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Benders decomposition-based optimization of train departure
frequencies in metro networks

Alexander Daman, Xiaoyu Liu, Azita Dabiri, and Bart De Schutter, Fellow, IEEE

Abstract— Timetables determine the service quality for pas-
sengers and the energy consumption of trains in metro systems.
In metro networks, a timetable can be made by designing train
departure frequencies for different periods of the day, which
is typically formulated as a mixed-integer linear programming
(MILP) problem. In this paper, we first apply Benders de-
composition to optimize the departure frequencies considering
time-varying passenger origin-destination demands in metro
networks. An ϵ-optimal Benders decomposition approach is
subsequently used to reduce the solution time further. The
performance of both methods is illustrated in a simulation-
based case study using a grid metro network. The results
show that both the classical Benders decomposition approach
and the ϵ-optimal Benders decomposition approach can signif-
icantly reduce the computation time for the optimization of
train departure frequencies in metro networks. In addition,
the ϵ-optimal Benders decomposition approach can further
reduce the solution time compared to the classical Benders
decomposition approach when the problem scale increases while
maintaining an acceptable level of performance.

I. INTRODUCTION

Metro systems have become essential to urban transporta-
tion, providing millions of people with fast, efficient, and sus-
tainable travel options, especially in large cities. The metro
system is particularly critical in densely populated urban
areas, where an efficient and reliable timetable is paramount
for passenger satisfaction and the energy efficiency of the
metro system.

Efficient train scheduling approaches enable metro sys-
tems to optimize energy consumption, reduce waiting times,
and adjust transport capacity to meet passenger demands of
different periods. A nonlinear programming problem (NLP)
was formulated in [1] to minimize the time passengers
spend and the energy consumption of trains in a metro
line, for which an iterative convex programming approach
was proposed. A bi-directional train line was considered in
[2], and a Lagrangian-based method was proposed to solve
the resulting NLP problem. An adaptive large neighborhood
search algorithm was developed in [3] for the timetable
scheduling problem of a rail rapid transit line so as to create
convenient timetables for passengers considering a dynamic
demand pattern. To improve the efficiency of passenger-
centric timetable scheduling in metro networks, a simplified
model was developed in [4], where the resulting optimization
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problem is solved in a moving horizon manner for real-time
timetable scheduling.

In metro networks, trains typically operate with a rela-
tively short headway, and thus the train departure frequency,
which refers to the number of trains departing from a
line per time unit, is crucial for the transport capacity of
metro networks. To handle time-varying passenger origin-
destination demands, it is necessary to implement effective
strategies for optimizing departure frequencies in real time.
Previous studies, such as [5], have utilized heuristic and exact
methods to optimize train capacities and line frequencies
within metro networks. Similarly, [6] applied mixed-integer
nonlinear programming (MINLP) to optimize train capacities
and line frequencies in urban metro networks. A passenger
absorption model was proposed in [7] to optimize the de-
parture frequency of trains of each line in metro networks,
and the resulting problem was formulated as a mixed-integer
linear programming (MILP) problem.

Timetable scheduling models often involve non-
continuous variables, resulting in non-convex optimization
problems that can be time-consuming to solve. Benders
decomposition is regarded as an efficient methodology to
solve MILP problems where the large-scale MILP problem
is divided into two small-scale problems to reduce the
computational burden [8]–[10]. Benders decomposition
has also been used in railway timetable scheduling
problems. Taking into account the uncertain passengers
transfer time in metro networks, a generalized Benders
decomposition approach was developed in [11] to efficiently
solve the resulting MILP problem. A logic-based Benders
decomposition approach that can reuse the precomputed
logic Benders cuts to reduce the computation burden of
the timetable rescheduling problem was proposed in [12].
In [13], the solution time of the Benders decomposition
algorithm was reduced by splitting the algorithm solution
process into three steps to address the fact that the relation
between routing and scheduling variables is absent in the
master problem. The proposed Benders decomposition
approaches in [11], [12], and [13] were all shown to
reduce the solution time significantly; however, passenger
origin-destination (OD) demands were not considered
explicitly.

This paper deals with the train departure frequency op-
timization problem in metro networks based on the model
developed in [7], which can explicitly include time-varying
OD passenger demands. The main contribution of this paper
is twofold: (1) Benders decomposition-based algorithms are
used in the train departure frequency optimization prob-
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lem to reduce the computational burden; (2) several Ben-
ders decomposition-based algorithms are compared on a
simulation-based case study, which can facilitate the method
selection when solving train departure frequency optimiza-
tion problems.

The remainder of this paper is structured as follows. In
Section II, a problem formulation is given. In Section III, the
classical and ϵ-optimal Benders decomposition algorithms
used for the passenger absorption model are discussed. Simu-
lation results are provided in Section IV. Finally, conclusions
are given in Section V.

II. PROBLEM FORMULATION

In this work, the model proposed in [7] is used to optimize
train departure frequencies. Time-varying passenger demands
are approximated using piecewise constant functions in the
model, allowing a balanced trade-off between solution time
and accuracy. We briefly introduce the model and the corre-
sponding optimization problem below, and for more details
on the model, we refer to paper [7], [14].

In the passenger absorption model, the planning time
window is divided into several periods, and passenger OD
demands are assumed to be constant in each period. The
total travel time of passengers within a given planning time
window is estimated by:

Jtime =

k0+N−1∑
k=k0

∑
p∈P

(
np(k)T+ndepart

p (k)r̄p+narr,tra
p (k)θtrans

p

)
+

∑
p∈P

np(k0 +N)T,

(1)

where N denotes the number of periods in the planning time
window; P is the set of all platforms in the metro network;
T is the length of a period; np(k) denotes the number of
passenger waiting at platform p at the start of period k;
ndepart
p (k) represents the number of passenger departing from

platform p during period k; narr,tra
p (k) denotes the number of

passengers arriving at platform p with the intention of trans-
ferring to another platform during period k; and θtrans

p is the
average travel time for passengers transferring from platform
p. In the metro network, trains travel a predetermined route,
stopping at every platform. The average travel time for a
train departing from platform p to the next platform on its
route is denoted as r̄p. The energy consumption of trains in
the planning time window is estimated by:

Jcost =

k0+N−1∑
k=k0

∑
p∈P

fp(k)Ēp, (2)

where fp(k) is the departure frequency at platform p during
period k, and Ēp denotes the average operational costs
associated with dispatching a train from platform p towards
the next platform on its route. The optimization problem is
given as:

min J = Jtime + ζJcost, (3a)
subject to

fp(k)=
T−γp
T

lp (k−δp) +
γp
T

lp (k−δp−1) , (3b)

fp(k) ≤ fmax
p , (3c)

Cp(k) = fp(k)Cmax −
∑
m∈S

ntrain
p,m(k), (3d)

np,m(k+1)=np,m(k)+λp,m(k)T+narr,tra
p,m (k)−nabsorb

p,m (k), (3e)

nwait
p (k) = np(k) + λp(k)T + narr,tra

p (k), (3f)

nabsorb
p (k) = min

(
Cp(k), n

wait
p (k)

)
, (3g)

nabsorb
p,m (k) = αp,m(k)nabsorb

p (k), (3h)

ntrain
p,m(k) =

T − r̄pla
p

T
ndepart
ppla (p,m)

(k) +
r̄pla
p

T
ndepart
ppla(p,m)

(k − 1), (3i)

nalight
p,sta(p)(k) = ntrain

p,m (k), (3j)

nalight
p,m∈S/{sta(p)}(k) = ntrans

p,q,m(k), (3k)

ndepart
p,m (k) = ntrain

p,m(k)− nalight
p,m (k) + nabsorb

p,m (k), (3l)

ntrans
q,p,m(k) = χq,p,m(k)ntrain

q,m (k), (3m)

narr,tra
p,m (k)=

∑
q∈pla(p)

(T−θtrans
q,p

T
ntrans
q,p,m(k) +

θtrans
q,p

T
ntrans
q,p,m(k−1)

)
,

(3n)
k = k0, k0 + 1, ..., k0 +N − 1,

where ζ is a weight used to balance both objectives; lp(k)
denotes the train departure frequency of the starting platform
of the line on which platform p lies; δp = ⌊ψp/T ⌋ and
γp = ψp − δpT , with ψp denoting the average travel time
for train between departing from a starting platform of a line
and departing from another platform p of that same line; fmax

p

denotes the maximum train departure frequency of platform
p; Cp(k) represents the remaining capacity on a train at
platform p during period k with Cmax being the maximum
capacity of a train; ntrain

p,m (k) is the number of passengers
on board of trains at platform p with destination m during
period k; np,m(k) denotes the number of passenger waiting
at platform p with destination m during period k; λp,m(k)
is the passenger arrival rate at platform p with destination m
during period k; narr,tra

q,p,m(k) denotes the number of transfer-
ring passengers arriving at platform q to transfer to platform
p with destination m during period k; nabsorb

p,m (k) represents
the number of passengers who board a train at platform p
with destination m during period k; nwait

p (k) denotes the
number of passengers waiting for a train at platform p with
destination m during period k; and nabsorb

p,m (k) denotes the
number of passengers alighting a train at platform p with
destination m during period k. Parameter αp,m is the relative
fraction of passengers that board a train at platform p whose
destination is station m; and χq,p,m is the relative fraction
of passengers arriving at platform q with destination m, who
will transfer from platform q to platform p.

Note that (3g) is a nonlinear function, and we can use
the method in [15] to transform (3g) into linear inequalities.
Then, we obtain an MILP problem for train departure fre-
quency optimization; for a more elaborate explanation of the
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resulting MILP problem, we refer to [7].
The solution time of directly solving this MILP problem is

significant. Therefore, this paper aims to present approaches
to solve the resulting MILP in a time-efficient manner.

III. BENDERS DECOMPOSITION-BASED TRAIN
DEPARTURE FREQUENCY OPTIMIZATION

Benders decomposition [8] is an efficient method for
solving large-scale optimization problems involving both
continuous and discrete variables. In Benders decomposition,
an optimization problem is divided into a master problem
and a dual sub-problem that can be solved independently.
The master problem is formulated as an MILP problem to
determine the integer variables, while the dual sub-problem
is formulated as a linear programming problem. The dual
sub-problem is either feasible and bounded, after which a
so-called optimality cut is added to the master problem, or
is unbounded, after which a feasibility cut is added to the
master problem.

A. Classical Benders Decomposition for Train Departure
Frequency Optimization

The classical Benders decomposition [8] is applied in this
section for the MILP problem (3) described in Section II.
In this paper, according to the definition used in [8], lp(k)
and δabsorbp (k) are the so-called “complicating variables”,
as they are integer and binary variables, respectively. the
MILP problem is non-convex due to these variables. Since
T , γp(k), and δp(k) are all parameters, it follows from (3b)
that once lp(k) is given, fp(k) is also known. We define
a vector y(k0) to collect the integer variables lp(k), binary
variables δabsorbp (k), and fp(k) in the planning time window
starting from period k0. Then, all other variables related
to the number of passengers in the planning time window
starting from period k0 are collected in a vector x(k0). For
compactness, we can write problem (3) as:

min
x(k0),y(k0)

J = cT(k0)x(k0) + gT(k0)y(k0) (4a)

s.t. A(k0)x(k0) +B(k0)y(k0) = b(k0), (4b)
D(k0)x(k0) + E(k0)y(k0) ≤ d(k0), (4c)
x(k0) ∈ Rn1 , (4d)
y(k0) ∈ Yn2 , (4e)
x(k0) ≥ 0, (4f)

where (4a) represents the objective function (3a), (4b) col-
lects the equality constraints, (4c) collects the inequality
constraints, and Yn2 defines the feasible set for y(k0).

By fixing y(k0) as ȳ(k0) in Benders decomposition, the
sub-problem turns into a linear programming problem, and
by using duality theory and introducing dual variables u1(k0)

and u2(k0), the dual sub-problem becomes:

max
u1(k0),u2(k0)

Jdsp=uT
1 (k0)

(
B(k0)ȳ(k0)− b(k0)

)
(5a)

+ uT
2 (k0)

(
E(k0)ȳ(k0)− d(k0)

)
+ gT(k0)ȳ(k0)

s.t. uT
1 (k0)A(k0) + uT

2 (k0)D(k0) = cT(k0), (5b)
u1(k0) ∈ Rm1 , (5c)
u2(k0) ∈ Rm2

≥0 . (5d)

If the feasible set of (5) is not empty, the dual sub-problem
can be either unbounded or feasible for any arbitrary choice
of ȳ(k0). If the dual sub-problem is unbounded, there exists
a pair of extreme rays r̄q1(k0) ∈ Q1 and r̄q2(k0) ∈
Q2, with Q1 and Q2 being the sets of extreme rays, for
which r̄Tq1(k0)(B(k0)y(k0)−b(k0))+r̄Tq2(k0)(E(k0)y(k0)−
d(k0)) > 0. To avoid this, the following feasibility cut is
added to the master problem:

r̄Tq1(k0)
(
B(k0)y(k0)−b(k0)

)
+ r̄Tq2(k0)

(
E(k0)y(k0)−d(k0)

)
≤ 0.

(6)
While there may be multiple possible extreme rays which
lead to unboundedness in the dual sub-problem, only one
pair of extreme rays is used for the feasibility cut.

If a feasible and bounded solution can be found for dual
sub-problem (5), the solution for the dual variables can
be denoted as the extreme points, i.e., ūe1(k0) ∈ E1 and
ūe2(k0) ∈ E2, with E1 and E2 being the sets of extreme
points. We use Jdsp to denote the value of the objective
function of the dual sub-problem. The optimal value of the
objective function provides an upper bound of the original
optimization problem, which is denoted as Uub. For the ith
iteration of the Benders decomposition algorithm, the upper
bound is updated as follows: U i

ub = min
(
U i−1
ub , J i

dsp

)
. In

addition, an optimality cut is added to the master problem:

ūT
e1(k0)(B(k0)y(k0)+b(k0))−ūT

e2(k0)(E(k0)y(k0)−d(k0))≥−η.
(7)

Finally, the master problem (MP) is formulated as:

min
y(k0),η

Jmp = gT(k0)y(k0) + η (8)

s.t. (4e), (6), (7)

The solution ȳ(k0) to the master problem is used for dual
sub-problem (5) in the next iteration and is also used to
update the lower bound: U i

lb = min
(
U i−1
lb , J i

mp

)
, where Jmp

denotes the objective function value of the master problem.
The procedure of the classical Benders decomposition-

based train departure frequency optimization algorithm used
is presented in Algorithm 1.

B. ϵ-Optimal Benders Decomposition for Train Departure
Frequency Optimization

To reduce the computation time of the master problem,
[16] proposed a variant of Benders decomposition where
the master problem stops as soon as a feasible solution is
found, as opposed to an optimal solution. The algorithm is
then guaranteed to terminate in a finite number of steps, as
there is a finite number of optimal dual solutions for the
sub-problem. Like the classical Benders decomposition, the
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Algorithm 1 Classical Benders decomposition-based train
departure frequency optimization algorithm

Input: α, ζ, N , P , S, θtrans
q,p , and Ēp; r̄p, ψp, χq,p,m(k);

estimated values of βj,p,m(k), λstation
j,m (k), and αp,m(k)

Set initial values:
U0

ub ←∞, U0
lb ← −∞, f̄p(k)← 0, δ̄absorb

p (k)← 0, i← 0
Output: fp(k), δabsorb

p (k)
while U i

ub − U i
lb ≥ α do

i← i+ 1
Solve (5) using f̄p(k) and δ̄absorb

p (k)
if (5) is feasible and bounded then

Obtain Jdsp, ūe1(k0), and ūe2(k0)
Update upper bound:
U i
ub ← min

(
U i−1
ub , J i

dsp

)
Add optimality cut (7) using extreme points

else if (5) is feasible but unbounded then
Compute extreme rays r̄q1(k0) and r̄q2(k0)
Add feasibility cut (6) using extreme rays

end if
Solve (8) to obtain new f̄p(k), and δ̄absorb

p (k)
Update lower bound:
U i
lb ← min

(
U i−1
lb , J i

mp

)
end while

feasible solution to the master problem is used for the dual
sub-problem of the next iteration. Since the solution to the
master problem is no longer optimal, the master problem no
longer provides a valid lower bound. Instead, the ϵ-optimal
Benders algorithm terminates when the master problem can-
not produce a feasible solution. The master problem is then
turned into a feasibility problem in the form of (9) instead
of an optimization problem and hence is generally easier to
handle, especially for large-scale problems.

gT(k0)y(k0) + η ≤ Uub(1− ϵ) (9)
s.t. (4e), (6), (7)

where ϵ ∈ (0, 1) is the slackness variable. A higher value
for ϵ might result in faster convergence to the solution at the
cost of a potentially worse solution.

A potential drawback of the ϵ-optimal Benders decompo-
sition algorithm is that it may require more iterations than
the classical Benders decomposition algorithm, as the non-
optimal solutions to the master problem may also lead to
non-optimal Benders cuts.

The detailed procedure of ϵ-optimal Benders
decomposition-based train departure frequency optimization
algorithm is shown in Algorithm 2.

IV. CASE STUDY

In this section, we conduct a case study to compare the
Benders decomposition-based algorithms for train departure
frequency optimization.

A. Set-up

The metro network that is used for the case study is shown
in Fig. 1, which consists of 21 stations, 60 platforms, and 6

Algorithm 2 ϵ-optimal Benders decomposition-based train
departure frequency optimization algorithm

Input: α, ζ, N , P , S, θtrans
q,p , Ēp, and ϵ; r̄p, ψp, χq,p,m(k);

estimated values of βj,p,m(k), λstation
j,m (k), and αp,m(k)

Set initial values:
U0

ub ←∞, f̄p(k)← 0, δ̄absorb
p (k)← 0, i← 0

Output: fp(k), δabsorb
p (k)

while U i
ub ≥ α do

i← i+ 1
Solve (5) using f̄p(k) and δ̄absorb

p (k)
if (5) is feasible and bounded then

Obtain Jdsp, ūe1(k0), and ūe2(k0)
Update upper bound:
U i
ub ← min

(
U i−1
ub , J i

dsp

)
Add optimality cut (7) using extreme points

else if (5) is feasible but unbounded then
Compute extreme rays r̄q1(k0) and r̄q2(k0)
Add feasibility cut (6) using extreme rays

end if
Solve (9)
if (9) is feasible then

Obtain new f̄p(k), and δ̄absorb
p (k)

else if (9) is infeasible then
Break while loop

end if
end while

bidirectional lines. The number on top of each link in Fig. 1
represents the average travel time between two stations and
is used to determine the parameters r̄p and ψp.

Fig. 1. Railway operations planning

We consider time-varying passenger OD demands, and
passenger demands are considered to be constant for one
period. The length of each period is 60 minutes. The cost
per train run Ep is a function associated with the travel time
r̄p. The values of the parameters are given in Table I.

In general, parameters αp,m and χq,p,m can be estimated
using historical data. However, since we use a fictional
metro network, the values for βj,p,m, αp,m, and χq,p,m

are computed considering the average travel time between
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TABLE I
PARAMETER VALUES

Parameter Value
Stop criterion α 1

Transfer time θtransp 1 [min]
Capacity Cmax 2000 passengers

Operational cost Ep 2 · r̄p
Max departure frequency fmax

p 20
Weight ζ 1000

Epsilon benders ϵ 0.01, 0.05, and 0.1

stations and assuming that passengers will always choose
the shortest path to their destination in terms of time spent
in the metro network.

We first apply the classical Benders decomposition-based
algorithm for optimizing train departure frequencies. The
total computation time consists of solving the dual sub-
problem and master problem, updating the upper and lower
bound, generating optimality and feasibility cuts, and ob-
taining extreme rays when necessary. The computation time
for the ϵ-optimal Benders decomposition-based algorithm is
computed in the same manner as for the classical Benders
decomposition-based algorithm. Three different ϵ values are
compared, i.e. 0.01, 0.05, and 0.1. For comparison, the
resulting MILP problem is also directly solved by using
gurobi, i.e., a state-of-the-art commercial solver for mixed
integer programming problems.

The algorithms will be compared based on the objec-
tive function value and the required computation time. All
the simulations are conducted using Matlab R2021a on a
MacBook Pro 2017 with 2.3 GHz Dual-core Intel Core i5
processor and 8GB RAM. For the direct MILP algorithm, we
use the commercial solver gurobi v9.5.2rc0 (mac64[x86]).
Simulations are done for different planning time windows,
i.e., from 2 (N = 2) to 6 hours (N = 6). The time limit for
solving the resulting train departure frequency optimization
problem for all the algorithms is set to 2 hours.

B. Results

The simulation results for all methods can be seen in
Table II, where N.A. is used to indicate that no solution
was found within 2 hours. For the sake of simplicity, we
use “Gurobi” for the results obtained by solving the MILP
problem using gurobi, “Benders” to denote the classical
Benders decomposition algorithm, and “ϵ-Benders” to denote
the ϵ-optimal Benders decomposition algorithm.

From Table II, we can find that when N = 2, gurobi has
a better performance than both Benders decomposition-based
methods. However, this changes when N = 4; the solution
time of gurobi is significantly higher than that of both the
Benders algorithm and the ϵ-Benders algorithm. For N = 4
and N = 6, both gurobi and the classical Benders decom-
position algorithm cannot find the solution within 2 hours.
The ϵ-optimal Benders decomposition algorithm outperforms
the classical Benders decomposition algorithm when N = 6
in terms of solution time; this is because the master problem
increases significantly in computation complexity with each

TABLE II
COMPARISON OF DIFFERENT METHODS

N Method Objective function value CPU time [s]
gurobi 1.70× 105 16.1

Classical Benders 1.70× 105 66.9
2 ϵ-Benders (0.01) 1.70× 105 79.4

ϵ-Benders (0.05) 1.71× 105 70.6
ϵ-Benders (0.1) 1.87× 105 69.2

gurobi 4.00× 105 6230.4
Classical Benders 4.00× 105 388.9

4 ϵ-Benders (0.01) 4.00× 105 358.4
ϵ-Benders (0.05) 4.14× 105 305.1
ϵ-Benders (0.1) 4.14× 105 291.3

gurobi N.A. N.A.
Classical Benders N.A. N.A.

6 ϵ-Benders (0.01) 6.80× 105 1771.2
ϵ-Benders (0.05) 7.07× 105 714.4
ϵ-Benders (0.1) 7.14× 105 687.9

added feasibility or optimality cut. When N = 6, the
classical Benders decomposition algorithm cannot find the
solution within 2 hours due to the master problem taking too
long. The ϵ-optimal Benders decomposition can significantly
reduce the computational complexity of the master problem.

TABLE III
SIMULATION RESULTS FOR BENDERS DECOMPOSITION APPROACHES

N Method Iterations tsub [s] tray [s] tmas [s]
Classical Benders 43 24.8 33.9 8.2
ϵ-Benders (0.01) 51 32.4 36.5 10.4

2 ϵ-Benders (0.05) 47 26.7 35.4 8.4
ϵ-Benders (0.1) 44 25.3 35.9 7.9

Classical Benders 85 96.1 145.6 147.3
ϵ-Benders (0.01) 113 141.3 158.8 58.3

4 ϵ-Benders (0.05) 99 108.6 157.9 38.6
ϵ-Benders (0.1) 97 103.3 149.9 38.0

Classical Benders N.A N.A. N.A. N.A.
ϵ-Benders (0.01) 169 279.2 349.2 1142.8

6 ϵ-Benders (0.05) 151 235.5 349.4 129.4
ϵ-Benders (0.1) 147 237.4 355.7 94.8

To further illustrate the results, the number of iterations
and the total time spent in each part of the algorithm are
given in Table III. The evolution process of the different algo-
rithms for N = 4 is also given. The convergence of the upper
and lower bound is shown in Fig.2 for the classical Benders
decomposition algorithm. The upper bound of the classical
Benders decomposition algorithm changes only once. The
dual sub-problem is unbounded for all other iterations. Since
the ϵ-optimal Benders decomposition algorithm does not
produce a valid lower bound, only the evolution of the
upper bound is provided. The evolution of the upper bound
for the different ϵ values is displayed in Fig.3 The upper
bound of the ϵ-optimal Benders decomposition algorithm
changes several times; the lower the value of ϵ, the more
times the upper bound changes. As the master problem of
the ϵ-optimal Benders decomposition algorithms becomes
a feasibility problem, the computation time of solving the
master problem is reduced.

The simulation shows that the ϵ-optimal Benders de-
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Fig. 2. Convergence upper bound and lower bound of classical Benders
decomposition algorithm (N = 4)

Fig. 3. Evolution of upper bound of ϵ-optimal Benders decomposition
algorithm for different ϵ values (N = 4)

composition algorithm is suitable for real-time optimization
of train departure frequencies in metro networks. When
simulating for multiple cycles, increasing the number of
(integer) variables and constraints leads to long solution
times for gurobi. While the classical Benders decompo-
sition approach outperforms gurobi in terms of solution
time when the number of cycles is four or higher, the high
number of feasibility cuts required leads to a computationally
complex master problem, which is a bit time consuming. The
ϵ-optimal Benders decomposition algorithm has been shown
to be able to provide a solution in a relatively short time at
the cost of some accuracy. By changing the value for ϵ, train
operations can make a balanced trade-off between solution
time and performance.

V. CONCLUSIONS

The optimization of the departure frequencies in metro
networks can be formulated as a mixed-integer linear pro-
gramming problem. This paper has applied the Benders
decomposition approach to reduce the computational burden
of the train departure frequency optimization problem. To
further improve the efficiency of the Benders decomposition-
based approach, an ϵ-optimal strategy is used, which reduces
the solution time by turning the master problem of the
Benders decomposition into a feasibility problem. Simulation

results indicate that the Benders-decomposition-based meth-
ods can reduce the computational time of train departure
frequency optimization problems when the problem size
increases. The ϵ-optimal Benders decomposition algorithm
can further reduce the solution time of the classical Benders
decomposition algorithm when the problem size increases.

In the future, we will focus on further reducing the compu-
tation time of Benders decomposition-based approaches. The
potential approaches are to improve the efficacy of feasibility
cuts and generate them based on the problem’s structure.
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[10] J. Fu, A. Núñez, and B. De Schutter, “Accelerated optimal mainte-
nance scheduling for generation units on a truthful platform,” Energy
Reports, vol. 8, pp. 9777–9786, 2022.

[11] Y. Hu, S. Li, M. M. Dessouky, L. Yang, and Z. Gao, “Computa-
tionally efficient train timetable generation of metro networks with
uncertain transfer walking time to reduce passenger waiting time:
A generalized Benders decomposition-based method,” Transportation
Research Part B: Methodological, vol. 163, pp. 210–231, 2022.

[12] F. Leutwiler, G. B. Filella, and F. Corman, “Accelerating logic-
based Benders decomposition for railway rescheduling by exploiting
similarities in delays,” Computers & Operations Research, vol. 150,
p. 106 075, 2023.

[13] K. Keita, P. Pellegrini, and J. Rodriguez, “A three-step Benders
decomposition for the real-time railway traffic management prob-
lem,” Journal of Rail Transport Planning & Management, vol. 13,
p. 100 170, 2020.

[14] X. Liu, A. Dabiri, J. Xun, and B. De Schutter, “Bi-level model
predictive control for metro networks: Integration of timetables,
passenger flows, and train speed profiles,” 2023, submitted to journal.

[15] H. P. Williams, Model Building in Mathematical Programming. John
Wiley & Sons, 2013.

[16] A. M. Geoffrion and G. W. Graves, “Multicommodity distribution
system design by Benders decomposition,” Management Science,
vol. 20, no. 5, pp. 822–844, 1974.

5376

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 15:19:51 UTC from IEEE Xplore.  Restrictions apply. 


