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ABSTRACT
Performance evaluation and maintenance planning are gaining importance with ageing rail infrastructure
and increasing demand on track safety and continuous availability. The discrete/point railway assets (e.g.
bridges, level crossings) together with extended track sections constitute the main railway network infra-
structure. The former has important implications in train safety, riding comfort and operating expendi-
tures due to local intensified degradation and plays a role in effective network capacity due to their large
quantity. The heterogeneity in asset features and operating environment also adds difficulties to efficient
maintenance planning of multiple discrete assets. The current review screens the issue to level crossings,
as little concern has been engaged to this asset type, and draws together different perspectives related
to their maintenance management. The systems thinking approach is integrated and two levels of asset
management (i.e. micro- and macro-level) are used to structure the synthesis, which are interdependent
and synergistic. Two major approaches, namely, the mechanistic and data-driven modelling are synthes-
ised. Both contribute to the maintenance knowledge and their comparisons are elaborated. Limitations
in existing studies are identified and directions for future research are provided, aiming to contribute to a
more refined ‘inspection and diagnosis’ process to properly capture the local track issues and move
towards system-level maintenance approach for multiple level crossings.
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1. Introduction

Maintenance interventions are necessary for proper function-
ing and lifetime extension of rail infrastructure but are costly
considering long lifespans of the infrastructure. Conservative
maintenance may lead to unnecessary activities and cost over-
runs, while late interventions imply safety hazards to the train
operation and service disruptions. Therefore, planning for
maintenance can be uncertain and complex, especially when
considering the network infrastructure as the assets within a
network often exhibit heterogeneity in constituting compo-
nents, operational regime and environmental condition.

The network infrastructure consists of extended track sec-
tions and supporting assets such as bridges and level crossings.
These supporting assets are geographically distributed and lim-
ited in length, which can be conceptualised as point assets con-
necting the open track to support the network functioning.
Since the railway track is a linear and non-redundant system,
the track safety and availability depend directly on the condi-
tion of the individual track sections and point assets (Khajehei,
Haddadzade, Ahmadi, Soleimanmeigouni, & Nissen, 2020).
Unlike the open track, the construction form of the point
assets is not generally consistent.

For example, in the level crossings, the ballasted track is
partly stiffened by rubber/concrete panels to form a road
surface (Le Pen et al., 2014). Alternatively, a slab track sec-
tion is formed at the crossing area, e.g. embedded rail sys-
tem, as shown in Figure 1. Prefabricated concrete slabs are
placed on compacted soil layers and naturally form a road
surface with the adjacent pavement. The rails are embedded
in concrete grooves and fixated by an elastic compound
(Matias & Ferreira, 2020). The former case represents a
change in track superstructure, and the latter forms a transi-
tion from the normal embankment (where a ballasted track
places) onto a hard substructure (the concrete slab) and
superstructure components also differ (e.g. fastening).

Due to the sudden change in the structural solution and/
or geotechnical foundations, the approaches to the point
assets are prone to strong amplification of the responses
and localised degradation. The areas are commonly desig-
nated as track longitudinal transitions (referred as track/rail
transition, hereon) characterised by the presence of (abrupt)
longitudinal variations of vertical stiffness (referred as stiff-
ness (longitudinal) variation, hereon) and differential settle-
ment (track geometry irregularity).

The track geometry degradation is mostly used to charac-
terise the overall track performance and considered the
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primary degradation mechanism in train-track systems. It
has important implications in safety, riding quality, and main-
tenance costs of the overall infrastructure. For the point assets,
as an example shown in Figure 2, four longitudinal level meas-
urements are recorded at a level crossing on the Dutch railway
network: the red dotted lines indicate the junctions of the
crossing and approaches, where both sides are susceptible to
differential settlement and they show different patterns influ-
enced by the moving direction. This geometry problem ampli-
fies wheel-rail forces that induce additional causes for local
differential settlement and loss of contact under sleepers, fur-
ther accelerating the local degradation.

The point assets represent a large asset group in a network.
For example, the British railway has a historical stock of level
crossings over 6500 running on 15,847 kilometres of the track
(ORR, 2019). The Dutch national railway network has a total
mileage over 7000 kilometres including 2589 level crossings
and 455 railway bridges (ProRail, 2019). The point assets are
not extended in length like the open track, but they represent
critical track areas susceptible to local intensified degradation.
They generally vary in length, configuration, and constituting
properties; operational and environmental conditions may
also differ in place. The heterogeneity results in varied asset
degradation behaviour and infrastructure managers often
struggle to ascertain the actual condition in a large point asset
population and decide the optimal timing of interventions to
preserving the deteriorating assets over a network.

There are several reviews concerning track geometry deg-
radation and maintenance modelling (Higgins & Liu, 2017;
Soleimanmeigouni, Ahmadi, & Kumar, 2016), big data ana-
lytics for rail track maintenance (Ghofrani, He, Goverde, &
Liu, 2018; Nakhaee, Hiemstra, Stoelinga, & van Noort,
2019), mathematical algorithms for maintenance planning
and scheduling problems (Lid�en, 2014). These reviews focus
on defect treatment of the open track, while the point assets,
problematic areas with recurrent geometrical issues and
other degradation features are not distinguished. Turnouts
are critical groups among the point assets and a detailed
review on their degradation modelling has been provided;
however, maintenance-related modelling techniques are not
included (Minbashi, Bagheri, Golroo, Khouy, & Ahmadi,
2016). The reviews regarding the railway bridges are also
available, which mostly concern the track-bridge dynamics

(Arvidsson & Karoumi, 2014; Zhai, Han, Chen, Ling, &
Zhu, 2019).

Considering the large quantity, scattered locations, localised
degradation features, and potential heterogeneity of the point
assets, the question is how best to apply maintenance to keep
the condition of a group discrete rail assets at an acceptable
level, in terms of both safety and service continuity, in a cost-
efficient manner. The current paper aims at drawing together
different perspectives related to their maintenance manage-
ment, with particular emphasis on the level crossings, as this
asset type forms a large stock in the rail asset groups but has
not received much attention in the literature. As a jointly used
area by railway and highway traffic, its functioning has import-
ant implications in safety and operating performance of both
traffic. By synthesising the relevant studies, this paper aims to
discuss omissions and limitations in the previous research and
propose avenues for efficient maintenance management of
multiple level crossings, which also sheds light on the other
discrete rail assets.

The asset condition is featured by temporal evolution
and spatial variation. The track safety, cost, possession and
service continuity are common factors influencing the main-
tenance decisions. To map out the maintenance design, this
paper integrates systems thinking into the conception of
maintenance and two levels of asset management are recog-
nised, where the decision is manifested at the micro-level
and macro-level. The micro-level often involves design fea-
tures of a single asset. By establishing trackside experiments
and/or formulating models that characterise track configur-
ation and constituting properties, localised track behaviour
under train loading and the corresponding preservation
techniques can be evaluated. The macro-level analysis takes
a global view on multiple physically related assets in a net-
work, aiming to track their physical condition over time by
inspection/monitoring and determine optimal timing of
maintenance based on degradation modelling.

Through a bottom-up mechanism, the two levels of asset
management are meant to be interdependent and synergis-
tic. The synthesis of the relevant studies is therefore organ-
ised by following the bottom-up approach: Section 2 focuses
on the micro-level analysis and discusses field experiment
cases and modelling techniques. The existing mechanistic
models that analyse the track behaviour at transitions to the
point assets are synthesised and classified into transient
dynamic analysis and long-term numerical prediction, in
sub-sections 2.2 and 2.3, respectively. Section 3 explores the
tasks involved in macro-level maintenance management,
which builds up from track condition measurement and
characterisation (3.1), degradation modelling (3.2) to main-
tenance planning (3.3). Section 4 discusses omissions and
limitations in existing studies and proposes avenues for
future research. Section 5 ends with concluding remarks.

2. Micro-level experimental investigation and
mechanistic modelling

The micro-level analysis involves establishing field monitor-
ing to gain insight into the track behaviour and developing

Figure 1. Level crossing with embedded rail system (Shang et al., 2019).
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mechanistic models to simulate track dynamic responses
during train passage. There are a few studies dedicated to
field instrumentation on the level crossings. The behaviour
of a level crossing before and after renewal has been eval-
uated in the UK (Le Pen et al., 2014). Geophones and digital
image correlation were instrumented at the approach to
measure sleeper deflections. It was diagnosed that hanging
sleepers evident before tamping reoccurred very soon after-
wards, indicating that tamping was not effective in removing
hanging sleepers on the studied approach.

The case in the US is different that crossing areas, under
the combined highway and railway traffic, settle more than
the adjacent approaches and gradually become a low spot in
the vertical profile (Rose, 2011). The reason is that the rail-
ways and highways have different structure designs for the
common areas at level crossings: the rail crossings provide a
lower load-bearing capacity due to the flexible all-granular
trackbed and are prone to excessive deflections, causing
rapid abrasion and wear of the crossing components. The
surface water penetrates and saturates the underlying track-
bed, further weakening the structural integrity and accelerat-
ing the degradation. A layer of hot mix asphalt within the
track substructure was proposed in track renewal for
strengthening and waterproofing.

Long-term settlement measurements of several renewed
crossings were documented, showing the better performance
of the asphalt underlaid crossings (Rose, 2011). However,
the asphalt enhancement at the crossings generally does not
influence the vertical profile of adjacent granular track
approaches, where the approaches eventually settled more
than the crossing areas and this differential settlement is

potentially a disturbance to the vehicle-track interaction.
Therefore, a balanced crossing design is necessary that pro-
vides gradual and smooth transitions to both roadway and
highway approaches.

Apart from the field measurement, many researchers
have established mechanistic models to describe the vehicle-
track dynamics when trains pass through the approaches to
point assets. Mechanistic models are formulated based on
mechanical properties and layout of all the components that
make up the track structure and vehicles (de Man, 2002).
Track components can be divided based on their principal
properties, i.e. the components with mass and inertia prop-
erties (e.g. rails and sleepers), those with elastic properties
(e.g. railpads) or both (e.g. ballast). Together with the track
design, these mechanical properties formulate the relation-
ship between the forces exerting on the track and track
responses concerning forces, stresses and displacement, suit-
able for structural analysis (de Man, 2002). Two paths of
modelling solutions are recognised here: analytical model-
ling and numerical modelling.

2.1. Methods in modelling vehicle-track dynamic
interaction

Analytical modelling is suitable to solve problems in con-
tinuous support condition with a limited number of connec-
tions and loading positions, which facilitates the retrieval of
closed-form solutions to track responses (de Man, 2002).
Due to a sudden change in the structural solution and/or
geotechnical foundations, the track transitions to the point
assets are prone to strong amplification of the responses

Figure 2. A typical level crossing and track longitudinal level measurement at the location.
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and localised degradation. First insight into the induced
vibrations caused by the inhomogeneity in track properties
(e.g. stiffness) can be obtained by simplified models, where
some researchers have proposed analytical or semi-analytical
solutions, cf. (Dimitrovov�a & Varandas, 2009; F�ar�ag�au,
Mazilu, Metrikine, Lu, & van Dalen, 2020; F�ar�ag�au,
Metrikine, & van Dalen, 2019; Sadri, Lu, & Steenbergen,
2019; Sadri & Steenbergen, 2018). These models are compu-
tationally efficient and able to provide better insight into the
track responses. However, they are often mathematically dif-
ficult especially when considering the track inhomogeneity
and are hard to be validated by field experiments.

Numerical modelling can simulate complex non-homo-
genous geometry with different levels of sophistication,
which is generally the case of track transitions. It has been
extensively used to simulate transient track responses with
specific concerns that characterise the features of inhomo-
geneity, e.g. stiffness longitudinal variations, track geometry
irregularities, hanging sleepers. A vehicle-track interaction
model is necessary for the dynamic analysis and generally
proposed including three subsystems to represent the behav-
iour of the vehicle, the track, and the interaction between
the two.

Types of models to represent a vehicle include moving
force model, moving mass model, and moving vehicle-sys-
tem model, as presented in Figure 3. The moving force
model is the simplest and has advantages in computational
efficiency; however, dynamic behaviour of trains and its
impact on interaction with the track structure are not con-
sidered (F�ar�ag�au et al., 2020; Zhai et al., 2019). The moving
mass model accounts for the mass and inertia of the run-
ning vehicle but neglects the vibration absorbing effect of
the suspension system. The moving vehicle-system model,
established based on the theory of multibody simulation
(MBS), can represent the mechanical properties of the
vehicles and vary in complexity concerning the vehicle
degrees of freedom (DOF).

The vehicle is represented by an assembly of rigid bodies
connected by flexible and massless elements (Zhai et al.,
2019). The bodies typically include a carbody, two bogies,
and four wheelsets. Each of them has a maximum of six
DOFs and a simplified vehicle model can be achieved by
setting physical constraints according to the simulation pur-
pose (Iwnicki, 2006). To better model the train loads and
the interaction with the track in critical areas, recent papers
mostly adopt this modelling type.

The characterisation of wheel-rail contact is of signifi-
cance for analysing the track performance at rail transitions,
where the vehicle at some points pass over the unlevelled
(track geometry irregularities) and suspended (hanging
sleepers) track may cause oscillations and influence the
interaction with the track (Iwnicki, 2006). Previous studies
mostly use Hertzian contact theory to represent the wheel-
rail contact. However, vehicle-track interaction is not
included when using the moving force model to represent
the vehicle system.

Modelling the track structure can be distinguished from
the representation of track components. At the

superstructure level, the rails are usually modelled by beam
elements, generally Euler-Bernoulli or Timoshenko beams.
Beam elements can also represent the sleepers, which alter-
natively are modelled by mass or solid elements. Spring ele-
ments are normally used to model railpads and ballast,
while the stress in ballast cannot be accurately calculated as
shear forces are generally not considered (Wang & Markine,
2019). More advanced ways to model ballast behaviour have
been proposed, such as solid elements and discrete element
modelling. The track substructure can be normally repre-
sented as rigid (for engineering structures beneath the
track), a mass-spring-damper system (Winkler-type), or a
2D/3D continuum.

Fully calibrated numerical models with field investiga-
tions have been proposed by many researchers to evaluate
the transition performance, and the finite element (FE)
method has been extensively used. These models differ in
levels of complexity in terms of dimensions, dynamic
aspects of the problem, representation of vehicle-track inter-
action, different support conditions, differential settlement,
etc., where two aspects are distinguished:

1. the track dynamic responses during train passage (tran-
sient analysis),

2. the static change of the track geometry resulting from
repeated loading (long-term analysis).

2.2. Short-term performance evaluation

Recurrent track geometry problems in transitions to the
point assets drive the need for maintenance. Some com-
monly reported contributors are stiffness longitudinal varia-
tions and (unloaded) differential settlement (Gallage,
Dareeju, & Dhanasekar, 2013; Hunt, 1997; Wang &
Markine, 2019). Stiffness longitudinal variations produce
uneven track deflections under loading and affect how
stresses are distributed beneath the track, which induces
local settlement and further disturbs the wheel-rail inter-
action. Many works are dedicated to investigating the
impact of stiffness variations on track performance.

Andersen and Nielsen (2003) modelled the track as an
Euler-Bernoulli beam resting on a Kelvin foundation with
varied vertical support stiffness, where the stiffness was
modelled by a stochastic homogeneous field. Similarly,
Oscarsson (2002) investigated the influence of randomness
in railpad stiffness, ballast stiffness and dynamic ballast-sub-
grade mass on track responses, where field and laboratory
tests were combined to support the stochastic track model.
Li and Berggren (2010) used track stiffness data obtained
from rolling stiffness measurement vehicle to analyse the
effect of stiffness variations on the responses.

Various mitigation measures have been tested to reduce
the dynamic amplification based on the impact study of
stiffness longitudinal variations, where the key idea is to
smoothen the variations. Gallego, S�anchez-Cambronero,
Rivas, and Laguna (2016) developed a 3D FE model config-
ured to enable the calculation of various geometries of
cross-section and geotechnical features of materials. The
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model was then applied to the key points with abrupt stiff-
ness variations (e.g. bridges, tunnels) on a Spanish railway
line to calculate the vertical stiffness value of each point and
cross-section designs were proposed to control the varia-
tions. Sa~nudo, Cerrada, Alonso, and dell’Olio (2017) consid-
ered a ballasted-slab track connection and investigated the
optimal spacing of sleepers at the junction. Shahraki,
Warnakulasooriya, and Witt (2015) assessed the behaviour
of different transition zones when using longer sleepers,
auxiliary rails, and improved subgrade. Similarly, Hu,
Zhang, Wen, and Wang (2019) investigated various sub-
grade filling materials in a 3D FE model for a tunnel-culvert
transition to explore the economical materials. Further
details on the mitigation measures refer to Indraratna,
Sajjad, Ngo, Correia, and Kelly (2019).

Another primary contributor, unloaded differential settle-
ment, is mostly attributed to ballast settlement from fouling
and/or degradation (particle compaction and abrasion), and
settlement of fill and subgrade layers. This often appears in,
e.g. bridge approaches and ballasted-slab track transitions,
where the ballasted track at the approaches settles more
than the adjacent track on bridge abutments or stiffer slab
tracks. This issue is particularly severe in soft soil regions
(Coelho, 2011). A field monitoring on a culvert transition in
the Netherlands revealed that the track settlement consists
of two stages: the ballast initially compacted after mainten-
ance, followed by the second stage with the major settle-
ment from embankment and peat layers (Coelho, 2011). By
contrast, settlement measurements on a bridge approach in
the US showed that the ballast layer is the primary source
of differential settlement (Mishra, Boler, Tutumluer, Hou, &
Hyslip, 2017). Similar to the stiffness variations, the differ-
ential settlement is also a source of disturbance to the train-
track interaction. This leads to rapid elevation of wheels and
amplification of wheel-rail forces during train passage,
which often results in hanging sleepers, loss of contact
between the sleeper and ballast layer when the track is
unloaded, further accelerating the local degradation.

Some works evaluated the impact of both contributors
on the transition performance and concluded that the differ-
ential settlement is more critical than stiffness longitudinal
variations (Banimahd, Woodward, Kennedy, & Medero,
2012; Lei & Mao, 2004; Milne, Harkness, Le Pen, & Powrie,
2019; Wang & Markine, 2019). The common ways of incor-
porating the differential settlement in rail track models
include, e.g. reducing the local track vertical stiffness,
imposing (assumed) uneven settlement profiles, introducing

track geometry measurement records, imposing a transition
angle at the rail elevation. They are reviewed and dis-
cussed below.

Hunt (1997) studied four cases of a rail transition in
semi-infinite beams on a Winkler foundation, namely a rail
joint, increasing vertical stiffness, different settlement rates,
initial uneven settlement profile between a bridge approach
and abutment. The synthesis of the cases resulted in a better
transition design based on dynamic sleeper forces. Likewise,
various uniform settlement scenarios were imposed in FE
models to account for the ballast settlement and study the
train-track interaction at bridge transitions (Nicks, 2009;
Paix~ao, Fortunato, & Calçada, 2016b; Wang & Markine,
2019). Lei and Noda (2002) considered the uneven track
profiles as Gaussian random processes and incorporated the
random irregularities in a 2D FE model. Further in Lei and
Mao (2004), the uneven profile at the junction was studied
by imposing a transition angle a, as shown in Figure 4, and
the numerical simulation indicated the irregularity angles
significantly influence wheel forces, rail accelerations, and
carbody accelerations.

While limited research introduces real track geometry
measurement in the numerical modelling, Paix~ao,
Fortunato, and Calçada (2016a) integrated a track geometry
record and variations in substructure properties to investi-
gate how the uneven profile and stiffness longitudinal varia-
tions influence the train-track interaction at a bridge
approach. The shape of the uneven profile was imposed to
the top of the ballast layer in an FE model. In Banimahd et
al. (2012), the local differential settlement was modelled as
equivalent stiffness reduction in ballast to investigate the
impact of the transition length and train speed on rail dis-
placements, wheel forces and carbody accelerations.

The numerical models suitable for describing the vehicle-
track interaction and transition behaviour are becoming
more and more complex. They are limited when applied
over extended track lengths considering the computational
cost. Milne et al. (2019) utilised track geometry measure-
ments and sleeper deflections to parameterise simulations in
a 2D FE model, considering the measured variations in
track level, vertical stiffness, and hanging sleepers. Four
scenarios were processed to investigate their separated/col-
lective roles on vehicle-track interaction, suggesting the vari-
ation in track level is the primary source responsible for
vehicle dynamics, while the stiffness longitudinal variation is
significant for track behaviour. The results imply forecasting
the track performance can be achieved by separately

Figure 3. (a) Moving force model; (b) moving mass model; (c) moving vehicle-system model.
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simulating the vehicle and track behaviour. This decoupling
enables a computationally-efficient way to predict the track
behaviour at an extended length and facilitates relevant
maintenance planning.

Despite the extensive use of the FEM, the discrete element
method has been proposed in some works to provide insight
into the particle-to-particle nature of load transfer within the
ballast layer, which is particularly relevant to the transition-
related issues (i.e. ballast settlement from fouling and/or deg-
radation). Tutumluer, Qian, Hashash, Ghaboussi, and Davis
(2013) proposed a discrete element model that addresses the
particulate nature of varying sized and shaped ballast particles
and predicts the magnitude of field ballast settlement under
repeated loading. As the track transitions always extend up to
tens of metres, using discrete element method to simulate the
behaviour of ballast particles and transition as a whole is time-
consuming. To solve this issue, Mishra, Qian, Huang, and
Tutumluer (2014) proposed an integrated approach where
loading profiles simulated from a validated analytical track
model were used as input for a discrete element model to pre-
dict ballast particle accelerations.

As the hanging sleepers are often associated with the differ-
ential settlement, modelling the sleeper-ballast interface is
important to study transition-related problems, which can be
achieved in various ways. Namura and Suzuki (2007) used a
settlement law to estimate the ballast settlement value at each
sleeper and adopted it as a threshold at the interface to deter-
mine the sleeper/ballast gap. Further, Varandas, H€olscher, and
Silva (2016) formulated a piecewise equation regarding the on/
off contact between the sleeper and ballast layer to account for
the hanging sleepers, which was embedded in a 3D FEM for a
culvert transition. The similar way has been found in Milne et
al. (2019). Alternatively, the sleeper and ballast layer can be
modelled as solid elements so that their interaction is repre-
sented by surface-to-surface contact (Banimahd et al., 2012;
Coelho, 2011; Wang & Markine, 2019).

Much effort has focussed into the study of transition per-
formance, and bridge approaches, the sections on either side
of abutment being much less stiff than the bridge deck, are
qualified as an ideal example of track transitions and have
been extensively studied. By contrast, the level crossings
have not received much attention in the track numerical
modelling, which is also confirmed in Le Pen et al. (2014).
The studies above limit the scope to simulating transient
dynamic responses under train passage at various levels and
locations of track components, providing a thorough

understanding of certain aspects of physical mechanisms
behind the track degradation. However, the transient ana-
lysis results are not directly applicable to represent and pre-
dict the evolution of track behaviour, which should be
extended as discussed in the following long-term analysis.

2.3. Long-term numerical prediction of track
degradation

Numerical modelling can be used to predict the long-term
track performance, where much attention has been paid to
one-dimensional track geometry degradation, i.e. track
settlement. The ballast layer is recognised as the primary
contributor (Li, Ekh, & Nielsen, 2016; Mishra et al., 2017;
Pita, Teixeira, & Robust�e, 2004), and previous effort made
in settlement prediction mostly consider the permanent
deformation in the ballast layer.

The prediction usually requires a vehicle-track interaction
model for transient dynamic analysis to integrate with an
empirical equation for permanent ballast deformation, fol-
lowed by an iterative procedure consisting of two modules.
As shown in Figure 5, one is the dynamics calculation mod-
ule with a vehicle-track interaction model to obtain track
responses during train passage, e.g. wheel forces (Fr€ohling,
1998; Vale & Calçada, 2014), sleeper-ballast contact forces
(de Miguel, Lau, & Santos, 2018; Nielsen & Li, 2018), track-
subgrade contact stresses (Guo & Zhai, 2018), sleeper deflec-
tion (Varandas, H€olscher, & Silva, 2014) and ballast stress
(Wang & Markine, 2018).

The numerical simulation tools are mostly the finite
element method, with exceptions using the finite difference
method (Fr€ohling, 1998) and multibody simulation (de
Miguel et al., 2018). The other is the cumulative settlement
calculation module considering the repeated loading, where
an empirical settlement equation is coupled with the
vehicle-track interaction model by the following calculation
procedure: (1) the simulated response is used as input to
the settlement equation; (2) the transient dynamic analysis
is updated in each iteration step to account for the new
state of the track response; (3) the accumulated settlement is
calculated through repeated procedures until a certain limit
value is reached.

Sato’s settlement law (1995) has been coupled to FE
models for ballast settlement prediction at bridge
approaches (Nielsen & Li, 2018; Wang & Markine, 2018).
Considering that the existing settlement laws cannot handle

Figure 4. Using a transition angle to account for irregularity in longitudinal level.
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varied loading magnitude, Varandas et al. (2014) proposed a
new settlement model focussing on the magnitude and evo-
lution of ballast forces resulting from the differential settle-
ment. The empirical model was coupled with an FE model
with particular inhomogeneous nature of transitions, i.e.
hanging sleepers and nonlinear constitutive behaviour of the
ballast. While much effort has been made on predicting the
ballast settlement, Guo and Zhai (2018) considered subgrade
plastic deformation in slab tracks and developed an FE
model to account for track weight and local contact loss
between track and subgrade. Track-subgrade contact stresses
were simulated and imported to an empirical power model
to predict the subgrade settlement.

The coupled models to simulate the long-term track
behaviour can be seen as a hybrid approach fusing mechan-
ical responses from physics-based models with empirical
relations. The physics-based models map the relationships
between mechanical properties and responses, contributing
to the fundamental understanding of the subject. However,
the use of empirical relations has some limitations. These
equations were extrapolated site specifically, mostly depend-
ing on the number of loading cycles and/or load magnitude,

but not on the ballast and subgrade properties (Dahlberg,
2001). They are limited in accounting for the actual track
condition and also being generalised to other sites with var-
ied operational and environmental conditions, especially at
transitions to the point assets, where the local degradation
process is faster than the open track and the empirical rela-
tions for settlement prediction no longer seem to apply.
Moreover, the applicability of these empirical equations
embedded in the rail track models cannot be validated at
the current stage, which bounds the reliability of the predic-
tion results for maintenance planning. However, the settle-
ment prediction is valuable in comparing performance of
mitigation measures to reduce the maintenance routines.

3. Macro-level maintenance management

The tasks in macro-level management have a serial nature
that builds up from condition measurement, degradation
modelling to maintenance planning, which reflects an
empirically-driven maintenance regime that transforms from
data to feature, feature to insight and insight to decisions.
The condition measurement involves regular inspection/

Figure 5. Flowchart of the iterative procedure for settlement prediction.

STRUCTURE AND INFRASTRUCTURE ENGINEERING 203



sensor-based condition monitoring and data processing to
extract features that characterise the track condition. The
degradation modelling develops deterioration curves by
using the extracted features to analyse patterns of track
deterioration over time, possibly with relations of influenc-
ing variables, such as tonnage and train speed, to gain better
insight into the asset lifecycle and predict their future condi-
tion. Further, maintenance regimes are adapted to reflect
the asset needs, and optimisation works can be followed to
search for the optimal intervention planning that better
reflects operating conditions and ensures safety and ser-
vice continuity.

3.1. Track condition measurement and characterisation

While the mechanistic models in the micro-level investigation
mostly focus on one-dimensional track geometry degradation,
i.e. the track settlement, the macro-level analysis quantifies the
track condition through a set of track geometry parameters,
e.g. longitudinal level, gauge, alignment, cross-level and twist,
as shown in Figure 6. Initially, tracks are laid with an ideal
geometry condition, defined as a nominal value. Each param-
eter is associated with a nominal value. Local deformation and
wear as a result of usage lead to the deviations from the nom-
inal value. These deviations that develop gradually and reach
the thresholds will result in track defects, which is an alert for
interventions. Figure 7 presents an example of uneven profiles
at a bridge transition.

Track irregularities excite the train-track system.
Specifically, deviations in longitudinal level and alignment
can be classified into short-wavelength and long-wavelength
irregularities, which have specific indications for track defect
types. Since the longitudinal level defects are primary sour-
ces for the excitation and entail greater relevance to the
track degradation, most studies consider them the dominant
parameter in evaluating the track geometric quality.

The longitudinal irregularities with wavelengths from
0.03 to 2 metres often develop with wheel rolling defects,
e.g. rail corrugation and squats (Arvidsson & Karoumi,
2014). These irregularities are related to the resonant vibra-
tion of unsprung masses of the vehicles (e.g. wheelsets) and
track itself, characterised by excitation frequencies of
20–1000Hz (Salvador, Naranjo, Insa, & Teixeira, 2016).
Defects with longer wavelengths are mostly related to varia-
tions in substructure properties, e.g. settlement and hanging
sleepers, the typical issues in transition zones. The resonant
vibration is associated with semi-suspended masses (e.g.
bogie) to suspended masses (e.g. carbody) of vehicles so that
the longer-wavelength defects significantly influence the rid-
ing comfort.

Methods for measuring the track geometry generally fall
into two categories: track recording vehicle (TRV) and
onboard vehicle dynamics measurements. TRV is a mature
way of track geometry measurement. It is a special self-pro-
pelled vehicle dedicated to measuring, processing, assessing,
and storing track geometry parameters. Depending on the
measurement techniques, two main principles are distin-
guished, i.e. chord and inertial measuring systems:

� The chord method measures the track geometry based on a
straight-line chord reference, where the mid-chord amplitude
is taken as the measured output. Examples can be found in
EM120 of Iran (Mehrali, Esmaeili, & Mohammadzadeh,
2020; Movaghar & Mohammadzadeh, 2020).

� The inertial method requires an inertial system as a ref-
erence, e.g. carbody, to measure its relative position with
the rail in different dimensions. Examples refer to STRIX
and IMV100 in Sweden (Germonpr�e, Nielsen, Degrande,
& Lombaert, 2018; Nielsen, Berggren, Hammar, Jansson,
& Bolmsvik, 2020), GJ-4 in China (Bai, Liu, Sun, Wang,
& Xu, 2015; Liu, Xu, & Wang, 2010), and UFM120 in
the Netherlands (Westgeest, Dekker, & Fischer, 2012).

In recent years, more research effort has been made on
monitoring the track geometry through onboard measure-
ments (de Rosa et al., 2020). This is more cost-effective and
its high-frequency measurements offer opportunities for
track geometry data analytics. A comprehensive review on
onboard sensors for track geometry measurement can be
found in Weston, Roberts, Yeo, and Stewart (2015).

The existing studies on onboard measurements can be
categorised into two approaches: model-based and signal-
based (de Rosa et al., 2020). Model-based approaches map
the mathematical relationships between the input and out-
put signals of dynamic systems, cf. OBrien, Quirke, Bowe,
and Cantero (2018), Odashima, Azami, Naganuma, Mori,
and Tsunashima (2017) Strano and Terzo (2019), while sig-
nal-based approaches use signal processing, statistical ana-
lysis, and recently machine learning techniques on the
system response signals to draw conclusions on the input
data, cf. de Rosa et al. (2020), Salvador et al. (2016) and
Wei, Liu, and Jia (2016). The input signals in this case are
track geometry parameters and the responses are vehicle
dynamics, measurements taken from axlebox, bogie or car-
body. Figure 8 presents the main components of a
vehicle system.

Once gathering the data from measurements, evaluating
and making decisions on each track geometry parameter per
unit length is practically difficult as this results in large vol-
umes of data. Often, track quality index (TQI) is utilised to
aggregate various track geometry parameters with wave-
length variations. The change of the TQI values provides an
aggregate-level picture of individual track segments for asset
managers to design interventions, where standard deviation
and mean over a defined length and power spectral density
are among the standardised TQIs in EN 13848-5 (2008).

Various railroad administrations have tailored their own
TQIs to fit the local network characteristics, which can be
generally categorised into objective TQI and synthetic/artifi-
cial TQI (Lasisi & Attoh-Okine, 2018). The former refers to
using individual-parameter measurements to formulate an
indicator and addresses a specific aspect of the track geo-
metric quality, e.g. track roughness index (the US) (Sadeghi,
2010) and Canadian TQI (Roghani, 2017). The latter devel-
ops a mathematical function that describes the track geo-
metric quality by aggregating all the parameters into one
equation, e.g. China railway TQI (Bai et al., 2015; Xu, Sun,
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Liu, & Wang, 2011), Q index from ProRail of the
Netherlands and Sweden TQI (Attoh-Okine, 2017).

However, they lack consensus in approach, resulting in
conflicting inference on the track condition (Movaghar &
Mohammadzadeh, 2020). Synthetic TQIs are often

dimensionless and lack physical meaning (Lasisi & Attoh-
Okine, 2018). Some select specific track geometry parame-
ters while dropping others, or assign subjective weights of
the parameters to the synthetic indexes; also, aggregating
track geometry measurements for an extended length of
track may miss exceptions implying safety risk (Lasisi &
Attoh-Okine, 2019).

Some researchers have proposed objective TQIs using
unsupervised machine learning to overcome the identified
shortcomings. Lasisi and Attoh-Okine (2018) proposed prin-
cipal component analysis (PCA) to combine 31 track geom-
etry features in a low dimensional form without losing
much variability in the data. The extracted three principal
components were tested better at predicting the defects than
the synthetic TQIs. In Lasisi, Merheb, Zarembski, and
Attoh-Okine (2019), they extended their work to employ
both PCA and T-stochastic neighbour embedding as dimen-
sion reduction techniques on the railway geometry data.

Figure 6. Schematic representation of track geometry parameters.

Figure 7. (a) A bridge transition zone with an uneven profile; (b) Longitudinal level measurement at the location, wherein the blue dotted line indicates the nom-
inal value and red dotted lines are the intervention limits.

Figure 8. Main components in a vehicle system and locations of axlebox, bogie
and carbody.
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Further, they fused the safety concern into the TQI in order
to capture track geometry exceptions in the index (Lasisi &
Attoh-Okine, 2019).

Another method in developing novel TQIs is based on
statistical analysis. Falamarzi, Moridpour, and Nazem (2019)
used Pearson correlation to measure the correlation between
existing and previous values of each track geometry param-
eter, where a strong correlation was identified in gauge and
twist so that they were incorporated in TQI development.
Sadeghi (2010) investigated the railway geometry data by
statistical distributions, where a normal distribution pattern
was found best fitting frequency curves of the geometry
parameters; new TQIs were developed based on the distri-
bution features. The current deterministic TQIs cannot cap-
ture the inherent uncertainty when classifying the track
condition against the maintenance thresholds. Movaghar
and Mohammadzadeh (2020) proposed a stochastic TQI
based on a Bayesian framework to incorporate the uncer-
tainty and this strategy was applied to a 900-km long track
line in Iran.

3.2. Prediction of track geometry degradation

Once converting the raw data to a proper TQI, a mathemat-
ical function that describes the track degradation process
and predicts the future state can be formulated to inform
the maintenance decision-making. Initially, the settlement is
mainly considered the controlling degradation factor in the
ballasted tracks, and many researchers developed degrad-
ation models describing the ballast settlement due to its
major role in the overall track settlement. The quantitative
modelling of degradation for granular and porous materials
is extremely complex and sensitive to specific material prop-
erties so that many settlement relations have been tuned to
fit the particular data either from in-situ or laboratory tests
(Dahlberg, 2001). A detailed review of these models is pre-
sented in Dahlberg (2001). These mathematical formulations
are empirical/phenomenological models. Compared with the
mechanistic models, they are generally easier to handle but
lack of physical interpretations. Renewed interests in these
models refer to their coupling with the vehicle-track inter-
action models for numerical settlement prediction, as men-
tioned in sub-section 2.3.

Significant improvement in track geometry measurement
techniques, especially the onboard measurements, enables
the access to large volumes of data reflecting the real track
condition, where statistical models have been widely pro-
posed and an emerging research stream applies machine
learning tools for predictive analytics of track degradation.
Higgins and Liu (2017) and Soleimanmeigouni, Ahmadi, et
al. (2016) have reviewed statistical modelling of track geom-
etry degradation. The current review built upon these
reviews incorporates the recent literature on machine learn-
ing applications and provides a taxonomy based on the
methods and modelling purposes to facilitate the model
comparison, which is presented in Table 1.

Statistical and machine learning (ML) models are distin-
guished in data-driven models for track geometry

degradation. ML as a sub-field of computer science refers to
the ability of a system to learn and improve performance
from experience, which is widely understood as methods
that analyse data, extract patterns and make predictive ana-
lysis from often rich and unwieldy data. ML has its founda-
tion on statistics, but their major difference lies in the
volume of data involved (Bzdok, Altman, &
Krzywinski, 2018).

Machine learning techniques used in track geometry data
analytics can be categorised into unsupervised and super-
vised learning. In unsupervised learning, data are not
labelled and no response variables are observed. The motive
is to find hidden patterns in input data, which, as described
in sub-section 3.1, is applied to extract objective TQIs from
the track geometry data. Clustering analysis and dimension
reduction are the primary classes of algorithms. Supervised
learning involves observable response variables to guide the
learning process. It deals with predictive analytics based on
the labelled data for both input and response variables,
where classification and regression algorithms are pri-
mary groups.

3.2.1. Statistical approach
The first sub-category of statistical approaches characterises
the track geometry degradation by deterministic models,
where regression techniques have been extensively used to
describe the relationships between track geometry degrad-
ation and explanatory variables, e.g. time, accumulated ton-
nage, speed, subsoil type. Its application varies from simple
linear regression, exponential regression to multivariate
regression. Considering the nonlinear degradation process,
Liu et al. (2010); Xu et al. (2011) divided the process into
tiny time slots and used least squares regression to approxi-
mate the degradation over a time slot. A repeated substitu-
tion was made in the process by using updated inspection
data, and a family of the estimated regression equations
forms a prediction model.

Westgeest et al. (2012) incorporated the effect of the
subsoil type, sleeper type, tonnage and engineering struc-
tures beneath the track on the track geometry degradation
in a multivariate regression model. Further, a log-trans-
formed regression model was proposed to map the degrad-
ation with explanatory variables, where a survival model
characterising the derailment risk and an optimisation
model for maintenance planning were coupled (He, Li,
Bhattacharjya, Parikh, & Hampapur, 2015). Similar
approaches have been applied in Guler, Jovanovic, and
Evren (2011) and Lyngby (2009) with different operating
contexts and influencing variables. Some other studies also
adopted linear regression to model the track geometry deg-
radation path but extended the models to link covariates
such as tamping effect and spatial dependencies between
adjacent track sections to make the models more realistic
(Andrade & Teixeira, 2013; Soleimanmeigouni, Ahmadi,
Khajehei, & Nissen, 2019).

As the current synthetic TQIs provide an aggregate pic-
ture of the track segment condition, isolated track geometry
defects that exceed the thresholds may not be captured.
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Some studies incorporated the defects to predict corrective
maintenance needs, which can be supported by logistic
regression, survival analysis and classification algorithms.
Classification algorithms as a branch of machine learning
are presented in the next sub-section. Logistic regression is
part of regression analysis but deals with the binary classifi-
cation problem. When the degradation path exceeding the
threshold is deemed as a defect, track condition can be clas-
sified as normal and defected states, and logistic regression

by its nature is suitable in solving this problem, cf. Andrade
and Teixeira (2014), Khajehei, Ahmadi, Soleimanmeigouni,
and Nissen (2019), Sharma, Cui, He, Mohammadi, and Li
(2018) and Soleimanmeigouni et al. (2019). Survival analysis
is widely used to model the uncertainty in system lifetimes.
As a common distribution candidate in survival analysis,
Weibull distribution has been used to estimate the probabil-
ity of track defects (Alemazkoor, Ruppert, &
Meidani, 2018).

Table 1. Summary of data-driven approaches used for track geometry data analytics.

Approach Subcategory Example models Modelling purposes References

Statistical approach Deterministic models Linear regression,
exponential regression

To simply model track
geometry degradation w.r.t
time/tonnage

Andrade and Teixeira (2013);
Liu et al. (2010);
Soleimanmeigouni et al.
(2018); Soleimanmeigouni et
al. (2019);
Xu et al. (2011)

Multivariate regression,
logistic regression

To establish a relation
between degradation and
influencing factors

Guler et al. (2011);
He et al. (2015);
Lyngby (2009);
Westgeest et al. (2012)

Logistic regression,
survival analysis

To estimate the probability
of occurrence of isolated
geometry defects

Alemazkoor et al. (2018);
Andrade and Teixeira (2014);
Khajehei et al. (2019);
Sharma et al. (2018);
Soleimanmeigouni et al.
(2018); Soleimanmeigouni et
al., 2019)

Probabilistic models (Continuous) Gamma process,
Wiener process;
(Discrete) Markov chain

- To capture the uncertainty
of track geometry
degradation over time
- To estimate the time period
when:
� the degradation path hits
the maintenance thresholds
(continuous)
� the condition state
transferred to the next
state (discrete)

Bai et al. (2015);
Galv�an-N�u~nez (2017);
Meier-Hirmer et al. (2009);
Mercier et al. (2012)

Hybrid models Linear regression coupled
with ARMA; Bayesian
framework coupled with
regression and conditional
autoregressive model

To account for spatial
correlation of degradation in
adjacent track section

Andrade and Teixeira (2013);
Soleimanmeigouni et
al. (2018)

Machine learning
approach

Classification Support vector machine,
decision tree, ensemble
learning (e.g. random forest),
linear discriminant analysis,
Naïve Bayes

To predict the track
(discretized) state for the
next inspection/ to predict
the occurrence of
geometry defects

Bai et al. (2016);
C�ardenas-Gallo et al. (2017);
de Rosa et al. (2020);
Hu and Liu (2016);
Lasisi and Attoh-Okine
(2018);
Sharma et al. (2018)

Regression Decision tree regression,
random forest regression,
support vector regression

To predict the continuous
values that are representative
of the track condition

Lee et al. (2018);
Martey et al. (2017)

Artificial neural networks To predict the track condition
by considering complex
relationships between
independent and
dependent variables

Guler (2014);
Lee et al. (2018)

Clustering Hierarchical clustering, k-
means clustering

Group geometry data points
according to their similarity
to evaluate the effect of
interventions on
geometry condition

Martey et al. (2017)

Dimension reduction Principal component analysis,
T-stochastic
neighbour embedding

- Reduce geometry data from
higher-dimensional space to
lower dimensions
- Produce objective TQIs to
characterise the degradation

Lasisi and Attoh-Okine (2018,
2019);
Lasisi et al. (2019);
Martey et al. (2017);
Sharma et al. (2018)
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Track degradation is a stochastic process, affected by het-
erogeneous factors along the track. The deterministic mod-
els only consider the nominal degradation behaviour and
the resulting maintenance policies may not be robust in the
presence of randomness. The second sub-category of statis-
tical approaches uses probabilistic models to describe the
degradation dynamics and account for the inherent uncer-
tainty, using theories from stochastic processes, Bayesian
inference, etc.

Gamma process is a stochastic process with independent
and non-negative gamma-distributed increments (Van
Noortwijk, 2009). The feature determines its applicability to
characterise monotonic degradation processes, e.g. track
geometry irregularities can only grow without interventions.
A gamma process model was proposed to describe the evo-
lution of longitudinal level defects, where a cost model was
linked for maintenance optimisation (Meier-Hirmer,
Riboulet, Sourget, & Roussignol, 2009). Further, the work
was extended by a bivariate gamma process to include align-
ment in the prediction (Mercier, Meier-Hirmer, &
Roussignol, 2012).

Wiener process relaxes the monotonicity, allowing varia-
tions in the degradation level caused by interventions and
measurement errors. It starts at zero and is continuous in
time with independent and Gaussian increments. Galv�an-
N�u~nez (2017) formulated the degradation path of each track
geometry parameter as a Wiener process and the model
parameters were estimated by Bayesian inference. The fail-
ure time within a maintenance cycle was estimated from the
degradation sampling paths. Rather than treating the deg-
radation process as continuous, Bai et al. (2015) classified
the track condition into four ranks based on Chinese TQI
and described the deterioration process as Markov chains,
where transition probabilities between states incorporated
tonnage and line horizontal layout as explanatory variables.

The stochastic process-based models are directly linked
to maintenance decision making. They are useful in predict-
ing track condition within a maintenance cycle. For con-
tinuous processes, the track section is considered as defected
when the selected TQI is beyond the predefined threshold,
calling for interventions. As shown in Figure 9, the first hit-
ting time when the degradation path exceeds the threshold
can be estimated and its inherent uncertainty is quantified
by a probability distribution, which contributes to the main-
tenance knowledge regarding the remaining time before
interventions. For discrete processes, the track condition is
classified into finite states where each is associated with a
maintenance decision. However, the limitation of these
Markov processes is their basic working principle,
Markovian property, where the future state is only based on
the current state, independent of the past state. Besides, the
model complexity may restrict their applicability when more
track geometry data covering more lines or an entire net-
work is generated in the analysis.

Apart from quantifying the temporal variability of deg-
radation process through the stochastic processes, a few
researchers accounted for spatial dependencies of degrad-
ation in consecutive track segments, as the neighbouring

segments having similar structural and operational features
tend to exhibit similar degradation patterns (Andrade &
Teixeira, 2013; Soleimanmeigouni, Xiao, et al., 2018). This
modelling purpose usually requires a hybrid model combin-
ing a regression model with techniques specifically address-
ing the spatial variability in regression parameters.
Therefore, this type of modelling is categorised as hybrid
models in Table 1.

3.2.2. Machine learning approach
Supervised learning algorithms are mostly applied in fore-
casting track geometric quality, which can be further cate-
gorised into classification and regression problems. The
former is applicable when output variables are discrete/cat-
egorical and the latter deals with continuous variables
(Martey, Ahmed, & Attoh-Okine, 2017).

Classification aims at finding to which category a new
instance belongs to, based on knowledge obtained from the
training of observed instances. Considering the track condi-
tion featured by a TQI is either within or beyond a thresh-
old, the problem is a well-posed binary classification
problem (de Rosa et al., 2020), where support vector
machine (SVM) and decision tree (DT) are commonly
adopted to predict the defect occurrence. They can deal
with both regression and classification problems. In classifi-
cation, SVM separates data into different classes by trans-
forming data into high-dimensional space through a kernel
function and dividing them with decision boundaries (de
Rosa et al., 2020; Sharma et al., 2018). The kernel trick
makes the SVM unique classifier that can map non-separ-
able data into high-dimensional space and make it separable
(de Rosa et al., 2020). DT compared with SVM has better
interpretability and representation. It is a rooted tree that
splits a complex decision into several simpler and more
interpretable decisions (Martey et al., 2017). The TQIs are
predictors and the classes to be mapped are target variables,
formulating a top-down approach to construct a DT.

Hu and Liu (2016), based on Federal Railroad
Administration (FRA) regulations, initially proposed SVM
to predict the change in defect amplitude considering the
effect of track class, traffic volume and inspection intervals.
Irregularities in profile, cross-level and dip (the maximum
value of track longitudinal levelling within a certain length)
were involved in the model training. More recently,
C�ardenas-Gallo, Sarmiento, Morales, Bolivar, and Akhavan-
Tabatabaei (2017) considered the same types of defects and
constructed an ensemble methodology for predicting the
occurrence of the more-severe defect.

Sharma et al. (2018) also based on the FRA policy
applied random forest, SVM and logistic regression on a
record of track geometry defects to predict the defect occur-
rence. Random forest is an ensemble learning method com-
prising of multiple DTs during training, where each DT is
constructed from a random subset of predictors and ran-
dom variables. The ensemble aims at correcting the overfit-
ting problem often encountered in training the DT models.
A total of 30% of recorded defects were used as test data
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and random forest appeared to have the best prediction
performance.

While most studies analyse the irregularities in longitu-
dinal level measured from TRV, de Rosa et al. (2020)
applied DT and SVM to monitor the irregularities in align-
ment and cross-level from lateral and roll bogie accelera-
tions. The training phase only used data simulated from an
MBS and the trained models were tested against the
onboard measurement. Instead of binary classification, Bai,
Liu, Sun, Wang, and Wang (2016) discretised the track con-
dition into four rank states based on the Chinese TQI and
maintenance policy and proposed a tree-augmented naïve
Bayes classifier to forecast the track state for the
next inspection.

A few studies have treated the forecasting of track geo-
metric quality as regression problems. Martey et al. (2017)
studied a mile of track in the US, where a renewal was con-
ducted during the analysis period. They combined unsuper-
vised and supervised learning on TRV data to estimate the
effect of geocell installation on the track geometry condition.
The inherent complexity in track geometry degradation is
caused by heterogeneous factors. Guler (2014) applied artifi-
cial neural networks (ANN) model to map the relationships
between the degradation and influencing variables using
field data. The influencers involve eight mechanical inputs
and four environmental factors, which were mostly treated
as dummy variables. The study indicated that ANN is par-
ticularly useful in learning complex relationships between
track condition and multiple interacting factors related to
track design, environment and operation. Another applica-
tion example is found in Lee, Hwang, Choi, and
Kim (2018).

3.3. Maintenance intervention planning

Maintenance planning is considered the final step in the
macro-level decision making, which couples the prediction
from the degradation modelling and determines when and
where to perform the maintenance over a planning horizon.

Tamping is considered effective in treating track geometry
defects and is widely studied. Several optimisation tools for
tamping scheduling have been formulated, such as integer
linear programming (Dao, Basten, & Hartmann, 2018),
mixed-integer linear/nonlinear programming (Famurewa,
Xin, Rantatalo, & Kumar, 2015; Gustavsson, 2015; Khajehei
et al., 2020; Vale & Ribeiro, 2014; Wen, Li, & Salling, 2016),
and heuristic methods (Khajehei et al., 2020; Zhang,
Andrews, & Wang, 2013). The parameters of interest
include cost, possession time, the total number of tamping
operations over a planning horizon, and track condition
captured by TQIs. Another important aspect embedded in
the optimisation is to model the tamping effect on the track
geometric quality, i.e. changes in both the degradation level
and degradation rate, as tamping is imperfect maintenance.

However, the local track geometry issues in point assets
may not be effectively rectified by tamping. As evidenced in
Le Pen et al. (2014), hanging sleepers reoccur soon after the
tamping applied at a level crossing approach. Results from
investigating the dependency between track geometric qual-
ity and longitudinal variations of vertical stiffness in Nielsen
et al. (2020); Roghani and Hendry (2017) also confirmed
the observation: uneven profiles with high degradation rates
often occur on track sections with a combination of a high
gradient and low magnitude in substructure stiffness.
Further, Yurlov, Zarembski, Attoh-Okine, Palese, and
Thompson (2019) linked the occurrence of track geometry
defects with subgrade parameters measured by ground-pene-
trating radar (GPR).

GPR is a continuous non-destructive testing method that
measures layer configuration, moisture content and fouling
condition to provide a detailed picture of the ballast and
substructure conditions. The results revealed a significant
relationship between high rates of track geometry degrad-
ation and poor track subsurface conditions. This is similar
to the case in the level crossings, where, in addition to the
stiffness longitudinal variations, the approaches are suscep-
tible to fouling and drainage issues (Shang, van den
Boomen, de Man, & Wolfert, 2019). In this case, tamping

Figure 9. Schematic representation of degradation path as modelled by a continuous stochastic process (FHT: first hitting time).
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may not be a cost-effective long-term solution and upgrad-
ing the ballast or subgrade layer should be considered to
solve the problem.

Another intervention dealing with the local degradation
in level crossings is replacement. Normally the replacement
of rail and the corresponding fastening components at
crossing areas is associated with the ballast renewal. Rose
(2011) and Le Pen et al. (2014) have set up instrumentation
to assess their performance before and after the renewal.
Few studies have dedicated to optimal maintenance plan-
ning on the level crossings. Shang et al. (2019) developed a
reliability-based lifecycle costing model for the embedded
rails in level crossings. The modelling shows the optimal
timing of replacement between the actual rail reliability pro-
file, financial parameters, and maintenance policies.
However, the track geometry degradation at the approaches
is not included.

4. Perspectives and future direction

The review follows the bottom-up approach aiming to pro-
vide a complete picture of which perspectives are related to
the maintenance management for the discrete railway assets,
especially the level crossings, what types of approaches have
been proposed, which techniques are used to develop the
models, and what is missing in terms of the efficient man-
agement for multiple point assets. The responses to these
questions are summarised below, and the research gaps that
pave the way to the future research direction are
also elaborated.

The model development in the two levels of asset man-
agement generally shares the modelling sequence: selecting
input and output variables, formulating a functional rela-
tionship between the variables and parametrising the model:

� The micro-level investigation mainly adopts the mechan-
istic approach, where the choice of the variables and
form of the model are based on first principles. Detailed
knowledge of site-specific conditions and a wide range of
track and vehicle parameters are required as input varia-
bles. Track responses used to evaluate the dynamic track
performance are often axle accelerations, wheel forces,
sleeper deflection, etc. The model calibration is normally
based on small-scale trackside experimentation.

� The macro-level management process essentially adopts
a data-driven approach where all the three tasks are
handled by historical data, taken from large-scale net-
work measurements gathered through TRV/sensor-based
monitoring. Influencers treated as inputs can be sum-
marised as endogenous and exogenous variables: the for-
mer is related to track configuration in constituting
components and the latter considers the impact from
operational characteristics, maintenance regime and
environmental conditions. The outputs are TQIs that
capture the track condition over time.

A comparison of the two approaches is summarised in
Table 2. Mechanistic models may consider short- and long-

term analyses. Short-term performance evaluation is useful
in investigating the track responses at various levels and
locations of track components during train passage. They
can adapt to complex site situations such as variation in
track constituting properties, train loading, and velocity.
Another strength is that one single model can work out
multiple design options through parametric studies, lending
itself to testing various track design solutions to optimise
track performance and reduce maintenance routines.

The long-term numerical prediction mostly concentrates
on one-dimensional evolution of the railway geometry,
settlement, embedding an empirical settlement law to sup-
port the iterative computation procedure. However, the
mechanical properties of vehicles and track may vary in
time and space and difficult to quantify. Proper understand-
ing of physical mechanisms behind the degradation requires
integrating field instrumentation with the models for valid-
ation. The instrumentation is often site-specific and carried
out over a short period. This means the mechanistic models
are applied at the individual asset level. They are limited in
accounting for the spatial and temporal variability in deg-
radation, hampering the accurate prediction of the track
settlement and generalisation of the results to other sites
of interest.

Data-driven models have better predictive capability. The
track geometric quality of a 200-m track segment is often
aggregated to evaluate the overall condition of a track line
or entire network, and the threshold exceedance-based pol-
icy is adopted to support tamping operations. Probabilistic
models can treat the uncertainty in track degradation; multi-
variate regression or more advanced ANN models can reveal
complex relationships between track performance and
exogenous variables, which cannot be coped with by the
mechanistic approach. However, the prediction accuracy of
the data-driven models depends on the quality and quantity
of historical data. These models are blind to physical sources
of degradation and unable to account for internal factors
related to the structure itself (Steenbergen, 2013).

When reflecting these perspectives on the level crossing
assets, the following remarks are considered necessary for
future direction. In the micro-level analysis, apart from sev-
eral field experimentation cases at level crossings, little con-
cern has been engaged to the track dynamic analysis at
transitions to level crossings. There are several ways to care-
fully design transitions onto bridges and over culverts to
minimise the dynamic loading. However, there are no rec-
ognised transition designs for level crossings, which is also
confirmed in Le Pen et al. (2014). The level crossings are
common areas where ballasted tracks meet slab tracks (e.g.
the use of embedded rail system in the crossing). The opti-
mal design for both the crossing and transition areas is sel-
dom studied and synchronised. Also, as the level crossings
represent jointly used areas by rail and road traffic, a bal-
anced crossing design is necessary that provides gradual and
smooth transitions to both the roadway and highway
approaches. The potential problems caused by the lack of an
effective track design at level crossings could be alleviated
with an alternative design solution, where more field
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experiments and numerical studies dedicated to the level
crossings are suggested.

From a macro perspective, it was found that the main-
stream in existing railway geometry data analytics focuses
on the degradation of open tracks while neglecting the local-
ised degradation features in the point assets, which is
reflected in the selection of TQI and maintenance type:

� TQI: the intervention planning is mostly supported by
TQI-based trend analysis, where the standard deviation
of longitudinal level (in wavelength 3–25 m) over a 200-
m track segment is a decisive factor. The aggregate TQI
however may not capture the localised degradation fea-
ture or highlight the higher degradation rates in the
point assets as these assets normally extend up to a few
metres or tens of metres. Practically, the inspection on
these point assets especially the level crossings is often
made by regular manual checks (Shang et al., 2019).
There is a need to convert the track geometry data to
specific track features at point assets to inform
local attention.

� Maintenance type: the TQI-based trend analysis is gener-
ally used for tamping optimisation, mostly coupled with
a condition recovery model and replacement concern.
Tamping is effective in packing the ballast layer but may
not help correct the track geometry defects and hanging
sleepers at approaches to the point assets, where the root
cause mostly lies in the substructure level. Upgrading the
ballast or subgrade layer should be considered as an
alternative.

The question which interventions to undertake at the
point assets necessitates the proper evaluation of track sub-
structure condition, which requires the synchronised meas-
urement of track layout and stiffness. The stiffness
measurement is effective to reveal the potential substruc-
ture-related problems. Since filtering track profile data in
different wavelengths has specific indications about types of
defects, the filtering results can be synchronised with stiff-
ness measurement to refine the defect diagnosis along the

track lines, where localised degradation features at point
assets are more likely to be captured without manual inspec-
tion and interventions specific to the identified issues can be
followed. A more advanced way is to synthesise GPR meas-
urement with railway geometry and stiffness measurement
as GPR provides additional valuable insight into the sub-
structure condition related to the moisture and foul-
ing condition.

While existing TQI may not capture the defect-proneness
of the point assets, hybrid TQI derived from the combined
measurement is suggested as it can ease the track character-
isation and provide a more precise detection of the poor
track condition for proper maintenance treatment. Feature
extraction techniques can be applied to define TQI: PCA
and T-stochastic neighbour embedding have been tested in
mining the railway track geometry data for the open track,
and many other methods are underexplored.

As wavelength contents of track geometry defects are
inherently related to the specific issues of vehicle-track
interaction, full-spectra track geometry filtering is suggested
to be incorporated in the TQI development and degradation
modelling in order to avoid omission of potential types of
defects, where most studies only considered the wavelength
range 3–25m. Besides, the evolution of track geometry
irregularities is mainly investigated in the time domain, and
application of spectral analysis is not as widely used as the
time-domain methods. Since the spectral analysis reveals
frequency components in the track geometry defects, it pro-
vides a better understanding of the vehicle-track interaction
mechanism, showing a great potential to link to the rail
track models.

Further, the hybrid TQI that refines the defect diagnosis
can be linked to degradation modelling and maintenance
decision support and extended from the individual asset
level to the system level. Deterministic models are not rec-
ommended in the degradation modelling as this type of
models only captures the nominal degradation dynamics
and the resulting maintenance policies may not be robust
enough in the presence of randomness, e.g. the heterogen-
eity in asset features, degradation levels, and operating

Table 2. Comparison of mechanistic and data-driven approach.

Mechanistic model Data-driven model

Aim - To provide physical interpretations on structural
degradation
- To analyse the impact of mechanical properties and
operational variables on track degradation
- To improve the engineering design & maintenance
measures at an individual asset level

- To predict track degradation for maintenance planning
& optimization
- To discover complex relationship between
heterogenous influencing factors and track degradation
- To capture the inherent uncertainty of track
degradation in the modelling

Required data/information - Site specific measurement: accelerometer,
deflectometer, geophones, digital image correlation, etc.
- Track & vehicle design parameters
- Operational characteristics

- Network measurement: track geometry measurement
(TRV or onboard sensors)
- Maintenance history
- Operational characteristics
- Environmental conditions

Approach - Analytical modelling
- Numerical modelling

- Statistical approach
- Machine learning approach

Applicable context - Mostly transient analysis to investigate dynamic track
responses under train loading
- Long-term analysis where a numerical model is coupled
with an empirical model for settlement prediction

Long-term analysis for track geometry defect prediction
and maintenance planning
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context, considering the large quantity of point assets on a
network. Group maintenance for multiple point assets with
similar conditions on the network can be added in this con-
text by using optimisation tools. Economic dependence
encompassing the set-up cost (sharing) dependence and
operational downtime dependence over multiple assets is
embedded as a potential benefit in system-level maintenance
decision making.

5. Conclusions

As part of the network infrastructure, the discrete railway
assets play a supporting role in the network functioning.
Compared with the open track, they are limited in length,
but their attributes of large quantity, scattered locations,
localised degradation, and potential heterogeneity determine
their critical role in network railway maintenance manage-
ment. The current review synthesises different perspectives
related to maintenance management of the point assets,
and, as little concern has been engaged to the level cross-
ings, the review adds a new dimension and emphasises on
providing a solution to apply maintenance on multiple level
crossing assets to ensure asset reliability and service con-
tinuity at the network level, which is also applicable for
other discrete types of railway assets.

The systems-thinking way has been engaged in the syn-
thesis and two levels of asset management are used to struc-
ture the relevant studies. The mechanistic and data-driven
approaches shed light on different aspects of the degradation
and both contribute to the maintenance knowledge: the for-
mer is useful in developing countermeasures to solve local
issues such as differential settlement and reduce the main-
tenance routines; the latter strives for optimal planning of
regular interventions, where tamping has been the most
studied maintenance operation.

Unlike bridges and culverts, the optimal design for the
level crossings and transition areas is seldom studied and
synchronised. Besides, for the regular intervention, tamping
may not help solve the local defects at the point assets,
where ballast upgrading or other measures are alternatives
to testing and comparing. This necessitates the synchronised
measurement and refined diagnosis of the track issues, espe-
cially at the substructure level. Hybrid TQI derived from the
combined measurement is suggested. This can be linked
with maintenance decision support and further extended to
network maintenance planning to ease and optimise the
management process. Relevant techniques that can be used
in this process are also elaborated.
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