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TECHNICAL ADVANCE

Lesion probability mapping in MS 
patients using a regression network on MR 
fingerprinting
Ingo Hermann1,2* , Alena K. Golla1,3, Eloy Martínez‑Heras4, Ralf Schmidt1, Elisabeth Solana4, Sara Llufriu1, 
Achim Gass5, Lothar R. Schad1 and Frank G. Zöllner1,3 

Abstract 

Background: To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic 
Resonance Fingerprinting using echo‑planar imaging (MRF‑EPI) in addition to T1 , T2∗ , NAWM, and GM‑ probability 
maps.

Methods: We performed MRF‑EPI measurements in 42 patients with multiple sclerosis and 6 healthy volunteers 
along two sites. A U‑net was trained to reconstruct the denoised and distortion corrected T1 and T2∗ maps, and to 
additionally generate NAWM‑, GM‑, and WM lesion probability maps.

Results: WM lesions were predicted with a dice coefficient of 0.61± 0.09 and a lesion detection rate of 0.85± 0.25 
for a threshold of 33%. The network jointly enabled accurate T1 and T2∗ times with relative deviations of 5.2% and 5.1% 
and average dice coefficients of 0.92± 0.04 and 0.91± 0.03 for NAWM and GM after binarizing with a threshold of 
80%.

Conclusion: DL is a promising tool for the prediction of lesion probability maps in a fraction of time. These might be 
of clinical interest for the WM lesion analysis in MS patients.

Keywords: Deep learning reconstruction, Magnetic resonance fingerprinting, Lesion prediction, T1 Mapping, T2
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Background
Assessment and segmentation of white matter (WM) 
lesions is an important step for the analysis and tracking 
of diseases such as multiple sclerosis (MS). WM lesions 
can be graded based on MRI images which showed a 
good correlation with symptom development in MS and 
clinical subtypes of MS. [1, 2] Lesion probability mapping 
is a method to differentiate between WM lesion groups 
as this corresponds to different ischemic components 

and neurodegeneration during disease progression. [3–6] 
Additionally, WM lesions exhibit an increased T1 , T2 , and 
T2

∗ relaxation time, and therefore, multiple quantitative 
approaches showed advantages in the detection, grading, 
and classification. [7–9] In particular, Magnetic Reso-
nance Fingerprinting (MRF) has demonstrated a variety 
of applications for simultaneously quantifying multiple 
relaxation times at clinically acceptable scan times. In 
conventional MRF, thousands of highly undersampled 
images are acquired to produce a unique fingerprint, and 
these fingerprints are compared voxel-wise with a pre-
calculated dictionary. [10, 11] Rieger et  al. proposed an 
MRF method to quantify T1 and T2

∗ with an echo-planar 
imaging (EPI) readout, [12] which showed promising 
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results in renal and neural applications. [13–16] The fact 
that only conventional undersampling factors lead to 
only slightly corrupted magnitude data reduces the time 
for reconstruction and increases its robustness. However, 
a major drawback of MRF is the tradeoff between recon-
struction time and accuracy.

Deep learning (DL) has emerged into the field of MRI 
and achieved excellent results in data processing con-
sidering accuracy, precision, and speed. Hence, DL is 
increasingly outperforming conventional algorithms. 
Previous studies and reports suggest that convolutional 
neural networks (CNN) can solve high dimensional 
problems with excellent accuracy and in a short time 
for denoising, distortion correction, segmentation, clas-
sification, and reconstruction. [17–23] A promising 
architecture is the U-net, which has great diversity for 
applications such as segmentation and regression tasks. 
[24–26] Especially in MRF, the reconstruction of the 
enormous amount of acquired data can be improved and 
accelerated by using different network architectures such 
as CNN’s and fully convolutional networks. [27–32] In 
previous work, a CNN was used for the denoising, dis-
tortion correction, reconstruction, and generation of 
NAWM and gray matter (GM) probability maps yielding 
results comparable to conventional methods in a frac-
tion of time. [16] The proposed architecture combined 
several post-processing tasks, making the application fast 
and easy. However, the WM lesions have to be segmented 
for further analysis, which is always time-consuming and 
suffers from high intra- and inter-observer variabilities. 
[33] To overcome these limitations of manual segmenta-
tion, different DL architectures and networks have been 
used, yielding dice coefficients ranging from 0.48 to 0.95 
for WM lesion segmentation. [33–36] Therefore, in a 
recent publication, it was shown that the use of regres-
sion networks for generating distance maps of the lesions 
might improve the WM lesion segmentation process 
[37]. This could provide more information about lesion 
geometry, structure, and changes similar to lesion prob-
ability mapping. [2, 3, 38]

In this work, we use the U-net as previously reported 
[16] to predict WM lesion probability maps by training 
the CNN with the manual annotated binary lesion masks 
while combining several processing steps.

Methods
Data
As previously reported [16], an MRF sequence based 
on echo-planar imaging was acquired across 6 healthy 
subjects and 18 patient with WM lesions at a 3T scan-
ner (Magnetom Skyra, Siemens Healthineers; site 1) and 
24 patient with WM lesions at a 3T scanner (Magnetom 
Prisma, Siemens Healthineers; site 2). The sequence 

parameters for both scanners were FOV = 240 × 240 
mm, in-plane resolution = 1× 1mm

2 , slice thickness = 
2 mm, GRAPPA factor = 3, partial Fourier = 5/8, varying 
flip angle α (34–86◦ ), TE (16–76.5 ms), TR (3530–6370 
ms). At site 2, simultaneous multi-slice imaging was addi-
tionally used with an acceleration factor of 3.

CNN
A U-net (Fig. 1a) was used for the denoising, distortion 
correction, and reconstruction of T1 , T2

∗ maps, and the 
NAWM-, GM-, and additionally lesion probability maps. 
The T1 and T2

∗ maps for training the network were recon-
structed using pattern matching with a precision of 5% 
for the variety of T1 (300–3500 ms), T2

∗ (10–2500 ms) 
times, and the flip angle scale factor (0.6–1.4, in steps 
of 0.1) to correct for B+

1
 inhomogeneities. Beforehand, 

denoising was applied using Marchenko–Pastur Princi-
pal Component Analysis (MPPCA) [39]. The dictionary 
entries are in steps of 5%. Rigid registration was per-
formed using B-spline interpolation from the undistorted 
T1 map to the in this protocol additionally acquired T2

-weighted image using the Advanced Normalization 
Tools (ANT). [40] The NAWM and GM maps were gen-
erated based on the distortion corrected T1 maps using 
SPM (Statistical Parametric Mapping) [41] with a prob-
ability between 0 and 100%. Additionally, WM lesions 
were segmented manually by an expert radiologist on the 
FLAIR data, and to assess the intra-observer variability, 
lesions from ten patients were segmented two times (at 
least one week time gap), and the mean dice coefficient 
was calculated. The manually annotated binary lesion 
masks were used as a fifth training output of the CNN. 
The training input was always the 35 magnitude MRF-
EPI data. We used two patients from site 1 and three 
patients from site 2 as test data and the same amount as 
validation data. We trained our network patch-wise using 
64 random patches per slice with a patch size of 64 × 64 
voxels, a mini batch-size of 64, 100 training epochs, and 
a learning rate of 10−4 . Slices containing white matter 
lesions with a minimum volume of 100  ml were aug-
mented by a factor of five to overcome the small overall 
volume of the lesions compared to the whole brain. We 
trained our networks using four different loss functions 
(MAE, MSE, LCL) with all five output maps ( T1 , T2

∗ , 
NAWM-, GM-probability maps, and WM lesion masks) 
and additionally the other networks using DICE loss with 
only the lesion masks as output for comparison with the 
conventional lesions segmentation. Additionally, the 
U-net was trained for the network number 8 with the 
denoised and distortion corrected T1 and T2

∗ maps and 
the lesion mask as output for comparison to conventional 
DL processing (MSE-2-1). The following loss functions 
were used for one and five outputs: mean squared error 
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(MSE), mean absolute error (MAE), logarithmic cosinus 
hyperbolic loss (LCL), and dice loss (DICE) as listed in 

Table  1. The naming MSE-1 and MSE-5 correspond to 
the loss function with the number of outputs.

Fig. 1 a Representation of the U‑net with an encoder depth of three. b Feature maps of the second convolutional layer and the second last 
convolutional layer are depicted. One feature per layer is marked in red and shown below in c. Coronal, sagittal, and transversal slices of the 
corresponding features maps are shown. The second convolutional layer shows a WM‑like feature, which, however, is not homogeneous in all 
three dimensions. The last convolution layer depicts a homogeneous WM‑like feature in all three dimensions. No colorbars were shown because all 
features are in arbitrary units
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For all loss functions, the network was trained with 
both the five output maps and also only the lesion as out-
put to validate the loss in accuracy when using multiple 
outputs. In previous work, it was observed that for mul-
tiple outputs the accuracy decreases of the network. [16] 
The accuracy compared with the conventional methods 
was validated with the MSE-5 because this was the best 
architecture for the reconstruction of T1 , T2

∗ , NAWM-, 
and GM-probability maps and lesion probability maps.

Statistics
The Dice coefficient and the lesion detection rate were 
used as the similarity metric for the lesion segmentation. 
Therefore, the threshold for binarizing the reconstructed 
lesion probability maps was analyzed. NAWM and GM 
masks were binarized with a commonly used threshold of 
80% [42] and mean dice coefficients along all subjects and 
slices were calculated. For the two other outputs ( T1 , T2

∗ ) 
the mean relative difference was calculated.

Results
The reconstruction with DL showed good agreement 
with conventional pattern matching reconstruction and 
a mean relative deviation of 5.2% for T1 and 5.1% for T2

∗ 
in the whole brain using MSE-5. The Dice coefficients 
for NAWM and GM after binarization with a threshold 
of 80% were 0.92± 0.04 for NAWM and 0.91± 0.03 for 
GM using MSE-5. The reconstruction of all five outputs 
took around one minute for the whole brain per subject, 
which is several orders of magnitude faster compared to 
the conventional processing (denoising, MRF reconstruc-
tion, distortion correction, masking, and lesion segmen-
tation) of about three hours.

Figure 2 shows the T1 , T2
∗ , NAWM-, GM-, and lesion 

probability maps generated by the CNN (MSE-5) for 
different training epochs (1, 5, 15, 30, 70, 100) com-
pared to the conventionally reconstructed maps and 

the segmented masks. Visual good image quality was 
obtained for T1 , T2

∗ , NAWM-, and GM probability maps 
after already 5 epochs. After around 15 epochs, the net-
work starts to predict the lesion probability maps and 
slowly converges towards 100 epochs.

The dice coefficient was strongly dependent on the 
threshold for binarizing the probability maps which is 
shown in Fig.  3. A maximum dice coefficient of 0.75 
is observed for a threshold of 41% for the training data 
(depicted in blue) and a maximum dice coefficient of 
0.62 for a threshold of 23% for the test data (depicted 
in orange) respectively. For further analysis, a threshold 
of 33% was used to binarize the lesion probability maps 
into masks as the best compromise for both, training and 
test data. At lower thresholds, the lesion detection rate 
increases. The dice coefficient and the lesion detection 
rate were 0.61± 0.09 and 0.85± 0.25 for the test data 
using the threshold of 33%. The average dice coefficient 
with its intra-observer variability across different anno-
tations was 0.68± 0.15 . After training the network with 
this second set of annotations the dice coefficient and the 
lesion detection rate were 0.60± 0.17 and 0.84 ± 0.19 . 
The prediction of the WM lesions does not depend on 
the lesion volume as illustrated in Additional file 1:  Fig-
ure S1.

In Fig.  4, the lesion probability is plotted versus the 
number of training epochs for different networks. It 
can be seen that training only with 1 output instead of 5 
results in faster convergence of the dice coefficient, how-
ever, the dice coefficient for the three methods (MSE-5, 
MAE-5, MSE-1) converged to 0.61 after about 60 epochs. 
The reference network (MSE-2-1) reached after around 
7 epochs the maximum dice coefficient of 0.61 but then 
decreases towards 0.5. The mean lesion detection rate 
over the entire test data was 0.85 for MSE-5, 0.79 for 
MAE-5, 0.78 for MSE-1, and 0.73 for MSE-2-1. The train-
ing with MAE-5 takes longer to start predicting lesions. 

Table 1 All network architectures are listed which are used in this manuscript.

Networks 3, 5, 6, 7 were not converging into lesion probability maps

The loss functions mean absolute error (MAE), mean squared error (MSE), locarithmic hyperbolic cosinus loss (LCL), and dice loss (DICE) are used. The number of 
outputs is either 5 ( T1 , T2

∗ maps and NAWM-, GM-, and lesion probability maps) or 1 (only lesion probability map)

Network Loss Inputs Outputs Naming

1 MSE 35 (MRF baseline) 5 ( T1 , T2∗ , WM‑, GM‑, lesion prob. maps) MSE‑5

2 MAE 35 (MRF baseline) 5 ( T1 , T2∗ , WM‑, GM‑, lesion prob. maps) MAE‑5

3 LCL 35 (MRF baseline) 5 ( T1 , T2∗ , WM‑, GM‑, lesion prob. maps) LCL‑5

4 MSE 35 (MRF baseline) 1 (lesion prob. map) MSE‑1

5 MAE 35 (MRF baseline) 1 (lesion prob. map) MAE‑1

6 LCL 35 (MRF baseline) 1 (lesion prob. map) LCL‑1

7 DICE 35 (MRF baseline) 1 (lesion prob. map) DICE‑1

8 MSE 2 ( T1 , T2∗ map) 1 (lesion prob. map) MSE‑2‑1
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Fig. 2 Visualization of the reconstruction during the training. The reconstructed T1 , T2∗ , NAWM‑, GM, and Lesion‑probability maps are depicted for 1, 
5, 15, 30, 70, and 100 training epochs (white number) and the dictionary matching reference maps are shown on the right side for MSE‑5

Fig. 3 The dice coefficient (left) and the lesion detection rate (right) for all training data (blue) and test data (orange) are shown over the threshold 
to binarize the lesion probability maps. The black lines depict the average across the test data. A maximum dice coefficient is observed at a 
threshold of around 50%. The lesion detection rate decreases for an increasing threshold because the background of the lesion probability map is 
non‑zero
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The networks MAE-1, LCL-5, LCL-1, and DICE-1 con-
verge to a local minimum while training, resulting in 
all lesion probabilities equal to zero and were therefore 
excluded from the analysis.

For every test patient, one representative slice is shown 
in Fig.  5 with the lesion probability color-encoded, and 
the manual annotation highlighted in blue. For patients 
number 1, 2, and 5 the depicted lesions of the slice cor-
relate very well with the annotation. For patient number 
3, the CNN predicted three lesions with a small prob-
ability, which were then excluded from the mask after 
thresholding. Only in test patient number 4, the network 
did not predict the annotated lesion near the GM. The 

dice coefficient and lesion detection rate are shown for all 
subjects in Fig. 5. The test data are shown in larger marks 
with lighter blue and yellow colors. The CNN predicted 
no lesions in healthy subjects.

Figure 6 shows the percentage increase of a WM lesion 
compared to the mean NAWM times for T1 , T2

∗ , and the 
lesion probability generated by the CNN. The manually 
annotated lesion is marked in blue. A good visual cor-
relation between the lesion probability and the increase 
in T1 and T2

∗ is observed, as depicted below for the two 
cross-sections (green and red). It was also observed that 
the lesion probability is increased and steeper for lesions 
that have increased relaxation times.

Fig. 4 The dice coefficient for three different networks is depicted (five outputs with MSE [MSE‑5], five outputs with MAE [MAE‑5], only lesions with 
MSE [MSE‑1]) and the reference network with the T1 and T2∗ maps as input and lesions as output [MSE‑2‑1]. The dice coefficient is plotted for all 
three networks over the training epochs and the smoothed data is shown in the foreground colors. The corresponding lesion probability maps are 
shown for 1, 5, 15, 50, and 100 epochs below
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Fig. 5 The reconstructed lesions probability maps are overlayed on the magnitude data in color encoding for all five different patients from the 
test set. Manual annotation is depicted in blue. Below the probability map is binarized and depicted in yellow in addition. The dice coefficient and 
white matter lesion detection rate is depicted for every patient and healthy subject for both sites. The average lesions detection rate is 0.88 and the 
average dice coefficient is 0.67 for all patients. The test data is shown in larger marks and brighter color and yields an average lesion detection rate 
of 0.85 and an average dice coefficient of 0.61 using the MSE‑5

Fig. 6 One lesion is depicted in a zoomed‑in version with a bilinear interpolation of factor 10. The increase in T1 and T2∗ compared with the mean 
NAWM is color encoded in percentage and the lesion probability generated by the CNN is shown on the right side. The manual annotation is drawn 
as a blue line. Below the voxel‑wise values are depicted for one horizontal (red) and one vertical (green) cut through the lesion
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Discussion
In this study, we have shown that the CNN is capable 
of predicting lesion probability maps, which correlate 
with an increase in T1 and T2

∗ times in NAWM. After 
binarizing the probability maps, the dice coefficient 
was 0.61± 0.09 for the test data, which is comparable 
to the intra-observer variability of the manual drawer 
( 0.68± 0.23 ) and is comparable to literature (0.47–0.95). 
[33, 36] The CNN might be more robust compared with 
manual annotations because the network has no varia-
tions for multiple annotations. We have shown that the 
network only predicts lesion probability maps for the 
loss functions MAE and MSE. This could be since out-
liers, such as the small spherical lesions, are weighted 
more heavily with MSE and MAE compared with LCL or 
the dice loss. This was also observed for MAE-1, despite 
MAE-5 was able to predict lesions. More augmentation 
or an advanced optimization of the network consider-
ing the layer structure could further improve the per-
formance of the network. In each case, training with 
one or all five output masks converged to the same dice 
coefficient regardless of the network, demonstrating the 
ability to reconstruct all maps within a single architec-
ture (Fig.  4). Compared to the conventional method of 
performing lesion segmentation on the T1 and T2

∗ maps, 
the network MSE-2-1 resulted in an average dice of 0.5 
and yielding worse performance compared with the other 
proposed networks. With this, we state that the approach 
of combining all post-processing steps has no loss in 
accuracy when lesion probability maps are generated 
facilitating an advanced DL approach to save time and 
avoid further processing.

Additionally, the network was able to perform the tasks 
of reconstruction, denoising, distortion correction, and 
segmentation within a single architecture with promis-
ing accuracy. T1 and T2

∗ maps as well as the NAWM- and 
GM-probability maps showed good agreement as also 
previously reported [16] with a mean relative error of 
5.2% for T1 and T2

∗ and mean dice coefficients of higher 
than 0.9 for NAWM and GM. The use of a single network 
is advantageous due to the faster and simpler reconstruc-
tion compared with several networks for the different 
processing steps although the accuracy seemed to be 
slightly compromised. [16] It was observed, that the net-
work first learns to reconstruct the T1 , T2

∗ , NAWM, and 
GM probability maps, as evidenced by the good visual 
image quality after only 5 epochs (Fig. 2). This could be 
explained by the several orders increase in the number of 
non-zero voxels in these maps compared to the low num-
ber of lesion voxels per slice.

The lesion probability maps visually correlate well with 
the increase in T1 and T2

∗ compared to the mean NAWM 
times. This could indicate that larger or more intense 

lesions are also predicted as such by the CNN. Therefore, 
these lesion probability maps could be used to automati-
cally rate and differentiate different lesions based on the 
MRF input data. This is similar to the results of other 
lesion probability mapping methods. However, these 
methods rely either on manual grading, voxel-wise, or 
local spatial dependent models, which are time-consum-
ing and susceptible to patient-specific covariances. [1–3, 
5] A large cohort is beneficial to prove this assumption 
and to correlate this behavior with follow-up measure-
ments and disease specificities.

Besides, our approach could include the underlying 
information of the evolution of the MRF scan. It has 
been shown that principal component analysis (PCA), 
which also uses the input magnitude MRF data, allows 
separation of the brain into multiple components such 
as myelin and WM lesions [43, 44]. This is shown in 
Fig. 1b where all feature maps of the second and second 
last convolutional layer are depicted. At the beginning of 
the network architecture, features from the MRF mag-
nitude images are extracted. They are not homogeneous 
along all three dimensions as also the magnitude MRF 
data are not. However, in subsequent layers, the feature 
maps are homogeneous in 3 dimensions meaning that 
anatomical features independently on the slice position 
and acquisition scheme are extracted. The CNN might be 
able to learn and distinguish the underlying components, 
improving lesion segmentation and prediction. This is an 
information gain compared to manual annotators and 
compared to lesion segmentation methods based solely 
on the quantitative parametric maps. [36, 37] In further 
work, this has to be compared with conventional meth-
ods for assessing these components such as the myelin or 
extracellular water. [43, 45, 46]

This study has some limitations. Because the lesions 
were manually segmented, there is a large amount of 
variation in the annotation, which was also evident in 
the relatively high intra-observer variability (0.68). This 
could be improved by performing more annotations from 
multiple annotators to reduce this variability, but this 
is very time-consuming. The reduced variability in the 
lesion masks could also lead to better and faster training 
performance of the network, yielding higher dice coef-
ficients. WM lesions are often difficult to differentiate 
from NAWM in the T1 and T2

∗ maps without knowledge 
of surrounding layer information because NAWM lesions 
appear similar to lobes of the GM inside the NAWM. The 
reconstruction could be improved by using a 3D CNN 
with 3D patches. However, we have tried to train a 3D 
architecture, but the 3D CNN was not able to predict any 
lesions and the accuracy for the other outputs was com-
promised. This could be because 3D architectures require 
more data and longer training compared with 2D CNNs. 
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Therefore, more data needs to be acquired for compara-
ble 3D results, which will be the content of further work. 
This could also be the reason why some loss functions 
could not generate lesion probability maps.

Conclusion
In this work we showed, that training a neural network 
with lesion masks can be used to generate lesion prob-
ability maps, which might improve diagnostics. Addi-
tionally, the single CNN is a promising tool for the 
reconstruction, denoising, distortion correction of T1 
and T2

∗ maps, and additionally to generate NAWM, GM 
probability maps. The reconstruction for a whole brain 
took less than one minute, which is more than a 100 fold 
acceleration compared with conventional processing 
which makes it clinically of great interest.
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