolute shrinkage and selection operator (Lasso) regularisation and the
latter is referred to as ridge regularisation. Both methods penalise large fit coefficients, so both tend to
set insignificantly contributing coefficients to (approximately) zero.

However, the two methods operate slightly differently. On the one hand, ridge regularisation prefers
a model with all medium coefficients over a model with some small and some large coefficients. This
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is due to the squaring of the absolute value. On the other hand, Lasso regularisation does not favour
a small variation in coefficients and tends to set coefficients to exactly zero if they do not contribute
significantly.

The regularisation term is added to the objective function to combat overfitting, which might be
achieved by either of the two mentioned regularisation functions. Previous research has suggested
that the use of Lasso yields better results than ridge regularisation in the context of magnetic ranging
[15]. Therefore, it is chosen to use Lasso regularisation.

5.4. Least angle regression
The least angle regression method (LARS) was proposed by [16]. As it will be shown later, LARS is
a useful method to implement Lasso regularisation. LARS is a forward method for finding solutions
of linear problems. The algorithm works by building up a working solution, or current solution, until a
termination condition is reached.

Initially, all coefficients are set to zero and at each step, one coefficient is altered. The set𝒜 contains
the indices of the coefficients that have entered the solution and is called the active set.

At each step, the correlation �̂�። of the residuals of the current solution with each column aaa። in the
matrix A corresponding to coefficient 𝛽። is calculated. In this section, the matrix A is the weighted
matrix, meaning that each row 𝑗 was divided by the standard deviation 𝜎፣ of the measurement of the
𝑗-th element in Bፉ.

The vector of correlations is given by

ĉ = Aፓ (Bፉ − B̂𝒜) ,

where B̂𝒜 is the working solution, belonging to the active set𝒜. It is noted that this method normally re-
quires the matrix columns to be standardised, such that the mean of each column is 0 and the standard
deviation is 1.

However, the removal of the mean of each column is not advisable in the context of magnetic
multipoles. LARS was developed in a more statistical context, where an assumption is made that an
entire population was sampled to produce the measurements. This assumption does not hold in the
context of selective sampling of multipoles in a certain plane. Perhaps this assumption would hold if
the entire space (or maybe a symmetric region around the source) were to be sampled. Therefore, the
mean is not removed from each column, but the columns are scaled such that the standard deviation
of the elements around their mean is 0.

The matrix column with the largest correlation with the residuals is then selected and its coefficient is
increased until the new residuals have as much correlation with this column as with one of the columns
outside the active set. This second coefficient now enters the active set. At this point, instead of
continuing in the direction of just the first selected coefficient, the next direction is chosen such that
the direction is of equal angle with all columns corresponding to coefficients in the active set. This is
referred to as the least angle direction. Hence least angle regression.

At each step, a new coefficient is added to the active set and all coefficients are increased such
that the angles of the corresponding matrix columns are equiangular with the least angle direction. The
algorithm from [16, p. 413-414] is given in Algorithm 5.1. Here, the vector

u𝒜 = A𝒜w𝒜

is the equiangular vector in the active column space of unit length. The vectorw𝒜 is a vector of multipole
coefficients.

The new solution B̂𝒜ዄ is the result of adding a vector 𝜆u𝒜 to the previous solution B̂𝒜. The scalar
value 𝜆 determines the size of the multipole coefficients added in the step. The value of 𝜆 must be
chosen such that a new column becomes active. This choice is described in [16, p. 414] and is reflected
in the algorithm.
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Input: A, Bፉ
1 begin
2 𝒜 = ∅ // Active set
3 B̂∅ = 0 // Current estimate
4 while 𝒜ፂ ≠ ∅ do
5 compute ĉ = Aፓ (Bፉ − B̂𝒜) // Vector of current correlations
6 let �̂� =max።{|�̂�።|} and 𝒜 = {𝑖 ∶ |�̂�።| = �̂�} // Greatest absolute current

// correlation and corresponding set
7 for each 𝑖 ∈ 𝒜 let 𝑠። = sign{�̂�።}
8

9 A𝒜 = (⋯𝑠።aaa።⋯)።∈𝒜 // Matrix containing columns of active set

10 𝑔𝒜 = Aፓ𝒜A𝒜 and 𝐻𝒜 = (1ፓ𝒜𝑔ዅኻ𝒜 1𝒜)
ዅኻ/ኼ

, where 1𝒜 is a vector of 1’s with length |𝒜|
11 u𝒜 = A𝒜w𝒜 with w𝒜 = 𝐻𝒜𝑔ዅኻ𝒜 1𝒜
12 h = Aፓu𝒜
13 B̂𝒜ዄ = B̂𝒜 + 𝜆u𝒜 where 𝜆 =minዄ።∈𝒜ᐺ {

ፂ̂ዅ ̂ᑚ
ፇ𝒜ዅ፡ᑚ

, ፂ̂ዄ ̂ᑚ
ፇ𝒜ዄ፡ᑚ

} // Update solution

Algorithm 5.1: Least angle regression

The 𝑘-th solution is given by

B̂፤ = 𝜆ኻuኻ +⋯+ 𝜆፤u፤
= 𝜆ኻAኻwኻ +⋯+ 𝜆፤A፤w፤ .

This is equivalent adding up all vectors 𝑤። with weights 𝜆።, where elements of inactive columns are set
to 0 and then multiplying with A.

The result of this method is a set of 𝑘 + 1 solutions from each step in the process, where 𝑘 is the
total number of coefficients. The final solution is the WLS (or OLS) solution. Which of these produced
solutions should be chosen is discussed in Chapter 7.

5.5. Lasso-LARS
Under the about to be introduced Lasso modification of the original LARS algorithm, which was also
introduced by [16, p. 417], the modified algorithm yields all Lasso solutions. Therefore, a modified im-
plementation of the LARS algorithm can be used to find solutions under Lasso regularisation efficiently.

For the mathematical details, one is directed towards section 3 of [16]. Suppose that after a LARS
step the working solution B̂ is acquired and that this solution is also a Lasso solution with B̂ = A�̂�𝛽𝛽. It
can be proven that the sign of �̂�፣ is equal to the sign of �̂�፣. This not restriction is enforced in the original
LARS algorithm. If, however, this restriction is enforced, then all solutions that the modified algorithm
yields, are also Lasso solution.

The restriction is implemented in the algorithm as follows: along the path of an increasing 𝛾, if
one of the coefficients changes sign, then the current step is stopped at the value of 𝛾 where the sign
change occurs and the corresponding index is removed from the active set. The sign change would
break the restriction that the coefficients and the corresponding correlations are of equal sign, since
the correlations do not change sign within one step of the algorithm [16, p. 417].



6
Hyperparameter Optimisation

Before the previously discussed Lasso-LARS algorithm can be applied, certain parameter values must
be set. These are referred to as hyperparameters. For the Lasso-LARS process, 6 hyperparameters
are discerned: the focal length 𝐿 and the centre point (𝑥ኺ, 𝑦ኺ, 𝑧ኺ) of the prolate spheroidal coordinate
system and the termination order𝑀 and degree𝑁 in (3.6). While the values of𝑀 and𝑁 can be selected
based on the measurement setup, the focal length and centre point are more difficult to estimate.

6.1. Number of coefficients
Up until now, the problem was posed with the goal to find a vector 𝛽𝛽𝛽ፍ,ፌ of length 𝑘 defined in (3.5) by a
given maximum order𝑀 and degree𝑁. Both𝑀 and𝑁 constrain the level of detail that can be modelled.
For example, if 𝑁 = 1, then only a dipole field can be modelled from given field measurements. This
constraint raises the question of what might be the highest possible level of detail that can be modelled
given the locations of measurements (expressed in 𝑀 and 𝑁).

Finding such upper bounds𝑀ub and 𝑁ub will reduce overfitting since a limit will be put on the number
of coefficients. Also, the size of the problem will be constrained, which will reduce computation time.

Firstly, the measurement grid considered is a rectangular grid at a certain 𝑧-coordinate. The grid
is specified by the grid spacings 𝛿𝑥 and 𝛿𝑦, the number of grid points in each direction, num(𝑥) and
num(𝑦), and the bottom left coordinate of the grid (�̃�, �̃�). Fig. 6.1 shows a schematic representation
of a rectangular grid with num(𝑥) = 8 and num(𝑦) = 6.

(�̃�, �̃�) 𝛿𝑥

𝛿𝑦

Figure 6.1: Schematic representation of a rectangular measurement grid. The grid spacings ᎑፱ and ᎑፲ and the bottom left
coordinate (፱̃, ፲̃) are indicated.
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The resolution in the 𝑦-direction is related to the order 𝑚, because the scalar potential Φ, in (3.1),
is essentially a sum of sines and cosines with argument 𝑚𝜙. Sampling a harmonic function without
aliasing requires the sampling rate to be twice the highest frequency in the domain. In other words,
having num(𝑦) samples implies that the highest measurable order equals num(𝑦)/2.

However, because the magnetic field, which is the gradient of the scalar potential, is sampled,
not one but three measurements are taken at a given grid point. These three measurements are not
independent, so only one ambiguity in the phase is removed. The highest measurable order is therefore
num(𝑦).

Central in this thesis are the benefits of performing measurements using a drone. These benefits
include the relative ease for taking more measurements. It is, therefore, theoretically possible to extend
the measurement grid to an arbitrarily large dimension. In the 𝑦-direction, this would result in a large
number of distinguishable orders 𝑚. However, for larger distances from the source, the associated
Legendre functions with higher orders and degrees diminish more rapidly. At a certain point, due to
measurement errors, an added row of measurements will not yield the desired increased resolution.
Therefore, the highest measurable order must be lower than the theoretical value num(𝑦) when the
grid extends far beyond the ship.

The upper bound on the highest distinguishable order𝑀ub is chosen to be the number of grid points
within the ship’s dimension in the athwart direction:

𝑀ub = num(𝑦)ship.

The highest distinguishable degree on the other hand, is related to the coordinate 𝜂 and therefore to
the resolution in the 𝑥-direction. The associated Legendre function of the first kind shows oscillations,
resembling harmonic functions. This approximation is only valid away from the poles at 𝜂 = −1, 1. A
similar argumentation as for the resolution in the 𝑦-direction can be followed.

The number of oscillations for the associated Legendre functions of the first kind are not only de-
pendent on 𝑛, but also on 𝑚. The number of oscillations 𝜈 equals [17, p. 3]

𝜈 = 𝑛 −𝑚 + 1 − 𝛿፦ , (6.1)

where 𝛿፦ = 1 if 𝑚 = 0, otherwise 𝛿፦ = 0. Instead of setting the largest value of 𝜈 that can be
distinguished equal to the number of measurement grid points within twice the ship’s length, it is set to
only the number of grid points just within the length of the ship. This is due to the oscillatory behaviour
only being present away form the poles and therefore away from the ends of the ship.

Furthermore, for simplicity, the largest measurable degree is approximated independent of the order.
The result is the upper bound of the distinguishable degrees to be set to

𝑁ub = num(𝑥)ship. (6.2)

It is noted that larger values of 𝑁ub and 𝑀ub might result in a less robust solution, since the number of
coefficients is larger. Especially for measurement grids with small spacings, these upper bounds can
be rather large. Another effect of large upper bounds is that more computational power is required,
due to the fact that the problem has become larger.

In this thesis, a rectangular grid is considered, but the use of drones wouldmake any flight path possible.
If, for example, the measurements were spaced on an ellipsoidal grid, the values of 𝑁ub and𝑀ub can be
chosen differently. All measurements taken in the athwart direction might contribute to the largest order
𝑚 that can be perceived. The same is suggested for the measurements in the longitudinal direction,
which contribute to the highest degree 𝑛 that can be observed.

6.2. Optimising coordinate system
The regression methods described in Chapter 5 seek to solve the equation

Bፉ = A𝛽𝛽𝛽
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for unknown 𝛽𝛽𝛽. The length of this vector is already investigated in the previous section. So this section
focuses on the other hyperparameters that, besides the coordinates, determine A: the focus length 𝐿
and centre point (𝑥ኺ, 𝑦ኺ, 𝑧ኺ) of the prolate spheroidal coordinate system.

The matrix A is computed from (3.7) for a given prolate spheroidal coordinate system. However,
since the parameters defining an optimal prolate spheroidal coordinate system are not directly measur-
able, these parameters need to be estimated. This transformation to a prolate spheroidal coordinate
system affects the elements of matrix A.

The transformations in (2.10) and (2.11) give the relations between coordinates in a cartesian coor-
dinate system centred at (0, 0, 0) and in a prolate spheroidal system with foci at 𝑥 = ±𝐿. As discussed
before, the prolate spheroidal harmonics can describe the magnetic field outside an ellipsoid encap-
sulating the source. Therefore, the prolate spheroidal coordinate system must be centred on that en-
capsulating ellipsoid. This centre point is (𝑥ኺ, 𝑦ኺ, 𝑧ኺ). Therefore, the coordinates of the measurements
must be translated such that (0, 0, 0) becomes the ellipsoid’s centre:

𝑥 = 𝑥 − 𝑥ኺ,
𝑦 = 𝑦 − 𝑦ኺ,
𝑧 = 𝑧 − 𝑧ኺ,

where the bar indicates that the coordinates are the cartesian coordinates before translation.
The rotation of the coordinate system is not considered in this thesis but could easily be included

in the transformations. This would also require a more complex propagation of positioning errors. The
measurement grid in this thesis is aligned such that the 𝑥-axis is aligned with the longitudinal direction
of the ship.

After the cartesian coordinates have been centred, the coordinates can be transformed to the pro-
late spheroidal system. An important constraint is considered: 𝐿must be chosen such that the smallest
encapsulating ellipsoid with radial parameter 𝜉ship does not cross the planes in which the field is mea-
sured and predicted. This is illustrated as follows: imagine a prolate spheroidal system with 2𝐿 much
smaller than the length of the ship. The smallest encapsulating ellipsoid approaches spherical dimen-
sions. For such a small value of 𝐿 measurements and predictions can then only be made far away from
the ship’s centre. Such a model would not be of much assistance against naval mines.

This constraint is quantified as follows: take height ℎ at which a prediction or measurement is desired
and define 𝑙 to be the length of the ship. Given 𝐿, the value of 𝜉ኺ must be large enough to enclose the
ship, which gives rise to the constraint:

𝜉ኺ >
1
2 (

√(1 + 𝑙
2𝐿)

ኼ
+√(1 − 𝑙

2𝐿)
ኼ
)

= 1
2 |1 +

𝑙
2𝐿 | +

1
2 |1 −

𝑙
2𝐿 | =

𝑙
2𝐿 .

On the other hand, 𝜉ኺ is constrained by the horizontal measurement plane at height ℎ:

𝜉ኺ <
1
2𝐿 (

√𝐿ኼ + ℎኼ +√𝐿ኼ + ℎኼ)

= 1
𝐿
√𝐿ኼ + ℎኼ.

Combining these two constraints, gives

𝑙ኼ
4 < 𝐿

ኼ + ℎኼ

𝐿 > √𝑙
ኼ

4 − ℎ
ኼ.
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With this constraint in mind, it seems easy to choose a value for 𝐿 much larger than 𝑙/2 to be safe.
However, doing so might require more multipoles to describe the measured field adequately, which
makes the model unnecessarily complex.

Since the parameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ cannot be directly measured, they must be estimated. A Monte
Carlo method is chosen for this estimation: for each parameter a region is determined in its parameter
space in which the optimal value is likely to be, after which random samples are drawn from this region.
For each candidate (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ), the matrix A is computed and the Lasso-LARS algorithm is run to
generate a set of solutions 𝛽𝛽𝛽. The selection of a model with a certain (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ) and 𝛽𝛽𝛽 amongst all
generated models is discussed in Chapter 7.

The randomised search for the optimal parameter values is considered to be computationally more
efficient than the well-known grid searches. For the latter a grid of parameter combinations is created.
Just as for the random sampling, the matrix A is computed and the Lasso-LARS algorithm is run.

Since the dependence of the success of each model on the accuracy of a parameter is unknown,
a grid wastes computational power. For example, if say the focus length is not needed to be known
as accurately as the parameter 𝑥ኺ to adequately describe the magnetic field, a higher resolution in the
𝑥ኺ space is desirable. However, since the resolution of each parameter is chosen before knowledge
is gathered on the desired precision, a medium resolution in both the 𝐿- and 𝑥ኺ-parameter spaces is
chosen instead of a low resolution in the 𝐿-space and a high resolution in the 𝑥ኺ-space. The random
sampling of parameters from a uniform distribution, results in a more flexible resolution.
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Model Selection

The Lasso-LARS method described in section 5.5 produces a set of coefficient vectors of which each
vector is a solution of the regularised cost function (5.8) for different values of the regularisation param-
eter 𝛼, where the regularisation function is the Lasso regularisation function from (5.9a). This is then
done for each of the sampled parameters as described in 6.2. Then which of the computed models is
the best model? The answer to this question depends on the measure that is chosen. The process of
choosing the best model with a certain measure is referred to as model selection.

Common measures of the goodness of fit describe the residuals, since small residuals indicate
that the model describes the training data well. However, as discussed previously, this might play into
overfitting. A regularisation parameter 𝛼 needs to be chosen such that the chance that the model is
overfit, is minimised. Measures such as the mean square error (MSE) and Rኼ will naturally select low
values of 𝛼, because for 𝛼 close to 0, the solution resembles the OLS solution, which minimises the
residuals per definition. A different measure must be chosen.

The division of data into training data and test data moves the focus to the predictive power of
the model and is called cross validation. The model is fit to the training data, but the quality of the
model is scored using the test data. If the the model performs well, then the model is said to be a
good predictor. The division, however, must be such that the test data is a good representation of the
whole population, or, in the context of naval mine threats, the space below a ship. For the problem in
this thesis, the model selection must be based on field measurements taken by a drone, which can,
therefore, not be representative of the field underneath the ship. Since a model is sought that is a good
representation of the actual source and thus the field underneath the ship, cross validation is not a
viable selection method.

In this thesis, two types of model selection are discussed. The first method selects models based on
Akaike’s information criterion, while the second takes a weighted average of the coordinate parameters
𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ of ‘good’ models, after which the Lasso-LARS algorithm is run again to find the multipole
coefficients belonging to this averaged coordinate system.

7.1. Akaike’s information criterion
A method that does take the complexity of the model into account is model selection based on Akaike’s
Information Criterion (AIC). The AIC rewards models with small residuals using the likelihood func-
tion and penalises models with a large number of coefficients. This results in a balance between the
simplicity of the model and the goodness of fit.

The AIC is based on the minimisation of the Kullback-Leibler information, which is defined as [18,
p. 51]

𝐼(𝑓, 𝑔) = ∫𝑓(𝑥) ln( 𝑓(𝑥)
𝑔(𝑥|𝛾))d𝑥
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for two probability distributions 𝑓 and 𝑔. The function 𝑓(𝑥) is the ‘full reality’ or truth that is modelled by
𝑔(𝑥|𝛾), where 𝑥 is the data and 𝛾 the parameters. This measure can be interpreted as the information
lost when 𝑓 is modelled by 𝑔, or the distance between 𝑓 and 𝑔. Model selection should therefore aim
to minimise the distance between the selected model and 𝑓.

However, since the computation of 𝐼 requires full knowledge of 𝑓(𝑥), which is unknown, the Kullback-
Leibler information 𝐼 cannot be used directly. A relative measure can be defined that is equal to

−𝔼፟[ln(𝑔(𝑥|𝛾))] = −∫𝑓(𝑥) ln(𝑔(𝑥|𝛾))d𝑥,

since the remainder is a constant that depends on 𝑓(𝑥). The derivation of the AIC is beyond the scope
of this thesis, but the results are presented. Hirotugu Akaike showed that the expectation above can
be estimated without bias by

ln (ℒ (�̂�|data)) − 𝑘, (7.1)

where ℒ is the likelihood function of for model 𝑔 and 𝑘 is the number of estimable parameters in the
model [18, p. 51]. Akaike defined his criterion by multiplying this estimator with −2 for ‘historical rea-
sons’:

AIC = −2 ln (ℒ (�̂�|data)) + 2𝑘. (7.2)

To find an expression for the AIC, the likelihood function ℒ must be determined. Each observation in
itself is treated as a random variable with mean determined by A𝛽𝛽𝛽 and standard deviation 𝜎፣ follow-
ing (5.1), where 𝜎፣ is given by (5.2). As a useful shorthand, 𝛾 will be used to refer to the coordinate
parameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ of the system from now on. The data, which are the coordinates at which
magnetic field measurements were taken and the measurements, are represented by the set of co-
ordinates 𝐶 = {𝐶፣ ∈ ℝኽ ∶ 𝑗 = 0, 1, … 𝐽 − 1} and Bፉ. The likelihood function is therefore written as
ℒ(𝛾,𝛽𝛽𝛽|𝐶,Bፉ).

Since each field measurement is assumed to be normally distributed around its calculated expected
value, the probability density function of each measurement Bፉ፣ at a coordinate 𝐶፣ is given by

𝑓፣(𝐶፣ ,Bፉ፣|𝛾,𝛽𝛽𝛽) =
1

√2𝜋𝜎ኼ
e(B

ᑁ
ᑛዅAᑛᎏᎏᎏ)

Ꮄ
/ኼᎴᑛ ,

where A፣ is the 𝑗-th row of matrix A, which is calculated from 𝐶 and 𝛾. If each row and the corresponding
measurement are normalised by weight 1/𝜎፣, then the probability density function can be simplified as
follows:

𝑓፣(𝐶፣ ,Bፉ፣|𝛾,𝛽𝛽𝛽) =
1
√2𝜋

e(B
ᑁ
ᑛዅAᑛᎏᎏᎏ)

Ꮄ
/ኼ,

The likelihood function of the data given a certain coefficient vector 𝛽𝛽𝛽 and coordinate parameters 𝛾 is
expressed as follows:

ℒ(𝛾,𝛽𝛽𝛽|𝐶,Bፉ) =
ፉ

∏
፣ኺ

𝑓፣(𝐶፣ ,Bፉ፣|𝛾,𝛽𝛽𝛽) = (2𝜋)ዅኽፉ/ኼeዅ||B
ᑁዅAᎏᎏᎏ||Ꮄ/ኼ.

With the expression for the likelihood function above, the full AIC is given by

AIC(𝛾,𝛽𝛽𝛽) = 3𝐽 ln(2𝜋) + ||Bፉ − A𝛽𝛽𝛽||ኼ + 2𝑘. (7.3)

Since the objective is to minimise the AIC, the constant terms can be omitted, which results in the
following expression for the AIC for Lasso:

AIC(𝛾,𝛽𝛽𝛽) = ||Bፉ − A𝛽𝛽𝛽||ኼ + 2𝑘, (7.4)
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and if the residuals are not normalised:

AIC(𝛾,𝛽𝛽𝛽) = (Bፉ − A𝛽𝛽𝛽)ፓW (Bፉ − A𝛽𝛽𝛽) + 2𝑘,

whereW is the diagonal matrix with 1/𝜎ኼ፣ on its diagonal and 𝑘 is the number of coefficients in𝛽𝛽𝛽 unequal
to 0. The vector of multipole coefficients is selected as follows:

�̂� = argminᎏ AIC(𝛽). (7.5)

In the strict form, all parameters in the model should be counted to find 𝑘 [18, p. 62]. These include
each 𝜎፣ and 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ. However, since the constant terms in the AIC can be omitted, the number
of coefficients in 𝛽 unequal to 0 suffices [18, p. 71].

The AIC should be interpreted as a measure of the relative likelihood of each model. This means
that if the model with the lowest AIC is selected, this model is most probable to describe the underlying
phenomenon.

7.2. Akaike weights
If unlimited computational power would be available, models for all combinations of parameters could
be generated and scored. In this case, the assumption that the truly best model is contained in the
set of computed models would be correct. However, this assumption should be considered wrong for
limited computation time. For trying to find the optimal values for the four parameters describing the
coordinate system, a grid of only 10 values in each direction results in a total of 𝑁 = 10ኾ models.

In this thesis, besides traditional model selection based on the lowest AIC value, a model selection
method using a weighted average of parameters is proposed. A comparison of the results from the two
methods will be given later.

The AIC value belonging to �̂� from (7.5), which is the lowest computed AIC, is referred to as AICmin.
The relative measure of the Kullback-Leibler information, which is the corrected log-likelihood of a
model, is estimated by (7.1) and can be used as a weight of that model. This value equals −AIC/2.
For each model 𝑖 with AIC value AIC።, a normalised weight 𝑤። is defined by [18, p. 75]

𝑤። =
eዅAICᑚ/ኼ

∑፫ eዅAICᑣ/ኼ
= e(AICminዅAICᑚ)/ኼ

∑፫ e(AICminዅAICᑣ)/ኼ
, (7.6)

where the sum in the denominator is the sum over all weighted models. The weights are normalised,
meaning that they sum to 1. These weights can be used to compute a weighted average of the co-
ordinate parameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ of the system. For the parameter 𝐿, the averaged parameter is
calculated by

𝐿 = 𝑤ኻ𝐿ኻ +𝑤ኼ𝐿ኼ +⋯+𝑤።𝐿። +⋯+𝑤ፑ𝐿ፑ , (7.7)

where 𝑅 is the index of the last model that is used for the averaging. The same is done for parameters
𝑥ኺ, 𝑦ኺ and 𝑧ኺ.

Interestingly, one could also introduce an estimated standard error in these averaged parameters.
This could be used to draw conclusions on the confidence in the found parameter values. Such a
weighted standard error is calculated as follows:

𝜎ፋ = √
ፑ

∑
፫ኻ

𝑤። (𝐿። − 𝐿)
ኼ

(7.8)

and similarly for the other hyperparameters 𝑥ኺ, 𝑦ኺ and 𝑧ኺ.

For certain large values of the AIC, the corresponding model should be considered ‘wrong’ and can be
discarded on that basis. These ‘wrong’ models have a negligible weight. Assuming that these values
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do not influence the weighted average, the sum over the all models can be limited to those with low
AIC values and therefore non-negligible weights. There are multiple ways to do this.

One could opt for a limit based on an absolute criterion (e.g. the best 20 models are averaged), or
a relative criterion (e.g. the best 5% is averaged). However, both of these methods do not take the
influence of the model in the averaging process into account. In other words, these models leave room
for either including or excluding too many ‘wrong’ models.

It is, therefore, considered to select models based on their AIC-value or more specifically the differ-
ence between their AIC-value and AICmin. The value of

e(AICminዅAICᑚ)/ኼ

is the ratio of 𝑤። and the weight corresponding to AICmin, which has the highest weight. It is chosen to
omit models with ratio of weights smaller than 0.01, since these would have only limited effect on the
calculated average. The difference in AIC-value with AICmin is calculated by

AIC። − AICmin = −2 ln(0.01) ≈ 9.2. (7.9)

For clarity, it is stated that this averaging process only averages the hyperparameters 𝐿, 𝑥ኺ, 𝑦ኺ and
𝑧ኺ and not the multipole coefficient vector 𝛽𝛽𝛽. To find the corresponding 𝛽𝛽𝛽, the Lasso-LARS algorithm is
run again for the averaged parameters.
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Model Implementation and Evaluation

Methods

In this chapter, the theoretical knowledge from the previous is chapters is combined to discuss the
design of the complete model and the implementation in python. Also, several methods that will be
used to analyse the performance and stability of the model will be discussed.

8.1. Model design
Firstly, to answer the question on how a model that translates measurements of the magnetic field
above a source to underneath the source can be designed and implemented, the different aspects
discussed in the previous chapters are combined into one prediction model. As discussed in Chapter
4, the input of the model consists of a set of coordinates and a set magnetic field measurements at
each coordinate.

From the grid of coordinates, the upper bounds for the largest order and degree of the associated
Legendre functions to be evaluated is first computed using (6.1) and (6.2). If limited computer power
necessitates it, lower values can be chosen.

The next steps are repeated until satisfaction. An initial guess of the possible range for values of
the parameter vector 𝛾 = (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ) is made. A number of parameter candidates is sampled from
a uniformly distributed parameter space of 𝛾. For each candidate 𝛾።, an instance of the original set
of coordinates is translated to have centre (𝑥ኺ, 𝑦ኺ, 𝑧ኺ)። and then transformed to a prolate spheroidal
coordinate system with focal length 𝐿. The matrix AB as defined in (3.7) is then constructed for each
candidate.

The computed matrix is, however, not ready to be used in the Lasso-LARS algorithm. First, the
residuals are standardised by dividing each row of the matrix and its corresponding magnetic field
component by the computed standard deviation 𝜎፣ as given in (5.2). Moreover, each column is stan-
dardised by dividing each element with the standard deviation of the values in the row.

The Lasso-LARS algorithm (see Section 5.5) can now be used to find every Lasso solution 𝛽𝛽𝛽 for
a candidate 𝛾።. For each of these solutions, Akaike’s information criterion is computed from (7.4) and
the Lasso solution �̂�𝛽𝛽 with the lowest AIC is selected as in (7.5). This is done for each candidate 𝛾።.
The result is a set of vectors �̂�𝛽𝛽። with multipole coefficients giving the best description of the magnetic
field as measured by a drone, where ‘best’ is defined as ‘to have the lowest AIC’. Each combination of
𝛾። and �̂�𝛽𝛽። is one model, which is referred to as (𝛾, �̂�𝛽𝛽)።. Then, for every candidate and corresponding
coefficient vector (𝛾, �̂�𝛽𝛽)።, the AIC values are compared to find the best combination of parameters.

This process of searching a certain partition of the parameter space for the optimal combination of
parameters with corresponding optimal vector of multipole coefficients can be repeated until a satis-
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factory solution is found. No hard and fast rule has been decided upon, but a formulation of one might
be of interest for further research. A criterion to be considered for example is that the parameter space
must have been sampled in such a manner that the ‘best’ solution is surrounded by multiple other ‘good’
solutions.

From a final search of the parameter space, a weighted average of each parameter 𝐿, 𝑥ኺ, 𝑦ኺ and
𝑧ኺ is computed as discussed in Section 7.2. The Lasso-LARS algorithm is then used again to find the
optimal coefficient vector �̂�𝛽𝛽 belonging to these averaged parameters to find a more stable solution.

The result until thus far is a best solution from the sampled candidates (𝛾, �̂�𝛽𝛽)min and an ‘averaged’
solution (𝛾, �̂�𝛽𝛽)avg. Either one of these solutions can be chosen to predict the magnetic field underneath
the source.

This prediction can be made as follows. The coordinates in which the magnetic field is to be pre-
dicted are first transformed to prolate spheroidal coordinates specified by 𝛾. These are then used to
compute the matrix AB, after which matrix multiplication with �̂�𝛽𝛽 as in (3.8) gives a prediction of the
magnetic field based on the measurements performed by a drone above the source. It is important that
either this new matrix AB is scaled exactly the same as the matrix used in the inversion problem or that
the multipole coefficients are scaled back.

8.2. Model implementation
An implementation of the model was made in Python. The most important modules that were used are
SciPy (which contains NumPy andMatplotlib) and scikit-learn. SciPy facilitates easy access to complex
functions such as the associated Legendre functions of both the first and second kind. Moreover, its
submodule NumPy is one of the most used modules in Python and it enables efficient computations
using 𝑛-dimensional arrays. Matplotlib on the other hand is used to make plots.

Scikit-learn is a widely used Python module for machine learning. This module was used for all
machine learning steps, but some adaptations were made to fit the application for this thesis.

Three importand objects were created to implement the model: MatrixBuilder, Randomized-
SearchAIC and LassoLarsAIC. The object MatrixBuilder is needed to compute the matrix AB
at runtime. Scikit-learn offers Pipeline objects. As the name suggests, these objects can be used
to simply the different steps in the fit process such that the inputs enter the pipeline and at the other
end, a fitted model is returned. It is desirable to let parameter candidates be sampled at runtime, so
for abstraction of the code, the inputs of the fit process should consist of the coordinates, the measure-
ments, values for 𝑁 and 𝑀 and the parameter candidate 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ. This allows for the sampling
to be done outside of the pipeline (and in the RandomizedSearchAIC object). The MatrixBuilder
object uses these inputs to construct matrix AB.

The other steps in the pipeline are the scaling of the rows and columns of the matrix, but most impor-
tantly the actual fit using the Lasso-LARS algorithm. The scikit-learn module offers an implementation
of this algorithm. However, a critical assumption underlying the code makes this implementation inad-
equate for the use in this thesis. TheThe scikit-learn implementation of the Lasso-LARS with build-in
model selection using the AIC, assumes that the measurement data is identically distributed around
mean 0 with standard deviation 𝜎. However, the measurement data used in this thesis is obviously not
standardised in this way. While the standard deviations of the measurement errors are set to 1, the
mean of all the measurements cannot be set to 0. Therefore, a custom implementation LassoLarsAIC
was introduced.

The last important object that was introduced for this thesis is RandomizedSearchAIC. In machine
learning, the term hyperparameters refers to those parameters of a model that are set prior to fitting the
model to training data. For example the value of 𝛼 that controls the strength of regularisation in (5.8)
is considered a hyperparameter. In the scope of LassoLarsAIC, which finds a vector of multipole
coefficients, the parameter candidates (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ) are hyperparameters, since these are set before
the training of the model. One of the objects that is offered by the scikit-learn module and aid in
finding these hyperparameters, is RandomizedSearchCV. This object facilitates random sampling of
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hyperparameters from a parameter space, but does not select based on an AIC comparison, but by
comparing goodness of fit measures such as Rኼ or mean squared errors. Therefore, this object cannot
be employed in the implementation. Additionally, cross validation can be used in this selection process.

The custom RandomizedSearchAIC object implements the selection of hyperparameters on the
basis of their AIC. Moreover, the best hyperparameters are weighted and averaged to produce (𝛾, �̂�𝛽𝛽)avg.
This is all handled by this object.

By using scikit-learn’s API [19], the high level of efficiency offered by the module was achieved.
Lastly, the most important code used in this included in Appendix C.

8.3. Evaluation of the model
Firstly, a comparison of the true field and the predicted field underwater is to be made. The measure
that is chosen is the root mean squared error (RMSE), which is defined as follows:

RMSE = √
∑ፉዅኻ፣ኺ (B፣ − B̂፣)

𝐽 , (8.1)

where B፣ and B̂፣ are elements of the vector Bፉ as defined in (4.1) which represents the true and pre-
dicted magnetic fields respectively. The RMSE can be interpreted as the expected difference between
the true field and modelled field at any point.

Not only does the question arise whether or not the model described above can successfully predict
the field underneath ships, but also how sensitive the model is to noise levels. Three questions are
formulated in this respect:

1. How does the noise level affect the success of the magnetic field prediction underneath sources?

2. What is the influence of the noise level on the number of selected coefficients 𝑘ጻኺ1?

3. How is the stability of the multipole coefficients affected by the noise level?

To answer these question, 8 levels are chosen for the errors in positioning and 9 are chosen for the
errors in the field measurements, ranging from no noise to what can be considered as very noisy. For
each of the 72 combinations of noise levels, the coefficient vector �̂�𝛽𝛽 is estimated for 50 realisations of
noisy data. The parameters 𝛾 = (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ) are the same for each attempt.

After computing the RMSE for each realisation of noisy data, a mean RMSE value can be computed
for each of the 72 noise levels. A comparison of these means might give insights into the sensitivity to
noise.

Moreover, the number of coefficients that are unequal to 0 in the found solution of each realisation
of noisy data is averaged for each combination of noise levels. Next, the standard deviation of this 𝑘ጻኺ
is also calculated.

To analyse the stability of the multipole coefficients, the deviation from the mean of the first three
coefficients is computed for each combination of noise levels. A small deviation indicates stability, since
the value of coefficients in not dependent on the random noise.

Furthermore, the number of samples taken in the sample space is to be studied. Ultimately, the nec-
essary resolution in the parameter space determines the number of samples of (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ) that are
taken, which determines the required computational power for a large part. The following question is
posed to study the necessary resolution:

4. What is the influence of variations in the hyperparamters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ on the success of the
predictions?

1፤ᐳᎲ denotes the number of multipole coefficients that are unequal to ኺ.
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To answer this question, the hyperparameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ are set to the optimal values as deter-
mined by the algorithm designed in this thesis. Then, each hyperparameter is varied within a range,
while the others are kept constant. The algorithm is used to produce a vector of multipole coefficients
𝛽𝛽𝛽 for each variation. By plotting the RMSE values of the predictions made by each model, the effect
of variations in each parameter around the found optimum can be studied. The measurement data for
this analysis is the simulated data for test case 1, which will be discussed in the next chapter.
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Data Simulation

The model designed in the previous chapters will be tested, to conclude to the success of signature
measurements taken by a drone. However, since no data set of magnetic field measurements taken
by a drone of a ship are publicly accessible, these measurements will be simulated. Three test cases
are simulated.

One of the supervisors of this thesis has generated three sets of (B፱ ,B፲ ,B፳) values on a grid above
a source. The magnetic field values are generated by a prolate spheroidal harmonic expansion from an
actual signature measurement under a ship with an unknown centre point (𝑥ኺ, 𝑦ኺ, 𝑧ኺ) and focal length 𝐿.
The field measurements under the ship, were only provided after the model was implemented to ensure
a true verification of the model and these measurements were used for nothing else. Only small errors
in the code were fixed after receiving the verification data. Plots of the true magnetic field underwater
are included in Chapter 10.

The measurements were generated on a grid with num(𝑥) = 61 and num(𝑦) = 31 and grid
spacings 𝛿𝑥 ≈ 2.278 m and 𝛿𝑦 ≈ 2.277 m. The grid lies in the horizontal plane 10 m above the water.
The three data sets are visualised in Fig. 9.1 to 9.3.
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Figure 9.1: Visualisation of test case 1 without noise. From top left to bottom right, the subplots show contour plots of the three
components of the magnetic field Bᑩ, Bᑪ and Bᑫ and the magnitude of the magnetic field |B|.
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Figure 9.2: Visualisation of test case 2 without noise. From top left to bottom right, the subplots show contour plots of the three
components of the magnetic field Bᑩ, Bᑪ and Bᑫ and the magnitude of the magnetic field |B|.
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Figure 9.3: Visualisation of test case 3 without noise. From top left to bottom right, the subplots show contour plots of the three
components of the magnetic field Bᑩ, Bᑪ and Bᑫ and the magnitude of the magnetic field |B|.

The result is three sets of simulated data without noise. To simulate actual measurements, noise is
added to each measurement of the magnetic field and to the measurement of the position.

For the magnetic field measurements, the shape and size of the noise is determined by the sensor
specifications. Typical commercially available magnetometers have errors caused by multiple sources.
These sources include errors caused by the scaling of the measured field to an output voltage, a zero
offset, and temperature drift.

The errors are dominated by the scaling error, which lies in the order of 0.1% of the measurement
(0.1% for the Sensys FGM3D [20]; 0.5% for the Bartington Mag-13 [21]). The scaling error is also called
the scale factor accuracy and is caused by an error in the linear translation of the measured magnetic
field value to an output voltage.

The zero offset, on the other hand can be in the order of ±5 nT. For the sake of simplicity, all errors
in the measurements of the magnetic field are assumed to be the size of the scaling errors, since these
are the dominant source of errors.

Positioning is imagined to be done by GPS. Normally, the location of the GPS receiver is calculated
based on satellite signals. Typical high-end GPS receivers for drones reportedly yield positioning ac-
curacies of 1.5 m in the horizontal direction and 3.0 m in the vertical direction [22]. These errors are of
the same order as the grid spacings and are therefore too large.

Higher accuracies are possible with the introduction of a base station. The most modern method
that uses a base station is called real-time kinematic positioning (RTK)1. In addition to positioning using
GPS by the drone, a base station located nearby transmits corrections based on more accurate GPS
information. The increased precision is significant: the positioning accuracy in the horizontal direction
can be 1 cm and in the vertical direction 2 cm (1 cm and 2 cm for the D-RTK 2 by DJI [22]; 0.7 cm and
1An older method is Differential GPS (DGPS), which can reach a precision level of roughly ኾኺ cm.
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1.4 cm for the Reach M2 by Emlid while moving [23]). These values are the standard deviations of the
errors.

Realistic measurements are simulated by adding noise to each measurement. The shape and size of
which are chosen from typical sensors described above. For the magnetic field measurements, the
errors are taken from a normal distribution with mean 0 nT and standard deviation 100 nT, since this
is approximately 0.2% of the measurement scale.

The coordinates of each measurement are distorted by adding noise to each coordinate. The errors
in the 𝑥- and 𝑦-coordinates are generated with a standard deviation of ኺ.√ኼ ≈ 0.5 cm. Combining these
two coordinates, amounts to an error distribution in the horizontal plane with a standard deviation of
0.7 cm. The errors in the 𝑧-coordinate are generated with a standard deviation of 1.4 cm.



10
Results

10.1. Field prediction
For test case 1, the initial search for the parameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ was performed with 2000 samples
taken from uniform distributions where

20 m ≤ 𝐿 ≤ 80 m,
20 m ≤ 𝑥ኺ ≤ 60 m,

−15 m ≤ 𝑦ኺ ≤ 15 m,
−5 m ≤ 𝑧ኺ ≤ 10 m.

Figure 10.1 shows the AIC values plotted against each parameter and in figure 10.2 these plots were
zoomed in to show more detail.
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Figure 10.1: Scatter plot of the AIC values against the parameter candidates of ፋ, ፱Ꮂ, ፲Ꮂ and ፳Ꮂ for the first search attempt. The
vertical axis has a logarithmic scale.
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Figure 10.2: Scatter plot of the AIC values against the parameter candidates of ፋ, ፱Ꮂ, ፲Ꮂ and ፳Ꮂ for the first search attempt, only
showing AIC values lower than ዀኺኺ.

Figure 10.1 shows clearly that within certain ranges, the AIC is small, but that the AIC becomes
very large outside these boundaries. A second search was then performed within these ranges:

33 m ≤ 𝐿 ≤ 60 m,
38 m ≤ 𝑥ኺ ≤ 50 m,
−1 m ≤ 𝑦ኺ ≤ 4 m,
−1 m ≤ 𝑧ኺ ≤ 4 m.

The search was performed with 2000 candidates. The results of the second search are presented in
figure 10.3.
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Figure 10.3: Scatter plot of the AIC values against the parameter candidates of ፋ, ፱Ꮂ, ፲Ꮂ and ፳Ꮂ for the second search attempt,
zoomed in to show AIC values under ኽኺኺ.

Next, a final search of was performed closely around the found best values. From figure 10.3 the
following bounds were chosen:

33 m ≤ 𝐿 ≤ 42 m,
41 m ≤ 𝑥ኺ ≤ 44 m,

0.75 m ≤ 𝑦ኺ ≤ 2 m,
−0.5 m ≤ 𝑧ኺ ≤ 2 m.

This final search was performed with 5000 candidates and, as before, plots of the AIC values against
each parameter candidate are shown in figure 10.4.
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Figure 10.4: Scatter plot of the AIC values against the parameter candidates of ፋ, ፱Ꮂ, ፲Ꮂ and ፳Ꮂ for the final search attempt,
zoomed in to show AIC values under ኽኺኺ.

The search for (𝛾, �̂�𝛽𝛽)min, has concluded. The condition set in (7.9) was met by 13 candidates. Their
AIC values, the weights 𝑤, the number of coefficients 𝑘ጻኺ and normalised mean squared errors (MSE)1
are presented in Table 10.1. Moreover, the weights were used to produce the weighted averages such
as in (7.7). These values are also given in table 10.1 with their standard errors calculated from (7.8).
These averaged parameters were used to produce a set of coefficients.

AIC 𝐿 [m] 𝑥ኺ [m] 𝑦ኺ [m] 𝑧ኺ [m] 𝑤 𝑘ጻኺ MSE

5230.3 33.28 42.71 1.61 −0.19 0.713 40 1.0034
5234.6 33.71 42.74 1.43 0.39 0.083 49 1.0007
5235.9 34.34 42.55 1.48 0.40 0.042 45 1.0025
5236.4 33.36 42.59 1.42 0.23 0.033 45 1.0026
5236.6 41.95 42.91 0.87 1.43 0.030 51 1.0003
5236.8 33.89 42.67 1.49 0.17 0.027 49 1.0011
5237.7 33.36 42.57 1.37 0.04 0.018 46 1.0025
5238.5 34.27 43.14 1.41 0.55 0.012 49 1.0015
5239.0 41.62 42.67 0.91 1.82 0.009 49 1.0016
5239.1 37.16 41.07 1.48 −0.39 0.009 48 1.0020
5239.2 33.66 42.49 1.43 0.38 0.008 48 1.0020
5239.3 35.53 42.57 1.49 −0.47 0.008 48 1.0020
5239.3 34.42 42.32 1.47 0.75 0.008 45 1.0032
5228.6 33.78 ± 1.69 42.69 ± 0.18 1.54 ± 0.15 −0.01 ± 0.39 - 40 1.0030

Table 10.1: AIC and parameter values for the ኻኽ parameter candidates that met the averaging requirement. The weights, ፤ᐳᎲ
and MSE values are also given. The last row shows these values for the averaged parameters and the model that resulted from
these values.

1Both the number of coefficients ፤ᐳᎲ and the MSE value are used in the computation of the AIC value in (7.4). Note that
||Bᑁ ዅ Aᎏᎏᎏ||, which is used in the AIC, is equal to ፉ ⋅MSE, with ፉ the number of measurements.
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Next, a prediction was made for the magnetic field under the ship. The predictions are made for
a horizontal rectangular grid at 9 m underwater. The predictions were made using both (𝛾, �̂�𝛽𝛽)min and
(𝛾, �̂�𝛽𝛽)avg and are shown in 10.5 to 10.8. The differences between the true and modelled field are plot
in figure 10.9 and 10.10 of (𝛾, �̂�𝛽𝛽)min and (𝛾, �̂�𝛽𝛽)avg, respectively.
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Figure 10.5: Plot of the true and modelled magnetic field component Bᑩ underwater. The first plot shows the true field, the
second shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure 10.6: Plot of the true and modelled magnetic field component Bᑪ underwater. The first plot shows the true field, the
second shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure 10.7: Plot of the true and modelled magnetic field component Bᑫ underwater. The first plot shows the true field, the
second shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure 10.8: Plot of the true and modelled magnetic field strength |B| underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure 10.9: The error in the predicted field using (᎐, ᎏ̂ᎏᎏ)min. The first three plots show the error in each component and the last
plot shows the magnitude of the difference vector.
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Figure 10.10: The error in the predicted field using (᎐, ᎏ̂ᎏᎏ)avg. The first three plots show the error in each component and the last
plot shows the magnitude of the difference vector.
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From the visualisations of the true magnetic field and the predicted fields in Fig. 10.5 to 10.7, it
becomes clear that the two predictions resemble the true magnetic field. However, the predictions
differ especially in the B፳ components. This can also be observed in Fig. 10.9 and 10.10, which show
the residuals. The residuals are clearly not random, but show a loose pattern. This is likely caused by
one or two wrong coefficients.

The results of test cases 2 and 3 are presented in Appendix B. The searches for hyperparameters 𝐿,
𝑥ኺ, 𝑦ኺ and 𝑧ኺ were performed in a similar manner is described above. However, the final searches were
performed with only 1000 samples from the parameter spaces.

The results are similar to those from test case 1, supporting the generality of these results.

10.2. Influence of noise
The results of the analysis of the effect of noise on the success of predictions are given in Fig. 10.11
and Fig. 10.12. The data for test case 1 was used.

The first figure shows the computed mean of the root mean squared errors (RMSE) in each com-
ponent of the magnetic field of 50 realisation of noisy data at different noise levels, as described in
Section 8.3. This figure also shows the mean of the root mean square magnitude of the errors. The
noise in the positional measurements 𝜎GPS is added for 8 different values:

𝜎GPS = 0, 0.1, 0.5, 1, 2, 5, 10 cm.

Errors in the 𝑥- and 𝑦-coordinates were added with standard deviation 𝜎GPS/√2 and in the vertical
direction this was 2𝜎GPS, as this ratio seems to be typical.

The errors in the magnetic field measurements were generated with mean 0 and standard deviation
𝜎ፁ. A total of 9 different values for 𝜎ፁ2 were used:

𝜎ፁ = 0.001, 1, 10, 20, 50, 100, 200, 500, 1000 nT.

The value 𝜎ፁ = 0.001 nT was included since this was the precision of the measurements as supplied
for this thesis.

The parameters defining the prolate spheroidal coordinate system were kept constant throughout
this analysis. Their values were chosen based on the results of Section 10.1:

𝐿 = 33.8 m,
𝑥ኺ = 42.7 m,
𝑦ኺ = 1.5 m,
𝑧ኺ = 0.0 m.

2Here, ᐹ is defined as in Section 5.1. Thus ᐹ is the standard deviation of the components Bᑩ, Bᑪ and Bᑫ.
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Figure 10.11: Four plots of the mean value of the root mean square error (RMSE) of each realisation of noisy data at different
noise levels. The noise level in the position of measurements GPS was increased over the horizontal axis, while the noise level
of the measurements of the magnetic field ᐹ was increased over the vertical axis. The fourth plot shows the mean of the root
mean square magnitude of errors.

Figure 10.11 shows that the RMSE of the predictions is strongly dependent on the level of noise.
While the errors in the predictions all seem to be magnitudes larger than the added noise, the model
seems to predict the magnetic field rather well for very low levels of noise. Larger errors can be found
when 𝜎ፁ exceeds 50 nT and 𝜎GPS exceeds 10 cm.

For each of the combination of noise levels, the mean of the number of found multipole coefficients
𝑘ጻኺ was also computed. Moreover, the standard deviation from the mean was computed for each
combination of noise levels. These two values are plot in figure 10.12.
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Figure 10.12: Two plots of the mean value of ፤ᐳᎲ and its standard deviation. The value ፤ᐳᎲ was computed for each realisation
of noisy data at different noise levels. The noise level in the position of measurements GPS was increased over the horizontal
axis, while the noise level of the measurements of the magnetic field ᐹ was increased over the vertical axis. The fourth plot
shows the mean of the root mean square magnitude of errors.

Figure 10.12 shows that a large number of coefficients are found for the lowest values of 𝜎ፁ. For
increasing 𝜎ፁ, less and less coefficients are selected. Interestingly, the plot of the standard deviation
from the mean 𝑘ጻኺ shows that especially for 𝜎ፁ = 50 nT, the number of coefficients found varies
widely. This effect increases for larger values of 𝜎GPS. For the largest values 𝜎ፁ and approximately for
0.5 cm ≤ 𝜎GPS ≤ 5 cm, the number of found coefficients varies less and less between the selected
models.

The results of the analysis of the stability of the first three multipole coefficients, which describe the
dipole field, are visualised in Fig. 10.13. The deviation from themean coefficient value of eachmultipole
coefficient was computed for every combination of noise levels.
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Figure 10.13: Plot of the standard deviation from the mean coefficient value for the first three multipole coefficients (ᎲᎳ , ᎳᎳ and
፬ᎳᎳ ) at different noise levels ᐹ and gps.

Fig. 10.13 shows clearly that the stability of the first three coefficients decreases for increased
noise. It seems that the stability is mostly dependent on the noise level in the measurements of the
magnetic field 𝜎ፁ. The mean values of the coefficients for the noise level (𝜎ፁ , 𝜎gps) = (0.001 nT, 0 nT)
are as follows:

𝑐ኻኺ = −3.43 × 10ኻኺ,
𝑐ኻኻ = 1.02 × 10ኻኺ,
𝑠ኻኻ = 2.79 × 10ኻኺ.

10.3. Variation of coordinate parameters
The results of the analysis of the influence of variations in the hyperparameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ are
visualised in Fig. 10.14 and 10.15. The values of 𝑥ኺ, 𝑦ኺ and 𝑧ኺ were varied between ±3 m of the
optimal hyperparameters found in Section 10.1. The value of 𝐿 was varied within a larger range (−3 m
and +10 m of the found optimal value), since the final range of 𝐿, within which the optimal value was
searched in Section 10.1, was significantly larger than the final ranges of the other hyperparameters.
For each plot, the one of the hyperparameters was varied, while the other values were kept constant.
Moreover, the varied parameter was incremented linearly within the range in 300 steps, except for 𝐿
which was increased in 600 steps.

A plot of the AIC for the fit on the measurement data above the ship versus the varied parameter
is given in Fig. 10.14. The RMSE value of the predictions made by a model with a varied parameter
against that varied parameter is given in Fig. 10.15.
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Figure 10.14: Plot of the AIC for varying hyperparameters ፋ, ፱Ꮂ, ፲Ꮂ and ፳Ꮂ. In each plot only one parameter is varying while the
others are kept at their found optimal values of Section 10.1.
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Figure 10.15: Plot of the RMSE for varying hyperparameters ፋ, ፱Ꮂ, ፲Ꮂ and ፳Ꮂ. In each plot only one parameter is varying while
the others are kept at their found optimal values of Section 10.1. The blue line is the RMSE in Bᑩ, the orange line shows the
RMSE in Bᑪ and the green line in Bᑫ.

The value of the AIC plotted in Fig. 10.14 shows clear optimal values close to the values found in
Section 10.1, which is to be expected. The RMSE values, which were plotted in Fig. 10.15, show less
clear optimal parameter values. In light of the RMSE in the predictions, the hyperparameter 𝐿 should
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be chosen larger than 35 m, while the AIC is clearly lowest for approximately 34 m. The success of
the predictions seems to be most strongly dependent on variations in 𝑦ኺ and 𝑧ኺ. Variations in the 𝑦-
coordinate of the centre point of the prolate spheroidal coordinate system 𝑦ኺ affect the AIC and RMSE
values similarly, but the valley is larger in the RMSE plot. The plot of the AIC for varying 𝑧ኺ shows that
models with 𝑧ኺ < 0 m tend to be not selected, while values of 𝑧ኺ > 1 m appear to result in large RMSE
values.



11
Discussion and Recommendations

11.1. Discussion of results
In this thesis, an algorithmwas designed to develop a predictionmodel for themagnetic field under ships
based on field measurements taken by a drone above that ship. The results of the fit and predictions
of models that were produced by this algorithm were presented in Chapter 10.

Comparisons of the true magnetic fields and the predictions for different sets of simulated data have
shown that this algorithm generates adequate predictions. However, the modelled fields show signs of
missing coefficients: the residuals are not random but show patterns. Several causes can be identified.

Firstly, the purpose of the AIC is to select between models based on a compromise between their
goodness of fit and their complexity. If a multipole term shows little significance in the measurement
plane above the ship, then it is likely to be omitted. However, this omitted term might play an important
role in the magnetic field underwater. This difference is due to the different rates of decay of associated
Legendre functions of the first kind: higher degrees decay faster for increasing distance from the source.
Therefore, higher order terms are needed when the magnetic field is described closer to the source.
The danger of selecting wrong coefficients is inherent to basing a model on measurements taken in a
different subspace than where the predictions are to be made.

Secondly, since the sum of multipole terms is terminated at degree 𝑁 = 17 and order 𝑀 = 6, a
simple explanation is that the degree or the order of the missing multipoles is higher than 𝑁 or 𝑀,
respectively. The pattern of the residuals can be used to identify a missing multipole term: the pattern
of the residuals of test case 1 resemble the pattern of either the quadrupole term 𝑐ኺኼ or the octopole term
𝑐ኺኽ , which certainly have lower degrees and orders than their respective termination values. Therefore,
this explanation seems unlikely. However, if the centre point is chosen incorrectly, this identification is
not as straightforward.

From the analysis on the effect of noise on the model, some interesting conclusions can be drawn.
Firstly, a rather large range of noise levels in the position measurements result in small root mean
squared error values. However, a tipping point around 𝜎GPS ≈ 10 cm can be identified, since for larger
values of 𝜎GPS, the RMSE values increase drastically. Most real time kinematic positioning (RTK)
systems, provide errors far below this point, but using standard GPS or even differential GPS (DGPS)
gives noise levels beyond this tipping point. This suggests that while an RTK system is necessary in
this context, financial resources may be directed elsewhere, since not the most advanced system is
needed.

On the other hand, the noise level of the magnetic field measurements 𝜎ፁ has shown to strongly
influence the quality of the predictions made by the model. However, a more gradual increase in the
RMSE values is observed. This is especially true within the range 20 nT ≤ 𝜎ፁ ≤ 200 nT.
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In this range another interesting development takes place: the standard deviation from the mean
number of selected coefficients 𝑘ጻኺ rises and falls. A large standard deviation indicates that the values
of 𝑘ጻኺ differ much between realisations of the noisy data. This is troublesome since the values of the
coefficients should not depend on the noise. This behaviour indicates that the model is susceptible to
overfitting in this range.

Outside this region the number of coefficients found seems more stable. This is especially the case
for low levels of noise in both the position and field measurements, which is to be expected. However,
for larger values of 𝜎ፁ, this stability is rather surprising. A possible explanation is that for these high
amounts of noise, the resolution in the field measurements is very low, allowing only the lowest few
coefficients to be found, such as the dipole and quadrupole coefficients. This explanation is supported
by the behaviour of the mean 𝑘ጻኺ: these values seem to decrease for increasing levels of noise.

Finally, the stability of the first three (dipole) coefficients was investigated for different noise levels.
The results show that the stability is almost exclusively dependent on the noise level of the magnetic
field measurements 𝜎ፁ.

The analysis on the effect of variations in the hyperparameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ yields several interesting
points. The main motivation for performing this analysis was to investigate the advisable density of
samples in the parameter space. The number of candidate parameter combinations must be chosen
such that at least one of those candidates is likely to be located near the global minimum of the root
mean square error plots. Apparently, the quality of predictions is most stongly dependent on the values
of 𝑦ኺ and 𝑧ኺ: both have shown a clear (local) minimum in the RMSE. The density of samples in the
parameter space is advised to be at least 2 samples per mኾ. It seems that a density that is half of what
is advised, is likely to result in a favourable combination of parameters to be sampled. However, if the
available computational power allows it, a higher density is advised.

Most interestingly, the plots of the AIC and RMSE values for varied hyperparameters, show restric-
tions should be imposed on the sampled parameter space. This is most visible for the plots where 𝑧ኺ
was varied: the AIC tends to be lowest for values larger than −1 m, while the RMSE tends to be lowest
for values smaller than 1 m. That the AIC shows a different preference than selection based on the
RMSE values, can be explained as follows. The AIC value is based on the goodness of fit in a plane
above the ship. This horizontal plane must be outside of the encapsulating ellipsoid as described in
Section 6.2. If 𝑧ኺ is chosen too far above the water level (negative 𝑧ኺ), then one of the assumptions
behind the model is violated, since the magnetic field is attempted to be described within this ellipsoid.
Therefore, the AIC increases when 𝑧ኺ is chosen too close to the measurement plane.

Oppositely, the plane underwater where predictions are made must also be outside the encapsu-
lating ellipsoid. If 𝑧ኺ is chosen too far below the water level, then predictions are attempted to be made
within the ellipsoid, which is also a violation. Therefore, values of 𝑧ኺ far below the water level (positive
𝑧ኺ) are expected to result in wrong predictions, which is reflected by a large RMSE of the field under-
water. Restrictions on combinations of 𝐿 and 𝑧ኺ might be imposed to ensure that a generated model is
able to describe the magnetic field in certain planes.

Aside from possible shortcomings of the designed algorithm, some results might also be attributed to
the manner in which the data was simulated. As described in Chapter 9, the test cases were generated
by performing a fit of prolate spheroidal harmonic functions on actual magnetic field measurements
under a ship. The fitted multipole coefficients were then used to generate field measurements above
the ship. The algorithm designed in this thesis is more complex than the methods used to generate the
test cases. Differences between these methods might contribute to the some findings. Verification of
the results of this thesis using actual drone measurements, is therefore advised.

Lastly, the test cases used in this thesis were made to resemble measurements around an unde-
gaussed ship. However, an important possible application of the algorithm is the verification of the
degaussing system. The same principles and assumptions behind the algorithm apply to degaussed
ships. However, since the measurement errors are relatively larger when the magnetic field is weak,
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different success rates might be found. Therefore, future research should verify these findings with
both degaussed and undegaussed ships.

11.2. Recommendations
All in all, it seems that the designed algorithm produces models that are able to predict the magnetic
field under ships adequately. However, further improvements are necessary to apply the algorithm in
practice. Some improvements are suggested in the following.

11.2.1. Modified AIC
The implementation of the AIC is first discussed. The most important motivation for using the AIC
to perform model selection was that the AIC gives a balance between model complexity (number of
coefficients) and the goodness of fit to combat overfitting. Overfitting was, however, not avoided for
the practical noise levels. Perhaps the model might perform well for low budget, low requirement
applications.

A modified version of Akaike’s information criterion (AICc) introduces a correction term in the AIC
that is quadratic in 𝑘 and is often used for small sample sizes. For the problem in this thesis, the
difference between the AIC and AICc is typically around 1. This difference is small, but it could be
interesting to compare its behaviour with the uncorrected AIC.

11.2.2. Improved error propagation and normalisation
Another possibility to improve the model is to use a different method of error propagation. In this thesis,
the errors in the position were propagated by numerical differentiation, the quality of which is dependent
on several factors including the grid spacing and the errors in the measurements of the magnetic field.
Also, this method is insensitive to changes in the magnetic field in between the grid points. To solve
this, error propagation on the side of matrix A might be attempted.

While this improves the normalisation of the rows of A, there is also more room for improvement in
the normalisation of the columns of this matrix. As discussed in Chapter 5, the LARS algorithm requires
the columns of the matrix to have standard deviation equal to 1. This method normalises based on the
numeric values of each column element. However, normalisation based on the expected intensity of
each multipole term might prevent bias against certain terms more effectively. The size of each column
element is related to the degree of its harmonic, but it is also related to the position of the measurement.

Since the LARS algorithm requires standardisation of the columns in the prescribed way, an addi-
tional step in the process either before or after fitting the coefficients can solve its shortcommings. For
example, a selection of coefficients can help against overfitting. This selection could be based on the
size of the coefficients after normalisation based on energies as suggested by [24].

11.2.3. Complex measurement planes
Furthermore, this thesis considered a simple horizontal measurement plane, but a more complex flight
path can be investigated in further research. For example, by adding a second, smaller plane at a
different height, a cross-validation-like approach to model selection could be taken. The effect of taking
measurements on an ellipsoidal surface might also be interesting.

11.2.4. Hyperparameters
Improvement is not only sought in the direction of model selection, but also in the optimisation of the
hyperparameters specifying the prolate spheroidal coordinate system centred on the ship. In Section
6.2, a restriction was given on the value of the focal length 𝐿. Further restrictions on the parameter
space should be investigated and their implementation into the algorithm considered.
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11.2.5. Rotation of the coordinate system
Lastly, it is suggest that future research also includes the rotation of the coordinate system, i.e. the
assumption that the foci of the prolate spheroidal coordinate system are not located on the 𝑥-axis of
the cartesian coordinate system. This was not included this thesis due to the manner in which the data
was simulated, but this is an important hyperparameter in practice.



12
Conclusions

This thesis presents a structured way to approach the designing of an algorithm that produces a pre-
diction model of the magnetic field based on measurements taken in one region around a source. More
specifically, the algorithm designed in this thesis has proven to be able to make adequate predictions
of the magnetic field underwater based on measurements taken by a drones. The magnetic field mea-
surements were simulated as if they were made by commercially available sensors. Therefore, these
methods can be applied with the current state of technology.

Analyses of the influence of noise showed that the success of predictions is strongly dependent
on the noise level in measurements of the magnetic field. The noise level in the measurements of
positions appeared to diminish the success of predictions less, but a tipping point could be identified at
approximately 𝜎GPS = 10 cm.

The analysis of the influence of variations in the hyperparameters 𝐿, 𝑥ኺ, 𝑦ኺ and 𝑧ኺ, which specify
the prolate spheroidal coordinate system, showed that restrictions on the sampled parameter space
should be implemented into the algorithm. Moreover, the parameter space of (𝐿, 𝑥ኺ, 𝑦ኺ, 𝑧ኺ) is advised
to be sampled at at least 2 samples per mኾ.
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Figure A.1: Contour plot of the ፱-, ፲- and ፳-components and the field strength of the magnetic field B at ፳  ኻ m and
ዅኻኺኺ m ጾ ፱, ፲ ጾ ኻኺኺ m generated by a source with ᎳᎳ  ኻ and all other coefficients set to ኺ and ፋ  ኺ m.
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Figure A.2: Contour plot of the ፱-, ፲- and ፳-components and the field strength of the magnetic field B at ፳  ኻ m and
ዅኻኺኺ m ጾ ፱, ፲ ጾ ኻኺኺ m generated by a source with ፬ᎳᎳ  ኻ and all other coefficients set to ኺ and ፋ  ኺ m.
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Figure A.3: Contour plot of the ፱-, ፲- and ፳-components and the field strength of the magnetic field B at ፳  ኻ m and
ዅኻኺኺ m ጾ ፱, ፲ ጾ ኻኺኺ m generated by a source with ᎲᎴ  ኻ and all other coefficients set to ኺ and ፋ  ኺ m.
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Figure A.4: Contour plot of the ፱-, ፲- and ፳-components and the field strength of the magnetic field B at ፳  ኻ m and
ዅኻኺኺ m ጾ ፱, ፲ ጾ ኻኺኺ m generated by a source with ᎳᎴ  ኻ and all other coefficients set to ኺ and ፋ  ኺ m.
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Figure A.5: Contour plot of the ፱-, ፲- and ፳-components and the field strength of the magnetic field B at ፳  ኻ m and
ዅኻኺኺ m ጾ ፱, ፲ ጾ ኻኺኺ m generated by a source with ᎲᎵ  ኻ and all other coefficients set to ኺ and ፋ  ኺ m.



B
Results for test cases 2 and 3

B.1. Test case 2
The results of the search for the best model for test case 2 are presented in this section. The search
was performed with 1000 samples drawn in a comparable subspace of the parameter space as for
test case 1. Fig. B.1 to B.4 show the true and modelled magnetic field components and magnitude.
Predictions from both the model with the lowest AIC value and the model with averaged hyperparam-
eters are visualised. Fig. B.5 and B.6 show the residuals of these predictions. The values for the
hyperparameters defining the prolate spheroidal coordinate system are as follows:

𝐿min = 37.97 m, 𝐿avg = 36.78 m,
𝑥ኺ,min = 43.01 m, 𝑥ኺ,avg = 42.91 m,
𝑦ኺ,min = −0.14 m, 𝑦ኺ,avg = −0.31 m,
𝑧ኺ,min = 0.70 m, 𝑧ኺ,avg = 1.20 m.

0 25 50 75
x [m]

−15

−10

−5

0

5

10

15

y
[m
]

True B፱

0 25 50 75
x [m]

−15

−10

−5

0

5

10

15

Modelled best B፱

0 25 50 75
x [m]

−15

−10

−5

0

5

10

15

Modelled averaged B፱

-12500 -10000 -7500 -5000 -2500 0 2500 5000 7500 10000 12500
[nT]

Figure B.1: Plot of the true and modelled magnetic field component Bᑩ underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.2: Plot of the true and modelled magnetic field component Bᑪ underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.3: Plot of the true and modelled magnetic field component Bᑫ underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.4: Plot of the true and modelled magnetic field strength |B| underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.5: The error in the predicted field using (᎐, ᎏ̂ᎏᎏ)min. The first three plots show the error in each component and the last
plot shows the magnitude of the difference vector.
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Figure B.6: The error in the predicted field using (᎐, ᎏ̂ᎏᎏ)avg. The first three plots show the error in each component and the last
plot shows the magnitude of the difference vector.

B.2. Test case 3
The results of the search for the best model for test case 3 are presented in this section. Again, the
search was performed with 1000 samples drawn in a comparable subspace of the parameter space as
for the other test cases. Fig. B.3, B.7, B.8 and B.10 show the true and modelled magnetic field compo-
nents and magnitude. Predictions from both the model with the lowest AIC value and the model with
averaged hyperparameters are visualised. Fig. B.11 and B.12 show the residuals of these predictions.
The values for the hyperparameters defining the prolate spheroidal coordinate system are as follows:

𝐿min = 53.04 m, 𝐿avg = 56.68 m,
𝑥ኺ,min = 44.47 m, 𝑥ኺ,avg = 42.30 m,
𝑦ኺ,min = 2.28 m, 𝑦ኺ,avg = 1.99 m,
𝑧ኺ,min = −0.12 m, 𝑧ኺ,avg = 0.47 m.
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Figure B.7: Plot of the true and modelled magnetic field component Bᑩ underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.8: Plot of the true and modelled magnetic field component Bᑪ underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.9: Plot of the true and modelled magnetic field component Bᑫ underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.10: Plot of the true and modelled magnetic field strength |B| underwater. The first plot shows the true field, the second
shows the prediction by (᎐, ᎏ̂ᎏᎏ)min and the last plot shows the prediction by (᎐, ᎏ̂ᎏᎏ)avg.
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Figure B.11: The error in the predicted field using (᎐, ᎏ̂ᎏᎏ)min. The first three plots show the error in each component and the last
plot shows the magnitude of the difference vector.
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Figure B.12: The error in the predicted field using (᎐, ᎏ̂ᎏᎏ)avg. The first three plots show the error in each component and the last
plot shows the magnitude of the difference vector.



C
Python code

The code used for this thesis can be separated into two sections: the module code and the program
itself. The module code contains all reusable functions needed for coordinate transformations, com-
putations of the matrix A defined in (3.7) and AIC calculations. This section also contains the created
classes added to be used in the scikit-learn enviroment. Only the module code is included in this report.
Other code can be made availible upon request.

import numpy as np
import sc ipy . spec ia l as scp
from sk learn . model_select ion import ParameterSampler , RandomizedSearchCV
from sk learn . base import BaseEstimator , TransformerMixin , c lone
from sk learn . except ions import Fi tFa i ledWarn ing
from j o b l i b import Pa ra l l e l , delayed
import warnings
import t raceback
from c o l l e c t i o n s import d e f a u l t d i c t
from f unc too l s import p a r t i a l
import t ime
from sk learn . l inear_model import LassoLarsIC , la rs_path , LassoLars
from sk learn . l inear_model . base import LinearModel

# phys i ca l constants
mu_0 = 1.25663706212e−6 # [N/A^2 ] vacuum pe rmeab i l i t y

def pro2car ( x i : f loa t , eta : f loa t , ph i : f loa t , L : f l oa t =1) :
’ ’ ’
T rans la tes p ro l a t e sphero ida l coord ina tes to ca r tes ian coord ina tes

Paramters :
x i ( f l o a t ) : F i r s t coord ina te ; x i > 1
eta ( f l o a t ) : Second coord ina te ; −1 < eta < 1
phi ( f l o a t ) : Th i rd coord ina te ; 0<=phi <2* p i
L ( f l o a t ) : Focus d is tance to o r i g i n

Returns :
x , y , z ( f l o a t , f l o a t , f l o a t ) : Car tes ian coord ina tes

’ ’ ’
return L* x i *eta , \
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L*np . sq r t ( ( x i **2−1)*(1−eta **2 ) )* np . cos ( ph i ) , \
L*np . sq r t ( ( x i **2−1)*(1−eta **2 ) )* np . s in ( ph i )

def car2pro ( x : f loa t , y : f loa t , z : f loa t , L : f l oa t =1) :
’ ’ ’
T rans la tes ca r tes ian coord ina tes to p ro l a t e sphero ida l coord ina tes

Paramters :
x , y , z : Car tes ian coord ina tes
L ( f l o a t ) : Focus d is tance to o r i g i n

Returns :
x i , eta , ph i ( f l o a t , f l o a t , f l o a t ) : P ro la te sphero ida l coord ina tes

’ ’ ’
return \

( np . sq r t ( ( L−x )**2+y**2+z **2)+np . sq r t ( ( L+x )**2+y**2+z * *2 ) ) / ( 2 * L ) , \
( np . sq r t ( ( L+x )**2+y**2+z**2)−np . sq r t ( ( L−x )**2+y**2+z * *2 ) ) / ( 2 * L ) , \
np . arctan2 ( z , y )

def mu l t i po l ema t r i x (N: int , x i : l i s t , eta : l i s t , ph i : l i s t ) :
’ ’ ’
Returns the Jx (N^2+N) mat r i x o f mu l t i po l e c o e f f i c i e n t s f o r p ro l a t e
sphero ida l expansion .

Paramters :
N ( i n t ) : Maximum degree of evaluated legendre func t i ons
coords ( l i s t (numpy . ar ray ) ) : l i s t o f numpy ar rays ( or tup les ) w i th

( x i , eta , ph i ) i n p ro l a t e sphero ida l coord ina tes

Returns :
r e s u l t : J x N(N+2) mat r i x

’ ’ ’

#Create empty mat r i x
J = len ( x i )
shape = ( J , N**2+2*N)
r e s u l t = np . zeros ( shape ) # f i r s t opera t ion must be add i t i on , then

#mu l t i p l i c a t i o n

for j in range ( J ) : # loop over observat ions
P = scp . lpmn (N,N, eta ) [ 0 ]
Q = scp . lqmn (N,N, x i ) [ 0 ]
i = 0 # index of c o e f f i c i e n t
for n in range (N+1) : # loop over degrees

i f ( n==0) : #monopole term i s ignored
continue

else :
for m in range ( n+1) : # loop over orders from 0 to n

r e s u l t [ j , i ] = P [ : ,m, n ] *Q[ : ,m, n ] * np . cos (m* phi )
i += 1
i f m > 0:
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r e s u l t [ j , i ] = P [ : ,m, n ] *Q[ : ,m, n ] * np . s in (m* phi )
i += 1

return np . asmatr ix ( r e s u l t )

def Hmul t ipo lemat r i x (N: int , M: int , x i : l i s t , eta : l i s t , ph i : l i s t ,
L : f loa t , d : l i s t ) :

#Create empty mat r i x
J = len ( x i )
k = N**2+2*N i f N<=M else −M**2+2*N*M+N+M
shape = ( J , k )
h = np . zeros ( shape )

p = np . asarray ( [ scp . lpmn (N,N, e ) for e in eta ] )
P = p [ : , 0 , : , : ]
dP= p [ : , 1 , : , : ]
q = np . asarray ( [ scp . lqmn (N,N, x ) for x in x i ] )
Q = q [ : , 0 , : , : ]
dQ= q [ : , 1 , : , : ]
del p , q

d0 = ( d==0) ; eta0 = eta [ d0 ] ; x i0 = x i [ d0 ] ; phi0=ph i [ d0 ]
d1 = ( d==1) ; eta1 = eta [ d1 ] ; x i1 = x i [ d1 ] ; phi1=ph i [ d1 ]
d2 = ( d==2) ; eta2 = eta [ d2 ] ; x i2 = x i [ d2 ] ; phi2=ph i [ d2 ]

i = 0 # index of c o e f f i c i e n t
for n in range (N+1) : # loop over degrees

i f ( n==0) : #monopole term i s ignored
continue

else :
for m in range (min ( n+1 ,M+1 ) ) : # loop over orders from 0 to min ( n ,M)

h [ d0 , i ] = −eta0 / L * ( x i0 **2−1)/ ( x i0 **2−eta0 **2)*P[ d0 ,m, n ] \
*dQ[ d0 ,m, n ] * np . cos (m* phi0 ) \

− x i0 / L*(1−eta0 * * 2 ) / ( x i0 **2−eta0 **2)*dP [ d0 ,m, n ] *Q[ d0 ,m, n ] \
*np . cos (m* phi0 )

h [ d1 , i ] = −x i1 / L*np . sq r t ( ( x i1 **2−1)*(1−eta1 * * 2 ) ) / ( x i1 **2−eta1 **2) \
*np . cos ( phi1 )*P[ d1 ,m, n ] *dQ[ d1 ,m, n ] * np . cos (m* phi1 ) \

+ eta1 / L*np . sq r t ( ( x i1 **2−1)*(1−eta1 * * 2 ) ) / ( x i1 **2−eta1 **2) \
*np . cos ( phi1 )*dP [ d1 ,m, n ] *Q[ d1 ,m, n ] * np . cos (m* phi1 ) \

− 1 / ( L*np . sq r t ( ( x i1 **2−1)*(1−eta1 * *2 ) ) ) * np . s in ( phi1 ) \
*m*Q[ d1 ,m, n ] *P[ d1 ,m, n ] * np . s in (m* phi1 )

h [ d2 , i ] = −x i2 / L*np . sq r t ( ( x i2 **2−1)*(1−eta2 * * 2 ) ) / ( x i2 **2−eta2 **2) \
*np . s in ( phi2 )*P[ d2 ,m, n ] *dQ[ d2 ,m, n ] * np . cos (m* phi2 ) \

+ eta2 / L*np . sq r t ( ( x i2 **2−1)*(1−eta2 * * 2 ) ) / ( x i2 **2−eta2 **2) \
*np . s in ( phi2 )*dP [ d2 ,m, n ] *Q[ d2 ,m, n ] * np . cos (m* phi2 ) \

+ 1 / ( L*np . sq r t ( ( x i2 **2−1)*(1−eta2 * *2 ) ) ) * np . cos ( phi2 ) \
*m*Q[ d2 ,m, n ] *P[ d2 ,m, n ] * np . s in (m* phi2 )

i += 1
i f m > 0:
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h [ d0 , i ] = −eta0 / L * ( x i0 **2−1)/ ( x i0 **2−eta0 **2)*P[ d0 ,m, n ] \
*dQ[ d0 ,m, n ] * np . s in (m* phi0 ) \

− x i0 / L*(1−eta0 * * 2 ) / ( x i0 **2−eta0 **2)*dP [ d0 ,m, n ] \
*Q[ d0 ,m, n ] * np . s in (m* phi0 )

h [ d1 , i ] = −x i1 / L*np . sq r t ( ( x i1 **2−1) \
*(1−eta1 * * 2 ) ) / ( x i1 **2−eta1 **2)*np . cos ( phi1 ) \
*P[ d1 ,m, n ] *dQ[ d1 ,m, n ] * np . s in (m* phi1 ) \

+ eta1 / L*np . sq r t ( ( x i1 **2−1)*(1−eta1 * * 2 ) ) / ( x i1 **2−eta1 * *2 ) \
*np . cos ( phi1 )*dP [ d1 ,m, n ] *Q[ d1 ,m, n ] * np . s in (m* phi1 ) \

+ 1 / ( L*np . sq r t ( ( x i1 **2−1)*(1−eta1 * *2 ) ) ) * np . s in ( phi1 ) \
*m*Q[ d1 ,m, n ] *P[ d1 ,m, n ] * np . cos (m* phi1 )

h [ d2 , i ] = −x i2 / L*np . sq r t ( ( x i2 **2−1)*(1−eta2 * * 2 ) ) / \
( x i2 **2−eta2 **2)*np . s in ( phi2 )*P[ d2 ,m, n ] \
*dQ[ d2 ,m, n ] * np . s in (m* phi2 ) \

+ eta2 / L*np . sq r t ( ( x i2 **2−1)*(1−eta2 * * 2 ) ) / \
( x i2 **2−eta2 **2)*np . s in ( phi2 )*dP [ d2 ,m, n ] \
*Q[ d2 ,m, n ] * np . s in (m* phi2 ) \

− 1 / ( L*np . sq r t ( ( x i2 **2−1)*(1−eta2 * *2 ) ) ) * np . cos ( phi2 ) \
*m*Q[ d2 ,m, n ] *P[ d2 ,m, n ] * np . cos (m* phi2 )

i += 1
return np . asmatr ix ( h )

def Bmatr ix ( coords , dx , dy , dz , L , ro t ,N,M, k ) :
x = coords [ : , 0 ] − dx # t r a n s l a t i o n
y = coords [ : , 1 ] − dy # t r a n s l a t i o n
xr = x*np . cos ( r o t )−y*np . s in ( r o t )
y r = y*np . cos ( r o t )+x*np . s in ( r o t )
x = xr
y = yr
z = coords [ : , 2 ] − dz
d = coords [ : , 3 ]
( x i , eta , ph i ) = car2pro ( x , y , z , L )
h = Hmul t ipo lemat r i x (N,M, x i . f l a t t e n ( ) , eta . f l a t t e n ( ) , ph i . f l a t t e n ( ) , L , d )
b = mu_0 * h
return b

def pseudoinverse ( mat r i x : np . mat r i x ) :
return ( mat r i x .H*mat r i x ) . I *mat r i x .H

def rou tee ta ( s t a r t : f loa t , s top : f loa t , num = 50 , x i = 10 , ph i = 0 ,
i n c l l a s t = True ) :

’ ’ ’
For constant x i and phi , a l i s t o f ’ steps ’ p r o l a t e sphero ida l coord ina tes
i s re tu rned s t a r t i n g from −1 <= s t a r t < stop <= 1
’ ’ ’
return ( np . ones (num)* x i , np . l i nspace ( s t a r t , stop , num, endpoint = i n c l l a s t ) ,

np . ones (num)* phi )
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class Mat r i xBu i l de r ( BaseEstimator , TransformerMix in ) :
def __ i n i t __ ( se l f , dx , dy , dz , L , ro t ,N,M, k ) :

s e l f . dx= dx
s e l f . dy= dy
s e l f . dy= dy
s e l f . dz= dz
s e l f . L = L
s e l f . r o t = r o t
s e l f .N = N
se l f .M = M
se l f . k = k

def f i t ( se l f ,X , y=None ) :
return s e l f

def t rans form ( se l f ,X ) :
return Bmatr ix (X, s e l f . dx , s e l f . dy , s e l f . dz , s e l f . L ,

s e l f . ro t , s e l f .N, s e l f .M, s e l f . k )

class PSHTransformer ( BaseEstimator , TransformerMix in ) :
def __ i n i t __ ( se l f ,N,M, x i0=np . sq r t ( 2 ) ) :

s e l f .N = N
se l f .M = M
se l f . x i0=x i0

def f i t ( se l f ,X , y=None ) :
k = ( s e l f .N**2+2* s e l f .N i f s e l f .N<= s e l f .M

else −s e l f .M**2+2* s e l f .N* s e l f .M+ s e l f .N+ s e l f .M)

Q,dQ = scp . lqmn ( s e l f .N, s e l f .N, s e l f . x i0 )

s e l f .w = np . zeros ( k )
i = 0
for n in range ( s e l f .N+1) :

i f n == 0:
continue

for m in range (min ( n+1 , s e l f .M+1 ) ) :
w = (−(2*np . p i * (2 i f m==0 else 1 ) ) / ( 2 * n+1)

* np . math . f a c t o r i a l ( n+m) / np . math . f a c t o r i a l ( n−m)
* ( s e l f . x i 0 **2−1) * Q[m, n ] * dQ[m, n ]
)

s e l f .w[ i ] = w
i += 1
i f m > 0:

s e l f .w[ i ] = w
i += 1

return s e l f

def t rans form ( se l f ,X ) :
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return np . asarray (X) / s e l f .w[ np . newaxis , : ]

def i nverse_ t rans fo rm ( se l f ,X ) :
return np . asarray

class Standard iser ( BaseEstimator , TransformerMix in ) :
def __ i n i t __ ( se l f , w ) :

s e l f .w = w

def f i t ( se l f ,X , y=None ) :
return s e l f

def t rans form ( se l f ,X ) :
ws = s e l f .w [ : , np . newaxis ]
r = np . asarray (X) * ws
return r

class StdScaler ( BaseEstimator , TransformerMix in ) :
def __ i n i t __ ( s e l f ) :

pass

def f i t ( se l f ,X , y=None ) :
s e l f . scale_ = np . s td (X+np .mean(X, ax is =0) , ax is =0)
return s e l f

def t rans form ( se l f ,X ) :
return np . asarray (X) / s e l f . scale_

def AIC ( y ,X, coef ) :
’ ’ ’
Ca lcu la te Akaike ’ s In fo rma t i on C r i t e r i o n ( AIC )

Parameters :
y : 1D ar ray o f t a r ge t s
X : 2D ar ray o f data
coef : 1D ar ray o f c o e f f i c i e n t s

Returns :
AIC : Akaike ’ s In fo rma t i on C r i t e r i o n ( sca la r )

’ ’ ’

y = np . asarray ( y ) . reshape (−1) # reshape y to 1D ar ray
R = y − np . dot (X, coef ) # res i dua l s

# f i n d number o f c o e f f i c i e n t s unequal to zero
k = np .sum ( ( np . abs ( coef )>np . f i n f o ( coef . dtype ) . eps ) )

return np .sum(R**2) + 2*k
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class RandomizedSearchAIC (RandomizedSearchCV ) :
’ ’ ’
Based on the RandomizedSearchCV from the sck i t−l ea rn module . This
randomized search uses the Akaike In fo rma t i on C r i t e r i o n as a c r i t e r i o n f o r
model se l e c t i on .
’ ’ ’
def __ i n i t __ ( se l f , es t imator , pa ram_d is t r i bu t ions , * , n _ i t e r =10 ,

scor ing=None , n_jobs=None , r e f i t =True ,
cv = [ ( s l ice (None ) , s l ice (None ) ) ] , verbose=0 ,
pre_dispatch= ’ 2*n_jobs ’ ,
random_state=None , e r ro r_score=np . nan ,
r e t u rn_ t r a i n_sco re=False ) :

s e l f . pa ram_d is t r i bu t i ons = pa ram_d is t r i bu t i ons
s e l f . n _ i t e r = n_ i t e r
s e l f . random_state = random_state
s e l f . verbose = verbose
super ( ) . __ i n i t __ (

es t ima to r=est imator , scor ing=scor ing ,
pa ram_d is t r i bu t i ons=param_d is t r i bu t ions ,
n_jobs=n_jobs , r e f i t = r e f i t , cv=cv , verbose=verbose ,
pre_dispatch=pre_dispatch , e r ro r_score=error_score ,
r e t u rn_ t r a i n_sco re= re tu rn_ t ra in_sco re , n _ i t e r = n_ i t e r )

def _run_search ( se l f , eva luate_candidates ) :
’ ’ ’
Search n_ i t e r candidates from param_d is t r i bu t i ons
’ ’ ’
evaluate_candidates ( ParameterSampler (

s e l f . pa ram_d is t r i bu t ions , s e l f . n_ i t e r ,
random_state= s e l f . random_state ) )

def _f i t_and_score ( es t imator , X, y , parameters ) :
e r ro r_score = 1e6
i f parameters is not None :

es t ima to r = es t ima to r . set_params (** parameters )

s t a r t _ t ime = t ime . t ime ( )
t ry :

es t ima to r . f i t (X , y )
except Except ion as e :

f i t _ t i m e = t ime . t ime ( ) − s t a r t _ t ime
score_t ime = 0.0

tes t_score = er ro r_score
coef_ = np . zeros (191) #TODO: make va r i ba l e
est = clone ( es t ima to r )
warnings . warn ( ” Est imator� f i t �f a i l e d .�The�score�on�t h i s�t r a i n − t e s t ”

”�p a r t i t i o n�f o r�these�parameters�w i l l�be�set�to�{ 0 } .�”
” De ta i l s :�\ n%s ” . format ( er ror_score ,

t raceback . format_exc ( ) ) ,
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Fi tFa i ledWarn ing )
pr in t ( e )

else :
f i t _ t i m e = t ime . t ime ( ) − s t a r t _ t ime
tes t_score = AIC ( y ,

es t ima to r . steps [ 2 ] [ 1 ] . t rans form (
es t ima to r . steps [ 1 ] [ 1 ] . t rans form (

es t ima to r . steps [ 0 ] [ 1 ] . t rans form (X ) ) ) ,
es t ima to r . steps [ 3 ] [ 1 ] . coef_ )

score_t ime = t ime . t ime ( ) − s t a r t _ t ime − f i t _ t i m e
coef_ = es t ima to r . steps [ 3 ] [ 1 ] . coef_
est = es t ima to r

return [ tes t_score , f i t _ t ime , score_time , coef_ , es t ]

def _ fo rma t_ resu l t s ( se l f , candidate_params , out ) :
n_candidates = len ( candidate_params )
( AIC_vals , f i t _ t ime_va l s , score_t imes_vals ,
c oe f f i c i e n t s , es t ima to rs ) = zip (* out )

r e s u l t s = { }
r e s u l t s [ ’ AIC ’ ] = np . asarray ( AIC_vals )
r e s u l t s [ ’ f i t _ t i m e ’ ] = np . asarray ( f i t _ t ime_ va l s )
r e s u l t s [ ’ score_t imes ’ ] = np . asarray ( score_t imes_vals )
r e s u l t s [ ’ params ’ ] = candidate_params
r e su l t s [ ’ coef ’ ] = np . asarray ( c o e f f i c i e n t s ) . T
r e s u l t s [ ’ es t ima to r ’ ] = l i s t ( es t ima to rs )

param_resul ts = d e f a u l t d i c t ( p a r t i a l ( np . array , np . zeros ( n_candidates ) ) )

for cand_idx , params in enumerate ( candidate_params ) :
for key , value in params . i tems ( ) :

param_resul ts [ ’ param_ { : s } ’ . format ( key ) ] [ cand_idx ] = value

r e su l t s . update ( param_resul ts )

return r e s u l t s

def f i t ( se l f , X , y=None , * , groups=None , ** f i t_params ) :
’ ’ ’
Cross−v a l i d a t i o n and mu l t ime t r i c se l e c t i on are not implemented ( yet ) .
’ ’ ’
es t ima to r = s e l f . es t ima to r
base_est imator = clone ( s e l f . es t ima to r )

p a r a l l e l = Pa r a l l e l ( n_jobs= s e l f . n_jobs ,
pre_dispatch= s e l f . pre_d ispatch )

r e s u l t s = { }
w i th p a r a l l e l :

a l l_candidate_params = [ ]
a l l _ o u t = [ ]
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def evaluate_candidates ( candidate_params ) :
candidate_params = l i s t ( candidate_params )
n_candidates = len ( candidate_params )

i f s e l f . verbose > 0:
pr in t ( ” F i t t i n g�{ }�candidates . ” . format ( n_candidates ) )

out = p a r a l l e l (
delayed ( RandomizedSearchAIC . _ f i t_and_score ) (

c lone ( base_est imator ) ,
X, y , params )

for ( cand_idx , params ) in enumerate (
candidate_params ) )

a l l_candidate_params . extend ( candidate_params )
a l l _ o u t . extend ( out )

non loca l r e s u l t s
r e s u l t s = s e l f . _ fo rma t_ resu l t s ( al l_candidate_params , a l l _ o u t )
return r e s u l t s

s e l f . _run_search ( evaluate_candidates )

s e l f . r e su l t s_ = r e su l t s
i f s e l f . r e f i t :

s e l f . best_index_ = r e su l t s [ ’ AIC ’ ] . argmin ( )
s e l f . best_score_ = r e su l t s [ ’ AIC ’ ] [ s e l f . best_index_ ]
s e l f . best_params_= r e su l t s [ ’ params ’ ] [ s e l f . best_index_ ]

s e l f . bes t_est imator_ = clone ( base_est imator ) . set_params (
** s e l f . best_params_ )

s e l f . bes t_est imator_ . f i t (X , y )

s e l f . average (X, y , r e s u l t s )

return s e l f

def average ( se l f ,X , y , r e s u l t s ) :
weights = np . exp ( ( s e l f . best_score_−r e s u l t s [ ’ AIC ’ ] ) / 2 )
mask = r e su l t s [ ’ AIC ’ ] − s e l f . best_score_ <= 9.2 # smal les t weight i s ~0.01

norm = np .sum( weights [mask ] )
s e l f . avg_params_ = { }
s e l f . avg_sigmas_ = { }
for key , _ in s e l f . best_params_ . i tems ( ) :

s e l f . avg_params_ [ key ] = np .sum(
r e s u l t s [ ’ param_ { : s } ’ . format ( key ) ] [ mask ] * weights [mask ]
) / norm
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s e l f . avg_sigmas_ [ key ] = np .sum(
( r e s u l t s [ ’ param_ { : s } ’ . format ( key ) ] [ mask ]
−s e l f . avg_params_ [ key ] ) * *2 * weights [mask ]
) / norm

s e l f . weights_ = weights [mask ] / norm
s e l f . avg_est imator_ = clone ( s e l f . es t ima to r ) . set_params (

** s e l f . avg_params_ )
s e l f . avg_est imator_ . f i t (X , y )
s e l f . avg_score_ = AIC ( y ,

s e l f . avg_est imator_ . steps [ 2 ] [ 1 ] . t rans form (
s e l f . avg_est imator_ . steps [ 1 ] [ 1 ] . t rans form (

s e l f . avg_est imator_ . steps [ 0 ] [ 1 ]
. t rans form (X ) ) ) ,

s e l f . avg_est imator_ . steps [ 3 ] [ 1 ] . coef_ )

class LassoLarsAIC ( LassoLarsIC , LassoLars ) :
def __ i n i t __ ( se l f , * , f i t _ i n t e r c e p t =True , verbose=False ,

normal ize=True , precompute= ’ auto ’ , max_i ter =500 ,
eps=np . f i n f o ( np . f l oa t ) . eps , copy_X=True , p o s i t i v e =False ) :

super ( ) . __ i n i t __ ( ’ a i c ’ , f i t _ i n t e r c e p t , verbose ,
normal ize , precompute , max_iter ,
eps , copy_X , po s i t i v e )

def f i t ( se l f , X , y , copy_X=None ) :
” ” ” F i t the model using X, y as t r a i n i n g data .
Parameters
−−−−−−−−−−
X : array− l i k e o f shape ( n_samples , n_features )

t r a i n i n g data .
y : array− l i k e o f shape ( n_samples , )

t a r ge t values . W i l l be cast to X ’ s dtype i f necessary
copy_X : bool , de f au l t =None

I f provided , t h i s parameter w i l l ove r r i de the choice
o f copy_X made at ins tance c rea t i on .
I f ‘ ‘ True ‘ ‘ , X w i l l be copied ; else , i t may be ove rw r i t t en .

Returns
−−−−−−−
s e l f : ob jec t

re tu rns an ins tance of s e l f .
” ” ”
i f copy_X is None :

copy_X = s e l f . copy_X
# X, y = s e l f . _va l ida te_da ta (X, y , y_numeric=True )

X, y , Xmean, ymean , Xstd = LinearModel . _preprocess_data (
X, y , s e l f . f i t _ i n t e r c e p t , s e l f . normal ize , copy_X )

max_i ter = s e l f . max_i ter

Gram = s e l f . precompute
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alphas_ , _ , coef_path_ , s e l f . n_ i t e r _ = la rs_pa th (
X, y , Gram=Gram, copy_X=copy_X , copy_Gram=True , alpha_min =0.0 ,
method= ’ lasso ’ , verbose= s e l f . verbose , max_i ter=max_iter ,
eps= s e l f . eps , r e t u r n_n_ i t e r =True , p o s i t i v e = s e l f . p o s i t i v e )

n_samples = X. shape [ 0 ]

i f s e l f . c r i t e r i o n == ’ a i c ’ :
K = 2 # AIC

e l i f s e l f . c r i t e r i o n == ’ b i c ’ :
K = np . log ( n_samples ) # BIC

else :
raise ValueError ( ’ c r i t e r i o n�should�be�e i t h e r�b ic�or�a ic ’ )

R = y [ : , np . newaxis ] − np . dot (X, coef_path_ ) # res i dua l s

df = np . zeros ( coef_path_ . shape [ 1 ] , dtype=np . i n t ) # Degrees of freedom
for k , coef in enumerate ( coef_path_ . T ) :

mask = np . abs ( coef ) > np . f i n f o ( coef . dtype ) . eps
i f not np . any (mask ) :

continue
df [ k ] = np .sum(mask )

s e l f . alphas_ = alphas_
# Eqns . 2.15−−16 in (Zou et al , 2007)
s e l f . c r i t e r i o n _ = np .sum(R**2 , ax is =0) + K * df
n_best = np . argmin ( s e l f . c r i t e r i o n _ )

s e l f . alpha_ = alphas_ [ n_best ]
s e l f . coef_ = coef_path_ [ : , n_best ]
s e l f . _ se t_ i n t e r cep t (Xmean, ymean , Xstd )
return s e l f
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