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Summary 
The greatest threat to mankind lies within the microscopic organisms we co-exist with. Indeed, 
wars have raged between humans and the pathogens invading human bodies for all the history of 
mankind. The unprecedented scale and impact of the Covid-19 pandemic demonstrates again the 
power of the microscopic to bring humanity to a collective heel, much like smallpox, plague and 
others have shown before.  

Tuberculosis (TB), also known as consumption, the white plague, phthisis; may very well be the 
oldest infectious disease known to man. As such, its history has been extensively studied. Traces 
of mycobacterium tuberculosis (MTB) the causative bacterial pathogen for TB, have been found 
in multiple skeletal remains, dating as far back as 9000 years ago. Remarkably, evidence of TB 
lesions have also been found from homo-erectus fossils in Turkey dating back 50,000 years!  

After millennia of sparring with MTB, our fight with this pathogen is still far from over. TB is currently 
the single most deadly infectious disease in the world, taking the lives of millions each year and 
infecting a quarter of humanity. The rapid rise of antibiotic resistance is an effective counter move 
by MTB and poses a serious and real public-health threat. For such an old and ancient pathogen, 
it is perplexing that it still remains at large. What makes TB such a horrible and deadly disease? 
How can we best fight TB? What treatment regimens are most effective? How does TB spread? 
How can we track outbreaks? Why are some types of TB more infectious than others? How should 
we detect TB in humans? What drives antibiotic resistance? How can the spread of antibiotic 
resistance be halted?  

In short: How can we win this war against TB?  

The turn of this century has brought with it a strong playing card – whole genome sequencing 
(WGS). The ability to analyze MTB WGS data en masse has resulted in a plethora of 
unprecedented insights, discoveries and innovations. With WGS we can upgrade the way we 
determine policies and make decisions for our tactical strategy against TB in a data driven 
approach. 

This thesis represents one small step in the battle with TB, where we apply WGS approaches to 
explore different topics of TB research. Here we offer the global community a method to diagnose 
complex TB infections consisting of multiple distinct strains. We show that this functionality is 
necessary and has been overlooked by the TB community in research studies, which might have 
contributed to poor treatment outcomes. As the increase in samples resistant to multiple antibiotics 
is a pressing challenge, we explore global trends in antibiotic resistance evolution and have 
identified a particular order of resistance acquisition for 6 anti-tubercular drugs. This thesis also 
provides complete assemblies of 18 MTB genomes spanning 7 lineages that was used to analyze 
MTB’s largest and least studied gene family.  

Overall, this thesis intends to shed light on lesser explored topics in TB research, while providing 
insights that could be built upon to further our knowledge of MTB and ultimately save some lives 
in the process. 
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1 Introduction 1.1 About TB 
The bacteria Mycobacterium tuberculosis (MTB) has been a pathogen of world-wide concern since 
its first discovery in 1882 by the scientist Robert Koch[1]. It has caused an estimated 10 million 
new infections, and 1.4 million deaths in the year 2019 – making it the top killer from an infectious 
disease around the world [2]. The End TB Strategy formulated by the WHO calls for an 80% 
reduction of new tuberculosis (TB) cases and a 90% reduction of TB deaths by 2030 [3]. To 
achieve these goals the global community has banded together to find innovative methods and 
reduce the global TB burden that disproportionately effects impoverished societies.  

The pathogenesis of MTB has been well studied throughout the years, giving us insight into how 
the pathogen has successfully been able to penetrate through all time periods of civilization. MTB 
is an airborne pathogen transmitted between patients in the form of aerosolized particles emitted 
while coughing [4,5]. Not all patients harboring the pathogen are characterized with an active 
infection. Most individuals (95%) first exposed to TB remain asymptomatic – what is referred to as 
a latent infection. This occurs when the immune system successfully manages to contain the 
invading pathogen in granulomas [6]. Because the bacteria is only contained and not eradicated, 
TB patients with latent infection either remain asymptomatic for the rest of their lives, or develop 
an active infection at a later time point [6,7]. Once an active TB infection develops, the patient may 
transmit MTB to others and experience the typical symptoms such as cough, chest pain, fatigue, 
and fever. Without proper treatment, the patient faces long-term lung damage [8] and in 
unfortunate cases: death. 1.2 Tuberculosis Diagnosis 
Early diagnosis of TB is fundamental in effectively managing the disease as this leads to timely 
treatment and reduces future transmission [9,10]. General first steps can involve a chest X-ray 
[11], CT-scan [12] or a tuberculin skin test [13]. These, relatively quick methods however do not 
provide a definitive diagnosis, which has traditionally been achieved via cultured sputum [14]. 
Diagnosis via culture is a time intensive process and can only detect TB in sputum samples 
containing a sufficient amount of the pathogen [15]. Developing quicker and more sensitive tests 
to diagnose TB has therefore been a field of active research. 1.3 Tuberculosis Treatment 
Currently, TB is controlled either with a preventative approach, i.e. through a vaccine, or a 
treatment based approach through chemotherapy (drugs). The only licensed TB vaccine, Bacillus 
Calmette–Guérin (BCG) has been in use for over a century but is applicable only against childhood 
TB and offers nearly no protection for adult TB [16]. Despite administering the vaccine to children 
in endemic countries, high rates of TB infection for adults continue to persist [16]. Developing new 
vaccines for wide spread protection against TB is a top priority for the WHO and requires advanced 
research into the genetic mechanisms of TB to find putative vaccine targets.   
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Drug 
Known genes with mutations that confer 

resistance 
Drug type 

rifampicin (RIF) rpoB rifampycin, first-line 
isoniazid (INH) katG, inhA*, FabG*, kasA analagous to eth, first-line 

pyrazinamide (PYR) pncA, clpC1, panD pyrazine, first-line 
ethambutol (EMB) embB, embAB, embC bacteriostatic, first-line 
streptomycin (STR) rpsL, gidB, murA aminoglycide, first-line 

ofloxacin (OFL) gyrA, gyrB fluoroquilone, second-line 

kanamycin (KMC) eis, murA aminoglycide, second-line 
ethionamide (ETH) ethA, inhA*, fabG* analogous to INH, second-line 

bedaquiline (BDQ) pepQ, Rv0678, mmpL5, mmpS5, atpE diarylquinolines, second-line 

linezolid (LZD) rplC, rrl linezolid, second-line 
Table 1.1 Drugs given to treat TB, along with genes that have been identified to be associated with antibiotic resistance. 
The type of drug and whether it is a first line (given first) or second line (given after first line drugs have failed) are also 
shown. 

The most effective method to control active TB infections is via the administration of several 
antibiotic drugs (Table 1.1) over the course of six to nine months. The specific regimen can differ 
by country, but the standard treatment involves a combination of the drugs isoniazid, rifampicin, 
pyrazinamide and ethambutol for two months, followed by only isoniazid and rifampicin for an 
additional two months [17].  1.4 Tuberculosis Drug Resistance 
The emergence and spread of antibiotic resistance has led to poor treatment outcomes with global 
treatment success rates of 57% [2] making the TB epidemic particularly difficult to control. Poor 
treatment and poor containment of patient to patient spread has led to continued proliferation of 
multi-drug resistant TB (MDR-TB) a type of TB resistant to two of the first line drugs: rifampicin 
and isoniazid [18]. Six percent of MDR-TB cases are estimated to be extensively drug resistant 
TB (XDR-TB), a type of TB resistant to isoniazid, rifampicin, any fluoroquinolone, and an injectable 
second line drug (amikacin, kanamycin or capreomycin) according to the WHO definition of 2019. 
A cure for XDR-TB is only possible for 30-50% of cases [19].  1.5 Drug Resistance Diagnosis 
Timely detection of antibiotic resistant TB is crucial for prescribing a more successful treatment 
regimen for patients. With this in mind, drug susceptibility tests (DSTs) are typically performed to 
diagnose presence of drug resistance within patients.  Culture-based DSTs defines resistance 
when more than 5% of MTB population can grow in a medium containing a ‘critical concentration’ 
of a specified drug [20]. A sample unable to grow at the drug levels are therefore labelled as 
susceptible, as they are susceptible to treatment with the drug. This method of diagnosis comes 
with many problems. Concentration levels were not based on pharmacokinetics but rather 
comparing wild type strains, which were never exposed to drugs or sensitive, to non-wild type 
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strains (that have been exposed to drugs) [21] and levels fluctuate depending on the type of 
medium used (i.e. egg based vs synthetic)[20]. Finally, the time to results is long due to the slow 
growth rate of MTB, and can take 6 to 8 weeks [22].  

In contrast to many other bacteria, most of drug resistance observed in MTB is due to single 
nucleotide polymorphisms (SNPs) [23] making molecular based techniques an attractive option to 
quickly diagnose antibiotic resistance. Amongst the plethora of molecular based assays developed 
to diagnose antibiotic resistance in TB, WHO endorses the Gene Xpert Ultra assay, the newest 
version of the previously used Gene XPERT MTB/RIF assay as an initial susceptibility test instead 
of culture [24]. The Ultra is a PCR based test that probes for mutations in rpoB genes, conferring 
resistance to rifampicin, with a very short turn-around time. Although sufficient for detecting 
rifampicin resistance, current molecular based assays are not only limited in the breadth of drugs 
they can survey but require in depth understanding of the genetic basis of TB drug resistance in 
order to select suitable SNPs associated with resistance. 1.6 Tuberculosis population structure 
MTB belongs to a highly related group of mycobacteria (99.9% nucleotide identity) that cause TB 
in both human and animals, referred to as the mycobacterium tuberculosis complex (MTBC) [25]. 
Several lineages primarily infect animal hosts, such as M. bovis (cows), and M. microti (rodents) 
and it was originally believed that TB originated in animals [26]. However, thanks to genome 
sequencing and comparative genomics it was discovered that both animal and human lineages 
shared a common ancestor [27–29]. The seven human adapted lineages of MTBC consists of M. 
tuberculosis sensu stricto (Lineages 1-4, Lineage 7), and M. africanum (Lineages 5-6). 
Additionally, a new human adapted lineage of MTBC has been identified (Lineage 8) with a branch 
point before the MRCA of the rest of the human lineages [30]. The human adapted MTB lineages 
vary with respect to their geographical spread as some lineages are present across a wide range 
of countries while others are restricted to a particular geographic area (Figure 1.1). The naming of 
the lineages also follow their geographical patterns. Lineage 1: East African Indian or EAI lineage, 
Lineage 2: East-asian or Beijing lineage, Lineage 3: Central Asian Strain (CAS) lineage, Lineage 
4: Euro American lineage (occurring globally), Lineage 5: M. africanum West Africa 1, Lineage 6: 
M. africanum West Africa 2, Lineage 7 occurs only in Ethiopia and the new Lineage 8 was 
discovered in Rwanda and Uganda.  
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Figure 1.1 A) Phylogeny of several lineages that comprise the MTBC complex using 241 genomes 
from Ngaboniza et al [31]. Tree was made using maximum likelihood and rooted using M. canetti  
as an outgroup. B) Geographical distribution of MTBC coloured by the main lineage in the region 
according to the scheme in panel A. Sourced from Brites et al [25]. 

 

Lineages of MTB not only vary geographically but also exhibit phenotypic differences [32]. 
Lineages differ in their transmissibility with lineage 2 strains commonly reported to have increased 
virulence levels [33], and relatively quick progression from latent to active infection [34]. Lineages 
differ in their interactions with the human immune system, with lineages 1 and 2 inducing a greater 
response from macrophages in animal models [35]. Additionally, studies have shown lineage 
specific patterns in the acquisition and occurrence of drug resistance [36,37].  1.7 Molecular methods to track tuberculosis 
Typing methods or methods that differentiate between strains/lineages/genotypes of TB are 
needed in order to understand the epidemiology of MTB, provide a mechanism to track outbreaks, 
and define source of infections in transmission events. Furthermore occurrences of infections 
caused by multiple MTB strains, either via within host microevolution or transmission events have 
steadily been reported in literature and have been linked to treatment outcomes [38]. Molecular 
genotyping methods were developed with these goals in mind. The major methods include IS6100-
based restriction fragment length polymorphism (IS6100-RFLP), polymorphic GC-rich repetitive 
sequence RFLP (PGRS-RFLP), spoligotyping, and mycobacterial interspersed repetitive units 
variable number of tandem repeats (MIRU-VNTR). 

IS6100-RFLP has been in use since the early 1990s and was the former gold standard for strain 
genotyping [39,40]. It determines genotypes based on the number of copies of the IS6100 mobile 
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element which can vary between 0 and 20. Although once widely used, this technique has low 
discriminatory ability for MTB strains with less than six IS6100 bands, requires culturing due to its 
high DNA volume requirement (2-3 ug), and is difficult to compare results across labs as visual 
inspection is necessary. PRGS-RFLP was developed as a supplementary method to gain higher 
resolution for strains with less than six IS6100 bands based on the PGRS region of the genome. 
However it still suffers from similar pitfalls as IS6100-RFLP with the additional complexity to 
read/interpret as there are greater number of bands[40].  

Spoligotyping was also developed for MTB isolates with less than six IS6100 bands [41]. It 
determines genotypes based on PCR amplification of direct variable repeat regions within the 
genome that are lineage/strain specific [42]. As opposed to IS6100-RFLP, it is more reproducible 
and requires much less DNA [40]. However it is not as specific as  IS6100-RFLP and MIRU-VNTR 
typing. 

MIRU-VNTR has higher discriminatory power and is more reproducible than both spoligotyping 
and IS6100-RFLP [43,44] making it the gold standard of conventional molecular genotyping 
methods. It determines genotypes based on PCR amplification of VNTRs within 24 MIRU regions 
of the genome.  

Overall molecular genotyping techniques differ with respect to their reproducibility, discriminatory 
power and technical requirements. They have been shown to sufficiently discriminate between 
lineages but do poorly for intra lineage strain discrimination [44].  1.8 Whole genome sequencing and tuberculosis 1.8.1 Background TB genomics 
The genomic revolution has been paramount in shaping our understanding of TB. Since the first 
full assembly of the MTB genome in 1998 [45],  whole genome sequencing (WGS) has been 
applied to almost every facet of TB research and clinical practice. Indeed, England became in 
2017 the first country to introduce WGS in its routine clinical pipelines for TB management [46]. 
Through WGS, many of the time consuming steps within the clinical management of TB can be 
reduced compared to traditional methods, such as diagnosis, strain classification, and drug 
susceptibility testing – all of which can be conducted within a single WGS analysis. Additionally 
WGS offers unprecedented insights into the population structure, evolution  and mutation rates of 
MTB genotypes, far greater than traditional molecular approaches. With the decreasing costs of 
WGS, the future of WGS-based MTB analysis has plenty of room for expansion.  

The first MTB assembly was constructed using shotgun sequencing with cosmids and BAC clones. 
Albeit highly accurate shotgun sequencing was a time intensive process. Since then, advances in 
high throughput sequencing have drastically sped up analysis and Illumina based short-read 
sequencing has become the dominant technology to perform genomic analysis of MTB. Typically, 
in analysis of MTB with short-reads, approximately 10% of the genome is discarded due to long 
GC-rich repetitive stretches of DNA  within the PE/PPE gene families. It is speculated that these 
gene families play an important role in pathogenicity [47]  and virulence[48], making it important 
to find suitable ways to include these families in standard MTB studies. In the past few years third 
generation sequencing represented by PacBio and Oxford Nanopore technologies have facilitated 
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sequencing of long reads of lengths only limited by the length of the DNA molecule. Long read 
sequencing trumps short-reads due to the size of the reads, capable of spanning difficult to 
sequence regions of genomes, however it suffers from a higher error rates in base-called reads 
(3% vs 0.1% of Illumina [49,50]). Although Illumina is currently dominating sequencing analysis of 
MTB, it is likely that further improvements and accessibility of Nanopore or PacBio technologies 
will lead to increasing adoption of long-read sequencing. 1.8.2 WGS for identifying strains 
Epidemiological studies based on molecular genotyping have elucidated the importance of 
identifying individual strains of MTB in order to track outbreaks, study evolutionary history, 
distinguish between relapse and reinfection. Techniques to identify individual strains can also be 
used to discover links between cases, and explore within host heterogeneity [51–53] . WGS is an 
alternative to using molecular techniques which examine only a subset of the genome. WGS can 
capture full scale of genetic variation and provides accurate information for delineating strains in 
a reproducible manner [54]. WGS has been used to identify direct transmission events between 
source and target based on SNV distance [54]. SNV distance refers to the number of variations 
that differ between two strains. If there are only a few number of sites that strains differ it would 
be difficult to tell which one is which. Therefore the higher the number of variation the easier it is 
to differentiate strains. Molecular methods are not capable of identifying with such low resolution 
and are also incapable of quantifying distance between two strains, while this is possible with 
WGS. WGS has been widely applied to tracking transmission outbreaks based on SNPs [55–59]. 
More sophisticated algorithms have been developed to identify and characterize strains of a 
particular lineage within isolates, borrowing off of principles from the metagenomics field.  1.8.3 WGS impact in antibiotic resistance  
As MTB resistance emerges due to the variation within the genome (i.e. from SNPs, insertion, 
deletions), methods to detect such genomic variations can fundamentally improve clinical 
management of drug resistant TB cases. Therefore a patient’s observed SNP profile can be used 
to predict which drugs would be clinically effective and also used as a tool to monitor the 
effectiveness of treatment, by checking for the emergence of any new resistance informative SNPs 
that could arise due to a reinfection from a different strain or through improper treatment regimes. 
Currently, WGS-based drug susceptibility testing still requires a culture step of the bacteria. This 
leads to resistance results being biased to that of the sampled culture colony. 

Numerous studies have characterized genomic variation that are indicative of resistance [60], 
however this is still a work in process as many causes of resistance have yet to be identified. The 
WHO maintains a catalogue of resistance genes for TB [61], which is the most up to date list of 
resistances. Through WGS, the occurrence of antibiotic mutations arising via compensatory or 
convergent means have been revealed. Compensatory mutations refer to mutations that do not 
directly lead to resistance but lead to increased fitness in the presence of resistance conferring 
mutations, thereby offsetting any loss of fitness presented by the antibiotic resistance mutation. 
Compensatory mutations subvert the expectation that antibiotic resistance comes with loss of 
fitness for the bacteria [54,62]. Mutations arising via convergent evolution have evolved 
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independently several times across lineages [63]. Understanding the evolution and underlying 
process of antibiotic resistance is a complex task as there are different pathways involved that can 
interact with each other. However, there is an increasing amount of evidence that accumulation of 
resistance mutation occurs in a predictable manner[64–66].  Understanding the evolution of 
resistance conferring mutations can provide valuable insight into the preventing DR-TB and 
disrupting the emergence of MDR/XDR-TB.  

Several online software tools incorporate databases with associations between genetic variations 
and susceptibility. PhyResSe [67] and TB Profiler [68] are both online tools that process fastq files 
to output drug resistance profiles, while MyKrobe Predictor [69] and KvarQ [70] are downloadable 
executables that perform the same function. PolyTB [71] is an online tool to facilitate searching of 
SNPs within the MTB genes to aid in resistant mutation detection. The ReSeqTB platform [72] 
contained its own variant calling pipeline in addition to a database of genomic data paired with 
phenotypical meta data such as culture-based DST results and clinical outcome. The TBDream 
database [73] contained information about frequency of mutations in resistant vs susceptible 
isolate but is no longer accessible online. Mycoresistance offers a manually curated database of 
compounds used to treat TB with their associated resistances pulled from hundreds of studies 
[74]. Previous studies have shown that genotypic predictions for drug resistance are in line with 
the underlying resistance phenotype[75,76]. Extensive work has been performed to illustrate the 
applications of WGS on drug susceptibility testing and its ability to reduce the time and price 
required for results [77].  1.8.4 Heteroresistance 
Heteroresistance, referring to the co-existence of susceptible and resistant variations, complicates 
management of patients with drug resistant TB. This phenomena is caused by the infection of 
multiple MTB strains or through within host microevolution and has been observed in at least 5% 
of drug resistant TB cases [78]. Culture of MTB is not always able to detect heteroresistance [79] 
which could lead to inappropriate treatment. WGS has facilitated the quantification of 
heterogeneity at drug resistant loci of patients [80,81] with the abundance of minority variants 
fluctuating over the infection until the mutation becomes fixed [80,82]. The ability to identify 
heteroresistance and heterogeneity within infections could have a positive impact on patient 
outcomes. 1.9 Research Goals  
With this thesis, I aim to apply WGS technologies to aid in the diagnosis, monitoring, and research  
of TB. I focus on three main areas that can be improved with WGS in TB research.  

I first sought to replace the traditional typing tools that have been used to identify different 
strains/genotypes in MTB samples. These tools had been used to classify the presence of mixed 
TB infections; a use case that they were not originally intended for. Therefore, I created a method 
to identify individual strains present in TB WGS data (Chapter 2). In doing so I add to the broader 
field of metagenomics style tools, which were at the time not suitable for TB data.  
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As there were not any established tools to classify mixed infections in WGS data, the impact of 
this  phenomena was over looked in research studies. The incidence of mixed infections, it’s global 
dispersion, and their relation to antibiotic resistance are all topics that were only speculated at, not 
properly researched.  Additionally, the research studies for other TB topics that used WGS data 
tended to overlook the possibility of heterogeneity contaminating their data.  Therefore, I also 
wanted to understand how the presence of mixed infections could influence research studies, play 
a role in antibiotic resistance, and effect TB’s global distribution patterns (Chapter 3). 

The method in which antibiotic resistance is acquired is useful for making responsible decisions 
in the clinic and for deeper understanding of the bacteria. Though we know a lot about which 
mutations lead to antibiotic resistance for particular drugs, it’s still not extremely clear the order in 
which these mutations evolve for all but the top 2 mutations. I looked into providing more insight 
into the arisal of antibiotic mutations using a large database of WGS isolates (Chapter 4).  

As mentioned previously, the PE/PPE gene families representing 10% of the MTB genome, is 
typically discarded during routine bioinformatics analysis pipelines due to the presence of long 
repeat regions high in GC content. Though, these regions were speculated to play an important 
role for MTB, little is known about their functional variation across different MTB lineages as short-
reads could not fully span the gene regions. Using long reads, we were able to completely 
sequence a representative set of MTB genomes. With them we aimed to provide more insight into 
this lesser studied gene families of TB (Chapter 4). 

Metagenomics methods have broad applicability to fields also outside of TB and the their ability to 
perform strain-level resolution in bacterial populations has proved particularly challenging. 
Different tools have been developed for different use case scenarios, making finding the 
appropriate tool for a particular research goal quite cumbersome. As research aims steadily move 
towards more granular, fine grained insights at the strain level, I also sought to provide an overview 
of the tools developed to offer strain level insights for bacteria. Here I was also particularly 
interested in revealing what were the exact challenges such tools face and give a review on the 
state of the art algorithms (Chapter 5). 

 1.10 Thesis outline 
This thesis aims to tackle unsolved issues within TB research using WGS techniques. Chapter 2 
presents a method to conduct strain level classification of WGS TB data, particularly with the focus 
of detecting isolates containing a mixture of strains (mixed infections). Chapter 3 is a large scale 
study of the current state of TB WGS data from a meta-analysis of 50k isolates. It aims to reveal 
unidentified mixed infections present in previous research studies and explores the impact of this 
overlooked problem in current WGS applications for TB. Chapter 4 uses the TB data accumulated 
from Chapter 3 to explore evolutionary patterns of resistance acquisition in TB. In chapter 5 we 
apply long read sequencing technologies to provide the first complete set of TB assemblies 
spanning all lineages. We use these assemblies to study the elusive PE/PPE regions of TB. Lastly 
chapter 6 is focused on providing an overview of strain level classification techniques of bacterial 
genomes.   
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2 QuantTB – A method to classify mixed 
Mycobacterium tuberculosis infections within whole genome sequencing data 2.1 Abstract 

Background 

Mixed infections of Mycobacterium tuberculosis and antibiotic heteroresistance continue to 
complicate tuberculosis (TB) diagnosis and treatment. Detection of mixed infections has been 
limited to molecular genotyping techniques, which lack the sensitivity and resolution to accurately 
estimate the multiplicity of TB infections. In contrast, whole genome sequencing offers sensitive 
views of the genetic differences between strains of M. tuberculosis within a sample. Although 
metagenomic tools exist to classify strains in a metagenomic sample, most tools have been 
developed for more divergent species, and therefore cannot provide the sensitivity required to 
disentangle strains within closely related bacterial species such as M. tuberculosis.   

Here we present QuantTB, a method to identify and quantify individual M. tuberculosis strains in 
whole genome sequencing data. QuantTB uses SNP markers to determine the combination of 
strains that best explain the allelic variation observed in a sample. QuantTB outputs a list of 
identified strains, their corresponding relative abundances, and a list of drugs for which resistance-
conferring mutations (or heteroresistance) have been predicted within the sample.  

Results 

We show that QuantTB has a high degree of resolution and is capable of differentiating 
communities differing by less than 25 SNPs and identifying strains down to 1× coverage. Using 
simulated data, we found QuantTB outperformed other metagenomic strain identification tools at 
detecting strains and quantifying strain multiplicity. In a real-world scenario, using a dataset of 50 
paired clinical isolates from a study of patients with either reinfections or relapses, we found that 
QuantTB could detect mixed infections and reinfections at rates concordant with a manually 
curated approach.  

Conclusion 

QuantTB can determine infection multiplicity, identify hetero-resistance patterns, enable 
differentiation between relapse and re-infection, and clarify transmission events across 
seemingly unrelated patients – even in low-coverage (1×) samples. QuantTB outperforms 
existing tools and promises to serve as a valuable resource for both clinicians and researchers 
working with clinical TB samples. 
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2.2 Background 
Tuberculosis (TB) - one of the oldest diseases in the world - continues to devastate the lives of 
millions per year. The World Health Organization’s End TB Strategy calls for a 95% reduction of 
TB deaths by 2035, a feat that will require more innovative and effective methods to treat, control 
and diagnose the disease [1].  

For centuries it was assumed TB patients were infected with a single strain of Mycobacterium 
tuberculosis, the causative bacteria of TB. However, molecular genotyping methods have 
illuminated the phenomena of mixed infections - sometimes also referred to as superinfections or 
co-infections [2–6]. Patients with mixed infections harbor multiple genetically distinct strains of TB 
at the same time. Previous research has suggested that mixed TB infections account for up to 
30% of cases [4]. However, the real incidence largely remains unknown [7], with estimates ranging 
from 19% for sputum samples up to 51% for combinations of pulmonary and extra-pulmonary 
samples [5]. Mixed infections can complicate treatment and diagnosis through heteroresistance 
(presence of both drug susceptible and resistant patterns), which can cause false negatives in 
drug susceptibility tests and enable the spread of antibiotic resistance when left undetected [8–
10]. Therefore, accurate detection of strains within a mixed infection, as well as their distinct 
resistance patterns, is important for decreasing the worldwide TB burden and slowing the spread 
of drug resistance. 

Various molecular typing methods that can differentiate across the 8 major TB lineages, have 
been used to gain clues as to whether a particular infection contains more than one M. tuberculosis 
strain. Restriction Fragment Length Polymorphism (RFLP) analysis relies on the positioning and 
copy number of the variable transposable insertion element IS6110 [11]. Mycobacterial 
Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) typing analyzes 
PCR amplified loci which vary in size and number of repeats [12]. Finally, spoligotyping analyzes 
a series of 43 spacer oligonucleotides in the directed repeat region [12]. As these methods only 
indicate the lineage(s) of the strain within a sample, they cannot identify intra-lineage infections, 
making them unsuitable for mixed infection classification. In addition, these approaches only 
examine a small portion of the genome, and were not originally intended for the detection of mixed 
infections. 

In contrast, whole genome sequencing (WGS) offers a more comprehensive view into the genetic 
composition of a sample that includes distinct genetic information from individual strains. However, 
interpreting and analyzing such genomic data to identify and disentangle the composition of a 
mixed infection still remains a difficult task. To the best of our knowledge, few established methods 
exist to identify mixed infections for M. tuberculosis using WGS data. Some studies have classified 
a sample as mixed if the number of heterozygous positions (positions with evidence for more than 
one allele), exceeds a predefined arbitrary threshold [13,14]. These methods, which only consider 
mixes of two strains (bi-allelic variation), require sufficient coverage (>5x) for each allele and 
cannot be used to pinpoint actual strain identities. More recently, a paper by Sobkowiak et al [15], 
presents two methods, one based on the counts of  heterozygous alleles and another based on a 
Bayesian framework to delineate strains. Neither method provides information on the identity of 
the strains, limiting their utility in comparing across samples, a valuable resource in transmission 
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studies or when differentiating relapse from reinfection. On the other hand, a previous method by 
Gan et al [16] classifies using a reference database. However their method and database is 
custom built for their own specific need and has not been made available or benchmarked. Other 
metagenomic tools exist to classify mixed populations of strains within a single species, such as 
Sigma, StrainEst, Strain Seeker, and Pathoscope [17–20];  however these tools were developed 
and benchmarked using bacteria with greater intra-species diversity, such as Escherichia coli, 
where high numbers of variable sites and strain-specific structural variations can be exploited to 
delineate strains. These methods were not designed to be able to discriminate between strains of 
highly clonal species like M. tuberculosis, where there is near perfect syntenic gene conservation, 
and typically much less than 2000 genome wide SNPs between the most genetically distant 
isolates, resulting in an average sequence similarity over 99.97% between any two independent 
isolates. 

We present QuantTB, a tool that is specifically designed to identify and quantify the abundance of 
closely related M. tuberculosis strains in WGS samples containing TB at a detectable level, 
whether sourced from culture or sputum. QuantTB is highly relevant not only for TB research but 
also for diagnosis of TB in WGS data. Qualitative detection of mixed infections offers many 
benefits such as: characterizing hard to treat TB cases [21], facilitating analysis of seemingly 
unrelated transmission events involving lesser abundant strains, differentiating patients who have 
relapsed apart from those who harbor novel infections, and elucidating cases of poor treatment 
outcomes due to heteroresistance. In addition, QuantTB can readily be used in a diagnostic 
context, reducing processing time for TB identification in direct from sputum patient samples.  

QuantTB classifies by iteratively comparing SNPs from an uncharacterized TB sample with a 
database of TB SNP profiles from known reference strains, resulting in a low rate of false positives, 
while retaining sensitivity at coverages as little as 1×. Unlike other tools that were designed for 
use on species with higher levels of intra-species variation, QuantTB can accurately and precisely 
disentangle TB strains that differ by as few as 25 SNPs. QuantTB also informs the user of any 
drug resistant or hetero-resistant loci within the sample.  

QuantTB is available on GitHub:  https://github.com/AbeelLab/quanttb/ 2.3 Methods 2.3.1 Construction of a SNP-based reference database 
QuantTB uses a reference database of SNP sequences for strain classification which is 
constructed in four steps: 1) selecting a broad set of TB genomes, 2) selecting representative 
SNPs within these reference genomes 3) filtering genomes based on SNP similarity, 4) addressing 
reference genome bias. 

1. Acquiring genomes for the reference database 
Although QuantTB can use either assemblies or raw sequencing reads for the construction of the 
reference database, assemblies are the preferred input. Assemblies represent aggregate, error-
corrected versions of the corresponding read set and will yield superior results. We downloaded 
all available M. tuberculosis assemblies (5,867 complete and draft genomes as of July 23 2018) 
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from NCBI [22,23] using the taxonomic id: txid77643. We assigned lineages to each assembly 
based on lineage specific markers using a method described previously [24]. We filtered out 217 
assemblies that did not associate with any known M. tuberculosis lineage. We removed 12 
assemblies containing markers from more than one lineage, then confirmed the remaining 
genomes were of appropriate size, within a range of 4.4±0.5 MB. In total, 5,637 assemblies passed 
quality filtering. Supplementary Table 1 contains the NCBI accession codes and lineage prediction 
for all assemblies.  

2. Selecting representative SNPs 
Selecting high quality SNPs for each genome present in the reference database is paramount to 
the success of our method. QuantTB can extract SNPs from two different sources: assemblies 
(FASTA files or SNP files outputted by MUMmer’s show-snps program (version 3) [25]) and read 
sets (FASTQ files or VCF files outputted by Pilon (version 1.22) [26]).  

When extracting SNPs from assemblies, QuantTB aligns each assembly against the H37Rv 
reference genome (Genbank: CP003248.2) using MUMmer’s nucmer command with the minimum 
cluster length set to 100 [25] and other parameters set to the default values. All outputted SNPs 
are used, except for those marked as ambiguous by MUMmer. In the analysis presented here, we 
extracted SNPs from the 5,637 reference assemblies that passed quality filtering for our reference 
database. 

Although not used for the analysis presented in this manuscript, QuantTB can also extract SNPs 
from read sets. QuantTB aligns each read set against the H37Rv (Genbank: CP003248.2) genome 
with BWA-MEM (Version: 0.7.17-r1188) [27] using default settings, then index-sorts with samtools 
(Version: 1.6 , using htslib 1.6) [28]. By default, QuantTB uses Pilon (version 1.22, default settings 
with fixes set to none) [26] to generate a pileup and characterize each site. Sites denoted by Pilon 
as deletions, insertions, low coverage, and reference calls are excluded, in addition to low quality 
sites (Phred quality score less than 11), and ambiguous sites (alternate allele frequencies less 
than 0.9). 

For SNPs from both assemblies and read sets, we applied a number of additional filters.  SNPs 
within a specified distance from one another (default 25bp) were removed from consideration, as 
these could be indicative of sequencing or alignment error. QuantTB also excludes all variants 
that are located in genes annotated as PE/PPE (Supplementary Table 2) within the H37Rv 
reference, as these genes are known to be highly repetitive and prone to mapping errors, making 
it difficult to call variants using short-read data [29–31].  The resulting SNP sequence for a genome 
is a dictionary of positions (p) that differ from the H37Rv genome mapped to their corresponding 
alleles, where 𝑎𝑙𝑙𝑒𝑙𝑒(𝑝௫) → {𝐴, 𝐶, 𝐺, 𝑇}. The complete collection of SNP sequences in the reference 
database is stored in a binary matrix, where rows are the genomes and columns are the 
locus/allele pair (Figure 2.1). 

3. Filtering genomes based on sequence similarity 
The last step in constructing the reference database is to remove highly similar genomes. We 
calculated the pairwise SNP distances between each genome pair by summing the number of 
SNPs unique to each genome, i.e. by taking the union of variants minus the intersection of variants. 
If the SNP distance was below a specified threshold, the genome with the lowest number of SNPs 
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was removed. This process was repeated until all genomes differed by the specified minimum 
SNP distance. We evaluated the performance of QuantTB by constructing reference databases 
with four different SNP distance thresholds: 10, 25, 50 and 100 SNPs. Table 2.1 shows the number 
of strains within each reference database.  

 
Name Minimum Genomic Distance 

(SNPs) 
Number of genomes 

d10 10 4,933 
d10small* 10* 200* 
d25 25 3,686 
d50 50 2,843 
d100 100 2,167 

 

Table 2.1 The number of genomes in each database after filtering by SNP distance. The distance was calculated by 
summing the number of unique SNPs between genomes. *In order to have a smaller database to benchmark against 
slower/more memory intensive tools, the number of genomes in d10small was restricted to be 200. The 200 genomes 
were randomly selected relative to the overall distribution of lineages, with a minimum requirement of five genomes for 
each lineage. D10 was selected as source set for the small benchmarking set to ensure the broadest possible strain 
and distance representation. 

 

4. Addressing reference genome bias 
All SNPs were called using the reference genome, H37Rv, introducing a bias that strains highly 
similar to the reference genome become ‘invisible’ using this method, because they have a very 
low number of SNPs. To remedy this issue, a custom SNP-based representation of the H37Rv 
sequence was generated, based on the frequencies of SNPs across all other genomes in our 
reference database. If the same variant is observed in almost all the genomes in the reference 
database, we designate this as an H37Rv specific variant, i.e. a SNP within the H37Rv genome 
compared to every other genome. Therefore, QuantTB generates an “H37Rv SNP sequence” 
including positions where more than 75% of the genomes in the reference database have a 
common allele that differs from H37Rv. These locations are a fingerprint for H37Rv-like strains to 
identify them from the rest of the database.  

 2.3.2 Using the SNP database to quantify strains present within a sample 
QuantTB uses a SNP-based reference database to process short-read data in order to quantify 
the set of strain(s) present within a sample, such as short-read data from a clinical sample or 
isolate. Sample processing is done in two steps: 1) Extracting SNPs from a sample 2) Iterative 
classification of strains in the sample.   

1. Extracting SNPs from a sample 
QuantTB can accept either a FASTQ file or a VCF file as an input sample for classification. Given 
a FASTQ file, reads are aligned against the H37Rv genome using BWA-MEM with default settings. 
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A pileup is generated using Pilon with the default parameters and fixes set to none.  Insertions, 
deletions, bases with low quality (Phred less than 11) and bases within PE/PPE regions are 
removed as in the construction in the reference database. All other bases with a frequency greater 
than 0.99 for the reference allele are removed. The end result is a dictionary containing the 
extracted allele coverages and frequencies for every SNP position identified in the database. Note 
that QuantTB does not filter based on coverage; this allows for the detection of low abundance 
strains within a sample. 

2. Iterative classification of strains in the sample 
Specific TB strains within the reference database are identified as present within a sample by 
iteratively querying against the SNP-based reference database. Figure 2.1 shows an example of 
this iterative process in a mixed sample. The steps of the algorithm are as follows: 

I. Compute a “strain presence score” (si) for every genome (i) in the database (see below for 
computation of score). 

II. Choose the genome with the highest strain presence score, si.  
III. Remove the chosen genome’s SNPs from the database and sample. 
IV. Repeat steps 1-3 until no more SNPs remain, the strain presence score is below the 

threshold, or the maximum number of iterations have been reached. 
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Figure 2.1 Iterative multiple strain identification process in QuantTB for a mixed sample, where two strains 
are present , strain 1(red) and strain 2 (green). First, SNPs from the sample are compared against SNP 
sequences in the reference database to calculate a strain presence score for every genome in the database. 
The sample is represented as a pileup, where every circle represents an allele copy. Red circles indicate 
alleles unique to strain A, green indicates alleles unique to strain B, and blue indicates reference strain 
(blue). The database (top right) is an example matrix representation of a reference genome database. Each 
column represents a single SNP (unique position and variant), and each row represents a genome in the 
reference database with this SNP present (1) or absent (0). Strain presence scores are calculated for every 
genome in the reference database.  The genome with the highest strain presence score (si) is selected, in 
this case strain A (red). The SNPs associated with strain A are removed from the database and the input 
sample, along with additional reference alleles. In each subsequent iteration the scores are recalculated, 
allowing for the identification of additional strains, and the process continues until there are no more SNPs 
or a threshold has been reached. 
 Computation of strain presence score.   
During each iteration, a strain presence score (si) is calculated for every genome in the database 
(D). The strain presence score is an average of two statistics, 𝑂 and 𝐴, and represents the overall 
presence of a strain within the sample.  𝑂 and 𝐴 are described below. 

 𝑶𝒊   represents the fraction of SNPs from a particular reference genome, i, that was 
observed in the sample.  The higher Oi, the more likely the set of SNPs observed in the sample 
originated from genome i.  𝑂 = |𝐴𝑙௦ ∩ 𝑆𝑛𝑝𝑠||𝑆𝑛𝑝𝑠|  

 𝐴𝑙௦  is the set of alleles observed above a coverage threshold ta. Applying a coverage 
threshold diminishes the effect of random errors in the sample, while retaining sensitivity for true 
variation. This threshold ta, is dynamic and determined by the average coverage of the sample, 
Csample, and the average coverage of the genome identified in the previous iteration, 𝐶ீೖషభ. 

𝑡 = ቊ max (2, 0.05 × 𝐶ீೖషభ)     if 𝐶௦  > 250.05 × 𝐶ீೖషభ                       if 𝐶௦  ≤ 25  
If the sample has an average coverage greater than 25, a minimum coverage threshold of 2 is set 
for all iterations, whereas for samples with an average coverage less than 25, there is no minimum, 
so that strains at low coverage can still be detected. For each iteration k, the threshold is set as 
5% of the average coverage of the strain identified in the previous iteration. This is initialized at 
k=0 as 5% of the sample coverage (Csample). Applying a coverage threshold diminishes the effect 
of random errors in the sample, while retaining sensitivity for true variation. Notice that this 
threshold likely goes down in every iteration as the coverage of the previously detected strain is 
used with a minimum of 2.  

 𝑨𝒊 represents the frequency with which a particular genome’s SNPs accounts for all the 
allelic variants present in the sample. The previous statistic, 𝑂, represents how many SNPs of a 
particular genome been observed with sufficiently high coverage. However, when a sample has 
low coverage, the probability of observing the complete set of a genome’s SNPs is low. To account 
for strains present at low coverages, QuantTB also calculates, 𝐴.  
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𝐴 = |𝐹𝑟𝑒𝑞||𝐴𝑙௦| 
Where 𝐹𝑟𝑒𝑞 represents the vector of frequencies for each allele of genome i within the sample: 𝐹𝑟𝑒𝑞 = ൫𝑓,భ, 𝑓,మ, 𝑓,య, … , 𝑓,ಽ൯,      𝑓௫ ∈ [0,1]. Choose the genome with the highest strain presence score  

At the end of each iteration, the strain presence score (𝑠,), is calculated as an average between 
Oi and Ai, and the genome with the highest 𝑠,is selected as being present in the sample.  Remove the chosen genome’s SNPs from the database and sample 
Before the next iteration begins, SNPs corresponding to the chosen genome are 1) removed from 
each SNP sequence in the database and 2) removed from the sample. In addition, any H37Rv 
alleles present in the sample at positions outside of the identified genomes’ SNP sequences are 
also removed. This is because those alleles can be accounted for already by the presence of the 
identified genome.  

Because it is unlikely that the true strain present in the sample shares the exact collection of 
SNPs with its highest scoring match in the database, additional SNPs from the sample could 
match erroneously across multiple other genomes in the database with enough coverage to be 
marked as ‘observed’. As the coverage increases, the probability that an additional genome is 
spuriously detected also increases, due to the number of these uninformative SNPs that do not 
match perfectly with the originally selected genome. QuantTB implements a check to safeguard 
against this. To account for spuriously detected genomes due to higher coverages (greater than 
25), we only allow strains to be detected in a sample when their prevalence accounts for at least 
1% of the sample coverage. Therefore, SNPs from a particular strain are only removed from the 
sample when the change of coverage at each iteration would be at least 1%, otherwise the strain 
is ruled out for detection. Iteration 
The QuantTB algorithm iterates until the score threshold has been reached (the default is 0.15 but 
this can be adjusted by the user). Before starting the next iteration, a check is performed to ensure 
that a sufficient number of SNPs (15) still remain in the sample and in the database for reliable 
classification.  This value was empirically determined during large scale testing.  

 At the end of the iterations, relative abundance is calculated by taking the average coverage of 
unique SNPs for each genome in the sample. 2.3.3 Prediction of antibiotic resistance status of detected strains 
In order to identify presence or absence of a resistance phenotype in the sample, QuantTB uses 
a curated set of SNPs conferring antibiotic resistance to seven TB drugs generated from the 
previous study of Manson et al [24] (Supplementary Table 3). QuantTB also allows users to upload 
their own curated set of SNPs. If resistance conferring allele(s) are present at a frequency of more 
than 90%, the sample is considered fully resistant for that drug. Heteroresistance, where there is 
evidence of both a resistant and a susceptible phenotype in a sample, can occur due to mixed 
infections or through in-host microevolution. If a resistance conferring allele(s) is present at a 
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frequency between 10-90%, then the sample is considered heteroresistant for that drug. QuantTB 
outputs the results of the resistance testing in a separate file, if the appropriate command-line flag 
is set.  2.3.4 Benchmarking using synthetic read sets 
We constructed test datasets to benchmark QuantTB and compare its performance to two other 
strain level identification methods, StrainSeeker [18] and Sigma [17]. Another tool, StrainEst [32] 
is also capable of performing single strain classification; however, a downloadable script is not 
provided to construct a database for M. tuberculosis genomes compatible with their algorithm, so 
we were unable to include it in our benchmark.  

Synthetic mixed samples of two and four strains were used to perform benchmarking. In order to 
benchmark overall performance across different coverage levels, as well as across databases with 
different levels of strain similarity, we constructed mixes of four strains, where all four strains were 
present at equal relative abundance. In order to further benchmark the ability of QuantTB to assess 
samples containing strains with different relative abundances, we generated synthetic mixes of 
two strains sampled at different relative abundances.   

To generate the four strain mixtures we randomly selected 200 combinations of four assemblies 
from each of the four reference databases generated with different SNP-distances using publicly 
available M. tuberculosis assemblies. In total, we selected 800 different combinations of four 
strains. For each reference database, we ensured that all 7 main lineages were represented 
across the selected sets of assemblies. Then, for each selected assembly, we synthesized paired 
end reads using ART (Version 2.5.8) [33] with default settings for the Illumina HiSeq 2500 platform, 
at a read length of 101 bp and a final coverage of 100×. Each read set was down sampled to 0.1×, 
1×, 10×, and 20× coverage, then merged into mixes of four. This corresponds to 800 mixed sets 
of four different coverage levels, or 3200 synthetic mixes of strains.  

To generate synthetic two-strain mixtures of strains at different relative abundances, we randomly 
selected 100 pairs of assemblies from each of the d50 and d100 reference databases.  Paired end 
reads were simulated for each assembly, then the read sets were merged in mixes at 1×/9× 
coverage and 3×/7× coverage. This corresponds to 200 mixed sets at two different coverage levels, 
resulting in 400 synthetic mixes of varying relative abundance. 

In addition, we generated synthetic four-strain mixtures for a smaller dataset, able to run in shorter 
compute time. StrainSeeker and Sigma are not capable of processing large sized reference sets 
(>2000 genomes) and required >3 days of compute time per sample or >7 days for reference 
database construction of 2,000 genomes. Therefore, to compare the performance of QuantTB 
against that of StrainSeeker and Sigma within a reasonable time frame, we created a smaller 
reference database, d10small. Using the reference genomes from the d10 database (see 
Methods), we randomly selected 200 genomes such that each TB lineage was represented in 
proportion to its relative incidence in the overall dataset, with a minimum requirement of five 
representatives for each lineage. Synthetic sample sets were then created based on the small 
reference set, using 200 randomly selected sets of 4 genomes. These sets were synthesized using 
the same method as for the previous databases, with the only exception being that we only created 
samples where the strains are present at either 1× and 10× coverage.   
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2.3.5 Benchmark evaluation using synthetic sets 
In order to test the performance of each method, we calculated the Recall, Precision, and the F1 
score for every test category. True positive (TP) refers to the number of correctly identified strains. 
False positive (FP) refers to the number of identified strains that were not present in the sample. 
False negative (FN) refers to the number of strains present in the sample that were not identified.  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 , 𝐹1 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  2.3.6 Evaluation using real genomic data 
We demonstrated the utility of QuantTB with real data samples from a study investigating 
reinfection and relapse using WGS [13]. Sequencing reads from 50 pairs of isolates were 
downloaded from the SRA [34]. SRA files were extracted using fastqdump (Version 2.9.0)  [34] 
from the SRA toolkit, using the “split-3”, “skip-technical”, and “clip” flags to split left and right reads 
into separate files, remove technical reads, and clip off poor-quality ends of reads, respectively.  

To construct a phylogenetic tree from these samples, SNPs were extracted and filtered as 
described above. FastTree [35] was used to generate a tree from the concatenated SNPs. 2.4 Results 2.4.1 Comprehensive TB reference database captures the breadth of the Mycobacterium tuberculosis species   
QuantTB requires a reference database of known M. tuberculosis genomes for classification, 
where every genome is represented by a set of SNPs (see right panel in Figure 2.1). To construct 
a TB reference database, we used 5,637 assemblies from NCBI which passed our quality filters 
(see Methods).  
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Figure 2.2 Panel A) Number of representatives from each lineage amongst all 5,637 M. tuberculosis 
assemblies in our reference database. Panel B) Intra-lineage pairwise distance for each lineage as 
measured by the number of unique SNPs between a pair. The number in the box plot is the median distance 
of all pairs of samples from that lineage.  

 

Our database contained eight major lineages of TB at frequencies reflecting the overall 
abundances of sequences for each lineage in NCBI (Figure 2.2). Lineage 4 strains encompass 
the vast majority of M. tuberculosis assemblies currently available at NCBI (3,455 strains), while 
lineage 7 and lineage 5 are the least abundant with 6 strains for each (Figure 2.2A). The genetic 
diversity within lineages (Figure 2.2b) was in agreement with previous studies (33):  (i) lineage 1 
had the greatest intra-lineage genetic diversity (median of 871 SNPs pairwise distance) and (ii) 
lineage 2, the second most frequently occurring lineage, had the lowest diversity, (median of 240 
SNPs pairwise distance). The six strains that comprise lineage 7 had a wide range of genetic 
diversity, suggesting the need for increased sequencing of less well-characterized lineages, which 
would improve the resolution of classification within these less abundant lineages.   

To benchmark QuantTB’s performance across databases with varying intra-database genetic 
distances, we constructed a set of databases with differing minimum differences between strains 
(10, 25, 50 and 100 SNPS, Table 2.1, Methods). Each database contained a representative 
distribution of strains from each lineage (Supplementary Table 4), as well as representative 
genetic diversity within each lineage (Supplementary Figure 1,  Figure 2.2b) [36]. There was 
good concordance between the diversity represented in the complete data set (Figure 2.2b) and 
the derived benchmarking sets (Supplementary Figure 1).  2.4.2 QuantTB outperforms other tools using simulated data 
We compared QuantTB’s ability to accurately identify strains with Sigma [17] and Strainseeker 
[18]. We used five reference databases that varied both in size and in the genetic distance between 
representative genomes (Table 2.1).  As Sigma and StrainSeeker are more computationally 
expensive than QuantTB, we were not able to use our larger databases of mixtures of four strains 
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(>200 strains) with tools other than QuantTB.  In contrast, QuantTB scaled well with database 
size: database construction was complete in less than two hours, and a sample took less than 20 
minutes on average to process using the same computer hardware. The ability to take advantage 
of a large reference database is a substantial advantage for QuantTB over StrainSeeker and 
Sigma, since the number of publicly available TB sequences in NCBI that could be included in the 
database is increasing rapidly. In future, an even larger database could allow for even finer 
resolution strain detection. 

We compared performance of QuantTB with StrainSeeker and Sigma, using a smaller, lower-
resolution database of 200 strains (d10small). While StrainSeeker performed on par with QuantTB 
(Figure 2.3A), both achieving near perfect F1 scores at both coverage levels, Sigma did not perform 
as well. Sigma identified the correct strains in almost all cases; however, this was accompanied 
with greatly reduced precision (Supplementary Table 5), i.e. including many false positives and 
decreasing its overall F1 score (Figure 2.3A). 

 

Figure 2.3 Benchmarking results of synthetically mixed read sets of three different strain identification tools, 
QuantTB, StrainSeeker and Sigma. A) Results from a smaller database (d10small, n = 200) are shown for 
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all tools for coverage levels of 1× and 10×, B) results from four larger databases (see Table 2.1) are shown 
only for QuantTB, for coverages ranging from 0.1× - 20x.   

 

Classification of synthetic four-sample mixes using the larger reference databases presented a 
more difficult task; however, QuantTB’s performance remained high (Figure 2.3B), achieving F1 
scores above 0.9 at all coverages above 1x per strain, indicating that QuantTB was almost always 
able to predict all four strains in the synthetic mixes correctly. Scores for lower sample coverage 
(0.1× per strain) were reduced (F1 score of 0.4). The decreased SNP counts in these very low-
coverage simulations led QuantTB to predict only one of the strains present for most of these 
samples (Supplementary Table 5) We also observed that samples of 20× coverage per strain  
performed just as well as samples of 10× coverage per strain, indicating no gain in performance 
from additional coverage. At 1× coverage per strain, QuantTB still performed adequately, with only 
a slight performance dip noticeable in the largest database containing 4,933 strains differing by at 
least 10 SNPs. We observed that the lower performance occurred mostly because QuantTB would 
predict a genetically similar strain instead of the correct strain. Taken together, these results 
suggest that QuantTB can detect strains present at a minimum of 1× coverage. In addition, the 
fact that the QuantTB algorithm efficiently scales to larger databases not only shows it can 
accurately classify genomes regardless of database content, but that it runs sufficiently fast to 
provide the required quick turnaround time in a clinical setting using a large, clinically 
representative database.   2.4.3 QuantTB  accurately predicts relative abundances 
To assess the ability of QuantTB, StrainSeeker, and Sigma to correctly predict relative strain 
abundances, we simulated mixed samples of pairs of strains that varied in their relative proportions 
(Figure 2.4).  The setup represented a more realistic scenario, where strains in the samples 
(sourced from the d50 database) were not already present in the database (d10small). Additionally, 
we tested QuantTB’s ability to predict relative abundance across different datasets of known strain 
identity (Figure 2.4A). Data for StrainSeeker and Sigma were not shown for this experiment due 
to inability to construct the larger reference databases.  

QuantTB was by far the most successful tool at identifying the correct number of strains. QuantTB 
identified the correct number of strains (two) in the majority of samples (72%). StrainSeeker 
usually underestimated the number of strains and was only able to identify the correct number of 
strains in 25% of cases. Sigma failed to predict the correct number of strains in any sample, 
predicting at least 9 strains for all of the samples ((Figure 2.4B). For samples where QuantTB 
correctly predicted the strain multiplicity, it also predicted relative abundances close to the 
expected values, performing best for samples with a 0.1/0.9 strain ratio ((Figure 2.4, left graphs). 
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Figure 2.4 A) Relative abundance predictions across the synthetic sample sets, using randomly selected 
strains from  the d50 and d100 database for QuantTB only. If the strain was correctly predicted for the 
sample it is colored green (true positive), whereas incorrectly predicted strains are colored red (false 
positive). The left graph contains samples where two strains are present at 1× and 9× coverage. The right 
graph contains samples where two strains are present at 3× and 7× coverage. B) Predicted relative 
abundances across synthetically mixed samples for QuantTB, StrainSeeker and Sigma. Each point 
represents a predicted relative abundance for a single strain. Each mixed sample contained a pair of strains 
from the d50 dataset at either 1×-9× or 3×-7× abundance. Although samples were sourced from the d50 
dataset, the tools used a different set of genomes as a reference set (sourced from d10). Thus genomes in 
the samples were not present in the underlying database the tools were trained on. This lets us see how 
well each tool is at predicting the correct number of strains and the correct relative abundance between 
strains if the ‘correct’ strain in the sample is not already present in the database.  

 

It is not only important to determine whether a tool is able to predict the correct abundances, but 
also whether it can select the most appropriate genome when the correct strain is absent from the 
reference database. Therefore, as genomes from the d50 database were used as test samples 
and tested against genomes in the d10small database, we evaluated the accuracy of strain 
predictions by assigning a true positive to each strain in a sample if QuantTB predicted the ‘correct’ 
relative genome in the d10small database (i.e. amongst the top 3 genomes with the highest 
pairwise SNP distance to the original strain). We found that QuantTB predicts the closest strain to 
the actual genome with an average precision value of 95%. This more realistic scenario, with 
previously unseen strains, suggests that QuantTB is able to accurately predict the correct number 
of strains even in cases where a near-identical strain is not already present in the database. 
Predictions of Sigma and StrainSeeker for strain multiplicity and relative abundances were 
insufficiently accurate (Figure 2.4B and Table 2.2) to perform this analysis meaningfully.  

As only QuantTB could process samples using the larger databases, we further tested its accuracy 
at identifying correct strain pairs and their differing relative abundances using the d50 and d100 
databases. For both databases, QuantTB accurately classified the identity of each strain in the 
pair (F1 measure of 0.98 and 0.92 for the d100 and d50 databases, respectively, Supplementary 



2.4 Results  
 

31 
 

Table 5) and accurately determined the relative abundance for each strain in the pair ((Figure 
2.4B). The majority of relative abundances predicted were within 0.05 of the correct value 
(Supplementary Figure 2).  Even in the few cases where QuantTB predicted the incorrect strain, 
QuantTB predicted it to be present in the sample at the correct relative abundance. 2.4.4 QuantTB differentiates between relapse, reinfection, and mixed infections in real world data 
To demonstrate QuantTB’s utility for (clinical) research, we quantified the distribution of M. 
tuberculosis strains within samples from a study investigating the frequency of TB relapses within 
patients from the REMoxTB clinical trial, a trial which evaluated treatment for TB in previously 
untreated patients [13]. Bryant et al. sequenced 50 pairs of isolates, one taken at an initial time 
point and the other taken after more than 17 weeks of treatment. Some samples were sequenced 
more than once (105 total sequencing datasets). Since there are no established methods for 
detection of mixed infections in M. tuberculosis genomic data, the original study used manual 
inspection of heterozygous SNPs to differentiate between relapse (same infecting strain), 
reinfection (a different infecting strain) and mixed infections. In the original study, a sample was 
labeled as mixed if the number of heterozygous loci exceeded a threshold, and as a reinfection if 
the SNP distance between pairs exceeded a threshold.  

Here, we systematically reanalyzed this data using QuantTB and compared our findings from this 
dataset to those of Sigma and StrainSeeker. As it is impossible to know the identity of the strains 
present in the real samples in advance, we limited analysis to the multiplicity, or the number of 
strains identified in each sample. Table 2.2 shows the multiplicity of infection detected across the 
dataset of 105 samples for QuantTB, Sigma and StrainSeeker. 

 

Number 
of 

predicted 
Strains 

QuantTB 
(d10*) 

StrainSee
ker 

(d10*) 

Sigma 
(d10*) 

QuantTB 
(d10) 

QuantTB 
(d25) 

QuantTB 
(d50) 

QuantTB 
(d100) 

1 96 1 1 94 96 95 94 

2 9 0 0 11 9 10 11 

5 to25 0 6 21 0 0 0 0 

26 to 45 0 90 65 0 0 0 0 

46 to 60 0 2 8 0 0 0 0 

 

Table 2.2 Number of samples predicted to contain the specified number of strains, using  different methods 
and databases, for the set of 105 samples from Bryant et al.  
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QuantTB reported a consistently low (0-2) number of strains, and identified the same seven 
samples as mixed, irrespective of the database used as a reference, which was in agreement with 
the expected strain multiplicity based on Bryant et al. In contrast, StrainSeeker and Sigma reported 
an unrealistically large number of strains (greater than 25 on average).  

By applying the results from QuantTB we were able to classify each sample as either part of a 
relapse, a reinfection or a mixed infection (4 cases). We used results from the d25 database 
because it performed optimally in our benchmarking tests. If more than one strain was identified 
by QuantTB, the sample was marked as a mixed infection. If the same strain was identified for 
both isolates in a pair, the sample pair was marked as a relapse case (35 cases). Finally, if different 
strains were identified across pairs, the sample pair was marked as a reinfection (3 cases). Bryant 
et al. removed 9 samples due to contamination but did not mention how how contamination was 
determined.  Although cross contamination from other species would have had little impact on 
QuantTB (given sufficient TB coverage), we also removed these samples during our analysis. 

 

Category QuantTB Bryant et al. 

Mixed (Lost a strain 
at later time point) 

Sample 2: 81%-18% Sample 2 

Sample 8: 53%-47% Sample 8 

Sample 23: 60%-40% Sample 23 

Sample 50: 75%-25% Sample 50 

Mixed (Gained a 
strain at later time 

point) 
 

Sample 42 

Sample 45 

Reinfection 

Sample 10 Sample 10 

Sample 14 Sample 14 

Sample 35 Sample 35 

Sample 15  

Relapse 
 

33 matching samples 
Sample 42 
Sample 45 
Sample 3 

33 matching 
samples 

Clinically TB 
negative on follow 

up  

Sample 36 (H37Rv) 
Sample 37 (H37Rv) 
Sample 38 (H37Rv) 

Sample 36 
Sample 37 
Sample 38 
Sample 3 
Sample 15 

 

Table 2.3 Comparison of all mixed infections, reinfection and relapses called between QuantTB and Bryant 
et al. Samples in bold are discordant between the two methods. QuantTB predictions also include the 
abundance levels of both strains identified within the sample. Samples labeled as Clinically TB negative on 
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follow up were cases in which the second of the isolate pair assigned to the H37Rv strain by QuantTB, and 
tested negative for TB in the original study.  

 

The manual analysis of Bryan et al. designated six samples as mixes. The results from QuantTB 
match those of Bryant et al for the vast majority of cases (Table 2.3), classifying the same 3 samples 
as reinfections, 4 samples as mixed infections, and 33 samples as relapses. QuantTB classified 
three additional samples as relapses. Samples 42 and 45 were identified as mixed infections in 
the original study. Upon investigation, it was found that the original study labeled these as mixed 
infections not based on their original threshold but based off of a ‘manual inspection’, which was 
not well described. Sample 3 was manually identified as a ‘single isolated positive’, a label given 
when the second isolate of a pair tested negative for M. tuberculosis under culture. Four additional 
samples were given this label by Bryant et al., who mentioned that these cases were mostly 
caused by cross contamination. In three culture negative samples labeled ‘single isolate positive’ 
by Bryant et al., QuantTB  identified H37Rv ( a laboratory strain). As the coverage for the H37Rv 
reference strain was high in these three samples, our analysis supports the hypothesis that three 
culture negative isolates resulting in the sequencing of the H37Rv laboratory strain. The remaining 
discrepancy, Sample 15, was classified as a reinfection by QuantTB instead of a single isolated 
positive. 

To further validate our predictions and clarify discrepancies with the original study, we constructed 
a phylogenetic tree of all 105 sample isolate pairs based on concatenated SNP sequences (see 
Methods). This allowed us to visualize the phylogenetic distances between isolates of a sample 
pair (Figure 2.5).  We observed that most sister leaves in the tree were part of the same sample 
isolate pair, representing relapse cases. The two samples classified as mixed by the original study 
but as relapses by QuantTB also appear as sister nodes on the tree ((Figure 2.5, boxes A.1 and 
A.2).  Although this does not rule out a mixed infection, it justifies QuantTB’s relapse classification. 
In addition, we observed the clustering of isolates which QuantTB identified as most similar to 
H37Rv (purple nodes in (Figure 2.5, box B ), which were classified as ‘single isolated positive’ by 
the original study. The other samples given this designation by the original study, Sample 3 and 
Sample 15, did not have an isolate clustered with the H37Rv strain. Instead Sample 3’s isolates 
were sister nodes on the tree ((Figure 2.5, box C) and the two isolates of Sample 15 were found 
on opposite ends of the tree ((Figure 2.5, boxes D.1 and D.2), both locations confirm QuantTB’s 
predictions of relapse and reinfection, respectively.  

Finally, we observed two samples whose isolate pairs appeared swapped on the tree: Sample 2 
(mixed infection) and Sample 10 (reinfection). Sample 2A has sister nodes with Sample 10B (box 
E.1), while Sample 10A has sister nodes with Sample 2B on a distant part of the tree (box E.2). 
Before treatment, Sample 2 (isolate 2A) was mixed with two strains, the minor of which was 
present within isolate 10A. After treatment, the major strain of Sample 2 was lost, leaving the 
second pair of Sample 2 (isolate 2B) with only the minor strain, explaining its change of location 
(next to isolate 10A) on the tree. On the other hand, after treatment, the patient carrying sample 
10 was re-infected with a different strain that was similar to the major strain of isolate 2A. Without 
the annotation of QuantTB it would appear a sample swap might have occurred. But with QuantTB 
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this occurrence can be explained by reviewing the strain identities, because QuantTB outputs 
which genome has been detected in the sample. 

 

Figure 2.5 Phylogenetic tree of 47 pairs of isolates from sequencing reads taken from the study of Bryant et 
al. Tips are labeled with the isolate number and its part of the pair (a or b), and are colored by its isolate 
classification as predicted by QuantTB. Isolates containing a mixed infection are colored in red. Isolates part 
of a reinfection pair are colored in blue. Isolates containing the H37Rv strain are colored in purple. Isolates 
containing antibiotic heterozygous (h) or homozygous (H) resistance mutations are in orange. All single 
infections isolates are colored in green.  To the right of the mixed and reinfection isolates, we show the 
strains present in the isolate as predicted by QuantTB.  Boxes are discussed in the main text. 

 

Overall, QuantTB and the manual curation presented in the original study resulted in agreement 
for 43 of the 47 sample predictions (91%). In the remaining cases, we have presented reasons 
why QuantTB’s prediction may be at least as accurate as the original manual designations. In 
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addition, QuantTB gives information that was not available from the manual approach of Bryant et 
al., including detail on multiplicity of infection, and the identity and abundance of each strain, giving 
a detailed overview of each sample’s genetic makeup.  2.5 QuantTB provides insight into antibiotic resistance 
Using QuantTB, we determined the antibiotic resistance genotype for each of the isolates. 
Antibiotic resistance was indicated if the sample had a SNP in one of the antibiotic resistance 
causing loci from a previously published curated list (see Methods) [24]. Heteroresistance was 
indicated if the sample had alleles supporting both the resistant and susceptible genotype at a 
particular locus. Bryant et al. also tested for antibiotic resistance, both phenotypically (with 
mycobacterial growth indicator tube susceptibility testing) and genotypically (their method was not 
described). They found no evidence of genotypic or phenotypic antibiotic resistance in any sample. 
However, we found evidence for genotypic antibiotic resistance in five isolates (Table 2.4, (Figure 
2.5). Two isolates were from the same patient, 33 and 49 (relapse cases) while one was the 
second isolate in its sample pair, 35b (reinfection case). We found no relation between mixed 
infections and heteroresistance, nor do we find evidence of the emergence of antibiotic resistance 
within a relapse case. Isolate 35b exhibited heteroresistance to kanamycin in one locus: 13% of 
alleles were of the resistance phenotype, and 87% were susceptible. Because this was a 
reinfection case, it is not possible to determine whether the heteroresistance arose due to within 
host evolution.  

 

 

 

 

 

 

 

 

 

 

 

Table 2.4: Isolates exhibiting genotypic antibiotic resistance from the Bryant et al. dataset 

  

Isolate Drug 
Gene:  Amino Acid 

position, Amino acid 
change 

Type distribution 

33a rifampicin RpoB: His-445-Ser 
homozygous 

resistant  
 

33b rifampicin RpoB: His-445-Ser 
homozygous 

resistant 
 

35b kanamycin Intergenic: MurA-Ogt  heteroresistant 
res: 0.13% 
sus: 0.87% 

49a isoniazid KatG: Ser-315-Thr 
homozygous 

resistant 
 

49b isoniazid KatG: Ser-315-Thr 
homozygous 

resistant 
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2.6 Discussion 
Mixed infections are known to complicate treatment and diagnosis of tuberculosis [8–10]; however, 
the true clinical impact and prevalence of mixed infections is still poorly understood due to the lack 
of suitable methods to detect and quantify individual strains of  M. tuberculosis. WGS studies 
investigating M. tuberculosis typically identify mixed infections based on the amount of 
heterozygous base calls [6,13,14,37]. However, both the definition of a heterozygous locus and 
the number of heterozygous positions indicative of a mixed infection varies between studies. For 
example, Bryant et al. defined a position as heterozygous when two alleles were supported by at 
least 5% of the reads with a minimum read depth per allele of 4, and a sample as mixed if it had 
more than 80 heterozygous base calls [13]. Guerra-Assunção et al. defined a position as 
heterozygous if it had at least 30× coverage and more than one allele accounted for in at least 
30% of the reads, and classified a sample as mixed if more than 140 bases were heterozygous 
[14]. Perez Lago et al. simply called a position heterozygous when the less frequent allele was 
supported by 5 reads [37]. With QuantTB we aimed to provide analgorithm capable of 
systematically quantifying the multiplicity and abundance of M. tuberculosis strains at high 
resolution using WGS data that does not require manual definitions or counting of heterozygous 
positions. Because of QuantTB’s unique algorithm that identifies strains in an iterative process, 
strains can be detected at low coverages (1×), irrespective of the relative frequencies of alleles. 
The information provided by QuantTB provides several key improvements over a manual 
approach of counting heterozygous positions.  QuantTB: 1) outputs the specific identity of the 
strain, making the tracking of specific strains across samples possible; 2) outputs the abundances 
of every strain identified in the sample, enabling the quick identification of major and minor 
subpopulations; 3) is capable of detecting more than two strains; 4) reduces time required to 
identify mixed infection to less than half an hour; 5) simplifies the manual process into an easy to 
use package reducing the amount of overhead; and 6) increases reproducibility across TB studies.  

Due to QuantTB’s use of a reference database, tracking the presence or absence of specific 
strains across a set of longitudinal or outbreak samples is also possible. Within a sample, QuantTB 
can identify the closest strain(s) present from a reference database, even using a large database 
containing many highly similar genomes (differing by as little as 25 SNPs), allowing us to pinpoint 
specific strains to within 25 SNPs. This ability to pinpoint (mixes of) specific strains can aid in 
accurately identifying reinfection cases vs relapses, giving more useful results compared to the 
manual approach of the Bryant case-study with which our findings are consistent. 

Using a systematic approach such as QuantTB aids in identifying cryptic transmission events, 
such as for samples with dissimilar major strains but matching minor strains. This may have 
occurred in two of the samples we surveyed in the data of Bryant et al. (samples 2 and 10). The 
ability to pinpoint strain mixtures can also aid in tracking progression of microevolution between 
sample isolates, including the evolution of resistance.  

Using simulated data, we showed that QuantTB can accurately classify M. tuberculosis strains 
across a variety of database sizes. QuantTB is highly scalable, and can efficiently classify samples 
with databases as large as 4,000 strains in minutes, a necessary functionality as more and more 
TB assemblies are resolved. Other published tools made for classifying single strains in samples, 
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StrainSeeker and Sigma, were not capable of working with large databases, limiting their 
applicability as a diagnostic tool for M. tuberculosis. On tests using a smaller database - an easier 
and low resolution experiment - QuantTB identified the strain composition of synthetic sets with 
comparable accuracy as StrainSeeker, while Sigma’s results included numerous false positives. 
On tests where the mixed samples contained strains absent from the database, QuantTB 
outperformed the other tools by accurately outputting the correct multiplicity in 72% of cases, in 
comparison to 25% for StrainSeeker and 0% for Sigma. Both Sigma and StrainSeeker consistently 
outputted aberrantly high number of strains. In addition, QuantTB predicted the closest related 
genome in the database for these strains in 94% of the samples.  

The detection of high quality SNPs in a sample is an essential part of QuantTB’s algorithm. In 
order to ensure erroneous SNPs are not considered, QuantTB disregards SNPs present at less 
than 5% abundance relative to that of the previously identified strain. Therefore, QuantTB can only 
detect mixed infections in which the minor strain represents at least 5% of the allelic variation. 
However, QuantTB is still able to pinpoint low-abundance strains with greater sensitivity than 
previous approaches based on the counting of heterozygous positions, due to its ability to identify 
strain down to coverages as low as 1x.     

An advantage of approaches based purely on heterozygous locations is that they do not depend 
on a reference database. QuantTB’s ability to accurately detect mixed infections is closely 
integrated with the distribution of genomes used to construct the database. Though we have tested 
QuantTB’s performance on samples containing strains absent from the database, we have not 
extensively tested how the absence of a large proportion of a strain’s lineage would affect its 
classification. QuantTB’s ability to detect a strain not in the database depends on how distant it is 
from its nearest relative in the database. If the strain is sufficiently distant, it is likely that the strain 
would not be detected, underestimating sample diversity. The effects of QuantTB’s database 
reliance is mitigated by ensuring the database covers as much diversity as possible.  We found 
the currently available data is skewed to favor genomes of lineage 4 and lineage 2, with lineage 7 
and 5 representing only 0.2% of the downloaded assemblies. Therefore, further sequencing of 
these underrepresented lineages would aid QuantTB in proper classification of novel strains. 

QuantTB determines antibiotic resistance phenotypes by querying the sample against a manually 
curated list of SNPs that were shown to cause antibiotic resistances in previous studies. Bryant et 
al. did not find clinical evidence for antibiotic resistance amongst the samples. Using the curated 
list provided by Manson et al [24] we found antibiotic resistance in five samples, one being a case 
of heteroresistance in the second isolate of its sample pair. We did not observe any relationship 
between antibiotic resistance and mixed infections in the clinical isolates. The observed resistance 
mutations are well-known causal mutations for their respective resistances and WGS has been 
shown to outperform phenotypic susceptibility tests for predicting resistance [38]. Because Bryant 
et al. did not mention which method of genotypic testing they employed, it is not possible to 
understand why they were unable to detect genotypic resistances in the isolates. Particularly the 
katG mutation predicted from genotypic data in samples 49a and 49b is widely known and 
confirmed to confer resistance to isoniazid.  The ability to accurately determine antibiotic 
resistance from sequencing data is still an active research topic for TB [39,40]. As antibiotic 
resistance is one of the biggest threats to world-wide TB eradication, the proper detection of 
possible resistance in samples is crucial.  
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2.7 Conclusion 
We introduce QuantTB, a new classification method that leverages the high-resolution capability 
of whole genome sequencing for the detection of mixed M. tuberculosis infections. In contrast to 
existing tools such as Sigma and StrainSeeker, QuantTB is scalable and able to leverage a high-
resolution reference database representing the scope of diversity within TB.  Even when using a 
smaller database that allows comparisons between these tools, QuantTB shows substantially 
better performance on both synthetic and clinical datasets. This tool can be used to rapidly and 
accurately identify specific M. tuberculosis strains in clinical samples, track transmission of TB 
strains across longitudinal samples and outbreaks, and differentiate between relapse and 
reinfection cases. The ability to disentangle mixed infections in an accurate and scalable manner 
will help control TB and help limit the spread of antibiotic resistance.  2.8 References 
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3 Whole genome sequencing reveals extensive prevalence of mixed tuberculosis infections across the globe and its role in drug heteroresistance. 3.1 Abstract 
Mixed infections of Mycobacterium tuberculosis have been associated with poor treatment 
outcomes for tuberculosis; however, their prevalence and impact have been rarely studied, which 
is partly attributed to limitations in their detection. The primary objective of this study was to 
quantify the degree of mixed TB infections using publicly available M. tuberculosis DNA 
sequencing data in order to characterize their impact on studies of TB epidemiology and drug 
resistance. 

In analyzing a collection of 48,392 M. tuberculosis DNA sequencing read sets from greater than 
100 studies conducted in 106 countries, we detected mixtures of M. tuberculosis isolates in 6% 
of samples. These mixtures were distributed across 80% of included studies and 95% of countries 
indicating the widespread nature of mixed TB infections. Mixed infections were more likely to 
occur in strains within the same lineage, which would likely be missed using common DNA 
fingerprinting techniques. Importantly, mixed infections accounted for almost a third of strains 
where we detected heteroresistant loci, or cases where both susceptible- and resistance-
conferring alleles were detected. In most cases, heteroresistance could be explained by the 
presence of multiple infecting strains within the sample as opposed to within host evolution of a 
resistant genotype.  3.2 Introduction 
Tuberculosis (TB) is one of the deadliest infections in the world, with greater than 10 million active 
cases diagnosed in 2018 [1]. Traditionally, TB disease was thought to represent a single infecting 
strain of Mycobacterium tuberculosis and the possibility of infection due to more than one isolate 
was rarely considered [2].  However, advances in molecular techniques have identified numerous 
cases in which individuals harbor multiple M. tuberculosis strains, a phenomenon known as mixed 
M. tuberculosis (TB) infections [3]. Mixed TB infections have been increasingly reported, with 
prevalence estimates varying between 0 and 20% in small scale studies [4–7], with host-immune 
status playing a role [6]. In some cases, a person can be infected with strains exhibiting differing 
resistance phenotypes [8–10]. Numerous studies have shown mixed TB infections often lead to 
poor treatment outcomes, diminished performance of diagnostic tools, and reduced treatment 
efficacy [11–15], which highlights the need for additional investigation of mixed TB infections.  

Difficulties in identifying mixed infections have led to limited understanding of their prevalence 
and impact.  Initially, DNA fingerprinting techniques like IS6110 restriction fragment length 
polymorphism (IS6110 RFLP) [16], spacer oligonucleotide typing (spoligotyping) [17], and 
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analysis of mycobacterial interspersed repetitive-unit-variable number of tandem repeats (MIRU-
VNTR)  [17] were among the most popular methods to differentiate M. tuberculosis lineages. 
Though these methods were also used to detect mixed infections, they have low discriminatory 
power to differentiate between highly similar strains within a lineage [3]. The advent of whole-
genome sequencing (WGS), which provides a high resolution view of the diversity among M. 
tuberculosis strains present in a sample, allowed for substantial improvement in the discovery of 
mixed infections relative to DNA fingerprinting techniques [3,18]. Although WGS has become 
fundamental for the study of TB epidemiology, antibiotic resistance, transmission, and diagnostics 
[19,20][21,22][23], the assumption that TB disease is typically the result of a single infecting strain 
has meant that many large-scale WGS analyses have not incorporated the importance or 
influence of mixes on their research process or their research results. Recently, computational 
methods to identify mixed TB infections within WGS data [24–26] have allowed researchers to 
identify mixed infections with higher resolution from WGS data sets. However, a large-scale, 
systematic study specifically focusing on understanding the global prevalence of mixed infections 
in TB has yet to be performed. 

The primary objective of this study was to explore the prevalence and nature of mixed TB 
infections within more than 50,000 publicly available TB WGS sequences and their impact on TB 
research representing every major global geographical region. We investigate the prevalence of 
mixed infections across geographical regions, characterize properties of a mixed infection with 
respect to lineage and strain multiplicity, and evaluate the relationship of mixed infections to drug 
resistance, heteroresistance and phylogenetic analyses. We observe that mixed infections were 
present within every geographical region, with particularly high identification rates in countries of 
the Caucasus region. These mixed infections comprised strains from every TB lineage – with 
overrepresentation of lineage 2 within mixed samples. We identified mixed infections containing 
more than two strains which we denoted as ‘supermixes’.  Lastly, we report a high frequency of 
drug resistance within mixed samples, particularly heteroresistance.  3.3 Materials and methods 3.3.1 Dataset construction and variant identification  
53,025 WGS short-read datasets were downloaded from NCBI’s sequencing read archive (SRA) 
[27] on December 12, 2018 using the taxonomic ID for M. tuberculosis (txid1494075). After 
retaining only samples sequenced on the Illumina platform, with a read length >= 50 bp and 
coverage >= 20x, our final working dataset contained 48,392 samples. The full list of SRA file 
identifiers and their BioProject accessions from our final dataset can be found in Supplementary 
Table 1. 

SRA files were extracted using fastqdump (Version 2.9.0) [27] from the SRA toolkit, using the 
“split-3”, “skip-technical”, and “clip” flags to split left and right reads into separate files, remove 
technical reads, and clip poor-quality ends of reads, respectively. The extracted read sets were 
aligned against the M. tuberculosis H37Rv reference genome (Genbank identifier CP003248.2) 
with BWA-MEM  version 0.7.17-r1188 [28] using default settings, then index-sorted with samtools 
version 1.6 , using htslib 1.6 [29]. Due to the wide range of coverages observed within the read 
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sets, each aligned bam file was down-sampled to a maximum coverage of 150x, as in our previous 
large-scale analysis of M. tuberculosis genomes [20].  

As described previously [20], we assigned lineages to each read set based on lineage specific 
markers and  used our alignments against the H37Rv reference to call variants using Pilon 
(version 1.22, default settings, fixes set to none) [30]. Variants located in genes annotated as 
PE/PPE within the H37Rv reference were excluded (Supplementary Table 2), as these genes are 
known to be highly repetitive and prone to mapping errors, making it difficult to call variants using 
short-read data [31–33]. 

The geographic region of isolation for 70% of all SRA samples could be determined based on 
their BioSample metadata identifier (37% of samples) or from their corresponding publication (an 
additional 33% of samples), which we examined for studies with at least 100 samples. We also 
tabulated the goals of each study using a set of 12 keywords based on their abstracts for studies 
with at least 100 samples (Supplementary Table 3), and determined whether each study checked 
for mixed infections.   Where possible, we tabulated the method by which samples were 
processed, which included 40 samples that were isolated from a plate sweep from a previous 
study of ours [19], and 1,612 samples that represented single colonies isolated from 5 studies 
[19,34–37]. 3.3.2 Identifying mixed infections 
To assess whether a sample contained greater than one infecting M. tuberculosis strain, we used 
QuantTB [24], a tool we recently published which accurately and precisely identifies mixed 
infections of M. tuberculosis strains that differ by as few as 25 SNPs. We  previously demonstrated 
that QuantTB outperformed other existing tools [38–40] for identifying mixed infections in M 
tuberculosis [24].  In brief, QuantTB determines mixed infections by iteratively comparing a 
database of curated reference genomes against every sample to identify strains present based 
on common allelic distribution.  QuantTB was run for each sample on VCF files containing variant 
calls generated by Pilon. 

As the ability of QuantTB to detect strains in a sample is highly dependent on the representation 
of close matches to the strains within the reference database, we established a comprehensive 
set of reference databases to ensure that we could efficiently cover the diversity within our large 
sample set.  These databases included: (i) the default database provided by QuantTB, which 
contains 2,162 M. tuberculosis genomes from RefSeq (Supplementary Table 4) separated by at 
least 100 SNPs, and (ii) a more inclusive database of 3337 M. tuberculosis genomes, separated 
by at least 50 SNPs. We constructed this second database from our sample read sets by selecting 
samples predicted to represent single-isolate infections only, using a previously published method 
to identify and exclude mixed infections based purely on the presence of heterozygous sites [41].  
We selected samples from our dataset with < 0.0001% heterozygous SNPs (< 5 heterozygous 
SNPs genome–wide).  

After running QuantTB using each of these two independent databases, we merged the results 
to create the final prediction set. We further assessed our samples for the presence of false 
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negatives due to insufficient coverage of the reference database.  If QuantTB predicted a single 
strain, but estimated that it accounted for <80% of the heterozygosity in the sample, it is likely that 
there was actually another strain present, which QuantTB was unable to identify because there 
was no reference genome similar enough in the reference database.  For such cases, the sample 
was classified as a false negative and labeled as a mix.  3.3.3 Prediction of genotypic antibiotic resistance 
Genotypic drug resistance was identified using QuantTB. Resistance conferring alleles were 
defined from a curated set of SNPs conferring resistance to seven anti-tubercular drugs [20]. A 
sample was considered homoresistant, or fully resistant to a particular drug, if at least one 
resistance-conferring allele was detected at a frequency of > 90%. A sample was considered 
heteroresistant when it harbored alleles for both resistant and susceptible genotypes, and at least 
one resistance-conferring allele was detected at a frequency between 10-90%.  A sample was 
considered drug susceptible if it contained no drug resistance-conferring alleles at frequency of 
at least 10%.   

In order to identify cases where heteroresistance may have arisen through mixed infections of 
strains harboring different drug susceptibility profiles, we associated each strain in a 
heteroresistant mixed infection to the observed drug susceptibility profile. For each 
heteroresistant allele, the abundance levels of the susceptible alleles and resistant alleles were 
matched to a component strain based on the overall strain frequencies output by QuantTB if the 
frequencies were within  0.1 from each other. Only cases with a proper match are reported. 3.3.4 Phylogenetic tree construction 
To construct a phylogenetic tree, we used an alignment of genomic positions containing SNPs 
identified by Pilon. Insertions, deletions, bases with low quality (Phred score less than 11) and 
positions located within PE/PPE regions were not considered. FastTree [42] was used to generate 
a tree from the remaining SNPs with default settings.  3.4 Results 3.4.1 Mixed TB infections are present in 6% of sequenced samples globally 
To quantify the global prevalence of mixed TB infections, we used QuantTB, a recently published, 
publicly available tool to identify mixed infections in a dataset of 48,392 M. tuberculosis short-read 
datasets from NCBI. Using default thresholds, QuantTB identified mixed infections—samples 
containing M. tuberculosis genomes from more than one infecting isolate--in 6% of samples 
across 149 BioProjects. Using QuantTB with WGS data, we were able to detect five times as 
many mixed infections compared to the standard sequencing-based molecular fingerprinting 
approach, which we implemented on our sample set by identifying the presence of multiple 
lineage markers in samples using the macaw algorithm[20].  
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Overall, mixed infections were identified in 80% of the 149 BioProjects surveyed, highlighting the 
prevalence of mixed infections globally and in every domain of TB research. Mixed infections 
seemed to arise in nearly all settings that have been analyzed with WGS, despite the fact our 
dataset was pooled from a large collection of datasets, representing different facilities and 
protocols for mycobacterial sample processing. The observed rates of mixed infection per study 
varied from 0% to 54% (Supplementary Figure 1). This large range of rates across the studies 
could be due to many factors, including study protocol, study objectives, and study population. 
Indeed, we observed studies with the highest levels (30+%) of mixed infections represented 
studies conducted in countries with high TB incidence, such as Iran (PRJNA237443) and Ethiopia 
(PRJEB9201), suggesting a some link between TB incidence and the rate of mixed infections. 
However, plotting WHO reported TB incidence rates vs. detected mixed infection rates does not 
imply a nice linear relationship.    

To evaluate if application of differing microbiologic techniques upstream of sequencing could 
confound our ability to detect mixed infections among WGS data, we separately analyzed the 
mixed infection rate among samples that were single colony isolated prior to sequencing (1,612 
samples) vs. confirmed plate sweep (40 samples) (see Methods).  Irrespective of pre-sequencing 
microbiologic techniques, we observed the same rate of mixed infections (3%) among these 
differently processed samples.   This observation suggests that mixed infections can still be 
identified regardless of the method used to isolate samples, and that despite best efforts to obtain 
a pure colony, single colony isolation techniques do not always yield a genetically homogeneous 
population during sequencing.    

Due to difficulties with disambiguation, the widespread presence of mixed infection in TB has 
been largely ignored, and sometimes mixed infections have been excluded from analyses. 
Publications for only 20 (27%) of the 74 Bioprojects with > 100 samples indicated they had a 
process to screen for mixed infections in their quality control process, such as by counting the 
number of bi-allelic sites or quantifying heterozygosity.   

In order to understand more about the kinds of studies associated with different levels of mixed 
infections, we ascertained the objective of each study based on abstract review, and grouped 
them into 12 categories of study objectives. Irrespective of study objective, mixed infections were 
observed across all types of TB research, including investigation of resistance, transmission, or 
diagnostics (see Methods; Supplementary Table 3).  We observed that studies focused on drug 
resistance/prediction contained the highest amount of mixed TB infections, while the highest 
proportion of mixed infections (12.6%) was observed in studies focusing on recurrence of TB.  3.4.2 Mixed TB infections observed on all continents 
We performed a more in-depth analysis of geography and mixed TB infection rates for a subset 
of 33,641 samples (70% of our dataset) for which the country of isolation was known.  106 
countries and territories from around the globe were represented. Among those countries 
contributing at least 20 samples to our dataset, nearly all (50/51) were found to have examples of 
mixed TB infections. The one exception was Ivory Coast (see Figure 3.1).  
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Figure 3.1 Percentage of mixed TB infections identified in samples from the 51 countries with at least 20 samples in 
our data set.  A lighter color denotes a lower percentage of mixed infections; darker red denotes a higher percentage 
of mixed infections. Grey indicates insufficient data. 

  
In agreement with our hypothesis, countries having low incidence of TB had some of the lowest 
rates of mixed TB infections, which may be due to the low likelihood of encountering multiple 
strains. Very low incidence countries have, as expected, the lowest rates of mixed TB infections, 
i.e. the Americas (<3%) and Western Europe (<2%).  Because these regions have very low 
incidence of TB, it is not likely that a patient would have been infected with multiple strains.  
However, based on our data set, countries with high TB incidence, such as South Africa, have an 
average mixed infection rate of 3%. Surprisingly, it is a set of moderate-high burden countries 
around the Caucasus that were associated with higher mixed TB rates, including Iran (57%), 
Russia (43%), Azerbaijan (35%), and Georgia (27%) (Figure 3.1, Supplementary Table 4). Among 
the higher burden TB countries in our dataset, we observed moderate rates of mixed infections 
(<25%) in African and South Eastern nations.  3.4.3 The phylogenetic distribution of mixed infections differs from that of single isolates  
Due to human-to-human transmission of TB, we would expect the distribution of M. tuberculosis 
lineages within mixed infections to mirror that of single infections globally.  While the distribution 
of lineages across single isolates in our >48,000 sample dataset is similar to those reported in 
previous work [43], the phylogenetic distribution of mixed infections differed significantly from that 
of single isolates ((Figure 3.2, Supplementary Figure 2).  For instance, lineage 4 strains were 
significantly less commonly observed within mixed infections (32%) than single isolate infections 
(52%) (p-value < 3e-119) (Figure 3.2). In contrast, lineage 2 strains were present within mixed 
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infections significantly more often than expected (p-value < 4.6e-73). Despite being relatively 
small contributors to global TB burden, lineages 3 and 6 were also disproportionately 
overrepresented within mixed TB cases (p-values < 1.3 e-10 and <8.87 e-27 respectively).  

 

 
Figure 3.2  The global distribution of M. tuberculosis lineages within mixed samples (right) differs from that expected 
based on single isolates (left) within our dataset of 48,392 strains. The expected values are calculated by rescaling the 
distribution values of the distribution of lineages of isolates in the complete data set to match the number of observed 
mixed samples. 
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Figure 3.3 Most mixed infections involved strains from the same lineage, with mixed infections between lineage 2 
strains being the most abundant.   Correlation plot of the different lineages present within mixed infection pairs, with 
the higher abundant strain in the pair on the x axis and the lesser abundant strain in the pair on the y axis.  

 

Furthermore, we found that most mixed infections (62%) involved strains from the same lineage, 
which may not be surprising given the predominance of some lineages with some geographies.  
Mixed infections involving two lineage 2 strains were the most frequent (Figure 3.3), and the 
majority of mixed infections between lineages occurred between lineage 2 and lineage 4. Strains 
from Lineage 6, one of the M. africanum lineages, were more frequently observed in mixed 
infections than expected from their occurrence in single infections (Figure 3.2) but they were 
almost always the lesser abundant strain of a mixed pair, which could possibly represent 
differences in virulence, as lineage 6 is known to be less virulent [44–46].  3.4.4 3.5% of mixed TB infections are “supermixes”, or mixtures of 3 or more strains 
Likely due to technical difficulties in identifying mixes, only a limited number of cases with greater 
than two TB strains have been reported within a single sample [4]. We defined “supermixes” as 
samples that contained mixtures of three or more unique TB infection strains.  Using QuantTB, 
we found that such supermixes accounted for 3.5% of all mixed infections, or 103 isolates (0.2% 
of all isolates). The majority of these (95%) contained three strains; only four instances contained 
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four strains. As was seen overall, lineage 2 strains were the most likely to be present within a 
supermix. Also mirroring all mixtures, supermix samples were identified across many different 
countries (21) and Bioprojects (36), and were not enriched within any geography or study. 3.4.5 Mixed TB infections lead to improperly classified transmission events and missed connections between samples 
We constructed a phylogenetic tree (Supplementary Figure 3) using concatenated SNPs (see 
Methods) and used it to compare the placement of samples predicted by QuantTB to represent 
either a mixed infection of two strains or single isolates of the same two strains. We aimed to 
identify whether mixed infections clustered in a phylogenetic tree, or whether they were placed in 
the neighborhood of samples predicted to contain one of their constituent strains. This view serves 
as a useful tool understanding how mixed infections may have caused phylogenetic 
misinterpretations in prior literature, when they were interpreted as single isolates (Figure 3.4).  

Twenty specific combinations of references occurred five or more times in our dataset. By 
examining subsets of the phylogenetic tree corresponding to individual isolates or mixes of just 
these combinations of references (Figure 3.4, Supplementary Figures 4-5), we observed that 
reference combinations appeared primarily next to individual-isolate samples identified as most 
similar to one of the constituent references (usually the higher-abundance strain) (Figure 3.4, 
Supplementary Figure 4), or primarily in a separate location specific to that mixed genotype 
(Supplementary Figure 5). In all but one case, the location in the tree of a sample with a specific 
mix of references was closer to samples which contained the most abundant reference within that 
mix.  

These phylogenetic data reveal that samples containing undetected mixed infections can be 
placed in surprising and misleading locations on the phylogeny, which can be uninformative as to 
the nature of the component strains. Interestingly, while some of these mixes of specific 
references derived from multiple specimens from the same patient, the majority of instances 
derived from different patients or different investigations, indicating likely co-transmission of the 
pair of strains or local differences in strain prevalence of two infecting strains.  
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Figure 3.4 Example of differing placement of mixed infection pairs. This tree shows all the local regions of a phylogenetic 
tree highlighting with single isolate samples of strain 2225V (green) or MD1849 (orange), together with samples 
containing a mixture of these two strains (purple). The tree tips and nodes that did not pertain to these 3 strains were 
collapsed to simplify visualization. Boxes indicate clusters of mixed samples, i.e. purple leaf nodes.   The small left-
most box indicates 1mixed sample placed near strain 2225V; the right-most box indicates 3 mixed samples placed near 
strain MD18489;  and the two larger central boxes indicate 7  mixed samples that are not placed near either of the 
constituent strains.  

 3.4.6 Mixed infections impact antibiotic resistance 
Based on a curated list of SNPs for resistance genes [20], we found that mixed infections had a 
higher prevalence of resistance than single-isolate samples (see Methods).  There was a smaller 
but significantly higher prevalence of resistance within mixed infection samples (42% of samples) 
than in single-isolate samples (38%) (p-value < 4e-7), including for multi-drug resistance (MDR) 
(19% vs. 17%) and extensively drug resistance (XDR) (4% vs. 2.5%). Overall, mixed infections 
accounted for 7% (565) and 10% (120) of all MDR and XDR samples, whereas mixed infections 
represented only 6% of all samples. 
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Furthermore, recent studies have shown that mixed infections can result in heteroresistance, a 
phenomenon in which samples contain both resistant and susceptible genotypes, which can 
complicate TB resistance classification and treatment recommendations.   Although the majority 
of resistance for all antitubercular drugs analyzed was due to a single resistance allele, 
heteroresistance was present for every drug, at rates ranging from 3% of isoniazid-resistant 
samples to 33% of ethionamide-resistant samples (Figure 3.5, panel A).  Heterozygous-
resistance, where multiple distinct mutations were detected that can cause resistance to the same 
antibiotic, was rarer (<1% of samples) and detected for only four drugs (ethambutol, isoniazid, 
ofloxacin, and rifampicin).  Strikingly, mixed samples accounted for almost a third of strains where 
we detected heteroresistant loci (average of 31%; with per-drug rates ranging from 17.5% of 
heteroresistance to ofloxacin, to 56% for isoniazid) (Figure 3.5, panel B).  The remaining two-
thirds of heteroresistance, found within single-isolate samples, was most likely caused by within- 
patient microevolution. 

In order to quantify strains contributing to heteroresistance amongst mixed infections, we 
identified which strain in a mixed sample was responsible for the observed heteroresistance. We 
matched the allele frequency at each heteroresistance conferring locus to the corresponding 
abundance levels of strains in the mixed sample and determined whether or not the 
heteroresistance was due to either 1) a mixture of two strains with distinct drug resistance profiles 
or 2) a mixture of a resistant strain and a susceptible strain.  

We were able to match the resistant allele frequency to the abundance of a strain in the mixture 
for 416  of the 628 heteroresistant mixed samples (66%%) (see Methods).    Of these, we 
determined that the majority of heteroresistant mixed infections (74%) were attributed to two 
infecting strains with distinct drug resistance profiles. For example, sample ERR2679289 
contained a mix of two infecting strains (83% majority strain vs. 17% minority strain) and was 
predicted to be MDR.  However, upon further analysis, the MDR genotype was attributed to an 
isoniazid mono-resistant (80% resistant allele) infection from the majority strain, and a rifampicin 
mono-resistant (11% resistant allele) minority strain.  As each of the two infecting strains were in 
fact mono-resistant to the drugs that define of MDR-TB, this case highlights how heteroresistance 
can confound the diagnosis of MDR, as this sample may have been incorrectly identified as MDR 
on culture-based phenotypic drug susceptibility testing or on molecular resistance testing.  For a 
large minority of cases (26%), the heteroresistance analysis revealed the sample contained a 
mixture of a drug resistant strain together with a fully susceptible strain.  For example, sample 
ERR484733, an MDR sample which was heteroresistant to rifampicin, isoniazid, and streptomycin 
(with 17%, 20%, and 11% resistant allele frequencies, respectively) was determined to represent 
a mixture of a fully susceptible strain at estimated 75% abundance, and strain resistant to all three 
drugs, at an estimated 25% abundance. This case represents an example of where an undetected 
resistance due to a low minority strain could lead to treatment failure or further development of 
resistance.  For both of these examples, knowledge that mixed infection was contributing to the 
observed resistance genotypes could have been exploited for optimal design of a TB treatment 
regimen.   

Finally, samples with “supermixes” harbored increased rates of drug resistance (62% of samples) 
and heteroresistance (52% of samples) compared to single isolate infections (37% and 7% 
respectively) and mixes of only two strains (42% and 24% respectively).   
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Figure 3.5 Panel A shows heteroresistance all drugs at varying rates.  The bars represent the number of samples 
containing at least one resistant conferring mutation. Samples were categorized as i) heteroresistant (orange; 
susceptible and resistant alleles both present) and homoresistant (green; only a single resistant conferring allele is 
present).  Panel B  showns the the number of samples with at least one heteroresistant locus for each drug. Mixed 
infections were highly enriched among heteroresistant samples (overall average of 31% of heteroresistant samples, as 
compared to 6% of all samples).  Samples with mixed infections were found in almost equal proportions across all the 
drugs surveyed.    3.5 Discussion 
To the best of our knowledge, this study portrays the broadest examination of mixed infections to 
date, leveraging the largest and most comprehensive set of M. tuberculosis WGS data from 
studies performed across the globe.  This work provides new insight into the rate of mixed 
infections and its impact on heteroresistance. Our classification method identified 5 times more 
mixed infections compared to a sequencing based molecular fingerprinting based detection 
method, implying that rates based on spoligotyping or other molecular markers underestimate the 
amount of mixed infections. 

Across our large collection of datasets, each sourced for a different study goal and application, 
approximately 6% of samples were identified to contain mixed TB infections.  Mixed infections 
were identified in nearly all countries’ samples, irrespective of the type of investigation or analysis.  
Highlighting the widespread prevalence of mixed TB infections fills a previous knowledge gap, as 
the majority of prior genomic studies purposefully excluded or did not attempt to identify the 
presence of mixed infection. Previous studies identified higher rates of mixed infections in 
countries with high TB incidence, presumably due to the increased occurrence of interpatient 
contact [47]. The differences in mixed infection rates between previously published results and 
our own could potentially be explained by low sampling across the African continent in our dataset, 
and indicating a need for additional TB genomic studies in these underrepresented geographies.  

Relative to other M. tuberculosis lineages, lineage 2 strains contributed disproportionately to 
mixed infections.   The observation that lineage 2 strains were more likely to develop mixed 
infections than lineage 4 strains is consistent with prior reports of the global dominance of lineage 
2, [48,49] This over-representation could be explained by the fact that lineage 2 strains are 
thought to be more virulent and infectious [50,51]although further studies are needed to 
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understand why lineage 2 strains are more likely to coinfect.  In addition, this study showcases 
how mixed TB infections can confound accurate phylogenetic analysis. Phylogenetic placement 
of samples containing mixed infections varied based on the abundance levels of the constituent 
strains. As phylogenetic methods are the basis for many key analyses, including dating methods, 
transmission profiling [23] and establishing the order of acquisition of drug resistance mutations 
[20], such errors in tree topologies have far-reaching consequences. 

We showed that mixed infections are also a strong contributor to heteroresistance, or samples 
observed to contain both resistant and susceptible genotypes. A burgeoning area of interest in 
TB [52–54], heteroresistance may lead to failures in resistance detection or resistance profiling, 
leading to treatment failure.  For example, if a patient harbored a mixed infection consisting of 
both rifampicin mono-resistant and isoniazid mono-resistant isolates, either phenotypic testing or 
molecular diagnostics (GeneXpert or Hain line probe assays) would detect the presence of both 
rifampicin and isoniazid resistance, and the patient would be assumed to harbor MDR-TB. In this 
instance, proper mixed status detection, could lead to more accurate treatment as the patient 
could be treated with the drugs necessary to kill the two monoresistant strains. Alternately, if there 
was a mixed infection with both a fully drug susceptible isolate and one or more isolates with 
additional drug resistances, the presence of the susceptible isolate would likely go unnoticed.  
Thus, the lack of detection of mixed infections with varying resistance profiles may lead to 
suboptimal drug regimen selection for patients.  If resistance to both rifampin and isoniazid was 
detected, current WHO TB treatment guidelines [55] would not include rifampicin or isoniazid.  
However, if it was known that a mixed infection was present and included monodrug-resistant or 
susceptible strains, then both of these first-line TB drugs would have been included in the 
treatment regimen.  Thus, undetected mixed infections may result in withholding key first-line 
drugs from TB treatment regimens, resulting in delayed bacterial clearance and increased toxicity.   

While heteroresistance has often been attributed to mixed infections, the contribution of mixed 
infections toward heteroresistance has been evaluated only in limited datasets [56].  In this large 
global study, the fraction of heteroresistance attributable to mixed infections ranged from 13% for 
rifampicin to 57% of isoniazid heteroresistance. For the majority of TB drugs, heteroresistance 
was largely due to a single infecting isolate with heterogeneity only at a specific drug resistant 
locus, rather than mixed infection. The clinical importance of heteroresistance, which may 
represent emerging resistance evolution, remains an area of active investigation.   

Although previous studies have examined strain mixes, this is the first study to have reported 
multiple cases of “supermixes” with greater than two M. tuberculosis isolates, made possible by 
the high resolution with which QuantTB can detect and quantify samples harboring mixed 
infection.  Supermixes comprised 0.36% of all samples in our study, showed a strong association 
with heteroresistance, and suggested that within-patient heterogeneity is likely more complex than 
previously assumed. The relationship between identification of supermixes and clinical outcomes 
is not known; however, this phenomenon warrants further exploration as it may contribute to TB 
treatment failure.  

As this investigation brought together a large collection of publicly available TB genomic 
specimens from diverse sources, meta-data was not uniformly available across samples, 
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including sampling methods, geographic locations, treatment outcomes, and isolation techniques.  
For example, we could not identify the geographical location for 30% of the samples in our 
dataset, potentially resulting in unintentional bias towards studies which provided this information.  
Additionally, specimen processing methods prior to sequencing were not clearly reported for 
many studies or varied widely. While a subset of studies used methods that would allow for 
broader detection of heterogeneity, such as plate sweeps, indirect sequencing from mycobacterial 
growth indicator tubes (MGIT), or direct sequencing, the remainder of studies used single colony 
isolation to obtain a homogeneous population.  This may have eliminated or reduced the diversity 
of mixed TB infections within sequenced samples, resulting in an underrepresentation of mixed 
infections in our dataset. Although we reported similar mixed infection rates from single colony 
isolation or plate-scrape samples, this comparison was based on a limited number of samples for 
which this information was reliably available. It would be valuable to perform a direct comparison 
of the rates of mixed infections across different isolation techniques for a larger set of samples 
with known isolation techniques. Information on clinical outcomes was also not consistently 
present in our metadata.  As this information would have been useful to obtain a deeper 
understanding of the clinical impact of mixed infections, future practices for documenting 
information within public databases would benefit from incorporating clinical outcomes.   

Although future initiatives to perform more comprehensive sampling of the global M. tuberculosis 
population will provide a more complete view of mixed infections in TB,  our current dataset was 
limited in a number of ways. First, the studies surveyed all had different objectives which impacted 
sample selection for sequencing. For example, certain studies restricted their patient population 
to individuals with phenotypic drug resistant strains, or TB-HIV co-infection, or were limited to a 
particular geographic region. As this collection represents a medley of different sequencing 
strategies and patient populations that may not accurately reflect global TB epidemiology. Due to 
our conservative approach to identify mixed infections,  our results are likely an underestimate of 
the true incidence of mixed infections.  

Second, high burden TB countries with resource limitations were inadequately represented in our 
dataset, which could lead to a bias in our understanding of mixed infections.  Of the eight countries 
accounting for 66% of new cases in 2018 (Pakistan, Nigeria, Indonesia, the Philippines, 
Bangladesh, South Africa, India, and China [1]), only South Africa and China (4519 and 1237 
samples respectively) had significant representation in our dataset. The relative novelty and 
expense of whole genome sequencing could be responsible for the fact that there were fewer 
NGS studies in part of the world with heavier disease burden.  In addition to bias in the types of 
populations studied, this also resulted in bias in the composition of M. tuberculosis lineages in our 
dataset, because of geographic differences in lineage distribution.  

Finally, Lineages 6 and 7 were severely underrepresented in our dataset, with only 192 and 28 
samples in our dataset, respectively. This distribution was expected based on the global 
distribution of lineages, where lineages 5 and 6 are age generally geographically restricted to 
Western Africa and lineage 7 to the Horn of Africa.  However a better understanding of these 
understudied lineages could yield a better understanding of M. tuberculosis evolution and provide 
a more comprehensive picture of mixed TB infections.  
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3.6 Conclusion 
We identified mixed infections in 6% of WGS samples examined, across a global dataset 
containing over 48,000 samples.  Mixed infections were present in virtually every country 
surveyed, with highest abundance in high-TB burden countries surrounding the Caucasus, 
including Russia, Iran and Azerbaijan. Mixed infections were more likely to occur between two 
strains from the same lineage, which is likely attributable to the proximity of lineages in local 
environments. Lineage 2 and lineage 6 strains were overrepresented within mixed infections, 
which could point to their increased ability to infect a host. Mixed infections were found in more 
than 80% of the biological studies surveyed, but were more prevalent in studies focusing on drug 
resistance, likely due to the strong association between mixed infections and heteroresistance, 
which is also widespread. Our results highlighted the impact of mixed infections on the placement 
of strains within phylogenies, which can substantially disrupt our ability to conduct transmission 
analysis and trace the origins of drug resistance. Lastly, we identified multiple circumstances in 
which lack of detection of mixed TB infection may hamper efforts to both diagnose and properly 
treat of drug-resistant TB.  This study highlights the importance of identifying mixed TB infections 
within epidemiological and clinical studies that use WGS to characterize clinical isolates. 3.7 References 
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4 Global antibiotic resistance acquisition patterns of 
Mycobacterium tuberculosis 4.1 Abstract 

The emergence and continued growth of multi-drug (MDR) and extensively drug resistant (XDR) 
tuberculosis has been a growing concern in the past decade due to their ability to impact treatment 
of this infectious disease. As the number of cases of antibiotic resistant tuberculosis continues to 
rise, whole-genome sequencing based research has been widely used to provide insights into the 
genetic mechanisms driving the evolution of antibiotic resistance. 

In this study we used a collection of more than 40,000 Mycobacterium tuberculosis isolates to 
analyze the acquisition order of antibiotic resistance mutations. We constructed a phylogenetic 
tree from our globally diverse set and used a maximum likelihood based method to reconstruct 
the evolutionary path of mutations throughout the phylogenetic tree. Our data set has a large 
number of MDR and XDR isolates. We show that in the majority of cases mutations conferring 
resistance to isoniazid, precedes that of rifampicin. Due to the size of our dataset, we were able 
to determine orders of resistance for less frequent drug mutations as well. Our research 
corroborates previous research findings that drug resistance evolves in an expected predictable 
order on a global scale and extends the ordering beyond first-line anti-tubercular drugs.  4.2 Introduction 
In 2019, tuberculosis (TB) caused a total of 1.4 million deaths and infected 10 million new people, 
making it one of the top 10 most deadly infectious agents [1]. The rapid emergence of antibiotic 
resistant TB poses a major hurdle in effectively treating the disease. Incidence of multidrug-
resistant TB (MDR-TB), a form of TB which has shown to be resistant to both isoniazid and 
rifampicin, two of the most commonly used drugs, has increased by 10% from 2018 to 2019. Only 
57% of patients with MDR-TB receive  successful treatment [1]. An even more daunting threat is 
the rise of extensively drug resistant TB (XDR-TB), defined by the WHO in 2019 to be a form of 
TB resistant to isoniazid and rifampicin in addition to two other potent anti TB drugs. More than 
10,000 cases of XDR-TB was identified in 2017 across 77 countries [1]. Early diagnosis of drug 
resistance in TB patients can influence proper treatment and reduce the spread of antibiotic 
resistant TB throughout the globe. 

Due to the increasing use of whole genome sequencing (WGS), an abundance of new information 
and insights about the Mycobacterium tuberculosis genome and its impact on human infection 
have been uncovered[2,3].  Using WGS, researchers have identified specific variations of genes 
within the MTB genome that lead to phenotypic antibiotic resistance[4–6]. Numerous databases 
have been developed to provide researchers with data on the mutations leading to antibiotic 
resistance[7–10]. This has led to researchers relying on WGS to study antibiotic resistance 
transmission within populations, as the detection of antibiotic resistant cases of TB from WGS 
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provides advantages over the traditional susceptibility testing methods which can be time 
consuming or limited in their sensitivity for lower prevalence resistance [11].  

The most widely used antibiotic resistance diagnostic, GeneXpert, detects the presence of 
rifampicin resistance. However, previous research looking into trends in the order of antibiotic 
resistance acquisition  in TB have found that resistance to isoniazid overwhelmingly precedes all 
other drug resistances including rifampicin[12–14]. Therefore, by the time GeneXpert detects 
rifampicin resistance, a patient most likely has already developed resistance to isoniazid or other 
drugs. Detecting pre-MDR or pre-XDR cases of MTB would enable pro-active response and 
treatment to TB.   

Previous research has been conducted to examine the development of MDR and XDR TB. 
Findings from these studies indicate certain drugs or mutations are more likely to provide an 
earlier gain of fitness for the bacteria. These studies are however, limited in the size of their 
datasets thereby limiting their ability to resolve the order of drug resistance acquisition for less 
frequently observed drug resistances. It is important to know which drug mutations are more likely 
to occur earlier than others across all drugs, in order to better understand which mutations provide 
a fitness advantage for TB, obtain a clearer picture into the development of MDR-TB and XDR-
TB, as well as provide a better view into possible treatment options based on the mutation 
resistance profile.  

In this study, we used a large dataset of 40,088 MTB strains to investigate the general resistance 
acquisition order observed in MTB. Using a maximum likelihood based ancestral reconstruction 
model, we estimated and compared events of resistance acquisition within a phylogenetic context. 
We resolved the likely order of drug resistance mutations for MTB across 54 different countries 
and 7 different antibiotic resistance drugs. We also identified harbinger antibiotic resistance 
mutations which commonly co-occur with the other, as well as mutations which commonly co-
evolve with each other at similar positions within a phylogenetic tree.   4.3 Methods 4.3.1 Data collection  
53,025 WGS short-read datasets were downloaded from NCBI’s sequencing read archive (SRA) 
[15] on December 12, 2018 using the taxonomic ID for M. tuberculosis: txid1494075. Samples 
were filtered and quality controlled as previously described. Briefly, Illumina data only, read length 
>= 50 bp, coverage >= 20x. Samples with possible mixed infections were excluded after 
identification with QuantTB [16].  After quality control filters and removing mixed samples, the final 
working dataset contained 40,088 samples. 

Geographic region of isolation for 69% of all SRA samples could be determined based on their 
BioSample metadata identifier (37% of isolates) or from their corresponding publication (an 
additional 33% of isolates), which we examined for studies with at least 100 isolates. 
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4.3.2 Variant calling 
Variant calling was performed as described before. Briefly, SRA files were extracted using 
fastqdump (version 2.90) [15], then aligned against the M. tuberculosis H37Rv reference genome 
(GenBank: CP003248.2) with BWA-MEM  (Version: 0.7.17-r1188) [17] using default settings, then 
index-sorted with samtools (Version: 1.6 , using htslib 1.6) [18] Finally variants were called using 
Pilon (version 1.22, default settings, fixes set to none) [19].   4.3.3 Drug resistance prediction 
Genotypic antibiotic resistance to seven drugs was  identified using QuantTB based on a curated 
set of SNPs [12]. Only positions conferring a homoresistant (resistance-conferring allele at a 
frequency of > 90%), or heterozygous resistant (two different resistance-conferring alleles present 
at a summed frequency of >90%) were considered in this analysis. 3,451 positions conferring 
heteroresistance to a drug ( positions containing alleles for both resistant and susceptible 
genotypes where at least one resistance-conferring allele was present at a frequency between 
10-90%) were excluded as this is indicative of within host evolution, which could influence the 
accuracy of our results.  A sample was considered susceptible to a drug if it contained no 
resistance-conferring alleles at frequency of at least 10%.   4.3.4 Ordering of drug resistance 
A bootstrapped phylogenetic tree was constructed for the dataset based on an alignment of 
genomic positions containing SNPs identified by Pilon.  Insertions, deletions, bases with low 
quality (Phred score less than 11) and bases within PE/PPE regions (Supplementary Table 1) 
were not considered. FastTree [20] was used to generate a tree from the remaining SNPs with 
default settings, and used to calculate local support values for each node. 

The function ace from the ape package [21] was used to reconstruct the gains and losses of 
mutations at each node of the midpoint rooted phylogenetic tree. As there is more evolutionary 
pressure for a mutation to be gained than lost, ace was run using a transition matrix that applied 
a 2x penalty for a loss of a resistance mutation than a gain of a resistance mutation. A cost of 2x 
was chosen as the community consensus is that gain of a resistance mutation is more likely than 
the loss of such a mutation due to its fitness benefit under antibiotic pressure. Presence of a 
particular mutation at a node was only called if the likelihood for that mutation was above 70%. 
70% was chosen to ensure that mutation predictions were trustworthy.  

To estimate the order of drug resistance of different drugs, we captured the predicted states from 
ace for each node in the sequence of nodes from the root of the tree to each tip containing a 
sample with had an antibiotic resistance conferring mutation. 
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4.4 Results 4.4.1 Global distribution of antibiotic resistance M. tuberculosis strains 
In order to determine patterns of MTB antibiotic resistance acquisition, we compiled a dataset of 
40,088 MTB whole genome sequencing datasets.  Our dataset is globally distributed, covering 
106 different countries and territories, with the majority of isolates originating from the UK (6,922), 
South Africa (3,554), and Malawi (1820). All lineages (1-7) are represented in our dataset. 
Unsurprisingly, Lineages 4 and 2 were the most abundant in our dataset as these lineages are 
the most frequently observed across the globe [22]. 

For each of the MTB isolates, we determined genotypic resistance to 9 TB drugs based on a list 
of 143 drug resistance mutations (see Methods). Mutations for antibiotic resistance were 
observed in 68% of the 107 countries represented in our dataset. Out of 40,088 isolates, 34% 
(12,909) harbored antibiotic resistance to one or more drugs, and the majority of these (9,597) 
harbored antibiotic resistance to more than one drug. The heatmap in Figure 4.1 B shows clearly 
that many strains (rows) have multiple drug resistance mutations. As expected, resistances to the 
typical first line antibiotics were observed in the greatest quantities, with rifampicin (27%) and 
isoniazid (27%) the most common, followed by streptomycin (21%) and ethambutol (18.5%) 
(Table 4.1). These antibiotics are the typical first line drugs used to treat MTB which leads to their 
high observance in our dataset. Specifically streptomycin, which is the oldest anti-tubercular drug, 
has been administered since 1944[23].  Resistance to pyrazinamide, another first line drug was 
not as highly present in our dataset. Lack of pyrazinamide resistance in our dataset is not related 
to its epidemiological incidence, but rather reflects our incomplete knowledge of the genetic 
mechanisms of its antibiotic resistance. Despite rifampicin resistance being more abundant than 
isoniazid resistance, the most commonly observed antibiotic resistance mutation was katG 
S315T, conferring resistance to isoniazid in 26% (10,385) of samples, followed by rpoB S450L, 
conferring resistance to rifampicin in 18% (7,392) of samples (Table 4.2).  

A large proportion of multi-drug resistant (MDR) isolates, resistant to both rifampicin and isoniazid, 
was observed. MDR isolates accounted for nearly 50% of those containing antibiotic resistance 
and 16% of all isolates. Levels are in line with global WHO rates of MDR present in previously 
treated cases (19%).  Highest rates of MDR amongst countries with at least 30 samples were 
observed in Argentina (92%, 170/183), Bangladesh (84%, 38/45), and Sweden (69%, 88/128). 
We observed higher rates of extremely drug resistant TB among MDR cases compared to global 
WHO rates (12% vs 6%). Countries in the Caucasus exhibited highest rates of XDR-TB: 
Azerbaijan (62/213, 29%), Belarus (45/155, 29%), and Georgia (46/308, 15%).  Although the large 
proportion of MDR-TB and XDR-TB samples within our dataset doesn’t necessarily reflect global 
trends, it does reflect the large focus on understanding resistance within TB research and the 
studies we have surveyed. 

Table 4.1: Incidence rates of resistance mutations for each of the seven drugs analyzed. 
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Drug # isolates # Mono- 
resistant 
isolates1 

% of resistant 
isolates with 

mono-resistance2 

% of all isolates 
with this 

resistance3 
rifampicin 10,929 734 7% 27% 
isoniazid 10,651 968 9% 27% 

streptomycin 8,463 858 10% 21% 
ethambutol 7,422 65 1% 19% 

common to isoniazid 
& ethionamide 

4,059 1,026 25% 10% 

ofloxacin 2,782 158 6% 7% 
kanamycin 2,641 23 1% 7% 

pyrazinamide 782 9 1% 2% 
ethionamide 154 1 1% <1% 

1Number of isolates that are mono-resistant, i.e. only resistant to the corresponding drug 
2Proportion of isolates harboring resistance to the corresponding drug, that are mono-resistant for the drug 
3Proportion of all isolates in the dataset that harbor genotypic resistance to the corresponding drug 

 
Table 4.2 Antibiotic resistance mutation counts for the ten most abundant mutations 

Position: 
Allele 

Mutation Drug Gene Codon 
change 

# of 
samples 

% of all 
isolates 

2155175:G S315T Isoniazid katG Ser-315-
Thr 

10385 26% 

761158:T S450L rifampicin rpoB Ser-450-
Leu 

7392 18% 

781690:G K43R streptomycin rpsL Lys-43-
Arg 

5238 13% 

1673431:T  Common to 
isoniazid 

and 
ethionamide 

inhA_p 
 

3348 8% 

4247607:G M306V ethambutol embB Met-306-
Val 

2763 7% 

1473252:G  kanamycin rrs 
 

1742 4% 
4247609:A M306IA ethambutol embB Met-306-

Ile 
1458 4% 

781825:G K88R streptomycin rpsL Lys-88-
Arg 

1193 3% 

7582:G D94G Ofloxacin gyrA Asp-94-
Gly 

973 2% 

1472365:C  streptomycin rrs 
 

786 2% 
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Figure 4.1 Phylogeny of 40,088 MTB isolates (left) with a heatmap corresponding to the antibiotic resistance mutations 
present in the tips of the phylogeny is shown (right). The phylogeny was made from an alignment of concatenated SNP 
sequences input into FastTree and midpoint rooted. Mutations for each of the drugs are shown for every isolate in the 
phylogeny, colored by drug the mutation is conferring resistance to. CIE refers to mutations that are common to both 
isoniazid and ethionamide. Tip nodes in phylogeny are colored according to lineage of the corresponding isolate. 4.4.2 Evolution of drug resistance 
In order to quantify the order of drug resistance mutation acquisitions, we applied a maximum 
likelihood ancestral state reconstruction method to the phylogeny of the 40,088 isolates. At each 
node of the phylogeny, gain and/or loss for each antibiotic resistance mutation was predicted for 
each of the 52 mutations present in greater than 50 isolates (see Methods).  We observed that 
independent resistance acquisition events, or the number of unique nodes in which a gain of 
mutation occurred, was not specific to a particular country or region of the phylogeny, suggesting 
drug resistant mutation acquisition occurred in a similar fashion globally. This finding has 
previously been noted in prior research [12]. The majority of independent resistant acquisition 
events were at the tip nodes (60%), i.e. the resistant isolate.  The remaining 40% indicate possible 
transmission of antibiotic resistance or outbreaks of drug resistant isolates. 4.4.3 Drug resistance acquisition order 
We analyzed the order of antibiotic resistance acquisition for every resistant tip on the phylogeny 
to determine the ordering of acquisition events  To resolve acquisition chains, i.e. the evolutionary 
sequence of resistance mutation acquisitions for a specific isolate, we examined the path 
containing resistance mutations gained or lost from each isolate tip to the node in the phylogeny 
where the first resistance was acquired. For example, if a certain tip harbored resistance to 
ethionamide, its acquisition chain would consist of all ancestral nodes of that tip that contain the 
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specific mutation conferring the observed resistance. Examining these resistant acquisition 
chains not only gives insight into the evolutionary trajectory of these mutations, but also enables 
the identification of clustering of clonal expansions of different isolates.  

For this analysis, we excluded isolate chains where resistance was acquired on the tip node as 
there is no sequential information to be gained from these isolates. There were 6,316 unique 
acquisition chains present within our phylogeny. Table 4.3 shows the ordering of the ten most 
common chains that arose independently throughout the tree, where more than one resistance 
was gained. The katG S315T mutation has previously been said to develop prior to resistance to 
any other drug. KatG S315T followed by rpoB S450L occurred in 752 strains, making it the most 
frequently observed resistance acquisition chain. This acquisition chain occurred 429 times 
independently across our dataset, indicating the high propensity for katG S315T to precede rpoB 
S450L for MDR resistance, as observed in past research [12,13]. Indeed, more than half (57%) 
of the acquisition chains with the greatest amount of evolutionary independent arisals in our 
dataset (# unique events > 50) start with the katG S315T mutation. This is followed by the rpsL 
K43R mutation (17%) and the rpoB S450L mutation (15%).  

On the other hand, we observed acquisition chains found frequently in our dataset (> 50 strains) 
that arose from a few independent acquisition events. This was the case for the acquisition chain 
inhA  promoter -> katG S315T -> rpoB S450L/ rpsL K88R, which arose 12 times independently in 
83 strains. Usually, such findings can partly be explained by local transmission events or clonal 
expansion of certain strains, but the samples present within both these sets originate from multiple 
studies (15) and geographic locations (8). It is likely that these frequently observed acquisition 
chains are part of a large transmission event of a highly resistant and widely circulating strain. 

Table 4.3 Ten most frequent resistance acquisition chains. Each row shows the path of the resistance mutation gains 
in the numbered columns. The number of strains indicates how many strains this particular acquisition chain was noted 
in. The number of unique events indicates the number of distinct (non-overlapping) nodes responsible for the chain, 
i.e. the number of monophyletic groups containing the chain.   

First Second Third # Strains Unique events 
katG S315T rpoB S450L  752 296 
katG S315T embB M306V  249 111 
rpsL K43R rpoB S450L  274 109 

katG S315T rpsL K43R  237 124 
katG S315T embB M306IA  223 118 
rpsL K43R katG S315T  223 92 

katG S315T rpoB D435V  134 87 
rpoB S450L katG S315T  217 84 
katG S315T rrs 1  146 52 

katG S315T rpoB S450L eis promoter 
2 110 37 

 

In order to determine the relative ordering between antibiotic resistance mutation pairs we 
examined  the acquisition chains to identify the proportion of times a mutation evolved prior to 
every other mutation (Figure 4.2). Similar to previous research, we found that isoniazid resistance 
(mutations in katG S315T) overwhelming precedes all other antibiotic resistance mutations. 



4.4 Results  
 

66 
 

Interestingly, the rpsL K43R mutation, conferring resistance to streptomycin, precedes resistance 
to other antibiotic mutations just as frequently as katG S315T mutation. KatG S315T however, 
occurs before rpsL K43R most of the time, although the difference is not as significant as it is 
compared to the other mutations (60% of the time both mutations are in a unique sequence, katG 
S315T precedes rpsL K43R). Both katG S315T  and rpsL K43R precede overwhelmingly all other 
types of rifampicin resistance, this is especially true for katG S315T which precedes rifampicin 
mutations on average 97% of cases, while rpsL K43R precedes rifampicin in 91% of cases. 
Extrapolating to all streptomycin resistances shows the same pattern, where on average 
resistance to streptomycin develops prior to that of rifampicin 83% of the time. The mutation in 
inhA promoter, which confers resistance to both isoniazid and ethioniamide, also preceded 
rifampicin resistance in the majority of cases (80% of the time), confirming the previous 
observation that MDR resistance typically starts with isoniazid resistance which is later followed 
by rifampicin resistance.  

 

Figure 4.2 : Pairwise arisals of antibiotic resistance mutations present in our dataset. Values correspond to the number 
of times mutation in the X axis is acquired before the corresponding mutation in the Y axis. Only pairs with occurring in 
either direction at least 10 times are shown.  Colored are the proportion of times this occurs relative to the total number 
of unique pairs containing the two mutations. Cells are shaded relative to the intensity of proportion (darker red denoting 
proportions closer to 1, while lighter reds indicate less frequent proportions closer to 0) White cells indicate the mutation 
on the x axis never is acquired before the mutation in the y axis, while empty cells indicate the pair never occurs in the 
same sequence.  Resistance mutations are colored based on the drug they confer resistance to identical to Figure 4.1.  

 

The size of our dataset also allows sufficient resolution to elucidate acquisition order of mutations 
lesser abundant in the population. Our data suggests certain mutations that overwhelmingly 
evolve after  any another mutation, namely mutations conferring resistance to ofloxacin and 
pyrazinamide. Both the mutations in gyrA A90V and the pncA promoter  occurred last in all of the 
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mutation pairs they occurred in (14 and 9 respectively).  Overall, mutations conferring resistance 
to pyrazinamide and ofloxacin evolved last on average 90% and 87% of the time respectively. As 
resistance to ofloxacin is one of the drugs indicative of XDR resistance, it is likely that MTB 
isolates develops resistance to ofloxacin more slowly compared to other drugs. Mutations leading 
to another second line drug indicative of XDR, kanamycin, evolves on average prior ofloxacin, 
suggesting that XDR resistance begins with isoniazid, followed by rifampicin, then kanamycin and 
lastly ofloxacin. Based on our data, the ordering of the 8 drugs surveyed in our dataset is as 
depicted in Figure 4.3.  

 

Figure 4.3 Phylogeny based acquisition ordering of antibiotic resistance mutations in MTB isolates. Starting from first 
acquired (left; isoniazid) to last acquired (right; ofloxacin). Colored in green are the specific mutations, leading to 
resistance of its drug (colored in grey in the first row), that are most frequently observed first within a pair of antibiotic 
resistance mutations. The proportion of times it is observed first in a pair of antibiotic resistant mutations (shown in a 
pairwise manner in Figure 5.1Figure 4.2)  is reported as a fraction. E.g. the katG S315T mutation occurs in an 
acquisition chains with 47 other mutations. This mutation evolves before each of these other mutations, leading to a 
ratio of 47/47. 

 4.5 Conclusions 
Using 40,088 MTB isolates we examined trends in genotypic antibiotic resistance covering all 
major lineages and geographic regions. This diverse collection of isolates represents the largest 
study of antibiotic resistance acquisition in MTB to date. The data set has an overrepresentation 
of antibiotic resistant isolates, compared to WHO estimates, reflecting the global interest in 
resolving the genetic origins of drug resistance.  

Different antibiotic resistance mutations have varying levels of fitness cost for MTB, thereby 
suggesting that antibiotic resistance is developed in a particular order. Further examination of 
antibiotic resistance mutation acquisition leading to MDR or XDR is especially helpful for 
researchers and healthcare professionals in order to refocus their treatment/research goals 
strategies such that treatment is in line with the propensity of a patient to become antibiotic 
resistant and to better understand why certain antibiotic resistances are more likely to precede 
others. Previous research looking into the acquisition of MTB antibiotic resistance mutations have 
found resistance to isoniazid generally precedes that of rifampicin [13,14]. We corroborate and 
extend this finding to by resolving the order in which antibiotic resistance mutations develop in 
TB: (1) isoniazid, (2) streptomycin, (3) rifampicin, (4) ethambutol, (5) kanamycin, (6) pyrazinamide 
and (7) ofloxacin.  
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One explanation for the development of isoniazid resistance before  all other resistances is that 
the mutation rate of the gene that contains the isoniazid resistance mutation is generally higher 
than other genes containing resistance conferring mutations [24]. However this has been shown 
to be not an adequate explanation as in vitro determined rates of isoniazid mutations does not 
reflect clinical rates [14,24,25]. Another explanation for early isoniazid acquisition is based on the 
fact that different drugs have different fitness costs for the bacteria. The katG S315T mutation is 
not only the most common path to isoniazid resistance but it also carries a relatively low fitness 
burden for MTB likely contributing to the early arisal of this resistance compared to other 
drugs[13,26]. Because of the size of our dataset, we were also able to discover that resistance to 
streptomycin likely occurs before rifampicin, a finding not yet explored in previous research. This 
finding is quite interesting as streptomycin is not a first line drug  and not used as frequently as 
rifampicin. The arisal of streptomycin resistance before other drugs, is most likely an ancestral 
artefact of TB due to the long exposure of streptomycin to MTB as streptomycin was the first 
successful drug  administered to treat TB.  

By examining chains of resistance acquisition, we identified clusters of samples with resistances 
that descended from the same acquisition event. As these samples originated from varying 
biological studies and geographical locations, incidence of such clusters point to the transmission 
of antibiotic resistance strains to different regions. This phenomena was observed in prior studies 
which found 17 clusters of  MDR-resistant strains transmitted across geographical borders [27]. 
Through further examination of these acquisition chains we confirmed previous research that 
resistance to isoniazid develops prior to all other mutations. This observation has held true across 
different geographic regions and lineages in previous studies of MTB resistance acquisition[12–
14]. 

One limitation in our study is due to the inadequate knowledge of antibiotic resistance mutations 
for TB. There is an active field of study to determine which mutations lead to antibiotic resistance 
in TB [4,5,28]. In our study we used one of the most recent manually curated lists of mutations to 
make predictions for antibiotic resistance [16]. Our list has flaws especially due to the limited 
knowledge of pyrazinamide resistance [29]. It is likely that we underestimated the amount of 
antibiotic resistance in our dataset. Future studies with more complete antibiotic resistance 
mutation lists would add upon our study in clarifying the order of drugs with lesser known genetic 
basis of resistance.  

In conclusion, our results shed light on the emergence of antibiotic resistance on a global scale. 
We corroborate previous research that found that drug resistance evolves in a particular order 
within TB. We observed a few of the most common drug acquisition chains which have held valid 
across our dataset, particularly with isoniazid resistance preceding rifampicin and streptomycin 
resistance.  Further research into the biological mechanisms of antibiotic resistance could help 
clarify the possible interactive effects different drugs have on each other and lead to better 
treatment protocols. 
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5 Reconstruction of PE/PPE genes in high-quality M. tuberculosis genome assemblies reveals lineage specific distribution patterns 5.1 Abstract 
The Mycobacterium tuberculosis genome includes the PE and PPE gene families, whose 
functions largely remain unclear despite representing 10% of the genome. These genes are highly 
repetitive and GC-rich making them difficult to sequence and assemble using short read 
sequencing technologies. Previous studies have begun to look into the important role these genes 
play in bacterial virulence and cellular host immune response. However, these studies have been 
constrained by surveying only a subset of the more than 160 PE/PPE genes in lineages of M. 
tuberculosis with limited diversity. Here we used long read technology to sequence and assemble 
18 genomes covering seven human-adapted M. tuberculosis lineages (1-7) from across the globe. 
These were supplemented with three genome assemblies: Mycobacterium canetti, a lineage 8 
strain, and a high-quality reference of H37Rv. With these 21 genomes spanning all known M. 
tuberculosis lineages we conducted a comparative study of variation within and between all 
PE/PPE genes. Multiple sequence alignments of each gene revealed genomic variations that are 
specific to lineages and identified genes that are highly conserved within the two families. We 
report four novel PE/PPE genes that are missing from the H37Rv reference annotation. Moreover, 
we provide high quality reference assemblies as a resource for future studies of the M. 
tuberculosis genome. With this study, we provide the genetic basis for more in-depth mechanistic 
studies into the complex organization of PE/PPE family members and their role in virulence, 
pathogenesis and their use as vaccine targets.  5.2 Introduction 
Mycobacterium tuberculosis, the causative bacteria for the disease Tuberculosis (TB), is one of 
the most deadly infectious agents ever known to mankind - responsible for the deaths of millions 
each year and affecting the lives of nearly 2 billion people across the globe [1]. Organisms within 
the M. tuberculosis complex (MTB) are characterized by their relatively low mutation rate, 
resulting in a clonal population structure with low levels of sequence diversity [2]. Strains of M. 
tuberculosis have been categorized into six major lineages based on their genotypic diversity:  
three ‘modern’ lineages (lineage 2 East-Asian, lineage 3 East-African, and lineage 4 Euro-
American), and three ‘ancient’ ancestral lineages (lineage 1 Indo-Oceanic, lineage 5 Africanum 
Subtype 1, and lineage 6 Africanum Subtype 2) [3,4]. Recently, two additional lineages have been 
identified, including one lineage intermediate between the modern and ancestral lineages (lineage 
7) and one lineage more distantly related to Mycobacterium canettii (lineage 8) [5]. Genetic 
diversity across these lineages has been associated with diversity in phenotypic traits with modern 
lineages exhibiting increased disease virulence and severity compared to other lineages [6].  
Nearly 10% of the M. tuberculosis genome consists of two large gene families, called the PE and 
PPE gene families, whose naming is based on the presence of a Pro-Glu (PE) or Pro-Pro-Glu 
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(PPE) motif within the first 10 amino acids of its N-terminal domain [7]. The 101 genes within the 
PE superfamily are further subdivided into two subfamilies: the largest, PE-PGRS, contains 64 
genes and is characterized by a polymorphic C-terminal domain with multiple repeats of Gly-Gly-
Ala or Gly-Gly-Asn motifs, while the smallest, PE, contains only the PE domain [8].  

Numerous studies have explored the role of PE and PPE proteins within M. tuberculosis pointing 
to associations between these proteins with disease pathogenicity and progression. Loss of the 
PPE 25-PE 19 gene cluster has been associated with reduced virulence [9], while increased 
cytotoxicity and inflammation was observed following expression of some PE-PGRS proteins (PE-
PGRS33, PE-PGRS16, PE-PGRS26, PE-PGRS30, PE-PGRS11, and PE-PGRS17) [8]. Further, 
it has been speculated that genetic variation across different subsets of PE and PPE genes allows 
M. tuberculosis to either evade or modulate the host immune system [8] as some PE and PPE 
proteins are surface exposed antigens, enabling direct interaction with the host. PPE37 has been 
shown to hinder macrophage driven inflammatory response [10] and the co-expression of  PE9/10 
has been shown to induce macrophage apoptosis [11].  

Despite accounting for nearly 10% of M. tuberculosis coding potential [8] PE and PPE genes are 
regularly excluded from whole genome sequencing analysis studies as their highly repetitive 
nature and abundance of GC-rich regions make them typically poorly covered by short read 
sequencing technologies  [12]. Because genetic variations within these genes are assumed to 
contribute to differences in virulence [13], there is a need to properly characterize PE and PPE 
sequence variation within and across M. tuberculosis lineages. Long read sequencing 
technologies offers read lengths that can resolve longer highly repetitive regions that are difficult 
to sequence with short read technologies. Previous studies investigating variation within these 
gene families have yielded conflicting results, limited in either the breadth of lineages they cover, 
the number of genes considered, or the relatedness of isolates analyzed [7,14–17].  

To better understand variation within PE and PPE genes we used the Oxford Nanopore 
Technologies MinION platform to sequence and assemble 18 isolates spanning seven known M. 
tuberculosis lineages sourced from a MTB clinical strain reference set [18]. Our analysis was 
supplemented with the high quality H37Rv assembly [19], M. canetti[20],  and lineage 8 assembly 
[5]. This represents the first analysis of all 168 fully assembled PE and PPE genes from eight 
human adapted lineages of M. tuberculosis. Additionally, we provide 18 fully assembled high 
quality MTB genomes as a resource for the scientific community. With this study, we provide a 
platform for future research efforts into the functional and pathogenic properties of the M. 
tuberculosis genome.  5.3 Materials and Methods 5.3.1 Sample information 
18 M. tuberculosis isolates covering various global regions and all seven human adapted lineages 
were selected for analysis based on a previously published clinical strain reference set [18]. 

Characteristics of these isolates are provided in Table 5.1.  Three additional genomes – H37Rv 
(NCBI accession number AL123456.3), M_canettii (NCBI accession number HE572590.1), and 
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a lineage 8 strain (NCBI accession number ASM1292376V1) were additionally included in our 
analysis. 5.3.2 DNA extraction and sequencing 
DNA was extracted using the Genomic DNA Buffer Set (Qiagen Inc, Germantown, Maryland, 
USA) as undertaken previously for long reading sequencing of the L8 strain[5].  

Approximately 1 µg of DNA of each sample was used for library preparation using the Native 
Barcoding kit (EXP-NBD104 and EXP-NBD114), and the Ligation Sequencing kit (SQK-LSK109) 
following manufacturer instructions. The prepared library was loaded into an R9.4 SpotON Flow 
Cell and sequenced on a MinION device.  

 

Table 5.1 Details of the samples used for comparative analysis, including 18 isolates sequenced for this study and 
three supplementary genomes: H37Rv  (NCBI accession number AL123456.3), an M. canettii strain (NCBI accession 
number HE572590.1), and a lineage 8 strain (NCBI accession number ASM1292376V1)  [43] 

Sample Name Strain 
Name 

Country of 
origin 

Lineage GenBank SRA (long 
reads and 
short read) 

ITM-2018-00082 N0157 Philippines L1 CP069078 SRR12801738 
ITM-2018-00083 N0072 India L1 CP069077 SRR12801737 
ITM-2018-00087 N0031 China L2 CP069076 SRR12801728 
ITM-2018-00088 N0155 China L2  SRR12801727 
ITM-2018-00089 N0004 India L3 CP069075 SRR12801726 
ITM-2018-00090 N1274 Afghanistan L3 CP069074 SRR12801725 
ITM-2018-00091 N0054 Ethiopia L3 CP069073 SRR12801724 
ITM-2018-00092 N1216 Ghana L4 CP069072 SRR12801723 
ITM-2018-00093 N0136 USA L4 CP069071 SRR12801722 
ITM-2018-00094 N1283 Germany L4 CP069070 SRR12801721 
ITM-2018-00095 N1176 Ghana L5 CP069069 SRR12801736 
ITM-2018-00096 N1272 Ghana L5 CP069068 SRR12801735 
ITM-2018-00097 N1268 Sierra Leone L5 CP069067 SRR12801734 
ITM-2018-00098 N1201 Ghana L6 CP069066 SRR12801733 
ITM-2018-00099 N0091 Gambia L6 CP069065 SRR12801732 
ITM-2018-00100 N1202 Ghana L6 CP069064 SRR12801731 
ITM-2018-00101 N3913 Ethiopia L7 CP069063 SRR12801730 
ITM-2018-00102 N0069 China L1 CP069062 SRR12801729 
ASM1292376V1 - Rwanda L8 PRJNA598991 SRR10828834 

H37Rv H37Rv - L4 AL123456.3  
M. canettii 

 
- - HE572590.1  
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5.3.3 Genome assembly and annotation 
Barcoding and basecalling of long reads was performed with Guppy Basecalling Software v3.2.43 
using the command: flowcell - FLO-MIN106, kit - SQK-LSK109, barcode_kits - ”EXP-NBD104 
EXP-NBD114”. De novo assembly was performed with Flye v2.5 [21] under default settings. 
Assemblies were further improved in a multi-step process: three rounds of polishing with Racon 
[22] (using long reads) and three rounds of polishing with Pilon [23] (using short reads). 
Completeness and quality of the assemblies were assessed based on the number of complete 
BUSCOs (Benchmarking Universal Single-Copy Orthologs) calculated with BUSCO.v3 [24] using 
the Actinobacteria set; and number of contigs. These assemblies were further oriented with 
Revseq v6.6.0.05 based on the H37Rv reference genome and rotated to equivalent start locations 
with Circlator fixstart [25]. All assemblies were aligned to the H37Rv reference using  nucmer from 
MUMmer v3.2[26].  

The 18 new assemblies as well as three additional assemblies (H37Rv, M. canettii and a lineage 
8 strain) were annotated using the RAST server [27] under default settings. To validate the 
accuracy of the annotations of PE/PPE genes we used BLAST to query all the assemblies against 
a custom H37Rv PE/PPE gene database. Gene annotation was manually curated to ensure the 
presence of a proper start/stop codon, and proper distance to RBS motif. Genes that failed 
validation or that were absent from the BLAST search were marked as either pseudogenes or 
missing. A subset of PE/PPE genes identified by RAST were not given specific gene identities 
and were only annotated based on the gene family, e.g. ‘PE family protein’, ‘PE-PGRS family 
protein’, or ‘PPE family protein’. These unlabeled genes were validated as putative yet 
unannotated PE/PPE genes via a BLAST search against H37Rv PE/PPE genes to ensure they 
had not already been annotated previously. They underwent further validation as PE/PPE genes 
based on passing criteria developed by Ates et al [28]. Namely, we verified the presence of a PE 
or PD motif within the N-terminus and the presence of YxxxD/E motif for the putative PE genes, 
and the presence of a PPE motif within the N-terminus and a WxG motif within the N-terminus for 
the putative PPE genes. Since these motifs are considered hallmarks for PE/PPE genes, we 
labeled genes that passed both checks as putative new PE/PPE genes.  5.3.4 Sequence analysis 
A whole genome phylogeny was made for the 21 M. tuberculosis assembly from a concatenated 
alignment of SNPs provided by an alignment of each assembly to the H37Rv reference using 
MUMmer’s nucmer command. Only sites with variants present in at least eight samples were 
used to create the concatenated alignment. The tree was generated using FastTree v2.1.10 [29] 
and rooted using M. canettii as an outgroup. We additionally created phylogenies for each of the 
168 PE/PPE genes using FastTree on protein alignments performed with MUSCLE v3.8.31 [30].  

SNPs output from nucmer were used to determine variations within gene regions from each 
genome assembly. For PE/PPE genes N-terminal and C-terminal sites were approximated based 
on findings within a previous study [31]: 0-110 and 0-130 amino acids for PE and PPE proteins 
respectively. Synonymous and non-synonymous sites were calculated for each PE/PPE protein 
alignment using SNAP [32] against the H37Rv sequence. Variation across the PE/PPE proteins 
and lineages was conducted by calculating the pairwise genetic distance for each protein. 
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Distances were then averaged per lineage and normalized by the total protein sequence length. 
P values were calculated using fishers exact test. 

GenMap (v 1.3.0) [33] was used to determine mappability scores for each genome at default 
settings. The mappability score ranges from 0 (low mappability) to 1 (high mappability) and is a 
measure of the repetitiveness of the underlying sequence.  5.4 Results  5.4.1 18 high quality complete M. tuberculosis reference genome assemblies 
18 M. tuberculosis isolates covering lineages 1-7 were sequenced using nanopore sequencing 
and then assembled using Flye to generate high quality assemblies (median N50 of 4,424,350 
and median genome length of 4,426,106). A single contig was achieved for all but one genome 
assembly (ITM-2018-00088). Assemblies contained on average 99% the number of genomic 
features (BUSCOs) expected for the Actinobacteria class of which M. tuberculosis is a species. 
In order to juxtapose variations across all lineages of MTB we also included an M. canetti strain 
and a lineage 8 strain. We additionally included a H37Rv strain to validate our results. (Table 5.2). 
The number of complete genomic features was remarkably lower for the Lineage 8 strain which 
could possibly be due to its different sequencing procedure (PacBio and Illumina). 

 

Table 5.2 Details on assemblies analyzed in this study 

Samples Lineage Length of 
assembly 

Number 
of 

contigs 

GC-
content 

(%) 

Genomic 
features 
(Quast)* 

Complete 
BUSCOs %** 

ITM-2018-00082 L1 4,410,121 1 65.62 4020 + 40  99.43 
ITM-2018-00083 L1 4,420,471 1 65.61 4017 + 33  99.43 
ITM-2018-00087 L2 4,399,032 1 65.62 4013 + 39  99.15 
ITM-2018-00088 L2 4,418,134 2 65.6 4021 + 37  99.43 
ITM-2018-00089 L3 4,422,216 1 65.61 4031 + 37  99.43 
ITM-2018-00090 L3 4,438,446 1 65.62 4042 + 31  99.43 
ITM-2018-00091 L3 4,431,518 1 65.61 4041 + 37  99.15 
ITM-2018-00092 L4 4,393,016 1 65.61 4026 + 30  99.43 
ITM-2018-00093 L4 4,395,562 1 65.61 4032 + 28  99.15 
ITM-2018-00094 L4 4,419,495 1 65.59 4027 + 34  99.15 
ITM-2018-00095 L5 4,425,207 1 65.59 4012 + 52  99.15 
ITM-2018-00096 L5 4,420,832 1 65.59 4015 + 48  99.43 
ITM-2018-00097 L5 4,428,969 1 65.59 4024 + 48  99.43 
ITM-2018-00098 L6 4,386,429 1 65.59 3980 + 37  98.86 
ITM-2018-00099 L6 4,387,551 1 65.6 3980 + 39  98.86 
ITM-2018-00100 L6 4,391,569 1 65.6 3984 + 37  99.43 
ITM-2018-00101 L7 4,408,017 1 65.6 4000 + 35  99.43 
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ITM-2018-00102 L1 4,419,191 1 65.6 4006 + 36  99.43 
ASM1292376V1 L8 4,379,910 1 65.62 3988 + 53  92.05 

H37Rv L4 4,411,532 1 65.61 4098 + 0  98.86 
M. canetti  4,482,059 1 65.61 3745 + 92  99.43 

* complete genomic features + partial 
**Total number of BUSCOs for Actinobacteria odb9 set is 352 
 

After aligning to the H37Rv genome, we identified 12,254 unique SNPs across the 20 M. 
tuberculosis genome assemblies, 67% (8,264) of which were unique to a single strain. We built a 
whole-genome phylogeny based on the identified SNPs (Figure 5.1A), which followed the 
expected clustering of all lineages based on previous studies [5].  

 
Figure 5.1 Absent / present genes matrix.  Panel A shows the whole genome phylogeny of the strains from the eight 
human-adapted MTBC lineages and M. canettii, rooted on M. canettii . ‘Modern’ lineages (2,3,4), and ‘ancient’ ancestral 
lineages (1,5,6) form respective clusters in the phylogeny. Lineage 7 is in-between ‘modern’ and ‘ancient’ lineages, 
whereas Lineage 8 is most similar to the ancestral. M. canettii is a non-pathogenic relative of M. tuberculosis. In panel 
B the respective presence (blue or absence (pink) is shown for PE (left), PPE (middle) and PE-PGRS (right) genes for 
each genome assembly in the phylogeny. Only genes with variable presence are included in the figure. 

 5.4.2 PE/PPE genes show lineage specific gains and losses  
We identified 37 PE, 64 PE-PGRS, and 71 PPE genes within our assemblies, including 4 newly 
annotated genes (PE10A, PE19A, PPE58A, PPE58B). Each gene was present once in 91% of 
assemblies, however nearly all assemblies contained cases of deleted or non-functional (<50 
amino acids)/pseudo PE/PPE genes ((Figure 5.1B). Copies of PPE genes were most frequently 
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found to be completely absent (deleted) across the genome assemblies, compared to PE and 
PPE genes. To be exact: 1.8% (14/777), 1.6% (21/1,344) and 2.3% (35/1491) of all PE, PE-
PGRS, and PPE gene copies were absent across the genome assemblies respectively. While 
copies of PE-PGRS genes were most frequently found to be nonfunctional across the genome 
assemblies. To be exact: 1 (0.12%), 223 (16.6%), and 45 (0.9%) of all PE, PE-PGRS and PPE 
genes were identified as being nonfunctional, respectively. 

We noted that several genes were absent from the majority of genome assemblies. In particular, 
copies of seven PE-PGRS genes and one PPE gene were absent in half of our genome 
assemblies (>10). The most frequently absent gene copies were Wag22 (PGRS) and PE-
PGRS10; both absent in 14 (67%) and 15 (71%) of genome assemblies respectively. This finding 
for Wag22 corroborates with previous studies which revealed Wag22 unsuitable for analysis due 
to deletions and frame shifts in 86% of their samples [7]. The remaining six PGRS/PPE gene 
copies (PE-PGRS9, PE-PGRS30, PE-PGRS59, PE-PGRS46, PE-PGRS23, PPE7) contained in-
frame stop codons that made these proteins non-functional in multiple (10-13) genomes 
assemblies. It has previously been reported that secretion of PE-PGRS proteins is not essential 
for the virulence of M. tuberculosis [28]. While the large absence of these PGRS gene copies in 
our data is in line with this assertion, there is little known about the function of these specific 
genes. The PE27A (28 aa long) was the most frequently absent PE gene in our set (absent in 7 
genome assemblies). Due to its limited length, this could have easily been removed as a result of 
a deletion event. 

Presence or absence of certain gene copies may have important biological implications that 
reflect the efficacy of M. tuberculosis to sustain an infection in a host. The clustering of gene 
presence according to lineage could therefore help to shed light on these biological implications. 
In our analysis, we observed correlations between gene copy presence and lineage ((Figure 
5.1B). We did not observe any gene duplications within these gene families. Overall, Lineage 8 
was found to have the most absent gene copies (26), followed by lineage 7 (23), and M. canettii 
(18). The high number of missing gene copies from these lineages is partially a consequence of 
our data containing only a single genome assembly for these lineages. The remaining lineages 
were represented by at least two genome assemblies. Amongst these, lineage 6 had by far the 
highest number of absent PE/PPE gene copies (13). The higher number of absent PE/PPE gene 
copies from these four lineages can possibly explain differences of virulence when compared to 
the remaining lineages. 

Of all genes, PPE7 was absent from the most lineages (6/9 lineages) and only had functional 
copies in 3 modern lineages (Lineage 2, 3, 4). The PPE7 protein was found less abundant in 
hypo-virulent strain H37Ra [34] compared to H37Rv, suggesting this gene might play a role in 
virulence. It is likely that modern lineages, which are more virulent than ancestral lineages [35], 
acquired this gene, based on our data showing its absence in ancient lineages. Copies of Wag22, 
PGRS10 and PGRS59 were nonfunctional in 4 lineages: 2, 3, 7 and 8 (Wag22), 2, 3, 6, 7 
(PGRS59) and 1,2,6,7 (PGRS10). Wag22 had previously been reported to be a non-essential 
gene for in vitro growth of H37Rv [36], which corresponds to its marked absence across several 
lineages.  
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5.4.3 Newly discovered PE/PPE genes missing from H37Rv reference annotation 
During our analysis, we identified four genes not previously reported as a specific PE/PPE gene, 
yet possess all the features expected for these genes  (Figure 5.2, Table 5.3). We labeled them 
based on their proximity to neighboring genes from the same gene family: PE10A, PE19A, 
PPE58A, and PPE58B. 

  

 
Figure 5.2 Co-localization of genes newly annotated in this study. Panel A shows the neighborhood of newly annotated 
PE10A gene containing previously annotated genes Rv1109c, Rv1111c, Rv1118c, and Rv1119c. Panel B shows the 
neighborhood of newly annotated PE19A gene containing the previously annotated pe19A, esxM, esxN, eccD5 and 
mycP5 genes. Both PE10A and PE19A are present in every genome sequenced in this manuscript. Lastly, panel C 
shows the neighborhood of newly annotated PPE58A and PPE58B genes, in the context of the previously annotated 
PPE57, PPE58 and PPE59 genes. In panel C the four left-most genes are annotated with strains from which that 
particular gene is missing. 

 

Table 5.3: Attributes of PE/PPE genes newly identified in this study 

№ Protein 
name 

Annotation 
according to 

H37Rv 
NCBI 

Length of 
the 

protein 

Absent1 PE/PPE 
markers 
(motif, 

position)2 

Substitutions 
(sample, 
position)3 

Amino acid 
similarity/overlap 
with other proteins 

1 PE10A Conserved 
hypothetical 

protein 
(fragment) 

91 aa - PE motif, 
position 59; 

YVHAD 
motif, position 

85 

 
M. canettii, 

position 72 (Y-
>H) 

similarity with C-
terminal part of PE17 
(68.05% identity in 72 

aa alignment, 
PE17 is 310 aa long) 

2 PE19A Conserved 
protein 

300 aa - PE motif, 
position 31; 

YVSTD motif, 
position 38, 

YGVID motif, 
position 96 

- No significant (>50% 
identity to other 

proteins) 

3 PPE58A None 180 aa ITM-2018-00093 
(L4), 

ASM1292376V1(L8
), 

H37Rv, M.canettii 

WIG motif, 
position 56 

ITM-2018-00099 
(L6), 

position 13 (Y-
>C) 

similarity with PPE57 
(55% identity in 173 aa 

alignment, 
PPE57 is 176 aa long); 
PPE58 (57% identity in 

122 aa alignment, 
PPE58 is 232 aa long); 
PPE59 (54% identity in 

175 aa alignment, 
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PPE59 is 178 aa long) 
4 PPE58B None 131 aa ITM-2018-00093 

(L4), 
ASM1292376V1(L8

), 
H37Rv 

WAG motif, 
position 25 

ITM-2018-00087 
(L2), 

position 84 (E-
>A); 

ITM-2018-00089 
(L3), 

position 72 (G-
>D); 

M. canettii, 
multiple 

substitutions 

No significant (>50%) 
identity 

to other proteins 

1Genomes in which this protein is absent 
2Specific markers used to identify this as a PE or PPE protein 
3Genomes containing variations of this protein’s amino acid sequence 

 

PE10A, annotated as ‘PE family protein’ by RAST, neighbors PE10 on one side, an inducer of 
macrophage apoptosis [11] and PE11 on the other side, involved in virulence processes [37]. The 
three genes appear consecutively in the genome. Although containing features of a typical PE 
gene (PE motif at position 59 and secretion signal at position 85 YVHAD), it was reported as 
Conserved hypothetical protein (fragment) in the H37Rv reference genome (NCBI accession 
number AL123456.3). It is well conserved across all the lineages and contains only a single 
variation in M. canettii (Table 5.3, Supplementary Figure 1). Based on this high conservation 
across lineages and the presence of characteristic PE motifs, we consider PE10A a new PE gene 
that was previously unannotated within the H37Rv reference genome.  

PE19A, which RAST annotated in the H37Rv genome as ‘PPE family protein’, does not have the 
expected PPE and WxD motifs inherent to PPE family proteins. Instead, it contains typical PE 
features (PE motif and YxxxD motifs) (Supplementary Figure 2), leading to its designation as 
‘PE19A’. Similar to PE10A, it is well conserved across all lineages, including M. canettii. Despite 
being annotated as a PPE family protein, we consider PE19A another previously unannotated PE 
gene. 

Two newly described PPE proteins, PPE58A and PPE58B, are localized together, between 
PPE58 and PPE59 (Figure 5.2). The two genes both contain a WxG motif (Supplementary Figure 
3 and 4). Although PPE58A does not have a PPE motif in the N-terminus, it has an EPP motif in 
the C-terminus - a feature shared by PPE57, PPE58 and PPE59. Interestingly, the region with 
PPE58A and PPE58B is missing in H37Rv (L4) despite their presence in other Lineage 4 isolates. 
In ASM1292376V1(L8) and ITM-2018-00093 (L4) the region containing PPE57, PPE58, PPE58A 
and PPE58B is absent (Supplement Figure 5b), indicating that this deletion affects a range of 
lineage 4 strains. M. canettii lacks PPE57, PPE58, PPE58A (Supplementary Figure 5d), but 
interestingly still has PPE58B. Both PPE58A and PPE58B have not been annotated as a gene in 
the H37Rv reference and are completely absent from the annotation. PPE58B especially shares 
no significant similarity with any other PE/PPE gene, pointing to its novel nature making it an 
interesting candidate for further research. The absence of both PPE58A and PPE58B in the 
H37Rv annotation is a good example of how our high quality assemblies led us to identify genes 
that would have been otherwise overlooked due to reference bias of the H37Rv genome.  

All four of these newly annotated genes exhibit high degrees of conservation across lineages and 
genome assemblies. Based on their widespread distribution and link to other PE/PPE genes, we 
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speculate that these genes may play an important role in M. tuberculosis virulence and 
pathogenicity. 5.4.4 PE/PPE Variation Profiles  
To explore the increased diversity within PE/PPE genes compared to other genes within M. 
tuberculosis, we analyzed the collection of SNPs identified with nucmer. The majority of the 
12,254 unique SNPs were found within coding regions (10,503, 86%). Of these, 993 (8% of total) 
were located within PE/PPE regions. SNPs were observed at a higher density within PE/PPE 
genes (average 0.48 snps/KB) compared to other genes (average 0.24 snps/KB). The M. canettii 
genome assembly followed the same trend at an average of 7.67 snps/KB for PE/PPE genes 
compared to 4.41 for other genes. This correlates with previously reported SNP rates for these 
regions compared to regular M. tuberculosis genes [16].  

It has previously been reported that PE/PPE genes undergo a weaker purifying selection 
compared to other genes, as evaluated through the frequency of synonymous and 
nonsynonymous mutations [14]. We therefore investigated the rate of 
nonsynonymous/synonymous substitutions (dn/ds ratios) in PE/PPE genes, where values of <1 
denote purifying selection, >1 denote positive selection and =1 denote neutral evolution. We 
observed greater levels of purifying selection within PE/PPE genes (mean 0.4) when compared 
to previously reported non PE/PPE dn/ds values (mean 0.57 [16]), indicating that most variation 
within PE/PPE genes are synonymous. Our values are considerably lower than reported in 
previous studies examining the selective pressure in PE/PPE genes [14,16]. This discrepancy 
could be attributed to the increased number of genes surveyed, the higher quality genome 
assemblies, and the broader range of lineages analyzed. PE genes were under the most purifying 
selection (mean 0.14) compared to that of PPE (mean 0.46) and PE-PGRS genes (mean 0.4).  

To evaluate the effect variability could have on the overall protein structure, we calculated a 
variability score as previously described [16]. This score represents the proportion of unique 
amino acid sequences across all 21 genome assemblies – thereby focusing on variations leading 
to an amino acid change and ultimately impact on protein structure. We compared our findings to 
the similar analysis by McEvoy et al. [16] (Figure 5.3). Although we included PGRS genes, due 
to limitations of sequencing, the study of McEvoy et al. was unable to survey PGRS genes,  due 
to the repetitive nature of these genes. 
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Figure 5.3 Proportion of unique protein sequences for (a) PE, (b) PPE and (c) PE-PGRS proteins. For PE and PPE, 
levels from this study (blue) were compared with those reported by McEvoy et al (green) [16] The bins are sorted 
according to variability level reported in McEvoy et al.  Asterisks denote a protein not considered in McEvoy et al.. A 
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proportion of 1 indicates that all amino acid sequences of the protein are unique across the samples containing that 
gene. Zero denotes all amino acid sequences of that protein are identical across all samples 

 

Overall, our results corroborate and extend those of McEvoy et al. [16]. Discrepancies could be 
explained by McEvoy’s not covering lineages 3, 7, 8 and M. canettii, in addition to having only a 
single representative for lineages 5 and 6.  

We observed significantly more conservation in PE genes (median=0.14) than in PE-PGRS 
(median=0.54, p-value=<0.005) and PPE genes (median=0.34, p-value=<0.005). Complete 
conservation was observed in 5 genes (PE5, PE7, PE11, PE20, PE19) reported to be essential 
for localization on mycobacterial cell wall [38]. We also observed PPE genes that exhibited 
considerable conservation (variability levels equal to 0): PPE65, PPE49, and PPE41. In contrast, 
six PPE genes (PPE5, PPE24, PPE34, PPE56, PPE8, and PPE54) had variability levels higher 
than 0.8, indicating they differed in at least 76% (16/21) of the genome assemblies. These genes 
are relatively large (mean 2230 aa). The highest degrees of variability were observed amongst 
PE-PGRS genes. Seven PE-PGRS genes (PE-PGRS10, PE-PGRS57, PE-PGRS22, PE-
PGRS23, PE-PGRS28, PE-PGRS54, Wag22) exhibited a variability level of 1, indicating each 
genome assembly had a different sequence of the gene.  

Although PE-PGRS genes are generally considered to be among the most variable M. 
tuberculosis genes, making them hard to analyze, we observed two PE-PGRS genes that 
displayed high conservation: PE-PGRS40 (0.1) and PE-PGRS8 (0.14).  5.4.5 Mappability of PE/PPE genes 
PE and PPE genes are typically excluded from sequence analysis studies due to concerns over 
the alignment calls to these repetitive regions [12]. However, due to the high conservation 
observed in a subset of these PE/PPE genes, we hypothesized that some genes need not be 
excluded from analysis. This was confirmed after calculating whole genome mappability scores 
for each of the assemblies (Supplementary Table 2). Mappability scores are a measure of the 
repetitiveness of k-mers for each position in the genome and were calculated using GenMap (See 
Methods). A mappability score of 1 indicates a completely unique k-mer, whereas low mappability 
scores indicates k-mers in repetitive regions which are more difficult to map. Mean mappability 
scores within PE genes matched that of non PE/PPE regions of the whole genome (0.98 PE vs 
an average of 0.98 across the complete genomes). PE-PGRS and PPE genes had the lowest 
mappability scores at 0.86 and 0.9 respectively. Despite low mappability scores for a subset of 
the PPE/PE-PGRS genes, 6 PE-PGRS and 25 PPE genes had scores greater than 0.98 (Figure 
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5.4). Our results suggest there is no need to exclude all PE/PPE genes from M. tuberculosis 
comparative genomics studies. 

 
Figure 5.4 Mean mappability scores for PE/PPE genes. Mappability scores were computed for each assembly using 
the GenMap program and give an indication to how well each gene can be mapped during alignment analysis. Scores 
are averaged per gene region across all genomes. Standard deviation bars show the range across genome averages.  

 5.4.6 Lineage based variation profiles 
As different M. tuberculosis lineages can differ in their ability to induce and transmit disease, it is 
important to explore genetic variation between and across lineages. To better understand the 
connection between protein variation and lineage, we calculated the pairwise protein distance for 
every gene across the 21 genome assemblies and normalized by the length of the multiple protein 
alignment (see Methods; Figure 5.5, Supplementary Figure 6, Supplementary Figure 7). This 
allowed us to identify genes that tend to vary greatly within a lineage versus those that contain 
lineage specific variations. As expected, proteins exhibited higher protein distances on average 
between genome assemblies of different lineages (mean=0.1, Supplementary Figure 6) than 
genome assemblies within the same lineage (mean=0.06, Supplementary Figure 7). Interestingly, 
we also observed considerable variation for genes within the same lineage for 11 genes (> 30% 
variability, 10 PE-PGRS, 1 PPE genes). PE genes were particularly conserved within genome 
assemblies of the same lineage (87% of genes with < 5% variability) compared to PE-PGRS (39% 
of genes) and PPE (71% of genes) genes. Likewise, PE genes observed the most conservation 
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between lineages (76% of genes < 0.05 variability) compared to PE-PGRS (27% of genes) and 
PPE (63% of genes) genes.  

 

 
Figure 5.5 Normalized lineage distance per protein. The Y-axis represents the distance between the samples per 
protein normalized by the length of MSA. Boxplots display the distribution of the distances with the median value marked 
with a horizontal line. The colors indicate the protein family, i.e., PE (pink), PPE (sky-blue), PE-PGRS (purple). 

 

We observed a number of genes with particularly high intra and inter-lineage variability 
(Supplementary Table 1). For example, PE10 had the highest intra- and inter-lineage variation 
across the PE family. PE-PGRS proteins, specifically PE-PGRS2 and PE-PGRS38, were 
generally highly variable both across and within lineages due to large deletions in its C-terminal 
domain. Amongst the PPE gene family, PPE24 and PPE47 both had highest levels of inter/intra-
lineage variability.  5.4.7 Lineage informative genes 
We identified genes whose variability were specific to certain lineages by finding genes that 
exhibited high pairwise inter-lineage protein variations for one lineage but conservation in pairwise 
variations across remaining lineages. Such genes could explain characteristics of M. tuberculosis 
that are dependent on lineage. We observed genes exhibiting lineage specific variation across 
each PE/PPE gene family. PE-PGRS62, PPE45, PE6, and PE10 genes exhibited the highest 
degree of lineage specificity (as calculated by the difference of pairwise protein distances between 
the variable lineage and the remaining lineages) (Figure 5.5). Interestingly, these genes were all 
specific for different lineages.  
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PE-PGRS62 exhibited variation only within lineage 7 (Figure 5.6). It is described to be a T cell 
antigen [39] and was reported to be extremely conserved, leading to its previous investigation as 
a possible TB vaccine candidate [16,40]. However, in our data, the lineage 7 isolate has a very 
short protein (64 aa), which might be the result of a frameshift and should be considered during 
the possible development of a vaccine. Our results were able to elucidate this lineage specific 
variation for this gene, as previous studies considering PE-PGRS62 as a potential vaccine 
candidate did not include lineage 7 in their analysis. 

PE10 was nearly conserved in all but two lineages (L2 and L3), which suggests this gene 
contributes to the division of this clade to other lineages of M. tuberculosis.  Lineage 2 and Lineage 
3 representatives of PE10 were different in length compared to other lineages and other samples 
from the same lineage (Figure 5.6). These lineages are localized at the same clade and belong 
to the ‘modern’, more virulent, lineages. PE9-PE10 complex was described to participate in 
macrophage apoptosis [41]. Such variability of PE10 in Lineage 2 and 3 could be the result of the 
possible adaptation for better infection of the host organism.  

PE6 was completely conserved in all human adapted lineages of M. tuberculosis (Figure 5.6), 
only showing variation compared to the M. canettii strain. Because very little is known about the 
function of PE6 or its role in MTB pathogenicity, this gene could be an interesting target of future 
research studies. Lastly, PPE45 exhibited variation only specific to lineage 6. Similar to PE6 there 
is not much known about this gene.  

Amongst all M. tuberculosis lineages, lineage 2 has been widely reported to be one of the most 
virulent, exhibiting a mild inflammatory response[42–44]. It could be the case that members within 
the PE/PPE gene family contribute to the virulence of this lineage. Amongst all the genes with 
lineage specific variation, PE-PGRS4 exhibited the highest variation specific to solely lineage 2. 
As little is known about this gene further studies into its role in virulence could shed light on the 
mild inflammatory response noted within lineage 2 patients. 
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Figure 5.6 Normalized pairwise protein distance for each lineage computed for select genes (PE-PGRS62, PE10, PE6 
and PPE45). Distance values were calculated by averaging pairwise protein distances across each representative 
genome for a lineage. Distances were then normalized based on the length of the protein (multiple sequence 
alignment). Lineages with only a single representative genome were given NA as a distance value, here shown as grey 
boxes. 5.5 Discussion 
Here we present 18 reference genome assemblies covering all major M. tuberculosis lineages 
based on nanopore long read and Illumina short read sequencing data. These complete and 
extremely high-quality genome assemblies enable future studies on MTB genomics in many 
ways. We contribute several complete genome assemblies for lineages 5, 6 and 7 which are a 
rare resource. These assemblies will make it easier to characterize and understand the nuances 
between the different lineages of M. tuberculosis. Having high quality assemblies from different 
lineages also aids to combat the general reference bias towards the H37rv strain with lineage 
specific references. Lastly, thanks to the span of long read data, each of the assemblies has high 
contiguity, even for difficult to assemble regions of M. tuberculosis such as the highly repetitive 
PE/PPE genes.  

PE/PPE genes have a number of special properties that make them an interesting point of study. 
They are unique to mycobacteria and account for 10% of the coding potential of M. tuberculosis, 
suggesting that they play an important role in the overall function of M. tuberculosis. These genes 
are surface associated cell wall proteins which evidence suggests could provide a diverse 
antigenic profile and affect immunity[45]. Additionally they have been reported to be good 
candidates for MTB vaccines, play a role in bacterial pathogenicity, and influence host immune 
response [46,47].  
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However, despite their apparent importance, PE/PPE genes are typically excluded during TB 
studies due to the difficulty in mapping regions within their repetitive C-terminal domains [12] , 
making their function not fully understood. By utilizing both our de novo assembled genome 
assemblies as well as three additional publicly available assemblies (H37Rv, M. canetti, and a 
lineage 8 strain), we were able to resolve and comparatively analyze all 172 PE/PPE genes within 
and across all lineages. To our knowledge, this is the first study to analyze all PE/PPE genes 
across all TB lineages. PE genes were found to be the most conserved family with few variations 
across lineages. This finding reflects that of previous work [16] and can be explained by the 
absence of the largely variable C-terminal domains. The PE-PGRS subfamily was the most 
variable with the least amount of known functional properties [7].  

We identified previously unreported members of PE/PPE families, namely, PE10A, PE19A, 
PPE58A, PPE58B. These proteins are highly conserved across all the lineages and M. canettii, 
pointing to a possible important role in MTB. PE10A and PE19A had been identified in the H37Rv 
reference annotation but not as a PE/PPE protein. More interesting, PPE58A and PPE58B were 
completely absent from the H37Rv genome, explaining why these genes have not been 
investigated in previous studies about PE/PPE genes. Further studies are needed to provide a 
more comprehensive characterization of their function and utility to M. tuberculosis. 

On the whole, we observed trends between proteins identified as being highly variable within our 
study and that of previous research. We report greater levels of purifying selection within PE/PPE 
genes than compared to non-PE/PPE genes. Indicating that a large portion of gene variation 
within these genes are synonymous mutations. There was also evidence of PE/PPE genes that 
exhibited lineage specific variation. These genes could explain lineage specific differences of 
pathogenicity and virulence observed within M. tuberculosis. Additionally, we characterized 
PE/PPE genes based on their mappability to a reference genome and found the majority of PE 
genes and many PE-PGRS/PPE genes could confidently be aligned to a reference genome, 
thereby removing the commonly held practice of excluding all PE/PPE genes from analysis. 

Previous studies have pointed to the possible use of PE/PPE genes as potential vaccination 
targets. [48] These genes have been identified to have several characteristics which could aid in 
vaccination studies: localization at cell surface, interaction with mitochondria driven necrosis of 
cells, and their binding potential to immunologically active receptors such as the TLR2 
receptor[48]. By analyzing variations present across and within different lineages, we identified 
potential vaccine targets based on gene conservation across these lineages. The function of 
PPE51 protein is unknown[13], however, it was extremely conserved according to previous 
studies [16], and our study confirmed this result. Therefore, it can be considered as a good 
candidate for further vaccine investigations. PPE69 was also very conserved, with only one amino 
acid variation in one sample of Lineage 6 and M. canettii. The function of this protein has not been 
reported anywhere, to the best of our knowledge. Among other highly conserved candidates with 
unknown function were PE7, PE18, PE32, PE33, PE34, PE36, PE-PGRS1, PE-PGRS8, PE-
PGRS40. 

In addition to new potential vaccine targets, we identified previously identified potential vaccine 
targets, that should be reconsidered based on higher variation across lineages. For example, Xu 
et al considered PPE57 as a candidate based on its ability to induce Th1-type immune response 
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activity in mice [49]. However, our results show variation among Lineage 1 samples and the entire 
absence of this protein in Lineage 8 and M. canettii. Due to its variability and absence in some 
isolates, it might not be suitable for a unified vaccine. Another example is PPE18, which is an 
important subunit of the M72/AS01E vaccine candidate [50]. According to the WHO [1], this 
candidate was successful in a Phase IIb trial among patients with evidence of latent TB infection, 
and if a Phase III trial shows the same results, this vaccine might be a new effective tool to prevent 
TB. However, our results showed some variability of PPE18 among all lineages, which was also 
reported by Homolka et al. [51]. Therefore, it is important to investigate the effectiveness of this 
vaccine carefully across all the lineages. 

Overall, we identified several genes, e.g., PPE51, PPE69, which can be putative candidates for 
vaccination studies based on their high degree of conservation within our study. We also highlight 
certain PE/PPE genes that are less suitable as a vaccine target due to their variability or absence 
in specific lineages (PPE57, PPE18). This study highlights PE/PPE genes that should be either 
considered or excluded as potential vaccine studies based on their variability across our diverse 
data set.  

To conclude, understanding the dynamics and functionality of members within the PE/PPE gene 
family is still an active and ongoing process. Because these genes make up nearly 10% of the 
coding potential of the M. tuberculosis genome, understanding these genes and their role in 
pathogenicity and immune response is highly relevant. The data presented in this study forms a 
baseline in the characterization of these important genes from a genomics perspective. The 
results and insights found in this study will be instrumental to advance future studies of these 
regions. Further biochemical studies to expand on the function of these genes could open the 
door to better understanding of TB virulence pathogenicity and immune response and assist in 
future vaccine development efforts to combat this deadly bacterial pathogen.  5.6 References 
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6 Computational methods for strain-level bacterial detection in DNA sequencing data 6.1 Abstract 
Metagenomic sequencing is a powerful tool for examining the diversity and complexity of microbial 
communities. Most widely-used tools for taxonomic profiling of metagenomic sequence data allow 
for a species-level overview of the composition.  However, individual strains within a species can 
differ greatly in key genotypic and phenotypic characteristics, such as drug resistance and 
virulence.  Therefore, the ability to resolve microbial communities down to the level of individual 
strains within a species is critical to interpreting metagenomic data for applications in 
epidemiology and the clinic, where identifying a particular strain, or tracking a particular strain 
across a set of samples, can help aid in diagnosis, treatment, or the identification and containment 
of an outbreak. 

Recently published approaches have begun to tackle the problem of resolving strains within a 
particular species in metagenomic samples.  In this review, we present an overview of these new 
algorithms and their uses, including methods based on assembly reconstruction, reference 
alignments, or patterns. While existing metagenomic analysis methods show reasonable 
performance at the species and higher taxonomic levels, they perform sub-optimally when 
identifying closely-related strains within a species. There is a clear need for more fine-grained, 
high-resolution algorithms to analyze strain-level diversity. 6.2 Introduction 
Within a species, bacteria can be highly diverse in terms of their  virulence, resistance to 
antibiotics, geographical transmission patterns, and other phenotypic characteristics[1,2]. 
Individual strains can vary greatly with respect to pathogenicity, treatment options,  
transmissibility, and growth rate [3,4]. In order to effectively treat patients, study bacterial 
population dynamics, conduct epidemiological surveillance, and stem outbreaks, it is critical  to 
identify which specific strains of a species present in a sample [1,5]. Tracking and comparing 
individual strains shared across sets of samples would allow for the assessment of the evolution 
of population diversity in longitudinal samples within a patient or other host system. The ability to 
identify specific strains in a noisy background of other organisms present in a metagenomic 
sample could allow for improved tracking of strains involved in an outbreak across a population.   

Importantly, accurately identifying specific pathogenic strains would aid in patient diagnosis, 
allowing for personalized treatment regimens, improved treatment outcomes, and a reduction in 
the spread of antibiotic resistance. To add further complexity, the ability to identify the presence 
of multiple specific strains of a pathogen would further help with patient treatment and outcomes. 
Mixed infections, defined as  infections caused by multiple strains of a single pathogen species 
[6,7], represent an underappreciated challenge to understanding infections and have been 
described for at least 22 bacterial species [3],  including M. tuberculosis [6,8], C. difficile [9,10], 
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and Streptococcus pneumoniae [11,12].  It is estimated that 10-20% of  M. tuberculosis  patients 
in high risk areas [8,13,14] and 10% of  Staphylococcus aureus[15,16] patients are infected with 
multiple pathogenic strains. Mixed infections put patients at a higher risk of treatment failure 
[3,6,8], as strains with  different drug susceptibility and antibiotic resistance profiles [17,18] can 
complicate diagnosis and identification of the optimal treatment regimen [3]. In addition to poor 
treatment outcomes, mixed strain infections can increase pathogen virulence due to selective 
pressure within the host [19]. Accurate classification of individual strains is critical for identifying 
mixed infections and will help determine proper treatment options for patients with complex 
infections, track transmission of pathogenic strains in a population, and differentiate between 
reinfection and intra-host pathogen evolution.  

The challenges of identifying specific strains of a species can be divided into two main categories: 
(1) Detecting individual strains when the constituents of a sample are all members of the same 
species (i.e. in a cultured microbial sample, or for tracking within-host evolution of a pathogen); 
(2) Detecting individual strains of a species in a sample containing a mixture of species, such as 
a metagenomic sample. This literature review aims to cover these applications in discussing the 
different computational and statistical methods for strain-level inference from cultured and batch 
WGS data.   While there is clearly substantial value in being able to pinpoint individual strains 
within metagenomic samples, most current widely-used tools for metagenomic analysis only allow 
for an assessment of composition at the genus or species level, not the strain level.  For example, 
the current most popular metagenomics taxonomic classification programs, including Kraken [20] 
and MetaPhlAn2 [21], are capable of identifying mixed populations only at the species or genus 
level--not at the individual strain level within a species.  Tools capable of conducting classification 
of metagenomic samples for higher taxonomic levels such as the family, genus, or species have 
been previously reviewed [22–25].   

In contrast, tools to detect taxonomy at a finer-grained taxonomic levels within metagenomic 
samples -- targeting specific strains within a species -- are still in their infancy [26].  Most 
algorithms for strain-level detection have been published within the past five years.  To date, there 
have been no reviews focused on strategies to computationally classify heterogeneous bacterial 
populations using WGS data at the level of specific strains within a species.  This literature review 
gives an overview of recent methods for classification at the intra-species, or strain level, including 
methods based on WGS data to identify both specific strains, as well as mixes of strains.  These 
tools are divided into assembly based, alignment-based, pattern based, and reference free 
methods.  We have included both secondary sources (reviews or methods papers) and original 
research, where the main objective is developing a novel methodology for detecting 
heterogeneous bacterial communities, e.g. mixed infections or within host evolution.  Although we 
focus on clinical applications here, the methods discussed are applicable to a broad range of 
biological scenarios, including evaluation of soil, wastewater or other bacterial communities. We 
discuss appropriate applications of each strategy, evaluation of these strategies in literature, as 
well as the applicability of these algorithms to health and disease.  
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6.3 Approaches for detecting individual strains of bacteria within a species  
Currently available approaches to classifying genetically distinct populations from a sequencing 
read set can be binned into four categories (Table 6.1) employing: (1) assembly of distinct 
haplotypes within the sample (assembly based), (2) alignment of reads to reference genome(s) 
(alignment based), (3) analysis of different patterns present in the data (pattern based) and (4) 
reference free approaches that rely on applying statistics directly to allele frequencies.  6.3.1 Assembly based approaches 
Assembly based approaches attempt to identify individual strains in a mixture by performing 
genomic assembly, drawing on tools developed for haplotype reconstruction in diploid samples.  
Figure 6.1 gives an overview of how a read set can be resolved into a set of distinct individual 
strains using an assembly based procedure.  

 

Figure 6.1 Assembly of multiple distinct strains from a read set. The blue areas in the sample reads 
represent regions where the strains have identical sequence.  Variant locations in the reads are denoted 
as red or dark grey stripes. Red variants originate from one haplotype, whereas dark gray variants originate 
from the other. The goal of an assembly based method is to resolve distinct strains based on the coverage 
and distribution of the read data, drawing on methods previously developed for resolving haplotypes.   
To obtain an accurate reconstruction there must be a sufficient number of sites that differ between 
the component strains in order to separate or cluster variants into distinct strains [27][28]. 
Therefore, accurate reconstruction of distinct strains requires sufficient read length to capture 
overlap between reads, enough discriminating sites to separate populations, and the presence of 
at least one variant site in most reads.  
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EVORhA, one of the few assembly based methods designed for reconstructing (assembling) 
complete bacterial genomes from bulk metagenomic sequencing data, identifies strains via local 
haplotype assembly (Table 6.1) [29]. For each genomic region containing a sufficient amount of 
genetic variation, candidate strains are first defined as individual genetically distinct combinations 
of polymorphisms. To filter out candidate strains that are actually sequencing errors, a minimum 
number of reads must support an initial candidate strain. In an extension step, candidates are 
merged with nearby locally constructed candidate strains, based on read frequency and overlap 
of polymorphism combinations. Ultimately, a mixture model is used to group extended candidate 
strains occurring at similar frequencies and match these together on a genome-wide level, making 
the read frequency ratios of observed candidate strains crucial to this method.  However, this read 
frequency criteria for merging strains can produce chimeric strains due to the presence of 
subpopulations with similar frequencies, similar to a key problem encountered in phasing with 
whole genome assembly. Given very high coverage, sufficient frequency diversity and sufficient 
segregating sites, assembly based methods such as EVORhA can resolve the full genomes of 
genetically distinct subpopulations and yield the most accurate strain identification results when 
compared to other categories of strain-level identification tools.  

Recently, a number of studies have applied long read sequencing data from third generation 
sequencing platforms such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies 
(ONT) to assemble individual strains within metagenomic communities[30,31]. Longer reads 
could theoretically span the entirety of a strain, making it an attractive option for metagenomic 
assembly. Somerville et al [32] used the long-read assembler, Flye [33], to reconstruct individual 
contigs from a long read metagenomic sample, followed by a phylogenetic analysis using NCBI 
RefSeq to determine strain identity. This was only shown possible for a specific metagenomic 
community with low complexity, in addition to some manual processing of contigs by the authors. 
The use of longer reads can mitigate some of the limitations of short-read assembly, allowing for 
the resolution of difficult to sequence regions and longer contigs. However this comes at the 
expense of increased errors, lower coverage and higher cost.  

Knowing the full sequences of organisms within a sample then allows for comparison and tracking 
of strains at the highest resolution possible. As such, these methods would be suitable for 
observing a strain’s evolutionary trajectory as well as detecting mixed infections composed of 
strains that are highly similar to each other.   In order to estimate frequencies, a method would 
need to account for relative abundance of reads specific to each strain. DESMAN [34] does this 
by exploiting differences in read coverage between  genes conserved within a species and other 
parts of the genome. 

A major drawback of assembly based methods is that a large amount of coverage,  50-100× for 
each strain, is required to achieve an accurate reconstruction, demanding extremely high depth 
sequencing for strains at a low abundance within a sample [35]. High levels of coverage are 
required to account for errors introduced by sequencing: each distinct strain must be sequenced 
with sufficient coverage in order to differentiate spurious variation from true distinct strains. Such 
high coverages can be achieved in studies where sample complexity is low, with typically less 
than 5 strains present. Not surprising, this is usually the targeted use case scenario for assembly 
based metagenomic methods.   
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6.3.2 Alignment based approaches 
Alignment based methods classify strains by aligning reads to a predefined set of reference 
genomes and applying probabilistic models to calculate a statistical measure representing the 
likelihood a specific read is associated with a given reference (Figure 6.2) (Table 6.1) [36]. These 
methods are often considerably faster than assembly based methods and require less coverage, 
some methods as low as <1×. These methods can achieve such low coverages compared to 
assembly based methods due to their use of a reference database – where the most likely 
candidate is selected based on the available data using the probabilistic model. Because 
alignment based methods share the same limitations, we will discuss the limitations of these 
methods on the whole at the end of this section. 

 

Figure 6.2 Alignment based approaches Reads of a sequencing dataset – where different colors denote 
genetically distinct strains – are aligned to a reference database of full genomes or taxonomic markers (in 
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this case genes). Strain abundances can be estimated by the relative number of reads aligning to each 
reference genome. 

 

Pathoscope, [37] one of the most commonly used classification pipelines for metagenomic 
analysis, uses different aligners (GNUMAP[38], Bowtie 2 [39] and BLAST[40]) to align reads to 
reference genomes. Scores for each alignment are converted to posterior probabilities that 
represent the likelihood that an alignment is the source of the read. Non-unique reads are 
reassigned to their nearest reference using a Bayesian mixture model which uses both the 
mapping scores and the proportions of non-unique reads.  

Another alignment based method, Sigma, allows users to choose their own short-read alignment 
algorithm, using Bowtie2 as a default [41]. Instead of using scores given by an aligner, Sigma 
computes its own probability scores for each read to originate from an alignment by examining 
the number of matches and mismatches between the two.   

While most metagenomic methods focus on short-read data, MetaMaps [42] is specifically 
developed to capitalize on the advantages of long-read sequencing data. MetaMaps uses its own 
mapping algorithm to align long reads to genomes in a database.  

Calculation of strain abundance in alignment-based approaches leverages the number of reads 
mapping to each reference genome. For Sigma the relative abundance of a genome is simply the 
proportion of aligned reads out of the total number of reads, whereas Pathoscope calculates 
relative abundance from the sum of the probability of reads mapped to different genomes in the 
reference database. The alignment-based strain-identification algorithm BIB exploits the 
similarities between alignment-based strain identification and the more well-established field of 
RNA-seq data analysis [39,43–45] for calculating relative abundances, by implementing the RNA-
seq algorithm BitSeq [44] within its identification pipeline to calculate relative abundances, after 
aligning reads to a reference database with Bowtie 2. Unlike other alignment methods, 
StrainFinder[46] calculates abundances for all the genomes in the reference database using SNP 
frequencies after aligning reads with BWA. Because StrainFinder uses the Expectation 
Maximization algorithm to estimate strain frequencies, the user needs to input the expected 
number of strains expected to be in the sample, to ensure the best likelihood. This not only makes 
StrainFinder exceptionally computationally intensive, but also makes it less suitable for broad 
metagenomic studies with unknown number of strains. 

While alignment-based detection methods work well for species with clear and well-separated 
sub-lineages, the selection of genomes and choice of size for the reference database is critical 
for applications to more closely-related strains. Some tools aim to draw on large and 
comprehensive databases in order to gain higher resolution. Sigma and MetaMaps offer users 
the opportunity to define their own reference databases and claims support for up to tens of 
thousands of genomes. The entirety of RefSeq (2266 genomes at time of publication) has been 
used as the reference database for Sigma. PathoScope  generates a reference database from all 
genome sequences in NCBI for a given query taxID.  The resulting redundancy from using a taxID 
which could potentially include very closely related strains, instead of a database of filtered 
genomes such as RefSeq, ensures coverage at all genomic levels, but can result in nonspecific 
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strain identification calls. Even if similar sequences are excluded, it is often not practical to have 
a reference genome for every genetically distinct, closely-related strain in a species. While a large 
reference database can increase coverage of intra-species diversity, it also requires a larger 
computational search space for matching reads. In addition, differentiating between closely 
related strains in a highly comprehensive reference database is nearly impossible and can result 
in an inflated number of false positive predictions. Removal of closely-related reference genomes 
when using BIB improves accuracy and reduces non-specific predictions to multiple unrelated 
strains. Therefore, proper pruning of representative reference sequences to an appropriate level 
of resolution is essential.      

A major drawback of reference-based methods is that detection of totally novel pathogens is not 
possible. In contrast, assembly based methods, which reconstruct genetically distinct genotypes 
without need for a reference, can detect and reconstruct novel strains. When confronted with a 
novel strain that is not represented in the reference database, a good alignment-based detection 
method should output the nearest possible strain as well as the uncertainty of the match. 
Ultimately, meaningful results are limited to the identification of strains with reasonably close 
matches within the database.   

Another caveat of alignment based methods is that they are dependent on details of the 
underlying alignment tool and its parameters. Different alignment methodologies can result in 
discordant results between methods and impacts our ability to perform comparisons between 
tools. For example, most alignment based methods use a short-read aligner[37,41,47], while 
DiTASiC [48] uses the pseudo alignment approach found in Kallisto [49] used for aligning RNA 
seq reads. Some strain identifiers (MetaMaps, Pathoscope, and MEGAN [50]) make predictions 
using the quality score of the alignment of each read. Sigma and BIB use Bowtie 2 as an aligner 
by default which reports all reads that map in multiple locations while Pathoscope and DiTASiC 
[48] post process multi-mapping reads within their algorithm, and StrainFinder uses BWA which 
randomly assigns multi-mapping reads to a specific location. Sigma additionally allows users to 
select their own aligner. The differences between alignment methods and their impact on results 
have been reported before in literature [51].  Because these strain classification methods depend 
on the information given via the alignment, variation at the alignment stage may have 
consequences throughout the entire method. Each approach can limit the ability to correctly 
identify strains in a sequencing set in different circumstances. The impact of these variations will 
ultimately depend on the species under examination and the parameters of the alignment method 
and how the classification methods employ the alignment information. 6.3.3 Pattern based approaches 
Pattern based methods (Table 6.1) were developed to offer decreased compute time and memory 
requirements, as compared to assembly and alignment based methods, by focusing on a subset 
of the genome. These methods classify genetic diversity within a sample using a database of 
predefined markers, such as unique genes, SNPs, genome-specific k-mers, or fluctuations in GC 
content. The choice of marker type can vary based on the species, data type, and classification 
goals. Similar to alignment based methods, pattern based identification methods require a 
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reference database with which to ‘learn’ parameters for their statistical models. However, pattern 
based methods first preprocess the reference database, extract useful features, and apply these 
features for a new classifier algorithm, resulting in decreased run times. New sequencing reads 
can then be classified based off the constructed model.  

An example of a method that uses a database of universal single-copy gene families as the 
predefined marker set is MIDAS, which aims to provide both species and strain-level taxonomic 
identification. MIDAS first determines species content by aligning reads to a single-copy gene 
database containing a single representative genome per species [52].  In order to determine 
strain-level information, reads are mapped to a pan-genome database containing genes from the 
species found in the first alignment step.   Abundance estimation per strain is calculated by 
normalizing by the coverage of universal single copy gene families.  However, this sort of strain 
level inference using variation in genes alone is not practical for discrimination purposes, because 
genes represent a smaller portion of the genome and are more likely to be conserved between 
strains of species[53,54]. MIDAS requires at least 1× coverage per strain to determine the 
presence or absence of a gene.  

K-mers are often used in pattern based methods because unlike genes, they are sampled across 
the whole genome, including regions that are not especially conserved.  In order to gain greater 
resolution than can be obtained by using only genes, GSMer identifies strains by capitalizing upon 
a strain-specific database of strain-specific k-mers, or GSMs (genome specific markers) [55]. 
Each strain in the database is represented by a set of at least 50 GSMs (optimized for k-mer size 
and number). If a strain has fewer than 50 unique GSMs, it is not included in the database. A 
strain is only identified in a read set if a perfect match for all 50 GSMs of that strain is identified 
within the read set, resulting in a high false negative rate and an inability to identify strains not 
similar to those in the database. This may work well for slow evolving and well conserved 
organisms that will not change and can be expected to always include the set of 50 GSMers 
required to be identified. But not in settings where strains are diverse and quickly changing as 
there is a higher chance for the set 50 GSMers required to be present to have been mutated or 
changed due to evolutionary drift.  

Phylogenetic trees complement pattern based methods by offering a more informative database 
structure where paths can be indexed with a series of markers leading to a presence of a particular 
strain.  Trees also provide an intuitive visualization of the phylogenetic placement of a strain.  
Given the tree, these tools map k-mers or SNPs from unknown samples onto nodes within the 
tree to determine phylogenetic “paths”, sequences of nodes, which represent presence of a 
particular strain in the sample. Strain abundances are calculated based on the SNP or k-mer 
coverage.  

SNP based tree methods differ in their SNP calling, variant filtering, tree construction, and path 
determination techniques.  Relying solely on SNPs limits the inclusion of other types of genomic 
variation such as indels, which could be picked up in a k-mer based method. SNP/phylogenetic 
hybrid methods are particularly suitable for species with low genomic divergence like 
Mycobacterium tuberculosis, because it is a clonal organism with strains differing by very few 
SNPs.  Gan et al, and Sahl et al (WG-FAST) have both developed tree based classification 
methods constructed using SNP variations between reference genomes (Figure 6.3) [56,57]. 
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Another SNP based method, StrainEST [58], is not based on a phylogenetic tree model but 
instead predicts which genomes in a reference database best accounts for the frequency variation 
of SNPs using a linear model (LASSO). 

In contrast, k-mer based tree approaches can be more suitable for species that have larger degree 
of genetic variation or bigger structural variations that are not detectable by only considering SNPs. 
They would be less efficient at differentiating strains which are only a few SNPs apart as the 
impacts of a genetic sequencing error are more pronounced in the tree construction and 
classification process when working with k-mers. Roosaare et al. (StrainSeeker [59]) have 
developed guide-tree based classification methods based on k-mers. Creation of a tree for SNP-
based methods requires a collection of annotated SNP profiles for each genome. Using the SNP 
profiles, a new tree database is created. In the case of StrainSeeker, a phylogenetic tree detailing 
the relationship between reference genomes must first be provided by the user.  

 

  

Figure 6.3 Tree Based Method Overview. (a) Example database of genomes with SNPs present as 
markers. b) Representation of genome database, where 1 denotes a SNP and 0 absence of a SNP (c) SNP 
tree constructed based on SNPs from the database. (d) SNPs present in new reads can be matched against 
the tree to infer likely reference genome of origin by identifying sequences of successfully matching nodes 
(a path). 
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Another kind of approach, GOTTCHA,  generates a database of unique signatures for each 
genome at different taxonomic levels [60]. The unique signatures of a strain are the collection of 
all subsequences not found in any other available sequences at the desired taxonomic level. The 
unique signature of an unknown query sample can then be mapped against this database to 
determine coverage statistics for the query’s unique signature. The abundance of predicted 
strains is obtained through a statistic comparing the total number of mapped bases to the 
signature for the reference, and the number of unique bases mapped. StrainPhlAn [61] also uses 
species specific marker sets to classify strains, but only identifies the most abundant strain for 
each detected species in a metagenomic sample. The presence of other strains is assessed by 
calculating the number of polymorphic positions per species. 

Other pattern based methods employ clustering to help delineate strains and augment pattern 
based detection techniques. For example, ConStrains assimilates elements of de novo assembly 
to detect genetically distinct strains [62]. Reads for each species are first mapped against species-
specific marker genes using MetaPhlAn2 [63] to generate a multiple alignment, and SNPs are 
determined using Samtools [64] based on sufficient coverage criteria. The resulting SNP profiles 
are clustered into groups representing genetically distinct strains, with abundances calculated 
using a Monte-Carlo algorithm. In order to delineate strains, ConStrains requires a relatively high 
coverage (10×).  6.3.4 Reference database free approaches 
The methods described above all depend on either the presence of genome sequences in a 
reference database, or the reconstruction of a genome from reads. The approaches in this section 
do not use a reference genome, but rather model within-sample diversity using a statistical model 
in order to delineate genetically distinct strains. These reference free approaches apply statistics 
directly from elements acquired from the sequencing read set such as SNPs or k-mers. These 
approaches do not attempt to identify the presence of a specific, previously-sequenced strain; 
rather, they utilize allele discrepancies within a WGS read set to quantify the number and 
proportion of unique strains present in a sample. These methods are, therefore unable to offer 
insight on the relationship of strains in the sample compared to previously documented strains, 
since there is no mapping of the sample to a database of previously seen strains. These methods 
only inform on the number and relative abundance of detected strains using allelic variation 
present in the sample. This would be useful for determining multiplicity of infection for yet 
uncharacterized species without many reference genomes, particularly for species present in 
extreme environments such as hot springs, acidic wastes, nuclear areas, uncultured soil bacteria 
and other under sampled locations of the world.  

For example, Eyre et al. applied a probabilistic model to allele frequencies at specific variable 
sites with the underlying assumption that the sample was a mixture of two haplotypes [9]. Variable 
sites were defined across the whole genome as locations with ambiguous calls. As this approach 
is limited to modelling a maximum of two strains in the data, other methods have extended this 
approach to allow for the presence of multiple strains in the sample data, including  estMOI, 

DEploid, and pfmix. [65–67].  Both DEploid and estMOI use variant calls to infer the number of 
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haplotypes in the dataset first locally (short regions), then globally. DEploid goes further by using 
a reference panel of known genomes to create a prior in their Bayesian approach to estimate the 
relative abundance, number of haplotypes, and their allelic states. Pfmix similarly uses a Bayesian 
model but do not estimate haplotypes, instead using a single reference to provide variants and 
allele frequencies to directly infer the number and proportions of strains from allele frequencies. 
Unlike reference based approaches, these methods do not output strain identities but instead the 
number and relative abundances of detected strains.  

Table 6.1 Tool benchmark and technical details   

Author Method Name Type1 Technical Details2 Sample Benchmarks3 Test metrics4 

Required 
coverage 
level per 
strain5 

Pulido-
Tamayo, 
Sergio [29] 

EVORha assembly 
based - java 

- E. coli time series (lab 
grown) 
- C. difficile mixed 
infection samples 

reliability 
score, mean 
absolute 
error, rmse 

50× coverage 

Quince, 
Christopher 
[34] 

DESMAN assembly 
based 

- git/python 
- linear runtime 
- 5 strains in 117 
minutes 

- fecal metagenome 
samples 
- community of 100 
species and 210 strains 
with 96 samples 
(synthetic) 

accuracy - 

Ahn, Tae 
Hyuk [41] Sigma alignment 

based  

- C++ 
- scaled for 
supercomputers 
(alignment with 
10,000 cores takes 10 
minutes) 
- sample with 5 strains 
takes 20 hours and 
62GB RAM on a 
computer with 64CPU  
 

- fecal metagenome 
dataset 
- numerous spike ins of 
fecal set to simulate 
outbreaks 

accuracy, 
TP/FP 

.02× 
coverage 

Sankar, 
Aravind [47] BIB alignment 

based  

- 1 million reads in 10 
min on single CPU 
- git/python 
 

- mixtures of 2-6 
staphylococcus strains 
(synthetic) 
- S. aureas sample data 

absolute error  

Byrd, A. L. 
[37,68,69] Pathoscope alignment 

based  

- git/BioConda 
- 1 sample using 16 
CPU and 256GB RAM 
took 17 minutes 
 

- European E. coli 
outbreak 2011 
(O104:H4) 
- mixed read datasets of 
3 strains 

TP/FP 20% genome 
coverage 

Fischer, 
Martina [48] DiTASiC alignment 

based 

- git/conda 
- requires R & python 
 

- 3 simulated set groups 
- low, medium, and high 
complexity 
metagenomic 
benchmark 
datasets(synthetic) 
- lacks real world testing 

sum of  
squared 
errors, 
TP/FP/FN/FP
- 

- 

Huson, 
Daniel[50]  MEGAN alignment 

based 

- gui/java 
- took 180h using 
64CPU for 300k reads 

- Sargasso sea dataset 
- mammoth bone 
- simulation studies 

FP - 
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- mostly species level 
testing 

Dilthey, 
Alexander[7
0] 

MetaMaps alignment 
based 

- git/Perl 
- takes 16-210 hours 
using 262GB RAM 
- cannot make own 
DB 
 

- simulated data 
- human microbiome 
project data (PacBio, 
species)  
- Zymo synthetic 
community(Oxford 
Nanopore Technology) 

Precision, 
recall - 

Smillie, 
Christopher 
[46] 

StrainFinder pattern 
based6 

-git/python 
-100 samples across 
649 reference 
genomes using 100-
200cores takes 
48+hours 
- needs alignment file 
with some 
preprocessing as 
input 

- 2-32 strains across 2-
64 samples(synthetic) 
- recurrent C. difficile 
infection over time  

Unifrac 
distance 25× 

Gan, Mingyu 
[56]  pattern 

based6 - not available - TB datasets - 1× coverage 

Luo, 
Chengwei 
[62] 

ConStrains pattern 
based6 

- git/python 
- took 8.5 hours and 2 
GB ram on infant gut 
dataset 
-custom DB not 
possible  

- E. coli admixtures 2-7 
strains (synthetic) 
- gut microbiome time 
series 
- microbiome time series 
(synthetic) 
- cystic fibrosis patient 
infection data 

Jenson-
Shannon 
divergence 

10× coverage 

Freitas, 
Tracey Allen 
K [60] 

GOTTCHA pattern 
based6 

-git/Perl  
- used 16cores and 
132GB RAM while 
being 2-5x slower 
than other tools 
-custom DB not 
possible 
 

- human microbiome 
project mixtures of 22 
genomes 
- spiked air filter 
metagenome spiked 
- spiked human stool 
- synthetic communities 
of 25-300 genomes 

precision, 
recall, F-
score, false 
discovery rate 
and accuracy 

- 

Sahl, Jason 
W [57] WG-FAST pattern 

based6 
- conda 
- uses phylogeny  

- fecal specimens E. coli 
O104:H4 outbreak accuracy 1× 

Roosaare, 
Märt [59] StrainSeeker pattern 

based6 

- online web tool 
- Perl/R 
- needs 300GB space 
to build DB 
- uses 1 cpu, 512GB 
RAM and took 1.1min 
for classification 

- E. coli, K. pneumoniae, 
E. faceilius, S. enterica 
isolate identification 
(synthetic) 
 

accuracy <1× coverage 

Albanese, 
David [58] StrainEst pattern 

based6 

- git/docker/python 
- takes 12-25min for  
a 10×-100×coverage 
sample using 129-
591MB RAM and 4 
cores 
 

- paired strains from 4 
species (synthetic) 
- 2 HMP mock 
communities (21 
organisms) 
- specific strain in skin 
microbiome 
- cross sectional E. coli 
strains in stool samples 
- gut microbiome time 
series 

Matthew 
Correlation 
Coefficient, 
Jensen-
Shannon 
divergence 

10× coverage 
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Table 6.2 Tool use cases and detection details 

Method name Taxono
mic 
level1 

A2 Sample setting3 Use cases4 

EVORhA strain Y - high coverage data - reconstruct evolutionary trajectories 
- clonal populations 
- resolve genomes in metagenomic 
communities 

DESMAN strain Y - better with low complexity (<20 strains) 
communities 

- environmental populations 
- metagenomic communities 

Sigma strain, 
species 

Y - made specifically to provide useful information 
for outbreaks 

- metagenomic bio surveillance for 
outbreaks 

Truong, Duy 
Tin [61] StrainPhlAn pattern 

based6 - git/conda - human microbiome accuracy 2× 

Nayfach, 
Stephen [52] MIDAS pattern 

based6 

- git/docker/python 
- on 1CPU process 
5,000 reads per 
second using 3 GB 
RAM 
- 1.5-2hrs for typical 
gut metagenome 

- stool metagenomes 
time series 
- marine metagenomes 

(only of 
genes) 
accuracy, 
TP/FP 

>1× coverage 

Tu, Qichao 
[55] GSMer pattern 

based6 - git/Perl scripts 

- diabetes patients gut 
microbiome 
- obesity associated 
microbiome 

TP 

<0.25× (100 
GSMs)  
>0.25× (50 
GSMs) 

Scholz, 
Matthias [71] PanPhlAn pattern 

based6 - git/python 

- E. coli outbreak 
O104:H4 
- gut microbiomes 
- skin microbiome 
- oral microbiome 
- marine metagenomes 

F1 score 1× coverage 

Eyre, David 
W. [9]  reference 

free 
- R script in 
supplements 

- C. difficile infected 
patients RMSE - 

O'Brien, 
John D. [65] pfmix reference 

free 

- R 
- for a 5 strain sample 
takes 10 minutes on 
single core 

- blood from malaria 
patients 

Mean 
squared error 25 reads 

Assefa, 
Samuel [66] estMOI reference 

free 
- git/Perl 
- little documentation 

- clinical isolates of P. 
falciparum accuracy 30× coverage 

Zhu, Sha 
Joe [67] DEploid reference 

free 
- R package 
- 1-6hours 

- clinical isolates of P. 
falciparum accuracy 1% 

abundance 
Sobkowiak 
[72] MixInfect reference 

free 
- R script/git 
- no documentation - tested on TB samples accuracy 10× coverage 

1Category of algorithm  
2Details about the computational parameters of the tool in terms of code base/runtime/memory usage/availability 
3Example datasets tool was tested on in paper 
4Metrics by which each method was evaluated 
5The required coverage for the tool per stain to perform. If no value is indicated, this indicates the particular value could not be 
determined from the article where the method was published. 
6Pattern based methods use a database of predefined markers to classify genetic diversity within a sample. 
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BIB strain Y - species with clear population structure and well-
separated lineages  
- unsuitable for species with frequent 
recombination (maybe the case for many 
alignment methods) 

- clinical use, mixed samples 
- flagging contaminated/problematic 
samples 

Pathoscope multiple 
levels 

Y - designed to be complete framework to analyze 
metagenomic data 

- environmental samples 
- clinical samples 

DiTASiC strain Y - comparing abundances across samples - general strain identification and 
abundance  
- allows for differential abundance 
testing across samples 

MEGAN strain, 
species 

Y - broad taxonomic classification -environmental populations 

MetaMaps strain, 
species 

Y - long read data - medium complexity environmental 
communities 
- medium complexity 

StrainFinder strain, 
species 

Y - track strain genotypes over time 
- specifically made to understand real world 
clinical problem  
- requires prior knowledge for number of strains 

- clinical/pathogen identification 
- human microbiome 

Gan, Mingyu  strain Y - specifically for TB - clinical TB samples 
- mixed infections of few strains 

ConStrains strain, 
species 

Y - only needs one genome per species 
- robust against unknown strains 

- clinical microbiome sets 
- time series data 
- finding specific strains within 
population at low abundance 

GOTTCHA user 
defined 

Y - designed to find low abundance populations   - clinical diagnosis 
- bio surveillance 
- community profiling 

WG-FAST strain N - isolate identification (single isolate & complex 
samples 
- designed for low coverage strains 

- disease outbreaks 
- pathogen identification 

StrainSeeker strain, 
species 

Y - phylogeny based 
- identifying clade of novel strain 
- unable to differentiate strains with few SNV 

- pathogen identification 

StrainEst strain Y - identifying strains of particular species  
- best at lower than species level 
- limited for poorly characterized species 
 

- ecological/environmental samples 
- human/skin microbiome 
- molecular epidemiology 

StrainPhlAn strain, 
species 

N - identifies most abundant strain of particular 
species within metagenomes not all strains 
- reconstruction of stain level phylogenies of 
species 

- human microbiome 

MIDAS strain, 
species 

N - cannot quantify novel species - transmission  gut microbiome 
 

GSMer strain, 
species 

Y - identify species/strain specific for well-studied 
organisms 
- possible false negatives if not all GSMs covered 
- false positives due to overlapping GSMs with 
incorrect strains 

- human microbiome 

PanPhlAn strain, 
species 

Y - characterization of strain level gene elements 
- useful for population genomics where few 
reference genomes exist 
- culture free 

- outbreak epidemiology 
- human microbiome 
 
 

Eyre,David 
W. 

strain Y - mixed infection detection 
- assumes only mixes of 2 strains 

- mixed infection screening in outbreak 
surveillance 
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pfmix strain Y - mixed infection detection 

- specifically for P. falciparum 
 

- pathogen identification 

estMOI strain N - specifically made for P. falciparum 
- estimates multiplicity of infection 
- might not be possible for highly related 
genomes 

- pathogen identification 
- transmission intensity 

DEploid strain Y - estimating mixed infections 
- originally developed for P. falciparum 
- can be used for any mixture of strains within 
species 

- pathogen identification 
 

MixInfect strain Y - detecting mixed infections in TB 
- not suitable for non-TB species 

- pathogen identification 

1Taxonomy levels the method claims to be able to accurate identify 
2Denotes whether a method gives the abundance of a strain. 
3Specifics about which context the tool was originally demonstrated for 
4Different use case scenarios that the tool can be used for or has been tested for 
 

 6.4 Comparative discussion of different methodologies 
The methods mentioned in this review all aim to utilize the discriminative capability of WGS data 
to taxonomically classify samples at the level of individual strains within a species. These 
algorithms differ in required coverage, the number of strains that can be detected, the ability to 
detect higher level taxa (Table 6.2), and other criteria.  
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Figure 6.4 Flow chart of tool selection depending on scenario. Guide chart showing which tools can be used in 
which use case. Presence of a tool under one use case doesn’t necessarily exclude it from being applicable to another 
use case.  

 

To help guide tool selection we have made a flow chart (Figure 6.4) showing which types of tools 
would work well with different use cases. Alignment and pattern based methods are more broadly 
applicable because they can be used on samples with lower coverage levels of the species of 
interest (<1×) than assembly based methods, which can require high coverage levels (50× for 
EVORhA). Although assembly based methods can provide the possible genomic sequence of a 
strain of interest and are not limited to the breadth of the genomes present in a reference 
database, alignment methods are faster and can be used at lower coverages. To taxonomically 
classify or examine intra-species heterogeneity within an isolate culture expected to contain a 
single, well-studied species (such as E. coli), both alignment and pattern based methods can be 
used, such as Pathoscope and StrainSeeker, as these methods require prior knowledge of a 
species. Both methods have tools that require differing coverage levels to identify strains (Table 
6.1), from less than 1× in the case of StrainSeeker and Pathoscope, up to a minimum of 10× 
coverage in the case of ConStrains). However, if the single species present in the isolate sample 
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is not as well-studied, then assembly methods such as EVORhA are more suited, as they are not 
as dependent on prior knowledge encapsulated in a reference database. Because assembly 
methods require sufficient coverage (50× for EVORhA) to resolve haplotypes, these methods are 
not suitable for communities of samples with low coverages. Certain methods quantify multiplicity 
of infection or relative abundance of strains within a sample using allelic variations within the 
dataset and do not require a database of known genomes. These reference-free tools are useful 
when the relationships between strains in a single-species sample are of interest, rather than the 
exact strain identities or their relationships to previously studied strains. This would be suitable 
for testing multiplicities of strains in uncultured soil samples or other extreme environments which 
are still under sampled. Reference-free approaches can also be applied for well characterized 
species, however since pattern and alignment based tools can also offer strain identity – these 
might be preferred due to the extra information given. 

When exploring strain level variety in the context of a metagenomic sample containing multiple 
species, alignment and pattern based methods such as GSMer or Sigma are able to classify at 
both the species and strain level. Within metagenomic samples, the strains of interest could be 
present at very low coverages, making assembly based methods not suitable for this task. 

Phylogenetic-based methods such as those of Gan et al. [56] can also track evolutionary 
divergence of the same strain within a longitudinal metagenomic samples, which requires a high 
level of resolution to detect small changes in gene sequences. These methods work at low 
coverage levels, and have the advantage of including a visual representation of the underlying 
decision process which can be easier to explain and understand. The phylogenetic framework 
also offers users the ability to sanity check results. For example, multiple closely related strains 
can be detected when the ‘true’ strain is not present in the database.  

When focusing on one particular species within a metagenomic sample, methods such as Sigma 
and Pathoscope are able to remove DNA from other species, which increases the specificity of 
the desired species and reduces downstream computation time. This is useful for diagnostics 
which aim to detect strains from only a particular pathogenic species, for example, when iteratively 
looking for strains within a particular species in a metagenomic sample.  

Though this might provide a slight boost in computational efficiency, Sigma and Pathoscope are 
still both computationally intensive programs. 

Ease of use and speed of analysis are both important concerns when considering a metagenomic 
tool. Table 6.2 details the different machine requirements and speed tests given by the methods 
reported in this paper. Though versatile and adaptable to different scenarios, tools requiring 
extensive mapping to a reference database can be extremely computationally intensive. Sigma 
required nearly 20 hours resolving a single 5 strain community (20 million reads) against a 
database of 2,266 reference genomes with 62GB of memory and 64 cores. StrainFinder, another 
alignment method, took more than 48 hours with 100-200 cores for 100 samples. Some methods 
were tested in high performance computing environments (i.e. Pathoscope, MEGAN, MetaMaps, 
GOTTCHA, all > 100GB memory) which may not always be available for clinicians. Additionally, 
tools requiring a database typically only report times/requirements to process a sample, but rarely 
include the time required to generate a custom database. We were only able to find both values 
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for StrainSeeker, which process samples relatively quickly (<2 minutes) but suggests 300GB of 
space and 512GB of ram available to generate a database. In terms of usability, almost all of the 
tools were made to run in a Linux environment, therefore requiring some level of computational 
expertise in order to navigate requirements and installation setups. Few tools offer an online 
accessible functionality (MEGAN and StrainSeeker). That being said, certain tools are bundled in 
easy to install package managers like Conda and R (i.e. DEploid, pfmix, StrainPhlAn), while 
others only offer a collection of scripts (i.e. MixInfect, and Eyre et al). Due to the requirements for 
installation and use (Bash/Linux), using most of these methods would require some bioinformatics 
knowledge. Further work would need to go into making these tools accessible and open for 
general use, such as online web tools, or a easy to use/install gui. 

Most of the methods described in this review have not been benchmarked across all possible use 
case scenarios in a systematic or independent manner; therefore, a researcher using these tools 
will need to carefully determine whether a particular tool would work for their data type of interest. 
We discuss more about benchmarking in the next section. 6.5 Method evaluation, benchmarking and simulation 
Thorough and robust benchmarking of algorithms for a particular application and data type is 
critical. As this field is relatively new, there has yet to be a proper comparative study benchmarking 
the efficiency, accuracy, and specificity of these methods in a diversity of application domains: 
clinical pathogens [73,74], microbiomes [75,76] and industrial biotechnology [42,77,78] as 
examples.  

The types of validation that have been performed for each method are indicated in Table 6.1. For 
all tools1, an initial validation of model performance was performed using in silico simulated reads 
of known composition, generated from genomes of known host strains using tools such as 
MetaSim, Grinder, and Art [79–81]. Alternatively, sequencing reads from presumed pure strains 
can be used. Testing applicability to strain mixes involves constructing a more complex synthetic 
dataset containing a mixture of varying quantities of individual strain read sets. Factors that must 
be considered in the construction of synthetic validation datasets include: 1) Determining the 
actual sequencing depth necessary to be able to identify a particular strain in a read set and 
number of reads to use. 2) The diversity in strain composition in terms of taxonomic levels that 
should be represented or background non-target species 3) The level of complexity that needs to 
be introduced in the reads (in terms of SNVs and genomic distance between strains) and 4) the 
scalability of the method to fluctuation in sample size (e.g. low abundance strains in large sample 
sets). Validation on synthetic datasets addresses performance of the algorithms in the best-case 
scenario. Subsequent to these validation experiments, performance needs to be examined on 
test-case ‘real’ samples, as this is often presents a much greater challenge than testing on in-
silico-generated datasets.  

In order to compare the results of benchmarking different tools, metrics for comparing results 
across different types of outputs from various tools must be carefully chosen.  The published 
benchmarking methods for the tools described in Table 6.1 use a variety of different metrics. The 
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most common method employed for the published tools involves testing the specific algorithm on 
a dataset of known diversity and abundance, and comparing accuracy metrics. For alignment- 
and pattern based methods, a true and false positive would be defined as whether the algorithm 
was able to detect the correct strain within the sample, or whether it detected the wrong strain, 
respectively. A false negative would be defined if the algorithm failed to detect a strain present in 
the sample, and a true negative would be called if the algorithm did not output any strains not 
present. An important consideration in the assessment of true negatives is whether the algorithm 
informs the user of the uncertainty of the match and outputs the nearest strain. Most methods 
mentioned in this paper quantified the reliability of their method by either calculating the true 
positive rate/false discovery rate or by checking manually whether the results were correct. 

In addition to simply identifying which strains are present or absent in a sample, additional metrics 
must assess the accuracy in estimating strain abundances.  One method to do this, used by the 
assembly based detection method, EVORhA, uses the mean absolute error (MAE) metric 
between the true abundances and estimated abundances. In addition, they also calculated the 
root mean squared error (RMSE), which was also used by Eyre et al. Another method to assess 
accuracy in strain abundance is the Jenson-Shannon divergence, which was used in ConStrains 
to measure their prediction accuracy.   

A comprehensive comparison and benchmarking of these tools is needed to provide further 
insight into the efficiency of these tools at performing strain-level identification on a wide range of 
sample types, be it metagenomic, clinical, or cultures. This benchmarking strategy would need to 
deal with the nuances between tools, as they have different goals, different use-case scenarios, 
and different criteria for success. It might be possible to conduct these comprehensive 
benchmarks in categories such that similar tools could be evaluated together on novel datasets 
with a common evaluation metric. 6.6 Conclusion and future directions 
Whole genome sequencing of microbial populations has the capability to offer a view into genetic 
diversity at varying taxonomic levels. Current widely-used taxonomic classifiers allow for the 
identification of species within WGS sets. However, algorithms for finer-grained classification, at 
the individual strain level within a species, are still relatively new. Such techniques have the 
capacity to greatly impact healthcare and other fields by precise tracking of disease outbreaks, 
differentiation of commensal and pathogenic strains, and linking strain level genotypic traits with 
phenotypic characteristics of clinical and industrial importance [42,73–78].One assumption almost 
universally made within taxonomic tools is that a direct relationship exists between strain read 
coverage and strain abundance in the sample. As such, calculations of strain abundance levels 
take into account the variations of coverage across variant sites or reads. Though intuitive, none 
of the tools presented here presented analysis to prove this assumption. Conducting such 
verification steps is particularly important for tools focusing on clinical use and pathogen 
identification, where it is typical for a culturing step to be conducted before sequencing. In 
actuality, there could be many reasons why read abundance does not directly reflect the 
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composition of the sample: isolation technique (culture sweep vs single colony isolation), 
contamination skewing read depth, or the sequencing process itself.  

There are numerous ways in which current strain identification methods can improve their 
benchmarking. Firstly, very few algorithms tested the performance of their tools on multiple (>2) 
low abundance strains (<1-2x). Detecting low abundance strains would be preferred for microbial 
communities such as the gut, where specific strains exhibit differing pathogenicity. Secondly, no 
methods quantified or benchmarked how genetically distant a strain needs to be in order to 
properly delineate it. Third, there are no tools that allow a user to compare strains within and 
across samples, which would be useful for transmission studies. Lastly, delineating extremely 
closely related strains remains a difficult problem for the metagenomic tools. Many tools requiring 
a reference database remove genomes from the database that are extremely close together or 
self-report that they would not work well with highly related genomes [47,58,66]. Such analysis 
remains difficult due to the problems that arise when considering closely related strains such as 
an increase in false positives due to both strains being reported when only one is actually present 
or problems within the model itself driven by high levels of collinearity. The difficulty with detecting 
extremely close strains is further compounded due to the ambiguous definition of a strain.  

The methods detailed in this literature review are almost all directed towards sequencing 
technologies that produce reads from mixtures of cells. Direct sequencing of individual cells would 
bypass this need to computationally subdivide reads produced from current NGS technologies 
into those originating from different strains. Single-cell sequencing  strategies such as Drop-Seq 
[82] and 10X Genomics [83] are rapidly improving to provide a systematic and comprehensive 
view of the genetic diversity of complex communities. Having sequencing data originating from 
individual cells would greatly simplify studies of heterogeneous populations of strains. However, 
there are still technical difficulties to overcome before single-cell sequencing becomes widely 
adopted. It is probable that the next iteration of strain-level identification algorithms will be focused 
on such technologies. One pioneering example is MetaSort, which combines the advantages of 
both WGS and single cell sequencing data [84]. This method assembles genomes from both WGS 
reads and single cell sequencing reads and integrates the two using a machine-learning 
algorithm, resulting in genomes present in the sample. The increased resolution from single cell 
sequencing based detection is likely to uncover novel forms of genetic heterogeneity. In addition, 
advances in long read sequencing continue to change the scope and direction of strain-level 
detection in metagenomic samples. Longer read lengths could make it easier and more practical 
to phase haplotypes, as well as identify strains with fewer reads. We have touched upon a few 
long-read methods (MetaMaps and that of Somervile et al), and still expect that many more will 
be released as this platform of sequencing continues to gain in popularity.  

The ability to quantify and detect bacterial strains within heterogeneous environments has 
applications in numerous fields including diagnostics[85], clinical studies for the microbiome [86],  
bio surveillance[41], tracking transmission of infectious strains in an outbreak [37,41,52], providing 
insight into the spread of antibiotic resistance [87], tracking progression of within-host bacterial 
evolution[29] and exploring diverse environments [88]. We look forward to the wide range of 
applications and effects these tools will have in shaping and progressing sequencing based 
research. 
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7 Discussion 
Research into the bacteria, Mycobacterium tuberculosis, has been revolutionized by advances in 
whole genome sequencing (WGS) technologies. An active challenge within the research 
community is finding innovative ways to process and extract information from the data produced 
by these technologies. This requires the creation of bioinformatics tools and applications 
specifically focused on the aims of TB research, with bridging the gap between research and 
clinical practice as the ultimate goal. Within the four years this thesis was written, tools, studies, 
and research focusing on WGS based analysis of TB has exploded. Paired with the increase of 
TB WGS research, were the advances in sequencing and molecular techniques. For example: 
the great reduction in long-read sequencing error rates, new protocols for metagenomics library 
preparation,  the upgrade of the WHO endorsed TB diagnostic GeneXPert, amongst others. While 
there is much hope and expectations in the power for WGS to quell the TB burden, still many 
problems remain for clinical adoption. This thesis has presented several applications for WGS 
guided analysis of TB research and now, in this final chapter, I will share my thoughts on active 
problems for the TB research community and possible directions for the future. 

TB research focused on diagnostics, outbreak reconstruction, MDR and XDR surveillance, and 
reinfection studies, have typically failed to consider the impact within patient heterogeneity could 
have on the accuracy of results or downstream clinical effects. This is particularly an issue as 
different strains of MTB can have different phenotypes, and when left undetected, this 
heterogeneity can complicate research and confound treatment. There needs to be better 
characterization of individual strains of TB and how they relate to resistance, pathogenicity, and 
immune response. In chapter 2, we developed an algorithm to tackle this problem. The algorithm 
detects and identifies individual strains of MTB within WGS data of cultured TB isolates. It 
additionally outputs antibiotic resistance mutations present in the isolates. This tool was 
innovative compared to other similar metagenomics tools in that it focused specifically on MTB, 
which has lower variation between strains compared to other species. We showed the tool could 
properly discriminate strains and had higher discriminative power compared to currently available 
tools. With this tool, we provide the greater MTB  field another resource to gain insights into their 
WGS data. 

Our algorithm suffers from similar pitfalls to other innovative tools within the TB field. It is a 
command line tool written and tested within a Linux environment. This is the case for many 
bioinformatics tools for TB and is a problem for researchers or clinicians who are not so tech 
savvy. Specific problems include the fact these tools can be 1) quite complicated to compile and 
install on a computing device 2) not tested with different kinds of data/computing environments 3) 
dependent on funding and/or an active contributor, the lack of which can lead to maintenance 
issues and unreliability and 4) not user friendly as many lack proper instructions and/or use difficult 
to understand language. Wider adoption of bioinformatics tools within the TB community and 
especially in the clinic, can be achieved by prioritizing user friendliness, increasing education of 
bioinformatics amongst clinicians/microbiologists, and including provisions for tool maintenance 
within funding pipelines.  
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Our algorithm was originally intended to be used for diagnostic purposes. Indeed, the dream for 
many would be to replace the current diagnostic procedure involving cultured sputum with a 
complete suite of rapid WGS based tools. However, nearly all WGS based analysis requires a 
culture step in order to extract the sufficient quantities of MTB genetic material. A rapid WGS 
based diagnostic would only be possible with direct to sample sequencing. Culture free WGS 
experiments directly from sputum would have numerous benefits. It would remove the time spent 
in culture, but an additional often overlooked benefit is the significant reduction of the bias inherent 
in the culturing process. Within host heterogeneity of MTB is well documented, however through 
culture, be it a plate sweep or a single colony isolate, some of this heterogeneity is lost [1]. In 
studies it was shown that clonal composition changed dramatically after the culture step, such 
that in a subset of cases only a single strain remained [2,3]. In actuality, the true impact of the 
culture step on the ability to detect minority strains is still not very well studied [4]. Therefore 
clinicians and researchers are left with merely a glimpse of the underlying bacterial population 
within a patient. Sequencing directly from a patient sample would not completely solve this bias, 
but this would be a big step in its reduction [5]. Efforts have been made to bring culture free WGS 
to fruition [6–8], but issues pertaining to human/microbial contamination and the acquisition of 
sufficient sequencing depth have limited progress. Continued research into improving the library 
prep stage and downstream bioinformatics filtering techniques could enable direct to sample 
sequencing of TB sometime in the not too distant future. 

Chapters 2-4 all utilize short-read sequencing technologies. Although short-reads are the 
dominant mode of sequencing, new technologies are steadily under development. Sequencing 
technologies by Oxford Nanopore Technologies (ONT) and PacBio enable the coverage of 
thousands of base pairs within a single read. ONT comes with the added benefit of being highly 
portable due to its small size. The growing adoption of long-read sequencing platforms will spawn 
the creation of new bioinformatics tools and pipelines. It would behove already existing 
bioinformatics tools, such as the one presented in this thesis, to reflect and adapt to the new 
technologies.  

Analysis conducted in chapters 2-4 all discarded variation within the PE/PPE region, a 
phenomenon that was tackled in Chapter 5. Indeed, a big advantage for WGS over molecular 
techniques is in its ability to capture variation across the whole genome. Despite this capability, a 
large proportion of the TB genome is discarded during analysis – the PE/PPE gene family which 
constitute 10% of the genome. This gene family hosts much of the variation within TB and is 
replete with repetitive GC-rich regions. Because bioinformatics algorithms struggle with  
processing short-read data from this region, this information is typically ignored, despite the 
potentially informative variation present within these regions. In chapter 5 we showed that this 
need not be the case for more than 80% of the PE/PPE genes. We used high quality nanopore 
assemblies to shed light in the genetic variation within these genes. We found that nearly all PE 
genes are quite conserved across lineages. And despite being highly variable, we observed 
considerable conservation in several PPE/PE-PGRS genes. We also showed that mappability of 
these genes to the H37Rv reference genome was not as error prone as previously estimated, 
suggesting that they do not need to be discarded in analysis. Therefore, our research provided 
the TB community a much needed sanction on the use of these PE/PPE genes within 
bioinformatics analysis.  
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A shortcoming present within chapters 2-4 is in the way I predict antibiotic resistance within the 
MTB isolates. In these chapters, the same list of SNPs were used to detect an antibiotic resistant 
genotype within an isolate. The list used is by no means the most exhaustive list of resistance 
conferring mutations in TB, nor is it the only list available. The latter point cannot be overstated. 
There are tens of studies, reviews, meta-analysis and software devoted to the accumulation and 
prediction of MTB antibiotic resistance [9–21].  Major attempts at standardizing these lists into a 
widely used database have been put forward but some of these databases have not been 
maintained, and despite the appearances of new software/databases, long term maintenance and 
accessibility still remains an active challenge within the TB community [22]. Continued integration 
of available databases/lists are necessary and new studies should aim to associate their list 
curation/research with respect to the major antibiotic resistance database present at the time. 
Greater amounts of communication between organizations curating, developing and applying 
antibiotic resistance mutation software will go a long way to expediting the integration process.  

As stated, the list of SNPs we used to determine antibiotic resistance was not exhaustive, not 
only due to lack of consensus of mutation lists within the TB community, but also due to 
incomplete knowledge of resistance conferring genotypes. It is unknown how much of TB 
antibiotic resistance conferring variation is still unknown! This gap in our collective knowledge has 
led to assumptions/conclusions being made based on incomplete data. This is doubly true in the 
case of heteroresistance, which similar to the phenomena of mixed infections has been 
overlooked in WGS based analysis. Lack of detected resistance either by knowledge deficit or 
undetected heteroresistance could 1) mislead diagnostic efforts causing future spread of DR TB 
by inadequate treatment. Further WGS studies are needed to illuminate markers of MTB 
resistance, which can then be implemented in the creation of robust diagnostic algorithms. And 
2) lead to unreproducible research as future studies arrive to different sets of conclusions given 
a more robust view on resistance mechanisms. For heteroresistance,  we showed this was the 
case in Chapter 3 on a global set of MTB isolates. We revealed the extent of undetected 
heteroresistance across our set, a large portion of which was found within isolates containing 
mixtures of strains.  

In Chapter 3 we also revealed the extent of mixed infections present within past research studies. 
We pointed out the high association of heteroresistance and mixed infections with MDR/XDR-TB. 
We also examined the probable impact of mixed infections on transmission studies. This all was 
enabled through the accumulation and curation of a large collection of publically available MTB 
isolates from the sequence read archive (SRA) [23]. This study could have been enriched with 
higher quality meta-data information, such as resistance phenotypes, dating of isolates, isolation 
method, all of which proved much more difficult to obtain than the sequencing data itself. This 
points to a general drawback of publically available data. As each research institute has their own 
guidelines, protocols, and methods to share data, it becomes increasingly difficult to compare 
results across studies. This limits the ability to conduct proper meta-analysis and/or gain new 
insights from previously sequenced data. Standardizing the ways data is uploaded would be 
beneficial for future studies. Databases containing clean genomics data paired with cleaned 
metadata already exist [21] whose format could be used as a model for those researchers 
planning on publically sharing their data. 



7 Discussion 

122 
 

The benefits of WGS in the clinic are undeniable. Deeper insight into pathogenic genetic material 
present within a patient is useful for surveillance and diagnostic purposes. However, most of TB 
genomic studies have been performed in low incidence countries with plentiful access to funding. 
These countries can afford the price tag that comes with sequencing, which despite the 
decreasing rates, is still not as affordable as simpler molecular techniques. It is unlikely that high 
burden low-income countries will have the resources available to control TB using WGS 
tracking/tracing systems in the same capacity as high-income countries can. However insights 
gained from the research by richer countries can be beneficial to the global community. 
Additionally, genomics can discover new markers that could be implemented in the creation of 
more affordable point of care devices that combine both diagnosis and DST testing. 7.1 References 
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