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A B S T R A C T

Fitting a smooth curve to 2D, a surface to 3D, and a manifold to 4D irregular point cloud data is becoming a
common practice in many engineering and science applications. Piecewise-polynomial spline functions provide a
powerful tool applicable to interpolation and approximation problems. This study presents the least squares B-
spline approximation (LSBSA) theory, which is a generalized version of the spline interpolation and can be
applied to any irregularly scattered point cloud data at knots specified by the user. The formulation allows to
apply the well-established body of knowledge of least squares theory to the B-spline approximation. This for
example has the benefit of embedding quality control measures such as hypothesis testing and proper error
propagation to assess the quality of the approximation problem. The method is applicable to many 1D curve, 2D
surface and 3D manifold fitting problems of which both simulated and real data are used to illustrate the efficacy
of the proposed theory. In particular, its real-world applications to multi-beam echo-sounder bathymetric data,
digital terrain modeling and Greenland ice sheet deformation monitoring will be highlighted. The performance of
the method for linear, quadratic, cubic and quartic spline functions will be investigated. The primary application
of LSBSA lies in its ability to perform 3D manifold fitting for deformation monitoring. This capability provides
the possibility of monitoring changes in continuous spatial and temporal domains. The Python and Matlab source
codes of LSBSA are freely accessible at https://github.com/tudelft4d/lsbsa.

1. Introduction

Curve and surface fitting problems by means of interpolation and
approximation of point cloud data have applications in geometric
modeling, reverse engineering and computer vision [1]. One such
application is to model point clouds of objects, buildings, in-
frastructures, land surface and seabed. Examples of collected geospatial
point clouds are laser scanning data, multi-beam echo-sounder data and
InSAR data. Other applications include computer aided geometrical
design and 3D-printing.

Appropriate approximation and modelling of point cloud data has
advantages above using the raw observations due to the following rea-
sons: i) The original data usually contain noise and outliers, and if not
accounted for, it is rather difficult to extract patterns of interest from
such noisy observations [2,3]. ii) Huge amount of data in point clouds
makes the processing and interpretation of results difficult. A point
cloud approximation by piecewise polynomials provides a surface

description consisting of, in general, a much smaller number of co-
efficients than the number of raw observations. This is in conjunction
with manifold learning, as a dimension reduction algorithm for high-
dimensional data splines [4]. iii) Time series analysis of point clouds
(e.g. for deformation monitoring of objects) requires structured data sets
because the irregularly scattered data points cannot be directly
compared between successive epochs. iv) Deterministic modelling of
data allows to obtain analytical expressions and hence to extract func-
tion values and their derivatives, e.g. its gradients, as a tool for defor-
mation monitoring. v) Appropriate approximation is a way to generate a
watertight surface implicitly defined at any desired location. Approxi-
mation and modelling of point cloud data can be performed by the least
squares method [5], which will be elaborated upon in the present
contribution.

One of the widely used tools for continuous surface representation is
the parametric spline surface, having an explicit mathematical expres-
sion. They are among the simplest functions frequently used in many
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approximation problems [6]. In the context of raster interpolation, the
term ‘spline’ refers to piecewise-polynomial splines. 1D and 2D spline
polynomials can be defined at any polynomial order. Examples include
first-order polynomials, called linear splines, which have to be contin-
uous at their knots. Second-order polynomials are quadratic splines,
which are continuous and have continuous slopes at their knots. Cubic
splines impose their continuity, and have continuous slopes and curva-
tures at the knots [7].

Different types of spline functions have been introduced in literature.
They include B-splines [8–10], thin plate splines [4], T-splines [11],
triangular B-splines [12], and locally refined B-splines [13,14]. The B-
spline, imposing the above continuity constraints in an implicit form, is a
function that has non-zero values only within a certain interval of its
definition. The theory of B-splines was first introduced in [15], and it has
gained attention because they are well-conditioned and can easily be
implemented [16]. In recent years, with the development of data
acquisition techniques and the production of point clouds, the use of B-
splines in interpolation, approximation and modeling of 3D surfaces has
received serious attention [17]. The ability of B-splines to reconstruct
complex shapes has made these functions highly effective in point cloud
approximation [18]. Applications of spline functions have been
demonstrated in geoscience problems like cycle slip detection in GPS
carrier phase observations [19], estimating calibration curve in sonar
systems [20], and combining regional and global geoid models [21].

The B-spline polynomial approximation has also been used for
wavefront estimation [22]. Unlike the conventional Shack-Hartmann
sensors, which primarily use Zernike polynomials effective for circular
apertures, B-Spline approximations are excellent at dealing with rect-
angular or ring-shaped light beams and surfaces with local irregularities.
Constructed from the tensor product of basis functions defined over knot
vectors in two directions and associated coefficients, B-spline surfaces
have advantageous properties such as non-negativity and linear inde-
pendence from B-spline curves. Studies have shown that B-spline ap-
proximations provide superior estimates of optical surface flatness and
curvature compared to Zernike polynomials, particularly under chal-
lenging conditions involving noise and missing data [23,24].

This work employs B-splines and least squares approximation, a well-
known methodology for surface fitting. Our method is framed within the
context of Locally Refined (LR) B-splines, which provide a robust
alternative for datasets with significant local variability. Dokken, et al.
[25] first introduced LR B-splines, showcasing their capability for pro-
gressive local refinement in axes-parallel partitions. Skytt, et al. [26]
demonstrated LR B-splines’ ability to represent terrain data compactly
by adapting the resolution of the spline space to local data features,
combining least squares and multilevel B-spline approximation to
handle large, complex datasets effectively. Their work highlights the
potential of LR B-splines for applications requiring both global
smoothness and localized detail. Recent advances, such as [27], have
extended these methods to incorporate fault jump estimates for adaptive
spline constructions, while [28] highlighted LR B-splines’ practicality
for GIS applications and their statistical optimization. In our study,
tensor product B-spline surfaces will be used due to the relatively
smooth nature of the data, which does not exhibit the extreme local
variability where LR B-splines excel. While LR B-splines would provide
additional flexibility for datasets with heterogeneous features, their
computational overhead may not be justified for uniformly distributed
data. Notably, for the data analysed in this article, which includes multi-
beam echo-sounder data, the laser scanner data and the Greenland ice
sheet mass data, the local variability is well-distributed, indicating that
local refinements are unnecessary.

In this paper, we introduce the theory of least squares B-spline
approximation (LSBSA), which offers innovation in two key aspects. i)
The formulation of LSBSA in terms of least squares theory enables the
application of well-established principles from this theory to B-spline
approximation. This approach provides several advantages, including
the integration of quality control measures such as hypothesis testing

and accurate error propagation for evaluating result reliability. For
example, hypothesis testing can be employed to determine optimal knot
placement and the degree of the B-spline polynomial, ensuring a balance
between model complexity and data fit. In addition, it can be applied for
outlier detection, which allows the identification and exclusion of
erroneous observations. ii) Deformation analysis in many engineering
applications is often conducted using high order numerical manifold
methods (HONMMs) [29]. In HONMMs, stress and strain parameters,
the two key parameters in deformation analysis, commonly exhibit
discontinuous at the boundary between elements, and these methods are
restricted to solving solely 2D problems [30]. Therefore, it is essential to
develop an effective method capable of handling 3D problems in a
continuous form [31]. LSBSA offers a solution for deformation analysis
through 3D manifold fitting, which also guarantees the continuity of
functions at cell boundaries across spatial and temporal domains.

This paper is organized as follows. Section 2 presents the least
squares B-spline approximation (LSBSA) method, as a generalized form
of LS-BICSA proposed in [20]. The topics to be addressed are B-spline
polynomials, the 1D curve fitting problem, the 2D surface fitting prob-
lem, and the 3Dmanifold fitting problem, all formulated within the least
squares framework. Section 3 applies the existing body of knowledge of
the least squares theory to LSBSA. In particular the quality control
measures, hypothesis testing to identify outlying observations and
proper error propagation laws can directly be extended to LSBSA. Nu-
merical results are presented in Section 4. Both simulated and real-world
applications are presented to illustrate the theory. For the real-world
applications, we will investigate the performance of LSBSA method in
earth surface modelling using multi-beam echo-sounder bathymetric
data, terrestrial laser scanner data, and GRACE liquid water equivalent
(LWE) thickness time series over the Greenland region. Section 5 pre-
sents the conclusions.

2. Least squares B-spline approximation (LSBSA)

In this section, we present the least squares B-spline approximation
(LSBSA). LSBSA can be applied to 1D curve, 2D surface, and 3Dmanifold
fitting problems. The method uses the basis spline (B-spline), which is a
piecewise polynomial function of a given degree. The details are pro-
vided in the following five subsections.

2.1. B-spline function

A spline function of order p+1 is a piecewise polynomial function of
degree p in a variable u, which is referred to as pth-degree piecewise
polynomial spline function. The places where the pieces meet are known
as knots λ0, λ1,⋯, λh (h ≥ p + 1). The key property of the spline function
is that it is continuous and has continuous derivatives up to and
including degree p − 1 at the intermediate knots λ1,⋯,λh− 1.

There are different methods to make spline functions. B-splines are
among the methods frequently used in many applications. B-splines of a
given order are required as basis functions to construct a spline function
of the same order defined over the same knots. The B-spline satisfies
[16]

Bi,p+1(u) ≡
{
∕= 0 if λi ≤ u < λi+p+1
= 0 else (1)

If the B-splines are constrained to satisfy
∑

iBi,p+1(u) = 1, for all u be-
tween the first and last knot, their scaling factors becomes fixed and they
can uniquely be determined. An arbitrary spline function Sp(u) of order p
is expressed as a linear combination of B-splines

Sp(u) =
∑

i
αiBi,p+1(u) (2)

indicating that all possible spline functions can be built as an appro-
priate linear combination of B-splines, and there is only one unique
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combination for each spline function. B-splines can be constructed by
means of the Cox–de Boor recursion formula. This recursive relation
between B-spline functions of order k+1 and those of order k is as fol-
lows [16]:

Bi,k+1(u) =
u − λi

λi+k − λi
Bi,k(u)+

λi+k+1 − u
λi+k+1 − λi+1

Bi+1,k(u) (3)

Let us assume the knots λi, λi+1, λi+2,λi+3 are given. As a starting point,
the three B-splines Bk,1(u), k = i,⋯, i+2 of order 1 are defined as

Bk,1(u) =
{
1 if λk ≤ u < λk+1
0 else (4)

Applying the above recursive formula gives the two B-splines Bk,2(u),
k = i, i+1 of order 2 as

Bi,2(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u − λi
λi+1 − λi

if λi ≤ u < λi+1

λi+2 − u
λi+2 − λi+1

if λi+1 ≤ u < λi+2
(5)

and

Bi+1,2(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u − λi+1
λi+2 − λi+1

if λi+1 ≤ u < λi+2

λi+3 − u
λi+3 − λi+2

if λi+2 ≤ u < λi+3
(6)

which are piecewise polynomial functions of degree p = 1 (linear
splines). Bi,2(u) is continuous at λi+1, whereas Bi+1,2(u) is continuous at
λi+2. Based on these two functions we may apply the recursive formula
(3) to obtain the only B-spline Bi,3(u) of order 3 as

Bi,3(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u − λi)2

(λi+2 − λi)(λi+2 − λi+1)
if λi ≤ u < λi+1

(u − λi)(λi+2 − u)
(λi+2 − λi)(λi+2 − λi+1)

+ if λi+1 ≤ u < λi+2

(u − λi+1)(λi+3 − u)
(λi+3 − λi+1)(λi+2 − λi+1)

(λi+3 − u)2

(λi+3 − λi+1)(λi+3 − λi+2)
if λi+2 ≤ u < λi+3

(7)

which is a piecewise polynomial function of degree p = 2 (quadratic
spline), that is continuous and differentiable at λi+1 and λi+2. In case of
four knots λi, λi+1,λi+2 and λi+3 this is the maximum-degree B-spline.
Fig. 1 shows two typical examples of quadratic splines defined on the
knots λi = 1, λi+1 = 2.5, λi+2 = 4, λi+3 = 5 and knots λi+1 = 2.5, λi+2 =

4, λi+3 = 5, λi+4 = 7. Adding the fifth knot λi+4 allows to make the only
piecewise polynomial function of degree 3 (cubic spline). For the sake of
brevity, a B-spline is denoted as Bi,p+1 = Bi, where p denotes the degree
of the piecewise polynomial and i denotes λi, the starting knot of the B-
spline.

2.2. Curve fitting problem

A spline curve is a piecewise polynomial curve where the polynomial
pieces are joined together at specified knots. This subsection explains
how to make a spline curve using B-spline functions. Let y =
[
y1, y2,⋯, ym

]T be a set of data points (e.g. heights) measured at fixed
but randomly scattered positions u = [u1, u2,⋯, um]T , where m is the
number of observations. In general, we assume the measurements
contain random errors, known as noise. We look then for a best
approximation rather than interpolation, indicating that the approxi-
mating function closely follows the data points. That is, the approxi-
mation is not necessarily passing through the observations, and is

therefore not exact. We aim to fit a spline function of order p + 1, i.e. a
piecewise polynomial function of degree p, which best approximates the
data points in the least squares sense. This is achieved by the B-splines
given in Section 2.1. The places for the knots at which the pieces meet
are assumed to be a = λ0 ≤ λ1 ≤ ⋯ ≤ λh = b, which are generally
different from the entries ui, i = 1, ⋯, m; we assume ui ∈ [a, b] and
usually h < m.

To define the spline function on the entire range [a, b], a full set of B-
splines is required to be determined. We need to introduce 2p additional
knots as λ− p < ⋯ < λ− 1 < a and b < λh+1 < ⋯ < λh+p. For linear,
quadratic and cubic splines, p will take values 1, 2 and 3, respectively,
corresponding to the so-called spline functions of order p + 1 = 2,3,4.
The entire spline function over [a, b] consists of the sum of n = h+p B-
splines starting from M− p, defined on the interval [λ− p, λ0] and ending at
Mh− 1 defined on the interval [λh− 1,λh+p]. The spline function y = f(u) is
an unknown linear combination of the B-spline functions, denoted as

f(u) =
∑h− 1

i=− p
αiBi(u) (8)

where the coefficients αi− p− 1, i = 1,⋯, n are the unknown parameters to
be estimated. The above equation should be written for each data point
yk, k = 1,⋯,m as yk = f(uk) =

∑h− 1
i=− pαiBi(uk). The unknown parameters

can be estimated by solving the following linear system of equations:

y = Ax+ e (9)

where y is a vector ofm observations, e is a vector ofm residuals, A is the
m× n design matrix and x = [α1,⋯,αn]

T is the vector of n unknown
coefficients. There is usually redundancy in the model (m > n), and
therefore the least squares method is used to estimate the unknown
parameters.

Example: Fig. 2 (top) illustrates a function f(u) over the domain a =

0 to b = 5. To express this function as a linear combination of a series of
B-spline functions, we first define the knots λi’s, defined as a = λ0 = 0,
λ1 = 1, …, b = λ5 = 5 (h = 5). To represent this function using
quadratic splines, 2× 2 = 4 additional knots are introduced: λ− 2 = − 2
and λ− 1 = − 1 (before λ0) and λ6 = 6 and λ7 = 7 (after λ5), see Fig. 2
(bottom). The entire spline function over [a, b] consists of the combina-
tion of n = h+p = 5+2 = 7 B-splines starting from B− 2, defined on the
interval [λ− 2, λ1] and ending at B4, defined on the interval [λ4,λ7]. For this
example, the spline function f(u) can be expressed as f(u) =

Fig. 1. Two typical B-spline functions Bi,3(u) and Bi+1,3(u) defined on knots λi =
1, λi+1 = 2.5, λi+2 = 4, λi+3 = 5 and λi+1 = 2.5, λi+2 = 4, λi+3 = 5, λi+4 = 7,
respectively.
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∑4
i=− 2αiBi(u), where the known coefficients are given as: α− 2 = 0.3,

α− 1 = 0.5, α0 = 0.8, α1 = 0.4, α2 = 0.8, α3 = 0.5, and α4 = 0.3.
However, in practical applications these coefficients are typically un-
known and must to be estimated using the least squares method (see
Section 2.5).

The observed value yk is only linked to p+1 B-splines: indeed, for a
given interval of adjacent knots [λi− 1, λi] that contains a data point (uk,
yk), only p+1 B-splines have nonzero values, and therefore the
remaining B-spline are zero. To further clarify this, let us assume that
there exist mi observations in [λi− 1, λi], i = 1,⋯, h (note m =

∑h
i=1mi).

The design matrix is then of the form

A =

⎡

⎢
⎢
⎣

a1,1 a1,2 a1,3 ⋯ a1,p+1 0 0 ⋯
0 a2,1 a2,2 ⋯ a2,p a2,p+1 0 ⋯
0 0 a3,1 ⋯ a3,p− 1 a3,p a3,p+1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥
⎥
⎦ (10)

where ai,j, i = 1,⋯, h, j = 1,⋯, p+1 are column vectors of sizemi related
to observations in (λi− 1, λi) and the jth B-spline. This will accordingly
make a sparse structure for the design matrix A. Subsection 2.5 explains
how to obtain the least squares solution of the unknown coefficients.

2.3. Surface fitting problem

A spline surface is a piecewise 2D polynomial surface where the
pieces are joined together at specified boundaries [7]. This subsection
explains how to make the spline surface using 2D B-spline functions. Let
y =

[
y1, y2,⋯, ym

]T be a set of data points measured at fixed but
randomly scattered 2D positions (u1, v1), ⋯, (um, vm), where m is the
number of observations. Here we also assume the measurements contain
random errors. We look for the best approximating surface that closely
follows the data points. We aim to fit two spline functions of order p+1
(along u) and q+1 (along v), representing 2D piecewise polynomial
functions of degrees p and q, respectively, which best approximates the
data points in the least squares sense. The places for the knots at which
the pieces meet are assumed to be au = λ0 ≤ λ1 ≤ ⋯ ≤ λh = bu (along u)
and av = γ0 ≤ γ1 ≤ ⋯ ≤ γg = bv (along v). We assume ui ∈ [au, bu] and
vi ∈ [av, bv], i = 1,⋯,m.

A piecewise-polynomial spline surface in 2D consists of a set of
polynomial pieces (surface patches) that are smoothly connected by
continuity conditions at their boundaries [32]. These pieces represented
by
∑p

i=0
∑q

j=0cijuivj are sections defined by each squared (rectangular)

grid cell, which is a 2D polynomial of degree p + q. If p = q, it is called
bi-polynomic of degree p. Examples of p = q = 1, 2,3 refer to bilinear,
biquadratic and bicubic polynomials, respectively. The least squares bi-
cubic spline approximation (LS-BICSA) has imposed the continuity
constraints of zero, first and second-orders as a few hard linear con-
straints in the linear model of observation equations [7]. The advantage
of this method is that the user can explicitly impose the appropriate
continuity and differentiability conditions at the boundary. For cubic
splines, when the continuity constraints are up to and including the
second order, the LS-BICSA can be solved by using the B-spline theory in
which the continuity constraints are imposed in an implicit form to the
estimation problem.

In general, when all continuity and differentiability constraints are
imposed up to and including degree p − 1 and q − 1, along the u and v
axes, respectively, it is easier to employ the B-spline theory of Section
2.1. This can be achieved by using a set of basis functions, along the u
and v axes. Such a set can be constructed from the tensor product of two
1D sets, see for example [16]. We denote the set of basis functions in u
with respect to the knots λ0 ≤ λ1 ≤ ⋯ ≤ λh as Bu(u) and those in v with
respect to the knots γ0 ≤ γ1 ≤ ⋯ ≤ γg as Bv(v). The set of cross-products

Fig. 2. A typical example of curve fitting using 7 quadratic B-spline polynomials. Vertical dashed lines indicate the position of knots. The function (top) is expressed
as a combination of these B-splines (bottom): f(u) = α− 2B− 2(u) + ⋯ + α4B4(u), where the coefficients are α− 2 = 0.3, α− 1 = 0.5, α0 = 0.8, α1 = 0.4, α2 = 0.8, α3 =

0.5, and α4 = 0.3.

Fig. 3. A typical quadratic B-spline function Buv(u, v) = Bi,u(u)Bj,v(v) consisting
of nine cells of piecewise second-degree polynomials defined on knots λi,
λi+1,λi+2 and λi+3 (along u) and γj, γj+1,γj+2 and γj+3 (along v).
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Buv(u, v) = Bu(u)Bv(v) provides a basis for the 2D polynomial of degree
p + q. Fig. 3 illustrates a typical quadratic 2D B-spline function defined
on knots λi, λi+1,λi+2 and λi+3 (along u) and γj, γj+1,γj+2 and γj+3 (along v).

To define the spline function on the entire plane [au, bu] and [av, bv], a
full set of cross-product B-splines is required to be determined. We need
to introduce 2p additional knots as λ− p < ⋯ < λ− 1 < au and bu < λh+1 <
⋯ < λh+p and 2q additional knots as γ− q < ⋯ < γ− 1 < av and
bv < γg+1 < ⋯ < γg+q. The entire spline function over the plane is a
linear combination of n = (h+p)(g+q) number of cross-product B-
splines as follows

f(u, v) =
∑h− 1

i=− p

∑g− 1

j=− q
αijBi,u(u)Bj,v(v) (11)

where the coefficients αij, i = − p,⋯, h − 1, j = − q,⋯, g − 1 are the n
number of unknown parameters to be estimated. The above equation
should be written for each data point (uk, vk), k = 1,⋯,m as yk =

f(uk, vk) =
∑h− 1

i=− p
∑g− 1

j=− qαijBi,u(uk)Bj,v(vk). The unknown parameters
should be estimated through the linear system of equations y = Ax + e,
where y is a vector ofm observations, e is a vector ofm residuals, A is the
m× n design matrix and x = αij is vector of n unknown coefficients.
Fig. 4 presents a schematic algorithm illustrating the implementation of
LSBSA for a surface fitting problem.

The observed value yk is related to (p+1)(q+1) number of B-splines
because for a given cell of adjacent knots [λi− 1, λi] and [γj− 1, γj], which
contain (uk, vk) and yk, only (p+1)(q+1) B-splines have nonzero values.
For the bi-quadratic B-spline in Fig. 5, this corresponds to 3× 3 = 9 B-

Fig. 4. Schematic representation of the algorithm for implementing LSBSA in the 2D surface fitting problem.

A. Amiri-Simkooei et al. Measurement 248 (2025) 116887 

5 



splines. Therefore, data points given in a specific cell are related to only
(p+1)(q+1) columns in the design matrix, referring to the same number
of coefficients in A. A structure for the design matrix similar as presented
in Eq. (10) can also be formulated for the 2D case.

2.4. 3D manifold fitting problem

The theory of B-spline curve and surface approximation can be
extended to any dimension. We briefly explain how the method can be
extended to 3D manifold approximation. A spline manifold is a piece-
wise 3D polynomial where the pieces can be glued together at specified
boundaries (planes). Let y =

[
y1, y2,⋯, ym

]T be a set of data points
measured at the fixed but randomly scattered 3D positions (u1, v1, t1),⋯,

(um, vm, tm), where m is the number of observations. For example, the
coordinates (ui, vi) can be Cartesian or geographical coordinates while ti
is the time instant (epoch). We look for the best approximating manifold
that closely follows the data points. We aim to fit three spline functions
of order p+1 (along u), q+1 (along v), and r+1 (along t), representing a
3D piecewise polynomial function of degrees p, q, and r which best
approximates the data points in the least squares sense. The knot places
at which the pieces meet are assumed to be identical to those specified in
the 2D surface approximation along the u and v axes. Further, along t,
we have at = η0 ≤ η1 ≤ ⋯ ≤ ηd = bt (along t). We therefore assume
ui ∈ [au, bu], vi ∈ [av, bv], and ti ∈ [at , bt ], i = 1,⋯,m.

We will impose all the continuity and differentiability constraints up
and including to degree p − 1, q − 1 and r − 1, along the u, v and t axes,
respectively. This is achieved by using a set of basis functions, along the
u, v and t axes. Similar to the previous subsection, such set can be
constructed from the tensor product of three 1D sets of basis functions as
Buvt(u, v, t) = Bu(u)Bv(v)Bt(t), which provides a basis for the 3D poly-
nomial of degree p + q + r.

Similar to the 1D and 2D cases, to define the spline function on the
entire rectangular cuboid [au, bu], [av, bv] and [at , bt ], a full set of cross-
product B-splines is required to be determined. In addition to the 2p
and 2q additional knots (along u and v), we need to introduce 2r addi-
tional knots as η− r < ⋯ < η− 1 < at and bt < ηd+1 < ⋯ < ηd+r along t.
The entire spline function over the rectangular cuboid is a linear com-
bination of n = (h+p)(g+q)(d+r) number of cross-product B-splines as
follows:

f(u, v, t) =
∑h− 1

i=− p

∑g− 1

j=− q

∑d− 1

k=− r
αijkBi,u(u)Bj,v(v)Bk,t(t) (12)

where the coefficients αijk, i = − p, ⋯, h − 1, j = − q,⋯, g − 1 and
k = − r,⋯, d − 1 are n number of unknown parameters to be estimated.
The above equation should be written for each data point (ul , vl , tl ),
l = 1,⋯,m as yl = f(ul ,vl ,tl ) =

∑h− 1
i=− p

∑g− 1
j=− q

∑d− 1
k=− rαijkBi,u(ul )

Bj,v(vl )Bk,t(tl ). The unknown parameters should be estimated through
the linear system of equations y= Ax+ e, where y is a vector of m ob-
servations, e is a vector of m residuals, A is the m×n design matrix and
x=αijk is vector of n unknown coefficients.

2.5. Least squares estimation of B-spline coefficients

Having the linear system of equations y = Ax+e available, for either
the curve, surface or manifold fitting problem, we may use the least
squares method to estimate the coefficients x. The spline function can
then be determined. The least squares estimate of x is, [5]

x̂ =
(
ATQ− 1

y A
)− 1

ATQ− 1
y y (13)

where Qy is the given m×m covariance matrix of the observations.
Because this problem is formulated in the least squares framework, the
existing body of the least squares theory can directly be applied to the
least squares B-spline problem. A few issues are highlighted as follows.
The least squares estimates of the observations and residuals are

ŷ = Ax̂ = PAy, ê = y − Ax̂ = P⊥
Ay (14)

where PA = A
(
ATQ− 1

y A
)− 1

ATQ− 1
y and P⊥A = Im − PA are two orthogonal

projectors [5]. The covariance matrices of the above estimates are

Qŷ = AQx̂AT ,Qê = Qy − AQx̂AT (15)

where Qx̂ is the covariance matrix of the estimated parameters x̂, given
as

Fig. 5. Least squares approximation of f(u) = sinu+ sinc u contaminated by random normal noise with a standard deviation of 0.05 using linear, quadratic, cubic
and quartic spline functions. Cyan dots are data, red dots are residuals, black circles are spline knots, and the blue curve is the spline function. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Qx̂ =
(
ATQ− 1

y A
)− 1

(16)

describing the variances of the estimated coefficients and covariances
among different coefficients.

The execution speed of an algorithm is influenced by its computa-
tional complexity, which is determined by the mathematical calcula-
tions required for the task. Simplifying these calculations is an effective
way to evaluate its algorithm efficiency. To analyse computational
complexity, we assume m > n, a typical scenario in least-squares-based
methods. A critical step in B-spline approximation is the inversion of the
m×m covariance matrix Qy. For a fully populated Qy, the inversion has
a computational complexity of O (m3), which becomes inefficient when
m≫n, as is often the case with point clouds. We however consider the
case when Qy is a diagonal matrix in general, or an identity matrix in
particular. In this case, the primary operations are: i) computing
ATQ− 1

y A, with a complexity of O (mn), and ii) calculating the inverse of

ATQ− 1
y A, i.e.

(
ATQ− 1

y A
)− 1

, with a complexity of O (n3). Therefore under

the diagonal Qy assumption, the overall computational complexity is
O = max

(
O
(
n3
)
,O (mn)

)
. This is also investigated and validated using

numerical results presented in Section 4.6.

3. Embedding of LSBSA into least squares theory

The above least squares formulation of LSBSA allows to apply the
well-established body of knowledge of least squares theory to the B-
spline approximation. For example it has the benefit of embedding
quality control measures such as hypothesis testing and proper error
propagation to assess the quality of results. This section briefly discusses
some of such possibilities.

3.1. Detection, identification and adaptation (DIA)

As a validation step, we have now the possibility to apply the
detection, identification and adaptation (DIA) procedure [33], to test
the quality of results. Having the least squares residuals, the measure of
discrepancies between observations and spline approximation functions
(overall model test) is obtained as

Tm− n = êTQ− 1
y ê χ2(m − n,0) (17)

which has a chi-squared distribution χ2 with m − n degrees of freedom
under the null hypothesis, i.e. Tm− n χ2(m − n,0). The above test statistics
can be tested for a given confidence level. This is referred to as the
overall model test (OMT). If the test is rejected it indicates that there are
unresolved issues on the consistency between the model and observa-
tions. This is referred to as the ‘detection’ step in DIA [33]. The use of
OMT in this contribution addresses two distinct problems.

a) A common issue in approximation using B-splines is determining the
appropriate placement of the knots, which, as mentioned earlier, can
be specified by the user. Another interrelated factor is selecting the
degree of the polynomials in the B-splines. These two factors are not
independent; there is a trade-off between the intervals of the knots
and the degree of the polynomials. Basically, lower-degree poly-
nomials require smaller knot intervals to achieve sufficient accuracy,
while higher-degree polynomials can accommodate larger intervals.
OMT provides an effective framework to manage this trade-off. After
specifying the knots and polynomial degree, the least squares fit can
be performed, and the test statistic OMT is calculated as: Tm− n =

êTQ− 1
y ê. To ensure that the approximation error is not statistically

significant given the measurement error, Tm− n must be smaller than
the chi-squared critical value χ2α(m − n,0) for a given confidence
level, such as α = 0.01. If this condition is met, it indicates that the

fitted data accurately represents the measurements within the
allowed error bounds. This methodology will be demonstrated in
Section 4.1, which focuses on a curve-fitting problem. The example
will illustrate the interplay between knot placement, polynomial
degree, and approximation accuracy, showcasing how OMT is used
to achieve optimal results.

b) Another possible reason for the rejection of the OMT is due to the
presence of outlying observations, which can be identified in the
‘identification’ step. In the data snooping method [34], each indi-
vidual observation is screened for the presence of an outlier. The w-
test statistic is then [33]:

w =
cTyQ− 1

y ê
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cTyQ

− 1
y QêQ− 1

y cy
√ ∼ N(0,1) (18)

which has a standard normal distribution. In this equation cy is a
given vector on m entries. An important application of the w-test is
blunder detection. A blunder, or outlier affects just a single obser-
vation. To screen the observations, in order to identify those that are
grossly falsified by outliers,m alternative hypotheses are formulated,
one for each observation. They are all tested against the default or
null hypothesis H0. Vector cy is a canonical unit vector, i.e. a vector
with all zeros except for a one at the i-th position cyi =

[0,⋯, 0,1, 0,⋯, 0]T, where i ranges from 1 tom. This screening of the
observations with the above equation is referred to as data snooping.
If the above w-test statistic exceeds the critical value (Zα/2) at a given
confidence level (1 − α) the test is rejected. When the test for obser-
vation i is rejected, it is concluded that it is affected by some
extraordinary large errors, and hence an outlier.

When outlying observations or any other misspecifications were
confidently identified, they can then be compensated for in the func-
tional model or removed from the list of observations. The final x̂ and its
statistical inference can then be presented, with all outlying samples
removed. This is referred to as the ‘Adaptation’ step of the DIA.

So far the estimation and testing were performed individually. A new
DIA estimator can combine parameter estimation and statistical testing
in an integrated manner [35]. The theory of this DIA estimator can also
directly be applied to the LSBSA problem, which is a direction for further
research.

3.2. Variance component estimation

So far, we assumed that the covariance matrix Qy of observations is
known. This however is not always the case for many practical appli-
cations including point cloud approximation. The simplest case that
violates the above assumption is that the covariance matrix is refor-
mulated as

Qy = σ2Q (19)

where Q is a known m×m matrix and σ2 is an unknown variance
component, to be estimated. The least squares estimate of this variance
component is [36]

σ̂2 = êTQ− 1 ê
m − n

(20)

where b = m − n is the redundancy of the linear model. When σ2 is un-
known, the test statistic in Eq. (17) cannot be determined, but its esti-
mates σ̂2 provides an alternative measure for the precision of the
observations and their fits to the linear model. In addition, using σ̂2

provides the possibility to apply the identification and adaptation steps
of DIA [33]. It is important to note that the estimated σ̂2 is not only
affected by the measurement noise but also by the possible mismodelling
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due to the lack of sufficient smoothness (e.g. roughness) of the
approximated surface. The curve, surface and manifold patches should
be sufficiently small to avoid the mismodelling problem.

3.3. Data interpolation and interpolation quality on a regular grid

Having the coefficients x̂ available, we can estimate/predict values
for a given horizontal position (u, v) because the coefficients x̂ fully
determine the B-spline function f(u, v). In fact, the B-spline function
gives a watertight surface explicitly defined at any desired location. This
is practically of importance because we can simply estimate the function
values of the unseen/unobserved points at any required location. As-
sume we are given horizontal positions (u1,v1), …, (uk,vk), and we want
to estimate the z = f(u, v) B-spline values for these points, for example
on a regular grid of fixed grid size to make a mesh of the predicted
surface. For the given positions (ui,vi), i = 1,⋯,k, we then may construct
the design matrix Ap based on the same settings as the LSBSA fit. Note
that the design matrix in this case is made from the required positions (ui,
vi) and in general not from the original observations. We can then pre-
dict (approximate) the function values at the grid as

ẑ = ŷp = Apx̂ (21)

Applying the error propagation law to Eq. (21) gives the covariance
matrix of the estimated values as

Qẑ = ApQx̂AT
p (22)

The square root of the diagonal entries of the above matrix provides the
standard deviations of the predicted values. It is therefore possible to
make confidence intervals for the estimated values. For example,
assuming that the original observations are normally distributed, the
maximum error expressed in the 99 % confidence interval is computed
as

σ99 = 2.58
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
diag(Qẑ)

√
(23)

The above confidence internal can similarly be defined for other dis-
tributions, such as the Student’s t-distribution [28]. The above measure
of the maximum error is expressing the uncertainty of the model caused
by observation noise. However, this measure does not take into account
the modelling error, caused by the fact that, often, the object, for
example road surface, seafloor, or bridge ceiling, cannot be considered
as a perfectly smooth surface. Irregularities in the object under study
along with its roughness can degrade the reliability of the above mea-
sure. One way to have a more realistic precision description for the
estimated surface is to take into account a realistic covariance matrix Qy
of point cloud observations, as described in Section 3.2. An alternative
could be to use the estimated residuals of the least squares fit to present a
so-called empirical precision description for the estimated surface.
These topics can also be the subject of further research.

A final remark on the approximated surface is in order. The present
contribution provided the ‘estimation’ of the unobserved function
values. With this problem, we guess the value of an unknown parameter
z = f(u, v) from an observation of a random vector y. So far, the
randomness of the random variable z has been ignored. A more so-
phisticated problem deals with ‘prediction’ rather than the ‘estimation’.
This indicates that the estimation problem should become a prediction
one because the unobserved parameter of interest is a random variable,
and not just a deterministic parameter. The outcome prediction requires
not only the functional deterministic model but also incorporates the
stochastic nature of the data. This is outside the scope of this contribu-
tion and can be a topic for further research in which the stochastic
characteristics of point clouds contribute to the prediction.

3.4. Regularized least squares solution of LSBSA

There are sometimes complications solving the above least squares
problem. When there are too many curves or patches to be connected, or
when there are gaps in the point cloud data, the system of equations
y = Ax+e becomes ill-posed. The design matrix A is then nearly rank
deficient and therefore the normal matrix N = ATQ− 1

y A cannot be
regularly inverted. To obtain a regular solution for the ill-posed prob-
lem, a regularization method needs to be used. The regularized least
squares (RLS) theory can directly be used in the LSBSA.

One way to obtain a regular solution is to take possible prior infor-
mation on the unknown parameters into account. To obtain such prior
information we may use simple interpolation methods to create a larger
amount of data in data sparse intervals/areas. Such information can be
added to the system of equations, with much lower weights (i.e. large
variances) compared to the original observations. This can simply be
implemented in the weighted least squares formulation of Eq. (13), and
can indeed have a regularization effect. This is achieved by introducing
pseudo observations y0 into the linear model in Eq. (9), which provides
an extended linear model of observation equations as
[
y
y0

]

=

[
A
A0

]

x+
[
e
e0

]

, (24)

with the joint covariance matrix

D
[
y
y0

]

=

[
Qy 0
0 Qy0

]

(25)

where Qy (m× m) and Qy0 (m0 × m0) are the covariance matrices of the
original and pseudo observations, respectively. Usually, the variances of
Qy0 are much larger than those given in Qy (i.e. Qy0≫Qy) to express that
the prior information will not much affect the final least squares solu-
tion, but rather has a regularization effect. The regularized solution is
then

x̂ =
(
ATQ− 1

y A+ AT
0Q

− 1
y0 A0

)− 1
(ATQ− 1

y y+AT
0Q

− 1
y0 y0) (26)

The Tikhonov regularization method is a special case of the above
equation [37]. In the particular case when A0 = In, y0 = 0 and Qy0 =

s2In, Eq. (26) simplifies to

x̂ =
(
ATQ− 1

y A+ κIn
)− 1

ATQ− 1
y y = (N+ κIn)− 1u (27)

where κ = s− 2 is the regularization parameter, to be determined. One
way to determine κ is to use the L-curve method, as explained in [38].

3.5. Computational burden reduction

There are occasions that the linear system of equations is very large.
This can happen when too many data points are available (m is too
large), which is often the case when dealing with point cloud data such
as multi-beam echo-sounder or laser scanning data. In such situation,
block-structured (partitioned) least-squares models can directly be used.
For this purpose, the design and normal matrices are calculated for in-
dividual (smaller) regions. Each region is a particular interval (of two
consecutive knots for curve fitting) or a surface patch (of four borders of
a rectangle for surface fitting). In this case, the linear system of equa-
tions can be decomposed as follows:
⎡

⎢
⎢
⎣

y1
y2
⋮
yk

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A1
A2
⋮
Ak

⎤

⎥
⎥
⎦x+

⎡

⎢
⎢
⎣

e1
e2
⋮
ek

⎤

⎥
⎥
⎦,D

⎡

⎢
⎢
⎣

y1
y2
⋮
yk

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

Q1 0 ⋯ 0
0 Q2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ Qk

⎤

⎥
⎥
⎦ (28)

with yi ∈ Rmi×1 and ei ∈ Rmi×1 respectively the vectors ofmi observations
and residuals in the region i ∈ (1, ⋯, k), Ai ∈ Rmi×n its corresponding

A. Amiri-Simkooei et al. Measurement 248 (2025) 116887 

8 



design matrix, and Qi its corresponding covariance matrix, the total
number of observations is then m =

∑k
i=1mi. The unknown coefficients

in Eq. (27) can then be estimated as

x̂ =

(
∑k

i=1
AT
i Q

− 1
i Ai + κIn

)− 1
∑k

i=1
AT
i Q

− 1
i yi

=

(
∑k

i=1
Ni + κIn

)− 1
∑k

i=1
ui

(29)

where Ni = AT
i Q− 1

i Ai’s are the individual normal matrices and
ui= AT

i Q− 1
i yi. The recursive least squares method is also an alternative

procedure to obtain the final estimate x̂.
In general, other existing theories of linear models, can also directly

be generalized to LSBSA. For example we can apply the robust estima-
tion methods [39] using the L1-norm minimization techniques [40,41].

4. Applications to simulated and real data sets

The least squares B-spline approximation (LSBSA) can be applied to
1D curve fitting, 2D surface fitting and 3D manifold fitting problems.
The method is demonstrated for to both simulated and real data sets. The
simulated data, generated on knownmathematical functions, are mainly
used to test the performance of the proposed method. The detailed ap-
plications are described in the following six subsections.

4.1. Approximation of a known curve

This subsection is devoted to the curve fitting problem using the 1D
spline functions. For this purpose, the known function f(u) = sinu +

sincu, with sincu = sinu
u , is discretely resampled on the interval u ∈ [0,

8π], with a sampling interval of du = 0.05, providing a total of m = 503
observations. Independent and normally distributed noise with a stan-
dard deviation of σ = 0.05 was added to the generated data to make the
final observations (cyan dots in Fig. 5).

The generated data are then approximated using the least squares B-
spline function of Sections 2.2 and 2.5. Four spline functions made of
linear, quadratic, cubic and quartic B-splines are used to approximate
the data. The knots were identical for all cases and the knot intervals
were set to a constant value of Δu = 2, making in total 14 knots. The
covariance matrix is considered to be Qy = σ2Im, where Im is an identity
matrix of size m and σ = 0.05. The approximation results are presented
in Fig. 5. The figure shows, that given the above settings, the linear
spline does not provide appropriate approximation results. In general,
the higher the spline order is, the better the approximation results will
be. To further verify this, the variance components of the fitting problem

were estimated as σ̂2 = ê
T
ê

m− n, where ê = y − Ax̂ is the least squares re-
sidual vector. The approximation error is σ̂ = 0.180, 0.087, 0.061,
and0.050 for the linear, quadratic, cubic and quartic spline functions,
respectively. The linear spline with an approximation error of σ̂ = 0.180
provides the worst results. The quartic spline provides the best fit as the
approximation error of σ̂ = 0.050 follows closely the standard deviation
of the measurements (i.e. σ = 0.05).

As an additional analysis, to determine the optimal knot placement
and the degree of the B-spline polynomial, we employed the overall
model test (OMT) as a criterion (Eq. (17). While the knot intervals were
initially set to a constant value of Δu = 2, additional tests were con-
ducted using Δu = 1, Δu = 2 and Δu = 3. The OMT results for these
three cases, indicating whether the test was accepted or rejected, are
summarized in Table 1. These evaluations can be used to analyse the
trade-off between model complexity and fit quality, ultimately aiding in
the selection of the most appropriate configuration for the spline model.
For example, an “accept” outcome indicates that the approximation
error is not statistically significant, given the standard deviation σ =

0.05, whereas a “reject” outcome highlights that the approximation
error is statistically significant.

4.2. Approximation of a mathematical surface

This subsection demonstrates the approximation of a known surface
using the 2D spline functions. Consider the following 2D mathematical
function

f(u, v) = uexp
(
− u2 − v2

)
(30)

Fig. 6a shows the above function on a regular grid on u = − 2 : 0.1 : 2
and v = − 2 : 0.1 : 2. A data set of m = 20000 points, generated at
random positions using a uniform distribution over the square
− 2 ≤ u, v ≤ 2 is used to illustrate the efficacy of the proposed method
(Fig. 6b). The generated data is not contaminated by random noise to
merely obtain the approximation errors of different scenarios.

The goal is to approximate this data set using the least squares 2D
spline theory as proposed in Sections 2.3 and 2.5. The covariance matrix
is considered to be Qy = Im, where Im is an identity matrix of size m. The
root mean squares error (RMSE) is used as a measure to investigate the
approximation error of the fitting problem. Two cases under two sce-
narios are investigated, making in total four cases. Under scenario I, the
surface cells are considered to be 0.8 × 0.8, making in total 25 cells,
whereas under scenario II they are 0.4 × 0.4, making in total 100 cells.
Cases 1 and 2 are the linear and cubic splines, respectively. The RMSE of
the fitting problem (approximation error) are presented for comparison
of the above cases.

The proposed method is applied to the irregular data set in Fig. 6b to
approximate the true mathematical function in Fig. 6a using the 2D B-
splines. The estimated coefficients of the approximated surface are then
used to predict the function values f(u, v) on a regular grid
u = − 2 : 0.1 : 2 and v = − 2 : 0.1 : 2, for comparison with their true
values. The results are presented in Fig. 7 under Scenarios I and II.
Table 2 provides statistics on the above four cases. Given the above
settings, it is observed that a linear spline does not provide appropriate
approximation results. The higher the spline order is, the better the
approximation results will be. To quantify this, the root mean squares
error (RMSE) is also presented in Table 2. The RMSE, for the linear and
cubic splines, is 0.022 and 0.004 under scenario I, and 0.005 and 0.0002
under scenario II. In theory, because the data do not contain random
errors, it is expected that the RMSE approximates zero. The best result is
obtained under scenario II for the cubic splines. This is expected as the
cubic spline, having first and second continuous derivatives, introduces
more parameters to approximate the function f(u, v).

4.3. Approximation of multi-beam echo-sounder data

Seafloor bathymetric data is usually collected by single- or multi-
beam echo-sounders (SBES or MBES). The use of MBES is a common
practice in many maritime applications. MBES is a type of sonar, typi-
cally used by hydrographic surveyors, to determine the depth of water

Table 1
Overall model test (OMT) results for three cases of Δu = 1, Δu = 2 and Δu = 3
across linear, quadratic, cubic and quartic models.

Case Knot
int. (Δu)

Test statistic Linear Quadratic Cubic Quartic

1 3 Normalized
Tm− n

109.62 31.34 48.44 11.88

Result reject reject reject reject
2 2 Normalized

Tm− n

11.56 2.96 1.25 0.96

Result reject reject reject accept
3 1 Normalized

Tm− n

1.26 0.89 0.87 0.87

Result reject accept accept accept
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and the composition of the seafloor [42]. This system emits acoustic
waves in a fan shape beneath its transceiver. MBES uses beamforming to
extract directional information from the returning acoustic signals,
producing a swath of depth readings from a single ping. The time it takes
for the soundwaves to reflect off the seafloor and return to the receiver is
used to calculate the water depth. If the sound speed in the full water
column profile is known, the depth and position of the returned signals
can be determined from the receive angle and the two-way travel time.

We employ the LSBSA method to approximate the seafloor bathy-
metric data using an analytical spline function. We consider the input to
be one point cloud where the measured bathymetric data is translated to
points represented by their u, v (horizontal coordinates), and z (vertical
coordinate). Bathymetry data is normally projected onto their horizontal
u and v-coordinates, and therefore we can parameterize the points by u
and v coordinates and approximate the depth values (z) by a smooth
function.

A data set was obtained from [20] in the Brown Bank, located in the
North Sea between the UK and the Netherlands. The dominant bathy-
metric features of this area are sand banks (Brown Bank), sand waves,
and megaripples. Megaripples, having a wavelength of ~ 15 m and ~ 1
high, are of interest in this study. Seafloor backscatter classification on
megaripples has already been implemented in [43]. We focus here on
the bathymetric modeling of the megaripples. The Brown Bank was
surveyed by the Royal Netherlands Institute for Sea Research (NIOZ)
vessel, the Pelagia, from 27 October to 03 November 2017. The data
were collected by a Kongsberg EM 302 MBES system. Fig. 8 (a) shows a
typical MBES bathymetric example of a megaripple in the North Sea.
The area consists of m = 1727 depth measurements. The goal is to
approximate this data set with the LSBSA explained in the previous
sections.

This area was divided into 27× 27 surface patches of size 3m× 3m,
starting from 10 and ending to 91 in both u and v directions. This will
then introduce 27× 27 = 900 cubic B-spline coefficients to be estimated
using the least squares method. The estimated standard deviation of the
least squares fit is σ = 5cm. This standard deviation incorporates the
noise of the measurements, the roughness of the seabed, and the pres-
ence of outliers. Outlier detection can be performed using the ‘identifi-
cation’ step in DIA (Section 3.1). The w-test values of Eq. (18) is used to
identify outliers.. The critical value at the 99.9 % confidence level is
Z0.0005 = 3.29. Four residuals, having the largest w-test values of w854 =

4.40, w1150 = − 3.84, w811 = 3.48 and w859 = 3.37 exceed the critical
value and thus can be identified as outliers (Fig. 9). This also highlights
the capability of the LSBSA method to perform statistical testing in point
cloud approximation using the B-spline theory.

The estimated coefficients of the approximated surface are now used

to predict the depth values on a regular grid, with a grid size of 75 cm in
both u and v directions. The results are presented in Fig. 8 (b). Different
features of megaripples including their orientation and direction, crest
and trough, and other morphologic characteristics can simply be
observed in the approximated surface. Such megaripples are the most
dominant bathymetric feature in the North Sea. It is important to note
that this surface has now a mathematical expression and therefore can
be used for further analysis, interpretation, migration and monitoring of
megaripples.

4.4. Approximation of laser scanner data

Permanent laser scanning (PLS), also called continuous laser scan-
ning, is a new technique based on LIDAR (light detection and ranging)
that is used to monitor beaches and their changing processes. Data sets
of this technique, consisting of a series of point clouds with the spatial
resolution of centimeters, make the detection of the beach deformation
processes possible. Although coastal deformation can be caused by
extreme weather events such as storms, the changes result from a storm
on an urban beach cannot be analyzed without subsequent human ac-
tivities. This is for example due to working with the bulldozers imme-
diately after or during the storms [44]. Laser scanning point clouds data
can be efficient in modeling the impact of weather events and their
following anthropogenic activities on beaches.

A permanent laser scanning data set is selected within the Coast Scan
project. The data set was collected by a Riegl VZ2000 laser scanner
mounted on the roof of a hotel, at an urban beach in Kijkduin, the
Netherlands, in January 2017 [44,45]. The files contain a three-
dimensional point cloud in the u, v, and z coordinate system (in me-
ters) for each day. The origin of the coordinate system is at the location
of the laser scanner (u, v coordinates) and the height (z coordinate)
corresponds to height above the sea level. We will look for the relative
changes between scans, and therefore using the local coordinate system
of the data set is sufficient for this application.

We selected an area of 40m× 30m from the coordinates of − 155 to
− 115 in the u and 45 to 75 in the v direction. The chosen area is located
at the bottom of the footpath. Between January 8 and 16, rough weather
conditions caused the entrance to the path to become buried under sand.
A bulldozer subsequently cleared the path, leaving a pile of accumulated
sand [46]. A scan file on 16 January (end of stormy weather) and a scan
file on 17 January (after working with a bulldozer) were selected. The
file of 16 January contains 14,464 points scanned in the study area and
that of the 17 January contained 15,233 points. The standard deviation
of the measured elevations is reported to be below 2 cm (1 σ) for each of
the individual data files. To fit a B-spline surface to the spatial variations

Fig. 6. Known mathematical function f(u, v) = uexp
(
− u2 − v2

)
illustrated on a regular grid; u = − 2 : 0.1 : 2 and v = − 2 : 0.1 : 2 (a), on 20,000 irregular sample

points (b).
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Fig. 7. Least squares approximation of function f(u, v) = uexp
(
− u2 − v2

)
using linear (a) and cubic (c) B-splines on 25 surface cells of size 0.8× 0.8 (scenario I), and

linear (e) and cubic (g) B-splines on 100 surface cells of size 0.4× 0.4 (scenario II). The rights plots (b, d, f and h) show the least squares residuals of the left frames.
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of the beach elevations, 40× 30 = 1,200 surface patches of size 1m×

1m were formed. This introduces 43× 33 = 1419 cubic B-spline co-
efficients, which were estimated for both the 16th and 17th of January.
The estimated standard deviation of the least squares fit is σ = 18mm for
January 16th and σ = 16 mm for January 17th, which closely follow the
nominal value of σ = 2 cm.

Having the estimated coefficients available, the elevations of knots
on a regular grid size of 50 cm, in both u and v directions, were then
estimated (Eq. (21). Fig. 10 (a) shows the beach elevation on the regular
grid for January 16th and the beach elevation of January 17th is indi-
cated in Fig. 10 (b). Comparing the two frames, the location of the sand
accumulation after the work of the bulldozer in the study area is
recognizable. The difference between the two fitted surfaces can math-
ematically model the effect of the high energy storm event and the
subsequent human activities on the coast. This provides only pre-
liminary results and can be the subject of further coastal research.

4.5. Approximation of a 3D mathematical manifold

This subsection demonstrates the application of LSBSA to deforma-
tion analysis using a known 3D mathematical function. Deformation
analysis has applications in many fields including geoscience [47] and
computer vision [48]. Consider the following 3Dmathematical function:

f(u, v, t) = (1+0.05t)uexp
(
− u2 − v2

)
+0.02uvt (31)

which is a generalized form of Eq. (30) in which variable t can play the
role of time. Equation (31) can express gradual temporal evolution
(deformation) of Eq. (30); if t = 0 Eq. (30) will follow. It is rather
difficult to visualize function f(u, v, t) for three independent variables in
4D space. We just then need to present some frames on specific time
instances t or we will use the colors as the fourth dimension.

A data set of m = 10000 points, generated at random 3D space–time
locations is obtained using a uniform distribution over the cube
− 2 ≤ u, v ≤ 2 and 0 ≤ t ≤ 4. This 4D data set is used to illustrate the
efficacy of the proposed method (Fig. 11). The generated data is not
contaminated with random noise. The goal is to approximate this data
set using the least squares 3D spline theory proposed in Sections 2.4 and
2.5 (manifold approximation). The covariance matrix is considered as
Qy = Im, where Im is an identity matrix of sizem. The standard deviation
σ̂ of the fit is used as a measure to investigate the approximation error of
the fitting problem. The cubic cells of the 3D manifold fit are considered
to be of size 0.5 × 0.5 × 0.5, making in total 512 cells. The cubic B-
splines are used to approximate the manifold. This will subsequently
introduce 11×11 × 11 = 1331unknown coefficients.

LSBSA is applied to the irregular data set in Fig. 11 to approximate
the true mathematical function using the 3D B-splines. The estimated
coefficients of the approximated surface are then used to predict the
function values f(u, v, t) on a regular grid u = − 2 : 0.1 : 2 and v =

− 2 : 0.1 : 2, at four time instances t = 0,1,2and3. The results are pre-
sented in Fig. 12. The temporal evolution of the manifold can be
observed in these frames. Given the above settings, with the fact that the
standard deviation of the fit is σ̂ = 8× 10− 4, it is indicated that the cubic
spline does indeed provide appropriate approximation results. These
results show that the proposed manifold approximation method can be
used to study deformation analysis of many geoscience data series.

Table 2
Statistics on approximation of the point cloud in Fig. 6b in two scenarios and two
cases. Statistics include number of observations m, number of unknown pa-
rameters n, number of cells, and root mean squares error (RMSE).

Scenario/Case m No. unknown:n No. cells RMSE

I/1 20,000 36 25 0.022
I/2 20,000 64 25 0.004
II/1 20,000 121 100 0.005
II/2 20,000 169 100 0.0002

Fig. 8. MBES bathymetric data set of a megaripple in the North Sea (a), and its least squares approximation using cubic LSBSA (b); colorbar is in [m].

Fig. 9. W-test statistic of multi-beam echo-sounder observations using cubic LSBSA, red dots are outlying observations identified using the w-test statistic in the DIA
process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.6. Approximation of LWE-thickness of Greenland ice sheet

A novel application of 3D LSBSA is the ice sheet monitoring using
satellite data. The Greenland ice sheet (GrIS) and its mass change pat-
terns, which significantly contribute to the global sea level rise, have
gained the attention of researchers in recent years [49]. The gravita-
tional recovery and climate experiment (GRACE) and its follow-on
mission, GRACE-FO, provide essential data in this field, offering time
series of Greenland Ice Sheet (GrIS) mass changes. These data are pre-
sented globally through mass concentration (mascons) blocks on
monthly basis. This indicates that when working with GRACE mission
data, we analyse mass change parameters with specific spatial and tem-
poral resolutions in 3D.

To explore the application of LSBSA to 4D point cloud data, we apply
the method to JPL-RL06M-v03 data [50]. This dataset provides nu-
merical values of Equivalent Water Thickness (EWT) parameters at

specific latitudes and longitudes on monthly basis. EWT is a way to
represent mass anomalies on the earth surface. An increase of + 1 cm of
this parameter for a mascon of size (0.5× 0.5) is like adding mass equal
to water with a thickness of one centimetre all over the mascon. To
demonstrate the effectiveness of LSBSA in capturing seasonal changes in
GrIS mass, we analysed monthly data from 2021 to 2022 (24 months)
within the longitudinal and latitudinal range of 12 − 74 [deg] west and
59 − 85 [deg], respectively.

The EWT parameters were extracted for a total ofm = 138240 points
across the studied area over this time span. The number of 31× 13×
9 = 3584 3D manifold cubic cells of 2(deg) × 2(deg) × 3(moths) size
were formed, resulting in n = 6528 coefficients. The design matrix A,
and hence the coefficients of the B-splines were then estimated for the
ice sheet manifold using LSBSA. This generates a 3D manifold implicitly
defined at any desired 2D geographical location and time instant. This
allows to predict EWT thickness parameter values at regular meshes of

Fig. 10. Approximated permanent laser scanning point cloud data of Kijkduin beach elevation for January 16th 2017 (a) and January 17th 2017 (b), after bulldozer
work, and their difference (c); colorbar is in [m].
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any location and time, monitoring spatial and temporal changes in the
GrIS effectively. The EWT values were determined at a regular grid of
0.5[deg] × 0.5[deg]. The Greenland grids were then cut from the ana-
lysed rectangular area by an irregular mask.

The frames in Fig. 13 illustrate changes in this parameter for the

months January (winter), April (spring), July (summer), and October
(autumn) in both 2021 and 2022. Based on Fig. 13, during warmer
months (April and July), there is a decrease in mass change rate
compared to colder months (January and October) in the Greenland Ice
Sheet (GrIS). The mass change patterns differ between the southern/

Fig. 11. A data set of m = 10000 3D space–time points generated randomly from Eq. (31) using a uniform distribution over the cube − 2 ≤ u, v ≤ 2 and 0 ≤ t ≤ 4.
The colors show function values y = f(u, v, t).

Fig. 12. Least squares approximation of the function f(u, v, t) = (1+0.05t)uexp
(
− u2 − v2

)
+0.02uvt using cubic B-splines on 512 cubic patches of size 0.5×0.5×0.5.

Results are presented at four time instances t = 0 (a), t = 1 (b),t = 2 (c), and t = 3 (d).
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central regions and the northern regions of the ice sheet. Previous
research has noted these geographical variations, leading to the subdi-
vision of the GrIS into smaller subregions [51–53]. One of the main
advantages of using LSBSA in this application is its high spatial and
temporal resolution in the study of ice mass changes pattern. The 2022
Arctic report indicates a decreasing trend in GrIS ice mass changes from
1 September 2021, to mid-August 2022, which is supported by data from
October 2021, January 2022, and April 2022 shown in Fig. 13. The
consistent reflection of ice melting changes validates the effectiveness of
LSBSA for analyzing temporal and spatial variations using the manifold
fitting. Geophysical researchers may consider utilizing this method to
monitor (ice) mass changes using GRACE missions for many geoscience
applications.

As a final remark, we evaluate the computational burden of esti-
mating the B-spline coefficients on a computer equipped with an Intel
Core i7-10610U CPU @ 1.80 GHz (2.3 GHz, 4 cores) and 16 GB RAM.

Under the described settings, the computation involves 31× 13× 9 =

3584 3D manifold cubic cells, each with dimensions of 2(deg) × 2(deg)
× 3(month), resulting in estimating n = 6528 coefficients. The compu-
tational time required to estimate x̂ using Eq. (13) is 351 s. In an
alternative setup, the computation involves 16× 7× 5 = 560 3D
manifold cubic cells, each with dimensions of 4(deg) × 4(deg) × 6
(month), resulting in n = 1520 coefficients. The computational time
required to estimate x̂ reduces to approximately 8 s. These results align
well with the overall computational complexity of O (n3), as explained
earlier.

5. Concluding remarks

We presented a simple, flexible and attractive least squares B-spline
approximation (LSBSA) method, which has its own strengths and
weaknesses. LSBSA is simple because it uses the well-known linear least

Fig. 13. Estimated seasonal changes of EWT related to the Greenland ice sheet using GRACE missions ice mass data. From top to bottom, each frame shows variations
across January (winter, a and b), April (spring, c and d), July (summer, e and f), and October (autumn, g and h) for both 2021 (left) and 2022 (right).
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squares theory to approximate point cloud data. The method can be
applied to estimate/interpolate data points on a regular grid. The
method is flexible because it can approximate 2D, 3D and 4D point
clouds, with the possibility of extension to higher dimensions when
more independent variables are involved. LSBSA is not restricted to
cubic splines, but is defined for any degree. The formulation of LSBSA in
the standard least squares framework is attractive, because it enables to
directly employ the extensive existing least squares theory to B-spline
approximation. Notably, our formulation provides the best linear un-
biased estimation (BLUE) for linear models, and directly incorporates
several quality control measures. Hypothesis testing can be used to
identify outlying observations while the error propagation law can be
applied to obtain the covariance matrix of the interpolated variables.
These important cases were presented, more cases need to be developed.
In particular, robust estimation methods, variance component estima-
tion and inclusion of the approximation error in error analysis are di-
rections for further research and implementation in related fields.

There are also weaknesses and challenges to be addressed. For
LSBSA, the continuity constraints should be specified on forehand and
hence cannot be defined by the user. Particularly, LSBSA provides B-
splines that are continuous and have continuous derivatives up to and
including p − 1, as is common for B-splines. This can be too constrained
in some application fields. An alternative way is to use for example a
cubic Hermite spline where each third-order polynomial piece has
continuous values and first derivatives at the knots (so the second de-
rivative is not continuous). Also, the randomness of interpolated vari-
ables were ignored in this contribution. An enhanced formulation can
deal with ‘prediction’ rather than ‘estimation’, which includes the sto-
chastic characteristics of point clouds to improve prediction. This will
also affect the quality control measures such as the precision of the
interpolated variables.

LSBSA offers new research topics in geoscience point cloud approx-
imation. The method is a generalized version of the spline interpolation
method and can be applied to irregularly scattered point cloud data at
knots specified by the user. The performance of the method in linear,
quadratic, cubic or quartic spline function was investigated. A few
simulated and real data sets were used to illustrate the efficacy of the
proposed theory. We briefly demonstrated its applications to multi-
beam echo-sounder data, laser scanning data, and digital terrain
modeling using LIDAR data. Future research will show how this tech-
nique can become fully operational for these applications.

We also demonstrated the application of LSBSA to 3D manifold
approximation problems (4D irregular point clouds). This application
has significant impact to study temporal variations of a 2D surface. It is
particularly applicable when the function variables encompass
geographical positions or image pixels plus time. Most deformation
analysis methods in the manifold fitting problem typically examine
surface changes from a 2D perspective. Additionally, the fitted poly-
nomials often exhibit discontinuities at the boundaries of surface ele-
ments, i.e. triangles in traditional methods and meshes in recently
developed methods. LSBSA offers two key advantages in deformation
analysis and manifold fitting. Firstly, this method considers surface
parameters and their changes in the 3D space, avoiding the simplifica-
tion of complex deformation problems to two dimensions. Secondly, the
use of B-spline functions in LSBSA maintains the continuity of functions
and their derivatives at the boundaries of surface cells, preserving
continuity of changes in spatial and temporal dimensions. The LSBSA
method was utilized to estimate changes in EWT in the Greenland ice
sheet. The results were consistent with the geophysical information of
the region in 2022, which shows the capability of LSBSA in analysing
temporal and spatial variations.
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