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1
Introduction

1.1. Why Preconditioning?

Numerical methods are widely applied to solve problems modelled by partial differential equation
(PDE). This numerical simulation process can be split to two steps: discretisation of PDE and solu-
tion of algebraic system of equations. The discretisation process replaces a continuous PDE with an
algebraic linear system of equations acting on a set of discrete degrees of freedom (DoF). After discreti-
sation, the linear system of equations needs to be solved by a linear equation solver. The solution will
be used to reconstruct and approximate the PDE’s solution. The two steps above do themost important
job in a full cycle of a numerical simulation.

To give an example, let’s look at Figure 1.1. Say we want to simulate an equilibrium state of a tem-
perature field on a 2-dimensional domain, with the temperature distribution known on the boundary.
This is a heat diffusion problem, modelled by a Poisson equation. To simulate this process, we first
write out themathematical expression of the governing law (usually conservation laws and constitutive
relations) in the form of PDEs. From the continuous PDE, we arrange the unknowns in the domain of
interest with a specific pattern on a mesh, and then replace the operators in the continuous PDEs by
discrete operators that acts as a mapping similar to the operators in PDEs. In our example, the gra-
dient operator ∇ corresponds to the matrix 𝐁, the matrix 𝐀 is a mass matrix, and the matrix 𝐂 has a
similar function as the divergence operator. Until now, the PDE is replaced by a discrete linear system
of equations about a set of DoF arranged in the mesh. This is call discretisation. Now the rest of the
work is done by the solver of linear equation systems. These two steps do the most important jobs in a
numerical simulation process.

However, as the problem size grow, the numbers of DoF will be large. The linear equation system
obtained from discretisation will not always be easy to solve, and this is affected by the type of solver we
use, the condition of the left-hand-side matrix, the physical memory occupied by thematrix, etc.. Since
problems of large size gives the major challenge, and iterative solvers are usually the only choice as the
problem size gets large enough, the solvers that we work with will mostly be iterative ones. In order to
make the iterative solution process fast and accurate, the large linear equation system will need to be
preconditioned.
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Figure 1.1: Example of a Numerical Simulation

1.2. Research Questions
This is the first time that preconditioning techniques are systematically studied for Mimetic Spectral
Element Method (MSEM). Thus before asking research questions, a literature study was made to ob-
tain a global picture about preconditioning and the discretisation method MSEM, which is partially
reviewed in Chapter2. After the literature study, several research questions appeared. The main re-
search interests are concentrated on the following 4 items:

1. What is the cause of the ill-conditioning of a PDE-related linear system of equations, or more
specifically, MSEM-related systems.

2. How does the spectrum of the matrices change with respect to refinements and mesh distortion.

3. Find out efficient preconditioners and techniques to improve computation efficiency.

4. Is it possible to build a systematic framework for the future study on preconditioning techniques
for MSEM.

These research questions will be answered as the report proceeds. But before we dive into the report,
we give the layout of this thesis report.

1.3. Thesis Report Layout
In Chapter 2, a literature review will serve as both background knowledge and starting point for this
thesis project. Chapter 3 will derive the discretisation formulations used in this thesis. In Chapter 4,
a theoretical analysis on the condition numbers of the discrete operators is given. Chapter 5 will in-
troduce preconditioning techniques suitable for 𝑝-versionMSEM, and in Chapter 6, the techniques are
extended to ℎ𝑝-version MSEM with hybrid formulation. Several results are presented for the hybrid
ℎ𝑝-MSEM. In Chapter 7, we make a synthetic conclusion of this thesis, and recommendations will be
given for the coming studies.



2
Literature Review

In this section, I kindly invitemy readers to go through a brief literature review, concerning theMimetic
Spectral Element Method, and some preconditioning techniques used for solving FEM related saddle
point problems. These background information will provide the context for the starting point of our
research.

2.1. Mimetic Spectral Element Method
Mimetic Spectral Element Method is a discretisation method that combines the principle of mimetic
discretisation and hp-FEM (Spectral Element Method). We will make a short introduction of mimetic
discretisation and Spectral Element Method (SEM or ℎ𝑝-FEM). The purpose of this introduction is to
guide my reader to the literatures that articulates these methods.

2.1.1. Mimetic Discretisation

After discretisation of a PDE, we see a ”replica” of the PDE in the algebraic world. A desired discreti-
sation schemes should provide a discrete model that is accurate, stable, and physically consistent. In
[9], Bochev pointed out that for numerical schemes that clearly separate topology and metric, stability
indicates if the topological structures in PDEs are well preserved, and consistency indicates if the ap-
proximations on the Physical quantities are proper, or in other words, the metric is properly used. In
[10], Bochev andHyman provided a common framework that abstracts discretisationmethods that are
compatible with the Physics behind PDEs, called mimetic discretisation.

In mimetic discretisation, the PDE operators acting on function spaces (of infinite dimension) are
replaced by mimetic operators acting on discrete subspaces (of finite dimensions) of the infinite di-
mensional function spaces. The topological structure of the PDE is preserved by the discrete operators
after discretisation. Thus the discretisation scheme mimics the topology of PDEs, with basic identities
in vector calculus (like the Stokes theorem) satisfied.

The core tools used in the analysis of mimetic discretisation methods are differential geometry and
algebraic topology. Differential geometry exposes the association between geometric objects and Physi-
cal quantities, thus further indicate the propermetric where the quantities aremeasured. The algebraic
topology studies howdiscrete operators preserve the topological structure of PDEs on a givenmesh. For
an in-depth study of the theories about mimetic discretisation, I refer the reads to Kreeft’s PhD paper
[38]. In [38], an extensive discussion on mimetic spectral element method is made.

2.1.2. Spectral Element Method

Spectral Element Method (SEM), also known as the ℎ𝑝-FEM, belongs to the Finite Element Method
(FEM) family. One important difference between SEM and FEM is that SEM use smooth basis func-
tions to represent the function of interest. By using high order basis functions, the DoF number is
increased, which is called a 𝑝-refinement. Spectral methods shows exponential convergence property
while computing smooth quantities under 𝑝-refinements. If SEM was used just as an FEM, the normal
increase of number of elements is called an ℎ-refinement. For a domain with discontinuous quantities,
ℎ-refinement would be a better choice. For the basic information on SEM, refer to [21].
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4 2. Literature Review

Traditional ℎ𝑝-FEMhave great potentials in high precision simulation, however, the basis functions
used in traditional ℎ𝑝-FEM do not fit into the framework of mimetic discretisation. Thus, followed by
a similar methodology and principle in [10], Gerritsma, Palha, Jasper, and etc. introduced SEM to the
mimetic family, building up the framework of Mimetic Spectral Element Method (see [43], [30]). In
this paper, I will skip the review on their large amount of work but tomention the part important for our
research. One of the most important development is on the basis function used in the newMSEM. The
basis functions used in MSEM are of two types. One is the nodal basis function (see [21], Lagrangian
basis polynomial), which is used in traditional ℎ𝑝-FEM, and another one is the edge basis function
developed by Gerritsma in [29]. This new basis function made a bridge from traditional ℎ𝑝-FEM to
mimetic discretisations. In the same paper, Gerritsma also showed the application of edge basis func-
tions in spacial discretisation by combining them with Lagrange polynomial basis functions.

2.2. Preconditioning Techniques
From discretisation, we obtained a linear system of equations denoted by:

𝐀𝐱 = 𝐛, (2.1)

where 𝐀 ∈ 𝐑፧×፧ is a non-singular n-dimensional square matrix, and 𝐱, 𝐛 ∈ 𝐑፧. As mentioned before, if
the linear equation system obtained from discretisation is easy to solve is determined by the condition
of the left-hand-side matrix. We will see this in the coming subsection.

2.2.1. Condition Number and Preconditioning

The condition number of matrix 𝐀 is defined by one of the following equivalent formulae (see [33]):

𝜅(𝐀) = ‖𝐀‖‖𝐀ዅ𝟏‖, (2.2a)

𝜅(𝐀) = lim
Ꭸ→ኺ

sup
‖𝚫𝐀‖ጾᎨ‖𝐀‖

‖(𝐀 + 𝚫𝐀)ዅኻ − 𝐀ዅኻ‖
𝜖‖𝐀ዅኻ‖ , (2.2b)

𝜅(𝐀) = ( min
፝፞፭(𝐀ዄ𝚫𝐀)ኺ

‖𝚫𝐀‖
‖𝐀‖ )

ዅኻ
. (2.2c)

This definition for the matrix condition number above is not precise due to the freedom in choice of
norms, but in my discussion, the vector induced 2-norm is used tomeasure the condition of thematrix.
This is because it is invariant under orthogonal transformation and related to the vector 2-norm. Thus
in this thesis, the condition number is the ratio of the largest absolute eigenvalue and the smallest ab-
solute eigenvalue. From definition, the condition number of a matrix is always larger than 1.

After the definition, we point out that: the smaller the condition number is, the closer the eigenval-
ues are clustered, and the better the matrix is conditioned. A well conditioned matrix is preferred by
the solver and I am going to demonstrate that.

There are two types of solvers for linear equation system, direct solver and iterative solver. The
direct solvers use traditional techniques to eliminate entries in the system such as LU decomposition,
Gauss elimination etc. (see [24]). Elimination process includes subtraction and division. When the
smallest eigenvalue is small enough, the influence of the inexactness will be even amplified by the di-
vision, thus will produce a solution of very low precision (see [36]). A preconditioned system scales up
small eigenvalues thus increase the precision. Direct solvers are advantageous when the system is not
too large, they require a predictable amount of resource in terms of floating point operation times and
storage (see [24]). However, as the size of the system grows large, the resource required by the direct
solver scales up rapidly. Thus for large scale simulation, iterative solvers became amore popular choice.
But for iterative solvers, the convergence speed is directly related to the eigenvalues of the matrix. For
an ill-conditioned matrix, the eigenvalues are distinct from each other, then the convergence rate will
differ greatly between each components. This will bring in two major issues. One is that the iterative
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solver may not converge to the required residual level within an affordable iteration steps. Another
issue is that even the solver minimised the residual to the machine precision, the smallest eigenvalue
will scale up the uncertainty when error quantification is preformed.

From the discussion above, we can make the following statements:

1. Preconditioning may help direct solvers to obtain higher accuracy.

2. Preconditioning helps iterative solvers to reduce solution time and increase maximum accuracy.

3. Preconditioning study for iterative solvers deservemore effort, ill-conditionedproblems aremostly
taking place in large simulations.

2.2.2. Introduction of Preconditioners

In this subsection, a comprehensive demonstration about preconditioner will be given. And after that,
we will list 3 types of configurations that a preconditioner could act on a linear equation system.

A comprehensive demonstration of a preconditioner could be described as follows. Suppose one has
a matrix 𝐌 easily available, invertible, and it nicely approximates the coefficient matrix 𝐀 spectrally.
Then one can premultiply𝐌ዅኻ to the system and make a new system looks like:

𝐌ዅኻ𝐀𝐱 = 𝐌ዅኻ𝐛 (2.3)

The matrix 𝐌 or 𝐌ዅኻ is the preconditioner. After preconditioning, the new coefficient matrix 𝐌ዅኻ𝐀
will have a spectrum clustered near 1. Thus the new system is well conditioned.

The example given above is only one of the configurations that a preconditioner could act on a sys-
tem. We give a wide class of preconditioner configurations in Fig. 2.1 (see [ke chen]).

Figure 2.1: Preconditioner Catalogue

2.2.3. Approaches to Preconditioning

There are two ways to approach a preconditioning problem. One is to approach it as part of the source
problem, i.e., to put preconditioning into the framework of the numerical simulation cycle. Another
approach is to treat only the given matrix and find a well-conditioned system as an output. We call the
first approach ”knowing the source”, and the second one ”knowing the matrix”.

The approach ”knowing the matrix” is good in terms of its generality once one has the knowledge
about the matrices’ properties in terms of symmetry, definiteness and block structure etc.. This ap-
proach usually involves optimised program algorithms, advanced algebraic tools, and could be applied
to problems arisen in optimisation, physics, statistics etc.. But it may not be the best choice of a spe-
cific type of problem. More specifically, PDE analysts would prefer seeing matrices derived from PDEs
as a member of discrete operator families, and those discrete operators inherits many properties (e.g.,
symmetric/self-adjoint) from their continuous counterpart operators in PDE. This idea is illustrated
in the review paper by Mardal and Wither (see [41]). This valuable point of view is also revealed in
[31] by Günnel, pointing out that preconditioning is a correction for the unnatural choice of mappings
on the underlying spaces. This is also the point made by Wathen in [46] : ”Whether or not a matrix
system arises from PDEs, knowledge of the source problem can be helpful in designing a good pre-
conditioner.” This awareness is indeed widely acknowledged by applied mathematicians. Benzi also
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differentiates preconditioners into physical ones and algebraic ones. Last point to bemade here is that,
we differentiate preconditioners in this way not only for classification purpose, but also to optimally
combine these two approaches for better preconditioning techniques. A good example could be that
the multigrid method is originally a physical approach, but being generalised to algebraic multigrid
that applies to a wider problem classes.

In the framework of my thesis study, I treat preconditioning as part of PDE solution process, i.e.,
”knowing the source”. But the general techniques that are used while ”knowing the matrix” will be
combined into the big picture. Thus before looking at the preconditioning techniques for FEM-related
problems, we give a review of some general techniques that are used to build preconditioners.

2.2.4. General Techniques of Preconditioning

General techniques are powerful tackling a certain type ofmatrix with specific properties, thus they will
be helpful to precondition specific block in a system. But a single techniques is usually not enough to
tune a large system in PDE-related linear systems. This subsection will introduce some popular pre-
conditioning techniques.

Incomplete Factorisation This is a technique designed for large linear systems. Direct solvers
live on matrix factorisation, where fill-in process is usually unavoidable. This process often destroys
the sparsity of the original system. Before the invention of this method, sparsity-preserving pivoting
algorithms are introduced (see[5]), however, considered too complex and expensive for large systems.
As a concession, incomplete factorisation in equation (2.4) is applied, where 𝐌𝟏 and 𝐌𝟐 will inherit
the sparsity while minimising the drop-out error. It is conflictive in general to achieve both at the
most excellence, so a concept called ”level of fill-in” is introduced by Gustafsson and Watts to make
a balance in between (see [32] [48]). The ”level of fill-in” is determined by a ”drop tolerance”, whose
optimal choice is highly problem dependent. This leads to a proposal by Saad later on, a dual threshold
strategy that dynamically drop out fill-ins by looking at drop tolerance (see [44]). To quote from Benzi
after his test in [4] : ”The resulting preconditioner is quite powerful. If it fails on a problem for a given
choice of parameters (drop tolerance and numbers of fill-in), it will often succeed by taking a smaller
value of drop tolerance or a larger number of fill-ins.”

𝐀 = 𝐌𝟏𝐌𝟐 + 𝐄 (2.4)

This method has some difficulties in providing robustness and reliability for general and especially
indefinite problems, but is widely used as a block preconditioner for SPD blocks, e.g., the mass matrix.
Benzi made an in-depth review about many relevant issues concerning its solution existence, solution
stability, ordering and parallel potential in [6] for further reference.

Sparse Approximate Inverse Since incomplete factorisation might destroy sparsity and involves
advanced algorithms to achieve optimal performance, numerical analysts turned to an alternative,
sparse approximate inverse. A comprehensive review on this method is given by Saad in [23]. This
technique is devoted to finding a sparse matrix 𝐌, an approximation of the inverse of coefficient ma-
trix 𝐀, as a preconditioner. This method preserves sparsity but is not preferred if a symmetric iterative
solver such as Conjugate Gradient or Minimum Residual is used.

There are two main approaches of this method, one is to minimise the Frobenius norm of the error
vector 𝐈 − 𝐀𝐌 by solving a constrained minimisation problem given the sparse pattern of𝐌. The chal-
lenge of this method is in choosing a good sparse pattern for 𝐌. Algorithms of finding such patterns
are reviewed in Benzi’s papers [4] and [6]. Another type of approach is called factored approximate
inverse. This approach is similar to the incomplete factorisation, but instead of factorise 𝐀, the inverse
of 𝐀 is factorised. Using the generalised Gram-Schmidt process, called bi-conjugation, a triangular fac-
torisation of 𝐀ዅ𝟏 is calculated. This is referred as the AINV algorithm (see [7] [8] ).
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Multi-Grid/Multi-Level This method is very well explained in Brandt’s paper [20] in 1977. He
pointed out the drawback of the traditional numerical process of solving partial differential equations.
Due to the lack of interaction between discretisation and solution, the solution is not properly resolved
and a huge amount of computational resource is wasted while obtaining a solution of low accuracy.
Also, traditional processes failed to take the advantage of proximity of different systems given by dif-
ferent meshes. Given those drawbacks, Multi-Level method proposed an intermix of discretisation and
solution processes, such that the drawbacks are overcome.

This technique has twomain concepts: multi-grid and adaptive discretisation. Inmultigridmethod,
for any givenmesh, the solution process will constantly interact with a hierarchy of successively coarser
grids. This process has the advantage of the consistency property of discretisation: different discretised
system are approximating solution of the same continuous problem. Multigrid concepts let coarse and
fine mesh solutions correct each other, accelerates the convergence of fine mesh calculation, while in-
crease the accuracy of approximations on the coarse mesh. This point of view gives the idea of con-
structing preconditioners using multigrid technique. An easily solvable system resulting from a coarse
grid could be a good preconditioner for a complicated system resulted from a very fine grid, and a low
order methodmay provide the preconditioner for the high order approximation. The adaptive discreti-
sation concept is very powerful in determining the proper local order of approximation, and give an
optimal allocation of computational resources to the global calculation domain. This concept gives in-
dication on how local refinement could be done, thus making multilevel methods closely related and
usually combined with domain decomposition methods.

DomainDecomposition Domain decomposition (DD), also known as ”substructuring”, ”Schwartz
method”, was originally preposed to solve PDEs by decomposing the calculation domain into smaller
subdomains, then different treatments could be employed separately, reducing the complexity of the
overall problem. But as a preconditioning technique, it helps reformulating the problem thus the dis-
crete system is well conditioned and suitable to be solved in parallel. Its mathematical foundation was
established by constructing a transmission condition at the selected interface within the global calcu-
lation domain. This transmission condition got further extended to Steklov-Poincaré interface equa-
tion, from which Steklov-Poincaré operator is abstracted. And the discretised counterpart of Steklov-
Poincaré operator is exactly the Schur complement of the (1, 1) block (refer to the block 𝐌 in 𝐀 from
(2.5) in the final saddle point system. It is useful to look into domain decomposition technique while
constructing preconditioners for the Schur complement block.

Domain decomposition and its variation is such a huge topic that cannot be covered in depth here.
However, a few applications in solving saddle point problems should be mentioned. For example, the
mixed formulation of finite element approximation using a Lagrange multiplier is an important vari-
ant of DD. In 1990s, Bramble, Pasciak and Schatz published a series of four papers (see [13] [15] [17]
[18] [12] [14]), demonstrated a preconditioning method using domain decomposition technique. The
first two papers gave two approaches in constructing a preconditioner for the (1, 1) block of the sad-
dle point system along with an analytic prediction of the condition number after preconditioning. The
later two papers discussed the iteration method to cope with the preconditioners as well as the parallel
implementation of the proposed technique. They also proposed a local refinement scheme based on
substructuring during that period (see [16]).

2.3. Precondition FEM-related Problems
In this section, we will review some important preconditioners for FEM related problems. First of all,
these problems leads to a linear systemof equationswith the following block structure in equation (2.5):

𝐀 [𝐱𝐲] = [
𝐌 𝐁𝐓
𝐁 −𝐂] [

𝐱
𝐲] = [

𝐟
𝐠] , (2.5)

where 𝐌 is a symmetric real square matrix in 𝐑𝐧×𝐧, while 𝐁 is an 𝑚 × 𝑛 matrix. If the −𝐂 block is all
zero and the global system is symmetric, the problem is call classical saddle point problem. Otherwise,
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it is a generalised/regularised saddle point problem. A naturally stable FEM method only leads to or
could be transformed to a classical saddle point problem, which is the one that is involved in most of
our discussion.

2.3.1. Preconditioner Utilising Block Structure

The block structure in (2.5) appears a lot in finite element discretisation, thus this structure has been
widely discussed before. In fact, preconditioners thrived on this block structure, which is a gooddemon-
stration of the ”knowing the source” type of philosophy.

In (2.5), matrix 𝐌 is usually symmetric positive definite (SPD), and we can block diagonalise the
large system as:

[𝐌 𝐁𝐓
𝐁 −𝐂] = [

𝐈 𝐎
𝐁𝐌ዅ𝟏 𝐈 ] [

𝐌 𝐎
𝐎 −𝐒] [

𝐈 𝐌ዅ𝟏𝐁𝐓
𝐎 𝐈 ] , (2.6)

where, 𝐒 is the Schur complement of𝐌:
𝐒 = 𝐂 + 𝐁𝐌ዅ𝟏𝐁𝐓. (2.7)

Block diagonalisation turns the coupled system into a two decoupled separated system in (2.8):

𝐌𝐱 = 𝐟 − 𝐁𝐓𝐲, (2.8a)

𝐒𝐲 = −𝐠 − 𝐁𝐌ዅ𝟏𝐟. (2.8b)

Ifmatrix𝐌 is SPD, then its Schur complement is also SPD.We can see fromabove that it’s crucial to find
a good preconditioner for the mass matrix. The precondition has to support fast inversion, and better
be sparse. Using the information above, we introduce the following preconditioners and techniques
appeared in history.

2.3.2. Uzawa’s Algorithm

Uzawa’s algorithm was originally developed from problems in nonlinear programming (see [19]). In-
spired by the decoupled system in (2.8), it solves (2.8b) at the first stage, then solves (2.8a) at the
second stage. This method is very robust and accurate with preconditioned iterative solvers and its
convergence rate is independent of the number of unknowns (see [11]). This algorithm is very attrac-
tive when the memory budget is limited in computers. The drawbacks of Uzawa’s algorithm are mainly
in two aspects. Firstly, the inverse of the mass matrix𝐌 has to be found out before the first stage calcu-
lation can start, which is usually expensive. Secondly, in the two stage iteration, in order to make sure
the second stage iteration converge, the first stage iteration needs to converge to machine round off,
which makes the whole process very costly.

2.3.3. Bramble-Pasciak CG Reformulation

After Uzawa’s algorithm, Bramble and Pasciak proposed a positive definite reformulation of the saddle
point problem similar to the process given above, and developed a single-level iteration approach for
the solution of (2.5) in paper [11]. In this paper, they made use of the knowledge of preconditioners
designed for second-order elliptic equations, reformulated a positive definite system looks like:

𝐀 [𝐱𝐲] = [
𝐌ዅ𝟏
𝟎 𝐌 𝐌ዅ𝟏

𝟎 𝐁𝐓
𝐁𝐌ዅ𝟏

𝟎 (𝐌 −𝐌𝟎) 𝐂 + 𝐁𝐌ዅ𝟏
𝟎 𝐁𝐓

] [𝐱𝐲] = [
𝐌ዅ𝟏
𝟎 𝐟

𝐁𝐌ዅ𝟏
𝟎 𝐟 − 𝐠

] , (2.9)

and the coefficient matrix 𝐀 could spectrally be estimated by matrix �̃�

�̃� = [ 𝐈 𝐎
𝐎 𝐂 + 𝐁𝐌ዅ𝟏𝐁𝐓] . (2.10)

The reformulated system is uniformly well conditioned in Stokes u-p system if themass matrix precon-
ditioner𝐌𝟎 is good enough and the 𝑖𝑛𝑓 − 𝑠𝑢𝑝 condition is globally met. This method is advantageous
due to the rich availability of preconditioners designed for CG acceleration (see [28]), but this method
damaged the symmetry of the original system and required proper scaling for general application. For
mixed formulation, the condition of the final system is dependent on mesh size.
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2.3.4. Block Preconditioner of Split Type

To overcome the asymmetry of the system in (2.9), Rusten and Winther proposed a block diagonal
preconditioner of the split type shown in (2.11) for classic saddle point problem.

𝐏 = [𝐋 𝐎
𝐎 𝐔] (2.11)

In the block diagonalmatrix 𝐏, the (1, 1) block 𝐋 is derived fromCholesky factorisation ofmassmatrix’s
approximation, i.e.,

𝐌 ≈ 𝐋𝐋𝐓. (2.12)

Then the (2, 2) block 𝐔 is naturally determined by

𝐒 = 𝐁𝐌ዅ𝟏𝐁𝐓 ≈ 𝐁(𝐋𝐋𝐓)ዅ𝟏𝐁𝐓 = (𝐁𝐋ዅ𝐓)(𝐁𝐋ዅ𝐓)𝐓 = 𝐔𝐔𝐓. (2.13)

Winther’s paper also provided algorithm to obtain cheap sparse factor matrix 𝐔. In their work, they
pointed out that the convergence rate ofMINRES solver is bounded by three important parameters: the
condition number of the mass matrix 𝜅(𝐌), the condition number of the self-adjoint operator 𝜅(𝐁) and
the scaling of those twomatrices 𝜌(𝐌, 𝐁). This leads to the point that as long as the three parameters are
bounded by the matrices’ own property independent from the mesh size, the convergence rate will be
bounded independent of the mesh size as well. However, most of the discretisation techniques results
in a system such that ”at least one of the condition number will increase when the discretisation is
refined”. Thus a good preconditioner may be dependent on the mesh size and the way mesh is refined.
One further remark Winther mentioned is that MINRES converges independently from the sparsity
structure of𝐌 and 𝐁.

2.3.5. Constraint Preconditioner

The previous work discussed all combined Schur decomposition with preconditioner of (1, 1) block𝐌.
In 2000, Keller, Gould and Wathen proposed a new type of preconditioner for saddle point problems
(see [37]), named constraint preconditioner, inspired by Lukšan and Vlček (see [40]) in the context of
constrained non-linear programming. Constraint preconditioner still use approximation (or approxi-
mate inverse) of𝐌 on its (1, 1) block, then include the exact representation of the self-adjoint operator
blocks in the preconditioner. The preconditioner take the form

𝒜𝟎 = [
𝐆 𝐁𝐓
𝐁 𝟎 ] (2.14)

This is an indefinite preconditioner which made the application of CG and GMRES on preconditioned
system possible again. They have shown that the inclusion of 𝐁 in the preconditioner is able to cluster
at least 2𝑚 eigenvalues to 1. This method is easier to implement compare to the work discussed before,
and has lower computational complexity and iteration count. However, this method has a pitfall-kind
drawback: the preconditioned system has a deficient eigenvector space and the standard Krylov sub-
space convergence theory is not applicable. They proposed two solvers to incorporate with the defi-
ciency, one is Reduced Conjugate Gradient (RCG) and the other is Preconditioned GMRES (PGMRES).
Later in 2003, Axelsson and Neytcheva (see [3]) proposed a way to avoid such deficient eigenvector
space for constraint preconditioners. Further efforts on constraint preconditioner are investigated in
finding better 𝐆 using factorisation (see [25]) and application on regularised (augmented) saddle point
problems (see [26] [27]).





3
Poisson Problem

This chapter will discretise an elliptic equation (Poisson problem) using MSEM.

Consider a two dimensional bounded domain 𝛀 ∈ 𝐑ኼ, with boundary 𝜕𝛀. We solve a the Pois-
son problem on this domain with either Dirichlet or Neumann boundary conditions (BC). The Poisson
problem with Dirichlet BC is given in (3.1):

−Δ𝜙(𝑥, 𝑦) = 𝑓, in 𝛀, (3.1a)

𝜙(𝑥, 𝑦) = 𝜙፭፫ , in 𝚪𝐃. (3.1b)

We rewrite this equation into a mixed formulation with subequations (3.2a) and (3.2b):

𝐪 − grad(𝜙) = 𝟎, 𝑖𝑛 𝛀, (3.2a)

−div(𝐪) = 𝑓, in 𝛀, (3.2b)

𝜙 = 𝜙፭፫ , on 𝝏𝛀. (3.2c)

Let ℒኼ(𝛀) denote the function space for square-integrable scalar functions,ℋኻ(𝛀) denote the func-
tion space for ℒኼ functions, whose partial derivatives also lay in ℒኼ(𝛀). The restriction of functions in
ℋኻ(𝛀) to the boundary 𝜕𝛀 constitutes the functions spaceℋኻ/ኼ(𝜕𝛀).

3.1. Weak Formulation
We derive a variational formulation of the second order using integration by parts:

(𝐪, �̂�)𝐋𝟐 , = (grad(𝜙), �̂�)ℒᎴ , (3.3a)

= −(𝜙, div(�̂�)) + (𝜙, �̂�)፭፫ , (3.3b)

where �̂� is the chosen test function. We use linear combination of basis functions as a representation
of the continuous function restricted to finite dimensional function space, therefore the inner product
(𝐪, �̂�) could be written by a product of mass matrix and the expansion coefficient vector of 𝐪:

(𝐪, �̂�)ℒᎴ , = 𝐌 ⋅ 𝐪, (3.4)

and similarly, we have for the right-hand-side of (3.3):

∫

𝑑 (𝜙 ⋅ �̂�) − ∫


𝜙𝑑�̂� = 𝐁𝐰 ⋅ 𝜙፭፫ − 𝐄𝐓𝐖 ⋅ 𝜙. (3.5)

The discretised equation gives:
𝐌 ⋅ 𝐪 + 𝐄𝐓𝐖 ⋅ 𝜙 = 𝐁𝐰 ⋅ 𝜙፭፫ . (3.6)

In addition, we have constraint in (3.2b) expressed by algebraic equation:

𝐄 ⋅ 𝐪 = 𝑓. (3.7)

11
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Then, we obtain a linear system of equations:

[ 𝐌 𝐄𝐓𝐖
𝐖𝐓𝐄 𝐎 ] [𝐪𝜙] = [

𝐁𝐰𝜙፭፫
𝐖𝐓𝑓 ] . (3.8)

One can also see a full derivation in [43], §6.2.

3.2. Spectral Elements on a Mapped Domain
Consider the domain 𝛀 ∋ (𝑥, 𝑦) mentioned in the previous section, we call it the reference domain.
Now, we consider a physical domain denoted by �̃� ∋ (𝜉, 𝜂), and there exists a mapping (difeomor-
phism) Φ that maps the DoF from the reference domain to the physical domain. The 𝓛ኼ inner product
of functions on the physical domain is dependent on the metrics of the coordinate system.

We let �̂�(𝐧ዅ𝟏)(𝝃,𝜼) ∶= Φ(�̂�(𝐧ዅ𝟏)(𝐱,𝐲) ) denotes the basis functions �̂�(𝐧ዅ𝟏) expressed on the mapped domain
coordinates. And we use a tilde notation ∘̃ to denote the DoF on the mapped physical domain. Then
(3.3) becomes:

(�̃�, �̂�)𝓛Ꮄ , ̃̂ = (𝓙
ዅኻ (𝑥, 𝑦𝜉, 𝜂 ) grad (�̃�) , 𝓙

ዅኻ (𝑥, 𝑦𝜉, 𝜂 ) �̂�)𝓛Ꮄ ,𝛀
, (3.9a)

where 𝓙 is the Jacobian transformation matrix, also referred in differential geometry as the pullback of
Φ.

3.3. 𝑝-version MSEM
Let 𝐈 = [−1, 1] ∈ 𝐑, and a reference element on a square domain 𝛀 = 𝐈 × 𝐈. The interior nodes are
located on Legendre Gauss-Lobatto points {𝑥።|𝑖 = 0, ..., 𝑝} ∈ 𝐈 where the degrees of freedom will be
associated. To be more clear, Legendre Gauss-Lobatto points can be expressed in form:

𝑥። = 𝑐𝑜𝑠(𝜑።),

where 𝑥። are the roots of Legendre polynomials of degree 𝑝 − 1 and the end points of the interval 𝐈. 𝜑።
could be bounded by the interval (see [45]):

𝑖
𝑝 + 1/2𝜋 ≤ 𝜑። ≤

𝑖 + 1/2
𝑝 + 1/2𝜋, 𝑖 = 0, 1, ..., 𝑝.

3.3.1. Lagrange Basis Function

1-D Lagrange polynomial basis function 𝑙፧(𝑥) is defined by:

𝑙፧(𝑥) =
፦ጽ፧

∏
ኺጾ፦ጾ፩

𝑥 − 𝑥፦
𝑥፧ − 𝑥፦

, 𝑚, 𝑛 = 0, 1, ..., 𝑝. (3.10)

Using this basis function, we can construct basis functions for 𝜙, thus the discrete representation of 𝜙
is given by:

𝜙(𝑥, 𝑦) →∑
።,፣
𝜙።፣𝑙።(𝑥)𝑙፣(𝑦). (3.11)

3.3.2. Edge Basis Function

1-D edge basis function is derived from Lagrange basis function. The key of this basis function is to
ensure that the discretised system mimics the same topological structure as the differential operators.
The edge basis function is defined by:
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Definition 3.3.1.

𝑒።(𝑥) =
፩

∑
፣።
𝑙ᖣ፣(𝑥), 𝑖 = 1, 2, ..., 𝑝. (3.12)

We can use the combination of edge functions with Lagrange basis function to represent 𝐪:

𝐪 = 𝜕𝜙
𝜕𝑥 𝑑𝑥 +

𝜕𝜙
𝜕𝑦 𝑑𝑦 →∑

።,፣
𝑞፱።፣𝑒።(𝑥)𝑙፣(𝑦)𝑑𝑥 +∑

።,፣
𝑞፲።፣𝑒።(𝑦)𝑙፣(𝑥)𝑑𝑦. (3.13)

It could be shown that the expansion factor 𝑞፱።,፣ = 𝜙።ዄኻ,፣ −𝜙።,፣, and 𝑞
፲
።,፣ = 𝜙።,፣ዄኻ−𝜙።,፣. These are purely

topological relations.

The two basis functions introduced above have been thoroughly discussed in Kreeft’s PhD thesis
[38], and an interpolation error estimate of thesis basis functions is also given in his work.

3.4. ℎ-version MSEMwith Domain Decomposition
Consider the same Poisson problem with Dirichlet boundary conditions, we partition the domain 𝛀
into subdomains 𝛀𝐢 that are not overlapping. For example, we can substructure a square domain into
several subdomains as shown in Fig.3.1. We let 𝚪𝐃 denote the real boundary of the global domain.

Figure 3.1: ፡-version MSEMMesh with Substructures

We define the subproblems in each subdomain:

𝐪። − grad(𝜙።) = 𝟎, 𝑖𝑛 𝛀። , (3.14a)

div(𝐪።) = 𝑓, 𝑖𝑛 𝛀። , (3.14b)

𝜙። = 𝜙፭፫ , 𝑜𝑛 𝜕𝛀። ∩ 𝚪𝐃, (3.14c)

𝜙። = 𝜙።፧ , 𝑜𝑛 𝜕𝛀።\𝚪𝐃. (3.14d)

Each subproblems could be treated as independent 𝑝-versionMSEM problems, e.g., in Fig.3.1, the four
subproblems on the subdomains (coloured in red) are four independent 𝑝-versionMSEMproblemwith
polynomial order 𝑝 = 5. The variables 𝜙።፧ (stored on black edges) function as Lagrange multipliers,
forcing the DoF on each side to be identical. The variables 𝜙፭፫ (stored in blue edges) are determined by
the given Dirichlet boundary conditions.
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Using integration by part, we can write the sub-equation (3.14a) in the weak form:

(𝐪። , �̂�)ℒᎴ ,𝛀 + (𝜙። , div(�̂�))ℒᎴ ,𝛀 − (�̂�። , 𝜙።፧)ℒᎴ ,Ꭷ𝛀\𝚪ᐻ = (�̂�። , 𝜙፭፫)ℒᎴ ,Ꭷ𝛀ᑚ∩𝚪ᐻ , (3.15)

where 𝜙።፧ are the DoF that need to be found in between the elements. And to closure the system, we
need Lagrange multipliers to force the equality of neighbouring 𝐪። on the element boundaries, and we
also need the divergence constraint in 3.14b. In this case, we choose to impose this equality in the trace
form function spaceℋኻ/ኼ:

(𝐪። , �̂�)ℒᎴ , Ꭷ𝛀ᑚ\𝚪ᐻ = 0. (3.16)

Thus the final discrete system will be of form:

[
𝐌 𝐄𝐓𝐖 𝐖𝐛
𝐖𝐓𝐄 𝐎 𝐎
𝐖𝐛𝐓 𝐎 𝐎

] [
𝐪
𝜙
𝜙።፧

] = [
𝐁𝐰𝜙፭፫
𝐖𝐓𝑓
𝐎

] . (3.17)

An extensive discussion on the block structure will be given in the coming Chapter 6.

3.5. Linear Equation System Solver
For a problem in physics, no matter at which level it is represented, the soul structure of the source
problem will always be present. A Poisson problem in essence, is to find a steady state of a system
where its potential energy is minimised. On the continuous level, the minimisation problem is to find
function 𝜑 that minimise the energy integral:

ℱ(𝜑) = ∫ {−ኻኼ𝜑Δ𝜑} 𝑑Ω. (3.18)

And for amixed formulation, theminimisation problemdegenerates to a constraintminimisation prob-
lem, that is to find a vector field 𝐯 that minimise the integral:

𝒥(𝐯) = ∫ ኻ
ኼ ∣ 𝐯 ∣ኼ 𝑑Ω, (3.19a)

subject to: 𝑑𝑖𝑣(𝐯) = 𝑓. (3.19b)

3.5.1. Uzawa Two-stage Solver

After discretisation, we obtained a linear system of equations in (3.8). To solve this system, we can use
the Uzawa’s algorithm as in (2.8). The first stage is to solve:

𝐒𝜙 = 𝐖𝐓𝐄𝐌ዅ𝟏𝐁𝐰𝜙፭፫ −𝐖𝐓𝑓, (3.20)

where, 𝐒 = 𝐖𝐓𝐄𝐌ዅ𝟏𝐄𝐓𝐖. 𝐒 is SPD, thus a CG iterative method could be employed. In this case, we are
minimising the norm:

1
2𝜙

ፓ𝐒𝜙 − 𝜙ፓ𝐖𝐓(𝐄𝐌ዅ𝟏𝐁𝐰𝜙፭፫ − 𝑓). (3.21)

This minimisation problem is exactly mimicking the problem in (3.18).

The second stage could be solved by direct multiplication of𝐌ዅ𝟏, since the inverse of the mass ma-
trix is needed in the first stage.



4
Condition Analysis

From the last chapter, we see a hierarchy of problems with increasing complexity from 𝑝-MSEM to ℎ𝑝-
MSEM, and also from orthogonal domain to arbitrarily mapped domain. Thus this chapter will make a
thorough analysis of the linear equation system in (3.8), raised from 𝑝-versionMSEMon an orthogonal
domain.

4.1. Condition Analysis by Blocks
The LHS matrix in (2.5) is usually treated by block diagonalisation, thus the condition number of the
blocks are inspected first. For rectangular matrix 𝐄, we will inspect the condition number of the singu-
lar value spectrum.

First, the condition number growth against increasing polynomial orders is shown in Table 4.1. In
this table, we evaluate the matrices with quadrature order equal to 2𝑝-1. Although in practical cases,
the quadrature order is often chosen to be the same as discretisation order 𝑝. The reason is explained
in §4.2.3.

Table 4.1: Condition Number of Matrices

𝑝-order 5 9 13 25
𝐌 33.35 88.39 170.53 578.33
𝐒 29.90 106.39 248.40 1301.06
𝐋𝐇𝐒 22.60 24.20 48.82 251.93
𝐄𝐄ፓ 13.93 39.86 78.77 273.31
𝐖 1.82 2.06 2.17 2.30

The condition number of wedge matrix𝐖 barely change with the 𝑝-order, because the wedge ma-
trix is formed by the duality pairing of 2D nodal basis forms and 2D volume basis forms, which does
not rely on the metrics. This duality pairing should return an approximate identity on an orthogonal
domain. The condition number of the mass matrix is growing fast, thus preconditioners made for the
mass matrix is widely discussed in literatures. The Schur complement matrix 𝐒 = 𝐖ፓ𝐄𝐌ዅኻ𝐄ፓ𝐖, has
the fastest worsening condition. After inspection on the conditioning of the large matrix on the left, the
coming sections will discuss them separately starting with the mass matrix.

4.2. Mass Matrix Condition Analysis
In this section, we will go through an approach to analyse the eigenvalue bounds and the condition of
the mass matrix that we might encounter in MSEM.

4.2.1. Condition Number of𝐌𝐥 with 1D Nodal Basis Functions

A very important paper [42] given by Melenk showed the eigenvalue bounds of Spectral Elements with
Gauss-Lobatto based basis functions. The intermediate steps before he arrive at his results are highly

15
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relevant to our research. Thus some useful theorems and lemmas in his paper are taken out from this
paper and its reference sources.

Proposition 4.2.0.1. There are constants 𝑐ኻ, 𝑐ኼ > 0 independent of 𝑝 that help bound the Legendre
polynomial:

𝑐ኻ
1 + (𝑝 + 1/2)𝑠𝑖𝑛𝜑።

≤ 𝐿ኼ፩(𝑥።) ≤
𝑐ኼ

1 + (𝑝 + 1/2)𝑠𝑖𝑛𝜑።
, 𝑖 ∈ {0, 1, ..., 𝑝}.

Proof. Since the Gauss-Lobatto points are symmetric, that is:

𝑥። + 𝑥፩ዅ። = 0, 𝑖 = 0, 1, ..., 𝑝
and 𝐿ኼ፩(𝑥) is an even function. Thus

𝐿ኼ፩(𝑥።) = 𝐿ኼ፩(𝑥፩ዅ።), 𝑖 = 0, 1, ..., 𝑝.
Then it is sufficient to investigate the circumstances for 𝑖 = 0, 1, ..., [𝑝/2] + 1.

The Legendre polynomial could be written as the asymptotic expansion of uniformly convergent
series of normalised Bessel functions (see [34] or [45] Theorem 8.21.6):

𝐿፩(𝑐𝑜𝑠𝜑።) = √
𝜑።
𝑠𝑖𝑛𝜑።

⋅ 𝐽ኺ{(𝑝 + 1/2)𝜑።} + 𝑂(𝑝ዅ
Ꮅ
Ꮄ ), 𝑝 → ∞,

where 𝐽ኺ is the Bessel function of the first kind with𝑚 = 0,

𝐽፦(𝑥) =
(𝑥/2)፦

√𝜋
∫ኺ [𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝜃)](𝑠𝑖𝑛𝜃)ኼ፦𝑑𝜃

Γ(𝑚 + ኻ
ኼ)

, 𝑚 > −12 ,

(integral representation by Poison see [2], Section 6.3). Thus

𝐽ኺ(𝑥) =
2
𝜋 ∫



ኺ
𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝜃)𝑑𝜃.

When 𝑥 is taking a large positive value, we can further expand the first Bessel function in integral form
(see [22], x1.4; or see [47], ):

𝐽ኺ(𝑥) = √
2
𝜋𝑥

ጼ

∑
፤ኺ

{𝑐𝑜𝑠[(𝑥 − 14𝜋) −
𝑘𝜋
2 ]} ⋅

∏፤፧ኺ{(2𝑛 + 1)ኼ}
𝑘! ⋅(8𝑥)፤ .

As 𝑥 → ∞,

𝐽ኺ(𝑥) − √
2
𝜋𝑥 [𝑐𝑜𝑠 (𝑥 −

1
4𝜋) → 𝑂(𝑥

ዅ ᎵᎴ ] .

Thus we have:

𝐽ኼኺ(𝑥) =
1 + 𝑠𝑖𝑛(2𝑥)

𝜋𝑥 + 𝑂(𝑥ዅኼ), 𝑥 → ∞.
Recall that:

𝑖𝜋 ≤ (𝑝 + 1/2)𝜑። ≤ (𝑖 + 1/2)𝜋, 𝑖 = 0, 1, ..., [𝑝/2] + 1, 𝑝 → ∞.
Now, we first consider one limiting case where 𝑖 → [𝑝/2] + 1 while 𝑝 → ∞, that is: ∀𝜀 > 0, there
∃𝐼ኺ ∈ {0, 1, ..., [𝑝ኺ/2] + 1} and a sufficiently large 𝑝ኺ ∈ 𝐍, such that ∀𝑖 > 𝐼ኺ and 𝑝 > 𝑝ኺ, the following
inequality holds:

|𝐿ኼ፩(𝑥።) −
1 + 𝑠𝑖𝑛(2(𝑝 + ኻ

ኼ)𝜑።)
𝜋(𝑝 + ኻ

ኼ)𝑠𝑖𝑛𝜑።
|

= |𝐿ኼ፩(𝑥።) −
𝜑።
𝑠𝑖𝑛𝜑።

𝐽ኼኺ((𝑝 +
1
2)𝜑።) +

𝜑።
𝑠𝑖𝑛𝜑።

𝐽ኼኺ((𝑝 +
1
2)𝜑።) −

1 + 𝑠𝑖𝑛(2(𝑝 + ኻ
ኼ)𝜑።)

𝜋(𝑝 + ኻ
ኼ)𝑠𝑖𝑛𝜑።

|

≤ |𝐿ኼ፩(𝑥።) −
𝜑።
𝑠𝑖𝑛𝜑።

𝐽ኼኺ((𝑝 +
1
2)𝜑።)| + |

𝜑።
𝑠𝑖𝑛𝜑።

𝐽ኼኺ((𝑝 +
1
2)𝜑።) −

1 + 𝑠𝑖𝑛(2(𝑝 + ኻ
ኼ)𝜑።)

𝜋(𝑝 + ኻ
ኼ)𝑠𝑖𝑛𝜑።

|

≤ 𝜆ኻ𝑝
ዅ ᎴᎵ
ኺ + 𝜆ኼ𝐼ዅኼኺ = 𝜀,
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where 𝜆ኻ, 𝜆ኼ are bounded coefficients from asymptotic expansions.

Since 1 + 𝑠𝑖𝑛(2(𝑝 + ኻ
ኼ)𝜑።) ∈ [1, 2], it is easy to find positive constants 𝑐ኻ, 𝑐ኼ independent from 𝑝

such that: 𝑐ኻ
1 + (𝑝 + ኻ

ኼ)𝑠𝑖𝑛𝜑።
≤ 𝐿ኼ፩(𝑥።) ≤

𝑐ኼ
1 + (𝑝 + ኻ

ኼ)𝑠𝑖𝑛𝜑።
.

It remains to see that for cases when 0 ≤ 𝑖 ≤ 𝐼ኺ, while 𝑝 → ∞. We have:

𝜑።
𝑠𝑖𝑛𝜑።

𝐽ኼኺ((𝑝 +
1
2)𝜑።) − 𝜆ኻ𝑝

ዅ ᎴᎵ
ኺ ≤ 𝐿ኼ፩(𝑥።) ≤

𝜑።
𝑠𝑖𝑛𝜑።

𝐽ኼኺ((𝑝 +
1
2)𝜑።) + 𝜆ኻ𝑝

ዅ ᎴᎵ
ኺ .

According to Schafheitlin’s investigation for the zeros of 𝐽፨(𝑥) (see [47], 15.32), zeros of 𝐽ኺ(𝑥) are only
lying in the intervals [𝑖𝜋 + ኽ

ኾ𝜋, 𝑖𝜋 +

ዂ𝜋], (𝑖 = 0, 1, ...). Thus 𝐽ኼኺ((𝑝 +

ኻ
ኼ)𝜑።) is always positive and finite

for all 𝑖 ∈ (0, 𝐼ኺ]. Thus again, we can find proper positive constant 𝑐ኻ, 𝑐ኼ such that:

𝑐ኻ
1 + (𝑝 + ኻ

ኼ)𝑠𝑖𝑛𝜑።
≤ 𝐿ኼ፩(𝑥።) ≤

𝑐ኼ
1 + (𝑝 + ኻ

ኼ)𝑠𝑖𝑛𝜑።
.

For a special limit case when 𝑖 = 0, 𝑠𝑖𝑛(𝜑።) = 0 and 𝐿፩(𝑥።) = 1. This case fits in the proposition.

The quadrature weights with LGL points is given by:

𝜌። =
2

𝑝(𝑝 + 1)𝐿ኼ፩(𝑥።)
. (4.1)

Then we are able to compute ℒኼ norm with discrete nodal values of function:

∥ 𝜙(𝑥) ∥ኼℒᎴ(𝐈)=
፩

∑
።ኺ
(𝜌።𝜙ኼ(𝑥።)). (4.2)

Based on this quadrature rule, we have the following theorem.

Theorem 4.2.1. Let 𝐈 = (−1, 1), and (𝑥።)፩።ኺ ∈ 𝐈 are the LGL points, 𝑝 ∈ {1, ...}. We have a function
𝜙(𝑥) ∈ ℋኻ(𝐈) that could be expanded by the nodal basis functions in (3.10): 𝜙(𝑥) = ∑፩።ኺ 𝜙(𝑥።)𝑙።(𝑥).
We express expansion coefficients 𝜙(𝑥።) into vector𝝓 ∈ 𝐑𝐩ዄ𝟏. Then there exists two positive constant
𝐶ኻ, 𝐶ኼ independent of 𝑝 such that:

𝐶ኻ𝑝ዅኼ ≤
∥ 𝜙(𝑥) ∥ኼℒᎴ(𝐈)
∥ 𝝓 ∥ኼኼ

≤ 𝐶ኼ𝑝ዅኻ.

Proof. From the LGL quadrature rule in 4.2, we have:

min{𝜌።}
፩

∑
።ኺ
𝜙ኼ(𝑥።) ≤∥ 𝜙(𝑥) ∥ኼℒᎴ(𝐈)≤ max{𝜌።}

፩

∑
።ኺ
𝜙ኼ(𝑥።).

According to the quadrature rule,

min{𝜌።} =
2

𝑝(𝑝 + 1)
1

max{𝐿ኼ፩(𝑥።)}
≥ 2
𝑐ኼ𝑝(𝑝 + 1)

∼ 𝑜(𝑝ዅኼ), 𝑝 → ∞,

and

max{𝜌።} =
2

𝑝(𝑝 + 1)
1

𝑚𝑖𝑛{𝐿ኼ፩(𝑥።)}
≤
2(1 + (𝑝 + ኻ

ኼ))
𝑐ኻ𝑝(𝑝 + 1)

∼ 𝑜(𝑝ዅኻ), 𝑝 → ∞.

Since 𝑐ኻ, 𝑐ኼ are independent of 𝑝, the theorem holds for properly chosen constants 𝐶ኻ, 𝐶ኼ.
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Theorem 4.2.1 indicates that the condition number of the 1D problem mass matrix using 𝐌𝐥 scales
with polynomial order 𝑝. To verify this is not only correct but also sharp, we set up a 1D mass ma-
trix using polynomial orders varying from 5 to 81, and then examine the variation of eigenvalues and
condition number. The results are given in the logarithmic plot in Fig. 4.1.

Figure 4.1: Conditioning of𝐌𝐥

4.2.2. Condition Number of𝐌𝐞 with 1D Edge Basis Functions

We can express 𝑢(𝑥), the derivative of function 𝜙(𝑥) as in Theorem 4.2.1, with edge basis functions:

𝑢(𝑥) = 𝑑𝜙
𝑑𝑥 =

፩

∑
።ኻ
𝑢(𝑥።)𝑒።(𝑥), (4.3)

and we have an important property of the expansion coefficients:

𝑢(𝑥።) = 𝜙(𝑥።) − 𝜙(𝑥።ዅኻ), 𝑖 = 1, 2, ..., 𝑝, (4.4)

which is a purely topological relation, only determined by the topology of the mesh, independent from
mapping.

Since edge function is already introduced, we have two ways to express the derivative of an ℋኻ

function. One way is to use edge basis function, and another way is to use the traditional way:

𝑑𝜙
𝑑𝑥 =

𝑑
𝑑𝑥 (

፩

∑
።ኺ
𝜙።𝑙።(𝑥)) =

፩

∑
።ኺ
𝜙።𝑙ᖣ።(𝑥). (4.5)

Nowwe inspect the inequality between ℒኼ norm of ፝Ꭻ፝፱ and discrete vector 2-norm of𝝓𝐢 in the following
content.

First, we define a matrix 𝐻 ∈ 𝐑(𝐩ዄ𝟏)×(𝐩ዄ𝟏) given by:

𝐻።፣ = 𝜌።𝑙ᖣ፣(𝑥።) =
2

𝑝(𝑝 + 1)𝐿ኼ፩(𝑥።)
𝑙ᖣ፣(𝑥።), 𝑖, 𝑗 = 0, 1, ..., 𝑝. (4.6)

Then, we immediately have 4.7 according to the identities of Jacobi Polynomials (see [21]):

𝐻።፣ =
⎧
⎪
⎨
⎪
⎩

ኻ
ኾ if 𝑖 = 𝑗 = 0,
−ኻኾ if 𝑖 = 𝑗 = 𝑝,
0 if 𝑖 = 𝑗 and 𝑖 ∉ { 0,p } ,

ኼ
፩(፩ዄኻ)ፋᑡ(፱ᑚ)ፋᑡ(፱ᑛ)(፱ᑚዅ፱ᑛ) else.

(4.7)

Followed by this definition, we have the coming proposition.
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Proposition 4.2.1.1. ∀𝑝 ∈ 𝐍, ∃𝐶 > 0, such that the induced 2-norm ‖𝐻𝝓‖ኼ ≤ 𝐶 ‖𝝓‖ኼ, for all 𝜙(𝑥)
that is not constant.

The proof of the right inequality is given in [42] (proposition 4.9 and corollary 4.10). What is worth
to point out is that the matrix 𝐻 has a row sum equal to zero, which is because that there are (𝑝 + 1)
𝑙ᖣ፣(𝑥) functions with polynomial degree 𝑝−1, which are not linearly independent from each other. This
is indicating that 𝐻 is not only singular, but also have at least 2 zero eigenvalues. We get the same
conclusion if we inspect the centrosymmetry of the 𝐻 matrix with respect to the point 𝑥፦ , 𝑚 = [፩ዄኻኼ ].

Theorem 4.2.2. There exists a constant 𝐶 independent of the polynomial order 𝑝 such that:

‖𝑢‖ኼℒᎴ(𝐈) ≤ 𝐶𝑝ኼ ‖𝝓‖
ኼ
ኼ .

Proof.

‖𝑢‖ኼℒᎴ(𝐈) =
፩

∑
።ኺ
𝜌።𝑢ኼ(𝑥።)

≤
፩

∑
።ኺ

𝜌።
min{𝜌።}

𝜌።𝑢ኼ(𝑥።)

≤
ፓ፡፞፨.ኾ.ኼ.ኻ

𝐶𝑝(𝑝 + 1)
፩

∑
።ኺ
(𝜌።𝑢(𝑥።))ኼ

= 𝐶𝑝(𝑝 + 1)
፩

∑
።ኺ
(
፩

∑
፣ኺ
𝜌።𝑙ᖣ፣(𝑥።)𝜙፣)ኼ

= 𝐶𝑝(𝑝 + 1) ‖𝐻𝝓‖ኼኼ
≤

ፏ፫፨፩.ኾ.ኼ.ኻ.ኻ
𝐶𝑝ኼ ‖𝝓‖ኼኼ .

Notice, in each step, the constant 𝐶 are updated, but does not affect the fact that it is independent from
the choice of 𝑝.

In the theorem above, since the maximum of 𝜌። could be achieved by a properly chosen 𝑢(𝑥), e.g.,
𝑢(𝑥) = 𝑙ᖣኺ(𝑥). In this case, the maximum 2-norm of the row vector space of 𝐻, i.e., max።{∑፣ 𝐻ኼ።፣}, is
sharply bounded by a constant independent of 𝑝.

The sharpness of the above theorem ensured that the following techniques will work well. We are
going to make use of the mimetic property of the method to further link ‖𝝓‖ኼ with ‖𝐮‖ኼ. To compute
𝐮, we rewrite (4.4) as 𝐮 = 𝐄𝐥𝝓, with the incidence matrix 𝐄𝐥:

𝐄𝐥 =
⎡
⎢
⎢
⎣

−1 1
−1 1

⋱ ⋱
−1 1

⎤
⎥
⎥
⎦፩×፩ዄኻ

. (4.8)

Thus ‖𝐮‖ኼኼ = 𝐮𝐮ፓ = 𝝓ፓ𝐄𝐥ፓ𝐄𝐥𝝓. We let 𝑻ኻ = 𝐄𝐥ፓ𝐄𝐥, and 𝑻ኻ is a positive semidefinite square matrix with
𝑝 positive eigenvalues 𝜆(𝑻ኻ) = 𝜎ኼ(𝐄𝐥), where 𝜎 are the singular values of the incidence matrix 𝐄𝐥. Thus
to find 𝜆(𝑻ኻ) is to find eigenvalues of the Toeplitz matrix 𝑻ኼ = 𝐄𝐥𝐄𝐥ፓ = 𝑏𝑙𝑜𝑘𝑑𝑖𝑎𝑔(−1, 2, −1).

Proposition 4.2.2.1. The eigenvalues of the Toeplitz matrix 𝑻፩(𝑎, 𝑏, 𝑐) = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑎, 𝑏, 𝑐) are:
𝑎 − 2√𝑏𝑐 ⋅ 𝑐𝑜𝑠((𝑖𝜋)/(𝑝 + 1)), 𝑖 = 1, 2, ..., 𝑝.

Proof. This proposition has been proven in many textbooks about Toeplitz matrix and circulant matri-
ces. See [39].
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The proposition above indicates that 𝜆።(𝑻ኻ) = 2[1−𝑐𝑜𝑠(𝑖𝜋/(𝑝+1))], 𝑖 = 0, 1, 2, ..., 𝑝. Notice that we
absorbed the only zero eigenvalue of 𝑻ኻ in the case of 𝑖 = 0. We have the following theorem as a result
of the singular value decomposition of 𝐄𝐥.

Theorem 4.2.3. The matrix 𝐄𝐥 admits to the singular value decomposition: 𝐄𝐥 = 𝐏𝚺𝐐, where 𝐏፩×፩
and 𝐐(፩ዄኻ)×(፩ዄኻ) are orthogonal matrices, and 𝚺 is a square diagonal matrix with singular values in

an increasing order: 𝜎። = √2 − 2𝑐𝑜𝑠(𝑖𝜋/(𝑝 + 1)), (𝑖 = 1, ..., 𝑝). Further more, there exists a constant
𝐶 independent of 𝑝 such that 𝜎። ∈ [𝐶𝑝ዅኻ, 2]. As 𝑝 → ∞, 𝜎ኻ ∼ 𝐶𝑝ዅኻ, and 𝜎፩ → 2.
Proof. From proposition 4.2.2.1, it can be inferred that 𝜆።(𝑻ኻ) ∈ [0, 4]. When 𝑝 → ∞, the following
Taylor expansion around point 𝑥 → 

፩ዄኻ hold:

𝜆ኻ = 2[1 − 𝑐𝑜𝑠 (𝜋/(𝑝 + 1))]

= 2[1 − {𝑐𝑜𝑠 ( 𝜋
𝑝 + 1) −

𝜋
𝑝 + 1𝑠𝑖𝑛 (

𝜋
𝑝 + 1) −

1
2 (

𝜋
𝑝 + 1)

ኼ
𝑐𝑜𝑠 ( 𝜋

𝑝 + 1) + 𝑜(𝑝
ዅኽ)}]

= ( 𝜋
𝑝 + 1)

ኼ
+ 𝑜(𝑝ዅኽ)

∼ 𝑝ዅኼ,
and 𝜆፩ → 4. Then the theorem is obvious.

Theorem 4.2.4. There exists a constant 𝐶 independent of the polynomial order 𝑝 such that:
‖𝑢‖ኼℒᎴ(𝐈) = 𝐮ፓ𝐌𝐞𝐮 ≤ 𝐶𝑝ኼ ‖𝐮‖

ኼ
ኼ .

Proof. The ℒኼ norm of function 𝑢 could be computed by quadrature:

‖𝑢‖ኼℒᎴ(𝐈) = 𝐮ፓ𝐌𝐞𝐮 = 𝝓ፓ[𝐐ፓ𝚺ፓ𝐏ፓ]𝐌𝐞[𝐏𝚺𝐐]𝝓 ≤ 𝐶𝑝ኼ ‖𝝓‖
ኼ
ኼ .

The last inequality is taken from theorem 4.2.2. Thus it can be inferred that the upper bound of the
eigenvalue of matrix: [𝐐ፓ𝚺ፓ𝐏ፓ]𝐌𝐞[𝐏𝚺𝐐] is 𝐶𝑝ኼ. Since the orthogonal matrices 𝐏 and 𝐐 have vector
induced 2-norm equal to 1, and the maximum singular value of 𝚺 is always bounded by 2, we assert
that the maximum eigenvalue of the mass matrix𝐌𝐞 is bounded by 𝐶𝑝ኼ, with chosen 𝐶 independent of
𝑝.

Further, the null space of 𝐄𝐥 is a set of vectors with uniform values of 𝑝 + 1 entries, i.e., when 𝜙(𝑥)
is constant. Thus for the case where 𝝓 is not in the null space of 𝐄𝐥, the theorem above is always sharp.

The theorems above could be seen as an extension of Melenk’s results. But due to the lack of knowl-
edge about the lower eigenvalue bound of 𝐻።፣, the lower eigenvalue of 𝐌𝐞 will be hard to find out.
However, we can make use of the properties of the edge function itself to make a rough estimation of
the spectrum limits of𝐌𝐞.
Proposition 4.2.4.1. The edge basis function satisfy:

∫
፱ᑛ

፱ᑛᎽᎳ
𝑒።(𝑥)𝑑𝑥 = 𝛿።፣ ,

for 𝑖, 𝑗 = 1, 2, ..., 𝑝.
Proof. If we work out the integral by definition in 3.3.1, we have:

∫
፱ᑛ

፱ᑛᎽᎳ
𝑒።(𝑥)𝑑𝑥 = ∫

፱ᑛ

፱ᑛᎽᎳ

፩

∑
፤።
𝑙ᖣ፤(𝑥)𝑑𝑥 (4.9a)

=
፩

∑
፤።
𝑙፤(𝑥)|

፱ᑛ

፱ᑛᎽᎳ

(4.9b)

= 𝛿።፣ (4.9c)
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Cauchy mean value theorem states the simple fact that there exists a point 𝜉፣ ∈ [𝑥፣ዅኻ, 𝑥፣], such that
𝑒።(𝜉፣) ⋅ (𝑥፣ − 𝑥፣ዅኻ) = 𝛿።፣. Thus we have:

𝑒።(𝜉፣) =
𝛿።፣

𝑥፣ − 𝑥፣ዅኻ
, (4.10)

where 𝑖, 𝑗 = 1, 2, ..., 𝑝. Notice that the quadrature points and weights used with edge functions are Gauss
Legendre points 𝜂፣ ∈ [𝑥፣ዅኻ, 𝑥፣], which is inserted between the GLL points. Since the (𝑥፣ −𝑥፣ዅኻ) → 0 as
𝑝 → ∞, 𝜉፣ → 𝜂፣ is expected. Thus at 𝜂, the quadrature points of edge functions, we have:

𝑒።(𝜂፣) →
𝛿።፣

𝑥፣ − 𝑥፣ዅኻ
, (4.11)

with 𝑖, 𝑗 = 1, 2, ..., 𝑝. Thus we expect that matrix 𝑒።(𝜂፣) is diagonally dominant. Also, for the diagonal
entries, we have:

𝐶𝑝𝛿።፣ ≤
𝛿።፣

𝑥፣ − 𝑥፣ዅኻ
≤ 𝐶𝑝ኼ𝛿።፣ . (4.12)

Now, we give an estimation by numerical experiment instead of a pure theoretical proof. The fol-
lowing Fig. 4.2 shows the conditioning of the mass matrix with edge basis functions:

Figure 4.2: Conditioning of𝐌𝐞

4.2.3. Condition Number of Mass Matrix𝐌 with 2D Basis Functions

The condition number of the mass matrix in problem (3.8) could now be estimated. In fact, our ambi-
tion could be a bit larger than that. The coming analysis will help us analyse the condition of any mass
matrix on a reference element (orthogonal domain).

First, we take the mass matrix 𝐌 as an example. This mass matrix is structured in 2 × 2 blocks as
in the following equation.

𝐌 = [
(�̂�፱ , �̂�፱)ℒᎴ ,�̂� (�̂�፱ , �̂�፲)ℒᎴ ,�̂�
(�̂�፲ , �̂�፱) ℒኼ, �̂� (�̂�፲ , �̂�፲) ℒኼ, �̂�

] (4.13)

On the orthogonal domain Ω̂, the off-diagonal block of 𝐌 are zero. Each element in the (1, 1) or (2, 2)
block of 𝐌 is calculated by the ℒኼ inner product on �̂� as in (4.14a). If we take the (2, 2) block as an
example, we get the rest integrals.

𝑚(ፊᎳ ,ፊᎴ) = (�̂�𝐧ዅ𝟏ፊᎳ(፫,፪) , �̂�
𝐧ዅ𝟏
ፊᎴ(፦,፧))ℒᎴ ,�̂� (4.14a)

=∬

𝑙፩(𝑥)𝑒፪(𝑦) ⋅ 𝑙፦(𝑥)𝑒፧(𝑦)𝑑𝑥𝑑𝑦 (4.14b)

= ∫
፱ᑡ

፱Ꮂ
𝑙፫(𝑥)𝑙፦(𝑥)𝑑𝑥 ⋅ ∫

፲ᑡ

፲Ꮂ
𝑒፪(𝑦)𝑒፧(𝑦)𝑑𝑦 (4.14c)

= 𝜆(፫,፦) ⋅ 𝜇(፪,፧) (4.14d)
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In this equation, (𝑟, 𝑞) and (𝑚, 𝑛) are numbering pairs for the 2D �̂� basis functions. However, while
building the mass matrix, �̂� are stored in a 1D sequence. 𝐾ኻ and 𝐾ኼ are functions that arranges the
counting sequence while putting the 2D structured basis functions into a 1D sequence. The equation
above also showed that the (2, 2) block of the mass matrix could be factored by a Kronecker product of
two 1Dmass matrices that wemade analysis before. 𝜆 and 𝜇 are elements frommass matrix𝐌𝐥 and𝐌𝐞.

Before we proceed to the condition analysis of𝐌 , we give a brief introduction of the definition and
properties of matrix Kronecker product to support our analysis.

Definition 4.2.1. Kronecker Product: Let 𝐀 ∈ 𝐑𝐦×𝐧, 𝐁 ∈ 𝐑𝐢×𝐣 be two random matrices, there ele-
ments are denoted by 𝐴(፦,፧) and 𝐵(።,፣) with explicite rows and columns. The Kronecker product of 𝐀
and 𝐁 is denoted by 𝐂 = 𝐀⊗𝐁, such that 𝐂 follows the block structure:

𝐂 =
⎡
⎢
⎢
⎣

𝐴(ኻ,ኻ)𝐁 𝐴(ኻ,ኼ)𝐁 ... 𝐴(ኻ,፧)𝐁
𝐴(ኼ,ኻ)𝐁 𝐴(ኼ,ኼ)𝐁 ... 𝐴(ኼ,፧)𝐁
... ... ... ...

𝐴(፦,ኻ)𝐁 𝐴(፦,ኼ)𝐁 ... 𝐴(፦,፧)𝐁

⎤
⎥
⎥
⎦
.

Now we are able to write the 2D mass matrix into the following form:

𝐌 = [𝐌𝐞⊗𝐌𝐥 𝐎
𝐎 𝐌𝐥⊗𝐌𝐞] (4.15)

Followed by the definition 4.2.1, we can give the mixed-product property.

Theorem 4.2.5. If we have matrices 𝐀,𝐁, 𝐂, and 𝐃, 𝐀 and 𝐂 are multiplicable, 𝐁 and 𝐃 are multipli-
cable. Then,

(𝐀⊗ 𝐁)(𝐂⊗𝐃) = (𝐀𝐂)⊗ (𝐁𝐃).

This theorem is obviously resulted from the definition, and is very important since we will have the
following corollary on the spectral decomposition property by Kronecker product.

Corollary 4.2.5.1. If a real matrix 𝐌 is formed by Kronecker product of two matrices 𝐀 and 𝐁.
There exists two unique unitary matrices 𝐏 and 𝐐 that does the diagonalisation: 𝐀 = 𝐏𝚲𝐚𝐏𝐓, and
𝐁 = 𝐐𝚲𝐛𝐐𝐓. Thus, we have:

𝐌 = 𝐀⊗𝐁 = ((𝐏𝚲𝐚) ⊗ (𝐐𝚲𝐛))(𝐏𝐓⊗𝐐𝐓) = (𝐏⊗𝐐)(𝚲𝐚⊗𝚲𝐛)(𝐏𝐓⊗𝐐𝐓).

Combining the information covered above, we can give the most important Theorem 4.2.6.

Theorem 4.2.6. The minimum (maximum) eigenvalue of mass matrix𝐌 is the product of the min-
imum (maximum) eigenvalue of𝐌𝐥 and𝐌𝐞. And naturally, 𝜅 (𝐌) = 𝜅 (𝐌𝐞) ⋅ 𝜅 (𝐌𝐥).

The above theorem states that the minimum eigenvalue of 𝐌 scales with 𝑝ዅኻ if the experimental
result of the minimum eigenvalue of𝐌𝐞 is correct and sharp. And it can be asserted that the maximum
eigenvalue of𝐌 scales with 𝑝, proven by theorem. And lastly, 𝜅(𝐌) ∼ 𝑝ኼ . These results are verified by
numerical tests and are correct so far. The only imperfection is that themin {𝑒𝑖𝑔(𝐌𝐞)} is only given by
experiment instead of a proven theorem.

In the end, we show the shape and sparsity pattern of the mass matrix𝐌 for 𝑝 = 5. In Fig. 4.3, the
(1, 1) block of the mass matrix is permuted to be of the form 𝐌𝐥 ⊗𝐌𝐞, thus is the same as the (2, 2)
block.
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Figure 4.3: 𝐌 with Quadrature Order ኼ፩ ዅ ኻ Figure 4.4: Sparsity Pattern of𝐌 with Quadrature Order
፩  

The quadrature order is chosen to be 2𝑝 − 1 in Fig.4.3, thus the integral is exact. In applications, it
is usually safe to set the quadrature order to be the same as 𝑝, since the discretisation error with respect
to 𝑝 is usually larger than the integration error with respect to 𝑝. If the quadrature order is the same as
the discretisation order, the 1Dmass matrix𝐌𝐥 is a purely diagonal matrix, and the mass matrix𝐌 will
be block diagonal, as shown in Fig.4.4. However, if the discretisation order is high enough such that
interpolation error is dominant. We give a surface plot below to demonstrate Kronecker product in a
graphical sense. On the left is the shape of a block of 2D mass matrix𝐌 . In the middle is the shape of
the 1D mass matrix𝐌𝐥 and the on the right is the 1D mass matrix𝐌𝐞.

Figure 4.5: Kronecker Product Decomposition of Mass Matrix

4.3. Condition of the 2D Incidence Matrix
The 1D incidence matrix is already introduced in §4.2.2. Using this 1D incidence matrix 𝐄𝐥, we can
construct the 2D incidence matrix 𝐄 in problem (3.8). One of the biggest difference between MSEM
and ℎ𝑝-FEM is the application of the incidence matrices instead of the differentiation 𝒟 matrix with
𝑙ᖣ።(𝑥፣), which is purely topological. The 2D incidence matrix could be written in 2 × 1 blocks which is
corresponding to the 2 × 2 block of the mass matrix:

𝐄 = [𝐄𝐱 𝐄𝐲] . (4.16)

And the blocks are given by the Kronecker product of 1D incidence matrix 𝐄𝐥,(፩ዄኻ)×፩ with an identity
matrix 𝑰፩×፩:

𝐄𝐱 = 𝐄𝐥⊗ 𝑰 (4.17a)

𝐄𝐲 = 𝑰⊗ 𝐄𝐥 (4.17b)
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. In order to show the Kronecker product structure of 𝐄 , we give a sparsity pattern plot in Fig. 4.6 with
𝑝 = 5.

Figure 4.6: Sparsity Pattern of 𝐄 with ፩  

Now, in order to analyse the conditioning of the incidence matrix, we perform a singular value de-
composition admitting the block structure. We have the following equations.

𝐄𝐄𝐓 = 𝐄𝐱𝐄𝐱ፓ + 𝐄𝐲𝐄𝐲ፓ (4.18a)

= (𝐄𝐥⊗ 𝑰)(𝐄𝐥ፓ⊗ 𝑰) + (𝑰⊗ 𝐄𝐥)(𝑰 ⊗ 𝐄𝐥ፓ) (4.18b)

= (𝐄𝐥𝐄𝐥ፓ⊗ 𝑰) + (𝑰⊗ 𝐄𝐥𝐄𝐥ፓ) (4.18c)

Until now, we have two points to make. One is that the two matrices (𝐄𝐥𝐄𝐥ፓ⊗ 𝑰) and (𝑰) ⊗ (𝐄𝐥𝐄𝐥ፓ) are
spectrally equivalent, which is a result of theorem 4.2.5.1. Another less obvious point is that these two
matrices could be diagonalised by the same orthogonal transformation. To see this, one can check that:

(𝐄𝐥𝐄𝐥ፓ⊗ 𝑰)(𝑰 ⊗ 𝐄𝐥𝐄𝐥ፓ) = (𝑰 ⊗ 𝐄𝐥𝐄𝐥ፓ)(𝐄𝐥𝐄𝐥ፓ⊗ 𝑰) = 𝐄𝐥𝐄𝐥ፓ⊗𝐄𝐥𝐄𝐥ፓ , (4.19)

according to the mixed product property.

Given the two points above, the eigenvalues of 𝐄𝐄𝐓 , if denoted by 𝜆።,፣(𝐄𝐄ፓ), could be given by:

𝜆።,፣(𝐄𝐄ፓ) = 𝜆።(𝐄𝐥𝐄𝐥ፓ) + 𝜆፣(𝐄𝐥𝐄𝐥ፓ) (4.20a)

= 4 − 2𝑐𝑜𝑠(𝑖𝜋/(𝑝 + 1)) − 2𝑐𝑜𝑠(𝑗𝜋/(𝑝 + 1)), (4.20b)

where 𝑖, 𝑗 = 1, 2, ..., 𝑝. Thus we conclude that 2D incidence matrix 𝐄 has 𝑝ኼ singular values:

𝜎።,፣(𝐄) = √4 − 2𝑐𝑜𝑠(𝑖𝜋/(𝑝 + 1)) − 2𝑐𝑜𝑠(𝑗𝜋/(𝑝 + 1)), (4.21)

where 𝑖, 𝑗 = 1, 2, ..., 𝑝. Moreover, there exists a 𝐶 > 0 independent from 𝑝, such that 𝜎፦።፧ > 𝐶𝑝ዅኻ and
𝜎፦ፚ፱ → 2√2.
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4.4. Condition of theWedge Matrix𝐖
The wedge matrix could be analysed just as the mass matrix. Entries in𝐖 are calculated by:

𝑊(ፊᎳ ,ፊᎴ) = ⟨�̂�
(𝟎)
ፊᎳ(፫,፪) , ̂𝐟

(𝟐)
ፊᎴ(፦,፧)⟩ℒᎴ ,�̂�

(4.22a)

=∬

𝑒፫(𝑥)𝑒፪(𝑦) ⋅ 𝑙፦(𝑥)𝑙፧(𝑦)𝑑𝑥𝑑𝑦 (4.22b)

= ∫
፱ᑡ

፱Ꮂ
𝑒፫(𝑥)𝑙፦(𝑥)𝑑𝑥 ⋅ ∫

፲ᑡ

፲Ꮂ
𝑒፪(𝑦)𝑙፧(𝑦)𝑑𝑦 (4.22c)

= 𝑤(፫,፦) ⋅ 𝑤(፪,፧). (4.22d)

The wedge matrix could be written as the Kronecker product of 1D wedge matrix𝐖𝐥:

𝐖 = 𝐖𝐥⊗𝐖𝐥. (4.23)

The elements in 1D wedge matrix could be calculated by quadrature in order of 𝑝:

𝑤(፫,፦) = ∫
፱ᑡ

፱Ꮂ
𝑒፫(𝑥)𝑙፦(𝑥)𝑑𝑥 (4.24a)

=
፩

∑
፤ኺ

𝜌፤𝑒፫(𝑥፤)𝑙፦(𝑥፤) (4.24b)

=
፩

∑
፤ኺ

𝜌፤𝑒፫(𝑥፤)𝛿፦፤ (4.24c)

= 𝜌፦𝑒፫(𝑥፦). (4.24d)

From the definition of the edge basis function in 3.3.1, we know that the row sum of𝐖𝐥 is 1. More-
over, from §4.2.2, we immediately see that𝐖𝐥 should be approximately an identity matrix. According
to the property of Kronecker product, we draw a conclusion that 𝐖 is also approximately an identity
matrix, which is also confirmed by the numerical test in Table 4.1.

4.5. Condition of the Schur Complement of Mass Matrix
Now we can write out the full system of equations of the saddle point problem in the following pattern:

[
𝐌𝐞⊗𝐌𝐥 𝐎 𝐄𝐱ፓ𝐖

𝐎 𝐌𝐥⊗𝐌𝐞 𝐄𝐲ፓ𝐖
𝐖ፓ𝐄𝐱 𝐖ፓ𝐄𝐲 𝐎

](
𝐪𝐱
𝐪𝐲
𝝓
) = (

𝐁𝐰𝜙፱_፭፫
𝐁𝐰𝜙፲_፭፫
𝐖𝐓𝑓

) . (4.25)

Thus the Schur complement of the mass matrix could be written as follows.

𝐒 = 𝐖ፓ𝐄𝐌ዅኻ𝐄ፓ𝐖 (4.26a)

= 𝐖ፓ[(𝐄𝐥𝐌𝐥ዅኻ𝐄𝐥ፓ) ⊗ (𝐌𝐞ዅኻ) + (𝐌𝐥ዅኻ) ⊗ (𝐄𝐥𝐌𝐞ዅኻ𝐄𝐥ፓ)]𝐖. (4.26b)

Unfortunately, the two Kronecker product matrix in (4.26b) cannot be diagonalised simultaneously.
However, we have sufficient information to estimate its spectrum. In previous numerical tests, we
know that the condition number of𝐖 barely change with polynomial degree 𝑝 and𝐖 is expected to be
close to identity. Thus we give the upper bound of 𝜅(𝐒):

𝜅(𝐒) = ‖𝐒‖ኼ ‖𝐒ዅኻ‖ኼ (4.27a)

≤ ‖𝐖‖ኼ ‖𝐄𝐌ዅ𝟏𝐄𝐓‖ኼ ‖𝐖
ፓ‖ኼ ‖𝐖

ዅኻ‖ኼ ‖[𝐄𝐌
ዅኻ𝐄ፓ]ዅኻ‖

ኼ
‖𝐖𝐓ዅኻ‖

ኼ
(4.27b)

≤ 𝜅ኼ(𝐖) ⋅ 𝜅(𝐄𝐌ዅኻ𝐄ፓ) (4.27c)

≤ 𝜅ኼ(𝐖) ⋅ 𝜅ኼ(𝐄) ⋅ 𝜅(𝐌) (4.27d)

∼ 𝐶𝑝ኾ. (4.27e)



26 4. Condition Analysis

The inequalities takes the equal sign only if all of the maximum singular values multiplied with each
other, and all of the minimum singular values multiplied together. Thus it remains to see if the esti-
mation above for 𝜅(𝐒) is sharp. Again, we make a numerical examination and give the coming figure
4.7.

Figure 4.7: Conditioning of𝐌𝐥

As we can see that the largest eigenvalue of the Schur complement matrix is tending toward the
order of 𝑝, which is in agreementwith the theoretical analysis before. The lower bound of the eigenvalue
decrease with order 𝑝ዅኼ. However, by theory, it is estimated to have order larger than 𝑝ዅኽ, which is not
sharp. Thus the real condition number of 𝐒 scales with 𝐶𝑝ኽ.



5
Preconditioners for 𝑝-version MSEM

In this chapter, we will build preconditioners for a poisson problem on the orthogonal domain 𝛀, with
only 𝑝-refinement. And then, we will test the preconditioners on both orthogonal domain and domains
with increasingly distorted mesh.

5.1. Mass Matrix Preconditioner
Consider the mass matrix 𝐌 in the form in (4.15), we see a clear diagonal dominance in the matrix.
Consider the mass matrix 𝐌𝐥 evaluated with a quadrature order of 𝑝, we have matrix 𝐌𝐥 completely
diagonal. And 𝐌𝐞 is diagonal dominant according to the previous analysis in §4.2.2. Thus a Jacobi
preconditioner is expected to work great.

5.1.1. Jacobi Preconditioner

The Jacobi preconditioner is also known as the diagonal scaling technique. We let the Jacobi precon-
ditioner to be denoted by𝐌𝟎. We have:

𝐌𝟎 = 𝑑𝑖𝑎𝑔(𝐌) = [
𝑑𝑖𝑎𝑔(𝐌𝐞) ⊗ 𝑑𝑖𝑎𝑔(𝐌𝐥) 𝐎

𝐎 𝑑𝑖𝑎𝑔(𝐌𝐥) ⊗ 𝑑𝑖𝑎𝑔(𝐌𝐞)] . (5.1)

Here, the 𝑑𝑖𝑎𝑔(∘)means replacing the matrix (∘)with only the diagonal part of itself. To illustrate how
well the diagonal scaling can tune the spectrum of the original matrix we give the following estimations.

For the mass matrix 𝐌𝐥, since the matrix itself is diagonal while evaluated with quadrature order
equal to 𝑝 at the same quadrature nodes, the diagonal scaling should give an approximate identity ma-
trix in the end, independent from the choice of quadrature order larger then 𝑝. The coming theorem
5.1.1 will show that the diagonal part of𝐌𝐥 has the same condition as the full𝐌𝐥 matrix.

Theorem 5.1.1. There exists a constant 𝐶 > 0, such that all of the entries in 𝑑𝑖𝑎𝑔(𝐌𝐥) fall in the
interval [𝐶𝑝ዅኼ, 𝐶𝑝ዅኻ].
Proof. Take the diagonal entries in𝐌𝐥 out, we have:

𝑑𝑖𝑎𝑔(𝐌𝐥) = ∫
፱ᑡ

፱Ꮂ
𝑙።(𝑥)𝑙፣(𝑥)𝛿።፣𝑑𝑥 =

፩

∑
፤ኺ

𝜌፤𝑙ኼ። (𝑥፤). (5.2)

Since 𝜌፤ and 𝑙ኼ። (𝑥፤) are both non-negative, we have:

min{𝜌፤}
፩

∑
፤ኺ

𝑙ኼ። (𝑥፤) ≤
፩

∑
፤ኺ

𝜌፤𝑙ኼ። (𝑥፤) ≤ max{𝜌፤}
፩

∑
፤ኺ

𝑙ኼ። (𝑥፤) (5.3a)

min{𝜌፤}
፩

∑
፤ኺ

𝛿ኼ።፤ ≤
፩

∑
፤ኺ

𝜌፤𝑙ኼ። (𝑥፤) ≤ max{𝜌፤}
፩

∑
፤ኺ

𝛿ኼ።፤ (5.3b)

𝐶𝑝ዅኼ ≤ ∫
፱ᑡ

፱Ꮂ
𝑙።(𝑥)𝑙፣(𝑥)𝛿።፣𝑑𝑥 ≤ 𝐶𝑝ዅኻ (5.3c)
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.

The theorem above also indicates the sharpness of theorem 4.2.1.

For the mass matrix 𝐌𝐞, we write out the diagonal entries in 𝐌𝐞 using GLL quadrature nodes and
weights:

∫
፱ᑡ

፱Ꮂ
𝑒።(𝑥)𝑒፣(𝑥)𝛿።፣𝑑𝑥 =

፩

∑
፤ኺ

𝜌ኼ፤𝑒ኼ። (𝑥፤) ⋅
1
𝜌፤
. (5.4)

In §4.4, we found out that thematrixmade by 𝜌።𝑒፣(𝑥።) is an approximate identity with row sum equal to
1. It is reasonable to expect that the matrix made by 𝜌ኼ። 𝑒ኼ፣ (𝑥።) is also an approximate identity with row

sum of order 𝐶 independent of the choice of 𝑝. Thus we expect the integral ∫፱ᑡ፱Ꮂ 𝑒።(𝑥)𝑒፣(𝑥)𝛿።፣𝑑𝑥 to be

bounded by the limits of 1/𝜌፤. Thuswe expect the diagonal entries of𝐌𝐞 to be bounded by [𝐶𝑝ዅኼ, 𝐶𝑝ዅኻ].
To verify if the expectation is true, we extract the diagonal of 𝐌𝐞 and record the maximum and mini-
mum on the diagonal as 𝑝 raises, we get exactly the same plot as in Fig.4.2.

Since the mass matrix is symmetric, any preconditioner applied to them should be in the split form.
Thus we can precondition a𝐌 mass matrix following the given steps:

• Calculate the square root of the diagonal entries of𝐌 , then store the results in a diagonal matrix
𝐋𝟎.

• Calculate the preconditioned matrix 𝐋𝟎𝐌𝐋𝐓𝟎.

and we give condition number before and after preconditioning in the table 5.1 below.

Table 5.1: Condition Number of Preconditioned Mass Matrices

𝑝-order 5 9 13 25 51
𝜅(𝐌) 33.35 88.39 170.53 578.33 2292.49

𝜅(𝐋𝟎𝐌𝐋𝐓𝟎) 1.79 2.03 2.15 2.29 2.31

Concerning the sparsity pattern, it doesn’t change after diagonal scaling. Diagonal scaling can bring
down the condition number uniformly to the order of 1.

5.1.2. Pre-inversion of Mass Matrix

In (4.15), a Kronecker structure of mass matrix 𝐌 is given. We can make use of this structure and
quickly pre-calculate the inversion of the mass matrix. This is highly meaningful for improving the
2-stage algorithm’s efficiency. Followed from corollary 4.2.5.1, we can further give another obvious
corollary:

Corollary 5.1.1.1. If a real non-singular square matrix 𝐌 is formed by Kronecker product of two
square matrices 𝐀 and 𝐁, then the inverse of𝐌 could be calculated by:

𝐌ዅኻ = 𝐀ዅኻ⊗𝐁ዅኻ.

Thus in order to compute the inverse of𝐌 , we only need to compute𝐌𝐞ዅኻ and𝐌𝐥ዅኻ. If we inspect the
size of the threematrices, the 1D problemmassmatrices’ size scale with 𝑝, but the 2Dmassmatrix’s size
scales with 𝑝ኼ. Thus it’s expected that as 𝑝 goes high, the pre-inversion method is very advantageous.

5.1.3. Numerical Experiment

In order to make a comparison for the preconditioning methods discussed above, we set up a linear
algebra problem:

𝐌𝐱 = 𝐛, (5.5)
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where 𝐛 is set to be a vector with all 1 entries. Three methods are used to solve this problem. For
the first method, we use a CG solver from LAPACK routine combining the Jacobi preconditioner, and
we call this group PCG. For the second method, we use a sparse direct linear equation system solver
form LAPACK as well. The third method is pre-inversion as we proposed in §5.1.2, which is directly
calculate the inverse of𝐌 and then multiply the inverse on the equation system. The time and steps (if
applicable) used by these three methods are recorded. In addition, an extra reference group is set to
solve the problemwith CG solver without preconditioning. The iteration stop tolerance is set to be at 1𝑒-
17, which is also verifiedwith the results fromdirect solver or preinversion. We set the polynomial order
to vary from 5 to 91. The following table shows the results that is averaged from 3 times’ repetition:

Table 5.2: Solution Efficiency Evaluation

𝑝-order 5 9 13 25 51 81 91
𝐌 size 60ኼ 180ኼ 364ኼ 1300ኼ 5304ኼ 13284ኼ 16744ኼ
Jacobi 0.000419 s 0.000588 s 0.00196 s 0.03058 s 1.0806 s 6.60 s 10.4 s
PCG 4 steps 5 steps 7 steps 13 steps 20 steps 22 steps 22 steps
CG 0.000760 s 0.00246 s 0.0124 s 0.472 s 29.0 s / /

15 steps 33 steps 71 steps 214 steps 731 steps / /
Direct Solver 0.000408 s 0.00163 s 0.0101 s 0.296 s 18.0 s / /
Pre-inversion 0.0219 s 0.0497 s 0.0768 s 0.219 s 0.991 s 4.34 s 6.20 s

In the experiment, we use a machine with 16GB RAM, and we eliminate all other programs’ occu-
pation on the machine CPU. After experiment, several observations are made:

• The direct sparse linear system solver is powerful and fast for small problems (In our case, ”small”
means a system with unknowns no more than order of 10ኾ). But its resource requirements grows
fast as problem size increase. Direct solver breaks down before the smallest eigenvalue𝐌 reaches
the smallest machine limit, thus preconditioning for direct solvers are not necessary in most of
the cases.

• The problem size of the pre-inversionmethod scales with 𝑝 instead of 𝑝ኼ, thus at high polynomial
order, this method is becoming more and more advantageous. This is clearly shown by a semi-
logarithm plot in Fig.5.1. One can see that for a sparse diagonal dominant system, direct solver is
less preferable than a preconditioned iterative solver as the problem size grows.

Figure 5.1: Solution Time Compare

• The efficiency of conjugate gradient solver is highly dependent on the conditioning. However,
when an effective preconditioner is applied, the resulted PCG solver is stable and efficient. This
is clear in Fig.5.2.
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Figure 5.2: Iteration Step Compare With and Without Preconditioning

5.2. Schur Complement Matrix Preconditioner
From the literature review, it is commonly used in 2-stage solvers to compute preconditioners for Schur
complement from the Cholesky factorisation of mass matrices. In previous 2-stage algorithms, there
is an inverse of mass matrix in the Schur complement, which is unknown thus is usually replaced by
an approximate inverse of mass matrix. However, in our case, the inversion of mass matrix is pre-
calculated with predictable error and time.

WithCholesky factorisation, we canwrite the inversion of 1Dproblemmassmatrices in the following
form:

𝐌𝐥ዅኻ = 𝐋𝐥𝐋𝐓𝐥 , (5.6a)

𝐌𝐞ዅኻ = 𝐋𝐞𝐋𝐓𝐞, (5.6b)

where 𝐋matrices are left lower triangular matrix. The 2D problem mass matrix can be given by:

𝐌ዅኻ = [(𝐋𝐥⊗𝐋𝐞)(𝐋𝐓𝐥 ⊗𝐋𝐓𝐞) 𝐎
𝐎 (𝐋𝐥⊗𝐋𝐞)(𝐋𝐓𝐥 ⊗𝐋𝐓𝐞)] = 𝐋𝐋

𝐓. (5.7)

Thus the Schur complement matrix could be written by:

𝐒 = 𝐖ፓ𝐄𝐋𝐋𝐓𝐄ፓ𝐖. (5.8)

To solve system:
𝐒𝝓 = 𝐖𝐓𝐄𝐌ዅ𝟏𝐁𝐰𝝓𝐭𝐫 −𝐖𝐓𝑓, (5.9)

we set up an experiment as in §5.1.3. But this time, we use different techniques to precondition the
Schur complement.

First of all, we see𝐖 as an approximate identity, thus we only need to find an approximate inverse
of 𝐄𝐋𝐋𝐓𝐄ፓ. Secondly, we know that the matrix 𝐄𝐄ፓ is a sparse matrix, and the Cholesky factorisation of
this matrix is a lower triangular matrix with diagonal offsets clustered near themain diagonal. To show

this is true, we give the sparsity pattern plot of 𝐄𝐌ዅ𝟏
𝟎 𝐄

ፓ
and its Cholesky factor matrix 𝐶ℎ𝑜𝑙(𝐄𝐌ዅ𝟏

𝟎 𝐄
ፓ)

in Fig. 5.3, for 𝑝 = 5. 𝐌𝟎 is the diagonal part of𝐌.

Figure 5.3: Sparsity Pattern of 𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓 and its Cholesky Factor
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Moreover, since the Jacobi preconditioner of 𝐌(ዅኻ) worked well in the previous section, we use
the Jacobi preconditioner 𝐋𝟎𝐋𝐓𝟎 to substitute 𝐋𝐋𝐓. Notice that 𝐋𝟎𝐋𝐓𝟎 is diagonal thus the preconditioner
𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓 will have the same sparsity pattern as 𝐄𝐄𝐓, and the Cholesky factorisation of 𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓 will be
of the same pattern as 𝑐ℎ𝑜𝑙(𝐄𝐄𝐓). This indicates that taking the inverse of 𝑐ℎ𝑜𝑙(𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓) will be fast
under sparse inverse algorithms.

To construct the preconditioner of 𝐒, we follow the steps below:

• Compute the inversion of the mass matrix use the method proposed in §5.1.2. Find out 𝐋𝟎.

• Compute the inverse of Cholesky factor of 𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓, denoted by 𝐔𝟎, i.e.,

𝐔𝟎𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓𝐔𝟎ፓ = 𝐼𝑑. (5.10)

• Transfer the original equation system in (5.9) about 𝝓 into the following one:

[𝐔𝟎𝐒𝐔𝐓𝟎 ] 𝐲 = 𝐔𝟎(𝐖𝐓𝐄𝐌ዅ𝟏𝐁𝐰𝝓𝐭𝐫 −𝐖𝐓𝑓), (5.11a)

𝝓 = 𝐔𝐓𝟎𝐲. (5.11b)

5.2.1. Numerical Experiment

In this numerical test, we solve the Poisson problem in (3.1) with:

𝑓(𝑥, 𝑦) = −9𝜋ኼ(𝑥ኼ + 𝑦ኼ)𝑐𝑜𝑠(3𝜋𝑥𝑦), (𝑥, 𝑦) ∈ 𝛀.

The analytic solution of this problem is known as:

𝜙(𝑥, 𝑦) = 𝑐𝑜𝑠(3𝜋𝑥𝑦), (𝑥, 𝑦) ∈ 𝛀.

The analytic solution provides a reference for error evaluation on theℋኻ(𝛀) functional space.

We first compute the Schur complement matrix 𝐒, then compute the preconditioner 𝐔𝟎 for 𝐒. We
solve the problem with polynomial degree 𝑝 vary from 5 to 61. To show how well preconditioner 𝑈ኺ
could perform, the following Table 5.3 compares the condition number of 𝐒 and 𝐔𝟎𝐒𝐔𝐓𝟎 . Notice that
the exact value of 𝜅(𝐒) differed from what is in Table 4.1, which is due to a different quadrature order
choice. In this case, the quadrature order is chosen to be 𝑝. It should also be pointed out that although
the exact value of condition number changes under different quadrature order, the order of condition
number growth is fixed and bounded by the eigenvalue estimations in §4.5.

Table 5.3: Condition Number of Preconditioned Schur Complement Matrix

𝑝-order 5 9 13 25 51 61
𝜅(𝐒) 13.96 57.98 159.23 1046.78 8563.75 14574

𝜅(𝐔𝟎𝐒𝐔𝐓𝟎) 2.19 2.45 2.57 2.70 2.78 2.79

Now, we set up 2 groups of tests using differentmethods to solve the equation system for𝝓. The first
group, we use a direct solver to solve system 𝐒𝝓 = 𝐖𝐓𝐄𝐌ዅ𝟏𝐁𝐰𝝓𝐭𝐫−𝐖𝐓𝑓, without any extra operation.
The second group, we first compute preconditioner𝐔𝟎, then apply a CG solver to solve equation system
(3.8) under convergence residual 1𝑒-17, and in the end compute 𝝓 use (5.11b). In the test, we record
the time consumption, 𝓛ኼ error, and convergence steps if available. Notice that the time consumption
for group is recorded by two time intervals, the first interval measures time consumed to construct the
preconditioner, and the second interval measures the time used for the CG solver to solve and post
process the final result of 𝝓. The results are given in Table 5.4.
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Table 5.4: Solution Methods Comparison for Schur Complement System

𝑝-order 5 9 13 25 51 61
𝐒 size 25ኼ 81ኼ 169ኼ 625ኼ 2601ኼ 3721ኼ

Direct Solver Time 0.000235 s 0.000395 s 0.00163 s 0.00427 s 2.217 s 6.450 s
𝐔𝟎 Build Time 0.00126 s 0.00294 s 0.00606 s 0.0895 s 1.918 s 4.37s
CG Solver Time 0.000687 s 0.00147 s 0.00567 s 0.0968 s 4.121 s 11.088 s

Step 6 steps 15 steps 23 steps 27 steps 28 steps 28 steps
𝓛ኼ Error 1.777 0.261 0.007280 2.517𝑒−10 1.972𝑒−13 4.000𝑒−13

To discuss the results, we refer to the figures given below. In Fig. 5.4, we compare the solution time
consumed by direct and iterative CG solver. It’s clear that both direct solver and iterative solver’s time
consumption scale with problem size at the same rate. This is due to the small size of the Schur com-
plement system, which is highly reduced from the original mixed 𝐋𝐇𝐒 system. In this experiment, the
𝐒matrix column (or row) size did not exceed 10 with no nonzero entries, thus in this case, the direct
solver is more competitive. But as the dimension of the matrix grow to the scale no less than 10ዀ, we
expect the preconditioned CG iterative methods to perform well, as long as the preconditioned system
has a uniformly bounded condition number, just as shown by Table 5.3.

Figure 5.4: Solver Time Comparison

We had a stable preconditioner for the Schur complement matrix, and we have to consider the price
of obtaining such preconditioners. Fig.5.5 shows that the time consumed to obtain preconditioner 𝐔𝟎
is growing slower than the iterative solver as 𝑝 increase. Recall from Fig.5.3, the number of nonzero
entries in 𝐄𝐋𝟎𝐋𝐓𝟎𝐄𝐓 is predictable, thus the cost of FLOPs required for the preconditioner is also known.
Notice that in order to compute a Schur complementmatrix of size 𝑝ኼ×𝑝ኼ, the full left-hand-sidematrix
is of size (3𝑝ኼ + 2𝑝) × (3𝑝ኼ + 2𝑝). Due to the limit of machine memory, here we can only predict that
the preconditioned system will perform well when problem size grow large enough.

Figure 5.5: Preconditioner Construction Time

Finally, we give an observation on the error analysis. The 𝓛ኼ error is computed by the vector norm

‖𝜙(𝑥። , 𝑦፣) − 𝜙።,፣‖ኼ = √∑።,፣ {𝜙(𝑥። , 𝑦፣) − 𝜙።,፣}
ኼ
, with (𝑥። , 𝑦፣) be the Legendre-Gauss-Lobatto points. The

results give the same error by the two methods, and is shown in Fig.5.6.
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Figure 5.6: ℒᎴ Error Quantification

Notice that the error goes down to 1𝑒−13 and stopped decreasing, although the quadrature order
chosen is sufficiently high. This is due to the machine roundoff error in each sampling point summed
up.

5.3. Two-stage Solver

In this section, we will combine the preconditioners discussed before to build a 2-stage solver similar
to the Uzawa’s algorithm. First, we give a flow chart of the program in Fig.5.7.

Figure 5.7: Two-stage Algorithm Flowchart

A few comments need to be made to the flow diagram above. First, the timing point 𝑡ኻ is just be-
fore the mass matrix inversion, because the mass matrix inversion is crucial and considerably costly in
the two-stage algorithm. Secondly, the criterion for choosing iterative or direct solver is given by the
number of unknowns in the system. The number 10 is referred to the condition of the machine. In
our case, one can refer to §5.1.3 and see that 10 is the point where iterative solver and direct solver
have the same efficiency level. Lastly, in this experiment, we can only afford a system with row length
of 𝐒 smaller than 10, thus the time consumption is counted by 𝑡ኽ − 𝑡ኻ. We compare this method with
a direct solver solving system in (3.8). The results given in Table 5.5 below are averaged from 3 times’
experiment repetition. We also record the time cost to make the mesh and assemble the matrices on
the LHS.
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Table 5.5: Solution Efficiency Comparison

𝑝-order 5 9 13 25 51 61
Preprocess (𝑡ኻ − 𝑡ኺ) 0.572 s 1.107 s 1.817 s 5.078 s 22.879 s 37.971 s

2-Stage Solver (𝑡ኽ − 𝑡ኻ) 0.0224 s 0.0502 s 0.0786 s 0.229 s 3.254 s 8.115 s
Direct Solve 𝐋𝐇𝐒 0.00136 s 0.00544 s 0.0328 s 1.0221 s 65.180 s /

As we can see that the 2-stage algorithm significantly increased the efficiency of solving the Poisson
problem. But the weak spot of thismethod is that it relies on the efficiency of inverting themassmatrix.
However, the mass matrix inversion is not always cheap and fast, because mass matrix is metrics de-
pendent. Also, when system size grow larger and larger, the matrix multiplications will take a growing
portion of time compared to the time spent on the whole solution process.

5.4. Constraint Preconditioner

Inspired byWathen’s idea on constraint preconditioner introduced in Chapter 2, we seek the possibility
of solving the large 𝐋𝐇𝐒 system directly with a preconditioned iterative solver. In this section, we will
try to find such a preconditioner for the 𝐋𝐇𝐒matrix 𝐀.

In order to find an approximate 𝐋𝐇𝐒, denoted by 𝐀𝟎, we first use block diagonalisation process
discussed in (2.6) for the saddle point problem in (3.8), we obtain:

𝐀 = [ 𝐌 𝐄𝐓𝐖
𝐖𝐓𝐄 𝐎 ] = [ 𝐈 𝐎

𝐖𝐓𝐄𝐌ዅ𝟏 𝐈 ] [
𝐌 𝐎
𝐎 −𝐒] [

𝐈 𝐌ዅ𝟏𝐄𝐓𝐖
𝐎 𝐈 ] . (5.12)

In §4.4, we pointed out that𝐖 is an approximate identity but full and clumsy. Thus𝐖 in𝐀 is discarded.
We write out the new 𝐀𝟎:

𝐀𝟎 = [
𝐈 𝐎

𝐄𝐌ዅ𝟏 𝐈 ] [
𝐌 𝐎
𝐎 −𝐒] [

𝐈 𝐌ዅ𝟏𝐄𝐓
𝐎 𝐈 ] . (5.13)

Now, the matrices𝐌 and 𝐒 are exactly the two matrices solved in the 2-stage algorithm. The precondi-
tioners are available for them both, which means that we can implicitly absorb the preconditioners of
the two small blocks into the big system! Thus we replace 𝐌 with its cholesky factorisation 𝐏𝟎𝐏𝐓𝟎 , and
replace 𝐒with cholesky factorisation𝐐𝟎𝐐𝐓𝟎 , then we’ve found out a triangular indefinite factorisation of
𝐀𝟎:

𝐀𝟎 = [
𝐏𝟎 𝐎

𝐄𝐌ዅ𝟏𝐏𝟎 −𝐐𝟎] [
𝐏𝐓𝟎 𝐏𝐓𝟎𝐌ዅ𝟏𝐄𝐓
𝐎 𝐐𝐓𝟎

] = 𝐀𝐋𝐀𝐑. (5.14)

Notice that 𝐀𝐋 and 𝐀𝐑 are not each other’s transpose. Also, we need to point out that 𝐀𝟎 is an indefinite
matrix. After block triangularisation, negative eigenvalues are concentrated by −𝐒. To form a pre-
conditioner for the 𝐋𝐇𝐒 matrix, we can either reformulate the problem into a positive definite one by
applying asymmetric split type of preconditioners (just like 𝐀𝐋 and 𝐀𝐑) or use an SPD preconditioner.
In this case, we chose to use a splitted SPD preconditioner to cope with the MINRES solver. Thus the
positive factor 𝐀𝐑 is used.

We denote the constraint preconditioner with 𝐁𝟎, and the preconditioned system takes the form of
𝐁𝟎𝐀𝐁𝐓𝟎 , where

𝐁𝟎 = [
𝐏ዅ𝟏𝟎 𝐎

−𝐐ዅ𝟏𝟎 𝐄𝐌ዅ𝟏 𝐐ዅ𝟏𝟎
] . (5.15)

Considering the price of obtaining 𝐁𝟎 as a preconditioner, we give a flow diagram in 5.8 as a demon-
stration.
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Figure 5.8: Flow Diagram for Constraint Preconditioner

In this method, the exact inverse of the mass matrix and the exact 𝐒 are not calculated. However,
the information of the spectrum are carried by the preconditioners.

5.4.1. Results for Problems on Orthogonal Domain

To see how this method performs, we follow the flow diagram in Fig.5.8 and repeat the same numer-
ical test as in §5.3. The following table 5.6 will show the condition number change before and after
preconditioning, iteration steps and time spent until convergence, and the ℒኼ error.

Table 5.6: Solution Results with Constraint Preconditioner on Orthogonal Domain

𝑝-order 5 9 13 25 51 61
𝐋𝐇𝐒 size 85ኼ 261ኼ 533ኼ 1925ኼ 7905ኼ 11285ኼ
𝜅(𝐋𝐇𝐒) 18.30 26.53 52.73 258.48 1889.10 3176.47
𝜅(𝐁𝟎𝐀𝐁𝐓𝟎) 2.32 2.32 2.75 2.90 2.98 2.99

Preprocess (𝑡ኻ − 𝑡ኺ) 0.561 s 1.110 s 1.805 s 5.019 s 22.801 s 37.127 s
Precondition (𝑡ኼ − 𝑡ኻ) 0.00273 s 0.00531 s 0.0194 s 0.680 s 40.218 s 129.779 s
MINRES Solver Time 0.00121 s 0.00329 s 0.00973 s 0.109 s 2.041 s 4.494s

Step 14 steps 28 steps 39 steps 46 steps 48 steps 48 steps
𝓛ኼ Error 1.777 0.261 0.007280 2.517𝑒−10 1.488𝑒−13 1.900𝑒−13

The constraint preconditioner 𝐁𝟎 will fill the (2, 2) block of the original system and increase the
number of nonzero entries, but 𝐁𝟎 itself is quite sparse. In Fig.5.9, we show the constraint precondi-
tioner’s sparsity pattern and its block structure same as in (5.15), taken at 𝑝 = 5. In Fig.5.10, we show
the sparsity pattern of the system after preconditioning.
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Figure 5.9: Sparsity Pattern of Constraint Preconditioner Figure 5.10: Sparsity Pattern after Preconditioning

The preconditioned system is well-conditioned. Besides the condition number in the chart, we plot
the spectrum of the 𝐋𝐇𝐒 system before and after preconditioning in Fig.5.11, taken at 𝑝 = 25.

Figure 5.11: Spectrum Compare before and after Preconditioning

5.4.2. Results for Problems on Mapped Domain

Now, we use the same strategy and the same preconditioner on a mapped domain �̃� ∋ (𝜉, 𝜂) with
increasingly distorted mesh controlled by the distortion factor 𝑐. The mapping is defined as:

𝜂(𝑥, 𝑦) = 𝑥 + 𝑐 ⋅ 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦),
𝜉(𝑥, 𝑦) = 𝑦 + 𝑐 ⋅ 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦),

where 𝜉, 𝜂 ∈ [−1, 1]. We will take this test for 𝑐 = 0.05, 0.1, 0.15, 0.20, and we show the distorted
domain at 𝑐 = 0.05, 0.20 in the following Fig.5.12 and Fig.5.13.
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Figure 5.12: Mapped Domain with ፩  ኼ,   ኺ.ኺ Figure 5.13: Mapped Domain with ፩  ኼ,   ኺ.ኼኺ

The 𝑝-order numbers we choose to test are 5, 9, 13 and 25. The following tables will present the
results.

Table 5.7: Constraint Preconditioner on Non-orthogonal Domain, ፩  

𝑐 0.05 0.10 0.15 0.20
𝐋𝐇𝐒 size 85ኼ 85ኼ 85ኼ 85ኼ
𝜅(𝐋𝐇𝐒) 18.87 19.82 21.38 24.20
𝜅(𝐁𝟎𝐀𝐁𝐓𝟎) 2.72 3.23 3.90 5.25
Preprocess (𝑡ኻ − 𝑡ኺ) 0.561 s 0.561 s 0.561 s 0.561 s
MINRES Solver Time 0.00260 s 0.00320 s 0.00372 s 0.00489 s
Step 33 steps 41 steps 48 steps 57 steps
Direct Solver Time 0.000540 s 0.000394 s 0.000464 s 0.000401 s
𝓛ኼ Error 1.798 1.848 1.895 1.909

Table 5.8: Constraint Preconditioner on Non-orthogonal Domain, ፩  ዃ

𝑐 0.05 0.10 0.15 0.20
𝐋𝐇𝐒 size 261ኼ 261ኼ 261ኼ 261ኼ
𝜅(𝐋𝐇𝐒) 27.08 28.99 34.64 47.84
𝜅(𝐁𝟎�̃�𝐁𝐓𝟎) 3.21 4.03 5.18 9.91
Preprocess (𝑡ኻ − 𝑡ኺ) 1.110 s 1.110 s 1.110 s 1.110 s
MINRES Solver Time 0.00743 s 0.0106 s 0.0129 s 0.0175 s
Step 54 steps 71 steps 95 steps 132 steps
Direct Solver Time 0.00466 s 0.00357 s 0.00574 s 0.00404 s
𝓛ኼ Error 0.280 0.332 0.395 0.444

Table 5.9: Constraint Preconditioner on Non-orthogonal Domain, ፩  ኻኽ

𝑐 0.05 0.10 0.15 0.20
𝐋𝐇𝐒 size 533ኼ 533ኼ 533ኼ 533ኼ
𝜅(𝐋𝐇𝐒) 55.54 63.40 77.60 105.77
𝜅(𝐁𝟎�̃�𝐁𝐓𝟎) 3.40 4.36 5.77 10.43
Preprocess (𝑡ኻ − 𝑡ኺ) 1.805 s 1.805 s 1.805 s 1.805 s
MINRES Solver Time 0.0189 s 0.0263 s 0.0395 s 0.0542 s
Step 59 steps 83 steps 118 steps 177 steps
Direct Solver Time 0.0248 s 0.0248 s 0.0242 s 0.0248 s
𝓛ኼ Error 0.0174 0.0457 0.0957 0.167
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Table 5.10: Constraint Preconditioner on Non-orthogonal Domain, ፩  ኼ

𝑐 0.05 0.10 0.15 0.20
𝐋𝐇𝐒 size 1925ኼ 1925ኼ 1925ኼ 1925ኼ
𝜅(𝐋𝐇𝐒) 280.13 334.21 431.79 611.57
𝜅(𝐁𝟎�̃�𝐁𝐓𝟎) 3.69 4.99 7.01 12.83
Preprocess (𝑡ኻ − 𝑡ኺ) 5.019 s 5.019 s 5.019 s 5.019 s
MINRES Solver Time 0.197 s 0.320 s 0.479 s 0.983 s
Step 65 steps 96 steps 147 steps 253 steps
Direct Solver Time 1.0285 s 1.036 s 0.906 s 1.030 s
𝓛ኼ Error 1.95𝑒−6 3.47𝑒−5 0.000229 0.000894

In the previous results, we make the following observations:

• At any fixed distortion parameter 𝑐, the preconditioner bound the condition number at a fixed
level, independent from 𝑝. To make this point, we take the worst case when 𝑐 = 0.20, and we plot
the condition number change before and after preconditioning with growing polynomial order in
Fig. 5.14 on the left.

• At a fixed 𝑝-order, the more distorted the mesh is, the higher the condition number grows, as
well as the solution steps. What we also observe is that the preconditioner built according to an
orthogonalmesh reduces the condition number due to 𝑝-refinementswhile preserving the portion
of contribution of mesh distortion on the condition number. To make this point, see Fig.5.14 on
the right, the two curves raise with increasing 𝑐 almost parallel.

• The error grows fast as 𝑐 increase.

Figure 5.14: Condition Number Change before and after Preconditioning

5.5. Discussion
In this section, we make a rough comparison on a bigger picture to expose the pros and cons of the two
preconditioning methods used above. The discussion will focus on system size, arithmetic complexity
and solution time/steps.

By referring to the LAPACK working notes [1], the Floating Point Operation Counts (FLOPs) are
known for critical steps encounteredwhile finding the solution. For a squarematrix of row(column) size
𝑛, Cholesky factorisation costs about 𝑂(ኻኽ𝑛ኽ) FLOPs, inverting a full matrix cost about 𝑂(𝑛ኽ) FLOPs,
and inverting a triangular matrix costs 𝑂(𝑛ኼ) FLOPs. It takes 𝑂(𝑛) FLOPs in each iteration step for
both CG and MINRES solvers. Knowing these information, we can give a brief estimation of how the
FLOPs grow with the method order 𝑝, as in Table 5.11.
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In Table 5.11, we can see that as problem size grow, preconditioned iterative solver will become the
only choice. The 2-stage solver is advantageous when 𝑝 order is not high enough, and the machine
memory is on a tight budget. The large system is dissected into two smaller systems thus give results
fast when 𝑝 is not large enough. However, this method is highly dependent on the availability of the
inverse of mass matrix. If the mass matrix inverse is not cheap to obtain, for instance, when the mass
matrix is evaluated on an increasingly distorted mesh, the advantages may vanish quickly. Constraint
preconditioners works on the large system, which is not sparse, thus very demanding on the machine
memory. However, building a constraint preconditioner does not require the exact inverse of the mass
matrix, or the Schur complement, thus gives this method more freedom on the problem type. Also,
as problem size grow, a powerful computer is expected, constraint preconditioning technique will be
much more advantageous in solving large problems.
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6
Preconditioned System with Hybrid

ℎ𝑝-refinements on Partitioned Domain

The previous chapter introduced the preconditioning techniques for 𝑝-version MSEM. In this chapter,
we will seek the ways to precondition ℎ𝑝-refined MSEM on a partitioned orthogonal domain using La-
grange multipliers. This part of the work is supported by the derivation in §3.4.

6.1. Block Structure
First of all, we look into the block structure of the big square matrix in (3.17):

𝐊 = [
𝐌 𝐄𝐓𝐖 𝐖𝐛
𝐖𝐓𝐄 𝐎 𝐎
𝐖𝐛𝐓 𝐎 𝐎

] = [
𝐆 𝐋𝐓

𝐋 𝐎
] ,

where 𝐋 = [𝐖𝐛𝐓 𝐎], and 𝐆 = [ 𝐌 𝐄𝐓𝐖
𝐖𝐓𝐄 𝐎 ]. We can show the sparsity pattern of the 𝐊 matrix in

Fig.6.1 with respect to the mesh plotted in Fig.3.1 to further reveal the blocking of 𝐊.

Figure 6.1: Blocking of 𝐊

In Fig.6.1, the grey lines indicate the 3×3 block structure as in (3.17), and the red lines indicate that
𝐆 is exactly assembled independently from algebraic equations of four subproblems’s, just as𝐀 in (3.8).

6.2. Steklov-Poincaré Operator
One of the highlights of domain decomposition techniques is to reduce a global problem to several
independent subproblems, thus significantly reduce the problem size and aswell providemore freedom

41
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in choice of governing equation, discretisation scheme, resolution order, etc.. In our case, this is done
by constructing a Steklov-Poincaré operator, which is the Schur complement of 𝐆 in the large system
𝐊. In our case, the Steklov-Poincaré operator maps the unknown boundary values 𝜙።፧ on 𝛀\𝚪𝐃 to the
known boundary values𝜙፭፫ on𝛀∩𝚪𝐃. If we denote the Steklov-poincaré operator by−𝓢, then we have:

𝓢 = 𝐋𝐆ዅ𝟏𝐋𝐓, (6.1)

and the reduced system is:

𝓢𝝓𝐢𝐧 = 𝐋𝐆ዅ𝟏 [
𝐖𝐛𝝓𝐭𝐫
𝐖𝐓𝐟 ] . (6.2)

To see howmuch domain decomposition can reduced the system, we take the same square mesh topol-
ogy as in Fig.3.1, denote the number of elements per row by 𝑛, and denote the polynomial order in each
element by 𝑝. The original system has DoF amounts to 𝑛ኼ(3𝑝ኼ + 4𝑝) − 2𝑛𝑝, and the reduced system
will only have 2𝑝(𝑛ኼ − 𝑛) DoF. By looking at the ratio of the DoF numbers:

2𝑝(𝑛ኼ − 𝑛)
𝑛ኼ(3𝑝ኼ + 4𝑝) − 2𝑛𝑝 =

2𝑛 − 2
𝑛(3𝑝 + 4) − 2 , (𝑛 > 1, 𝑝 ≥ 1),

we can see that the higher the 𝑝-order is chosen, the more advantageous domain decomposition will
become. And for an increasingly ℎ-refined problem, the system reduction ratio will tend to a stable
number determined by the polynomial order 𝑝.

Knowing the amount of improvement of this technique, now we consider the price of calculating 𝓢,
or, the price of computing 𝐆ዅ𝟏.

6.2.1. Computing 𝐆ዅ𝟏
The block structure of 𝐆 is shown in Fig.6.1. We see that 𝐆 has a clear pattern:

𝐆 = [ 𝐈𝟒⊗𝐌 ፥፨ፚ፥ 𝐈𝟒⊗𝐄𝐓፥፨ፚ፥𝐖፥፨ፚ፥
𝐈𝟒⊗𝐖𝐓

፥፨ፚ፥𝐄፥፨ፚ፥ 𝐈𝟒⊗𝐎 ] , (6.3)

where 𝐈𝟒 is a 4 × 4 identity matrix, and matrices 𝐌 ፥፨ፚ፥, 𝐄፥፨ፚ፥ and 𝐖፥፨ፚ፥ are local matrices from 𝑝-
version MSEM, just as matrices in (3.8). There exists a permutation matrix denoted by 𝓟 such that:

𝓟𝐆𝓟ፓ = 𝐈𝟒⊗ [ 𝐌፥፨ፚ፥ 𝐄𝐓፥፨ፚ፥𝐖፥፨ፚ፥
𝐖𝐓

፥፨ፚ፥𝐄፥፨ፚ፥ 𝐎 ] = 𝐈𝟒⊗𝐀. (6.4)

Matrix 𝐀 is exactly the same as in §5.4. Thus in order to compute 𝐆ዅ𝟏, we only need to compute 𝐀ዅ𝟏.

Again, recall (5.12), we can derive an indefinite triangular factorisation of 𝐀:

𝐀 = [ 𝐈 𝐎
𝐖𝐓𝐄𝐌ዅ𝟏 𝐈 ] [

𝐌 𝐎
𝐎 −𝐒] [

𝐈 𝐌ዅ𝟏𝐄𝐓𝐖
𝐎 𝐈 ] (6.5a)

= [ 𝐏 𝐎
𝐖𝐓𝐄𝐌ዅ𝟏𝐏 −𝐐] [

𝐏𝐓 𝐏𝐓𝐌ዅ𝟏𝐄𝐓𝐖
𝐎 𝐐𝐓 ] , (6.5b)

where 𝐏𝐏𝐓 = 𝐌፥፨ፚ፥, and 𝐐𝐐𝐓 = 𝐒. Both 𝐏 and 𝐐 are lower triangular matrix. We use the following
notations for the two large triangular matrices:

𝐀𝜶 = [
𝐏 𝐎

𝐖𝐓𝐄𝐌ዅ𝟏𝐏 −𝐐] , 𝐀𝜷 = [
𝐏𝐓 𝐏𝐓𝐌ዅ𝟏𝐄𝐓𝐖
𝐎 𝐐𝐓 ] .

Then we can compute 𝐀𝜶ዅኻ and 𝐀𝜷ዅኻ using 𝐏ዅ𝟏 and 𝐐ዅ𝟏:

𝐀ዅ𝟏𝜶 = [ 𝐏ዅ𝟏 𝐎
𝐐ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏𝐏ዅ𝟏 −𝐐ዅ𝟏] , 𝐀ዅ𝟏𝜷 = [𝐏

ዅ𝟏ፓ −𝐏ዅ𝟏ፓ𝐌ዅ𝟏𝐄𝐓𝐖𝐐ዅ𝟏ፓ

𝐎 𝐐ዅ𝟏ፓ
] .
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To find 𝐏ዅ𝟏, we refer to (5.7). Finding𝐐ዅ𝟏 is much trickier. It requires Cholesky factorisation of matrix
𝐒, then taking the inverse. This will be the most expensive part in finding the inverse of 𝐆ዅ𝟏.

Now, we are ready to compute 𝐀ዅ𝟏.
𝐀ዅ𝟏 = 𝐀ዅ𝟏𝜷 𝐀ዅ𝟏𝜶 (6.6a)

= [𝐌
ዅ𝟏 −𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏 𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏

𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏 −𝐒ዅ𝟏 ] . (6.6b)

To assemble the 𝐆ዅ𝟏 from a local matrix 𝐀ዅ𝟏, we use (6.4):
𝐆ዅ𝟏 = 𝓟ፓ (𝐈𝟒⊗𝐀ዅ𝟏)𝓟 (6.7a)

= 𝓟ፓ (𝐈𝟒⊗ [𝐌
ዅ𝟏 −𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏 𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏

𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏 −𝐒ዅ𝟏 ])𝓟 (6.7b)

= [𝐈𝟒⊗ (𝐌ዅ𝟏 −𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏) 𝐈𝟒⊗ (𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏)
𝐈𝟒⊗ (𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏) 𝐈𝟒⊗ (−𝐒ዅ𝟏) ] . (6.7c)

Thus it follows naturally to compute Steklov-Poincaré operator 𝓢:
𝓢 = 𝐋𝐆ዅ𝟏𝐋𝐓 (6.8a)

= [𝐖𝐛𝐓 𝐎] [𝐈𝟒⊗ (𝐌ዅ𝟏 −𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏) 𝐈𝟒⊗ (𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏)
𝐈𝟒⊗ (𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏) 𝐈𝟒⊗ (−𝐒ዅ𝟏) ] [𝐖𝐛𝐎 ] (6.8b)

= 𝐖𝐛𝐓 {𝐈𝟒⊗ (𝐌ዅ𝟏 −𝐌ዅ𝟏𝐄𝐓𝐖𝐒ዅ𝟏𝐖𝐓𝐄𝐌ዅ𝟏)}𝐖𝐛 (6.8c)

As we can see, for a domain decomposed by 𝑛 × 𝑛 subdomains and then discretised uniformly in order
𝑝, themajor computational cost of constructing a Steklov-Poincaré operator is the time cost to compute
the inverse of 𝐀, which is independent from 𝑛. Although the memory demand is different depending
on how fine ℎ-refinement is done.

6.2.2. Condition Number of Steklov-Poincaré Operator

In this subsection, we look into the condition number change of 𝓢with respect to ℎ-refinement. We set
up a test case where 𝑛 increases from 2 to 6, and let 𝑝 order be 5 uniformly in each element. We record
the size and condition number of the big matrix 𝐊 and 𝓢.

Table 6.1: Condition Number of 𝐊 and 𝓢

𝑛 2 3 4 5 6
𝜅(𝐊) 54.06 108.70 184.98 282.89 402.48
size(𝐊) 360ኼ 825ኼ 1480ኼ 2325ኼ 3360ኼ
𝜅(𝓢) 20.27 37.98 63.46 96.39 136.71
size(𝓢) 20ኼ 60ኼ 120ኼ 200ኼ 300ኼ

As we can see that the major challenge is no longer solving the Steklov-Poincaré operator related
system, the system is small enough to be solved by a direct solver. However, we expect most of the work
to be done is computing the solution of the sub-structured problems.

6.3. Test Case
In this test case, we will show the characteristics of domain decomposition methods. We let 𝑓(𝑥, 𝑦) be
defined on 𝛀 = (−1, 1) × (−1, 1) by:

𝑓(𝑥, 𝑦) = −900𝜋ኼ(𝑥ኼ𝑦ኾ + 𝑥ኾ𝑦ኼ)𝑐𝑜𝑠(15𝜋𝑥ኼ𝑦ኼ) − 30𝜋(𝑥ኼ + 𝑦ኼ)𝑠𝑖𝑛(15𝜋𝑥ኼ𝑦ኼ).
And we expect the solution to be:

𝜙(𝑥, 𝑦) = 𝑐𝑜𝑠(15𝜋𝑥ኼ𝑦ኼ).
Choosing this function 𝜙 is to mimic multiple scales with different wavenumber in one field thus in-
crease the difficulty of convergence.
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6.3.1. Flow Diagram

In this section, two flow diagrams are presented in Fig.6.2 for two solution schemes presented. One is
the normal solution method and the other is a two-stage solution scheme.

Figure 6.2: Flow Diagram for Test Programs

On the left, we use a normal method with two timed intervals. The first timed interval times the
meshing and assembling time cost, and the second times the time used to solve the large linear equation
system. On the right, we have five timed intervals. The first interval does not compute the global
𝐌ዅ𝟏 since it’s no longer needed in the 2-stage algorithm. The second interval records the time cost to
compute a local massmatrix inverse, and also the 𝐒ዅ𝟏matrix in a single element. Both𝐌ዅ𝟏 and 𝐒ዅ𝟏 are
computed according to §5.2. The third interval records the time cost of assembling 𝐆ዅ𝟏 and 𝓢, which
is following the derivation of §6.2.1. The fourth interval solves the 𝓢 operator. And the fifth interval
computes the post-processing time cost.

6.3.2. Experiment Setup

This test case includes both ℎ- and 𝑝- refinements. In the beginning of §6.2, we see that as 𝑝 goes
higher, the more system size reduction we could expect. Thus we let 𝑛 increase by 1 at a time, from 2
to 7, which is called one campaign. For both methods, we repeat the campaigns under three 𝑝 orders:
𝑝 = 5, 13, 25.

6.3.3. Normal Solution Method Results

We first present the results in the following three tables, then we will discuss the results.

Table 6.2: ፡-refined Normal Method with ፩  

𝑛 2 3 4 5 6 7
size(𝐊) 360ኼ 825ኼ 1480ኼ 2325ኼ 3360ኼ 4585ኼ
𝑡ኻ − 𝑡ኺ 0.575 s 0.681 s 0.847 s 1.253 s 1.850 s 3.127 s
𝑡ኼ − 𝑡ኻ 0.00138 s 0.00376 s 0.00720 s 0.0152 s 0.0204 s 0.0308 s
𝓛ኼ Error 1.455 1.058 1.059 0.879 0.786 0.779
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Table 6.3: ፡-refined Normal Method with ፩  ኻኽ

𝑛 2 3 4 5 6 7
size(𝐊) 2184ኼ 4953ኼ 8840ኼ 13856ኼ 19968ኼ 27209ኼ
𝑡ኻ − 𝑡ኺ 2.512 s 5.767 s 13.131 s 30.814 s 59.994 s 132.649 s
𝑡ኼ − 𝑡ኻ 0.0705 s 0.193 s 0.674 s 1.175 s 1.654 s 2.613 s
𝓛ኼ Error 1.341 0.715 0.498 0.257 0.0976 0.0335

Table 6.4: ፡-refined Normal Method with ፩  ኼ

𝑛 2 3 4 5 6 7
size(𝐊) 7800ኼ 17625ኼ 31400ኼ 49125ኼ 70800ኼ 96425ኼ
𝑡ኻ − 𝑡ኺ 17.434 s 62.556 s 241.824 s 632.099 s / /
𝑡ኼ − 𝑡ኻ 2.343 s 6.345 s 17.768 s 50.056 s / /
𝓛ኼ Error 0.398 0.0331 0.00122 4.118𝑒−5 / /

The first thing we need to discuss is the system scaling. Since the normal method solves DoF at
once, the system row size is 𝑛ኼ(3𝑝ኼ + 4𝑝) − 2𝑛𝑝, with 𝑛ኼ𝑝ኼ(𝑝 + 1) + 2𝑝ኽ(𝑝 + 1) non-zero elements. If
we check the ratio of non-zero element in 𝐊 with respect to the total number of elements:

𝑛ኼ𝑝ኼ(𝑝 + 1) + 2𝑝ኽ(𝑝 + 1)
(𝑛ኼ(3𝑝ኼ + 4𝑝) − 2𝑛𝑝)ኼ = 2( 𝑝 + 1

3𝑛𝑝 + 4𝑛 − 2)
ኼ
,

we see that ℎ-refinement is more favourable in terms of sparsity pattern, thus easy to solve. However,
from the error analysis perspective, 𝑝-refinement makes convergence much more efficient. Tests on
this method is only used as a reference, since a system formed by domain decomposition is not meant
to be solve directly anyhow.

6.3.4. 2-stage Scheme Results

The results are presented with notions according to Fig.6.2.

Table 6.5: ፡-refined 2-stage Scheme with ፩  

𝑛 2 3 4 5 6 7
size(𝓢) 20ኼ 60ኼ 120ኼ 200ኼ 300ኼ 420ኼ
𝑡ኻ − 𝑡ኺ 0.493 s 0.542 s 0.676 s 0.8837 s 1.177 s 1.713 s
𝑡ኼ − 𝑡ኻ 0.324 s 0.315 s 0.368 s 0.346 s 0.340 s 0.358 s
𝑡ኽ − 𝑡ኼ 0.00110 s 0.00164 s 0.00235 s 0.00346 s 0.00464 s 0.00586 s
𝑡ኾ − 𝑡ኽ 0.000250 s 0.000292 s 0.000544 s 0.000806 s 0.00128 s 0.00174 s
𝑡 − 𝑡ኾ 0.00182 s 0.00312 s 0.00621 s 0.00804 s 0.0106 s 0.0146 s
𝓛ኼ Error 1.455 1.058 1.059 0.879 0.786 0.779

Table 6.6: ፡-refined 2-stage Scheme with ፩  ኻኽ

𝑛 2 3 4 5 6 7
size(𝓢) 52ኼ 156ኼ 312ኼ 520ኼ 780ኼ 1092ኼ
𝑡ኻ − 𝑡ኺ 2.014 s 3.686 s 7.534 s 15.573 s 28.623 s 53.151 s
𝑡ኼ − 𝑡ኻ 1.277 s 1.207 s 1.241 s 1.206 s 1.234 s 1.227 s
𝑡ኽ − 𝑡ኼ 0.00793 s 0.0136 s 0.0223 s 0.0352 s 0.0508 s 0.0670 s
𝑡ኾ − 𝑡ኽ 0.000437 s 0.000913 s 0.00229 s 0.00738 s 0.0111 s 0.0171 s
𝑡 − 𝑡ኾ 0.0120 s 0.0240 s 0.0413 s 0.0662 s 0.103 s 0.132 s
𝓛ኼ Error 1.341 0.715 0.498 0.257 0.0976 0.0335
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Table 6.7: ፡-refined 2-stage Scheme with ፩  ኼ

𝑛 2 3 4 5 6 7
size(𝓢) 100ኼ 300ኼ 600ኼ 1000ኼ 1500ኼ 2100ኼ
𝑡ኻ − 𝑡ኺ 10.830 s 33.871 s 93.888 s 209.720 s 436.211 s 771.850 s
𝑡ኼ − 𝑡ኻ 6.098 s 5.969 s 6.219 s 5.948 s 5.854 s 6.225 s
𝑡ኽ − 𝑡ኼ 0.0540 s 0.116 s 0.202 s 0.323 s 0.465 s 0.614 s
𝑡ኾ − 𝑡ኽ 0.000941 s 0.00499 s 0.00796 s 0.0166 s 0.0546 s 0.0841 s
𝑡 − 𝑡ኾ 0.0903 s 0.181 s 0.269 s 0.497 s 0.712 s 0.957 s
𝓛ኼ Error 0.398 0.0331 0.00122 4.118𝑒−5 1.710𝑒−6 6.581𝑒−8

Shown the results, a few remarks have to be made. We see that the major cost of time is spent on
the computation of 𝐀ዅ𝟏, however, the cost is only related to the 𝑝-order of a single local element. Thus
this part of the cost is invariant with ℎ-refinement, as shown in Fig.6.3. Computing 𝐆ዅ𝟏 from 𝐀ዅ𝟏 is no
more than assembling by block, thus the cost creeps slowly with 𝑛.

Figure 6.3: Time Cost to Find 𝐀Ꮍ𝟏 Figure 6.4: Time Cost to Find 𝐆Ꮍ𝟏 Figure 6.5: Time Cost to Solve 𝓢

Also, we are interested in the cost of solving 𝓢, thus we plot the time cost in Fig.6.5. The zigzag curve
in Fig.6.5 indicates that three times’ repetition is not enough to approach to a stable averaged out come,
and it also indicates that solving 𝓢 is cheap, thus the time cost variance is very large.

Figure 6.6: Time Cost in 2-stage Solver, ፩  ኼ
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At last, we plot the time cost of each step in Table 6.7 into the figure below. We see that making
mesh and assembling matrices are the most costly process, and this part of the cost increase with 𝑛 at
the fastest rate.

6.3.5. Result Comparison

First, we compare the solution time of the twomethods. For the 2-stagemethod, we count 𝑡−𝑡ኻ as the
time used to solve the system. And 𝑡ኻ − 𝑡ኺ is the time used for generating mesh and assembling linear
equation systems. Take 𝑝 = 13, compare results in Table 6.3 and 6.6, we plot the following graph 6.7.

Figure 6.7: Time Cost Compare, ፩  ኻኽ

We can see that the 2-stage method uses much less time to generate mesh and assemble equation
system. Also, to solve the linear equation system, the 2-stage solver’s solution time is also very stable
as 𝑛 increases, and the normal direct solver’s solution time scales up fast as 𝑛 increases. When 𝑝 = 25,
the direct solver barely has any advantage in solving such a large system.

6.3.6. Error Analysis and Comments

Weplot the error against ℎ-refinement in Fig.6.8. ℎ-refinement is known to have algebraic convergence
behaviour, which means that the error decrease algebraically on the semi-logarithm plot as 𝑛 increase.
The slop is determined by the method order 𝑝 within each element. Thus the higher the polynomial
degree is, the more efficient the ℎ-refinement will be. Compare to 𝑝-refinement’s exponential conver-
gence, algebraic convergence may not be as attractive. However, recall from the previous results, e.g.,
in Fig.6.3 and Fig.6.7, the time cost to solve an increasingly ℎ-refined system does not differ much (as
long as 𝑝 is fixed), but solving an increasingly 𝑝-refined system will cause the solution time grow sig-
nificantly. We should also remember that 𝐀ዅ𝟏 is reusable if further ℎ-refinement is done!

Figure 6.8: Convergence with ፡-refinement

In real simulations, the level of refinement is determined by balancing the factors such as reso-
lution requirements, complexity of geometry and computation time available. Thus for a simulation
problem, we can use 𝑝-refinement at the beginning until the solution cost become unacceptable before
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the expected accuracy is reached. Then we can use the highest 𝑝-order ever reached and then go for ℎ-
refinements. The principal is the let ℎ-refinement ”ride” on the highest 𝑝-order thus produce the most
convergence efficiency.

We present some simulation results in Appendix A. The exact solution is plotted here:

Figure 6.9: Exact Solution Ꭻ(፱, ፲) Figure 6.10: Result, Right Corner, ፩  ኼ, ፧  

Compare the simulation results, the cross-like part in the middle represents a macro-structure in
the solution. These large structures with small wavenumber are well captured and represented by the
basis functions. At the four corners, the exact solution has a large wavenumber. In order to resolve
the high frequency components in the solution, the mesh has to be fully refined to the same geometric
scale. When 𝑝 = 25 and 𝑛 = 7, we get a result close to the exact solution, however, if we zoom in to the
corner as in Fig.6.10, we can see that high frequency part needs to be resolved completely by further
refinements.



7
Conclusions and Recommendations

In this chapter, we will look back on what we have achieved, then give conclusions and recommenda-
tions as the ending of this report.

7.1. Conclusions
In this thesis, a systematic research was made on preconditioning techniques suitable for MSEM im-
plementations. In Chapter 4, we made analysis on the limits of spectrum of discrete operators that will
appear in MSEM discretisation. We analytically saw me demonstrated how the maximum and min-
imum of singular values (or eigenvalues) scale with p-refinement on an orthogonal mesh. Using the
knowledge about the spectrum, in Chapter 5 and Chapter 6, we developed a series of preconditioning
techniques and then showed the significant decrease in solution time after these preconditioners are
applied. Now, we will focus on the research questions and make the following conclusions and discus-
sions.

7.1.1. Cause of Ill-conditioned Linear Systems in MSEM

In MSEM, the discretisation is ”mimetic”, in the sense that it differentiates topological and metrical
relations, thus the discrete operators mimics the PDE operators and preserves the structure from con-
tinuous level to the discrete level. Thus the discrete operators may be metric dependent and metric
independent. In MSEM, the mass matrix𝐌 represents the inner product operation in PDE. This oper-
ation conducts ameasurement, thus ismetric dependent. The incidencematrix 𝐄 is a purely topological
differential operator with nometrics involved. The wedgematrix𝐖 is a discrete representation of basis
duality pairing, which will be metric independent as well.

From §4.2, we see how the mass matrix condition number grows with 𝑝-refinements. Recall that
the maximum and minimum of the eigenvalues in𝐌𝐥 and𝐌𝐞 corresponds to the DoF that occupies the
smallest and the largest cell, see Theorem 4.2.1 for instance. This means that the squeezed cells makes
the metrics unfavourable since it makes the spectrum scatter. The major task of preconditioning is to
find the distorted metrics and then use these information to construct a preconditioner. To give an ex-
ample, we see that the diagonal scaling of mass matrix is actually correcting the squeezing on the mesh
(this is explained more in-depth in §7.1.2). Operators that are only topological, such as 𝐄 and 𝐖, do
not change in different coordinate systems. Although an increasingly complicated topological structure
may induce a growing condition number such as matrix 𝐄, the pattern of these matrices are fixed. Thus
finding preconditioners for these types of operators could be a once-and-for-all kind of effort.

Thus we conclude that the ill-condition of the linear system in MSEM is primarily caused by metric
dependent factors such as mesh deformation, constitutive parameter change, which deserves a lot of
attention. And we point out that ill-conditioning is also produced by an increasingly complex topolog-
ical structure, e.g., the singular values of 𝐄 scatter as the mesh size go up.

After this thesis project, we can analytically estimate the condition number change undermesh com-
pression. And we have found simple preconditioners for the mass matrix on an orthogonal domain,
which performed well on orthogonal domain and was proved to be very effective on highly distorted
meshes as well. From numerical experiments in §5.4.2, we see that mesh compression affects the con-
dition number much more than mesh distortion.

49
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Until now, the first three research questions are answered, and the last research question will be
given in the coming sections.

7.1.2. Think in Terms of Consistency

Consistent discretisation schemes ensure that the solution pointwisely converges to the exact solution
of the continuous PDE. This means that the linear system of equations formed by different numerical
schemes on the same mesh should be at least similar in some way.

Remember fromTheorem4.2.1, the eigenvalues of 1Dmassmatrix𝐌𝐥 lies in the interval [𝐶𝑝ዅኼ, 𝐶𝑝ዅኻ].
If we think in terms of consistency, we consider a finite volume scheme, then there is an equivalentmass
matrix𝐌𝐅𝐕 which is diagonal, and the diagonals will be a measurement of the ”volume” (length in 1D)
of each cell. According to the definition of Legendre-Gauss-Lobatto points in §3.3, we see exactly that
the minimum cell volume scales with 𝑝ዅኼ and the maximum cell volume scales with 𝑝ዅኻ.

This perspective allows us to see more possibilities in constructing preconditioners. As a matter of
fact, many preconditioning techniques are developed using the consistency of discretisation techniques
such as multigrid techniques.

7.1.3. Framework of Studying Preconditioning Techniques

There is a hidden story line in this thesis which is not explicitly discussed. But in order to show that the
value of this preliminary research is far more than successfully preconditioned a Poisson problem, we
give a common framework for studies on preconditioning.

In this thesis, we followed a 3-layer hierarchy to approach the problem. The first layer is the funda-
mental knowledge about the discrete operators. On this fundamental level of research, we are interested
in the eigenvalue distribution of these operators. And by inspecting the limits of the eigenvalues, the
cause of the scatted spectrummay naturally be exposed, just like what we found in Chapter 4. On top of
the first layer, we approach to the block structure of the system given by the PDE. This level of research
finds a suitable way to factorise the matrix and implement the preconditioners for each operator. The
third layer of research goes to a detailed research on how to properly choose the preconditioners for
operators thus the preconditioned system will be compatible with the linear system solver and gain the
best efficiency.

Table 7.1: Operator Spectrum Studied at the Current Stage

𝑝-version Hybrid ℎ𝑝-version Continuous ℎ𝑝-version
Orthogonal Distorted Orthogonal Distorted

Spectrum Study
of Discrete
Operators

𝐌
𝐖
𝐄

In Table 7.1, we show the operators that have been studied and this givesmotivations for the coming
up study proposed in the recommendation chapter. The block structure we studied until now is always
a saddle point problem. This type of structure will be typical for Poisson problems, Stokes Problem….
For this type of structure, previous studies give mature solutions that performed extremely well in our
experiments. For the future studies, the problem type may be different, however, we expect the study
to follow the same framework, from the fundamentals of the operators to the global linear system.

7.2. Recommendation
From the conclusion section, we make the following recommendations.
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7.2.1. About Follow-up Research

From this thesis, we have seen the eigenvalue bounds of the mass matrices (on orthogonal domain)
and incidence matrices through theorems. However, the lower bound of the eigenvalue of matrix𝐌𝐞 is
not proven by a solid theorem, as well as the wedge matrices𝐖. However, the essence of these missing
works is focused on one inequality about edge functions. Recent research on dual polynomials (see
[35]) indicates that𝐖may no longer be necessary to appear in the system, however, a follow up on𝐖
spectrumwill be good. Also, for a distortedmesh, we could also give a theoretical study on the influence
of mappings over the spectrum of mass matrices.

As the test case problems become more and more complicated, for instance, convection problems,
convection diffusion problems..., we expect the following research to cover even more operators other
than only mass matrix, incidence matrix and wedge matrix. And studies on the corresponding block
structures will need to be studied.

7.2.2. About Hybrid and Continuous ℎ𝑝-refinement

In hybrid ℎ𝑝-MSEM, we decoupled the influence of subdomains by using discontinuous DoF on the
boundary between neighbouring elements, and then use a Lagrange multiplier to enforce the equality
of these boundary DoF. But in the test case that we did, we can accomplish the same kind of domain
decomposition by using a continuous ℎ𝑝-MSEM. With a continuous ℎ𝑝-MSEM, we expect a small in-
tersection of local mass matrices since the DoF on the boundary of neighbouring cells are correlated to
elements on both sides. However, we can use a proper ordering (or a permutation matrix) to achieve a
block diagonal structure of the mass matrix and then partition the computation task.

7.2.3. About Mesh Deformation

In one of my experiments with orthogonal meshes, I tried to precondition a mass matrix 𝐌፩ with 𝑝-
refinement with another mass matrix 𝐌፡ obtained from a continuous ℎ-refined MSEM. If we look at
the shape of 𝐌፩ and the shape of 𝐌፡, other than the scale and detail, they does look similar, which
could also be explained by the consistency principle discussed before. However the𝐌፡ matrix is not a
good preconditioner for𝐌፩.

Figure 7.1: Shape of𝐌ᑡ, ፩  ኻኽ, ፧  ኻ,   ኺ.ኼ Figure 7.2: Shape of𝐌ᑙ, ፩  ኻ, ፧  ኻኽ,   ኺ.ኼ

If we see the sparsity of these two matrices, we see a good sparsity pattern of𝐌፡. This sparsity pat-
tern reveals the ”windows” in the matrix that is affected by mesh distortion and compression. What we
can do later on is to figure out a way to combine the preconditioner we had from this research with the
𝐌፡ such that the ill-condition caused by mesh distortion could be eliminated.
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Figure 7.3: Sparsity of𝐌ᑡ, ፩  ኻኽ, ፧  ኻ,   ኺ.ኼ Figure 7.4: Sparsity of𝐌ᑙ, ፩  ኻ, ፧  ኻኽ,   ኺ.ኼ
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Simulation Plots

Figure A.1: Mesh, ፩  , ፧  ኼ Figure A.2: Mesh, ፩  , ፧  ኼ

Figure A.3: Mesh, ፩  , ፧   Figure A.4: Result, ፩  , ፧  
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56 A. Simulation Plots

Figure A.5: Mesh, ፩  ኻኽ, ፧  ኼ Figure A.6: Result, ፩  ኻኽ, ፧  ኼ

Figure A.7: Mesh, ፩  ኻኽ, ፧   Figure A.8: Result, ፩  ኻኽ, ፧  

Figure A.9: Mesh, ፩  ኼ, ፧  ኼ Figure A.10: Result, ፩  ኼ, ፧  ኼ
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Figure A.11: Mesh, ፩  ኼ, ፧   Figure A.12: Result, ፩  ኼ, ፧  
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