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A B S T R A C T

In the present article two flocculation models, given in Chassagne and Safar (2020) (LG model) and Winterw-
erp (1998) (S model) are compared. Both models give the time evolution 𝑑𝐿∕𝑑𝑡 where 𝐿 is the size of a particle
undergoing flocculation, and 𝑡 is the time. The LG model is based on logistic growth theory, whereas the S
model is based on the theory originally derived by Smoluchowski. Both models have the advantage of easy
implementation in, for instance, large-scale sediment transport numerical models. However, it is found that
they do not obey the same kinetics. A series of laboratory experiments is presented where the flocculation of
a mineral clay by polyelectrolyte is studied as a function of clay concentration and shear rate. From modelling
these experiments, it is found that the LG model reproduces the time dependence of the floc sizes found
experimentally, whereas the S model does not. It is shown that the LG model can be used to model the data
over the whole range of clay concentration and shear investigated. Based on the study presented in this article,
it was found that the average floc growth in time for the clay type and conditions applied in the experiments
could be modelled by: 𝑑𝐿∕𝑑𝑡 = 40 × 10−4𝐺0.75 × [𝑒𝑥𝑝(−2 × 10−4𝐺0.75𝑡)]∕[1 + 20𝑒𝑥𝑝(−2 × 10−4𝐺0.75𝑡)]𝐿.
1. Introduction

Hydrodynamic models are used in sediment transport models to
calculate the advection and diffusion of suspended particles in the
water column. For most applications, the sediment typically is decom-
posed into two or three fractions with associated settling velocities
in the 0.1 to 1 mm/s range. For a large number of applications, this
decomposition makes it possible to correctly predict the Suspended
Particulate Matter (SPM) concentration in space and time (Normant,
2000; Manning and Dyer, 2002; Manning et al., 2006a; Lesser et al.,
2004). However, changes in particle properties by flocculation and
exposure to shear result in a change in settling velocity over time for a
given sediment fraction. These changes are currently poorly accounted
for in sediment transport models, resulting in inaccurate predictions
in coastal regions where these changes occur. Several studies have
thus focused on incorporating flocculation into sediment transport
models (Russel et al., 1989; Fettweis, 2008; Many et al., 2016; Manning
et al., 2006b). These models, however, are not predictive because
they contain adjustable parameters that are fitted to the data and,
more importantly, they do not account for specific physical processes
such as organic matter-induced flocculation or particle coiling under
shear (Chassagne and Safar, 2020). Until now, the models used to
describe flocculation have been based on Population Balance Equation
(PBE), in which flocculation is represented by the aggregation and
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break-up of similar colloidal particles, as in salt-induced flocculation.
In a recent article (Chassagne, 2021), it was shown that the ana-
lytical model based on logistic growth theory (LG model) presented
by Chassagne et al. in Chassagne and Safar (2020) could be used
to model the flocculation of suspended mineral clay (kaolinite). The
suspensions were destabilized by the addition of salt. In particular, it
was demonstrated that the LG model (1) reproduces the classical results
found for the salt-induced flocculation kinetics at the onset of the
experiments and (2) enables to study the flocculation kinetics over the
whole duration of the experiment. This last point implies that, by fitting
the experimental data over the whole duration of the experiment, it
was shown that the measured floc size 𝐿(𝑡) time evolution follows the
relation 𝑑𝐿∕𝑑𝑡 = 𝐿∕𝑡𝑏 − 𝐿2∕(𝐿𝑒𝑞𝑡𝑏) predicted by the model, where 𝑡𝑏 is
a characteristic time and 𝐿𝑒𝑞 a characteristic size, which are obtained
from the fits.

Analytical models like the one presented in Chassagne and Safar
(2020), Chassagne (2021) are required in many applications, where
estimations of the characteristic timescales of flocculation and the
equilibrium floc size of flocs should be done in a fast way. For example,
large-scale sediment transport models require flocculation models that
can be ran on multiple grid cells at the same time. This prevents models
like Population Balance Equations (PBE) models to be used for a system
vailable online 17 October 2022
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𝐿

of more than 3 equations (Shen et al., 2018). The simplest PBE model
that can be thought of is a PBE with a single equation. This equation
then represents the time evolution of a single class of particles, usually
taken to be the 𝐷50 class (the class that represents the particles of size

whereby 50 percent of all particles have a size smaller than 𝐿). Such
an equation can obviously not be used for modelling the sediment mass
transfer between classes. A minimum of two classes is required for that
purpose (Chassagne and Safar, 2020; Shen et al., 2018). A single PBE
equation can nonetheless be used under the assumption that all mineral
sediment is contained in flocs and that all flocs have the same size 𝐿(𝑡)
with 𝐿 varying in time under the influence of environmental conditions
(shear stress in particular). Such a single PBE equation is given by
Winterwerp in Winterwerp (1998). In-situ studies have demonstrated
that floc sizes are indeed dynamic and shear-dependent (Manning and
Dyer, 2007; Verney et al., 2011; Van Leussen, 1988; Soulsby et al.,
2013). The way to connect the floc size and its Stokes settling velocity –
which is the key parameter for large-scale sediment transport models –
will not be discussed in the present article but are the topic of numerous
publications (Dyer and Manning, 1999; Khelifa and Hill, 2006; Gratiot
and Manning, 2004; Manning and Dyer, 2007; Spencer et al., 2010;
Spearman et al., 2011; Maggi, 2013; Mehta, 2014).

The aim of the present article is to compare the model introduced
by Chassagne and Safar (2020) with the one presented by Winterwerp
(1998). In particular, the validity and parametrization of the models
will be discussed. A series of laboratory experiments are presented to
test the theories, where the flocculation of a mineral clay by poly-
electrolyte is studied. This type of flocculation is representative of
the flocculation occurring in-situ, whereby mineral clay is found to
be bound in different amounts to organic matter, usually in the form
of complex mixtures of biopolymers (consisting of polysaccharides,
proteins, nucleic acids, lipids and humic substances) (Safar et al.,
2019; Deng et al., 2019). The experimental setup allows studying
the dependence of flocculation on clay concentration and shear rate,
two important parameters that are found in the model presented by
Winterwerp.

In Section 2, both models are presented, and their differences are
discussed. In Section 3, the material and methods are presented. The
results are presented and discussed in Section 4, and the conclusion is
given in the last section.

2. Theory

In this section, the two theoretical models that we aim to compare
are recalled. In the first subsection, the model derived by Chassagne
and Safar (2020) is recalled. This model is based on logistic growth
theory and hence will be termed ‘‘LG model’’. In the second subsec-
tion, the model presented by Winterwerp (1998) is discussed. This
model originates from the work of Smoluchowski and, therefore, will
be termed ‘‘S model’’. The differences between the two models are
discussed in the third subsection.

2.1. Logistic growth model (LG model)

The logistic growth (LG) model is an empirical model that is found
to be very convenient to model the time evolution of colloidal suspen-
sions undergoing flocculation. We refer to Chassagne and Safar (2020),
Chassagne (2021) for further details and examples of application. The
change of floc size as a function of time is described by the equation:
𝑑𝐿
𝑑𝑡

= [𝑏(𝑡) − 𝑑(𝑡)]𝐿 (1)

whereby the (positive) functions for birth 𝑏(𝑡) and decay 𝑑(𝑡) are given
by:

𝑏(𝑡) =
𝑎𝑏
𝑡𝑏

𝑒𝑥𝑝(−𝑡∕𝑡𝑏)
1 + 𝑎𝑏𝑒𝑥𝑝(−𝑡∕𝑡𝑏)

(2)

𝑑(𝑡) =
𝑎𝑑 𝑒𝑥𝑝(−𝑡∕𝑡𝑑 ) (3)
2

𝑡𝑑 1 + 𝑎𝑑𝑒𝑥𝑝(−𝑡∕𝑡𝑑 )
The coefficients 𝑎𝑏, 𝑡𝑏, 𝑎𝑑 , 𝑡𝑑 are to be parameterized. As stated in Chas-
sagne (2020), it is emphasized that the names ‘‘birth’’ and ‘‘decay’’
are solely chosen because they appear with a plus and minus sign in
the balance equation Eq. (1). One can easily show that considering
only the birth function (𝑑 (𝑡) = 0) gives as solution a sigmoid function,
with a growth that will be limited in time. In other words, at infinite
time 𝑑𝐿∕𝑑𝑡 = 0 implying that 𝐿(𝑡 → ∞) = 𝐿𝑒𝑞 (even when no decay
term is present) where 𝐿𝑒𝑞 is a value that will depend on parameters
such as floc composition, shear rate, salinity, etc. For example, let us
consider a flocculation experiment whereby external parameters are
fixed (constant shear, given salinity and pH, no addition of organic
matter over time), as is the case for flocculation experiments that can
be realized in the lab. At 𝑡 = 0 some amount of clay and organic matter
are mixed in a jar, at a given shear. By following the evolution of the
floc size over time, one will find that the mean floc size indeed follows
a sigmoid behaviour, as eventually the flocs will reach an equilibrium
size that is strongly dependent on the amount of organic matter present
in the jar and the imposed shear rate (Deng et al., 2019; Safar et al.,
2019; Shakeel et al., 2020). The growth of flocs is therefore limited by
a depletion of free organic matter in the water (unbonded flocculant)
and/or because their size is reaching the Kolmogorov microscale, but
not because there is a steady-state between aggregation and break-up. A
steady-state would imply that there would be continuously aggregation
and break-up of matter at the surface of a floc. This would be the
analogue of the adsorption/desorption of molecules from a surface as
is studied in thermodynamics (illustrated for example by a Langmuir
isotherm (Langmuir, 1918)). This is a crucial difference between this
model and the Smoluchowski model presented in the next section. By
introducing a decay term 𝑑 (𝑡), as we will show in Fig. 9, we will be
able to model what happens at longer experimental times, after the
initial growth (birth) has occurred. It is indeed usually observed that at
these longer timescales, a reduction in size is observed. This reduction
in size can be due to two effects (not mutually exclusive): (a) an erosion
of the flocs under shear and (b) a coiling of particles under shear.
Phenomenon (b) in particular has been observed, both in-situ and in
the lab (Safar et al., 2019; Shakeel et al., 2020). This phenomenon
leads to flocs of higher density and smaller size. In Fig. 9, a decrease
of about 20% in size is such obtained. If only particle sizes are studied,
this significant reduction in floc size could be mistaken for the breaking
of flocs over time, but microscopic observation of the flocs over time
have confirmed this densification (Shakeel et al., 2020). The analytical
solution of Eq. (1) is given by:

𝐿(𝑡) = 𝐿𝑒𝑞
1 + 𝑎𝑑𝑒𝑥𝑝(−𝑡∕𝑡𝑑 )
1 + 𝑎𝑏𝑒𝑥𝑝(−𝑡∕𝑡𝑏)

(4)

where 𝐿𝑒𝑞 = 𝐿(𝑡 → ∞). The size 𝐿𝑒𝑞 can be seen as the size that the floc
would reach provided that all parameters (concentration, shear stress,
salinity...) remain constant over time. Note that the change in number
of flocs per unit volume as function of time can be modelled with an
equation similar to Eq. (4) where 𝑎𝑑 , 𝑎𝑏, 𝑡𝑑 , 𝑡𝑏 are (different) adjustable
parameters (Chassagne and Safar, 2020):

𝑛(𝑡) = 𝑛∞
1 + 𝑎𝑑𝑒𝑥𝑝(−𝑡∕𝑡𝑑 )
1 + 𝑎𝑏𝑒𝑥𝑝(−𝑡∕𝑡𝑏)

(5)

where 𝑛∞ = 𝑛(𝑡 → ∞). At times such that 𝑡 → 0 implying that 𝑡 ≪ 𝑡𝑏, 𝑡𝑑
Eq. (4) reduces to:

𝐿(𝑡 → 0) = 𝐿(𝑡 = 0) +
(𝑑𝐿
𝑑𝑡

)

𝑡=0
𝑡 (6)

where the flocculation rate
(

𝑑𝐿
𝑑𝑡

)

𝑡=0
and size at origin 𝐿(𝑡 = 0) are

defined by:
(𝑑𝐿
𝑑𝑡

)

𝑡=0
= (𝑘𝑏 − 𝑘𝑑 )𝐿(𝑡 = 0) (7)

𝐿(𝑡 = 0) =
1 + 𝑎𝑑 𝐿𝑒𝑞 (8)

1 + 𝑎𝑏
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When 𝐿(𝑡 = 0) < 𝐿𝑒𝑞 it follows that 𝑎𝑑 < 𝑎𝑏 and vice versa. The growth
and decay rates 𝑘𝑏 and 𝑘𝑑 as given by:

𝑘𝑏 =
𝑎𝑏∕𝑡𝑏

(1 + 𝑎𝑏)
(9)

𝑘𝑑 =
𝑎𝑑∕𝑡𝑑
(1 + 𝑎𝑑 )

(10)

2.2. Smoluchowski model (S model)

Smoluchowski introduced in 1917 the Population Balance Equations
(PBE) which give the time evolution of classes of colloidal particles
(flocs), a class 𝑖 being defined as a collection of particles with concen-
tration 𝑛𝑖, all particles in class 𝑖 having the same size (diameter) 𝐿𝑖.
The concentrations 𝑛𝑖 can either be given in number, mass or volume
of particles per unit of volume (Chassagne, 2020; Elimelech et al.,
1995). Many studies have since then proposed aggregation and break-
up parameters to be implemented in PBE’s (Elimelech et al., 1995;
Russel et al., 1989; Barthelmes et al., 2003; Spicer and Pratsinis, 1996;
Kusters, 1991; Flesch et al., 1999).

The simplest PBE model that can be proposed is the one equation
PBE which we call the ‘‘S model’’. This equation represents the time
evolution of a single class defined by a concentration 𝑛(𝑡) and an aver-
age particle size 𝐿 (𝑡). Unlike the LG model, the S model contains pa-
rameters related to the aggregation and break-up properties of the par-
ticles. These parameters are, in particular, functions of concentration
and shear.

In order to set-up an equation for the average particle size 𝐿 (𝑡)
as function of time first the link between 𝐿 (𝑡) and the total number
of particles (flocs) per unit of volume 𝑛(𝑡) and the number of pri-
mary particles within a floc 𝑁(𝑡) should be made. This is done in
the first subsection, where we follow the approach used by Winterw-
erp (Winterwerp, 1998), who assumes that flocs are fractal objects. The
Smoluchowski equation, which expresses the time evolution of 𝑛(𝑡), will
then be converted into an equation for the time evolution of 𝐿(𝑡). This
is done in the second subsection.

2.2.1. Link between 𝐿, 𝑛 and 𝑁
We define 𝑛(𝑡) =

∑

𝑁𝑖(𝑡) as the total number of particles (flocs) per
nit of volume at time 𝑡 and 𝑁𝑖(𝑡) as the number of primary particles
nside a floc of size 𝐿𝑖(𝑡). Primary particles are defined as the smallest
ize of particles in the system. These particles have a size 𝐿𝑝 and
t is assumed that primary particles cannot break. By aggregation of
rimary particles, flocs can be formed. By break-up of flocs, smaller
locs are produced and the particles having the smallest size that can
e produced are primary particles.

If one defines 𝑛0 = 𝑛(𝑡 = 0) to be the number of unflocculated
primary mineral sediment particles per unit of volume in a closed
volume (as for example, in a jar test experiment), it follows that 𝑛0
is a constant as function of time, whereas the size 𝐿𝑖 of particles in
suspension will be time-dependent as flocs are growing (or breaking).
The total number of primary particles per unit of volume is given by:

𝑛0 =
∑

𝑖
𝑁𝑖𝑛𝑖 (11)

Note that 𝑁1 = 1 with 𝐿1 = 𝐿𝑝 and that at 𝑡 = 0, 𝑛0 = 𝑛1. If it is
assumed that, at any moment in time, a suspension is well represented
by a characteristic size and concentration, one may write:

𝑛0 = 𝑛(𝑡)𝑁(𝑡)

0 = 𝑑𝑛
𝑑𝑡

𝑁 + 𝑛𝑑𝑁
𝑑𝑡

(12)

We have here made the assumption that only one class 𝑖 is present at
each time and hence 𝑛(𝑡) = 𝑛𝑖(𝑡)(𝑡), where the number 𝑖(𝑡) of the class
is changing at each time step. From Eq. (12), it follows that, when 𝑖
3

increases 𝐿 = 𝐿𝑖 and 𝑁 = 𝑁𝑖 increase and hence 𝑛 = 𝑛𝑖 decreases. One
may deduce that the rate of decrease of 𝑛 is given by:
𝑑𝑛
𝑑𝑡

= −1
𝑛0

𝑑𝑁
𝑑𝑡

𝑛2 (13)

The relation between number of primary particles in a floc and floc size
is given by Kranenburg (1994):

𝑁(𝑡) =
(

𝐿(𝑡)
𝐿𝑝

)𝐷
(14)

where 𝐷 is usually termed ‘‘fractal dimension’’, in reference to the study
of the flocculation of monodisperse primary particles, where the con-
cept of self-similarity can be used. Experiments have been conducted to
assess the fractal dimension for diffusion-limited, and reaction-limited
aggregates (Russel et al., 1989), where the initial growth of flocs is also
investigated. Combining Eqs. (12) and (14) gives:
1
𝑛
𝑑𝑛
𝑑𝑡

= − 1
𝑁

𝑑𝑁
𝑑𝑡

= −𝐷
𝐿

𝑑𝐿
𝑑𝑡

(15)

The volume fraction of primary particles (pp) inside a floc can be
evaluated using:

𝜙𝑝𝑝 𝑖𝑛 𝑓𝑙𝑜𝑐 =
𝑉𝑝𝑝 𝑖𝑛 𝑎 𝑓𝑙𝑜𝑐

𝑉
=

𝑁 × 𝑉𝑝
𝑉

= 𝑁
(𝐿𝑝

𝐿

)3

=
(𝐿𝑝

𝐿

)3−𝐷

(16)

where 𝑉𝑝𝑝 𝑖𝑛 𝑎 𝑓𝑙𝑜𝑐 is the volume occupied by primary particles inside a
floc, 𝑉𝑝 is the volume of a primary particle and 𝑉 ≃ 𝐿3 the volume
of a floc. We have here implicitly assumed that Class 1 and Class 𝑖(𝑡)
particles have the same shape. If this is not the case, a corresponding
multiplying constant should be inserted in the bracket term. The vol-
ume fraction 𝜙𝑝𝑝 𝑖𝑛 𝑓𝑙𝑜𝑐 is a measurable quantity, as it can be linked to
the floc density 𝜌𝑓𝑙𝑜𝑐 (to be estimated from the settling velocity of floc,
applying Stokes’ law) by realizing that:

𝜙𝑝𝑝 𝑖𝑛 𝑓𝑙𝑜𝑐 =
𝜌𝑓𝑙𝑜𝑐 − 𝜌𝑤
𝜌𝑠 − 𝜌𝑤

(17)

where 𝜌𝑤 is the absolute density of the suspending medium (water),
assuming that all the primary particles are contained in flocs (no
primary particles are left unflocculated), one gets:

𝜙𝑝𝑝 𝑖𝑛 𝑓𝑙𝑜𝑐 =
𝑛 × 𝑉𝑝𝑝 𝑖𝑛 𝑓𝑙𝑜𝑐

𝑛 × 𝑉
=

𝜙𝑠
𝑛𝑉

(18)

where 𝜙𝑠 = 𝑐∕𝜌𝑠 = 𝑛0𝐿3
𝑝 is the volume fraction of primary particles

n suspension, 𝜌𝑠 is the absolute density of a primary particle and 𝑐
he mass concentration (kg ∕m3) of primary particles in suspension.
ombining Eqs. (16) and (18):

𝑑𝑛
𝑑𝑡

= −𝐷 𝑐
𝜌𝑠

𝐿−𝐷

𝐿3−𝐷
𝑝

1
𝐷

𝑑𝐿
𝑑𝑡

(19)

By comparing with Eq. (15), one finds the relation between number 𝑛
of particles in suspension, number 𝑁 of primary particles in a floc, size
𝐿 of flocs and concentration of primary particles:

𝑛 = 𝑐
𝜌𝑠

𝐿−𝐷

𝐿3−𝐷
𝑝

= 𝑐
𝑁𝐿3

𝑝𝜌𝑠
(20)

2.2.2. Time evolution of the mean floc size L
One obtains, from the analysis originally performed by Smolu-

chowski (Elimelech et al., 1995; Chassagne, 2020; Russel et al., 1989)
that the rate of change of the number of particles in suspension is given
by:
𝑑𝑛
𝑑𝑡

= −1
2
𝛼𝛽𝑛2 (21)

In Eq. (21) the collision efficiency 𝛼 and collision frequency 𝛽 are
lass-independent, which is the underlying assumption made by Smolu-
howski. The factor 1∕2 that appears in Eq. (21) originates from the fact
hat each binary collision leads to the loss of two particles of class 𝑖(𝑡)

and the creation of one particle of class 𝑖(𝑡+𝑑𝑡). The dependence of the
flocculation rate on shear is usually expressed through the dependence
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of the collision frequency on shear in the case of orthokinetic floccu-
lation. This dependence can be expressed as (Elimelech et al., 1995;
Chassagne, 2020):

𝛽 ≃ 4𝐺𝐿3 (22)

in the case that all particles at time 𝑡 have the same size 𝐿(𝑡) as is
ssumed in this subsection. The collision efficiency 𝛼 is usually assumed
o be independent of shear.

Combining Eqs. (15), (20) and (21) one gets:

𝑑𝐿
𝑑𝑡

= 2𝛼𝐺
𝐷

𝑐
𝜌𝑠

𝐿4−𝐷

𝐿3−𝐷
𝑝

= 𝑘𝐴𝑐𝐺𝐿4−𝐷 (23)

hich corresponds to Eqs. (14), (15) proposed by Winterwerp (1998)
ut for a different prefactor as is detailed in Appendix. One notes that
𝐴 is a function of the fractal dimension 𝐷 and primary particle size
𝑝 and that 𝑘𝐴 does a-priori not depend on shear or concentration.
his formulation for 𝑑𝐿∕𝑑𝑡, based on the Smoluchowski approximation,
oes not account for a limit in growth which implies that 𝐿 is bound
o increase in time to reach unrealistic values. For this reason, breakup
unctions are introduced to limit the growth (Chassagne, 2020). The
pproach used by Winterwerp is to use a function that is scaling as:
𝑑𝑛
𝑑𝑡

= −𝑠 × 𝑛 (24)

here 𝑠 is the break-up rate. Winterwerp expresses the change in
article concentration due to breakage as:
𝑑𝑛
𝑑𝑡

= 𝑒𝑏 × 𝑠 × 𝑛 (25)

where 𝑒𝑏 is an ‘‘efficiency parameter’’ which is superfluous as it can
implicitly be included in 𝑠. Note the minus sign difference between
qs. (24) and (25). The break-up function in the PBE equation appears
oth with a + and - sign: written like in Eq. (24) it expresses the
eduction in the number of flocs when flocs are leaving the size class by
reaking, whereas written like Eq. (25) it expresses the increase in the
umber of flocs in a size class due to the breakage of flocs of larger size.
n order to limit the size of flocs, Eq. (25) should be used, as increasing
implies decreasing 𝐿. A simple expression for 𝑠 is of the form (Spicer

nd Pratsinis, 1996; Barthelmes et al., 2003):

= 𝑠𝑏

(

𝜂𝐺
𝜏∗

)𝑞
𝐿𝑝 (26)

here 𝑠𝑏, 𝑞 and 𝑝 are parameters to be fitted, 𝜂 is the viscosity of the
uspension, and 𝜏∗ is characteristic shear stress which is a measure
or the aggregate strength: the larger 𝜏∗, the less the particles are
usceptible for breakage. An expression for 𝜏∗ is given by Eq. (64). The
roduct 𝜂𝐺 is the shear stress in shear flows: the higher the stress, the
ore flocs are susceptible to break.

Combining Eqs. (15), (20) and (26) one gets:

𝑑𝐿
𝑑𝑡

=
−𝑠𝑏
𝐷

(

𝜂𝐺
𝜏∗

)𝑞
𝐿𝑝+1 = −𝑘𝐵𝐺𝑞𝐿𝑝+1 (27)

which is to be compared with eq. (23) of Winterwerp (1998):
𝑑𝐿
𝑑𝑡

= −𝑘𝐵𝐺𝑞(𝐿 − 𝐿𝑝)(𝑝+1)−(2𝑞−1)𝐿(2𝑞−1) (28)

he derivation of this expression is given in Appendix. One notes that
𝐵 is a function of the fractal dimension 𝐷, primary particle size 𝐿𝑝,
iscosity 𝜂 and rupture force 𝐹 and that 𝑘𝐵 is a-priori not dependent on
oncentration 𝑐 or shear stress 𝐺. Combining Eqs. (23) and (27) gives:
𝑑𝐿
𝑑𝑡

= 𝑘𝐴𝑐𝐺𝐿4−𝐷 − 𝑘𝐵𝐺
𝑞𝐿𝑝+1 (29)

The full flocculation model proposed by Winterwerp is given as eq. (26)
in Winterwerp (1998), where aggregation and breakage terms are
combined. Winterwerp uses 𝑝 = 2, 𝑞 = 1.5 and 𝐷 = 2 which leads
to:
𝑑𝐿 =

[

𝑘 𝑐𝐺 − 𝑘 𝐺3∕2(𝐿 − 𝐿 )
]

𝐿2 (30)
4

𝑑𝑡 𝐴 𝐵 𝑝
The reason that Winterwerp introduces the term (𝐿−𝐿𝑝) in Eq. (28) as
pposed to 𝐿 in Eq. (27) arises from the fact that at steady-state (when
𝐿∕𝑑𝑡 = 0), Eq. (30) then enables to write, see eq. (27) in Winterwerp
1998):

𝑒𝑞 = 𝐿𝑝 +
𝑘𝐴
𝑘𝐵

𝑐𝐺−1∕2 (31)

The underlying assumption is that particles can never become smaller
than the primary particles, which are assumed insensitive to shear.
Eq. (29) leads to:

𝐿𝐷+𝑝−3
𝑒𝑞 =

𝑐𝑘𝐴
𝑘𝐵

𝐺1−𝑞 (32)

Eq. (31) implies that Eq. (30) can be written as a function of 𝐿𝑒𝑞 which
gives:
𝑑𝐿
𝑑𝑡

= 𝑘𝐵𝐺
3∕2 (𝐿𝑒𝑞 − 𝐿

)

𝐿2 (33)

One can note that this equation, for a constant shear, can only describe
the growth of the mean particle size with time for 𝐿 ≤ 𝐿𝑒𝑞 since the
term at the right-hand side of the equal sign is then positive or zero.

2.3. Comparison between models

In the S model, both aggregation and breakup terms are required
to limit floc growth. When no breakup term is present, the aggregation
term will ensure that growth is unconstrained, leading to non-physical
results. In the LG model, both birth and decay functions are con-
strained: even with only a birth function 𝑏(𝑡) a finite equilibrium size
𝐿𝑒𝑞 is reached. In flocculation experiments, a suspension of aggregating
particles can reach an equilibrium size for different reasons. Growth
can be prevented for particles above a characteristic size (related in
general to the Kolmogorov microscale) because high shear stresses
make it impossible for particles to aggregate. But growth can also be
limited because of a depletion of flocculating agent. This happens when
polymeric flocculant is underdosed (Shakeel et al., 2020) even when the
shear stresses would allow further growth. In the S model, this would
imply that 𝑘𝐵 is dependent on flocculant dosage.

For the LG model, the evolution of the mean particle size for
aggregating particles is described by setting 𝑎𝑑 = 0 (i.e. 𝑘𝑑 = 0) in
Eq. (4) which then reduces to

𝐿 (𝑡) = 𝐿𝑒𝑞
1

1 + 𝑎𝑏 exp
(

−𝑡∕𝑡𝑏
) (34)

with
𝑑𝐿
𝑑𝑡

=
(

1
𝐿

− 1
𝐿𝑒𝑞

)

1
𝑡𝑏
𝐿2 (35)

As was discussed earlier in this article, considering only the birth
function 𝑏(𝑡) only means that the particle size 𝐿 is an increasing
function in time. Introducing a decay function 𝑑(𝑡) would imply that
the size 𝐿 goes through a maximum as function of time. Clearly, from
considering Eq. (33) the S model does not allow for 𝐿 to go through a
maximum (provided that 𝑘𝐵 and 𝐺 are constant — which we assume
here), therefore, in order to compare both models, Eq. (35) is to be
compared with Eq. (33). Both equations describe the growth of the
mean particle size over time but not with the same kinetics. It was
shown in Chassagne (2021) that Eq. (35) can be used to follow the
time evolution of particles sizes for kaolinite suspensions destabilized
by the addition of salt. This meant that by plotting the experimental
data according to the function (𝑑𝐿∕𝑑𝑡) ∕𝐿 a linear dependence on 𝐿
was found. The LG model indeed predicts a linear dependence, as is
found by rewriting Eq. (35) as:

1 𝑑𝐿 = 1
(

1 − 𝐿
)

(36)

𝐿 𝑑𝑡 𝑡𝑏 𝐿𝑒𝑞
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Fig. 1. Comparison between the LG model and S model (left) and their flocculation kinetics (right). The S model is plotted according to Eq. (33) and the LG model according
to Eq. (35). The characteristic growth time, equilibrium floc size and primary particle size are taken to be 𝑡𝑏 = 800 s, 𝐿𝑒𝑞 = 20 μm and 𝐿𝑝 = 1 μm. The curves corresponding to
model LG (b) are obtained using the equivalence of the two models at short timescales, i.e. Eq. (38). The curve obtained for the S model was fitted using Eq. (34), which leads
to the dashed curve (LG model). For this fit, it was necessary to use 𝑡𝑏 = 97 s and 𝐿𝑝 = 0.0046 μm.
The S model on the other hand predicts a quadratic dependence, see
Eq. (31):
1
𝐿

𝑑𝐿
𝑑𝑡

= 𝑘𝐵𝐺
3∕2 (𝐿𝑒𝑞 − 𝐿

)

𝐿 (37)

The difference between the two models is illustrated in Fig. 1 (left). The
S model was plotted according to Eq. (33) and the LG model according
to Eq. (35). The characteristic growth time, equilibrium floc size and
primary particle size were taken to be 𝑡𝑏 = 800 s, 𝐿𝑒𝑞 = 20 μm and
𝐿𝑝 = 1 μm. We made use of the equivalence between the two models at
short timescales to evaluate the other required parameters, which can
be found using the following equalities:

𝑘𝐵𝐺
3∕2 =

𝑘𝐴𝑐𝐺𝐿𝑝
(

𝐿𝑒𝑞 − 𝐿𝑝
)

𝐿𝑝
=

𝑘𝑏
(

𝐿𝑒𝑞 − 𝐿𝑝
)

𝐿𝑝
= 1

𝑡𝑏
1

𝐿𝑝𝐿𝑒𝑞
(38)

Using these parameters, the LG model would give the dotted curve (LG
model (b)). At small timescales, the S model and the LG model (b)
overlap as expected. The curve obtained for the S model was then fitted
using Eq. (34), which leads to the dashed curve (LG model). For this
fit, it was necessary to use 𝑡𝑏 = 97 s and 𝐿𝑝 = 0.0046 μm. The difference
between the flocculation kinetics of the two models is better illustrated
in Fig. 1(right), where (𝑑𝐿∕𝑑𝑡) ∕𝐿 is plotted for each model: the LG
model predicts a linear dependence on 𝐿 whereas the S model does not.
For salt-induced flocculation, it was shown that the linear dependence
of (𝑑𝐿∕𝑑𝑡) ∕𝐿 on 𝐿 is also found for the experimental data (Chassagne,
2021). It remains to be studied whether a similar dependence can be
observed for polyelectrolyte-induced flocculation.

2.3.1. Short timescales
At short times, one gets for the LG model, from Eq. (7), and

assuming that 𝐿(𝑡 = 0) ≃ 𝐿𝑝:
( 1
𝐿

𝑑𝐿
𝑑𝑡

)

𝑡→0
= 𝑘𝑏(1 − 𝑘𝑏𝑡) (39)

(𝑑𝐿
𝑑𝑡

)

𝑡=0
= 𝑘𝑏𝐿(𝑡 = 0) =

𝑎𝑏∕𝑡𝑏
(

1 + 𝑎𝑏
)2

𝐿𝑒𝑞 (40)

with,

𝐿(𝑡 = 0) ≃ 𝐿𝑝 =
1

1 + 𝑎𝑏
𝐿𝑒𝑞 (41)

For the S model, Eqs. (30) and (33) lead to
(𝑑𝐿
𝑑𝑡

)

𝑡=0
= 𝑘𝐴𝑐𝐺𝐿2

𝑝 = 𝑘𝐵𝐺
3∕2 (𝐿𝑒𝑞 − 𝐿𝑝

)

𝐿2
𝑝 (42)

It is therefore easy to make the equivalence between the two models:

𝑘𝑏 =
𝑎𝑏 1 = 1 𝐿𝑝

(

1 −
𝐿𝑝

)

= 𝑘𝐴𝑐𝐺𝐿𝑝 (43)
5

𝑡𝑏 1 + 𝑎𝑏 𝑡𝑏 𝐿𝑒𝑞 𝐿𝑒𝑞
This relation suggests that the birth rate at the onset of aggregation
should be linearly dependent on shear and the concentration of primary
particles. Note that as it is found in most cases that 𝑎𝑏 ≫ 1, we also get:

𝑘𝑏 ≃
1
𝑡𝑏

(44)

3. Material and experimental setup

3.1. Clay

The clay used in all the experiments, referred to as K-10.000, was
bought from the VE-KA company (Werkendam, The Netherlands). The
original lump of clay’s water content was 37.5%, and the sand content
was 21%. The clay was dispersed in tap water and the resulting sus-
pension had a conductivity of less than 453.1 μs cm−1 (Shakeel et al.,
2020). A Malvern Mastersizer 2000, a technique based on static light
scattering (SLS) (Ibanez Sanz, 2018), was used to determine the Particle
Size Distribution (PSD) of the clay. This clay was chosen because of its
fairly monodispersity: the original clay suspension was found to have
a mean diameter (𝐷50) of 5.6 μm. The clay is composed in majority of
non-swelling components (Shakeel et al., 2020).

3.2. Flocculant

In order to study the effect of clay concentration on the flocculation
rate, different clay concentrations were used in combination with the
anionic flocculant Zetag 4110 (BASF). The flocculant to clay concentra-
tion ratio was kept the same for all experiments, and equal to 2.5mg ∕g,
which is close to the optimal concentration for flocculation (Shakeel
et al., 2020). Zetag 4110 has a medium anionic charge with high
molecular weight.

3.3. Particle/flocs size distribution

The flocculation experiments were performed in a JLT6 jar test set-
up provided by VELP Scientifica, Italy. The size of the jar was 95mm
in diameter and 110mm in height. A single rectangular paddle was
used to stir the suspension. The paddle was 25mm in height and 75mm
in diameter and was positioned in the suspension 10mm above the
bottom of the jar. With the help of a peristaltic pump, the suspension
was pumped through the Malvern Mastersizer 2000 from the mixing
jar to the Mastersizer and then back to the mixing jar (Fig. 2). This
configuration allowed us to control the pump speed and the mixing
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Fig. 2. Schematic of the experimental setup used for measuring particle size.

jar paddle independently. The inner diameter of the connecting tubes
was 5mm, and the overall length was as short as possible, i.e. 2400mm
from the jar and back to the jar. The average shear rate in the jar
was chosen to be the lowest possible shear rate that prevents particles
settling, i.e. 75 rpm, corresponding to less than 50 s−1 (Bouyer et al.,
2005). The discharge rate 𝑄 of the pump is connected to the shear rate
𝐺 in the tubes by:

𝐺 = 4𝑄
𝜋𝑟3

where r = 2.5mm is the radius of the connecting tube. Preliminary
experiments, done by varying the shear stress in the jar and connecting
tubes, confirmed that the change in the size of flocs mainly occurred in
the connecting tubes. The lowest possible discharge rate of the pump
was 1.37mL s−1 (112 s−1). The shear rate was adjusted by changing
the pump discharge rate. With this set-up, every 30 s, it was possi-
ble to record a full PSD. All experiments were carried out at room
temperature.

4. Results and discussion

4.1. Flocculation kinetics

In this subsection, the particle size time evolution is given in Fig. 3
(top panel) for three examples. It can be noted that the c = 0.2 gL−1

sample displays multimodal particle size distributions, which makes
the analysis in terms of mean particle size (𝐷50) difficult. The data
for 0.2 gL−1 was therefore not further considered in this study. The
data was subsequently plotted in a different way to test Eqs. (36), (37)
and (39). The result is given in Fig. 4, where 𝐿 symbolizes 𝐷50(𝑡).
From the trends, it appears that at the onset of flocculation, the data
plotted as (𝑑𝐿∕𝑑𝑡) ∕𝐿 indeed follows the linear dependence predicted
by Eqs. (36) and (39). This implies that the flocculation kinetics follow
the dependence predicted by the LG model, which is in line with
the trends found for salt-induced flocculation discussed in Chassagne
(2021). This dependence cannot be obtained from the S model. If the
S model is reduced to its aggregation part (the term involving 𝑘𝐴 in
Eq. (30)), it would still not reproduce the observed behaviour as the
S model predicts an increase of (𝑑𝐿∕𝑑𝑡) ∕𝐿 as a function of 𝐿, not a
decrease as observed. A constant increase in (𝑑𝐿∕𝑑𝑡) ∕𝐿 would imply
an exponential growth of 𝐿 with time. Such exponential growth is not
observed experimentally.

In order to study the flocculation dynamics as function of time, the
data for c = 1.2 gL−1 was fitted for different time intervals 𝛥𝑡. These
time intervals are defined as 𝛥𝑡 = [0 𝑡𝑓𝑖𝑡], where 𝑡𝑓𝑖𝑡 can be varied.
An illustration is given in Fig. 5. The LG model is used for fitting. The
model results for several time intervals 𝛥𝑡 are shown in Fig. 5 (right).
The relation between 𝐿𝑒𝑞 and 𝑘𝑏 ≃ 1∕𝑡𝑏 is represented in Fig. 5 (left). It
is found that both 𝐿𝑒𝑞 and 𝑡𝑏 are increasing linear functions of 𝛥𝑡 until
𝛥𝑡 = 1000 s, and

𝐿 𝜇𝑚 = 1.54𝑡1.15
6

𝑒𝑞 ( ) 𝑏
𝑡𝑏 = 0.2𝛥𝑡 (45)

It was also found that the parameter 𝑎𝑏 could be set constant, as it
barely varied with the time interval durations. It was set to its average
value of 16.6.

The reason that 𝐿𝑒𝑞 and 𝑘𝑏 are functions of the time interval 𝛥𝑡
is due to the change in flocculation kinetics. At the start of floccula-
tion, when clay and polyelectrolyte are mixed, the clay particles will
extremely rapidly bind to the bare polyelectrolyte strands. For the
smallest time intervals giving meaningful results (𝛥𝑡 = 90 s), it is
found that 𝐿 (0) = 7.8 μm which is in agreement with the clay primary
particles size. For longer fitting time intervals, 𝐿 (0) becomes a function
of 𝛥𝑡 for 𝑡 ≲ 1500 s as 𝐿 (0) and 𝐿𝑒𝑞 are linked by Eq. (41). It is
then found that 𝐿 (0) is increasing linearly with 𝛥𝑡. During the period
𝑡 ≲ 1500 s two types of flocculation occur: (a) the remaining mineral
clay particles in suspension (if any) are captured by the existing flocs
and (b) floc–floc aggregation occur, leading to a change in flocculation
kinetics. This is reflected in a change in 𝐿𝑒𝑞 and 𝑘𝑏 but especially in a
growth in 𝐿 (0) as the ‘‘primary’’ particle is not a mineral clay particle
anymore but a floc. For time intervals such that 𝛥𝑡 > 1500 s, 𝐿 (𝑡) is not
a function of 𝛥𝑡 anymore as 𝐿 (𝑡 > 1500 s) has reached a constant value.
In that case, it is found that the average value of 𝐿 (0) is about 60 μm,
which can be considered as a good estimate for the primary floc size
over the whole experimental range.

From this study, and the results illustrated in Fig. 5 (left), it can be
concluded that the same fitting parameters cannot be used for the (fast)
flocculation of unbonded mineral clay and polyelectrolyte strands or for
the flocculation of already formed flocs. This is why it was proposed
in Chassagne (2021) to separate SPM in two classes: one class (Class
1) being defined as unflocculated clay mineral particles and one class
(Class 2) that is composed of flocs (mineral clay bound to organic
matter). The mass transfer from Class 1 to Class 2 then obey the fast
kinetics observed here at small 𝛥𝑡 whereas the flocculation occurring in
Class 2 (the aggregation of flocs lead to a new floc, that by definition
belongs to Class 2) can be modelled, in good approximation, using
the parameters found from fitting the data until an equilibrium size
is reached (𝛥𝑡 > 1500 s).

In the following two sections, where the dependence on clay con-
centration and shear will be investigated, two time intervals will be
studied: 𝛥𝑡 = 400 s and 𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑 , whereby 𝛥𝑡𝑒𝑛𝑑 represents the time
interval between the start and the end of the experiment. In all cases
the mean particle size 𝐿(𝑡) has reached a constant value when the time
corresponding to the end of the experiment is reached.

4.2. Dependence on clay concentration

The dependence of 𝐿(𝑡) on clay concentration was studied for con-
centrations between 0.4 and 1.6 gL−1 which is within the concentration
range for which the measurements are not limited by light detection
issues. A constant shear rate of 112 s−1 is used in all experiments.
The time evolution of the mean particle size is given in Fig. 6. Every
experiment was replicated 3 or 4 times. The error bars in Fig. 6 (right)
represent the standard deviation when averaging over all experiments.
The parameters used for fitting the data shown in this figure are
given in Table 1. As the parameter 𝑎𝑏 was not changing much with
clay concentration, the average value of 𝑎𝑏 overall concentrations was
chosen for each time series.

From the fit values for all clay concentrations used, the concentra-
tion dependence of 𝐿𝑒𝑞 and 𝑘𝑏 ≃ 1∕𝑡𝑏 can be studied, see Figs. 7 and
8. Eq. (43) tells that at short 𝛥𝑡 the flocculation rate should be linearly
proportional to concentration. This is indeed found, even though the
dependence on clay concentration is rather mild. For 𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑 it is
found that 𝑡𝑏 ≃ 1∕𝑘𝑏 does not significantly depend on clay concen-
tration. At short times, see Fig. 8, it is observed that the flocculation
rate (𝑑𝐿∕𝑑𝑡)𝑡→0 is increasing with clay concentration. It follows that
𝑑𝐿∕𝑑𝑡 scales with 𝐿 (not shown) since 𝐿 is increasing linearly
( )𝑡→0 𝑒𝑞 𝑒𝑞
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Fig. 3. Top panel: Particle size distributions for different clay concentrations (2.5 mg∕g flocculant (Zetag 4110) to clay ratio). A constant shear rate of 112 s−1 is applied. Bottom
panel: Particle size distributions for different shears (2.5 mg∕g flocculant (Zetag 4110) to clay ratio, 1.2 g∕L clay.
Fig. 4. (dL/dt)/L as function of L and time, for suspensions having 2.5 mg∕g flocculant (Zetag 4110) to clay ratio. A constant shear rate of 112 s−1 is applied. The curves represent
fits for 1.2 g∕L.
Table 1
Fit parameters related to Fig. 6.
𝑐 (g∕L) 𝛥𝑡 = 400 s 𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑

𝐿𝑒𝑞 (μm) 𝑡𝑏 (s) 𝑎𝑏 𝑘𝑏 (s−1) 𝐿𝑒𝑞 (μm) 𝑡𝑏 (s) 𝑎𝑏 𝑘𝑏 (s−1)

0.4 151 79 20 0.011 620 423 10.5 0.0021
0.6 145 98 20 0.009 598 368 10.5 0.0025
0.8 210 81 20 0.011 660 257 10.5 0.0035
1.0 269 81 20 0.011 928 277 10.5 0.0032
1.2 297 75 20 0.012 889 295 10.5 0.0030
1.4 469 85 20 0.011 918 202 10.5 0.0045
1.6 460 83 20 0.011 1013 208 10.5 0.0043
7
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Fig. 5. Left: Particle size evolution as function of time, for a suspension consisting of 1.2 g∕L clay and 2.5 mg∕g flocculant (Zetag 4110) to clay ratio. A constant shear rate of
112 s−1 is applied. The curves represent fits for given time intervals as indicated next to each curve. The curve without indication represents the fit for the whole duration of the
experiment. Right: 𝐿𝑒𝑞 as function of 𝑘𝑏 found from fitting the particle size evolution as function of time for different time intervals 𝛥𝑡.
Fig. 6. Left: 𝐷50 as function of time for the onset of flocculation; Right: 𝐷50 as function of time for the whole duration of the experiments. The error bars indicate the differences
observed when averaging over 3 or 4 measurements; the curves indicated the fits; the parameters for the fit are given in Table 1. The flocculant (Zetag 4110) to clay ratio is 2.5
mg∕g.
with clay concentration, see Fig. 7. It was observed that the low shear
rate of 112 s−1 did not produce a continuous flow of flocs in the pipes.
Repeated measurements have confirmed that this shear rate leads to a
large experimental error, as is clear from Fig. 6. For this reason, this
shear rate was not used in subsequent shear rate dependence measure-
ments, where only higher shear rates were used, which produced a
continuous flow of flocs in the pipes. The advantage of working at 112
s−1 is that, in contrast to the shear experiments presented in the next
section, the data can be fitted using only a birth function.

4.3. Dependence on shear

In order to study the effect of shear on the flocculation rate, exper-
iments were performed at different shears, for a given clay concentra-
tion of 1.2 gL−1 and flocculant (Zetag 4110) to clay concentration ratio
of 2.5mg g−1. Three examples of particle size distribution at different
shear are given in Fig. 3(bottom panel). The time evolution of the
mean particle size is given in Fig. 9. Every experiment was reproduced
3 or 4 times, leading to the error bars represented in the figure. The
parameters used for fitting the data shown in this figure are given in
Table 2. As the parameter 𝑎𝑏 was not changing much with shear and
time 𝛥𝑡, the average value of 𝑎 overall shears was chosen for all-time
8

𝑏

series. At short times (𝛥𝑡 = 400 s) only a birth function was used for
the fit.

As discussed in Shakeel et al. (2020), after a shearing period at
sufficiently high shear, the dangling ends of flocs tend to coil, and
the flocs get smaller until they reach a size that is in good approx-
imation equal to the Kolmogorov microscale, see Fig. 9. In order to
fit the decrease of 𝐿 over time, it is necessary to introduce a decay
term, as shown in Section 4.3. This decay is associated with a large
characteristic time 𝑡𝑑 resulting in a small 𝑘𝑑 as in good approximation
𝑡𝑑 ≃ 1∕𝑘𝑑 . The associated parameters are given in Table 2. It was found
that the parameter 𝑎𝑑 was not changing much with shear, and it was
therefore taken equal to its average value over all shears.

From the fit values for all shears used, the shear dependence of 𝐿𝑒𝑞
and 𝑘𝑏 can be studied, see Figs. 7 and 8. The decrease of 𝐿𝑒𝑞 with shear
is modelled by:

𝐿𝑒𝑞 (𝛥𝑡 = 400𝑠) = 5 × 106𝐺−1.56

𝐿𝑒𝑞
(

𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑
)

= 1 × 106𝐺−1.52 (46)

where it should be noted that 𝐿𝑒𝑞 is given in μm. For both 𝛥𝑡 = 400 s
and 𝛥𝑡 = 𝛥𝑡 it is found that 𝑘 is proportional to shear between 281
𝑒𝑛𝑑 𝑏
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Fig. 7. 𝑘𝑏 and 𝐿𝑒𝑞 as function of clay concentration 𝑐 (g∕L) and shear 𝐺 (s−1). All suspensions have 2.5 mg∕g flocculant (Zetag 4110) to clay ratio. A constant shear rate of 112 s−1

is applied for the concentration dependence figures. A clay concentration of 1.2 g∕L is used on the shear rate dependence figures. The curves represent fits as indicated in the
text.
Fig. 8. The slope at origin (𝑑𝐿∕𝑑𝑡)𝑡≥0 as function of clay concentration 𝑐 (g∕L) and shear 𝐺 (s−1). All suspensions have 2.5 mg∕g flocculant (Zetag 4110) to clay ratio. A constant
shear rate of 112 s−1 is applied for the concentration dependence figures. A clay concentration of 1.2 g∕L is used on the shear rate dependence figures. The curves represent fits
as indicated in the text.
s−1 and 1336 s−1 (see Table 2 and Fig. 7) according to:

𝑘𝑏 ≃
1
𝑡𝑏

≃ 1.9 × 10−4𝐺0.75 (47)

This leads to the following correlation between 𝐿𝑒𝑞 and 𝑘𝑏:

𝐿𝑒𝑞 (𝛥𝑡 = 400𝑠) ≃ 0.022𝑘−2.07𝑏

𝐿
(

𝛥𝑡 = 𝛥𝑡
)

≃ 0.1𝑘−2.07 (48)
9

𝑒𝑞 𝑒𝑛𝑑 𝑏
where again 𝐿𝑒𝑞 is given in μm. At high shear (> 700 s−1) and 𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑
it is found that 𝐿𝑒𝑞 follows the trend predicted by the Kolmogorov
microscale, and therefore can be approximated by:

𝐿𝑒𝑞
(

𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑 , 𝐺 > 700 s−1
)

=
(𝐺
𝜐

)−0.5
(49)

where 𝜐 = 10−6 m2/s is the kinematic viscosity of water. As is clear
from Fig. 7, for 𝐺 > 700 s−1 the curves representing Eqs. (46),
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Table 2
Fit parameters related to Fig. 9.
𝐺 (s−1) 𝛥𝑡 = 400 s 𝛥𝑡 = 𝛥𝑡𝑒𝑛𝑑

𝐿𝑒𝑞 (μm) 𝑡𝑏 (s) 𝑎𝑏 𝑘𝑏 (s−1) 𝐿𝑒𝑞 (μm) 𝑡𝑏 (s) 𝑎𝑏 𝑘𝑏 (s−1) 𝑡𝑑 (s) 𝑎𝑑 𝑘𝑑 (s−1)

281 743 68 18 0.014 195 76 18 0.012 3382 3.5 2.3×10−4
427 330 44 18 0.021 93 51 18 0.018 1319 3.5 5.9×10−4
635 204 38 18 0.025 56 43 18 0.022 1246 3.5 6.2×10−4
807 115 29 18 0.032 32 34 18 0.027 869 3.5 8.9×10−4
958 105 27 18 0.035 28 30 18 0.031 931 3.5 8.3×10−4
1147 101 25 18 0.038 26 27 18 0.035 1249 3.5 6.2×10−4
1336 71 25 18 0.036 17 27 18 0.033 2198 3.5 3.5×10−4
Fig. 9. Left: 𝐷50 as function of time for the onset of flocculation; the curves indicated the fits; Right: 𝐷50 as function of time for the whole duration of the experiments. The error
bars indicate the differences observed when averaging over 3 or 4 measurements; the parameters for the fit are given in Table 2; The flocculant (Zetag 4110) to clay ratio is 2.5
mg∕g for 1.2 g∕L clay.
(49) are in close agreement and the difference in power of 𝐺 is not
noticeable. Eqs. (46) can therefore be used for the whole range of shear
investigated.

The slope at origin (𝑑𝐿∕𝑑𝑡)𝑡→0 decreases with 𝐺, which is in line
with the estimation obtained from Eq. (48), using Eq. (8):

(𝑑𝐿∕𝑑𝑡)𝑡→0 = 𝑘𝐵𝐿 (𝑡 → 0) ≃ 𝑘−1.07𝑏 ≃ 𝐺−0.8 (50)

The fit (black curve in Fig. 8) gives, with (𝑑𝐿∕𝑑𝑡)𝑡→0 in μm∕s:

(𝑑𝐿∕𝑑𝑡)𝑡→0 = 313𝐺−0.8 (51)

5. Conclusions

In this article, two models for flocculation, one based on logistic
growth theory (LG model) and the other on Smoluchowski’s approach
(S model), have been compared. Two series of experiments have been
used for the comparison to explore the dependence of the model pa-
rameters on shear and clay concentration. It was found that kinetics of
flocculation can be modelled with the LG model, whereas the S model
does not reproduce the observed dependence on time of the mean floc
size (𝐷50) represented by 𝐿 (𝑡). By fitting the time evolution of 𝐿 (𝑡),
it was found that both the equilibrium floc size 𝐿𝑒𝑞 and 𝑡𝑏 which are
parameters for the LG model are a function of the time interval used for
fitting. This was linked to the change in flocculation kinetics over time:
at the onset of the experiment, the flocculation is dominated by the ag-
gregation of unbonded mineral clay to polyelectrolyte strands, whereas
at larger times, the flocculation is dominated by floc–floc aggregation.
It was found that the floc–floc aggregation could be modelled over
the whole experimental time interval with the same parameters, using
the LG model. As has already been reported (Elimelech et al., 1995;
Shakeel et al., 2020), flocs created by the addition of polyelectrolyte
re-conform in the flow over time. This leads to a decrease in floc size
at long time scales. The LG model can be used to model both growth
and decay occurring over time, from which the characteristic timescales
10
for growth and decay can be found. Not accounting for this decrease
occurring at a long time, a general fitting function for a system of
suspended clay destabilized by the addition of flocculant is found using
Eqs. (46), (47) and is given by:

𝐿 (𝑡) = 𝑎𝐿𝑐𝐺
−1.5 1

1 + 𝑎𝑏𝑒𝑥𝑝
(

−𝑎𝑡𝐺0.75𝑡
) (52)

where 𝑎𝐿, 𝑎𝑏 and 𝑎𝑡 are empirical parameters that do not depend on
concentration nor shear. These parameters, however, are expected to
be function of the flocculant to clay ratio, which in the present study
was kept constant. To give an order of magnitude, based on the fits
reported in the current article, 𝑎𝐿 ≃ 5×106 (μm L g−1 s1.5), 𝑎𝑏 ≃ 20 and
𝑎𝑡 ≃ 2 × 10−4 (s−0.25). Eq. (52) can be differentiated to:

𝑑𝐿
𝑑𝑡

= 𝑎𝑏𝑎𝑡𝐺
0.75 𝑒𝑥𝑝

(

−𝑎𝑡𝐺0.75𝑡
)

1 + 𝑎𝑏𝑒𝑥𝑝
(

−𝑎𝑡𝐺0.75𝑡
)𝐿 (53)

Eq. (53) is of the type that can be implemented in a sediment transport
model.
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Appendix

In this appendix, the derivations given in Winterwerp (1998) are
discussed.

A.1. Aggregation term

Combining Eqs. (21) and (22) leads to
𝑑𝑛
𝑑𝑡

= −8
3
𝛼𝐺𝐿3

𝑖 𝑛
2 (54)

his equation is to be compared with Eq. (11) used by Winterwerp
1998) which reads
𝑑𝑛
𝑑𝑡

= −3
2
𝜋𝑒𝑐𝑒𝑑𝐺𝐿3𝑛2 (55)

he parameter 𝑒𝑐 is defined by Winterwerp as ‘‘the efficiency parameter
s a function of the physicochemical properties of the sediment and
ater and of the organic compounds in the sediment’’. The efficiency
arameter 𝑒𝑑 is defined by Winterwerp as ‘‘an (efficiency) parameter
or diffusion’’. The product 𝑒𝑐𝑒𝑑 can therefore be seen as the collision
fficiency

= 𝑒𝑐𝑒𝑑 (56)

he origin of the 3
2𝜋 in Eq. (55) is unknown. Combining Eqs. (17) and

18) yields

pp in floc =
𝜌𝑓𝑙𝑜𝑐 − 𝜌𝑤
𝜌𝑠 − 𝜌𝑤

=
𝑐∕𝜌𝑠
𝑛𝑉

(57)

which is to be compared with Eq. (2) of Winterwerp (1998), which
reads

𝜙 =
𝜌𝑠 − 𝜌𝑤

𝜌𝑓𝑙𝑜𝑐 − 𝜌𝑤
𝑐
𝜌𝑠

= 𝑓𝑠𝑛𝐿
3 (58)

here Winterwerp uses 𝑉 = 𝑓𝑠𝐿3, the shape factor 𝑓𝑠 being equal
o 𝜋∕6 for spherical flocs. Note that the 𝜙 defined by Winterwerp
orresponds to

=
𝜙𝑠

𝜙pp in floc
(59)

and not to 𝜙𝑠 as he claims. Combining Eqs. (20), (22) and (23), gives

𝑑𝐿
𝑑𝑡

= 2𝛼𝐺
𝐷

𝑐
𝜌𝑠

𝐿4−𝐷

𝐿3−𝐷
𝑝

= 𝑘𝐴𝑐𝐺𝐿4−𝐷 (60)

hich corresponds with Eqs. (14,15) proposed by Winterwerp but for
different prefactor originating from the difference between Eqs. (54),

55).

.2. Break-up term

The simplest models assume that 𝑠, defined in Eq. (26), scales
ith the size of particles, i.e. 𝑝 = 1. However, in the case of fractal

flocs as the ones formed by salt-induced aggregation of hard spheres,
the smaller the fractal dimension, the less particle bonds per ag-
gregate volume, the smaller the floc strength. Therefore the break-
age rate should increase with decreasing fractal dimension 𝐷, which

arthelmes (Barthelmes et al., 2003) accounts for by introducing the
erm:

1∕3
𝑝

(

𝐿
𝐿𝑝

)3∕𝐷
(61)

n Eq. (26) to yield:

= 𝑠𝑏

(

𝜂𝐺
𝜏∗

)𝑞
𝑉 1∕3
𝑝

(

𝐿
𝐿𝑝

)3∕𝐷
(62)

Note that this implies that:

𝑝 = 3∕𝐷 (63)
11
The break-up rate given by Winterwerp by (see Eqs. (16,17) in Winter-
werp, 1998) is:

𝑠 = 𝑎
𝑇

(

𝜂𝐺
𝜏∗

)𝑞∗ (𝐿 − 𝐿𝑝

𝐿𝑝

)𝑝∗

(64)

where we substituted the turbulence induced stress 𝜏𝑡 = 𝜂𝐺 (Eq. (21)
in Winterwerp, 1998). In our notation 𝜏𝑦 = 𝜏∗ is the strength of floc.
The parameters 𝑎, 𝑝∗ and 𝑞∗ are empirical. The parameter 𝑇 is defined
by Winterwerp as ‘‘the time scale of the disrupting eddies’’ which he
assumes to be 𝑇 ≃ 1∕𝐺.

Winterwerp furthermore follows the reasoning of Kranenburg (Kra-
nenburg, 1994) which estimates that:

𝜏∗ ≃ 𝑛𝑏𝐹 (65)

where 𝐹 is the rupture force of a bond (𝑁) which is implicitly assumed
not to depend on 𝐿 and 𝑛𝑏 is the number of bonds per unit area. Because
of the self-similarity property of fractals, it follows that 𝑛𝑏 = 𝑚0∕𝐿2

where 𝑚0 is a constant, and hence:

𝜏∗ ≃
𝑚0

𝐿2
𝐹 (66)

The fact that 𝜏∗ then scales with 𝐿−2 is therefore purely a consequence
of assuming flocs to be fractal objects. The relation between floc’s
rupture and size has been experimentally tested whereby a single floc
is pulled apart in tensile mode (Yeung and Pelton, 1996). It has been
demonstrated that the rupture depends on the fractal dimension of
the floc: it is the narrowest section cross-section in a fractal object
which determines its strength, which does not need to be correlated
with particle size. For compact flocs (high fractal dimension), the weak
points are on the periphery, and therefore these flocs are prone to
experience surface erosion. For low fractal dimension flocs, on the
other hand, their narrowest cross-sections can be located anywhere,
and hence they tend to break in two. This latter case is in line with
the initial assumption that all flocs are assumed to have the same size
at all times. It follows that Eq. (64) can be written:

𝑠 = 𝑎𝐺
(

𝜂𝐺
𝐹

𝐿2
)𝑞∗ (𝐿 − 𝐿𝑝

𝐿𝑝

)𝑝∗

(67)

For situations where 𝐿 ≫ 𝐿𝑝 one gets:

𝑠 = 𝑎𝐺𝑞∗+1

𝐿𝑝
𝑝

( 𝜂
𝐹

)𝑞∗
𝐿2𝑞∗+𝑝∗
𝑝 (68)

Comparing Eqs. (62), (68), one finds the equivalence

𝑞 = 𝑞∗ + 1

𝑝 = 2𝑞∗ + 𝑝∗ (69)

interwerp uses 𝑝∗ = 1 and 𝑞∗ = 0.5 which implies that 𝑝 = 2
nd 𝑞 = 1.5. The fragmentation exponent 𝑞 is usually found to be
.5 < 𝑞 < 6.5 (Barthelmes et al., 2003) and as discussed above one
sually assumes 3 ≥ 𝑝 ≥ 1.

From Eq. (15) one gets:
1
𝑛
𝑑𝑛
𝑑𝑡

= −𝐷
𝐿

𝑑𝐿
𝑑𝑡

= 𝑒𝑏 × 𝑠 (70)

which leads to:

𝑑𝐿
𝑑𝑡

= −𝑒𝑏 × 𝑎𝐺
(

𝜂𝐺
𝐹

𝐿2
)𝑞∗ (𝐿 − 𝐿𝑝

𝐿𝑝

)𝑝∗

× 𝐿
𝐷

(71)

= −𝑘𝐵𝐺𝑞∗+1 (𝐿 − 𝐿𝑝
)𝑝∗ 𝐿2𝑞∗+1 (72)

which is to be compared with Eqs.(22, 23) of Winterwerp (1998).

References

Barthelmes, G., Pratsinis, S.E., Buggisch, H., 2003. Particle size distributions and
viscosity of suspensions undergoing shear-induced coagulation and fragmentation.
Chem. Eng. Sci. 58 (13), 2893–2902.

http://refhub.elsevier.com/S0278-4343(22)00217-5/sb1
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb1
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb1
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb1
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb1


Continental Shelf Research 250 (2022) 104864W. Ali and C. Chassagne
Bouyer, D., Coufort, C., Line, A., Do-Quang, Z., 2005. Experimental analysis of floc
size distributions in a 1-L jar under different hydrodynamics and physicochemical
conditions. J. Colloid Interface Sci. 292 (2), 413–428.

Chassagne, C., 2020. Introduction to Colloid Science, Delft. Academic Press, ISBN:
9789065624376.

Chassagne, C., 2021. A simple model to study the flocculation of suspensions over time.
Chem. Eng. Res. Des. 172, 302–311.

Chassagne, C., Safar, Z., 2020. Modelling flocculation: Towards an integration in
large-scale sediment transport models. Mar. Geol. 430, 106361.

Deng, Z., He, Q., Safar, Z., Chassagne, C., 2019. The role of algae in fine sediment
flocculation: in-situ and laboratory measurements. Mar. Geol. 71–84, 413.

Dyer, K.R., Manning, A.J., 1999. Observation of the size settling velocity and effective
density of flocs, and their fractal dimensions. J. Sea Res. 41 (1–2), 87–95.

Elimelech, M., Gregory, J., Jia, X., Williams, R., 1995. Particle Deposition and
Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann.

Fettweis, M., 2008. Uncertainty of excess density and settling velocity of mud flocs
derived from in situ measurements. Estuar. Coast. Shelf Sci. 78 (2), 426–436.

Flesch, J.C., Spicer, P.T., Pratsinis, S.E., 1999. Laminar and turbulent shear-induced
flocculation of fractal aggregates. AIChE J. 45 (5), 1114–1124.

Gratiot, N., Manning, A.J., 2004. An experimental investigation of floc characteristics
in a diffusive turbulent flow. J. Coastal Res. SI (41), 105–113.

Ibanez Sanz, M., 2018. Flocculation and Consolidation of Cohesive Sediments under
the Influence of Coagulant and Flocculant (Ph.D. thesis). Technical University of
Delft, Netherlands.

Khelifa, A., Hill, P.S., 2006. Models for effective density and settling velocity of flocs.
J. Hydraul. Res. 44 (3), 390–401.

Kranenburg, C., 1994. The fractal structure of cohesive sediment aggregates Estuarine.
Coastal Shelf Sci. 39 (6), 451–460.

Kusters, K., 1991. The Influence of Turbulence on Aggregation of Small Particles in
Agitated Vessels (Ph.D. thesis). Eindhoven University of Technology, Eindhoven,
The Netherlands.

Langmuir, I., 1918. The adsorption of gases on plane surface of glass mica and platinum.
J. Am. Chem. Soc. 40 (9), 1361–1402. http://dx.doi.org/10.1021/ja02242a004.

Lesser, G., R, Roelvink, J., V, Van Kester, J., Stelling, G., 2004. Development and
validation of a three-dimensional morphological model. Coastal Eng. 51 (8-9),
883–915.

Maggi, F., 2013. The settling velocity of mineral biomineral, and biological particles
and aggregates in water. J. Geophys. Res. Oceans 118 (4), 2118–2132.

Manning, A.J., Bass, S.J., Dyer, K.R. and, 2006a. Floc properties in the turbidity
maximum of a mesotidal estuary during neap and spring tidal conditions. Mar.
Geol. 235 (1-4), 193–211.

Manning, A.J., Dyer, K.R., 2002. A comparison of floc properties observed during neap
and spring tidal conditions. Proc. InMar. Sci. 5, 233–250.
12
Manning, A.J., Dyer, K.R., 2007. Mass settling flux of fine sediments in northern
European estuaries: measurements and predictions. Mar. Geol. 245 (1–4), 107–122.

Manning, A.J., Whitehouse, R., Uncles, R. and, 2006b. Suspended particulate matter:
the measurements of flocs. pp. 211–260.

Many, G., Bourrin, F., de Madron, X.D., Pairaud, I., Gangloff Verney, R., Menniti, C.,
Le Berre, D., 2016. Particle assemblage characterization in the rhone river rofi. J.
Mar. Syst. 157, 39–51.

Mehta, A.J., 2014. an Introduction to Hydraulics of Fine Sediment Transport. World
Scientific, Hackensack, N. J.

Normant, C.L., 2000. Three-dimensional modelling of cohesive sediment transport in
the loire estuary. Hydrol. Process. 14 (13), 2231–2243.

Russel, W.B., Saville, D.A., Schowalter, W.R., 1989. Colloidal Dispersions. Cambridge
University Press.

Safar, Z., Rijnsburger, S., Sanz, M.I., Chassagne, C., Manning, A., Pietrzak, J., Souza, A.,
Kessel, T.van., Horner-Devine, A., Flores, R., McKeon, M., 2019. Characterization
and dynamics of suspended particulate matter in the near field of the rhine river
plume during a neap tide. In: Geophysical Research Abstracts (Vol. 21).

Shakeel, A., Safar, Z., Ibanez, M., Paassen, L., Chassagne, C., 2020. Flocculation of clay
suspensions by anionic and cationic polyelectrolytesa systematic analysis. Minerals
1–24.

Shen, X., Lee, B.J., Fettweis, M., Toorman, E.A., 2018. A tri-modal flocculation model
coupled with TELEMAC for estuarine muds both in the laboratory and in the field.
Water Res. 145, 473–486.

Soulsby, R.L., Manning, A.J., Spearman, J., Whitehouse, R.J.S., 2013. Settling velocity
and mass settling flux of flocculated estuarine sediments. Mar. Geol. 339, 1–12.

Spearman, J.R., Manning, A.J., Whitehouse, R.J.S., 2011. The settling dynamics of
flocculating mud:sand mixtures: Part 2 - numerical modelling. Ocean Dyn. http:
//dx.doi.org/10.1007/s10236-011-0385-8.

Spencer, K.L., Manning, A.J., Droppo, I.G., Leppard, G.G., Benson, T., 2010. Dynamic
interactions between cohesive sediment tracers and natural mud. J. Soils Sedim.
10 (7), http://dx.doi.org/10.1007/s11368-010-0291-6.

Spicer, P., Pratsinis, S., 1996. Coagulation and fragmentation: Universal steady-state
particle-size distribution. AIChE J. 42 (6), 1612–1620.

Van Leussen, W., 1988. Aggregation of Particles Settling Velocity of Mud Flocs A Review
in Physical Processes in Estuaries. Springer, Berlin, Heidelberg, pp. 347–403.

Verney, R., Lafite, R., Brun-Cottan, J.C., Hir, P.Le., 2011. Behaviour of a floc population
during a tidal cycle: laboratory experiments and numerical modelling. Cont. Shelf
Res. 31 (10), S64–S83.

Winterwerp, J.C., 1998. A simple model for turbulence induced flocculation of cohesive
sediment. J. Hydraul. Res. 36 (3), 309–326.

Yeung, A., Pelton, R., 1996. Micromechanics: a new approach to studying the strength
and breakup of flocs. J. Colloid Interface Sci. 184 (2), 579–585.

http://refhub.elsevier.com/S0278-4343(22)00217-5/sb2
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb2
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb2
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb2
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb2
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb3
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb3
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb3
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb4
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb4
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb4
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb5
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb5
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb5
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb6
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb6
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb6
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb7
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb7
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb7
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb8
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb8
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb8
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb9
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb9
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb9
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb10
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb10
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb10
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb11
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb11
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb11
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb12
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb12
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb12
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb12
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb12
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb13
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb13
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb13
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb14
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb14
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb14
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb15
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb15
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb15
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb15
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb15
http://dx.doi.org/10.1021/ja02242a004
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb17
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb17
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb17
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb17
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb17
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb18
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb18
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb18
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb19
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb19
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb19
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb19
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb19
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb20
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb20
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb20
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb21
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb21
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb21
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb22
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb22
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb22
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb23
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb23
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb23
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb23
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb23
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb24
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb24
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb24
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb25
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb25
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb25
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb26
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb26
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb26
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb27
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb28
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb28
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb28
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb28
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb28
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb29
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb29
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb29
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb29
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb29
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb30
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb30
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb30
http://dx.doi.org/10.1007/s10236-011-0385-8
http://dx.doi.org/10.1007/s10236-011-0385-8
http://dx.doi.org/10.1007/s10236-011-0385-8
http://dx.doi.org/10.1007/s11368-010-0291-6
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb33
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb33
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb33
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb34
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb34
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb34
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb35
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb35
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb35
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb35
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb35
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb36
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb36
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb36
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb37
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb37
http://refhub.elsevier.com/S0278-4343(22)00217-5/sb37

	Comparison between two analytical models to study the flocculation of mineral clay by polyelectrolytes
	Introduction
	Theory
	Logistic growth model (LG model)
	Smoluchowski model (S model)
	Link between L, n and N
	Time evolution of the mean floc size L

	Comparison between models
	Short timescales


	Material and experimental setup
	Clay
	Flocculant
	Particle/flocs size distribution

	Results and discussion
	Flocculation kinetics
	Dependence on clay concentration
	Dependence on shear

	Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix
	Aggregation term
	Break-up term

	References


