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1
Introduction

This report is the results of a master thesis on the application of Model Predictive Control (MPC) to
helicopters at the Aerospace Faculty of the Technical University of Delft. The purpose of the report is on
one hand to evaluate the possibilities of and previous research on applying MPC to helicopters by means of a
literature review. On the other hand, more specific research was performed to evaluate linear and nonlinear
model predictive control for reducing cross-couplings in helicopters to improve its handling qualities.

1.1. Background
Compared to fixed-wing aircraft, helicopters are highly versatile vehicles that can be used to execute a diverse
range of commercial and military missions mainly due to its extreme maneuverability in low- and high-speed
flight, vertical take-off and landing capabilities and the ability to hover. However, these great capabilities
come with the fact that they are very difficult to control: they have fast, complex dynamics, are inherently
unstable and its motion is highly coupled. Not only does this increase the workload of the pilot tremendously,
it is also the cause of many fatal accidents [3]. With the introduction of flight control systems and fly-by-wire
in helicopters in the 90’s-00’s, the flying characteristics of the helicopter could be adjusted to the pilot’s
needs to make the helicopter easier and safer to fly [4, 5]. Furthermore, handling quality requirements were
set up in order to serve as a guideline for desired flight characteristics to improve the ease of controlling an
aircraft [6]. However, to this day helicopters remain hard to fly and not accessible to the general public.
Therefore, designing flight control systems in order to improve the helicopter handling qualities and safety
is an important but challenging task.

At the same time Model Predictive Control (MPC) is emerging as a promising model-based optimal
control technique with the powerful capabilities of including constraints on inputs and outputs, and including
an objective function directly in the control algorithm. Furthermore, MPC has the advantage of being able to
take into account future information of the system and the environment. This allows MPC to deal efficiently
with time delays, non-minimum phase behaviour and to anticipate on future events [7]. Therefore, MPC
offers an easy way to directly incorporate technical specifications, safety limits and performance bounds
into the helicopter flight control design and to calculate the optimal control input based on a customized
objective function and future information of the flight dynamics and flight condition. On the other hand the
optimization process in MPC brings along a big computational burden. Even though optimization methods
and computer power are rapidly improving, the real time application of MPC to fast dynamic systems such
as helicopters is still in development. Furthermore, when the theoretical and unpractical Lyapunov stability
modifications are not implemented to the MPC problem, the MPC problem has to be stabilized by means
of tuning. This can be time consuming and requires expertise as no structured tuning approach exists.
Especially for nonlinear MPC, the computational burden and stability matter can become critical [8]. MPC
was originally used in the 80’s for industrial processes in areas as refining, petrochemicals and pulp and paper
but is now making its way into other applications such as electronics, medicine, energy and environment and
the automotive and aerospace industry [9–11]. Hence, with the rising popularity of MPC, new possibilities
for improving helicopter flight are emerging [12].
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2 1. Introduction

1.2. Objective
The first objective of this report is to investigate the previous research and possibilities of the online ap-
plication of MPC to helicopters. In order to do this, first it will be investigated what makes helicopters so
hard to control by looking at the fundamentals of helicopter dynamics and stability. Moreover, research will
be performed into the handling qualities of helicopters, more specifically into how they are defined and how
they are affected. Secondly, the concept of model predictive control and its capabilities and drawbacks will
be investigated. Finally, the possibilities of applying MPC to helicopters will be investigated by finding the
advantages and disadvantages specific to MPC applied to helicopters and analyzing the previous research
performed on it.

From this literature study, a more specific research objective with research questions arose which defines
the objective of the thesis work and hence the second objective of this report. The thesis work objective is
to investigate whether linear and nonlinear MPC are suitable to apply to helicopters to reduce cross-coupling
effects by evaluating its performance on the cross-coupling handling quality requirements of the ADS-33
document. On one hand, it will be investigated how well linear and nonlinear MPC are able to reduce cross-
coupling effects on the handling quality rating scale and compared to an uncontrolled and PID controlled
helicopter. On the other hand, it will be investigated how sensitive the MPC controllers are to prediction
model errors when reducing cross-coupling effects. Furthermore, the similarities and differences between
linear and nonlinear MPC will be analyzed.

1.3. Outline
This thesis report is divided in four parts: the scientific article, the literature review, the thesis work and
the appendices. In Part I, a scientific article about the conducted thesis work can be found. Part II covers
the literature review on the application of MPC to helicopters. Here, Chapter 2 describes the helicopter
dynamics and stability together with an introduction to helicopter handling qualities. An introduction to
MPC and its possibilities and drawbacks can be found in Chapter 3. Chapter 4 describes the advantages
and disadvantages of MPC applied to helicopters accompanied by a thorough investigation of the previous
research conducted on MPC applied to helicopters. Finally, Chapter 5 presents a conclusion of the performed
literature study.

Next, Part III presents the thesis work on the ability of linear and nonlinear MPC to reduce cross-couplings
in helicopters in order to improve its handling qualities. In Chapter 6, the thesis objective and research
questions that come forward of the research gap will be described followed by the research approach which
will be followed. After this, Chapter 7 will describe the set-up of the cross-coupling simulations and sensitivity
analysis simulations that will be performed for the thesis work. Next, the cross-coupling requirement results
will be presented in Chapter 8. Then, Chapter 9 will describe the results of the sensitivity analysis to
prediction model errors when reducing cross-couplings. Finally, Chapter 10 and 11 present respectively the
conclusion of the thesis work and recommendations for future work that follow from the conclusion.

Part IV contains the appendices of this report. In Appendix A, the non-dimensionalization and a com-
parison of the helicopter stability derivatives can be found. Appendix B shows the 8 degrees of freedom
linearized model of the helicopter for hover and forward flight. Next, some additional cross-coupling require-
ment simulations are presented in Appendix C. Finally, Appendix D shows the individual analyses of the
important derivatives of the sensitivity analysis.
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Evaluating Linear and Nonlinear Model Predictive
Control for Reducing Cross-coupling Effects in

Helicopter Flight
Lotte Wellens

Abstract—Model predictive control is an optimal, model-based
control method that has the powerful capability of directly
including input and output constraints. Next to this, it is known
that helicopters are hard to fly with its complex, unstable and
highly coupled dynamics. With the introduction of the concept
of handling qualities, guidelines for helicopter and flight control
system design were set in the ADS-33 document to improve the
ease of controlling rotorcraft. In order to improve helicopter
handling qualities, this paper investigates whether linear and
nonlinear MPC are suitable for online application to helicopters
to reduce cross-coupling effects. This was investigated by evalu-
ating its performance on the cross-coupling requirements of the
ADS-33 handling quality document. It was found that both linear
and nonlinear MPC are very effective to reduce cross-coupling
effects even when disturbances or prediction model errors are
present. The model predictive controller could reduce the off-axis
coupling response by around 99% compared to the uncontrolled
helicopter. Furthermore, it performed 90% to 99% better than
a PID controller in most coupling cases.

Index Terms—cross-coupling effects, flight control, handling
qualities, helicopters, model predictive control.

NOMENCLATURE

ADS Aeronautical Design Standard
DOF Degree of Freedom
LMPC Linear Model Predictive Control
MPC Model Predictive Control
NLMPC Nonlinear Model Predictive Control
PID Proportional Integral Derivative
TA&T Target Acquisition and Tracking

β sideslip angle
δlon, δlat longitudinal and lateral stick displacement
∆ts simulation sampling time
ε error in the derivatives of the prediction model
λ0 non-dimensional uniform inflow velocity
λ0tr

tail rotor non-dimensional uniform inflow velocity
σ standard deviation of ε
θ0, θ1s, θ1c, θ0tr helicopter control inputs: collective pitch

angle, longitudinal cyclic pitch angle, lateral cyclic
pitch angle and tail rotor collective pitch angle

φ, θ, ψ fuselage Euler angles
ε simulation model uncertainty or disturbance
DMPC estimated derivative used in the prediction model
Dactual actual helicopter derivative

L. Wellens was a MSc student in Control and Simulation at the Faculty
of Aerospace Engineering, Delft University of Technology, The Netherlands.
E-mail: wellenslotte@hotmail.com

e tracking error
ē tracking error vector along the prediction horizon
h altitude
i prediction horizon time step
K feedback gain
k control time step
N prediction horizon
Nu control horizon
nz normal acceleration
p, q, r helicopter body angular rates
pk subscript peak
Q tracking error weight matrix
r̄ reference state vector along the prediction horizon
ref subscript reference
t time
trim subscript value at trim
u control input vector
u, v, w helicopter velocity along the body axes
ū control input vector along the prediction horizon
x state vector
x, y, z helicopter coordinates in the Earth reference frame
x̄ predicted state vector along the prediction horizon

I. INTRODUCTION

COMPARED to fixed-wing aircraft, helicopters are highly
versatile vehicles that can be used to execute a diverse

range of commercial and military missions mainly due to
its extreme maneuverability in low- and high-speed flight,
vertical take-off and landing capabilities and the ability to
hover. However, these great capabilities come with the fact
that they are very difficult to control: they have fast, complex
dynamics, are inherently unstable and its motion is highly
coupled. Not only does this increase the workload of the pilot
tremendously, it is also the cause of many fatal accidents [1].
With the introduction of flight control systems and fly-by-wire
in helicopters in the 90’s-00’s, the flying characteristics of
the helicopter could be adjusted to the pilot’s needs to make
the helicopter easier and safer to fly [2], [3]. Furthermore,
handling quality requirements were set up in order to serve as
a guideline for desired flight characteristics to improve the ease
of controlling an aircraft [4]. However, to this day helicopters
remain hard to fly and not accessible to the general public.
Therefore, designing flight control systems in order to improve
the helicopter handling qualities and safety is an important but
challenging task.
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At the same time Model Predictive Control (MPC) is emerg-
ing as a promising model-based optimal control technique with
the powerful capabilities of including constraints on inputs
and outputs, and including an objective function directly in
the control algorithm. Furthermore, MPC has the advantage
of being able to take into account future information of
the system and the environment. This allows MPC to deal
efficiently with time delays, non-minimum phase behaviour
and to anticipate on future events [5]. Therefore, MPC offers
an easy way to directly incorporate technical specifications,
safety limits and performance bounds into the helicopter flight
control design and to calculate the optimal control input based
on a customized objective function and future information of
the flight dynamics and flight condition.

On the other hand the optimization process in MPC brings
along a big computational burden. Even though optimization
methods and computer power are rapidly improving, the real
time application of MPC to fast dynamic systems such as
helicopters is still in development. Furthermore, when the
theoretical and unpractical Lyapunov stability modifications
are not implemented to the MPC problem, the MPC problem
has to be stabilized by means of tuning. This can be time
consuming and requires expertise as no structured tuning
approach exists. Especially for nonlinear MPC, the compu-
tational burden and stability matter can become critical [6].

MPC was originally used in the 80’s for industrial processes
in areas as refining, petrochemicals and pulp and paper but
is now making its way into other applications such as elec-
tronics, medicine, energy and environment and the automotive
and aerospace industry [7]–[9]. With the rising popularity
of MPC new possibilities for improving helicopter flight are
emerging [10]. Research has been performed on MPC applied
to helicopters from the 00’s onwards where mainly tracking
tasks but also other tasks were investigated such as formation
flying [11], object avoidance [12], [13], flying in autorotation
[14] and for defining control limits corresponding to flight
envelope limits [15], [16] or load limits [17]. It has been
demonstrated by Liu et al. (2012) that MPC has excellent
tracking performance for flying a pirouette maneuver showing
that the controller can handle the extremely coupled lateral and
longitudinal dynamics [18]. Furthermore, the square maneuver
performed by Liu et al. (2010) tests the MPC controlled
helicopter’s ability to fly forwards, backwards and sideways
[19]. Here, flying the square trajectory was performed within
10 cm of the reference trajectory in a small-scaled flight test.
It was also shown that by using robust MPC, the controller can
deal with bounded external disturbances [20] and with constant
wind gusts [18]. However, most previous research on MPC
applied to helicopters focused on application in simulation.
Only few research tested the controller experimentally in a
mechanical set-up with limited Degrees of Freedom (DOF)
[21]–[23] or in a small-scaled flight test with an unmanned
aerial vehicle [18], [24]–[26].

In short, it can be seen that there is a clear need for heli-
copters to achieve good handling qualities such that helicopters
will be easier to fly and maneuver. One of the biggest reasons
it is so hard to fly a helicopter is because of the many cross-
coupling effects in its dynamics. Therefore, this is also a big

aspect in the handling quality requirements specified in the
”ADS-33 Aeronautical design standard performance specifi-
cation: handling qualities requirements for military rotorcraft”
[27]. With MPC having numerous advantages and making
its way into the aerospace industry, it is being applied to
helicopters in multiple researches. In this research, it will be
investigated how MPC can be used for helicopter flight control
to reduce cross-coupling effects and achieve better handling
qualities. Therefore, the objective of this research is:

to investigate whether linear and nonlinear MPC are suit-
able for online application to helicopters to reduce cross-
coupling effects by evaluating its performance on the cross-
coupling handling quality requirements of the ADS-33 docu-
ment.

On one hand, it will be investigated how well Linear Model
Predictive Control (LMPC) and Nonlinear Model Predictive
Control (NLMPC) are able to reduce cross-couplings on the
handling quality rating scale, compared to an uncontrolled
helicopter and compared to a Proportional Integral Derivative
(PID) controlled helicopter. On the other hand, it will be
investigated how sensitive the MPC controllers are to pre-
diction model errors when reducing cross-coupling effects.
Furthermore, the similarities and differences between linear
and nonlinear MPC will be analyzed.

This paper will first clarify the methodology used to fulfill
the research objective in Section II. Section III shows the
model predictive control design that will be analyzed. Next,
Section IV presents the results of the cross-coupling require-
ment simulations after which the results of the sensitivity
analysis will be presented in Section V. Finally, the findings
of this paper and recommendations for future work will be
stated in Section VI.

II. METHODOLOGY

In this section the method used for answering the re-
search objective will be described. First the cross-coupling
requirements that will be investigated will be explained. After
this, the simulation set-up of the cross-coupling requirement
simulations and the sensitivity analysis will be stated. Then,
the uncertainty implemented in the simulation model for the
cross-coupling requirement simulations will be introduced.
Furthermore, the error implemented in the prediction model for
the sensitivity analysis will be presented. Next, the nonlinear
and linear helicopter model used for the simulations will be
introduced. Finally, the PID controller used to compare the
MPC controller to will be presented.

A. Cross-coupling Requirements

First, some background information on cross-coupling ef-
fects and the requirements defined by the Aeronautical Design
Standard (ADS) will be given. After this, the cross-coupling
test cases used for the simulations will be presented.

1) Background: When for example a step input is given
in the collective stick of the helicopter, a change in height is
the helicopter’s primary dynamic response. However, due to
the helicopter’s complex dynamics many secondary, off-axis
responses arise as well: because of the change in collective
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TABLE I
PRIMARY AND SECONDARY RESPONSES FOR EACH INPUT AXIS [28].

Input \ Response Pitch θ Roll φ Heave w Yaw ψ

Longitudinal cyclic θ1s primary response due to lateral flapping desired in forward flight negligible

Lateral cyclic θ1c
due to longitudinal
flapping primary response descent with roll angle undesired

Collective input θ0
due to longitudinal
flapping

due to lateral flapping and
sideslip primary response due to change in torque

requires tail rotor thrust

Tail rotor collective θ0tr negligible due to tail rotor thrust and
sideslip undesired primary response

TABLE II
CROSS-COUPLING REQUIREMENTS SPECIFIED BY THE ADS-33 FOR OFF-AXIS DYNAMIC RESPONSES [29].

* NO CURRENT REQUIREMENTS.

Input \ Response Pitch θ Roll φ Heave w Yaw ψ

Pitch θ
(Longitudinal cyclic θ1s)

X ∆φpk/∆θ4

hover and fwd flight
flight path response
not objectionable in for-
ward flight

* yaw response due to
rotor torque changes in
aggressive pitch
manoeuvres

Roll φ
(Lateral cyclic θ1c)

∆θpk/∆φ4

hover and fwd flight
X * thrust/torque spikes in

rapid roll reversals
∆β/∆φ ratios
in fwd flight

Heave w
(Collective input θ0)

∆θpk/∆nzpk
in fwd flight

* ∆φpk/∆nzpk X r/
∣∣∣ḣ∣∣∣ ratios

in hover

Yaw ψ

(Tail rotor collective θ0tr )

* pitching moments due to
sideslip
in fwd flight

dihedral effect on roll
control power

not objectionable in hover X

input, there is a change in torque of the main rotor which
will cause the helicopter to yaw. In order to counter this yaw
motion, the pedal needs to be used to generate a counter-
acting moment coming from the tail thrust. Similarly, when an
input is given to one of the other control inputs, the helicopter
responds with a primary on-axis response and some secondary
responses in the off-axis degrees of freedom. An overview of
the primary and secondary responses of each control input is
given in Table I where it can be seen that many cross-coupling
effects are caused by lateral or longitudinal flapping of the
rotor blades or by changes in the rotor torque. These off-axis
responses are often referred to as inter-axis coupling, input-
output coupling or cross-coupling effects. They are mostly
undesired as they increase the workload of the pilot immensely
even for straightforward tasks such as maintaining hover.

Therefore, requirements on the amount of cross-coupling
effects in helicopter flight are widely described in the ADS-
33 handling qualities document [27]. Here, the ADS-33 puts
requirements on the amount of off-axis response present
such that the helicopter has good handling qualities. In this
way, the ADS-33 provides a way to objectively measure
cross-coupling effects and handling qualities and serves as
a guidance for the design of the helicopter and its flight
control systems. Here, handling qualities are defined as ”those
qualities or characteristics of an aircraft that govern the ease
and precision with which a pilot is able to perform the tasks
required in support of an aircraft role” by Cooper and Harper
(1969) [30]. For most cross-coupling effects, the document
has defined a certain parameter indicating the amount of

off-axis response compared to the amount of on-axis input
given. Hence, when flying the helicopter and giving a step
input in one of the controls, this parameter that resembles
the amount of off-axis response should remain within the
required limits in order to have a certain level of handling
qualities. In order to specify these limits, level 1, 2 and 3
handling quality boundaries for these parameters were defined
based on Cooper-Harper ratings of flight tests. This rating
scale subjectively measures the ease of controlling an aircraft
by letting the pilot answer a series of questions about flying
the maneuver to then categorize the maneuver in a level of
handling quality [30]. Here, level 1 is the best level with
excellent to fair handling qualities requiring no to minimal
pilot workload to perform the maneuver. Level 2 captures
the maneuvers with aircraft characteristics with minor to very
objectionable but tolerable deficiencies. Level 3 indicates the
worst level of handling qualities where major deficiencies
are present in the aircraft characteristics and an extensive
workload is required to fly the maneuver. These boundaries
can then be used as design requirements or just as indicative
guidelines. The cross-coupling requirements specified in the
ADS-33 document for off-axis responses are summarized in
Table II with its respective parameter representing the amount
of cross-coupling.

2) Test Cases: There are 10 cross-coupling requirements
that will be tested which are formulated in the ADS-33 in
Section 3.3.9 page 12 on interaxis coupling for hover and
low speed flight and 3.4.5 page 17 on interaxis coupling for
forward flight. The hover and low speed flight requirements
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will be performed at 0 knots flight speed and the forward
flight requirements will be simulated at 80 knots or 41 m/s
flight speed. For all these requirements, an excitation in one
of the control inputs is given after which the off-axis response
will be measured by means of a predefined cross-coupling
parameter that scales with the off-axis response. The cross-
coupling criteria for hover and low speed flight and for forward
flight that will be tested are presented below and will be
explained more thoroughly in Section IV.
For hover and low speed flight:

1) yaw due to collective for aggressive agility
2) pitch due to roll coupling for aggressive agility
3) roll due to pitch coupling for aggressive agility
4) pitch due to roll coupling for target acquisition & tracking
5) roll due to pitch coupling for target acquisition & tracking

For forward flight:
6) pitch attitude due to collective control

a) small collective inputs
b) large collective inputs

7) pitch due to roll coupling for aggressive agility
8) roll due to pitch coupling for aggressive agility
9) pitch due to roll coupling for target acquisition & tracking

10) roll due to pitch coupling for target acquisition & tracking
Both time (for aggressive agility) and frequency (for target

acquisition and tracking) requirements are set out in the ADS-
33 for pitch and roll coupling as coupling handling qualities
are not only task but also frequency dependent. ”A pilot
may be less tolerant of large amounts of coupling at high
frequency for an aggressive-precision task but may find the
same amount acceptable for a non-aggressive low precision
task.” as discussed by Blanken et al. (1997) [31]. Therefore,
the frequency domain criteria is needed in order to also capture
the short-term coupling response that corresponds to high
precision, agile tracking tasks.

For the time domain requirements, the control input that will
be given in order to excite the on-axis response will mostly be
a step input of plus or minus 10% of the control input range
given one second after the simulation started. This usually
leads to a significant and fast change in the on-axis attitude.
In some simulation cases, which will be mentioned, the step
input is smaller than the 10% change because of helicopter
limits. The control input that will be given for the frequency
domain requirements will be explained in Section IV-E.

B. Simulation Set-up

This section will discuss the control and model set-ups used
for the cross-coupling requirement simulations and the sensi-
tivity analysis. An overview of the models used as simulation
and prediction model for the cross-coupling simulations and
the sensitivity analysis can be found in Figure 1.

1) Cross-coupling Requirement Simulations: The effective-
ness of MPC to reduce cross-coupling effects during helicopter
flight will be evaluated by investigating its performance on
the 10 cross-coupling requirements set out by the ADS-33
document for hover and forward flight. The performance of
reducing cross-coupling effects will be measured by means

Fig. 1. Overview of simulation and prediction model set-up for the cross-
coupling requirement and sensitivity analysis simulations.

of the cross-coupling parameter defined in the ADS-33 and
the handling quality level it corresponds to. This will be done
in a simulation of the BO-105 helicopter where each of the
cross-coupling cases will be tested for the helicopter with
nonlinear MPC applied to it, with linear MPC applied to it, the
helicopter without controller and the PID controlled helicopter.
In this way, the performance of the MPC controllers can be
compared to the uncontrolled helicopter and to a conventional
control technique. Furthermore, the linear and nonlinear MPC
controller can be compared to each other. In this simulation
the objective of the controllers will be to minimize the off-
axis attitude responses when simulating both a positive and
negative step in the on-axis control input. The position of the
helicopter and the on-axis response will be uncontrolled. In
the uncontrolled simulations, the on-axis and relevant off-axis
attitude will be uncontrolled. The off-axis attitude that is not
part of the cross-coupling case will be controlled to remain
constant using the simple PID controller from Section II-F
e.g. yaw attitude in the pitch due to roll coupling case.

The simulation will use the nonlinear, 8 DOF helicopter
model ran at 100 Hz as simulation model which has to
represent the actual helicopter dynamics. Furthermore, the
MPC controllers also use a helicopter model in order to predict
the future states of the helicopter. The same nonlinear 8 DOF
model is used as prediction model for the nonlinear MPC
controller whereas the linear MPC controller will use the
linearized 8 DOF model. Both models will be explained further
in Section II-E. In order to be able to compare the performance
of NLMPC with LMPC without the bias of NLMPC having
a perfect future state prediction, an uncertainty is added to
the simulation model. Hence, the 4 control configurations will
be tested in a simulation with and without uncertainty added
to the simulation model. In this way, not only an unbiased
comparison can take place but also a more realistic behaviour
of the helicopter can be simulated as the uncertainty will be
implemented as a disturbance in the main rotor thrust. More
on this uncertainty that is added to the simulation model can
be found in Section II-C.

2) Sensitivity Analysis Simulations: The robustness or sen-
sitivity of MPC to prediction model errors will be investigated
by evaluating the decoupling performance of the MPC con-
trollers when a mismatch or error is present in the prediction
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model. In order to be able to systematically implement an
error in the prediction model, the linear prediction model will
be used. In this way the error can be applied to one of the
relevant derivatives in the state and input matrix. To reduce
the model mismatch between the simulation and prediction
model, the linear model is also used for the simulation. The
implementation of the fixed error in the prediction model will
be explained in Section II-D

The aim of the sensitivity analysis is twofold. First of all,
for each cross-coupling case the important derivatives will be
identified by means of implementing a fixed error in every
prediction model derivative relevant to the cross-coupling case,
one at a time. Then, cross-coupling requirement simulations
are performed and the cross-coupling parameters are mea-
sured. Based on the change in cross-coupling parameter and if
the controller still has level 1 handling qualities the derivatives
which alter the handling qualities of the MPC controlled he-
licopter the most can be found. This information is important
as to known which prediction model derivative needs to be of
high accuracy in order to still have level 1 handling qualities.
Secondly, once the important derivatives have been identified
they will be investigated further by varying the error that
is implemented and measuring how this affects the cross-
coupling parameter. This information gives understanding to
how sensitive these derivatives are to errors and what kind of
errors are most performance degrading (over/underestimating,
changing sign, etc.). It must be noted that in this research only
the influence of one error at a time will be investigated as to
pinpoint the important derivatives. The robustness to multiple
errors at the same time is beyond the scope of this research.

C. Introducing the Uncertainty

An uncertainty will be implemented in the nonlinear simula-
tion model for the cross-coupling simulations for two reasons.
Firstly and most importantly, the error is introduced in order
to remove the positive bias of the nonlinear MPC controller.
Secondly, the addition of the uncertainty into the helicopter
model adds more realistic dynamics as the uncertainty that
is added acts as a disturbance to the main rotor thrust.
Without the uncertainty, the nonlinear MPC would have a
perfect prediction model which is unrealistic and yields an
unfair comparison of the nonlinear MPC with the linear MPC.
Furthermore, it was decided to introduce the uncertainty in
the simulation model instead of in the prediction model in
order to have a consistent implementation for both the linear
and nonlinear MPC, maintaining comparability. This entails
that there is also a disturbance introduced in the helicopter
dynamics which will be noticeable in the behavior of the
helicopter but not unwanted.

The uncertainty ε is introduced as a time-varying random
variable with normal distribution ε ∼ N (σ, 0) with a standard
deviation of σ and zero mean [32]. It is applied to the main
rotor thrust coefficient as the thrust force is the main aero-
dynamic force acting on the helicopter, affecting the motion
in all degrees of freedom, and is also very hard to predict.
Hence, adding an uncertainty in the thrust coefficient in the
model is realistic. It is applied according to Equation 1 so

Fig. 2. A 5 second trial of the uncertainty ε with σ = 0.2 over time.

that CT is being decreased or enlarged with ε multiplied with
the original thrust coefficient. As can be seen, the uncertainty
varies with time: each simulation time step ∆t the uncertainty
ε changes. As the uncertainty is randomly generated each
time step, every simulation is different. Therefore, a series of
6 simulations, called trials, are ran where the cross-coupling
results are linearly averaged.

CT = CT · (1 + ε(∆t)) (1)

For the simulations, a standard deviation of σ = 0.2 is chosen
which means that 68% of the generated uncertainties will
be within [−0.2, 0.2] and 95% will be within [−0.4, 0.4].
In Figure 2, one can see a trial of this randomly generated
uncertainty over 5 seconds.

D. Introducing the Sensitivity Analysis Error

The error will be implemented in the prediction model of the
MPC controller in the elements of the state matrix A and input
matrix B of the linear helicopter model. More specifically, it
will be implemented in the relevant elements only e.g. for
yaw due to collective coupling the error will be implemented
in the derivatives of the yaw acceleration so ∂ṙ

∂u ,
∂ṙ
∂v , ... in the

A matrix and ∂ṙ
∂θ0

, ∂ṙ
∂θ1s

, ... in the B matrix. Here, a simplified
notation will be used such that for example the derivative ∂ṙ

∂u
will be noted as ṙu.

The error ε will be implemented to the actual derivative in a
dimensionless manner as can be seen in Equation 2. Here, the
estimated derivative DMPC , so the derivative with error used
by the MPC controller, will be equal to the actual derivative
Dactual plus a fraction ε of the actual derivative. An overview
of how the error value influences the proportions between the
actual and the MPC derivative can be found in Equation 3.

DMPC = Dactual(1 + ε) (2)

ε < −1 : sgn(DMPC) = −sgn(Dactual)

ε = −1 : DMPC = 0

−1 < ε < 0 : |DMPC | < |Dactual|
ε = 0 : DMPC = Dactual

ε > 0 : |DMPC | > |Dactual|

(3)

In order to find out how large such an error realistically
could be when modeling a helicopter, data from Pavel (1996),
considered as estimated derivatives, was compared to data
from the NASA model of Heffley et. al (1979), considered as
actual derivatives [33], [34]. Here, it could be seen that most
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errors are within -1 and 0, hence underestimating the actual
derivative in absolute value. It is only for a few cases that a
greater positive or negative error occurs but still around an
absolute value of 1. Furthermore, some outliers were spotted
with errors of ±30. However, these only occur when the actual
derivative is almost zero. As will be clear later from the results
of the sensitivity analysis, the accuracy of these derivatives
barely influence the MPC performance at all.

Based on an error analysis of the data from Pavel (1996)
and Heffley et. al (1979), it was chosen to first find the
important derivatives by applying an error of 10 and -10 to all
of the relevant derivatives one by one and measuring the cross-
coupling parameters [33], [34]. After this a range of errors
from -10 to 10, so ε = −10, −9, −8, −7, −6, −5,
−4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, will
be applied to the most important derivatives in order to have
an individual analysis.

E. Helicopter Model

The 8 DOF nonlinear model of the BO-105 helicopter used
for the simulations in this research was developed at the TU
Delft and consists out of 6 helicopter body DOFs and 2 rotor
inflow DOFs, one for the main rotor and one for the tail rotor
[33], [35]. The rotor inflow dynamics is added because the
hingeless rotor system of the BO-105 causes the rotor and
body dynamics to be highly coupled [36]. Furthermore, the
body dynamics takes into account the forces and moments
from the main rotor, tail rotor, fuselage, horizontal tail and
vertical tail. The helicopter’s motion will be described by a
total of 14 states and will be controlled by 4 control inputs
namely the main rotor collective, the longitudinal cyclic, the
lateral cyclic and the tail rotor collective as seen in Equation
4 and 5 respectively.

x = [u v w p q r ψ θ φ x y z λ0 λ0tr
]′ (4)

u = [θ0 θ1s θ1c θ0tr
]′ (5)

The linear 8 DOF model of the system is obtained by
linearizing the nonlinear model around a certain trim condition
(xtrim, utrim) using perturbation linearization [37][p. 563].
The linear model then approximates the nonlinear model at
and around this trim condition. The more the helicopter state
deviates from the trim condition or the more nonlinear the
helicopter behaves at this trim condition, the worse the linear
approximation will be.

Furthermore, some physical boundaries are imposed on the
control inputs because of actuator limits. Firstly, the control
inputs are bounded by upper and lower limits. The data for
these limits of the BO-105 helicopter is retrieved from Prouty
(2002) [37]. Secondly, the rate of change in each control input
is limited. No rate limits were found for the BO-105 so the
rate data for the Bell 412 helicopter from Voskuijl et al. (2010)
was used [38]. The input ranges and input rate limits of the
BO-105 helicopter model can be found in Table III.

F. PID Controller Design

In order to be able to compare the performance of the MPC
controller with a controlled helicopter, a simple Proportional

TABLE III
INPUT RANGE AND RATE LIMITS.

Limit Value

[deg]

Limit Value

[deg]

Limit Value

[deg·s]

θ0min -0.2 θ0max 15.0 ∆θ0max 16.0 ·∆t

θ1smin -6.0 θ1smax 11.0 ∆θ1smax 28.8 ·∆t

θ1cmin -5.7 θ1cmax 4.2 ∆θ1cmax 16.0 ·∆t

θ0trmin
-8.0 θ0trmax

20.0 ∆θ0trmax
32.0 ·∆t

TABLE IV
PID CONTROLLER GAINS FOR THE SIMULATIONS.

Gain Value [-] Gain Value [-] Gain Value [-]

Kθ1 3 Kφ1
0.55 Kψ1

16

Kθ2 11.2 Kφ2
40 Kψ2

170

Kq 0.8 Kp -0.35 Kr 1.9

Integral Derivative controller will be implemented. This PID
controller uses control rules based on the error between the
reference state and the actual state, the integral of this error and
the gradient of this error. For the cross-coupling simulations,
only the attitude of the helicopter will be controlled. Therefore,
the PID rules, which can be seen in Equation 6-8, are imple-
mented to θ1s0 , θ1c and θ0tr0

only [36]. Here, the K...’s are
the gains that were tuned using the Ziegler-Nichols method
and fine-tuned using trial and error. The final values of the
gains can be seen in Table IV. Furthermore, the integral term
in these PID rules is taken in discrete time over an interval
of t − 5∆t to t where t is the current time and ∆ts is the
simulation time step. As can be seen, the inputs are solely
dependent on the on-axis tracking error e.g. θ1s depends on
θ − θref only.

θ1s = θ1strim +Kθ1(θ − θref ) +Kqq (6)

+Kθ2

t∑
t−5∆ts

(θ − θref )∆t

θ1c = θ1ctrim +Kφ1
(φref − φ) +Kpp (7)

+Kφ2

t∑
t−5∆ts

(φref − φ)∆t

θ0tr = θ0trtrim
+Kψ1(ψ − ψref ) +Krr (8)

+Kψ2

t∑
t−5∆ts

(ψ − ψref )∆t

Similar to the MPC controller, only the relevant DOFs will
be tracked in a simulation. The inputs for the uncontrolled
DOFs are then set to the trim value instead of applying the PID
rule. Furthermore, the inputs calculated by the PID controller
are limited to their respective maximum or minimum boundary
value as there are physical constraints on the control inputs.

III. MODEL PREDICTIVE CONTROL

This section will first introduce the concept of linear and
nonlinear model predictive control for reference tracking after
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Fig. 3. The concept of MPC in discrete time for reference tracking [39].

which the MPC controller design used for the simulations will
be presented.

A. Introduction to MPC

MPC is a type of model-based, optimal control where
at each time step, k, an optimal control input sequence
ūk = [uk, uk+1, . . . , uk+N−1] is computed online over
a future time horizon, the prediction horizon N , by solving
an open-loop optimization problem that has knowledge of the
system model [5]. The optimization uses the current state
of the system as initial state and a model of the system
to compute the future states along the prediction horizon in
order to optimize a desired objective function. Then, only
the first control input in this optimal control input sequence
uk is applied to the system. At the next time step, the
prediction horizon of the optimization problem shifts one step
forward, to k + 1, and the next optimal control sequence
ūk+1 = [uk+1, uk+2, . . . , uk+N ] is computed.

In Figure 3, one can see the concept of MPC explained in
discrete time for a reference tracking problem. In a reference
tracking problem, the objective function of the optimization
is to minimize the error ē = [ek+1, . . . , ek+N ] between
the reference trajectory r̄ = [rk+1, . . . , rk+N ] and the
predicted output trajectory x̄ = [xk+1, . . . , xk+N ]. Then,
the optimization problem consists of computing the optimal
control input over the prediction horizon such that the tracking
error is minimized and the constraints are met.

A distinction can be made between linear and nonlinear
model predictive control. The difference lies in the use of a
linear or nonlinear objective function, constraints and predic-
tion model. If one these elements is nonlinear, the controller is
considered a nonlinear MPC controller [5]. Nonlinearity often
comes with non-convexity which can cause the optimization
problem to have multiple local optima and which also in-
creases the complexity of solving the optimization problem.
Therefore, NLMPC usually has an increased computation time
and can cause the optimization solution to become suboptimal.
However, also the fidelity of the model plays a big roll in
the closed-loop performance as the algorithm optimizes the
error between the predicted state and the reference state over
the prediction horizon. When MPC with a linear prediction
model is applied to a highly nonlinear system, the prediction

model might not be of sufficient fidelity. A discussion on how
this influences the results of the cross-coupling requirement
simulations is held in Section IV-F4. Furthermore it must be
noted that in this report use is made of a quadratic objective
function with positive definite weight and of a constraint with
an absolute value function which are nonlinear but convex
functions. Nevertheless, when the linear prediction model is
used the controller will still be considered a linear MPC
controller as the objective function, constraints and prediction
model are still convex.

B. Controller Design

The MPC design used for the simulations will be presented
in this section including its objective function, constraints, the
prediction models and tuning parameters.

1) Objective Function: The goal of the controller in the
cross-coupling requirement simulations is to reduce the off-
axis response when an on-axis input is given. In order to
achieve this, the MPC controller is going to track a constant
trim reference signal for the off-axis responses only. Then,
the objective of the MPC controller in the cross-coupling
requirement simulations is to minimize the error between
the state and the reference signal for the off-axis states. A
quadratic objective function will be used to minimize the
tracking error with weight Q and reference trajectory r as
can be seen in Equation 9.

minimize
ūk, x̄k

N∑
i=0

{(
xk+i − rk+1

)′
Q
(
xk+i − rk+1

)}
(9)

Here, the weight Q changes depending on the cross-coupling
case. For example, if the requirement for pitch due to roll
cross-coupling is being simulated, the pitch and yaw angle will
be tracked whereas the roll angle won’t be controlled. For this
case Q will be equal to diag(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0).
The reference trajectory of the pitch and yaw angle will be the
trim value of the respective angle. It must be noted that only
the attitudes (ψ, θ, φ) will be controlled and not the angular
rates (p, q, r) or angular accelerations (ṗ, q̇, ṙ). This would
yield steady-state offsets if no integral term would be added.
Furthermore, it is only the attitude that is the direct state that
needs to be controlled.

2) Constraints: One of the big advantages of model
predictive control is that it can incorporate soft and hard
constraints on inputs and states directly in the controller.
Hence, some physical boundaries on the input range and
input rates are imposed because of actuator limits. Firstly,
the input range is limited for each control input by
umin = [θ0min θ1smin θ1cmin θ0trmin

]′ and umax =
[θ0max θ1smax θ1cmax θ0trmax

]′. Secondly, the rate of
change in each control input is limited by ∆umax =
[∆θ0max

∆θ1smax
∆θ1cmax

∆θ0trmax
]′. The values of the

limits used in the simulations can be seen in Table III. These
limits are implemented according to Equation 10 and 11 and
hold over the entire prediction horizon and for all control
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inputs. The state variables are not bounded by upper and lower
limits but are constraint by the dynamics of the helicopter.

umin < uk+i < umax for i = 1, 2, . . . , N (10)
|uk+i − uk+i−1| < ∆umax for i = 1, 2, 3, . . . , N (11)

3) Prediction Model: The 8 DOF BO-105 helicopter model
described in Section II-E will be used as prediction model in
the MPC controller. Depending on whether linear or nonlinear
MPC will be implemented, the linear or nonlinear 8 DOF
model will be used as prediction model. It must be noted
that by using the nonlinear model as prediction model, the
optimization of the MPC controller becomes non-convex.
More on the differences between NLMPC and LMPC can be
found in IV-F4.

4) Tuning Parameters: First of all, the controller will have
a sampling time of 0.03 s. With a simulation sampling time
of 0.01 s this means the controller calculates a new control
input every 3 simulation time steps. In the remaining steps,
the control input is kept the same as the previously calculated
input. Next, a constant prediction horizon N of 5 control time
steps (0.15 s) is used. In order to reduce the computation time,
a control horizon Nu of 3 control steps (0.09 s) was selected.
Hence, after 3 control time steps the control input of the last
step is fixed for the remaining steps in the prediction horizon.

5) Complete MPC Formulation: To summarize the MPC
controller design that is used in the cross-coupling simula-
tions and the sensitivity analysis simulations, the complete
MPC optimization problem is presented in Equation 12. The
optimization problem will be solved in Matlab 2020b with the
fmincon-function using sequential quadratic programming as
optimization algorithm which is a smooth nonlinear optimiza-
tion method. Here, the trim control inputs are used as initial
value. It must be noted that for each simulation individual
components can change such as the model when using LMPC
or NLMPC or implementing the error from the sensitivity
analysis, or the weight Q when a different cross-coupling case
is tested.

minimize
ūk, x̄k

N∑
i=1

{(
xk+i − rk+1

)′
Q
(
xk+i − rk+1

)}
subject to: xk+i = f(xk+i−1, uk+i−1) for i = 1, 2, ..., N

umin < uk+i < umax for i = 0, 1, ..., N − 1

|uk+i − uk+i−1| < ∆umax for i = 0, 1, ..., N − 1

with: x = [u v w p q r ψ θ φ x y z λ0 λ0tr ]′

u = [θ0 θ1s θ1c θ0tr ]′

(12)

IV. CROSS-COUPLING REQUIREMENT SIMULATIONS

This section will present the results and analysis of the
cross-coupling requirement simulations for all 10 cross-
coupling cases. For each coupling case the cross-coupling
parameter results for one simulation setting will be shown.
In general, the results of the other settings are comparable
and will therefore be discussed briefly in the overview tables
in Section IV-F. Furthermore, a demonstration of how to
calculate the cross-coupling parameter will be presented for

Fig. 4. Pitch due to roll requirement simulation of the uncontrolled helicopter
for 80 knots for a positive (right) lateral cyclic step input.

Fig. 5. Pitch due to roll requirement results for 80 knots for a positive (right)
lateral cyclic step input.

pitch due to roll for both the time and frequency domain
requirement. Moreover, an off-axis rate response analysis will
be performed for pitch due roll coupling as an example in order
to analyze and compare the coupling reduction performance
of the PID and MPC controller.

A. Pitch due to Roll Coupling

For both pitch due to roll and roll due to pitch coupling the
ADS33 states that ”The ratio of peak off-axis attitude response
from trim within 4 seconds to the desired (on-axis) attitude
response from trim at 4 seconds, ∆θpk/∆φ4 (∆φpk/∆θ4),
following an abrupt lateral (longitudinal) cockpit control step
input, shall not exceed ± 0.25 for Level 1 or ± 0.60 for Level
2. Heading shall be maintained essentially constant.” [27].
Therefore, a step input of ±10% the control range is given in
the lateral cyclic at t = 1 s as can be seen in Figure 4. In
this Figure a demonstration is given on how to calculate the
cross-coupling parameter of the uncontrolled helicopter using
Equation 13. A ∆θpk/∆φ4 of 0.45 was obtained.

if a step input is given at t = 0 s
∆θpk = (max |θ| before t = 4 s)− θtrim
∆φ4 = φ(t = 4 s)− φtrim

(13)
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Fig. 6. On- and off-axis rate responses to a lateral cyclic input [31].

Fig. 7. Pitch due to roll coupling on/off-axis response analysis for 80 knots
for a positive (right) lateral cyclic step input.

The cross-coupling parameter results for all control con-
figurations for 80 knots flight with a positive lateral cyclic
step input can be seen in Figure 5. It can be seen that the
cross-coupling parameter is reduced significantly when the
helicopter is being controlled, going from level 2 to level 1
with plenty of margin. When zooming in to 10−3 one can
see that NLMPC reduces the off-axis response the most with
shortly after that the LMPC controller. The PID controller
also performs great but cannot surpass the MPC performance.
Moreover, it can be seen that the uncertainty doesn’t seem to
have much of effect to the coupling reduction performance for
all control set-ups.

As to investigate the off-axis rate response of the different
control set-ups and to indicate the difference between the PID
and MPC coupling reduction behaviour, the pitch and roll rate
responses for a step input in the lateral cyclic at t = 1 s
are investigated. The different types of off-axis rate responses
defined by Blanken et al. (1997) can be seen in Figure 6.
Here, the ideal off-axis rate response is the response with no
coupling so with a rate staying as close to zero as possible.
In Figure 7 it can be seen that the uncontrolled helicopter
shows an off-axis rate response with control coupling. When
the controllers are introduced, the off-axis response reduces
significantly, eliminating most cross-coupling effects. The PID

Fig. 8. Roll due to pitch requirement results for 80 knots for a positive (up)
longitudinal cyclic step input.

controller shows a small and quick washed-out coupling
response whereas the MPC controller reduces the off-axis
rate even more and faster, showing a response with quasi no
coupling.

B. Roll due to Pitch Coupling

The requirement for roll due to pitch coupling is very similar
to the pitch due to roll coupling requirement and is therefore
already explained in Section IV-A. The computation of the
cross-coupling parameter can be seen in Equation 14.

if a step input is given at t = 0 s
∆φpk = (max |φ| before t = 4 s)− φtrim
∆θ4 = θ(t = 4 s)− θtrim

(14)

In Figure 8 one can see that again the controllers reduce
the handling qualities from level 3 or 2 to level 1. When
zooming in to 10−3 it can be seen that NLMPC performs best
at minimizing the roll angle, almost completely eliminating
the cross-coupling effects. Close after NLMPC comes LMPC
and then the PID controller. Again, the uncertainty barely
has an effect on the cross-coupling parameter results with
controller. Without controller, the uncertainty degrades the
handling qualities to level 3.

C. Yaw due to Collective Coupling

The ADS-33 states that ”The yaw rate response to abrupt
step collective control inputs with the directional controller
fixed shall not exceed the boundaries specified in Figure 11.
The directional controller may be free if the rotorcraft is
equipped with a heading hold function. Pitch and roll atti-
tudes shall be maintained essentially constant. ... Oscillations
involving yaw rates greater than 5 deg/sec shall be deemed
objectionable.” [27]. The yaw rate boundaries that are referred
to can be seen in Figure 9. Here, r1 is defined as the largest
peak of yaw rate by magnitude between the start of the step
input and 3 seconds after the step input. Furthermore, ḣ(3) is
the value of ḣ at 3 seconds after the step input. Finally, r3 is
equal to r(3) − r1 for r1 > 0 and to r1 − r(3) for r1 < 0
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Fig. 9. Yaw due to collective coupling requirement [27]

Fig. 10. Yaw due to collective requirement results for hover for a positive
(up) collective step input.

where r(3) is the yaw rate at 3 seconds after the step input.
The complete computation of the cross-coupling parameters
can be seen in Equation 15.

if a step input is given at t = 0 s

ḣ(3) = ḣ(t = 3 s)
r1 = max |r| before t = 3 s
if r1 > 0 : r3 = r(t = 3 s)− r1

if r1 < 0 : r3 = r1 − r(t = 3 s)

(15)

The results of the yaw due to collective requirement simu-
lations for hover for a positive input can be seen in Figure 10.
Here, again the handling qualities are improved from level 3
to level 1 when a controller is introduced. However, when the
uncertainty is present the results of the linear and nonlinear
MPC controllers are both located just over the border of the
level 1 boundary. Nevertheless, the result of the PID controller
with uncertainty remains in level 1.

This rather large performance difference can be explained
by the fact that the MPC uses the prediction model of the
helicopter which now has a mismatch with the disturbed
simulation model. Furthermore, this coupling case is signif-
icantly more vulnerable to the mismatch as the uncertainty is
applied to the thrust coefficient which is directly related to the
collective input. Moreover, when the positive input is given the
thrust of the helicopter increases, as opposed to the negative
input, causing the disturbance in the thrust coefficient to have
more effect. As can be seen in Table V, the MPC controllers

Fig. 11. Pitch due to collective requirement results for 80 knots for a small,
positive (up) collective cyclic step input.

are still in the level 1 zone for the negative input case. Hence,
it can be concluded that for yaw due to collective coupling
the MPC controllers are sensitive to this uncertainty in the
main rotor thrust. However, one could improve the robustness
of the MPC controller to this kind of model mismatches by
implementing robust MPC.

D. Pitch due to Collective Coupling

The requirement for pitch due to collective coupling is
split in a requirement for small collective inputs (<20% rotor
torque change) and large collective input (>20% rotor torque
change). For small collective inputs the ADS-33 says that
”the peak change in pitch attitude from trim, ∆θpk, occurring
within the first 3 seconds following a step change in collective
causing less than 20% torque change, shall be such that
the ratio

∣∣∆θpk/∆nzpk ∣∣ is no greater than 1.0 deg/ft/sec2,
where ∆nzpk is the peak incremental normal acceleration
from 1 g flight.” [27]. For large collective inputs, the ratio∣∣∆θpk/∆nzpk ∣∣ should be no greater than 0.5 deg/ft/sec2 for a
positive collective input and no greater than 0.25 deg/ft/sec2

for negative collective inputs. The computation of the cross-
coupling parameter can be seen in Equation 16.

if a step input is given at t = 0 s
∆θpk = (max |θ| before t = 3 s)− θtrim
∆nzpk = (max |ẇ| before t = 3 s)− ẇtrim

(16)

The cross-coupling results for pitch due to small collective
inputs can be seen in Figure 11. Here, it is clear that again
the handling qualities are improved from level 3 or 2 to level
1 when a controller is applied. When zooming in to 10−3

it can be seen that both NLMPC and LMPC have a very
small cross-coupling parameter, almost completely eliminating
the off-axis response. The PID controller also improves the
handling qualities a lot but still has a larger cross-coupling
parameter than the MPC controllers.

What is remarkable about these simulations is that the
simulation with uncertainty has, for all control set-ups, sig-
nificantly better coupling reduction performance. This can be
explained by the random behaviour of the uncertainty that is
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Fig. 12. Pitch due to roll frequency requirement simulation of the uncontrolled
helicopter for 80 knots for a positive (right) lateral cyclic step input.

Fig. 13. q/p frequency response of the uncontrolled helicopter for 80 knots
for a positive (right) lateral cyclic step input (corresponding to Figure 12).

implemented in the thrust coefficient and that changes each
simulation time step. This causes ẇ and hence nzpk to change
each time step as well, yielding a very large ∆nzpk . Therefore,
in this coupling case the cross-coupling parameter does not
give a proper indication of the off-axis response compared
to on-axis input. That is, the cases with uncertainty cannot be
compared to the undisturbed cases. Still, the same performance
proportions are found for the uncontrolled, NLMPC, LMPC
and PID controlled helicopter with uncertainty as compared to
the results without uncertainty.

E. Pitch due to Roll and Roll due to Pitch Coupling for Target
Acquisition and Tracking

The ADS-33 states that the pitch due to roll (q/p) and roll
due to pitch (p/q) coupling parameters should not exceed
the boundaries indicated in Figure 14 where ”the average
q/p and average p/q are derived from ratios of pitch and
roll frequency responses. Specifically, average q/p is defined
as the magnitude of pitch-due-to-roll control input (q/δlat)
divided by roll-due-to-roll control input (p/δlat) averaged be-
tween the bandwidth and neutral-stability (phase = -180 deg)
frequencies of the pitch-due-to-pitch control inputs (θ/δlon).
Similarly, average p/q is defined as the magnitude (p/δlon)
divided by (q/δlon) between the roll-axis (φ/δlat) bandwidth
and neutral stability frequencies.” [27]. Here, the bandwidth
is defined as the lesser of the phase bandwidth, which is the
frequency corresponding to -135◦ phase, and gain bandwidth,

Fig. 14. Average p/q over average q/p for 80 knots [31].

which is the frequency corresponding to the magnitude at
neutral stability with a margin of 6 dB added to it. For the
calculation of the pitch and roll bandwidth it was assumed that
δlon and δlat are equivalent to θ1s and θ1c respectively. As the
limits set by the ADS-33 are not perfectly clear, the limits for
q/p will be set to -21 dB for level 1/2 and -4 dB for level 2/3
and for p/q to -10 dB for level 1/2 and -5 dB for level 2/3.

As a demonstration for the frequency parameter calcu-
lations, the simulation of the pitch due to roll frequency
requirement for the uncontrolled helicopter in 80 knots flight
is shown in Figure 12. Here, a frequency sweep was given in
the lateral cyclic input from 20 rad/s to 0.5 rad/s for 18 s. The
longitudinal cyclic and collective were kept constant whereas
the tail rotor collective was controlled by a PID controller in
order to maintain a constant yaw angle. As can be seen, the
on-axis roll rate is oscillating with the lateral input, inducing
the off-axis pitch rate to oscillate as well but with a slightly
smaller amplitude. By calculating the frequency response of
the pitch rate divided by the roll rate using the fast Fourier
transform algorithm, the q/p gain can be obtained. Here, the
gain of q/p gives an accurate indication of the amount of off-
axis pitch rate response compared to on-axis roll rate. As can
be seen in Figure 13, the average q/p gain between the pitch
bandwidth and neutral stability frequency was found to be -
3.1 dB. This means that for a roll rate amplitude of 10◦/s the
pitch rate amplitude would be 7◦/s on average for frequencies
between 2.4 and 3.4 rad/s.

The average p/q over average q/p for 80 knots results for
the different control set-ups can be seen in Figure 14. Here,
the uncontrolled helicopter has level 3, at the border of level
2, handling qualities. When the controllers are introduced the
handling qualities go to level 1. The PID controller brings
the amount of cross-coupling back to around -30 dB for both
pitch due to roll and roll due to pitch coupling, with and
without uncertainty. This indicates that for a roll (pitch) rate
amplitude of 10◦/s the pitch (roll) rate amplitude would be 3◦/s
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TABLE V
OVERVIEW OF THE CROSS-COUPLING HANDLING QUALITY LEVEL RESULTS.

Cross-coupling case Condition
BO-105 NLMPC LMPC PID
σ = 0 σ = 0.2 σ = 0 σ = 0.2 σ = 0 σ = 0.2 σ = 0 σ = 0.2

Pitch d.t. roll 0 kn, +ve input III III I I I I I I
0 kn, -ve input II II I I I I I I
80 kn, +ve input II II I I I I I I
80 kn, -ve input III III I I I I I I

Roll d.t. pitch 0 kn, +ve input III III I I I I I I
0 kn, -ve input III III I I I I I I
80 kn, +ve input II III I I I I I I
80 kn, -ve input II II I I I I I I

Yaw d.t. collective +ve input III III I II I II I I
-ve input III III I I I I I I

Pitch d.t. collective small, +ve input III I I I I I I I
small, -ve input III I I I I I I I
large, +ve input III III I I I I I I
large, -ve input III III I I I I I I

Pitch d.t. roll 0 kn II II I I I I I I
for TA&T 80 kn III III I I I I I I

Roll d.t. pitch 0 kn II II I I I I I I
for TA&T 80 kn II I I I I I I I

on average. The MPC controllers go even further to about -80
dB for q/p indicating a pitch rate amplitude of only 0.002◦/s
for a roll rate amplitude input of 10◦/s. For p/q NLMPC goes
to -75 dB without and -57 dB with uncertainty whereas LMPC
goes to about -45 dB for both with and without uncertainty.

F. Overview of the Cross-coupling Results

This section will first present an overview of the handling
quality levels of each cross-coupling case. Next, a comparison
of the cross-coupling parameter of NLMPC with the uncon-
trolled helicopter and of NLMPC and LMPC with the PID
controller will be made for both the simulations with and
without uncertainty. Lastly, a comparison of the performance
of linear and nonlinear MPC will be presented.

1) Overview of Handling Quality Levels: An overview of
the cross-coupling handling quality level results can be seen
in Table V. Here, the uncontrolled helicopter mostly has level
3 or 2 handling qualities. Once a controller is introduced, the
handling qualities are improved to level 1. This indicates that
all controllers succeed very well at reducing the cross-coupling
effects in order to have good handling qualities. Even with
uncertainty added to the simulation model, the controllers are
able to obtain level 1 handling qualities. The only exception
is the NLMPC controller for the yaw due to collective case
for a positive collective input which obtained level 2 handling
qualities with the uncertainty. This exception will be further
explained when looking at Table VII.

2) Comparison of the Cross-coupling Parameter (σ = 0):
In Table VI a comparison of the cross-coupling parameters in
percentage increase can be seen for the simulations without
uncertainty. First of all, the NLMPC results are compared to
the uncontrolled helicopter results where a negative percentage
indicates a reduction of cross-couplings. Next, the NLMPC

and LMPC are compared to the PID controller by indicating
how much percent the MPC cross-coupling parameter is
increased with respect to the PID cross-coupling parameter.
Here, the positive values are indicated in red and indicate the
PID controller is better at reducing couplings than MPC. It
must be noted that for the yaw due to collective case, the
r3/
∣∣∣ḣ(3)

∣∣∣ parameter is used for the percentages as this was
the limiting parameter for most cases.

First of all, it can be seen that the NLMPC reduces coupling
by about 99.9% for almost all cross-coupling cases which
is remarkably high. It indicates that the off-axis response
can be almost entirely eliminated by introducing the MPC
controller. Furthermore, when comparing the MPC to the PID
controller almost all cases have much better cross-coupling
reduction than the PID controller. Percentages of about 90%
and 99% better than the PID controller are achieved for
NLMPC whereas the LMPC has slightly lower percentages
especially for roll due to pitch.

The roll due to pitch case for hover and a positive input even
has the PID controller performing better than LMPC. This
degradation of the LMPC performance happens because of the
mismatch between the linear prediction model and nonlinear
simulation model. It was found that at some point in the
simulation the linear model estimates the roll and pitch rate
to be of opposite sign as the actual nonlinear model causing
the controls to change drastically, decreasing the coupling
reduction performance. Nevertheless, the handling qualities of
LMPC still remain far within the level 1 zone.

Next to this, the yaw due to collective case with a negative
input seems to have a better cross-coupling parameter with
PID controller. Furthermore, for a positive input the cross-
coupling parameter for MPC is only 3 to 5 percent better
than the PID controller which is much lower than in the other
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TABLE VI
COMPARISON OF THE CROSS-COUPLING PARAMETER RESULTS IN PERCENTAGE INCREASE FOR THE SIMULATIONS WITHOUT UNCERTAINTY.

Cross-coupling case Condition
NLMPC compared
to BO105 [%]

NLMPC compared
to PID [%]

LMPC compared
to PID [%]

Pitch d.t. roll 0 kn, +ve input -99.99 -97.71 -56.74
0 kn, -ve input -99.98 -98.35 -92.57
80 kn, +ve input -99.99 -97.47 -97.39
80 kn, -ve input -99.99 -98.95 -98.97

Roll d.t. pitch 0 kn, +ve input -99.99 -98.99 58.20
0 kn, -ve input -100.00 -99.54 -92.70
80 kn, +ve input -100.00 -99.86 -77.47
80 kn, -ve input -99.96 -97.66 -73.36

Yaw d.t. collective +ve input -98.44 -3.13 -5.42
-ve input -98.13 4.40 6.25

Pitch d.t. collective small, +ve input -99.93 -89.73 -89.89
small, -ve input -99.93 -90.13 -89.98
large, +ve input -99.92 -89.37 -89.90
large, -ve input -99.94 -90.59 -90.11

Pitch d.t. roll 0 kn -99.95 -99.29 -99.45
for TA&T 80 kn -99.98 -99.58 -99.54

Roll d.t. pitch 0 kn -99.96 -99.53 -99.53
for TA&T 80 kn -99.96 -99.36 -81.21

TABLE VII
COMPARISON OF THE CROSS-COUPLING PARAMETER RESULTS IN PERCENTAGE INCREASE FOR THE SIMULATIONS WITH AN UNCERTAINTY OF σ = 0.2.

Cross-coupling case Condition
NLMPC compared
to BO105 [%]

NLMPC compared
to PID [%]

LMPC compared
to PID [%]

Pitch d.t. roll 0 kn, +ve input -99.97 -95.01 -69.54
0 kn, -ve input -99.90 -90.89 -87.17
80 kn, +ve input -99.98 -96.35 -95.98
80 kn, -ve input -99.97 -96.46 -96.09

Roll d.t. pitch 0 kn, +ve input -99.98 -98.82 60.42
0 kn, -ve input -99.98 -98.10 -90.39
80 kn, +ve input -99.98 -99.25 -78.07
80 kn, -ve input -99.82 -90.62 -64.22

Yaw d.t. collective +ve input -94.81 121.77 137.05
-ve input -97.26 5.85 13.72

Pitch d.t. collective small, +ve input -99.93 -90.12 -88.52
small, -ve input -99.93 -89.57 -88.49
large, +ve input -99.91 -88.59 -89.74
large, -ve input -99.96 -89.57 -89.24

Pitch d.t. roll 0 kn -99.76 -97.07 -95.61
for TA&T 80 kn -99.99 -99.59 -99.45

Roll d.t. pitch 0 kn -99.83 -98.04 -98.23
for TA&T 80 kn -99.49 -96.73 -81.39

cases. This can be explained by the fact that this parameter
relies on the yaw rate response instead of the yaw angle. It is
the only cross-coupling parameter depending on the angular
rate instead of attitude. Since the MPC controller is focusing
solely on minimizing the attitude error, aggressive yaw rate
motions are induced causing the cross-coupling parameter to
take up higher values. The PID controller is not that aggressive
because of the differential term. The results for this case could
be improved by adding a term to the objective function that
directly minimizes the yaw rate.

3) Comparison of the Cross-coupling Parameter (σ = 0.2):
In Table VII one can see the comparison of cross-coupling
parameters in percentage increase for the simulations with
uncertainty applied to the thrust coefficient. In general, it can
be seen that the absolute percentages are only slightly lower
than the absolute percentages of the simulations without uncer-
tainty. This indicates that the MPC controllers are robust to this
disturbance, preserving the coupling reduction performance.

Here, the yaw due to collective coupling case seems to be
the exception. With uncertainty, the handling qualities for the
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Fig. 15. Pitch due to roll requirement sensitivity analysis for 80 knots for a positive (right) and negative (left) lateral cyclic and for a positive and negative
error implemented in one of the derivatives.

Fig. 16. Analysis of error in q̇θ1s -derivative for pitch due to roll coupling at
80 knots for a positive input.

positive input are even decreased to level 2 as said before. As
the uncertainty is implemented in the thrust coefficient, which
greatly influences the rotor torque, the yaw coupling is directly
influenced. With this poorly estimated main rotor torque in
the MPC prediction model, the MPC controller is unable to
reduce the couplings in the yaw axis sufficiently. Also when
comparing the MPC controllers to the PID controller, which
does not rely on a prediction model, it is clear that the PID
controller performs much better. A solution to this deteriorated
performance of the MPC due to the highly influential distur-
bance could be to implement robust model predictive control.
This will improve the performance of MPC to unmeasured
disturbances but at the cost of decreased overall performance.

Next to this, the yaw due to collective coupling case seems
to be the case with the least reduction of cross-couplings
compared to the uncontrolled helicopter. This was also seen
for the results without uncertainty as the yaw rate instead of
angle is measured in the parameter.

4) Comparison of Linear and Nonlinear MPC: As dis-
cussed before in Section III-A, the difference between linear
and nonlinear MPC in this report lies in the use of the
nonlinear or linear prediction model in the MPC algorithm.

On one hand, the nonlinearity in the optimization scheme
comes with non-convexity and hence multiple local optima
and a heavier computational burden. On the other hand, also
the fidelity of the prediction model plays a roll in the closed-
loop performance. Here, the linear prediction model might fall
short as the linearization of the nonlinear system around a
trim point only approximates the system at and around this
trim point. The more the helicopter state deviates from the
trim condition, the worse the linear approximation will be.
Also, the more nonlinear the helicopter behaves at this trim
condition, the worse the linear approximation will be.

In the cross-coupling results in this chapter it can be seen
that both linear and nonlinear MPC perform very well at
reducing couplings, even with an uncertainty applied in the
simulation model. The performance difference between linear
and nonlinear MPC for these simulations is very small. In
most cases the nonlinear controller performs slightly better
than the linear controller or has almost similar performance as
the linear controller. This is an indication that the fidelity of
the linear model is sufficient for the cross-coupling simulations
to be used as prediction model. This can be explained by
means of two reasons based on properties specific to the cross-
coupling simulations. First of all, the model mismatch stays
small because of the use of a very short prediction horizon
which prevents the accumulation of error along the horizon.
Secondly, as the reference trajectory that is tracked is the trim
condition around which is linearized, the state stays relatively
close to the linearization point which also limits the linear
model mismatch.

There is one case, the roll due to pitch coupling case
for hover with a positive input, where the linear controller
performs worse than the PID controller. This was due to
a linear model mismatch where the linear model predicted
that ṗ, q̇ > 0 whereas the actual, nonlinear model states that
ṗ, q̇ < 0, resulting in a sudden change of controls which is not
present in the NLMPC and PID simulations. Nevertheless, the
fidelity is still good enough to have level 1 handling qualities.

Overall it can be concluded that the differences in cross-
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coupling reduction performance between LMPC and NLMPC
are so small they do not noticeably deteriorate the handling
qualities and can be assumed to be non existent. As linear
MPC has the advantage of having a shorter computation time
and no suboptimal solutions, linear MPC is preferred over
nonlinear MPC in order to reduce cross-coupling effects.

V. SENSITIVITY ANALYSIS

This section will present the results of the sensitivity
analysis simulations for all 10 cross-coupling cases. First, the
sensitivity analysis of the pitch due to roll coupling case will
be worked out as an example. Next, the final results of all
coupling cases will be introduced in an overview table.

A. Pitch due to Roll Coupling

The sensitivity analysis for pitch due to roll coupling for
80 knots can be seen in Figure 15. Here, each dot represents
the value of the cross-coupling parameter when the error of
10 or -10 is implemented in the corresponding derivative as
indicated in the legend. It can be seen that the only derivative
that gets the handling qualities out of the level 1 zone when an
error, namely a negative error, is applied is the change in pitch
acceleration due to longitudinal cyclic derivative q̇θ1s . When
zooming in to the level 1 zone, it can be seen that also negative
errors in q̇q and q̇θ0 increase the cross-coupling parameter.
Nevertheless, the handling qualities for these derivatives stay
within level 1. It is notable that these three derivatives are
also the ones with largest absolute value in the A and B
matrix as can be seen in the pitch acceleration derivatives
in Equation 17. This is also highly logical as the elements
with the largest absolute value influence the dynamics of that
degree of freedom the most.

From implementing this large error, it was found that q̇θ1s
is the important derivative for this coupling case, bringing
the handling qualities from level 1 to level 3. Therefore, a
more elaborate individual analysis is performed varying the
error implemented in q̇θ1s . This individual analysis can be
seen in Figure 16 and shows that once the error gets smaller
than -1, so when the estimated derivative changes sign, the
handling qualities jump from level 1 to level 3. Physically
this is logical because if the change in pitch acceleration due
to longitudinal cyclic input is estimated to be of opposite sign,
then pulling the cyclic stick up would be causing the helicopter
to pitch down. Hence, when the MPC prediction model has
this physically incorrect and influential derivative, the resulting
optimal control input cannot reduce the cross-coupling effects
sufficiently in closed-loop. Nevertheless, positive errors seem
to barely have an effect on the handling qualities when
implemented to q̇θ1s .

B. Overview of the Sensitivity Analysis

An overview of the important derivatives for each cross-
coupling case can be seen in Table VIII together with some
characteristics of how the error influences the cross-coupling
parameters. For example, when it says ε <-1, it means that the
handling qualities are degraded to level 2 or 3 only for errors

smaller than -1. Furthermore, ’symmetrical’ means the error in
the derivative influences the handling qualities in a symmetric
way: when the absolute value of the error increases the cross-
coupling parameter increases and hence the handling qualities
decrease. When 0 or 80 knots is stated in the characteristics
this means the handling qualities are only affected negatively
for this flight speed. Furthermore, the actual values of the
derivatives at 80 knots can be seen in Equation 17.ṗu ṗv ṗw ṗp ṗq ṗr
q̇u q̇v q̇w q̇p q̇q q̇r
ṙu ṙv ṙw ṙp ṙq ṙr

 =

=

0.1 −0.1 −0.2 −17.4 4.5 0.4
0.1 0.0 0.2 1.5 −4.0 0.0
0.0 0.3 −0.2 −2.8 1.5 −1.4


ṗθ0 ṗθ1s ṗθ1c ṗθ0tr
q̇θ0 q̇θ1s q̇θ1c q̇θ0tr
ṙθ0 ṙθ1s ṙθ1c ṙθ0tr

 =

=

 4.3 −8.7 159.6 9.0
23.5 −49.8 4.6 0.0
4.6 8.4 21.8 −22.5


(17)

Similar to the pitch due to roll coupling analysis, it is
in general noticeable that the important derivatives are the
derivatives that either have a relatively large value in the state-
space matrix (Equation 17) or that experience a large change
from trim throughout the cross-coupling simulations. Again,
this is quite logical as the product of the derivative and the
deviation of the state from trim determines the acceleration
of that degree of freedom. Hence, when an error is present in
the derivative with a large value, the mismatch between the
estimated and actual motion increases. Being able to deduct
which derivatives are important from the state-space matrices
enables to extend the results of this BO-105 sensitivity analysis
to other helicopters as well.

It can also be seen in this overview that the important
derivatives are mostly control derivatives from matrix B.
Furthermore, mostly negative errors, at least smaller than -1,
degrade the handling qualities to level 2 or 3 whereas the
positive errors barely change the cross-coupling effects in
most cases. For the control derivatives this is highly logical
because the error smaller than -1 indicates the derivative
changes sign, meaning that the controls would be working
in the opposite direction. For example, if the ṙθ0tr derivative
is of opposite sign, the tail rotor force would be pointing the
opposite direction. For the pitch damping derivative q̇q , the
opposite sign is degrading the handling qualities because this is
an important stability derivative for the phugoid Eigenmotion.
When the sign is estimated incorrectly, the Eigenmotion of the
helicopter is majorly affected.

Besides the control derivatives and the pitch damping
derivative that degrade when negative errors are implemented,
there are the ṗp and ṗu derivatives which are important for
the roll due to pitch coupling for both positive and negative
errors. Here, the roll damping derivative ṗp is characteristic
for the roll subsidence Eigenmotion and is therefore also
important to be accurate regardless of the sign. Furthermore,
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TABLE VIII
OVERVIEW AND CHARACTERISTICS OF THE IMPORTANT DERIVATIVES FOR EACH CROSS-COUPLING CASE.

Cross-coupling case Important
derivatives

Characteristics Cross-coupling case Important
derivatives

Characteristics

Pitch d.t. roll q̇θ1s ε <-1 Pitch d.t. roll q̇q ε ≤-8

for TA&T q̇θ0 ε ≤-4, 80 kn

q̇θ1s ε ≤-1

Roll d.t. pitch ṗu symmetrical, 0 kn Roll d.t. pitch ṗp ∼ symmetrical

ṗp for TA&T ṗθ1c ε ≤-1

ṗθ1c ε ≤-1 ṗθ0tr ε ≤-6, 80 kn

Yaw d.t. collective ṙθ0 symmetrical

ṙθ1c ε ≤-3

ṙθ0tr ε ≤-1

Pitch d.t. collective q̇θ1s ε ≤-1

the ṗu derivative is a coupling derivative which couples the
lateral and longitudinal motion when the rotor is tilting and
a forward velocity change occurs. Hence, the tilting forward
during the roll due to pitch maneuver creates this large change
in forward velocity u, giving this derivative more importance
in the helicopter dynamics.

As the error in the derivative was found to mostly stay
within -1 and 1 in Section II-D, it can be concluded that
the MPC controller is robust to these model errors and keeps
having level 1 handling qualities. However, when the absolute
error increases and specially when the errors gets smaller
than -1, the performance of the MPC controller deteriorates
to level 2 or 3 handling qualities. This could be solved by
implementing robust MPC which improves the performance
when an unmeasured error or disturbance is present.

VI. CONCLUSION AND RECOMMENDATIONS

This work investigated whether linear and nonlinear model
predictive control are suitable for online application to heli-
copters to reduce cross-coupling effects by evaluating its per-
formance on the cross-coupling handling quality requirements
of the ADS-33 document. The cross-coupling requirements
were tested in simulation by implementing a step in one
control input and measuring the cross-coupling parameter
which represents the amount of off-axis response.

It was found that both linear and nonlinear MPC are able
to reduce the off-axis response of the tested cross-coupling
cases by around 99% compared to the uncontrolled helicopter
bringing all handling quality levels from level 2 or 3 to level
1. Here, handling qualities of level 1 indicate having minimal
pilot workload and desired aircraft characteristics. Also the
PID controller is able to bring the handling qualities from
level 2 or 3 to level 1. However, when comparing the MPC
to the PID controller almost all MPC cases have 90% to
99% better cross-coupling reduction than the PID controller
which can be explained by the optimal and model-based
behaviour of the MPC controllers. Where the PID controller
shows a washed-out coupling off-axis rate response, the MPC
controllers almost eliminate all coupling showing a quasi
decoupled off-axis rate response.

When a disturbance is introduced in the simulation model,
the cross-coupling reduction performance is only slightly less,
keeping level 1 handling qualities for most coupling cases.
This indicates that MPC is robust to this disturbance. Only
the yaw due to collective coupling case with uncertainty for a
positive collective input gives level 2 handling qualities for the
MPC controllers. However, this can be explained by the poorly
estimated yaw coupling in the prediction model because of the
unknown disturbance in rotor thrust and by the cross-coupling
parameter that is based on the yaw rate instead of yaw angle
which is optimized for. This could be solved by implementing
a robust MPC controller or adapting the objective function to
also minimize the yaw rate.

Furthermore, the differences in performance between linear
and nonlinear MPC for the cross-coupling simulations are so
small they do not noticeably degrade the handling qualities
and can be assumed to be non-existent. As linear MPC has
the advantage of having a shorter computation time and no
suboptimal solutions, linear MPC is preferred over nonlinear
MPC in order to reduce cross-coupling effects.

In addition, it was examined how sensitive MPC is to
prediction model errors when reducing cross-coupling effects
by implementing a fixed error in the relevant derivatives of
the linear prediction model and measuring the performance
change. It was found that the derivatives sensitive to errors
are the derivatives that either have a relatively large value in
the state-space matrix or that experience a large change from
trim throughout the simulation. These derivatives were mainly
control derivatives. After individual analysis of the important
derivatives it was found that mostly negative errors smaller
than -1 degrade the handling qualities to level 2 or 3 whereas
the positive errors barely change the cross-coupling effects in
most cases. For the control derivatives this is highly logical
because the error smaller than -1 indicates the derivative
changes sign, meaning that the controls would be working in
the opposite direction according to the prediction model. As
the error in the derivative was found to mostly stay within
-1 and 1, it can be concluded that the MPC controller is
robust to these model errors and keeps having level 1 handling
qualities. Nevertheless, when the absolute error increases and
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specially when the errors gets smaller than -1, the degradation
in performance could be solved by implementing robust MPC
which improves the performance when an unmeasured error
or disturbance is present.

As a recommendation for future work it is suggested to
test the established controller more elaborately by extending
the test cases with more flight speeds and by evaluating the
performance to a disturbance implemented in other parts in
the model. Besides this, robust MPC could be implemented
in order to improve the robustness to both model errors
and disturbances in the simulation model. By implementing
robust MPC, one increases the robustness going at the cost
of the overall performance. Therefore, this trade-off between
robustness and performance should be investigated.
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2
Helicopter Dynamics

This chapter will introduce elaborate on helicopter flight dynamics and rotor dynamics with the four-bladed,
light-utility, hingeless BO-105C helicopter as example helicopter. First, the flight controls used in the
helicopter and the helicopter cross-couplings will be explained. Second, the Equations of Motion of an 8
DOF helicopter model will be presented. Furthermore, the flapping dynamics of the rotor blades will be
described. Then, dynamic and static stability during flight of the helicopter will be discussed. Finally, the
concept op helicopter handling qualities will be explained.

2.1. Flight Controls
In this section a look will be taken at how the pilot can control the helicopter by changing the pitch of the
helicopter blades by means of a swashplate mechanism. Furthermore, the cross-coupling effects arising when
controlling the helicopter will be discussed [13].

2.1.1. Control Inputs
The helicopter is being controlled by means of a swashplate: a mechanical device that translates the control
inputs into pitching of the rotor blades. By changing the pitch of the blades of the main and tail rotor, the
lift produced by each blade is changed. This enables the ability to steer the helicopter in all six Degrees of
Freedom (DOF).

The swashplate, as can be seen in Figure 2.1 (a), consists out of a stationary ring and a rotating ring.
The stationary ring, able to move vertically and tilt in all directions, is connected to the flight controls via
control rods. The rotating ring, rotating along with the rotor mast, is connected to the pitch bearings of the
rotor blades via pitch links. The rotating ring is also connected to the stationary ring by means of a bearing
such that both rings can move vertically and tilt as one system.

The pilot gives control inputs through four different helicopter controls which can be seen in Figure 2.1
(b): the collective stick for vertical motion, the cyclic stick for longitudinal and lateral motion and the pedal
for directional control. These controls are connected to the stationary ring of the swashplate such that when
the pilot gives an input, the swashplate moves and the pitch of the blades changes.

First of all, when the pilot gives a positive collective stick input, the swashplate moves up in order to
increase the blade pitch via the pitch links to get more lift and climb up. Secondly, when a cyclic stick
input is given, the swashplate tilts such that along one side of the rotor disc the blade pitch is increased and
along the other side of the rotor disc the blade pitch is decreased. In this way, a roll or pitch maneuver can
be executed. For example, when the longitudinal cyclic stick is pushed forward, the plate tilts causing the
advancing blade to have a lower pitch and the retreating blade to have a higher pitch. Because of gyroscopic
effects, the lift force will act 90 degrees azimuth later. This lift difference between the front and the back
of the rotor disc will cause the helicopter to have a pitch-down motion. As a consequence, the thrust force
of the rotor is directed forward which results in forward motion. Similarly, an input to the lateral cyclic will
cause the aft and forward blade pitch to change in order to roll. Finally, when the pedals are pushed, the
pitch of the tail rotor blades is changed, giving a yaw moment to the helicopter.

25
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(a) Swashplate [14]. (b) Flight controls [15].

Figure 2.1: Helicopter control system.

2.1.2. Cross-coupling Effects
When controlling the helicopter in one axis, many secondary responses in the other axes arise as well. These
secondary responses are often referred to as inter-axis coupling, input-output coupling or cross-coupling
effects. The presence of many cross-coupling effects is one of the reasons why a helicopter is very difficult
to control. An overview of the primary and secondary responses of each control input is given in Table 2.1.

The main cross-coupling effects that occur are yaw due to collective coupling, collective due to lateral
coupling and lateral due to longitudinal coupling. Furthermore, lateral flapping of the rotor cone due to a
pitching moment induces a rolling moment and vice versa which causes the pitch-axis and roll-axis to be
coupled as well. More on the cross-coupling behaviour due to flapping will be explained in Section 2.3.

Table 2.1: Primary and secondary responses of each input axis [16].

Input axis \ Response Pitch 𝜃 Roll 𝜙 Heave 𝑤 Yaw 𝜓

Longitudinal cyclic 𝜃ኻ፬ Primary response Due to lateral
flapping

Desired in
forward flight Negligible

Lateral cyclic 𝜃ኻ
Due to
longitudinal
flapping

Primary response Descent with roll
angle Undesired

Collective input 𝜃ኺ
Due to
longitudinal
flapping

Due to lateral
flapping and
sideslip

Primary response
Due to change in
torque
Requires TR
thrust

Tail rotor collective
𝜃ኺᑥᑣ

Negligible Due to TR thrust
and sideslip Undesired Primary response

First of all, the yaw due to collective coupling arises from the reaction torque of the main rotor. When
the helicopter is in equilibrium and a collective input is given, there is a change in torque of the main rotor
which will cause the helicopter to yaw. In order to counter this yaw motion, the pedal needs to be used to
generate a counter-acting moment coming from the tail thrust.

Next, the collective due to lateral coupling originates from the horizontal component of the rotor thrust
force when a lateral cyclic input is given. This horizontal force has to be countered by applying pedal. Hence,
the helicopter starts yawing which requires more collective.
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Finally, the lateral due to longitudinal coupling, also called swashplate mixing, happens for example when
a maneuver from hover to forward flight is flown. In order to move forward, the cyclic stick is pushed forward
causing the helicopter to pitch-down and increase the forward component of the thrust force. This will also
decrease the vertical component of the thrust force which requires a collective block in put to maintain
height. This collective input will change the torque of the main rotor which in turn requires a pedal input
to counter the yawing motion. Since the tail rotor thrust is now changed, the horizontal force balance is
disrupted. Therefore, a lateral cyclic input is needed to maintain horizontal force balance. Hence, the cyclic
stick is moved forward and to the left at the same time which requires control mixing in the swashplate
mechanism.

2.2. 8 DOF Nonlinear Helicopter Model
The 8 DOF nonlinear model of the BO-105 helicopter used to demonstrate the dynamics of the helicopter
and for the simulations in this research was developed at the TU Delft and consists out of 6 helicopter
body DOFs and 2 rotor inflow DOFs, one for the main rotor and one for the tail rotor [1, 17]. Hence, the
helicopters motion will be described by a total of 14 states namely 𝑥 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜓 𝜃 𝜙 𝑥 𝑦 𝑧 𝜆ኺ 𝜆ኺᑥᑣ]ᖣ
and will be controlled by 4 control inputs namely the main rotor collective, longitudinal cyclic,lateral cyclic
and the tail rotor collective 𝑢 = [𝜃ኺ 𝜃ኻ፬ 𝜃ኻ 𝜃ኺᑥᑣ]ᖣ. The axis systems used to express the helicopter states
in will be described in Section 2.2.1. Next, the 6 DOF equations of motion of the helicopter will be stated
in Section 2.2.2 along with its kinematics equations. Then, Section 2.2.3 will describe the 2 DOF inflow
dynamics equations. Finally, the trim conditions of this 8 DOF model will be computed in Section 2.2.4.

2.2.1. Axis Systems
Use will be made of three different axis systems when describing the dynamics and state of the helicopter.
First of all, a body axis system is used to express the linear and angular velocity in. As can be seen in Figure
2.2, the axes of the system are fixed with the body and the system has its origin in the center of gravity.
The X-axis is pointing towards the front, the Y-axis towards the right and the Z-axis to the ground in a
right-handed, orthogonal manner.

Figure 2.2: The helicopter body axis system [18].

Furthermore, the coordinates of the helicopter are expressed in the world axis system which has its origin
in the initial position of the helicopter in the simulation or test, its X-axis and Y-axis parallel to the surface
of the earth and in the direction of, respectively, the body system X-axis and Y-axis at the initial position
and its Z-axis orthogonal to the surface pointing downwards. This axis system is fixed with the world such
that the coordinates of the helicopter can be expressed with respect to the initial position of the helicopter.

Finally, the blade flapping dynamics will be expressed in the non-rotating disc plane, the plane described
by the path followed by the tip of the blades, with respect to the control plane, the plane containing the
swashplate. As can be seen in Figure 2.3, the coning angle 𝑎ኺ is the angle between the disc axis and the
blade, the longitudinal and lateral flapping angles, 𝑎ኻ and 𝑏ኻ, are the angles between the disc axis and the
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control axis at 0/180∘ and 90/270∘ azimuth respectively. The longitudinal flapping angle is positive when
the rotor disc is tilting backwards. The lateral flapping angle is positive when the rotor disc is tilting to the
right.

Figure 2.3: The helicopter flapping angle axis system [19].

2.2.2. 6 DOF Equations of Motion
The 6 DOF dynamics of the helicopter body can be described by the fundamental nonlinear equations of
motion of a rigid body in the body axis system. The helicopter’s motion is then described by its linear
velocity [𝑢 𝑣 𝑤] and angular velocity [𝑝 𝑞 𝑟]. Furthermore, rotational and translational kinematics of the
body are added to the helicopter model in order to express the helicopters attitude and position in the world
axis system by means of Euler angles [𝜙 𝜃 𝜓] and position coordinates [𝑥 𝑦 𝑧].

The linear velocity can be computed by applying the nonlinear equations of motion for translational
dynamics as can be seen in Equation 2.1. Furthermore, the angular velocity can similarly be computed in
Equation 2.2 by applying the nonlinear equations of motion for rotational dynamics. Here, 𝑋, 𝑌 and 𝑍 and
𝐿, 𝑀 and 𝑁 are respectively the external forces and moments acting on the helicopter in x- y- and z-direction
according to the body axis-system. Each of them are constructed by superposition of the force and moment
contributions of all helicopter subsystems. The subsystems taken into account for the model used in the
simulations of this research are: the main rotor, tail rotor, fuselage, horizontal tail and vertical tail. Hence, the
total external force �̄� = [𝑋 𝑌 𝑍]ᖣ and moment �̄� = [𝐿𝑀𝑁]ᖣ are computed by �̄� = 𝐹፦፫+𝐹፭፫+𝐹 ፮፬+𝐹፡፭+𝐹፯፭
and �̄� = 𝑀፦፫ +𝑀፭፫ +𝑀፟፮፬ +𝑀፡፭ +𝑀፯፭. The calculations for the individual contributions to the force and
moment vector can be found in Simplicio (2011) [20].

�̇� = 𝑋
𝑚 − 𝑔 sin𝜃 − 𝑞𝑤 + 𝑟𝑣

�̇� = 𝑌
𝑚 + 𝑔 sin𝜙 cos𝜃 − 𝑟𝑢 + 𝑝𝑤

�̇� = 𝑍
𝑚 + 𝑔 cos𝜃 cos𝜃 − 𝑝𝑣 + 𝑞𝑢

(2.1)

�̇� = 1
𝐼፱
(𝐿 − (𝐼፳ − 𝐼፲)𝑞𝑟 + 𝐽፱፳(�̇� + 𝑝𝑞))

�̇� = 1
𝐼፲
(𝑀 − (𝐼፱ − 𝐼፳)𝑟𝑝 − 𝐽፱፳(𝑝ኼ − 𝑟ኼ))

�̇� = 1
𝐼፳
(𝑁 − (𝐼፲ − 𝐼፱)𝑝𝑞 + 𝐽፱፳(�̇� − 𝑟𝑞))

(2.2)

Furthermore, the helicopter’s position and attitude with respect to the world axis system can be obtained
by applying the rotational and translational kinematics as can be seen in Equation 2.3 and 2.4. These
equations are obtained from transforming the angular velocity [p q r] and [u v w] from the body axis system
to the world axis system using transformation matrices.
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�̇� = 𝑝 + 𝑞 sin𝜙 tan𝜃 + 𝑟 cos𝜙 tan𝜃
�̇� = 𝑞 cos𝜙 − 𝑟 sin𝜙

�̇� = 𝑞sin𝜙
cos𝜃 + 𝑟

cos𝜙
sin𝜃

(2.3)

�̇� = 𝑢 cos𝜓 cos𝜃 + 𝑣(cos𝜓 sin𝜃 sin𝜙 − sin𝜓 cos𝜙) + 𝑤(cos𝜓 sin𝜃 cos𝜙 + sin𝜓 sin𝜙)
�̇� = 𝑢 sin𝜓 cos𝜃 + 𝑣(sin𝜓 sin𝜃 sin𝜙 + cos𝜓 cos𝜙) + 𝑤(sin𝜓 sin𝜃 cos𝜙 − cos𝜓 sin𝜙)
�̇� = −𝑢 sin𝜃 + 𝑣 cos𝜃 sin𝜙 + 𝑤 cos𝜃 cos𝜙

(2.4)

2.2.3. Inflow Dynamics
The BO-105 helicopter is a hingeless helicopter meaning the rotor system doesn’t contain hinges, instead
the blades are connected to the rotor head by means of a solid titanium block. In order to still allow
movement in the blades, the blades are made from a reinforced-plastic glass-fiber composite material which
gives great flexibility [21]. Because of this hingeless rotor system, the rotor dynamics and body dynamics of
the helicopter are highly coupled. Hence it is important to take the rotor inflow dynamics is into account
when modelling hingeless helicopters [22]. Therefore, the 6 DOF nonlinear rigid body model is extended by
adding two quasi-dynamic rotor inflow equations as can be seen in Equation 2.5. Here, the induced velocity
is calculated using a time constant based on the quasi-dynamic inflow.

�̇�ኺ =
1
𝜏፦፫

(𝐶ፁፄፌፓ − 𝐶ፆ፥ፓ )

�̇�ኺᑥᑣ =
1
𝜏፭፫
(𝐶ፁፄፌፓᑥᑣ − 𝐶ፆ፥ፓᑥᑣ)

(2.5)

2.2.4. Trim Condition
The trim condition is defined as the equilibrium condition in forces and moments such that straight level
flight with constant velocity is obtained. Hence, in trim the sum of the forces and moments along each axis
as well as the total linear and angular accelerations are equal to zero as can be seen in Equation 2.6. The
simulations performed for this research always start from a trim condition, usually at hover (0 knots) or in
forward flight (80 knots). For the BO-105 helicopter, the trim states and controls are computed numerically
and can be seen in the Appendix in Equation B.1 for 0 knots and Equation B.2 for 80 knots.

�̇�, �̇�, �̇�, �̇�, �̇�, �̇� = 0 (2.6)

Trim values from flight test data of the BO-105 helicopter can be seen in Table 2.2 and are used to
compare the trim values of the nonlinear 8 DOF model with. It can be seen that the pitch and roll angle and
longitudinal cyclic are overestimated compared to the flight test trim values. Furthermore, the main rotor
collective shows a similar trim value at 0 knots but is underestimating at 80 knots. Then again, the tail rotor
collective is very well approximated at 80 knots but is slightly overestimated at 0 knots. Finally, the lateral
cyclic trim values of the model are quite similar to the flight test trim value for both 0 and 80 knots.

Table 2.2: Trim values of the 8 DOF model compared with flight test data from [1].

Trim value at 0 knots in [deg] Trim value at 80 knots in [deg]
8 DOF Flight test 8 DOF Flight test

𝜃ኺ 9.24 2.5 4.88 -2.5
𝜙ኺ -1.35 -3.0 0.85 -2.5
𝜃ኺᎲ 14.36 14.0 9.53 12.5
𝜃ኻ፬Ꮂ 1.93 -0.5 6.86 2.5
𝜃ኻᎲ -0.31 -1.0 -2.28 -1.5
𝜃ኺᑥᑣᎲ 13.69 10.0 4.67 4.0
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2.3. Flapping Motion
In a fully articulated rotor system, the blades of the helicopter are connected to the hub by means of hinges
in order to allow the blades to move independently of each other. Flapping, lagging and feather hinges
allow the blades to respectively move up and down, forward and backward and to change the pitch of the
blades. The flap and lag hinges and the pitch bearing for feathering motion can be seen in Figure 2.1 (a).
As the rotor and the helicopter are connected through the rotor hub, much of these rotor movements are
translated to the helicopter body. Especially the flapping motion of the helicopter contributes much towards
the longitudinal-lateral cross-coupling behaviour. Hence, for the 8 DOF model used in the simulations, the
steady-state flapping angles are taken into account in order to be able to model the pitch and roll cross-
couplings due to flapping. The lagging motion and flapping dynamics of the blades is neglected in this
research for simplicity.

The flapping angle of the blade 𝛽 is defined as the angle between the control axis and the blade and
represents the out-of-plane motion of the blades in function of the blade azimuth angle. It can be modelled
using different approximations in the analytical expression. During manoeuvring flight, effects of non-uniform
induced velocity distribution along the rotor disc, effects of unsteady flow along the rotor blade and effects of
higher order coupling terms can occur. Hence, correction factors for dynamic inflow and sweep or including
higher order terms can improve the model of the flapping angles depending on the type of maneuver [23]. In
this study, the classical formulation with a correction factor to account for the non-uniformity of the induced
velocity is used with no higher order terms. In order to compute the flapping angle, it is assumed that the
aerodynamics of the blade is linear, which can be assumed for angles of attack lower than the stall angle of
attack, rigid blades and for small flap and induced inflow angles [24].

𝑎ኺ =
𝛾
8𝜃ኺ(1 + 𝜇

ኼ) − 𝛾6(𝜆 + 𝜆ኺ) +
𝛾
12
𝑝
Ω𝜇

𝑎ኻ =
ዂ
ኽ𝜇𝜃ኺ − 2𝜇(𝜆 + 𝜆ኺ) −

ኻዀ
᎐
፪
 +

፩


1 − ኻ
ኼ𝜇

ኼ

𝑏ኻ =
ኾ
ኽ𝜇𝑎ኺ +

፪
 −

ኻዀ
᎐
፩


1 + ኻ
ኼ𝜇

ኼ
+ 𝐾ᖣ

with: 𝐾ᖣ =
1.33 ᎙

|(᎘ᑔዄ᎘Ꮂ)|
1.2 + ᎙

|(᎘ᑔዄ᎘Ꮂ)|

(2.7)

When the flapping motion of the blade would be plotted over azimuth, one could see that the motion is
periodic with a period of exactly one blade revolution. Expressing the flapping angle in the stationary disc
plane as opposed to the rotating blade frame, the blade disc position can be described by a longitudinal and
lateral flap angle, 𝑎ኻ and 𝑏ኻ, and a coning angle 𝑎ኺ. In Equation (2.7), the stationary flapping angles used
in the simulations of this research can be found which apply to a translating, pitching and rolling helicopter
[23]. It must be noted that the correction factor 𝐾ᖣ is used for the lateral disc tilt in order to account for
the non-uniformity of the induced velocity [1].

Hence, when a positive pitching moment (upward) is applied in hover, the rotor cone longitudinally tilts
forward damping and stabilizing the fuselage motion, and laterally tilts to the left causing an off-axis moment
in roll. This lateral tilt is the main reason for the roll due to pitch coupling motion in helicopter. However,
in forward flight when pitching up, the rotor cone tends to pitch backwards. This means that flapping is
now destabilizing the pitching motion. When rolling to the right in hover the rotor cone tilts to the left
damping and stabilizing the rolling motion and tilts backward causing an off-axis moment in pitch. Again,
this explains the undesired pitch due to roll cross-coupling [25].

2.4. Stability
There are two kinds of stability in a helicopter: static and dynamic stability. On one hand, static stability
refers to the tendency of the helicopter in trim to go back to the trimmed state after a disturbance is applied.
On the other hand, dynamic stability focuses on the motion of the helicopter in time after the disturbance,
which can be oscillatory or non-oscillatory, and whether the helicopter is diverging or converging to the trim
state in the end. Hence, if a helicopter is dynamically stable, and it returns towards the trim state after a
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period of time, it is also statically stable. However, when a helicopter experiences a disturbance and it starts
oscillating around the trim point but diverges in time, the helicopter is statically stable but dynamically
unstable. Having a dynamically stable helicopter design makes controlling the helicopter easier but it is
compromised with maneuverability and agility during flight.

In this section, the static and dynamic stability of the helicopter in general will be evaluated, after which
a stability analysis of the BO-105 will be performed.

2.4.1. Static Stability Derivatives
The static stability of a system is analysed using the linearized system around a trim state. As the linearized
system around trim changes with airspeed, the stability of the system changes with airspeed as well. This
linear system, of the form that can be seen in Equation (2.8), can be obtained by applying perturbation
linearization around the desired trim point [26][p. 563] as explained in Section 7.1.2. In perturbation
linearization, the nonlinear model is perturbed by a small change in a state or input variable which induces
a change in the states. The change of each state with respect to a perturbation in each state individually,
divided by the perturbation, is taken to obtain the elements of the state matrix and the change of each state
with respect to a perturbation in an input, divided by the perturbation, is taken to obtain the elements of
the input matrix.

The linearized 6 DOF system has the form that can be seen in Equation (2.9). The elements of the
𝐴 and 𝐵 matrix represent the stability derivatives. Each derivative varies with helicopter configuration and
flight condition and tells something about the static stability of the helicopter. They can be interpreted as
the amount of change in variable 𝑋 as a result of the perturbation of the other variable 𝑦 for 𝑋፲ =

Ꭷፗ
Ꭷ፲ [1].

Often, stability derivatives are non-dimensionalized to be able to compare derivatives of different heli-
copters with each other. Non-dimensionalization and a comparison of the derivatives of the 8 DOF model
with the NASA model of Heffley et. al. (1979) can be found in Appendix A [2].

𝛿�̇� = 𝐴𝛿𝑥 + 𝐵𝛿𝑢
with: 𝛿𝑥 = 𝑥 − 𝑥ኺ, 𝛿�̇� = �̇� − �̇�ኺ and 𝛿𝑢 = 𝑢 − 𝑢ኺ

(2.8)
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Two important derivatives with respect to longitudinal static stability are the speed stability derivative
𝑀፮, which is the change in pitching moment as a result of an increase in horizontal velocity, and the angle-
of-attack stability derivative 𝑀፰, which is the change in pitching moment as a result of an increase in vertical
velocity.

A helicopter is said to have positive speed stability when, after an increase in horizontal speed, the
helicopter pitches up directing the thrust vector backward with as result a deceleration of the horizontal
speed. If the speed stability derivative 𝑀፮ > 0 is greater than zero, the helicopter has speed stability.
Furthermore, positive speed stability enhance the ease of controlling the helicopter.

Angle-of-attack instability or incidence instability is initiated by an upward (negative) perturbation in
vertical velocity 𝑤 which causes an increase in lift of the blades where the lift on the advancing side of
the disc is greater than the lift produced by the retreating side of the disc. This causes the disc to flap
back resulting in a destabilizing nose-up pitching moment. In order to have positive angle-of-attack stability,
the derivative 𝑀፰ > 0 should be greater than zero. Stabilizing the angle-of-attack stability results in an
oscillatory mode in forward flight namely the phugoid which will be discussed in the next section.

2.4.2. Dynamic Stability Modes
The dynamic stability of the helicopter is evaluated by computing the Eigenvalues of the input matrix 𝐴 of
the system. Each Eigenvalue corresponds to a natural dynamic mode of the helicopter which has a certain
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damping and frequency, is either stable or unstable and can be oscillatory or neutral depending on the real
and imaginary part of the Eigenvalue.

The free motion of the helicopter in time can be entirely described by the linear combination of these
dynamic modes as can be seen in Equation (2.10). Here, each mode is characterized by the exponent of its
Eigenvalue, distributed along the states by means of the corresponding Eigenvector, multiplied by a constant
depending on the initial condition 𝑥ኺ. The Eigenvalues and Eigenvectors of the helicopter can be computed
by solving Equation (2.11).

𝑥(𝑡) =
፧

∑
።
𝑐።(𝑥ኺ) ⋅ 𝑤። ⋅ 𝑒᎘ᑚ፭ , n = number of states (2.10)

det [𝜆𝐼 − 𝐴] = 0
𝐴 ⋅ 𝑤። = 𝜆። ⋅ 𝑤።

(2.11)

Similar characteristics can be recognized in the natural modes of different types of helicopters which
enables to categorise them based on their Eigenvalue and Eigenvector. The typical modes of a helicopter
are: the phugoid or long period, the short period, the dutch roll, the spiral mode and the roll subsidence.
However there is still a big difference in the characteristics of the modes per helicopter depending on e.g.
the type of rotor configuration, the horizontal and vertical stabilizers, the position of the center of gravity,
etc. as can be seen in literature [27], [28], [29], [30], [31][p. 239-249]. Also, the characteristics of the modes
can change drastically over the flight speed range. In general, the modes are to be divided in longitudinal
and lateral/directional modes and will be discussed next [31][p.236-251], [26][p. 616-635].

Longitudinal Modes The longitudinal modes of a helicopter consist of the phugoid or long period and
the short period. In some cases, the short period is non-oscillatory and is replaced by a pitch and heave
subsidence.

First of all, the phugoid mode is characterized by an interchange between forward speed and altitude at
a nearly constant angle of attack initiated by a vertical gust or collective control input. It is a very slow
and unstable mode. The unstable phugoid can still be controlled by the pilot in visual flight as long as the
period is very long (𝑇>20s). However, the stability of the phugoid is being influenced negatively during turns
or pull-ups as the load factor increases which makes the free motion less controllable for the pilot. When
separating the phugoid equations of motion using reduced order modelling, it is found that the ratio of speed
stability 𝑀፮ over pitch rate damping 𝑀፪ greatly influences the frequency and damping of the phugoid.

Secondly, the short period, observed in the beginning of the phugoid, is a very rapid angle-of-attack
adjustment with little change in forward speed. The mode depends mainly on the angle-of-attack stability
derivative 𝑀፰. When 𝑀፰ increases, the frequency of the short period also increases. When the short period
is non-oscillatory, the mode consists of a pitch and heave subsidence. This usually happens at low speeds.
The eigenvalues of the pitch and heave subsidence are directly related to the pitch damping derivative𝑀፪ and
heave damping derivative 𝑍፰ respectively. At higher speeds, pitch and heave can become coupled because
of the angle-of-attack stability resulting in a short period.

Lateral Modes The lateral modes of a helicopter consist of a dutch roll, sometimes called lateral directional
oscillation or lateral phugoid, a spiral mode and an aperiodic roll subsidence [32].

The periodic dutch roll is usually a damped mode which combines yaw, roll and side-slip motion when
perturbed by a lateral gust. The mode depends mainly on the yaw due to roll derivative 𝑁፩, which should
be negative in order to have a stable dutch roll. The vertical stabilizer contribution increases the derivative
making it possible to size the stabilizer for stable dutch roll. The dutch roll motion is known to highly
affect the pilot workload. Therefore, a well damped dutch roll mode is desired by the pilot. The short roll
subsidence mode is an aperiodic, damped mode initiated by a lateral cyclic input causing the helicopter to
have a roll rate response with a time constant. The behaviour of the mode depends mainly on the roll
damping derivative 𝐿፩. The spiral mode is an aperiodic motion in yaw and side-slip and is either unstable
or weakly damped.

2.4.3. Stability Analysis of BO-105
In order to analyse static and dynamic stability of the 6 DOF helicopter model used in this research, the
model was linearized for different flight speeds as explained in Section 7.1.2. From the state and control
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matrix, the static stability derivatives and Eigenvalues were derived.
First of all, the static stability derivatives for hover and forward flight (80 knots) of the BO-105 model

used in this research can be seen in Section 7.1.2. The derivatives are non-dimensionalized in Appendix A
and compared with the non-dimensional derivatives of the NASA model of Heffley et. al (1979) [2]. Here,
it can be seen that the signs of the derivatives of the NASA model and the BO-105 model of this research
are mostly similar, with some exceptions such as 𝑧፮, 𝑧፰ and 𝑙፫ and some control derivatives. Furthermore,
most state derivatives have the same order of magnitude. The control derivatives of the 6 DOF model are
very small in magnitude whereas the NASA model derivatives have much greater magnitude. From these
derivatives, it can be seen that indeed 𝑀፮ and 𝑀፰ are positive which indicates respectively positive speed
and angle-of-attack stability.

Table 2.3: Eigenvalues of the 6 DOF BO-105 model for hover.

Eigenmode Eigenvalue [rad/s] Natural frequency [rad/s] Damping ratio [-]
Phugoid 0.081 ± 0.724𝑖 0.728 -0.111

Short period -3.800 (pitch subsidence)
-0.914 (heave subsidence)

3.800
0.914

1.000
1.000

Spiral 0.311 0.311 -1.000
Dutch roll -0.657 ± 0.363𝑖 0.751 0.875
Aperiodic roll -16.600 16.600 1.000

For the dynamic stability analysis the Eigenvalues of the 6 DOF state matrix were calculated at different
speeds using Equation 2.11. The Eigenvalues for hover can be seen in Table 2.3 whereas the Eigenvalues over
a flight speed range from 0 to 70 m/s can be seen in Figure 2.4 (a). In hover, the helicopter Eigenmotions
consist of a slightly unstable and oscillatory phugoid mode, a stable pitch and heave subsidence, an unstable
spiral mode, a stable aperiodic roll subsidence and a stable dutch roll motion. As can be seen in Figure 2.4
(a), the phugoid motion develops into two aperiodic Eigenmodes characterized by 𝑢 and 𝑤 at higher flight
speeds (> 57 m/s). Furthermore, the stable roll and pitch subsidence and unstable spiral mode become
more damped when flight speed increases in contrast to the heave subsidence becoming less damped and
almost unstable. The dutch roll Eigenmode remains stable and oscillatory over the full flight speed range
but increases its natural frequency with increasing flight speed. Generally, the Eigenmodes of the 6 DOF
model resemble the Eigenmodes of the higher fidelity Helisim model in Figure 2.4 (b) with the exception of
the phugoid mode splitting up in two aperiodic motions and the spiral being unstable in the 6 DOF model.

2.5. Handling Qualities
This section will explain the concept of flying qualities and more specifically handling qualities. Furthermore,
it will present the established subjective and objective criteria for measuring aircraft handling qualities. Finally,
a closer look will be taken into the helicopter cross-coupling requirements specified in the ADS-33E-PRF
document.

2.5.1. Definition
The concept of flight performance or flight quality is difficult to objectively define or measure. Therefore,
throughout history two concepts of flying performance were defined: flying qualities and handling qualities.
The concept of flying qualities was first defined by Philips (1949) who described it as ”the stability and
control characteristics that have an important bearing on the safety of flight and on the pilots’ impressions
of the ease of flying an airplane in steady flight and in manoeuvers” [33]. The handling qualities of an
aircraft however were first described by Cooper and Harper (1969) as ”Those qualities or characteristics of
an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in
support of an aircraft role” [34] and depend not only on the aircraft but also on the maneuver that has to
be flown, the visibility, the pilot’s personal opinion and expertise and any human-machine interfaces present
as can be seen in Figure 2.5. The handling qualities can thus be seen as a part of the flying qualities of
an aircraft [6]. As it is generally known that helicopters are hard to fly, having good handling qualities is
an important requirement when designing a helicopter. In order to facilitate the design of helicopters and
its flight control systems, a subjective and objective assessment of handling qualities was established which
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(a) 6 DOF model.

(b) Helisim model (coupled dynamics) [31]

Figure 2.4: Dynamic stability analysis of the 6 DOF model and the Helisim model of the BO-105 showing the Eigenvalues in
the complex plane.

could be used as a guideline for desired flight behavior.

2.5.2. Handling Quality Rating
In 1969 Cooper and Harper invented a way to subjectively measure the ease of controlling an aircraft by
means of the Cooper-Harper Handling Qualities Rating Scale [34]. This rating scale is to this date used
and recognized as a reference for measuring handling qualities. It is based on a series of questions the pilot
has to answer about flying a specific maneuver after which a certain level of handling quality is obtained
as can be seen in Figure 2.6. The scale has three levels of handling quality. Level 1 is the best level
with excellent to fair handling qualities requiring no to minimal pilot workload to perform the maneuver.
Level 2 captures the maneuvers with aircraft characteristics with minor to very objectionable but tolerable
deficiencies. Level 3 indicates the worst level of handling qualities where major deficiencies are present in
the aircraft characteristics and an extensive workload is required to fly the maneuver. This rating scale is
entirely based on the pilot’s subjective opinion. Hence, there was still a need for an objective rating system
for helicopter handling qualities which could contribute to setting up helicopter and flight control system
design guidelines.

In 1985 a mission-oriented way of objectively measuring handling qualities for military rotorcraft was
established by the US Army Aviation and Missile Command in the ”ADS-33 Aeronautical design standard
performance specification: handling qualities requirements for military rotorcraft” based on the Cooper-
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Figure 2.5: Handling qualities influencing factors [35].

Harper rating [36]. This document specifies handling quality requirements for predefined Mission Task
Elements (MTE) in order to provide a sound guidance for the design of the helicopter and flight control
systems. Depending on the type of helicopter (scout/attack or cargo/utility), the visual environment (De-
graded Visual Environment (DVE) or Good Visual Environment (GVE)) and the MTEs (e.g. hover, slalom,
pullup), control and maneuverability requirements were set. Besides the requirements for the MTEs, stability
requirements were made and new handling quality parameters were defined in order to specify the required
responses to control and disturbance inputs, to specify the required quickness for certain attitude changes
and to specify the allowable amount of interaxis coupling [6].

2.5.3. Cross-coupling Requirements
As mentioned before in Section 2.1.2, helicopters have many and mostly undesirable cross-couplings which
make controlling a helicopter very difficult. Therefore, cross-couplings or interaxis couplings are also widely
described in the ADS-33 document for both hover and low speed flight, and forward flight. For most
cross-couplings, the document has defined a certain parameter indicating the amount of off-axis response
compared to the on-axis input. Hence, when flying or simulating the helicopter and giving a step input in
one of the controls, this parameter that resembles the amount of off-axis response should remain within
the required limits. In order to specify these limits, level 1, 2 and 3 handling quality boundaries for these
parameters were defined based on Cooper-Harper ratings of flight tests. These boundaries could then be
used as design requirements or just as indicative guidelines. The cross-coupling requirements specified in the
ADS-33 document for off-axis dynamic responses are summarized in Table 2.4 with its respective parameter
representing the amount of cross-coupling. More on these individual cross-coupling requirements can be
found in Chapter 8.
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Figure 2.6: Summarized Cooper – Harper handling qualities rating scale [31].

Table 2.4: Cross-coupling requirements specified by the ADS-33 for off-axis dynamic responses [31].
* no current requirements.

Input \ Response Pitch 𝜃 Roll 𝜙 Heave 𝑤 Yaw 𝜓
Pitch 𝜃 X Δ𝜙፩፤/Δ𝜃ኾ

hover and fwd flight
flight path response
not objectionable in
forward flight

* yaw response due
to rotor torque
changes in
aggressive pitch
manoeuvres

Roll 𝜙 Δ𝜃፩፤/Δ𝜙ኾ
hover and fwd flight

X * thrust/torque
spikes in rapid roll
reversals

Δ𝛽/Δ𝜙 ratios
in fwd flight

Heave 𝑤 Δ𝜃፩፤/Δ𝑛፳ᑡᑜ
in fwd flight

* Δ𝜙፩፤/Δ𝑛፳ᑡᑜ X 𝑟/ |ℎ̇| ratios
in hover

Yaw 𝜓 * pitching moments
due to sideslip
in fwd flight

dihedral effect on
roll control power

not objectionable
in hover

X



3
Model Predictive Control

This chapter will elaborate on Model Predictive Control (MPC), the control theory. First, an introduction
on the concept, different types of MPC, history and current research will be given. Next, each component
of MPC will be discussed separately after which the stability of the MPC algorithm will be discussed.

3.1. Concept
First of all, it should be noted that MPC will be explained and implemented in its discrete-time version where
the discrete control sampling time is indicated by 𝑘. MPC is a type of model-based, optimal control where
at each time step, 𝑘, an optimal control input sequence �̄�፤ = [𝑢፤ , 𝑢፤ዄኻ, … , 𝑢፤ዄፍዅኻ] is computed online
over a future time horizon, the prediction horizon 𝑁, by solving an open-loop optimization problem that has
knowledge of the system model [7]. The optimization uses the current state of the system as initial state
and a model of the system to compute the future states along the prediction horizon in order to optimize
a desired objective function. Then, only the first control input in this optimal control input sequence 𝑢፤ is
applied to the system. At the next time step, the prediction horizon of the optimization problem shifts one
step forward, to 𝑘 + 1, and the next optimal control sequence �̄�፤ዄኻ = [𝑢፤ዄኻ, 𝑢፤ዄኼ, … , 𝑢፤ዄፍ] is computed.

Figure 3.1: The concept of MPC in discrete time [37].

In Figure 3.1, one can see the concept of MPC explained in discrete time for a reference tracking
problem. The closed-loop block diagram of the MPC concept can be seen in Figure 3.2 where the case
of a reference tracking problem is taken for illustration. In a reference tracking problem, the objective
function of the optimization is to minimize the error, �̄� = [𝑒፤ዄኻ, … , 𝑒፤ዄፍ], between the reference trajectory,
�̄� = [𝑟፤ዄኻ, … , 𝑟፤ዄፍ], and the predicted output trajectory �̄� = [𝑥፤ዄኻ, … , 𝑥፤ዄፍ]. Then, the optimization
problem consists of computing the optimal control input over the prediction horizon such that the tracking
error is minimized and the constraints are met. The optimizer has knowledge of the systems future behaviour
by means of the current state feedback, 𝑥፤, and the system model. This means the future states and control

37
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inputs are calculated in the open-loop MPC algorithm. Once the sequence of control inputs is optimized for
the objective function, only the first control input, 𝑢፤, is applied to the system. In this way, the feedback
loop is closed going from receiving the measured state to computing the optimal control input sequence
over a prediction horizon to applying the first control input to the system, all in one time step. Finally, the
prediction horizon shifts one time step forward, the new state measurements are fed to the optimizer and
the process repeats itself [7].

Figure 3.2: Block diagram of MPC applied to a system for reference tracking [38].

The optimization problem for MPC in general is formulated in Equation (3.1), where 𝑘 is the current
time step, 𝑥፤ is the current measured state, �̄� = [𝑥፤ዄኻ, … , 𝑥፤ዄፍ] is the vector containing the predicted
state along the prediction horizon 𝑁, 𝑉ፍ is the objective function and 𝕏፟ is the terminal region. Since MPC
is entirely based on an optimization problem, input and output constraints are very easily incorporated in
the controller design. The objective function, as can be seen in Equation (3.2), usually consists of a stage
cost ℓ and a terminal cost 𝑉 . The terminal constraint and terminal cost are in some cases needed because
of stability reasons which will be explained further in Section 3.6.

minimize
፮̄, ፱̄

𝑉ፍ(𝑥፤ , �̄�)

subject to: system dynamics
input/output constraints
terminal constraint: 𝑥፤ዄፍ ∈ 𝕏፟

(3.1)

𝑉ፍ(𝑥፤ , �̄�) =
ፍዅኻ

∑
።ኺ

{ℓ(𝑥፤ዄ። , 𝑢፤ዄ።)} + 𝑉 (𝑥፤ዄፍ) (3.2)

In Equation (3.3), a standard, unconstrained, linear quadratic example for a reference tracking problem
can be seen where 𝑒፤ዄ። = 𝑥፤ዄ። − 𝑟፤ዄ።. The objective function is written as the sum of a quadratic tracking
error term weighted with the matrix 𝑄, a quadratic control action term weighted with matrix 𝑅 and a
terminal quadratic tracking term weighted with matrix 𝑃 . Here, the control action term penalizes having
large control actions. The linear system dynamics used to predict the states is expressed using a discretized,
linear state-space model.

minimize
፮̄, ፱̄

𝑉ፍ(𝑥፤ , �̄�) =
ፍዅኻ

∑
።ኺ

{𝑒ᖣ፤ዄ። 𝑄 𝑒፤ዄ። + 𝑢ᖣ፤ዄ። 𝑅 𝑢፤ዄ።} + 𝑒ᖣ፤ዄፍ𝑃 𝑒፤ዄፍ

subject to: 𝑥፤ዄ። = 𝐴 𝑥፤ዄ።ዅኻ + 𝐵 𝑢፤ዄ።ዅኻ for 𝑖 = 1, 2, … , 𝑁

(3.3)

3.2. Types of MPC
Different types of MPC can be differentiated based on the optimization algorithm, computation method or
model used. Some of these types will be discussed in this section.
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Linear and Nonlinear MPC The most general types of MPC are Linear and Nonlinear MPC (LMPC and
NLMPC). The difference lies in the use of a linear or nonlinear objective function, constraints and prediction
model. If one these elements is nonlinear, the controller is considered a nonlinear MPC controller [7]. Despite
many processes in industry being nonlinear, linear MPC is mainly applied as it is easier to identify a linear
model from test data which could be still representative for the nonlinear process. Also optimal and faster
convex optimization can take place if a linear model is used. However, when the process is highly nonlinear
or large deviations from the linear trim point are achieved, the linear model is not a good approximation
of the real process anymore. Therefore, nonlinear MPC was introduced where a nonlinear model is used in
the optimization. This causes the optimization to become non-convex and thus multiple local optima could
exist. Hence, nonlinear MPC comes with suboptimality meaning it is not guaranteed to reach the global
optimum, the optimal control input. Multiple initial values can be tried each step in an attempt to still reach
the global optimum. Again, this goes at the cost of longer computation time [39]. More on convex and
non-convex optimization can be found in Section 3.5.4.

Explicit MPC Explicit MPC was introduced in the early 2000s in order to reduce the computation time of
the optimization. It uses an explicit optimization formulation specific to each application calculated offline
which severely speeds up the optimization process. The explicit solution is calculated offline using parametric
programming techniques such that the optimization problem is a parametric function of the state. However,
for systems with a large number of variables the offline calculation of the explicit solution can take up a
lot of memory. Explicit MPC is often used for systems which require small sampling times such that it is
possible for these systems to use MPC in real-time [40].

Robust MPC For uncertain systems and systems subject to noise, an MPC control law with robustness is
needed such that, for a certain amount of noise or model variation, the stability of the system and required
performance is maintained. However, the addition of robustness to the MPC controller comes with the
drawback of having less optimal results. Different methods of robust MPC are defined such as min-max
MPC, constraint tightening MPC, tube MPC and multi-stage MPC [41].

Hybrid MPC Finally, a distinction in MPC techniques can be made for MPC applied to hybrid system,
called hybrid MPC. These systems have a dynamical model which can integrate discrete and continuous
components, logic conditions, switching, etc. as more and more applications have to deal with hybrid
systems. In order to formulate this hybrid problem in a solvable way, the system is rewritten as a mixed-
integer quadratic or linear program to which solution techniques are available [42].

3.3. Historical Background and Applications
The idea of MPC was first introduced in the 1960s however the technology was only used in industry from
the 1980s [43]. The MPC concept was first applied in industrial processes under many different names:
Dynamic Matrix Control (DMC), Generalized Predictive Control (GPC), Model Algorithm Control whose
software is called IDCOM, etc. Each of these control theories apply the same model-based, receding horizon
concept but in a different manner. For example, in DMC the system dynamics is represented as a linear
step response model and can only be applied to linear open-loop stable systems whereas in GPC the system
dynamics is formulated using a CARIMA model, the control technique takes into account disturbances and
can handle open-loop unstable systems [44], [45]. DMC, developed by Shell Oil, GPC and other variations
of MPC were widely used in chemical and petrochemical industries, refineries, air and gas industry and food
processing [9]. It is only 10 to 20 years after MPC was first being applied that the theoretical proofs for
stability, feasibility and optimality of MPC were being researched and nonlinear, explicit and even hybrid
MPC was developed.

Nowadays, this control technique is known as MPC or Receding Horizon Control (RHC) and is consid-
ered a promising model-based technique to control constrained multivariable systems. Furthermore, MPC
has immensely grown in popularity and has application over a much wider variety of industries including au-
tomotive, aerospace, electronics, metallurgy, medicine, energy, environment etc. [10], [11]. The applications
of MPC are no longer limited to industrial processes, which brings along new challenges.
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3.4. Challenges and Current Research
Until now, MPC theory and application is well established for linear industrial processes which are slow,
small-scale and don’t have many constraints. However, as applications are extending to large scale, fast
dynamic, low cost and nonlinear systems and as society puts more and more requirements and constraints
on safety, energy, economics, etc. MPC is facing new challenges.

Some of these challenges and research areas related to these challenges are addressed by Xi (2013) [8].
The paper categorizes four existing challenges or problems for the current MPC theory and application:
effectiveness, nonlinearity, usability and scientificness and elaborated on how these challenges are tackled
currently in the research field. Besides deficiencies in the control algorithm, the applicability and performance
of MPC is also often limited by difficulties in state estimation, modeling, sensing, diagnosis and fault detection
[46]. In this way, MPC points out new needs in other technologies or fields as well. Firstly, the challenges
that MPC is facing will be explained after which an update on the current research to handle these challenges
is given with prospects to the future.

Upcoming Challenges First of all, current MPC theory has low effectiveness when a small sampling
time is required meaning that the MPC optimization is slow and has a heavy online computation burden.
Currently, MPC can only be applied in real-time to relatively slow systems, because fast systems require a
small sampling time, or applications with high performance computers.

Furthermore, MPC theory is less practical for nonlinear systems as nonlinear optimization for large systems
is slow, the optimum can be local and stability guarantees are difficult to obtain. Stability proofs and feasibility
are well established for linear MPC whereas the theoretical research for NLMPC and nonlinear optimization
still lacks understanding of the reliability and efficiency. Nonlinear MPC has been an active research topic
for several years. However, in industry NLMPC is still at an early stage.

Next, MPC needs to become easier to work with. Applying and tuning MPC relies heavily on experience
as no direct relationship between the design parameter and the system performance exist because no explicit
solution exist for constrained problems. This makes applying and maintaining MPC costly.

Finally, there is a big gap between the practical application of MPC in industry and the theoretical research
on MPC theory. There is a lack of scientificness in MPC applications. For example, theoretical terminal
penalty terms or constraints, which are needed to guarantee stability according to the Lyapunov stability
theory, have an unclear physical meaning in the optimization formulation. Therefore, these results of MPC
research are rarely applied in the implementation of commercial MPC. Hence, there is a need for an MPC
theory and design that takes into account the physical intuition and computation time while guaranteeing
control performance.

Current Research Research already has been performed to tackle these challenges. Although many prob-
lems still need more investigation and solutions in order to be able to apply MPC to large scale, fast dynamic,
low cost and nonlinear systems. Many studies are performed regarding the effectiveness challenge trying to
improve the structure, strategy and algorithm of MPC to reduce the computation time. On structural level,
hierarchical control and distributed control for large scale systems such as transportation systems and power
systems are being researched and developed. On strategic level, explicit MPC is still elaborated upon to
make it possible to find an explicit solution for large, nonlinear and hybrid systems. On algorithmic level,
optimization methods for linear and nonlinear problems are being improved or approximated in order to
reduce the optimization time.

Research is also being performed on the practical implementation of MPC enhancing its usability. Tool-
boxes, such as the Matlab MPC Toolbox, are being developed to enhance MPC prototyping, aiding the MPC
setup, tuning and validation [47]. Hybrid MPC was introduced to practically implement MPC to hybrid
system, as many nonlinear systems are hybrid system. However, solutions to the complicated mixed integer
programming problem are existent but still need more investigation. Furthermore, practical implementations
for stochastic and nonlinear systems are being investigated. Studies on NLMPC performance guarantees
attempt to find more applicable algorithms while maintaining the real-time optimization and decreasing the
complexity of the design. Aside from stability and robustness studies, nonlinear MPC research is extended
to output feedback, state estimation and tracking problems with explicit and numerical algorithms [48].

Finally, researchers are working on extending the application areas to more fields such as automotive
industry, ship systems, energy systems, aerospace systems and power electronics. MPC can even be used
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for purposes other than control: calculating extremal control inputs corresponding to load limits or flight
envelope limits, etc. [49], [50].

Conclusion In conclusion it can be said that the rising challenges coming along with new application areas
and more constraints are already being researched to some extent. However, great effort is still needed in
order to make MPC effective, usable, scientific and applicable to nonlinear systems by creating high-efficiency,
user-friendly algorithms with both theoretical guarantee of stability and real-time application.

3.5. Components
The three main components of MPC are the prediction model, the optimization problem consisting of an
objective function and constraints, and the receding horizon policy. In this section, the model used for the
predictions, the objective function, the constraints, the optimization and the tuning parameters in MPC will
be discussed.

3.5.1. Model
In MPC the basic concept is to use a dynamic model to predict the systems behaviour in the future in order
to optimize the prediction to obtain the optimal control inputs. This model can be represented in many
different ways each having its upsides and downsides. The general discrete formulation for the dynamics of
a system is given by Equation (3.4) which can be shortly written as 𝑥ዄ = 𝑓(𝑥, 𝑢).

𝑥፤ዄ።ዄኻ = 𝑓(𝑥፤ዄ። , 𝑢፤ዄ።) for 𝑖 = 1, 2, … , 𝑁 − 1 (3.4)
From the 1980s onwards, the finite step response model and finite impulse response model are mainly

used for MPC in industry [51]. These models use a finite superposition of, respectively, step and impulse
response functions consisting of a gain and a time to represent the output. The downside of these models
is that they require a lot of memory to store the response functions. Furthermore, transfer functions or
input-output models can be used to represent the system dynamics if only little is known about the system’s
internal structure by only giving the relation between the output and the input. Besides that, GPC makes use
of a Controlled Auto-Regressive and Integrated Moving Average (CARIMA) model which has the advantage
that it can include disturbances in the model. However, in academic research the state-space representation
which can be seen in Equation 2.8 is mainly used for linear models [52].

Apart from these different types of models, the models can also be divided in categories. As most systems
have nonlinear dynamics, the model used by the MPC algorithm can be nonlinear or can also be a linearized
version of the nonlinear dynamical model. Hence, two major categories can be distinguished: the linear
and nonlinear models. Mostly, the linear model is preferred as it has the characteristic of being convex
which majorly simplifies the optimization process and guarantees to have a global optimum. However, for
highly nonlinear processes this linear representation is not always an accurate fit. Therefore, NLMPC was
introduced which uses a nonlinear model in a non-convex optimization algorithm. The difficulty of nonlinear
models in MPC theory is that a proof or guarantee for stability and optimality is difficult to obtain [39].

Furthermore, models can be divided in time-varying or time-invariant models, referring to the fact that
the state-space matrices are depending on time or not, and in deterministic or stochastic models, referring
to the inclusion of noise or disturbances in the model [7][p. 1-11].

Finally, the fidelity of the model is of great importance for the MPC application as it should provide a
balance between the accuracy and resemblance of the important dynamics of the system and the compu-
tational time and complexity. Especially for fast dynamical systems such as helicopters, the computational
complexity of the model and its computation time is significant in this trade-off.

3.5.2. Objective Function
The objective function is the most defining, and meaningful component for the final optimal output in the
MPC algorithm. Based on the objective function, the output is determined. Hence, it is very important to
choose the objective function such that every term is of significance and that the objective function of the
MPC corresponds to the objective of the physical system to control.

The objective function typically consists of a stage cost and an end cost as can be seen in Equation 3.2.
This end cost or terminal penalty is usually needed because of stability reasons. Now, it will be assumed that
no specific terminal penalty is required. This objective function can then be described by a sum of linear,
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quadratic or nonlinear terms. Each term is scaled by a weight such that more importance can be given
to one objective than the other. These weights can then be tuned in order to get the desired closed-loop
behavior. When the terms are linear or quadratic and the model is linear, the optimization problem can be
easily solved numerically or explicitly using quadratic programming.

As seen in the example in Section 3.1, the objective of the MPC can be a tracking task. However, the
objective function shouldn’t be limited to following a reference trajectory. For example, one can use this
powerful tool to optimize for minimum fuel consumption, structural or vibrational loads [49], emissions [53],
flying in formation [54], passenger comfort, travel time, handling qualities, etc. The MPC algorithm can
then find the optimal path and control actions to maximise this performance objective.

3.5.3. Constraints
One of the great advantages of MPC is that it can easily incorporate input and output constraints simulta-
neously. Constraints on the control inputs are typically physical boundaries whereas constraints on outputs
are usually operability, product quality or safety limits. Next to this, also ’artificial’ constraints can be put
on the outputs such as the terminal set constraint for stability. The mathematical formulation of an input
and output constraint can be seen in, respectively, Equation 3.5 and 3.6.

𝐸 ⋅ 𝑢፤ዄ። ≤ 𝑒 for 𝑖 = 1, 2, … , 𝑁 (3.5)
𝐹 ⋅ 𝑥፤ዄ። ≤ 𝑓 (3.6)

with: 𝐸 = 𝐹 = [ 𝐼−𝐼]

𝑒 = [ 𝑢፦ፚ፱−𝑢፦።፧] , 𝑓 = [
𝑥፦ፚ፱
−𝑥፦።፧]

such that: 𝑢፦።፧ ≤ 𝑢፤ዄ። ≤ 𝑢፦ፚ፱
𝑥፦።፧ ≤ 𝑥፤ዄ። ≤ 𝑥፦ፚ፱

As more and more constraints are put on the optimization problem, the feasible region of possible control
inputs gets smaller and smaller. It is convenient to model input constraints as hard constraints since they
are usually physical limits. However, the output constraints are considered more desirables than limits.
Therefore, in order to prevent the problem from becoming infeasible, the hard output constraints can be
replaced by soft constraints when the problem becomes infeasible. In this way, the soft constraint is relaxed
such that a solution can still be found. Once the optimization problem is feasible again, the soft constraint
reverts back to a hard constraint. This is done by adding a slack variable 𝜖 to the constraint as can be
seen in Equation 3.7. This slack variable is considered a decision variable and is added as a weighted term
to the objective function. Furthermore, the slack variable has to be greater than or equal to zero which is
guaranteed by including this as a constraints.

𝐹 ⋅ 𝑥፤ዄ። ≤ 𝑓 + 𝜖፤ዄ።
𝜖፤ዄ። ≥ 0

(3.7)

3.5.4. Optimization
The optimization problem and algorithm in MPC is a key component as it is the means to finding the optimal
control input. However, solving the optimization problem is very time consuming. Even though fast methods
and better computation power are making their advance, its computation time is a substantial drawback
for systems with fast dynamics. Many different analytical and numerical methods to solve the optimization
problem exist. Next, a distinction will be made between convex and non-convex optimization.

An optimization problem is convex if the objective function is convex, the inequality constraint functions
are convex and the equality constraint functions are affine. When the system model is nonlinear, the
optimization becomes non-convex. The advantage of convex optimization is that there are no local optima
and the optimization problem can be solved rather quickly and easily. A convex optimization problem
can be solved using linear or quadratic programming. Different methods exist such as Newton’s method,
interior-point methods, gradient-based methods, etc. In convex optimization without constraints, an explicit



3.5. Components 43

solution can be found by means of dynamic programming such that the optimal control input can be directly
computed as a function of the initial state. This severely speeds up the computation process.

If the optimization problem is non-convex, multiple local optima exist. Therefore, finding the global
optimum becomes a complex and time consuming task. However, optimality is not required by MPC, only
feasibility [55]. Even if the outcome of the optimization problem is not the global optimum but a local one,
called suboptimality, the controller can still be stable provided that minor modifications are made to the
optimization problem.

In order to speed up the optimization process, many tricks, algorithms and tuning can be implemented
[56]. For example, neural networks can be used that mimic the behaviour of the MPC optimization [57],
explicit solutions to the optimization problem can be found, the sampling time and prediction horizon can
be tuned, the model can be reduced such that there are less variables to compute in the optimization,
faster optimization algorithms such as using Pontryagin’s Minimum Principle can be implemented [58], etc.
Furthermore, a control horizon 𝑁፮ is often implemented which is smaller than the prediction horizon. The
optimizer will only compute the control input sequence up to time step 𝑘 + 𝑁፮. After this time step, the
control input for the remaining prediction horizon is assumed to be equal to 𝑢፤ዄፍᑦዅኻ. In this way, the
amount of measurable variables in the optimization are reduced, reducing the computation time.

3.5.5. Tuning Parameters
The MPC algorithm contains several design parameters that require tuning specific to each application and
task. Those parameters are the sampling time Δ𝑡, the prediction and control horizon 𝑁 and 𝑁፮, and the
weights specific to the objective function. The tuning parameters and the closed-loop performance are related
to each other in a complex matter, especially when the system model is not very accurate to the real system
dynamics. In general, no structured tuning method is available for MPC. It requires engineering expertise and
insight to evaluate the closed-loop performance as parameters and scenarios are changed until satisfactory
results are obtained. This makes tuning of the MPC rather difficult. When the MPC algorithm is modified
such that stability is guaranteed, not much tuning is needed to obtain good performance. However, when
stability is not guaranteed, the MPC has to be tuned by trial and error in order to have a stable controller
and obtain the desired performance. Nevertheless, some general guidelines and best practices to tune each
parameter exist.

It is common to first select a proper sampling time and keep it constant throughout tuning. A proper
sampling time can be found by trial and error and should be small enough to capture the system dynamics,
but large enough to enable real-time control.

The prediction and control horizon selection is as well a trade-off between performance and computation
time since large horizons increase the amount of variables to optimize. A large prediction horizon is in general
good for stability but bad when a lot of inaccuracies between the MPC model and the real system dynamics
exist since the error accumulates over time. Furthermore, a small prediction horizon might be good for the
computation time, it also limits the future information available about the system. When the prediction
horizon is too small, it might be possible that delays or non-minimum phase behaviour of the system cannot
be captured. Hence, the controller needs a prediction horizon large enough to be able to anticipate on future
events such as constraint violations, delays and non-minimum phase behaviour sufficiently early to allow for
a corrective control action.

The control horizon is usually taken lower than the prediction horizon in order to decrease the amount
of variables in the optimization problem and improve the computation time in a way such that performance
is not affected.

The weights of each term in the objective function are the tuning parameters that are very important
with respect to the objective of the entire controller. They represent how much each term is valued. In the
unconstrained linear quadratic example for reference tracking in Equation 3.3, 𝑄, 𝑅 and 𝑃 are the weighting
matrices for respectively the tracking term, the control action term and the terminal tracking term. They
are diagonal matrices with the elements on the diagonal being the weights corresponding to the importance
of their respective variables. When the weights of the 𝑅 matrix are large with respect to the 𝑄 matrix, the
system will have very small control actions with a slower response. Whereas, when the 𝑄 matrix has larger
weights than the 𝑅 matrix, the system will behave faster and more aggressive at the cost of large control
actions. The terminal tracking weight term can be different from the stage tracking weight 𝑄 for stability
reasons. Furthermore, it is important to note that the weight of each variable should scale with its units.
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For example, one meter deviation from the reference trajectory cannot be compared to one degree deviation
from the reference angle.

3.6. Stability Theory
In this chapter, the stability theory for MPC problems will be summarized. Stability of the MPC problem
is beneficial as only then the controller will guaranteed make the system converge to a certain equilibrium
state. However, it is not needed in order to have a functioning MPC controller. With proper tuning and
a sufficiently long prediction horizon, the system can also converge to the equilibrium state. Therefore, in
this research this MPC stability theory will not be applied. Nevertheless, some words will be held on the
definition of stability, how to proof stability and how to enforce stability in an MPC problem.

3.6.1. Asymptotic Stability
An equilibrium point or trim point of a system 𝑥ኺ is the state of the system at which it will remain if the
system starts from that point and no disturbances or inputs are given. This trim point can be unstable,
locally stable, Locally Asymptotically Stable (LAS) or Globally Asymptotically Stable (GAS) depending on
if the state, starting from any point (for global stability) or a point near the trim point (for local stability),
diverges or converges over time towards the trim point (asymptotically) or to a state near the trim point
(non-asymptotically) when a disturbance is given [7][p. 112 - 131].

In MPC, the closed-loop stability will mostly be non-global due to the presence of input and state
constraints or due to nonlinearity and hence non-convexity of the system. Furthermore, if the MPC problem
is said to be asymptotically stable, the closed-loop problem is by definition stable independent from the
tuning parameters or the open-loop stability.

3.6.2. Lyapunov Stability Theorem
Stability of the controlled system is required in order to have convergent system behaviour. However,
optimality does not ensure stability which implies that even though an optimal input is applied to the
system, the closed-loop system is not necessarily stable. Hence, stability still has to be ensured for the MPC
problem. This can be done by finding a Lyapunov function which proves guaranteed stability, or by tuning
the controller and evaluating its closed-loop behaviour until the state converges.

A Lyapunov Function of a system is a generalized energy function of that system which enables to make
conclusions about the trajectory of a system without explicitly finding the trajectories. The Lyapunov stability
theorem holds that if there exists a Lyapunov function in a positive invariant set 𝕏 for which 𝑥፤ዄ። ∈ 𝕏 ⊆ ℝ፧,
then the equilibrium point 𝑥ኺ ∈ 𝕏 is LAS for 𝑥ዄ = 𝑓(𝑥, 𝑢). If the positive invariant set is equal to ℝ፧, then
the equilibrium point is GAS for 𝑥ዄ = 𝑓(𝑥, 𝑢). Here, a Lyapunov function can be defined as a function 𝑉(𝑥)
which is lower and upper bounded by the 𝒦ጼ-functions 𝛼ኻ and 𝛼ኼ and where 𝑉(𝑓(𝑥)) − 𝑉(𝑥) ≤ −𝛼ኽ holds
for the positive definite function 𝛼ኽ, indicating a Lyapunov decrease of the state as the state progresses.

In MPC, the objective function is often found to be a Lyapunov function. Hence, if the objective function
and possibly constraints in an MPC problem can be written as a Lyapunov function, then the closed-loop
system is asymptotically stable for all tuning parameters. This makes the Lyapunov stability theorem a way
to proof that the MPC problem is stable.

3.6.3. Enforcing Stability
It is now clear that having a stable MPC controller and being able to proof this is very beneficial. However,
it is still needed to know under what conditions the MPC problem is proven to be stable and what can be
done to design a stable MPC controller. In order to understand this first a look needs to be taken at the
infinite horizon MPC problem. After this, it will be explained how modifications to the MPC problem can
be used to enforce stability.

Infinite Horizon Problem An unconstrained MPC problem for a stable linear system and most importantly,
with an infinite prediction horizon, always has guaranteed closed-loop asymptotic stability if it has a quadratic
cost function with positive definite, symmetric weighting matrices [7][p. 19-20]. Let’s say now the linear
system is unstable, the system {𝐴, 𝐵} has to be stabilizable in order to guarantee stability for the closed-loop
infinite horizon problem [59]. Hence, under these conditions, an MPC controller with an infinite horizon
can always bring the state to the equilibrium point in a finite number of steps. Proof for this theorem is
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constructed based on the backward Riccati iteration which is a backward dynamic programming technique
used for solving linear quadratic control problems which exploits the recursive or multistage property of the
objective function. However, when the MPC problem does not have an infinite prediction horizon the closed-
loop system can become unstable. The smaller the prediction horizon the sooner the closed-loop system
goes unstable. This is the reason why, when designing the MPC controller enlarging the prediction horizon
stabilizes the controller.

Stabilizing Modifications As finite horizons are highly desirable for computational reasons, a stability
proof for finite horizons needs to be found. Similarly, if constraints are added to the infinite horizon problem
or if the prediction model is nonlinear, the stability proof does not hold anymore resulting in a possibly
unstable closed-loop problem. Therefore, ways have been found to enforce the MPC problem to still have
asymptotically stability. Namely, if for a certain MPC problem the objective function is not a Lyapunov
function then, by bringing modifications to the objective function or constraints, a Lyapunov function can
be created.

The modifications and assumptions to the MPC problem that are required for stability are specific to the
type of problem: infinite or finite horizon, linear or nonlinear model, stable or unstable model, type of terms
in the objective function, constrained or unconstrained problem, etc [46]. The most important examples of
stabilizing modifications are adding a terminal penalty term in the objective function or adding an ’artificial’
terminal state constraint in order to force the objective function to decrease over the prediction horizon.
The terminal penalty serves to penalize the error at the end of the prediction horizon more than the stage
error whereas the terminal constraint ensures that the final state, at 𝑁, is in the given terminal set 𝕏፟.
Many research has been performed on stability proofs for various types of MPC problems. For linear MPC
the stability proofs are well established [60] [59]. Whereas for nonlinear MPC the theoretical proofs are
commonly too complex to implement in practice [61] [62].

In practice, these stability proofs are not often implemented. Instead, use is made of proper tuning of the
prediction horizon, weights and other tuning parameters. In this way, the controller is not proven to be
guaranteed to stabilize the state for all initial points but it is still stable for the conditions that are tuned for.
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Model Predictive Control for

Helicopters

This chapter will elaborate on the application of MPC to helicopters by firstly specifying the advantages
and disadvantages of applying MPC specifically to helicopters. Then, previous research on MPC applied to
helicopters will be discussed with the focus on differences and similarities in the objective of the MPC, the
application to a helicopter in simulation or to an Unmanned Aerial Vehicle (UAV) in simulation and/or in
test, the use of linear or nonlinear MPC, the model fidelity used for the prediction model, the algorithm used
for calculating the optimal control input and the application of stability proofs.

4.1. Advantages and Disadvantages
Conventional controllers such as Proportional Integral and Differential (PID) and Linear Quadratic Regulator
(LQR) control are in general not suitable for helicopter control as the dynamics of the system is highly
nonlinear and many cross-couplings between the states exist. In order to make clear that MPC is an excellent
technique for controlling a helicopter, that is able to deal with the complications PID and LQR control cannot
deal with, the advantages and disadvantages of applying MPC to a system such as a helicopter are listed.

Advantages The MPC controller is capable of:

• Enabling multivariate control with similar complexity as single variable control.

• Directly dealing with technical specification in the control algorithm through hard and soft constraints
on inputs, states and outputs such as actuator limits, safety boundaries, performance bounds etc.

• Having optimized open-loop performance as specified by the customized objective function.

• Explicit specification of the objective function corresponding to the actual objective of the mission.
This enables the ability to combine the guidance step and flight control step in controlling a helicopter
by optimizing for the guidance objective computing directly the control inputs while taking into account
input and output constraints which is not possible when separating the two steps.

• Taking advantage of future information of the system and trajectory enabling to deal with time delays
and non-minimum phase behaviour present in rotor and inflow dynamics and anticipate on future
events such as obstacles, turns, approaching a state constraint etc.

• Handling measured and unmeasured disturbances and modelling uncertainties such as wind gusts and
parameter variances by means of recalculating the open-loop optimization problem every control step
based on the new state feedback and by implementing robust and stochastic MPC.

• Enabling simple reconfigurability of tuning parameters, model type, model parameters, objective func-
tion etc.

47
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• Allowing for flexible control architectures such as distributed, decentralized and hierarchical control
for large scale systems e.g. formation flight. Similarly, the MPC can be used in an architecture in
combination with another controller for instance a low-level conventional controller and a high-level
MPC controller or for instance having the MPC computing input limits that are then fed to the actual
flight control block.

Disadvantages The MPC controller comes with:

• A heavy computational burden due to the time consuming optimization process.

• No integral control directly included as integral action is not necessarily optimal but sometimes needed
to eliminate a steady state offset that might occur in disturbance rejection.

• Complex artificial end constraints or end penalties which are needed in order to guarantee stability
regardless of the tuning parameters.

• No systematic tuning method for tuning for stability.

As the helicopter is a multivariate, highly nonlinear system with time delays subjected to disturbances
and restricted by physical and safety limits, the MPC control technique is highly suitable to implement
[12]. Furthermore, as microprocessors technology and optimization algorithms are constantly advancing, the
computational burden that comes with MPC can eventually be mitigated.

4.2. Previous Research
As can be seen from all the advantages of MPC in the previous section, applying MPC to helicopters can
be very fortunate. Therefore, research has been performed on applying MPC to helicopters or small-scaled
helicopters in the last 20 years and is still being researched. However, no examples of MPC operating on a
helicopter in flight could be found. To get an overview of the research performed on the application of MPC
to helicopters a chronological list of 34 papers and its characteristics is made in Table 4.1. Here, a distinction
is made between papers using nonlinear MPC or linear MPC and papers applying MPC to a helicopter model
or to a model of a small-scaled unmanned helicopter also referred to as UAV. Furthermore, it is checked
whether the paper tested the controller not only in simulation but also experimentally. Lastly, the objective
or task of the controller is noted where TT stands for Tracking Task. The characteristics of these papers
mentioned in the table and the content of some interesting papers will be discussed in this section.

4.2.1. Objective
The amount of papers performing a tracking task is remarkable. No less than 72% of the papers investigated
used MPC to track a reference trajectory. On one hand, this is logical as MPC is a very suitable control
technique for reference tracking. On the other hand, it is a pity to only utilize MPC for this straightforward
task as MPC is capable of fulfilling and optimizing much more advanced objectives. As some reference
tracking papers command the helicopter or UAV to fly a certain maneuver such as a turn, landing or fly a
square pattern while maintaining heading, other papers give step or sine inputs to certain states such as the
velocity or position. Next, some trajectory tracking papers and some papers with more diverse objectives
will be discussed.

Tracking Task Objectives From the tracking task papers in Table 4.1 two types of tracking tasks can be
distinguished: tracking a maneuver and tracking a signal. The papers tracking a maneuver aim at testing
the MPC for a specific mission or for a specific acrobatic movement with many cross couplings. Types of
maneuvers tested are for example helical turns, pull-up/pull-overs, following a square in x- and y-position
maintaining the same heading, flying a pirouette, flying an eight shape, etc. For example, the pirouette
maneuver performed by Liu et al. (2012), where the helicopter flies a straight line while continuously changing
its heading at 120∘/s, aims to test the MPC to dynamics subject to the lateral-longitudinal coupling [63].
The MPC controller was able to track this complex maneuver with high quality. Furthermore, the square
maneuver performed by Liu et al. (2010) tests the helicopters ability to fly forward/backward and sideways
[64]. Here, flying the square trajectory was performed within 10 cm of the reference trajectory.
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Other maneuvers tested in these papers included some of the ADS-33 Mission-Task-Elements such as
hovering to ensure the MPC can keep the helicopter stable or pull-up/pull-over maneuvers to simulate avoid-
ing and obstacle on ground [65], [50]. Sultan and Oktay (2012) even tracked a discontinuous maneuver
[66]. A helical and banked turn were performed by tracking a roll angle of -0.1 rad in the beginning, a
discontinuity of ± 2 seconds and then a roll angle of 0.1 rad, starting at an initial condition of 0 rad roll
angle. Meanwhile, the pitch and yaw angle of the helicopter needed to remain constant. It could be seen
from simulations that even though the trajectory was discontinuous, very good tracking was achieved.

Several papers did not track a certain maneuver but tracked a certain signal in one degree of freedom and
kept the other state parameters constant in order to test the controller. Dutka et al. (2003) tracked a step in
pitch angle from 0.25 rad to 0.4 rad and 0.7 rad while maintaining constant heading [67]. With nonlinear MPC
the tracking performance was very accurate and fast. Gulan et al. (2019) tracked a trajectory of multiple set
points in pitch and in yaw while maintaining constant attitude [68]. They compared the response of the MPC
controller to linear quadratic control and concluded that overall MPC has good tracking performance and
a lower tracking error than the linear quadratic regulator. Mehndiratta et al. (2018) tracked a square-like
signal of 0.03 Hz and a sinusoidal signal of 0.05 Hz in order to test the MPC controller [69]. For both
signals, the tracking error was very small as well.

When evaluating the tracking performance of MPC, not only the tracking error can be evaluated but also
its performance when subjected to disturbances, model and process noise or model uncertainties. By means
of using robust MPC [70], adding a Kalman filters [69], implementing a disturbance observer [63], etc. the
MPC can cope with these disturbances.

Other Objectives The few papers that did use MPC for other purposes than reference tracking had as
objective for example to autonomously fly in autorotation mode and to avoid objects during a certain tra-
jectory or to limit vibrational loads in the pitch link. Hereby, these papers are exploiting the power of the
objective function of this optimal control technique. It can be noticed that some of these papers used MPC
as main controller and therefore combined the guidance task and flight control task. However, other papers
used MPC only for the guidance task and fed that information to another flight control system. Firstly, the
papers using MPC as main controller will be discussed.

Chung and Sastry (2006) for example designed a distributed MPC controller in order to autonomously
fly a team of helicopters in formation [54]. Here, distributed MPC is a form of MPC that can be applied to
several or different system that have interacting dynamics. In this case, the interaction of one helicopter in
the formation to the others expresses itself in the relative position to each other that needs to be maintained.
First, they designed an MPC for an individual helicopter, gaining stability by adding a terminal cost. Next,
inter-vehicle coupling terms were added to the objective function consisting of gap errors between the heli-
copter in question and the other helicopters in the formation. Minimization of these gap errors is performed
by means of a constant gap or varying gap strategy. This method was then applied in a decentralized manner
meaning that each helicopter has a local MPC controller which communicates with the other helicopters by
sending its spatial positions. When testing the designed controller in simulation for 8 helicopters in echelon
formation, the controller was able to successfully damp out the applied external disturbances.

Dalamagkidis et al. (2011) controlled the collective pitch angle with an MPC controller in order to
autonomously autorotate and safely land [71]. To be clear, autorotation is a state in helicopter flight when a
steady rate of descent is maintained by using the air flow through the rotor disk to rotate the main rotor as
opposed to driving the main rotor. Autorotation is mainly used in emergency situations such as engine fail-
ures. Dalamagkidis et al. used a simplified vertical autorotation model in order to predict the helicopter sink
rate. As they applied the controller to a small scaled unmanned helicopter, the primary goal of the autoro-
tation controller was to minimize the kinetic energy near ground such that impact with possible bystanders
won’t cause fatalities. Therefore, a smart objective function was defined penalizing sink rates with a weight
depending on the height of the helicopter. At the final stage of descent a penalty is given when the sink rate
is higher than 125% of the altitude. This objective function ensures that the kinetic energy in the last 2.5 m
of descent remains below 15 J for a helicopter of 3 kg. When implementing this optimization scheme, the
optimal collective input can be computed in order to protect bystanders and safely land. Again, this is an ex-
ample of utilizing the power of the objective function in order to combine the guidance and flight control task.

Three of the investigated papers didn’t use MPC as the main controller but applied it to perform only
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a guidance task. Then, it was implemented as a part of the control architecture where the MPC calculates
control input limits that will then be fed to the actual flight control system or pilot. Hence, the MPC only
calculates certain control input boundaries whereas the actual control inputs are provided by a pilot or a
different controller.

For example, Mballo and Prasad (2019) used MPC to calculate the control input boundaries such that a
previously determined limit load of the pitch link is not exceeded. The MPC algorithm then uses a structural
model in order to predict the loads in the pitch link. The input boundaries calculated with the MPC
algorithm were then used as an input to a Dynamic Inversion control block designed to perform manoeuvres
[49]. Through attitude command and rate command simulations, the ability to limit the pitch link load and
the direct effect on the maneuver performance was evaluated. An 80% reduction in limit exceedance was
achieved when implementing the load limiting control. However, it could be seen that the actual pitch link
load exceeds the limit load slightly at some points which can be explained by the mismatch between the
prediction model used in the MPC algorithm and the actual loads in simulation. Furthermore it was seen
that constraining the control inputs to the computed input boundaries limits the maneuver aggressiveness.
Hence, the desired attitude was reached with a delay of about 7 seconds compared to the simulation without
load limits for both the rate and attitude command tasks.

Similarly, Bottasso and Montinari (2015) calculated the control input limits corresponding to the flight
envelope boundary [50]. They were calculated online by minimizing the difference between the actual state
and the state at the flight envelope boundary. These control input boundaries were then fed to the pilot
and flight control system. The limit parameter to optimize for was chosen to be the hub moment resultant.
Hence, the critical control input corresponding to a maximum hub moment resultant was calculated at each
instant in the simulation. This algorithm was tested for a pull-up/pull-over, a terrain avoidance and an
acceleration/deceleration maneuver. Results showed that, when no mismatch between the MPC model and
simulation model is present, the actual hub moment never exceeds the maximum hub moment.

Furthermore, Greer and Sultan (2019) created a landing envelope for landing on the deck of a ship
accounting for average velocity of the helicopter and landing time [72]. The MPC used models for the
helicopter dynamics, the ship motion and the ship induced air wake. The envelope was created by minimizing
a landing tracking error for varying average approach velocity and varying set time to land. The closed-loop
tracking errors found for these settings were than mapped onto the landing envelope. By determining a
maximum tracking error, the maximum average velocity for a certain landing time can be determined. This
landing envelope could then be forwarded to a pilot or to the flight control system.

4.2.2. Helicopter or UAV
It can be noticed from Table 4.1 that the MPC is either being applied to a helicopter or to a small-scaled
unmanned helicopter. In some cases such as [68], [67] and [69], the system was a setup of a mechanical
device with rotors with limited degrees of freedom in order to reduce the complexity of the system and
controller. This setup was also indicated as UAV in the table despite it not being a flying vehicle. For
example, Dutka et al. (2003) and Mehndiratta et al. (2018) used a 2 Degrees of Freedom experimental set
up with rotors with angular freedom in pitch and yaw [67], [69]. Using this set-up, they could test if MPC
was able to stabilize this unstable, helicopter-like system. In both cases, the tracking performance of the
MPC controller was good and the controller was able to stabilize the system when a tracking set point in
pitch or yaw was commanded.

Using a small-scaled helicopter as system has the big advantage of enabling flight testing of the developed
controller. Out of the papers using a UAV as system, 60% was experimentally tested in a flight test of which
all of them showed the desired performance. Frye et al. (2005) tested MPC using a Thunder Tiger Raptor
50 V2 remote controlled helicopter [65]. They subjected the small-scaled helicopter of less than 5 kg to
out-of-trim flight conditions and used MPC to return to a stable trim condition. The UAV was able to
transition from forward flight (𝑢 = 20, 𝑤 = 0, 𝑞 = 0, and 𝜃 = 0) to hover within 1.25 sec and from vertical
flight (𝑢 = 0, 𝑤 =-50, 𝑞 = -3, and 𝜃 = 0) to hover within 1.70 seconds. The lateral dynamics was tested
by going from state 𝑣 = 10, 𝑝 = 4, 𝜙 = 0, and 𝑟 = 10 to the trim which was done within 2.09 sec.

Liu et al. (2012) performed a climb, hovering and perturbation test using a Trex-250 miniature helicopter
[63]. The MPC algorithm augmented with a disturbance observer was able to take-off, climb 0.5 meter hover
and then hover with a frontal wind gust of 3 m/s with only minimal deviation in position and attitude. A
second flight test was performed, flying the extremely challenging pirouette maneuver as discussed in Section
4.2.1. Again the MPC controller tracked the trajectory very well.

Unfortunately, the papers applying MPC to a helicopter were not able to experimentally verify their
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simulation results. In fact, no papers could be found testing MPC applied to helicopter in a flight test.

4.2.3. Linear or Nonlinear MPC
Nonlinear and linear MPC are used an almost equal amount of times in the investigated literature (60%
linear, 40% nonlinear). Linear MPC is mainly used for flight scenarios which can be approximated well by a
linear model whereas nonlinear MPC is used when the maneuver includes large deviations from the linearized
model. However, it is unclear how large these deviations are allowed to go in order to still have a well
performing MPC. The deviations are mainly large when highly nonlinear behaviour is present and/or when
the flight conditions differ significantly from the linearization point.

Figure 4.1: Comparison between GPC (LMPC) and NLMPC for a set-point of 0.4 rad in elevation [67].

Dutka et al. (2003) illustrated that last point in a 2 DOF helicopter simulation in pitch and yaw [67].
While remaining a constant yaw angle, the MPC controller was set to track a step in pitch first from 0.25 rad
to 0.4 rad and then from 0.25 rad to 0.7 rad. For comparison, both a nonlinear and linear MPC controller
was used to track this trajectory. Here, the linear MPC controller uses a linearized model around the set
point trim conditions (so around 0.4 rad for the first case and around 0.7 rad for the second case). The
tracking performance of the nonlinear MPC in the first case was remarkably better than the linear MPC as
can be seen in Figure 4.1. The linear MPC was not only slower but also had a big overshoot. Furthermore,
a steady state offset was present in the simulation with the linear MPC. This offset is present due to the
mismatch between the linear model and nonlinear dynamics. In the second simulation with a step in pitch to
0.7 rad, the mismatch between linear model and nonlinear dynamics became too big in order to still have a
stable controller. Hence, no tracking of the step trajectory could be achieved using the linear MPC controller.
The nonlinear MPC however did track the step to 0.7 rad in pitch with no overshoot and while maintaining
a constant yaw angle. Hence, when the mismatch between nonlinear and linear model is too large because
of a large deviation in flight condition or because of highly nonlinear behaviour, nonlinear MPC yields much
better and more stable tracking performance than linear MPC.

In order to reduce the mismatch in the linear MPC model, the linearization can be updated once a flight
condition further away from the original linearization trim point is reached. Then, the nonlinear model is
again linearized but for the new flight condition. Yujia et al. (2010) applied this successive linearization
or linear model stitching technique to a 3 DOF simulation in order to improve the model throughout the
simulation. They updated the linearization every few steps in the simulation around the new flight conditions
[73]. They found that for tracking a doublet of 20 degrees in pitch and in yaw angle, the tracking error was
much less when successively linearizing the model compared to linearizing the model once around the initial
trim point. However, using successive linearization comes with the drawback of increasing the computation
time immensely. Therefore, Frye et al. (2005) used an offline data set of linear models linearized around
different flight conditions all over the flight envelope [65]. In this way they could eliminate the computation
time needed for online successive linearization, yet still improving the model over the full flight envelope.

Instead of updating the linear model, the mismatch can also be accounted for by implementing a compen-
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sation term. Bottasso et al. (2015) and Avanzini et al. (2013) found a way to implement this compensation
by including the mismatch of the previous time step into the desired trajectory to track [50], [74]. Hence,
the tracking trajectory 𝑟፤ዄ። is adjusted by proportionally adding the model mismatch compensation term 𝜖፤
as can be seen in Equation 4.1.

𝑟∗፤ዄ። = 𝑟፤ዄ። + 𝐾 ⋅ 𝜖፤ for 𝑖 = 1, 2, … , 𝑁
𝜖፤ = 𝑥፤ − 𝑟፤

(4.1)

Here, 𝜖፤ is computed by subtracting the reference trajectory from the the state computed with the actual
nonlinear dynamics for the current time step 𝑘. Hence, the mismatch term has a delay of one sample time.
The mismatch feedback gain 𝐾 can then be tuned to a value going from 0 to 1 where Bottasso et al. chose
a 𝐾 of 1, Avanzini et al. picked a 𝐾 of 0.3. It could be seen from simulations that implementing this
compensation term improved the tracking performance of the linear MPC controller.

Table 4.1: Overview and characteristics of papers which apply MPC to helicopters.

Paper Year Nonlinear Linear UAV Heli Flight Tested Objective
Bogdanov et al. [75] 2001 X X TT
Kim et al. [76] 2002 X X TT
Dutka et al. [67] 2003 X X TT
Frye et al. [65] 2005 X X TT
Chung and Sastry [54] 2006 X X Formation
Bottasso and Reviello [77] 2006 X TT
Molenaar [78] 2007 X X TT
Witt et al. [79] 2007 X X X TT
Du et al. [80] 2008 X X X TT
Maia and Galvao [70] 2008 X X X TT
Saffarian and Fahimi [81] 2009 X X Formation
Yujia et al. [73] 2010 X X TT
Liu et al. [64] 2010 X X TT
Dalamagkidis et al. [71] 2011 X X Autorotation
Liu et al. [82] 2011 X X X TT
Joelianto et al. [83] 2011 X X TT
Oktay and Sultan [66] 2012 X X TT
Samal et al. [84] 2012 X X TT
Shipman [85] 2012 X X TT
Guerreiro et al. [86] 2012 X X Object avoidance
Liu et al. [63] 2012 X X X TT
Song et al. [87] 2013 X X X TT
Kunz et al. [88] 2013 X X X TT
Avanzini et al. [74] 2013 X X TT
Salmah et al. [89] 2013 X X Object avoidance
Huck et al. [90] 2014 X X X Formation
Bottasso et al. [50] 2015 X X Envelope limit
Greer and Sultan [72] 2016 X X Envelope limit
Ramalakshmi et al. [91] 2016 X X X TT
Ngo and Sultan [92] 2016 X X TT
Zhong et al. [93] 2016 X X TT
Mehndiratta et al. [69] 2018 X X TT
Mballo and Prasad [49] 2019 X Load limit
Gulan et al. [68] 2019 X X X TT
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4.2.4. Model Fidelity
The type and fidelity of model used in these papers can go from a 1 DOF model to a 22 DOF model
with complex rotor dynamics dynamics to sometimes even using strategies to compensate for model errors.
However, all models used in these papers can be classified as level I models according to Padfiel (1988)
[94]. More detailed models could become unnecessarily complex for the MPC scheme as they slow down the
computation time and do not necessarily improve the control performance. Samal et al. (2012) for example
used a 1 DOF simplified heave model to track a stair trajectory and compared the performance of using an
online with an offline determined model where the online model performed significantly better when noise
and parameter variation are present. Three other papers used 2 DOF models and three more papers used 3
DOF models. Mostly, full 6 DOF models were used with some papers having a higher fidelity model than
others. Oktay and Sultan (2012) for instance used a very detailed model that considered fuselage equations
of motion, blade flapping and lagging dynamics, blade flexibility and static main rotor downwash to track a
banked turn and helical turn [66].

4.2.5. MPC Algorithm
It can be seen that the recent trends in the MPC algorithm, explicit, robust and hybrid MPC, are also being
applied to helicopters. Since helicopters are very fast dynamical systems, applying explicit MPC can make
real-time application possible as illustrated by Liu et al. (2012) for nonlinear MPC [63]. Liu et al. proved in
simulation and experimentally that the explicit optimization scheme for the nonlinear MPC algorithm is 10
times faster than the optimization scheme using a non-convex solver, reaching a control bandwidth of 50 Hz
compared to 5 Hz. Furthermore, robust MPC is needed in helicopters when uncertainties and disturbances
come into play such as wind gusts, unmodeled phenomena or model parameter variances. For example, Maia
and Galvao (2008) applied robust MPC to a 3 DOF helicopter model and showed that in the presence of
disturbances to the states the robust MPC algorithm succeeds at meeting the safety and physical constraints
whereas the nominal MPC algorithm doesn’t [70]. Furthermore, hybrid MPC was used on a helicopter in the
paper of Salmah et al. (2013) in order to solve the object avoidance problem by formulating it in a piecewise
affine model [89].

Another trend found in the application of MPC to helicopter is the use of neural networks in the MPC
algorithm [71], [75] or in the model identification [77], [84]. At least five of the papers investigated in this
section made use of neural networks in order to speed up the optimization process and to obtain online and
offline models.

4.2.6. Stability Proofs
Out of all the papers investigated only very few papers focused or even included a proof for stability of the
closed-loop MPC algorithm. This proves that in practise the artificial end constraints and end penalties are
barely implemented. Instead, the controller is tuned by changing the prediction horizon and weights in order
to affect the stability of the closed-loop system.

4.2.7. Conclusion
In conclusion it can be said that the previous work applying MPC to helicopters is at an early stage testing
the controller mainly in simulation or in flight tests of small-scaled helicopters or limited DOF test set-ups.
The previous research mainly focused on tracking reference trajectories for which the tracking performance
is very good. Both linear and nonlinear MPC are used for the application of MPC to helicopters where the
performance of the linear MPC controller could be improved by means of applying successive linearization,
using an offline linear model database or by implementing a model mismatch compensation term. Nonethe-
less, MPC is showing promising results in terms of optimizing (tracking) performance and robustness for
reference tracking and has the capabilities of achieving much more.





5
Conclusion of the Literature Review

In conclusion, this literature review analyzes and summarizes the basic concepts and previous research on
the application of Model Predictive Control to helicopters. The topics of helicopter dynamics, stability and
handling qualities, MPC theory and MPC applied to helicopters were covered.

Firstly, an 8 DOF longitudinal model was investigated in order to investigate the complex and nonlinear
dynamics and stability of the helicopter. It was concluded that the helicopter is a complex, fast and unstable
dynamical system with many nonlinearities, cross-coupling effects and time delays. Therefore, controlling a
helicopter can be a challenging task. In order to improve the handling qualities of the helicopter, a subjective
and objective assessment of handling qualities was established in the ADS-33 document which could be used
as a guideline for desired flight behaviour when designing the helicopter and its flight control systems

Secondly, the concept of MPC was explained together with a word on its history and previous research,
and an evaluation of its components and their pitfalls and capabilities was conducted. It was found that
MPC is an optimal control technique with the powerful capabilities of including input and output constraints
and an objective function directly in the control algorithm. Therefore, physical, safety and performance
limits and mission objectives can be directly taken into account. This enables the flight control system to
simultaneously find the optimal trajectory, based on the defined objective, and control inputs corresponding
to the optimal trajectory. Furthermore, it was found that MPC has the advantage of being able to take into
account future information of the system and the environment. This allows MPC to deal efficiently with
time delays, non-minimum phase behaviour and to anticipate on future events.

On the other hand it was found that the optimization process in MPC brings along a big computational
burden. Even though optimization methods and computer power are rapidly improving, the real time ap-
plication of MPC to fast dynamic systems is still in development. Furthermore, when the theoretical and
unpractical Lyapunov stability modifications are not implemented to the MPC problem, the MPC problem
has to be stabilized by means of tuning. This can be time consuming and requires expertise as no struc-
tured tuning approach exists. Especially for nonlinear MPC, the computational burden and stability matter
can become critical. Moreover, a nonlinear prediction model brings with it that the optimization becomes
non-convex. A non-convex optimization has multiple local optima which can cause suboptimality to the final
control input found, degrading the closed-loop performance.

Next, it was noticed that the research performed in the past 20 years on MPC applied to helicopters is
still at an early stage. Mainly tracking tasks are being performed and the algorithm is mainly being tested
in simulation and sometimes in flight tests with UAVs. Both linear and nonlinear MPC are being used
on helicopters in previous research. Nonetheless, MPC is showing promising results in terms of optimizing
(tracking) performance and robustness for reference tracking and has the capabilities of achieving much more.

In short, it was found that helicopters are difficult to control because of nonlinearities and cross-couplings.
However, the rather new optimal and model-based control technique of MPC offers great opportunities to
improve helicopter flight control and handling qualities.
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6
Problem Definition

This chapter will introduce the research gap that comes forward from the literature review and explain how
this gap will be bridged in the thesis work. Furthermore, the research objective with research questions that
will be covered in the thesis work will be presented. Finally, the approach to fulfill this research objective
and obtain an answer to the research questions will be discussed.

6.1. Research Gap
The research gap in helicopter and MPC control theory will be made clear in this section in terms of helicopter
flight control, model predictive control capabilities and the research on MPC applied to helicopters.

Helicopter Helicopters have been designed to have extreme maneuverability in low and high speed flight
and to have hover and vertical take-off and landing capabilities. However, this comes with the fact that they
are very difficult to control as a pilot as the helicopter is an inherently unstable system with fast, nonlinear
dynamics with many cross-coupling effects. Even though the first helicopter was produced already in 1936,
it is to this date that helicopters are hard to control and are not accessible to the general public. In 1990,
a definition and requirements were set up for handling qualities of a helicopter in order to measure the ease
for a pilot to fly a helicopter. It was and is still used as a design standard and guidance for helicopter and
flight control design.

With the introduction of flight control systems and fly-by-wire in helicopters in the 90’s-00’s, the flying
characteristics of the helicopter could be adjusted to the pilot’s needs and make the helicopter easier to
fly. This could be achieved by means of stabilizing the helicopter whilst still having maneuverability e.g.
automating hands-free hover or decoupling the controls [95]. Hence, a fly-by-wire flight control system could
be used to achieve good handling qualities. Nevertheless, to this day achieving level I handling qualities,
which indicates minimal pilot workload and desired aircraft characteristics, remains a major challenge in
helicopter and flight control design [35].

MPC It was found in Section 3 that MPC is a promising optimal control technique with the powerful
capabilities of including input and output constraints and an objective function directly in the control algo-
rithm. This enables MPC to directly take into account technical specifications such as physical, safety and
performance limits in the control algorithm and to explicitly specify an objective function corresponding to
the actual objective of the mission. Furthermore, MPC has the advantage of being able to take into account
future information of the system and the environment. This allows MPC to deal efficiently with time delays,
non-minimum phase behaviour and to anticipate on future events. Because of these numerous advantages,
MPC, which was initially used in industrial processes, is expanding to much broader applications including
in the aerospace industry. Still, one of the major disadvantages of MPC is its computational burden in
online applications, especially when applied to systems with rapidly varying and/or nonlinear dynamics such
as helicopters. However, with rapidly improving optimization methods and computational power MPC is
becoming more interesting to be used in flight control systems of helicopters.
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MPC for Helicopters It was shown from previous research in Section 4 that MPC is a suitable control
technique for the helicopter with its fast, nonlinear and complex dynamics, offering lots of possibilities.
Excellent tracking performance can be achieved when applying MPC to helicopters, tested by numerous
papers in simulation and in flight tests with UAV’s. Other objectives such as formation flying, object
avoidance, etc. have also been investigated by previous research. However, it was noticed that the research
on MPC used for helicopter flight control is still at an early stage with respect to the application in flight
tests and real-time application. With MPC already being used for helicopter flight control in early stage
researches, it can now be investigated how MPC can be used to improve helicopter handling qualities.

6.2. Research Objective & Questions
It can be seen that there is a clear need for helicopters to reach level I handling qualities such that they
will be easier to fly and maneuver. One of the biggest reasons it is so hard to fly a helicopter is because of
the many cross-coupling effects in the dynamics. Therefore, this is also a big aspect in the handling quality
requirements specified in the ADS-33. With MPC having numerous advantages and making its way into the
aerospace industry, it is being applied to helicopter in multiple researches for tracking trajectories and other
tasks such as formation flying, object avoidance, etc. In this research, it will be investigated how MPC can
be used for helicopter flight control to reduce cross-coupling effects and achieve better handling qualities.
Therefore, the objective of this research is:

to investigate whether linear and nonlinear MPC are suitable for online application to helicopters to re-
duce cross-coupling effects by evaluating its performance on the cross-coupling handling quality requirements
of the ADS-33 document.

From the research objective, research questions have been derived such that when an answer is given to
these research questions, the objective is fulfilled. The research questions consist out of a main question
with various sub-questions and are presented below.

• Are linear and nonlinear MPC suitable to apply to helicopters to reduce cross-coupling effects?

1. How well can linear and nonlinear MPC reduce cross-coupling effects in helicopters:
(a) on the handling qualities rating scale?
(b) compared to an uncontrolled helicopter?
(c) compared to a conventional controller?

2. How sensitive are the linear and nonlinear MPC controllers to disturbances to the helicopter when
reducing cross-couplings?

3. How sensitive are the linear and nonlinear MPC controllers to prediction model errors when
reducing cross-couplings?
(a) Which parts of the prediction model need to be accurate in order to still have level I handling

qualities?
(b) How large can the model error go in order to still have level I handling qualities?

4. What are the similarities and differences between linear and nonlinear MPC applied to helicopters
for reducing cross-couplings:
(a) in terms of reducing cross-coupling effects?
(b) in terms of optimization
(c) in terms of computational speed?
(d) in terms of model fidelity?

6.3. Research Approach
In this thesis work it will be investigated if linear and nonlinear MPC are suitable to reduce the cross-couplings
in helicopters. The effectiveness of MPC to reduce cross-coupling effects in helicopters will be investigated
by evaluating its performance in simulation on the cross-coupling requirements of the ADS-33 document for
hover and forward flight for a nonlinear helicopter simulation model with and without an uncertainty added
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to it. Here, the objective of the MPC will be to minimize the off-axis responses when simulating a step in the
on-axis control input. The helicopter without controller and the helicopter with PID controller will be tested
as well for the cross-coupling requirements in order to compare the performance of the MPC controllers with
them. In addition, the robustness or sensitivity of MPC to prediction model mismatches will be investigated
by evaluating the decoupling performance of the MPC controller when an error is added to certain parts
in the prediction model. Furthermore, any theoretical differences between the linear and nonlinear MPC
controller will be addressed and performance differences in the simulations will be investigated.





7
The Simulation Set-up

This chapter discusses the set-up of the cross-coupling simulations and sensitivity analysis simulations that
will be performed for the thesis work in Chapter 8. All the simulations will be performed in Matlab 2020b.
First of all, the simulation model configurations will be discussed. Here, the linearization of the nonlinear
model presented in Section 2.2 will be explained and verified after which the uncertainty in the nonlinear
simulation model will be introduced. Next, the MPC controller set-up will be thoroughly explained in terms
of its objective function, constraints, tuning parameters and weights, etc. Finally, the PID controller that is
used to compare the MPC controller with will be presented.

7.1. Simulation Model Configurations
First, an overview of the model configurations used in the MPC simulations will be given in this section.
After this overview, the linearization of the nonlinear helicopter dynamics will be explained more thoroughly.
Thereafter, the linear model will be verified by comparing its response to the response of the nonlinear model.
Finally, a word is held on why and how the uncertainty is added to the nonlinear simulation model in the
cross-coupling simulations.

7.1.1. Overview
The simulation model is the model that represents the actual helicopter as close as possible whereas the
prediction model is the model used by the MPC algorithm to predict the helicopter’s future state as good as
possible whilst still having a reasonable computation time. Therefore, it is logical to use the 8 DOF nonlinear
model from Section 2.2 as simulation model for the cross-coupling simulations as it has the highest fidelity.
It is ran at 100 Hz, so the simulation has a sampling time of 0.01 s. In order to evaluate and compare
the performance of nonlinear and linear MPC, both the nonlinear and linear model are going to be used as
prediction model. However, the nonlinear model is then exactly the same as the simulation model hence
the NLMPC will perform ’perfectly’. In order to be able to compare the nonlinear MPC controller with the
linear MPC controller without the bias of the nonlinear MPC having a perfect prediction, an uncertainty is
added to the simulation model. In this way, not only the comparison can be done unbiased but also the
simulation model includes more realistic behaviour of the helicopter. More on this uncertainty that is added
to the nonlinear simulation model can be found in Section 7.1.4.

The goal of the sensitivity analysis simulations is to check how robust the MPC controller is to mis-
matches and errors in the prediction model when trying to reduce cross-couplings. Hence, an error has to be
implemented in the prediction model. When it is implemented to the linear model it can be implemented in
a very structured manner by applying an error to one of derivatives in the state and input matrix. Therefore,
it was chosen to use the linear model as prediction model and to reduce the model mismatch between sim-
ulation model and prediction model, the linear model was used as simulation model as well. How the error
is implemented in the linear prediction model will be explained in Section 9.1.

An overview of the models used as simulation model and prediction model for the cross-coupling simu-
lations and the sensitivity analysis can be found in Figure 7.1.
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Figure 7.1: Overview of simulation and prediction model set-up for the cross-coupling and sensitivity analysis simulations.

7.1.2. Linearization
The linear model of the system used to predict the future helicopter state in linear MPC (Equation 7.2) can
be obtained by linearizing the nonlinear model (Equation 7.1) around a certain trim condition (𝑥ኺ, 𝑢ኺ). This
trim condition is dependant on the flight speed of the helicopter. The trim conditions around which will be
linearized in the simulations have a flight speed of V = 0 m/s and V = 41 m/s = 80 knots and can be
seen in Equation B.1 and B.2. The linear model then approximates the nonlinear model at and around this
trim condition as can be seen in Figure 7.2. The more the helicopter state deviates from the trim condition,
the worse the linear approximation will be. Also, the more nonlinear the helicopter behaves at this trim
condition, the worse the linear approximation will be.

�̇� = 𝑓(𝑥, 𝑢) (7.1)

𝛿�̇� = 𝐴𝛿𝑥 + 𝐵𝛿𝑢
with: 𝛿𝑥 = 𝑥 − 𝑥ኺ, 𝛿�̇� = �̇� − �̇�ኺ and 𝛿𝑢 = 𝑢 − 𝑢ኺ

(7.2)

Figure 7.2: Linear approximation ፋ(፱) of function ፟(፱) around trim point ፱  ፚ.

Accurate linearization can be obtained by using perturbation linearization [26][p. 563]. Hence, lineariza-
tion by perturbation was performed by means of numerically perturbing each state and input in trim with
a small number 𝛿 and calculating the differences in each state after one time step Δ𝑡. In this way, the
derivatives can be found and the state matrix 𝐴 and input matrix 𝐵 can be constructed. For example, the
derivative of �̇� with respect to 𝑤 can be found by applying Equation 7.3.

𝜕�̇�
𝜕𝑤 = �̇�፤ዄኻ − �̇�፤

Δ𝑡
with: 𝑤፤ዄኻ = 𝑤ኺ + 𝛿

(7.3)
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The simulations of this research are focused on the helicopter in hover and in forward flight. Therefore,
a linear model linearized around the trim point at 0 knots and around the trim point at 80 knots with
perturbation linearization are used. The state matrix 𝐴 and control matrix 𝐵 of the hover and forward flight
linear state-space models can be found in Appendix B in Equation B.3 and B.4 (hover) and Equation B.5 and
B.6 (forward flight) with state 𝑥 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜓 𝜃 𝜙 𝑥 𝑦 𝑧 𝜆ኺ 𝜆ኺᑥᑣ]ᖣ and controls 𝑢 = [𝜃ኺ 𝜃ኻ፬ 𝜃ኻ 𝜃ኺᑥᑣ]ᖣ.

7.1.3. Linear Model Verification
In order to verify the linear model, the response of the linear model is compared with the response of the
nonlinear model in a 5 second simulation where a doublet input of ±2 deg is given into one of the controls.
In this way, it can be checked if the states of the linear and nonlinear model over time follow a similar trend
and how much the state according to the linear model is deviating from the actual nonlinear state.

(a) Input in ᎕Ꮂ. (b) Input in ᎕Ꮃᑤ.

(c) Input in ᎕Ꮃᑔ. (d) Input in ᎕Ꮂᑥᑣ .

Figure 7.3: Response of the linear model (dashed line) compared to the nonlinear model (solid line) for a doublet input in one
of the controls during hover.

In Figure 7.3 the 5 second responses of the linear and nonlinear model during hover can be seen where
it is clear that, in general, the linear response follows the nonlinear response concerning position and Euler
angles. Especially in the beginning of the simulation, say within 3 seconds, the linear and nonlinear position
coordinates and Euler angles are more or less the same. Only after five seconds some differences in the
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trends of the linear model can be found. This can be explained by the accumulation of error over time as
the models only predict the change in state and build on to the previous state.

For example, the z-position response of the linear model in Figure 7.3 (b) after 5 seconds is deviating
about 2 meters from the nonlinear response. Furthermore, the linear model predicts that the helicopter is
descending whether the higher fidelity nonlinear model is actually ascending. It can also be seen for all four
simulations that there is a deviation in the yaw angle between the linear and nonlinear response of sometimes
up to 20 degrees after 5 seconds.

However, this kind of deviations are still not problematic as the linear model will only be used for
predictions in the MPC algorithm over the much shorter prediction horizon. Hence, the linear approximation
only has to be good over this very small time period. For the simulations in this research a prediction horizon
of 0.15 seconds is used. Yet, longer prediction horizons of for example a couple of seconds are also common.
In conclusion, it is expected that the linear model is sufficiently accurate in order to have similar performance
as the nonlinear MPC controller as long as the state doesn’t deviate too much from the trim state and the
prediction horizon is small.

7.1.4. Introducing the Uncertainty in the Simulation Model
As explained in the overview of the model configurations in Figure 7.1, an uncertainty was introduced
into the nonlinear model used as the simulation model for the cross-coupling simulations. The reason for
introducing this uncertainty was twofold. Firstly and most importantly, the error is introduced in order to
remove the positive bias of the nonlinear MPC performance. Secondly, the addition of the uncertainty into
the helicopter model adds more realistic dynamics as the uncertainty that is added acts as a disturbance to
the main rotor thrust. Without the uncertainty, the nonlinear MPC would have a perfect prediction model
which is unrealistic and makes it unfair to compare the nonlinear MPC with the linear MPC.

Furthermore, it was decided to introduce the uncertainty in the simulation model instead of in the
prediction model in order to keep the uncertainty the same, and hence comparable, for both the linear and
nonlinear model. This entails that there is also a disturbance introduced in the actual helicopter dynamics
which will be noticeable in the behavior of the helicopter but not unwanted.

𝐶ፓ = 𝐶ፓ ⋅ (1 + 𝜀(Δ𝑡)) (7.4)

(a) Probability density of a normal distribution with zero
mean and standard deviation  [96].

(b) A 5 second trial of the uncertainty ᎒ with   ኺ.ኼ over time.

Figure 7.4: Uncertainty probability density function and trial over time.

The uncertainty 𝜀 is introduced as a random variable with normal distribution 𝜀 ∼ 𝒩(𝜎, 0) with a
standard deviation of 𝜎 and zero mean as can be seen in Figure 7.4 (a) [97]. It is applied to the main rotor
thrust coefficient as the thrust force is the main aerodynamic force acting on the helicopter affecting the
motion in all degrees of freedom and is also very hard to predict so adding an uncertainty to it in the model
is realistic. It is applied according to Equation 7.4 so that 𝐶ፓ is being decreased or enlarged with 𝜀 times
itself. In this equation, the uncertainty varies with time so each simulation time step Δ𝑡 the uncertainty 𝜀
changes. As the uncertainty is randomly generated each time step, every simulation is different. Therefore,
a series of 6 simulations, called trials, are ran where the cross-coupling results are averaged.

For the simulations, a standard deviation of 𝜎 = 0.2 is chosen. Then, 68% of the generated uncertainties
will be within [−0.2, 0.2] and 95% will be within [−0.4, 0.4]. In Figure 7.4 (b), one can see a trial of
this randomly generated uncertainty over 5 seconds. Figure 7.5 compares the response of the helicopter
to a doublet input in 𝜃ኺᑥᑣ with and without this uncertainty. Here, it can be seen that the response with
uncertainty indeed shows jerky behaviour especially in 𝑉፳ and 𝑟. Furthermore, the disturbed response follows
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the same trend as the undisturbed helicopter and only deviates slightly from the original response. Hence, no
distinct differences between the two models are present while still having a certain variation. No accumulation
of error is present as the mean of the uncertainty is 0 and both positive and negative values can be generated.

Figure 7.5: Response of the helicopter to a doublet input in ᎕Ꮂᑥᑣ without uncertainty (solid line) compared with the response
of the helicopter with the uncertainty of Figure 7.4 (b) implemented in the dynamics (dash-dotted line).

7.2. The MPC Controller
This section presents the MPC controller used in the simulations and explains certain MPC design choices
that were made. Firstly, the objective function that will be minimized by the MPC controller will be stated.
Next, the constraints that are put on the control inputs will be presented. Furthermore, the optimization
method and initial value that is used will be explained. Then, the tuning parameters such as sampling time
and prediction horizon are defined. Finally, the complete MPC formulation is presented.

7.2.1. Objective
The goal of the controller in the cross-coupling requirement simulations is to reduce the off-axis response
when an on-axis input is given. In order to achieve this, the MPC controller is going to track a constant
trim reference signal for the off-axis responses only. Then, the objective of the MPC controller in the cross-
coupling requirement simulations is to minimize the error between the state and the reference signal for the
off-axis states. For example, if the requirement for pitch due to roll cross-coupling is being simulated, an
input is given in 𝜃ኻ in order to excite the roll angle. The pitch and yaw angle will be tracked whereas the
roll angle won’t be controlled. The reference trajectory of the pitch and yaw angle will be the trim value
of the respective angle. It must be noted that only the attitudes (𝜓, 𝜃, 𝜙) will be controlled and not the
angular rates (𝑝, 𝑞, 𝑟) or angular accelerations (�̇�, �̇�, �̇�). This would give steady-state offsets if no integral
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term would be added and it is only the attitude that is the direct state that needs to be controlled.

minimize
፮̄, ፱̄

ፍ

∑
።ኺ
{(𝑥፤ዄ። − 𝑟፤ዄኻ)

ᖣ 𝑄 (𝑥፤ዄ። − 𝑟፤ዄኻ)} (7.5)

A quadratic objective function was chosen to minimize the tracking error with weight 𝑄 and reference
trajectory 𝑟 as can be seen in Equation 7.5. On the other hand a quasi-linear objective function could have
been used such as |𝑥፤ዄ። − 𝑟፤ዄ።| 𝑄. This quasi-linear objective function in an MPC controller would yield
deadbeat control meaning that it forces the state to the reference state in the minimum amount of steps
possible. Hence, it is most optimal for tracking. However, this comes with the cost of aggressive control
inputs and no robustness to disturbances or model mismatches. Furthermore, a quadratic cost function is
more commonly used as it is a smooth function which aids in the stability proofs by Lyapunov and enable
less complex optimization [98]. Therefore, the quadratic cost function was chosen.

It can also be seen that no input or input rate penalty is added to the objective function. The reason for
this is that in this research the tracking performance of the MPC will be measured where the smoothness of
the control inputs is not considered. In a real application, this penalty can be beneficial.

7.2.2. Constraints
One of the big advantages of model predictive control is that it can incorporate soft and hard constraints on
inputs and states directly in the controller as explained in Section 3.5.3. Hence, some physical boundaries
are imposed on the control inputs because of actuator limits. Firstly, the input range is limited for each
control input by 𝑢፦።፧ = [𝜃ኺᑞᑚᑟ 𝜃ኻ፬ᑞᑚᑟ 𝜃ኻᑞᑚᑟ 𝜃ኺᑥᑣᑞᑚᑟ ]

ᖣ and 𝑢፦ፚ፱ = [𝜃ኺᑞᑒᑩ 𝜃ኻ፬ᑞᑒᑩ 𝜃ኻᑞᑒᑩ 𝜃ኺᑥᑣᑞᑒᑩ ]
ᖣ. The

data for these limits of the BO-105 helicopter is retrieved from Prouty (2002) [26]. Secondly, the rate of
change in each control input is limited by Δ𝑢፦ፚ፱ = [Δ𝜃ኺᑞᑒᑩ Δ𝜃ኻ፬ᑞᑒᑩ Δ𝜃ኻᑞᑒᑩ Δ𝜃ኺᑥᑣᑞᑒᑩ ]

ᖣ. It must be noted
that no rate limits were found for the BO-105 so the rate data for the Bell 412 helicopter from Voskuijl
et. al. (2010) was used [99]. The values of the limits used in the simulations can be seen in Table 7.1.
These limits are implemented according to Equation 7.6 and hold over the entire prediction horizon and for
all control inputs. The state variables are not bounded by upper and lower limits but are constraint by the
dynamics of the helicopter.

𝑢፦።፧ < 𝑢፤ዄ። < 𝑢፦ፚ፱ for 𝑖 = 1, 2, … , 𝑁
|𝑢፤ዄ። − 𝑢፤ዄ።ዅኻ| < Δ𝑢፦ፚ፱ for 𝑖 = 1, 2, 3, … , 𝑁 (7.6)

Table 7.1: Input range and rate constraints limits.

Limit Value [deg] Limit Value [deg] Limit Value [deg s]
𝜃ኺᑞᑚᑟ -0.2 𝜃ኺᑞᑒᑩ 15.0 Δ𝜃ኺᑞᑒᑩ 16.0 ⋅Δ𝑡
𝜃ኻ፬ᑞᑚᑟ -6.0 𝜃ኻ፬ᑞᑒᑩ 11.0 Δ𝜃ኻ፬ᑞᑒᑩ 28.8 ⋅Δ𝑡
𝜃ኻᑞᑚᑟ -5.7 𝜃ኻᑞᑒᑩ 4.2 Δ𝜃ኻᑞᑒᑩ 16.0 ⋅Δ𝑡
𝜃ኺᑥᑣᑞᑚᑟ -8.0 𝜃ኺᑥᑣᑞᑒᑩ 20.0 Δ𝜃ኺᑥᑣᑞᑒᑩ 32.0 ⋅Δ𝑡

7.2.3. Optimization
The optimization problem will be solved by means of the sequential quadratic programming algorithm which
is a smooth nonlinear optimization method. It iteratively computes quadratic sub-problems starting with an
initial guess of the variable to be optimized: the control input sequence.

As the objective function is nonlinear and for NLMPC the prediction model is also nonlinear, non-convex
optimization will take place. This means multiple local optima may exist. In an attempt to find the global
optimum, multiple initial values can be tried and compared with each other to then finally use the one with
minimal cost. By doing this, the performance of the MPC can be improved to some extent. However, this
will go at the cost of a much longer computation time as the same optimization has to take place multiple
times now instead of once. Although, this may be prevented by running the optimizations in parallel.

The use of multiple initial values was tested for yaw due to collective coupling where it could be seen
that the final tracking error when using 8 different initial values was just slightly less (< 1 degree in total
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over 5 seconds) than when one initial value (the trim controls) was used. Hence, the performance gain when
using multiple initial values can be considered nonexistent. Therefore, it was chosen to use only one initial
value. The initial value used was chosen to be the trim controls for that flight speed as this leans towards
the optimal solution in many cases.

7.2.4. Tuning parameters
As explained in Section 3.5.5, the MPC controller contains several design parameters that require tuning
specific to each application and task. Those parameters are the control sampling time Δ𝑡, the prediction
and control horizon, 𝑁 and 𝑁፮, and the weight 𝑄.

Sampling Time First of all, a simulation sampling time Δ𝑡፬ was chosen small enough to capture the system
dynamics, but large enough to have a reasonable simulation run-time. Therefore, a Δ𝑡፬ of 0.01 seconds was
chosen as mentioned in Section 7.1.1. In order to reduce the run-time even more, a larger control sampling
time Δ𝑡 of 0.03 seconds is set. Hence, every 3 simulation time steps, a new control input is computed. In
the remaining steps, the control input is kept the same as the previously calculated input.

Prediction Horizon A fixed control horizon 𝑁፮ of 3 control steps, so 0.09 seconds, is taken in order to
decrease the computation time. Then, the remaining control inputs in the prediction horizon have the same
value as the last control input of the control horizon. For the tuning of the prediction horizon 𝑁 a trade-off
needs to be made between on one hand a large prediction time yielding long computation times, better
incorporation of future (predicted) dynamics, trajectories and constraints, and short prediction times yielding
shorter computation times but less preview of the future. Furthermore it must be noted that for the MPC
to make a good state prediction over the prediction horizon, the prediction model used should approximate
the actual helicopter dynamics sufficiently. When a linear model is used and the helicopter state is too far
away from the linearization point or the helicopter dynamics is too nonlinear, the closed-loop performance
of the linear MPC controller will degrade. Therefore, when the prediction horizon is large, which should
normally give better closed-loop performance, now the state will deviate more from the trim point and the
linear state prediction will accumulate error. Therefore, larger prediction horizons will degrade the closed-
loop performance instead of improving it due to possible model errors. From trial and error it was found
that a prediction horizon of 5 time steps, so 0.15 seconds, yields reasonable computation times and good
cross-coupling reduction performance. For a tracking task this is a rather small prediction horizon. However,
the task of keeping the tracked state constant at its trim value is rather simple which makes it possible to
have such a small prediction horizon.

Weight The only weight that needs to be tuned in this tracking task is the diagonal matrix Q. It was
chosen to only track the off-axis attitudes depending on the cross-coupling requirement that is simulated.
All attitudes are equally important so they are given equal weights. For example, when a roll due to pitch
requirement is simulated, an input is given in 𝜃ኻ፬ in order to excite the pitch axis. Then, the objective of
the MPC controller is to keep both the roll and yaw angle constant at its trim value and leave the pitch axis
free. For this example 𝑄 will be equal to diag(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0).

7.2.5. the Complete MPC Formulation
To summarize the MPC controller used in the cross-coupling simulations and the sensitivity analysis simula-
tions, the complete MPC optimization problem is presented in Equation 7.7 including the objective function
that will be minimized, the prediction model of the helicopter and the input constraints. Here, �̄�፤ =
[𝑢፤ , 𝑢፤ዄኻ, … , 𝑢፤ዄፍዅኻ] is the control input sequence along the prediction horizon and �̄� = [𝑥፤ዄኻ, … , 𝑥፤ዄፍ]
is the predicted state trajectory along the prediction horizon. The optimization problem will be solved in Mat-
lab 2020b with the fmincon-function using the sequential quadratic programming as optimization algorithm
which is a smooth nonlinear optimization method. For each simulation individual components can change
such as the model when using LMPC or NLMPC or implementing the error from the sensitivity analysis, or
the weight 𝑄 when a different cross-coupling case is tested.
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minimize
፮̄ᑜ , ፱̄ᑜ

ፍ

∑
።ኻ
{(𝑥፤ዄ። − 𝑟፤ዄኻ)

ᖣ 𝑄 (𝑥፤ዄ። − 𝑟፤ዄኻ)}

subject to: 𝑥፤ዄ። = 𝑓(𝑥፤ዄ።ዅኻ, 𝑢፤ዄ።ዅኻ) for 𝑖 = 1, 2, ..., 𝑁
𝑢፦።፧ < 𝑢፤ዄ። < 𝑢፦ፚ፱ for 𝑖 = 0, 1, ..., 𝑁 − 1
|𝑢፤ዄ። − 𝑢፤ዄ።ዅኻ| < Δ𝑢፦ፚ፱ for 𝑖 = 0, 1, ..., 𝑁 − 1

with: 𝑥 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜓 𝜃 𝜙 𝑥 𝑦 𝑧 𝜆ኺ 𝜆ኺᑥᑣ]ᖣ
𝑢 = [𝜃ኺ 𝜃ኻ፬ 𝜃ኻ 𝜃ኺᑥᑣ]ᖣ

(7.7)

7.3. The PID Controller
In order to be able to compare the performance of the MPC controller with a controlled helicopter, a
simple Proportional–Integral–Derivative (PID) controller is implemented. This PID controller uses control
rules based on the error between the reference state and the actual state, the integral of this error and the
gradient of this error. For the cross-coupling simulations, only the attitude of the helicopter needs to be
controlled. Therefore, the PID rules, which can be seen in Equation 7.8, are only implemented to 𝜃ኻ፬Ꮂ , 𝜃ኻ
and 𝜃ኺᑥᑣᎲ [22]. Here, the 𝐾…’s are the gains that need to be tuned. Furthermore, the integral term in these
PID rules is taken in discrete time over an interval of 𝑡 − 5Δ𝑡 to 𝑡 where 𝑡 is the current time. As can be
seen, the inputs are solely dependent on the on-axis tracking error e.g. 𝜃ኻ፬ depends on 𝜃 − 𝜃፫፞፟ only.

Similar to the MPC controller, only the relevant DOFs will be tracked in a simulation. The inputs for the
uncontrolled DOFs are then set to the trim value instead of applying the PID rule. Furthermore, in MPC the
calculated control input is automatically constraint to their physical boundaries. However, PID doesn’t have
this ability to implement constraints in the control algorithm. Therefore, whenever the calculated control
inputs go outside of their respective physical boundaries, the control input is limited to their maximum or
minimum boundary value.

𝜃ኻ፬ = 𝜃ኻ፬Ꮂ + 𝐾᎕Ꮃ(𝜃 − 𝜃፫፞፟) + 𝐾፪𝑞 + 𝐾᎕Ꮄ
፭

∑
፭ዅጂ፭

(𝜃 − 𝜃፫፞፟)Δ𝑡

𝜃ኻ = 𝜃ኻᎲ + 𝐾ᎫᎳ(𝜙፫፞፟ − 𝜙) + 𝐾፩𝑝 + 𝐾ᎫᎴ
፭

∑
፭ዅጂ፭

(𝜙፫፞፟ − 𝜙)Δ𝑡

𝜃ኺᑥᑣ = 𝜃ኺᑥᑣᎲ + 𝐾ᎥᎳ(𝜓 − 𝜓፫፞፟) + 𝐾፫𝑟 + 𝐾ᎥᎴ
፭

∑
፭ዅጂ፭

(𝜓 − 𝜓፫፞፟)Δ𝑡

(7.8)

In order to tune the gains, each degree of freedom was first tuned separately, with all states in the
other degrees of freedom kept constant. The gains were then tuned using the Ziegler-Nichols method [100].
Here, an ultimate gain 𝐾፮፥፭ and ultimate period 𝑇፮፥፭ is determined by increasing the proportional gain until
the system becomes unstable - the attitude starts oscillating with no damping. Then, the proportional,
derivative and integral gains are set as a fraction of this ultimate gain and the ultimate period namely
0.6𝐾፮፥፭, 1.2𝐾፮፥፭/𝑇፮፥፭ and 3𝐾፮፥፭𝑇፮፥፭/40 respectively. Some additional fine tuning based on trial and error
was performed in order to obtain quasi optimal performance (minimal overshoot, fast rise-time). Once each
degree of freedom was tuned separately, the full system with all DOFs enabled was tuned based on trial
and error. The final gains obtained after tuning and used for the cross-coupling simulations can be found in
Table 7.2 where radians as unit for the angular variables.

Table 7.2: PID gains used in the simulations.

Gain Value [-] Gain Value [-] Gain Value [-]
𝐾᎕Ꮃ 3 𝐾ᎫᎳ 0.55 𝐾ᎥᎳ 16
𝐾᎕Ꮄ 11.2 𝐾ᎫᎴ 40 𝐾ᎥᎴ 170
𝐾፪ 0.8 𝐾፩ -0.35 𝐾፫ 1.9



8
Cross-coupling Requirement Results

In order to evaluate the effectiveness of MPC to reduce cross-couplings when flying a helicopter, the cross-
coupling requirements set out by the ADS-33 document will be tested in simulation on the BO-105 helicopter
[36]. The requirements will be evaluated for the helicopter without controller, the helicopter with linear
MPC applied to it, with nonlinear MPC applied to it and with a PID controller controlling the helicopter.
Furthermore, these 4 control set-ups will be tested in a simulation with and without uncertainty added to
the simulation model as explained in Section 7.1.1. The results of these simulations for each cross-coupling
case will be presented in this chapter. Here, an elaborate example of how to calculate the cross-coupling
parameter will be performed for the pitch due to roll coupling case. In order to analyze and compare the
coupling reduction performance of the PID and MPC controller, an off-axis rate response analysis will be
performed for pitch due roll coupling as well. Next to this, an overview and comparison of the cross-coupling
results will be given. Finally, a word on the differences between the linear and nonlinear model predictive
controller will be held in terms of optimization, computation speed, fidelity and performance.

There are 10 cross-coupling requirements that will be tested which are formulated in the ADS-33 in
Section 3.3.9 (page 12) on interaxis coupling for hover and low speed flight and 3.4.5 (page 17) on interaxis
coupling for forward flight. The hover and low speed flight requirements will be performed for hover only
and the forward flight requirements will be simulated for 80 knots or 41 m/s flight speed. For all these
requirements, an excitation in one of the on-axis control inputs is given after which the off-axis response
will be measured by means of a predefined cross-coupling parameter that scales with the off-axis response as
explained in Section 2.1.2. The cross-coupling criteria for hover and low speed flight and for forward flight
that will be tested are presented below and will be explained more thoroughly in this chapter.

For hover and low speed flight:

1. Yaw due to collective for aggressive agility

2. Pitch due to roll coupling for aggressive agility

3. Roll due to pitch coupling for aggressive agility

4. Pitch due to roll coupling for target acquisition and tracking

5. Roll due to pitch coupling for target acquisition and tracking

For forward flight:

6. Pitch attitude due to collective control

(a) Small collective inputs
(b) Large collective inputs

7. Pitch due to roll coupling for aggressive agility

8. Roll due to pitch coupling for aggressive agility

71
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9. Pitch due to roll coupling for target acquisition and tracking

10. Roll due to pitch coupling for target acquisition and tracking
Both time (for aggressive agility) and frequency (for target acquisition and tracking) requirements are set

out in the ADS-33 as coupling handling qualities are not only task dependent but also frequency dependent
as will be discussed further in Section 8.5. Therefore, the time domain criteria are valid for aggressive
agility with mid- to long-term coupling responses and relatively small amplitude control inputs whereas the
frequency domain criteria are valid for high precision maneuvers such as target acquisition and tracking
containing short-term coupling responses.

For the time domain requirements, the control input that will be given in order to excite the on-axis
response will mostly be a step input of plus or minus 10% of the control input range given one second
after the simulation started. This usually leads to a significant and fast change in the on-axis attitude. In
some simulation cases, which will be mentioned, the step input is smaller than the 10% change because
of helicopter limits. The control input that will be given for the frequency domain requirements will be
explained in Section 8.5.

8.1. Pitch due to Roll Coupling for Aggressive Agility
This section will first describe the pitch due to roll requirement for aggressive agility set by the ADS-33-E
handling qualities document for hover and for forward flight. Second, an example of how the cross-coupling
parameter for pitch due to roll coupling is calculated will be given in order to clarify the calculation method.
Then, an off-axis rate response analysis will be performed for pitch due roll coupling as an example in order
to analyze and compare the coupling reduction performance of the PID and MPC controller. Finally, the
results of the simulations testing this requirement for all control set-ups will be presented.

8.1.1. Requirement
The pitch due to roll and roll due to pitch coupling requirements for aggressive agility are stated in the
ADS33 document in Section 3.3.9.2 for hover and low speed flight and in Section 3.4.5.2 (page 12) for
forward flight. The ADS33 states that ”The ratio of peak off-axis attitude response from trim within 4
seconds to the desired (on-axis) attitude response from trim at 4 seconds, Δ𝜃፩፤/Δ𝜙ኾ (Δ𝜙፩፤/Δ𝜃ኾ), following
an abrupt lateral (longitudinal) cockpit control step input, shall not exceed ± 0.25 for Level 1 or ± 0.60
for Level 2. Heading shall be maintained essentially constant.” [36]. The computation of the cross-coupling
parameter can be seen in Equation 8.1.

if a step input is given at 𝑡 = 0 s
Δ𝜃፩፤ = (max |𝜃| before 𝑡 = 4 s) − 𝜃ኺ
Δ𝜙ኾ = 𝜙(𝑡 = 4 s) − 𝜙ኺ

(8.1)

This requirement for pitch due to roll will be tested by simulating a step input in the lateral cyclic starting
from trim with an increase/decrease of 10% the control input range. Both a negative and positive step input
are being simulated for hover and for forward flight. The uncontrolled helicopter simulation has a PID
controller applied to the tail rotor collective only in order to maintain a constant heading and eliminate the
influence of the yaw rate to the pitch angle. In the controlled simulations the both the pitch and yaw angle
will be controlled. The Δ𝜃፩፤/Δ𝜙ኾ parameter for each control configuration will be calculated and presented.

8.1.2. Simulation Results
An example of a pitch due to roll coupling simulation for the uncontrolled helicopter can be seen in Figure
8.1. Here, the longitudinal cyclic and collective input are kept constant as to simulate how the uncontrolled
helicopter reacts to a step input in the lateral cyclic while maintaining constant heading. As can be seen,
the roll rate responds to this input to the right by increasing to about 40 deg/s over 5 seconds. This induces
the helicopter to roll to the right. As a secondary response, also the pitch rate increases to about 20 deg/s
inducing the helicopter to pitch up. The cross-coupling parameter is then calculated as the ratio of off-axis
response to on-axis input using Equation 8.1. With a Δ𝜃፩፤ of 17.7 and a Δ𝜙ኾ of 39.6, a Δ𝜃፩፤/Δ𝜙ኾ of 0.45
was obtained.

In Figures 8.2 and 8.3 one can see the cross-coupling parameter results of the pitch due to roll requirement
simulations for hover and forward flight (80 knots) respectively for a positive and a negative lateral cyclic
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Figure 8.1: Pitch due to roll requirement simulation of the uncontrolled helicopter for 80 knots for a positive (right) lateral
cyclic step input.

input. The exact numbers of the cross-coupling parameter can be found in Table 8.1. Some example
simulations of the uncontrolled helicopter and LMPC controlled helicopter can be seen in Appendix C in
Figure C.3 and C.4. Both for hover and forward flight it can be seen that the cross-coupling parameter is
reduced significantly when the helicopter is being controlled, going from level 3/2 to level 1 with plenty of
margin. When zooming in to 10ዅኽ to see the results of the controlled cases in Figures 8.2 and 8.3 (b),
one can see that NLMPC reduces the cross-couplings the most with shortly after that LMPC. The PID
controller also performs great but cannot surpass the MPC performance for both hover and forward flight.
It can also be seen that the uncertainty doesn’t seem to have much of effect to the cross-coupling reduction
performance in all set-ups. However, it is remarkable that for the LMPC set-up in hover, the performance
with uncertainty is better than the performance without uncertainty. This can be explained by the fact that
the disturbance in the model causes a disturbance in the roll rate which in this case induces the roll angle
over time to be larger than the roll angle of the simulation without uncertainty. Therefore, the roll angle
measured at 4 seconds after the step input will be larger causing the cross-coupling parameter to be lower.

(a) Overview for positive and negative lateral input.

(b) Close-up of Figure 8.2 (a).

Figure 8.2: Pitch due to roll requirement results for hover for a positive (right) and negative (left) lateral input.
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(a) Overview for positive and negative lateral input.

(b) Close-up of Figure 8.3 (a).

Figure 8.3: Pitch due to roll requirement results for forward flight (80 knots) for a positive (right) and negative (left) lateral
input.

Table 8.1: Pitch due to roll parameter ጂ᎕ᑡᑜ/ጂᎫᎶ results for different helicopter flight control configurations for a positive
(right) and negative (left) lateral cyclic step input for both hover and forward flight (80 knots).

Hover BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
Pos. lateral input 0.6425 0.6496 7.291e-5 1.675e-4 0.001038 0.001023 0.003190 0.003358
Neg. lateral input 0.4247 0.4247 7.587e-5 4.329e-4 3.420e-4 6.092e-4 0.004605 0.004750

Fwd flight BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
Pos. lateral input 0.4479 0.4498 6.674e-5 9.643e-5 6.896e-5 1.062e-4 0.002641 0.002642
Neg. lateral input 0.6480 0.6780 6.029e-5 2.047e-4 5.911e-5 2.260e-4 0.005758 0.005777

As to investigate the off-axis rate response of the different control set-ups and to indicate the difference
between the PID and MPC coupling reduction behaviour, the pitch and roll rate responses for a step input
in the lateral cyclic at 𝑡 = 1 s are investigated as well. The different types of off-axis rate responses defined
by Blanken et al. (1997) can be seen in Figure 8.4 (a). Here, the ideal off-axis rate response is the response
with no coupling so with a rate staying as close to zero as possible. In Figure 8.4 (b) it can be seen that
the uncontrolled helicopter shows an off-axis rate response with control coupling. When the controllers
are introduced, the off-axis response reduces significantly, eliminating most cross-coupling effects. The PID
controller shows a small and quick washed-out coupling response whereas the MPC controller reduces the
off-axis rate even more and faster, showing a response with quasi no coupling.

8.2. Roll due to Pitch Coupling for Aggressive Agility
This section will first describe the roll due to pitch requirement for aggressive agility set by the ADS-33-E
handling qualities document for hover and forward flight after which the results of the simulations testing
this requirement for all control set-ups will be presented.
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(a) On- and off-axis rate responses to a lateral cyclic
input [101].

(b) Pitch due to roll coupling on/off-axis response analysis for
80 knots for a positive (right) lateral cyclic step input.

Figure 8.4: Off-axis rate response analysis.

8.2.1. Requirement
The requirement for roll due to pitch coupling for aggressive agility for both hover and forward flight is
similar to the requirement for pitch due to roll and is already described in Section 8.1.1 where it was said
that the parameter Δ𝜙፩፤/Δ𝜃ኾ should be within certain boundaries to have level 1 or 2 handling qualities.
The computation of the cross-coupling parameter can be seen in Equation 8.2.

if a step input is given at 𝑡 = 0 s
Δ𝜙፩፤ = (max |𝜙| before 𝑡 = 4 s) − 𝜙፭፫።፦
Δ𝜃ኾ = 𝜃(𝑡 = 4 s) − 𝜃፭፫።፦

(8.2)

This requirement will be tested in simulation by giving a step input in the longitudinal cyclic control going
from the trim value and increasing/decreasing 10% of the control input range and measuring the off-axis
response by means of the handling quality parameter. It must be noted that for a negative input during
hover and a positive input during forward flight, the step only decreases/increases to 2% of the control input.
This is because when a larger input is given, the helicopter goes unstable. Furthermore, the uncontrolled
helicopter has a PID controller in order to keep the yaw angle constant and the controlled simulation control
both the yaw and roll angle. The Δ𝜙፩፤/Δ𝜃ኾ parameter will be computed after the simulations for each
control set-up and will be presented next.

8.2.2. Simulation Results
In Figures 8.5 and 8.6 one can see the results of the roll due to pitch requirement simulations for hover
and forward flight (80 knots) respectively for both a positive and negative longitudinal cyclic input. The
exact numbers of the cross-coupling parameter can be found in Table 8.2. Some example simulations of the
uncontrolled helicopter and LMPC controlled helicopter can be seen in Appendix C in Figures C.5 and C.6.

Again, it can be seen that the uncontrolled helicopter having level 3 (for hover) and level 2 (for forward
flight) handling qualities goes to level 1 handling qualities with a large margin once a controller is applied.
When zooming in to 10ዅኻ and 10ዅኽ for hover and forward flight respectively, it can be seen that, again,
the nonlinear MPC controller reduces the roll angle response the most. After that the linear MPC controller
is the controller that reduces the cross-couplings the most according to the cross-coupling parameter. The
PID controller comes in last with one exception in the case with positive input for hover. Here, the PID
controller is performing better than LMPC. When looking at the simulations for these cases in Figure C.6
one can see that at around 4.15 seconds in the LMPC case all controls but mainly the collective and hence
tail rotor collective make a big change and start fluctuating. The collective input decreases a lot and the
lateral cyclic increases whereas in the PID simulation the collective and lateral cyclic stay at more or less the
same value or trend.

Multiple attempts where made in order to find the reason for this odd behaviour in the LMPC simulation
such as enlarging the step input to see whether it’s the constraints that somehow limit the LMPC controller,
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(a) Overview for positive and negative longitudinal input.

(b) Close-up of Figure 8.5 (a).

Figure 8.5: Roll due to pitch requirement results for hover for a positive (up) and negative (down) longitudinal input.

(a) Overview for positive and negative longitudinal input.

(b) Close-up of Figure 8.6 (a).

Figure 8.6: Roll due to pitch requirement results for forward flight (80 knots) for a positive (up) and negative (down) longitudinal
input.

giving more tuning weight to controlling the roll angle with respect to the yaw angle, changing the length
of the prediction horizon, etc. It could be seen that changing the step input or weights didn’t eliminate
the sudden increase/decrease in the controls. However, when shortening the prediction horizon, the cross-
coupling reduction performance increased. This could be an indicating that there is a mismatch between the
linear model and the nonlinear simulation. After further investigation, it was seen that at 4.15 seconds in the
simulation, the linear model predicted that �̇�, �̇� > 0 whereas the nonlinear model states that �̇�, �̇� < 0. This
sudden change in roll and pitch rates in the prediction model causes the controller to drastically change the
optimal control inputs. This theory is confirmed by the fact that this drastic change in the controls doesn’t
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happen in the NLMPC simulation in Figure C.5 (b). It can be concluded that in this particular case, the
linear model is not accurate enough for the LMPC controller to outperform the PID controller when reducing
cross-couplings. However, it still gives level 1 handling qualities.

Table 8.2: Roll due to pitch parameter ጂᎫᑡᑜ/ጂ᎕Ꮆ results for different helicopter flight control configurations for a positive (up)
and negative (down) longitudinal cyclic step input for both hover and forward flight (80 knots).

hover BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
Pos. long. input 0.5626 0.6572 2.264e-5 1.247e-4 0.003722 0.003630 0.01652 0.01655
Neg. long. input 0.4709 0.4735 2.114e-4 8.380e-4 0.002405 0.003197 0.009029 0.008935

Fwd flight BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
Pos. long. input 0.5626 0.6572 2.264e-5 1.247e-4 0.003722 0.003630 0.01652 0.01655
Neg. long. input 0.4709 0.4735 2.114e-4 8.380e-4 0.002405 0.003197 0.009029 0.008935

Lastly, it can be seen that the uncertainty in the simulation model only has a very small deteriorating
influence on the cross-coupling handling qualities.

8.3. Yaw due to Collective for Aggressive Agility
This section will first describe the yaw due to collective requirement set by the ADS-33-E document after
which the results of the simulations testing this requirement for all control set-ups will be presented.

8.3.1. Requirement
The handling quality requirement for yaw due to collective coupling for hover and low speed is stated in
Section 3.3.9.1 (page 12) of the ADS33 document. Here it states that ”The yaw rate response to abrupt
step collective control inputs with the directional controller fixed shall not exceed the boundaries specified in
Figure 11. The directional controller may be free if the rotorcraft is equipped with a heading hold function.
Pitch and roll attitudes shall be maintained essentially constant. ... Oscillations involving yaw rates greater
than 5 deg/sec shall be deemed objectionable.” [36]. The yaw rate boundaries that are referred to can be
seen in Figure 8.7. Here, 𝑟ኻ is defined as the largest peak of yaw rate by magnitude between the start of the
step input and 3 seconds after the step input. Furthermore, ℎ̇(3) is the value of ℎ̇ at 3 seconds after the
step input. Finally, 𝑟ኽ is equal to 𝑟(3) − 𝑟ኻ for 𝑟ኻ > 0 and to 𝑟ኻ −𝑟(3) for 𝑟ኻ < 0 where 𝑟(3) is the yaw rate
at 3 seconds after the step input. The complete computation of the cross-coupling parameters can be seen
in Equation 8.3.

Figure 8.7: Yaw due to collective coupling requirement [36].
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if a step input is given at 𝑡 = 0 s
ℎ̇(3) = ℎ̇(𝑡 = 3 s)
𝑟ኻ =max |𝑟| before 𝑡 = 3 s
if 𝑟ኻ > 0 ∶ 𝑟ኽ = 𝑟(𝑡 = 3 s) − 𝑟ኻ
if 𝑟ኻ < 0 ∶ 𝑟ኽ = 𝑟ኻ − 𝑟(𝑡 = 3 s)

(8.3)

In order to evaluate the yaw due to collective requirement for aggressive agility, simulations are performed
for the different control and model configurations. In the simulation the helicopter is trimmed in hover when
a step input at t = 1 s is given to the collective. Both a positive and a negative step input are being
evaluated. Here, the negative step input starts at the hover trim value of 14.4 deg and goes down 10%
of the collective input range namely to 12.8 deg whereas the positive step input goes to 16.0 deg. In the
set-ups where the helicopter is being controlled by either the MPC or the PID controller, not only the yaw
angle but also the pitch and roll angle are controlled. In the set-up where the helicopter is not controlled,
the pitch and roll angle are still controlled with a PID controller in order to only measure the yaw due to
collective and not the response of the yaw angle to the varying pitch and roll angles. Once the simulation is
finished, the |𝑟ኻ/ℎ̇(3)| and 𝑟ኽ/|ℎ̇(3)| parameters are calculated.

8.3.2. Simulation Results
Figure 8.8 shows the results of the yaw due to collective requirement simulations for hover for both a positive
and negative collective input. The exact numbers of the requirement parameters can be found in Table 8.3.
Some example simulations that were performed to get to these results can be seen in Appendix C. It can
be seen that the handling qualities of the uncontrolled helicopter can be greatly improved by introducing
a controller. For a negative collective step input (Figure 8.8 (b)), both the (N)LMPC and PID controllers
can reduce both handling quality parameters drastically to around 0.05 and -0.05 deg/s/ft/s for respectively
|𝑟ኻ/ℎ̇(3)| and 𝑟ኽ/ |ℎ̇(3)| for the 𝜎 = 0 case hence without uncertainty. When the uncertainty is introduced
to the simulation model, the results of the parameters are slightly larger but still all remain in the level
1 handling quality zone. It must also be noted that the 𝑟ኽ/ |ℎ̇(3)| parameters seems to be the limiting
parameter as the results are closest to this level 1 boundary.

Table 8.3: Yaw due to collective requirement parameters of different helicopter flight control configurations for a positive (up)
and negative (down) collective step input (0 knots).

Pos. collective input BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
|𝑟ኻ/ℎ̇(3)| [deg/s/ft/s] 1.5677 1.6092 0.0464 0.1372 0.0455 0.1420 0.0490 0.0874
𝑟ኽ/ |ℎ̇(3)| [deg/s/ft/s] 2.9184 2.9863 -0.0465 -0.1550 -0.0454 -0.1657 -0.0480 -0.0699

Neg. collective input BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
|𝑟ኻ/ℎ̇(3)| [deg/s/ft/s] 1.3199 1.3373 0.0450 0.0712 0.0457 0.0881 0.0453 0.0645
𝑟ኽ/ |ℎ̇(3)| [deg/s/ft/s] 2.4108 2.4087 -0.0451 -0.0661 -0.0459 -0.0710 -0.0432 -0.0624

The positive collective step input simulations show similar results for the case without uncertainty. How-
ever, when the uncertain error is introduced, the results of the linear and nonlinear MPC controllers are
both located just over the border of the level 1 boundary. Nevertheless, the result of the PID controller for
𝜎 = 0.2 remains in level 1. This rather large performance difference can be explained by the fact that the
MPC uses the prediction model of the helicopter which now has a mismatch with the disturbed simulation
model whilst the PID controller does not rely on a model. Moreover, the uncertainty is applied to the thrust
coefficient which is directly related to the collective input making this cross-coupling most vulnerable to the
mismatch. Furthermore, when the positive input is given the thrust of the helicopter is largest making the
disturbance in thrust coefficient have more effect explaining why this only happens in the positive input case.
This performance difference because of the prediction model mismatch can also be confirmed by the yaw
rate response of the PID and LMPC simulations in Figures C.2 (a) and (b) as 𝑟 in the LMPC simulations is
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(a) Positive (up) collective step input.

(b) Negative (down) collective step input.

Figure 8.8: Yaw due to collective requirement results for hover.

similar to the response of the PID but with slightly larger values.

8.4. Pitch due to Collective Coupling
This section will first describe the pitch due to collective requirement for forward flight set by the ADS-
33-E handling qualities document for both small and large collective inputs after which the results of the
simulations testing this requirement for all control set-ups will be presented.

8.4.1. Requirement
The requirement for pitch due to collective coupling holds only for forward flight and is split in a requirement
for small collective inputs (<20% rotor torque change) and large collective input (>20% rotor torque change)
in Section 3.4.5.1 (page 17) of the ADS-33. For small collective inputs it says that ”the peak change in pitch
attitude from trim, Δ𝜃፩፤, occurring within the first 3 seconds following a step change in collective causing less
than 20% torque change, shall be such that the ratio |Δ𝜃፩፤/Δ𝑛፳ᑡᑜ | is no greater than 1.0 deg/ft/secኼ, where
Δ𝑛፳ᑡᑜ is the peak incremental normal acceleration from 1 g flight.” [36]. For large collective inputs, the ratio
|Δ𝜃፩፤/Δ𝑛፳ᑡᑜ | should be no greater than 0.5 deg/ft/secኼ for a positive collective input and no greater than
0.25 deg/ft/secኼ for negative collective inputs. The complete computation of the cross-coupling parameter
can be seen in Equation 8.4.

if a step input is given at 𝑡 = 0 s
Δ𝜃፩፤ = (max |𝜃| before 𝑡 = 3 s) − 𝜃፭፫።፦
Δ𝑛፳ᑡᑜ = (max |�̇�| before 𝑡 = 3 s) − �̇�፭፫።፦

(8.4)
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This requirement will be tested in simulation by giving a step input of 3% (for small input) and 10% (for
large input) increase/decrease in collective input, respectively corresponding to a rotor torque change smaller
than 20% the rotor torque and a rotor torque change larger than 20% the rotor torque without exceeding
the helicopter limits. Furthermore the uncontrolled helicopter simulation has a PID controller applied to the
roll and yaw angle in order to solely measure the pitch due to collective and not the influences of the roll
and yaw angle. The controlled simulations control pitch, roll and yaw. The |Δ𝜃፩፤/Δ𝑛፳ᑡᑜ | parameter will be
computed after the simulations for each control set-up and will be presented next.

8.4.2. Simulation Results
In Figures 8.9 and 8.10 one can see the results of the pitch due to collective requirement simulations for
small and large collective inputs respectively and for both positive and negative collective inputs. The exact
numbers of the cross-coupling parameter can be found in Table 8.4. Some example simulations of the
uncontrolled helicopter and LMPC controlled helicopter can be seen in Appendix C in Figure C.7.

It can be seen that the uncontrolled helicopter has level 3 handling qualities for all cases without uncer-
tainty. Furthermore, when applying a controller to the helicopter the handling qualities go to level 1 with a
large margin for both small and large inputs. When zooming in it can be seen that the nonlinear and linear
MPC parameters overlap and are lower, hence better at reducing the cross-couplings, than the parameter
for the PID controller.

What is remarkable about these simulations is that the disturbed simulation gives, in every case, sig-
nificantly better cross-coupling reduction performance according to the |Δ𝜃፩፤/Δ𝑛፳ᑡᑜ | parameter. This can
be explained by the fact that the uncertainty is added to the thrust coefficient which is mainly active in
the 𝑧-direction and thus majorly influences �̇� hence 𝑛፳ᑡᑜ . The random behaviour of the uncertainty that
changes each time step also causes the normal acceleration to change every time step yielding a very large
Δ𝑛፳ᑡᑜ . For example for the nonlinear controlled, small, positive input case, the maximum change in �̇� for
the undisturbed simulation is ±1.2 ft/sኼ whereas the maximum change for the disturbed simulation is ±5
ft/sኼ causing the value of the parameter to be much smaller. Therefore, in this cross-coupling case the
cross-coupling parameter does not give a good indication of the off-axis response compared to on-axis input.
Or at least, the disturbed cases cannot be compared to the undisturbed cases. Still the same proportions
can be seen in the disturbed results between the performance of the uncontrolled, NLMPC, LMPC and PID
controlled helicopter compared to the undisturbed results.

(a) Overview for a small positive and negative collective input.

(b) Close-up of Figure 8.9 (a).

Figure 8.9: Pitch due to collective requirement results for forward flight (80 knots) for a small (<20% torque change), positive
(up) and negative (down) collective input.
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(a) Overview for positive and negative collective input.

(b) Close-up of Figure 8.10 (a).

Figure 8.10: Pitch due to collective requirement results for forward flight (80 knots) for a large (>20% torque change), positive
(up) and negative (down) collective input.

Table 8.4: Pitch due to collective requirement |ጂ᎕ᑡᑜ/ጂ፧ᑫᑡᑜ | results for a small (<20% torque change) and large (>20% torque
change), positive (up) and negative (down) collective input.

Small input BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
Pos. coll. input 1.287 0.05030 9.603e-4 2.398e-5 9.457e-4 1.649e-5 0.009354 3.519e-4
Neg. coll. input 1.400 0.06489 9.343e-4 2.346e-5 9.486e-4 2.500e-5 0.009468 3.543e-4

Large input BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2
Pos. coll. input 1.174 0.02784 9.904e-4 6.820e-5 9.406e-4 6.989e-5 0.009316 6.244e-4
Neg. coll. input 1.552 0.1696 9.037e-4 9.680e-5 9.500e-4 5.425e-5 0.009609 5.449e-4

8.5. Pitch due to Roll and Roll due to Pitch Coupling for Target
Acquisition and Tracking

This section will first describe the frequency domain pitch due to roll and roll due to pitch requirement for
target acquisition and tracking set by the ADS-33-E handling qualities document for hover and forward flight
after which the results of the simulations testing this requirement for all control set-ups will be presented.

8.5.1. Requirement
First a word will be held on the difference between the frequency and time domain requirement on pitch due
to roll and roll due to pitch coupling and the need for both of them. After this, the actual requirement will
be explained. Next, the method to find the pitch and roll bandwidth and neutral stability will be presented.
Finally, it will be explained how the 𝑝/𝑞 and 𝑞/𝑝 cross-coupling parameters are generated.

Need for a Frequency Requirement Both time and frequency requirements are set out in the ADS-33
for pitch and roll coupling as coupling handling qualities are not only task dependent but also frequency
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dependent. For example, ”A pilot may be less tolerant of large amounts of coupling at high frequency for
an aggressive-precision task but may find the same amount acceptable for a non-aggressive low precision
task.” as discussed by Blanken et. al. (1997) [101]. They also state that the time domain criteria only
take into account the mission task and the coupling amplitude which make them only valid for aggressive
agility maneuvers. Furthermore, the four-second time window of the pitch due to roll and roll due to pitch
requirements for aggressive agility is only applicable to small step inputs as large inputs cannot be safely
maintained for this long amount of time. Hence, the time domain criteria can only capture the mid- to long-
term responses. Therefore, the frequency domain criteria is needed in order to also capture the short-term
coupling response that corresponds to high precision, agile tracking tasks. Furthermore, the nature of the
frequency domain criteria enables to easily deal with noisy data, especially since the average 𝑝/𝑞 and 𝑞/𝑝
ratios over a certain bandwidth are used.

Requirement on Average 𝑝/𝑞 and 𝑞/𝑝 The frequency domain requirements on pitch due to roll and roll
due to pitch coupling are stated in Section 3.3.9.3 (page 12) for hover and 3.4.5.4 (page 18) for forward flight
of the ADS-33. The ADS-33 states that the pitch due to roll (𝑞/𝑝) and roll due to pitch (𝑝/𝑞) coupling
parameters should not exceed the boundaries of Figure 8.11 where ”the average 𝑞/𝑝 and average 𝑝/𝑞 are
derived from ratios of pitch and roll frequency responses. Specifically, average 𝑞/𝑝 is defined as the magnitude
of pitch-due-to-roll control input (𝑞/𝛿፥ፚ፭) divided by roll-due-to-roll control input (𝑝/𝛿፥ፚ፭) averaged between
the bandwidth and neutral-stability (phase = -180 deg) frequencies of the pitch-due-to-pitch control inputs
(𝜃/𝛿፥፨፧). Similarly, average 𝑝/𝑞 is defined as the magnitude (𝑝/𝛿፥፨፧) divided by (𝑞/𝛿፥፨፧) between the
roll-axis (𝜙/𝛿፥ፚ፭) bandwidth and neutral stability frequencies.” [36]. Here, the bandwidth is defined as the
lesser of the phase bandwidth, which is the frequency corresponding to -135∘ phase, and gain bandwidth,
which is the frequency corresponding to the magnitude at neutral stability with a margin of 6 dB added to
it. Furthermore, the frequency response data used to calculate the average 𝑞/𝑝 and average 𝑝/𝑞 should
have minimal off-axis inputs in order to minimize its effects on the to be measured variable. As the limits
in Figure 8.11 are not perfectly clear, the limits for 𝑞/𝑝 will be set to be -21 dB for level 1/2 and -4 dB for
level 2/3 and for 𝑝/𝑞 to -10 dB for level 1/2 and -5 dB for level 2/3.

Figure 8.11: Requirement boundaries for pitch due to roll and roll due to pitch coupling for target acquisition and tracking.

Finding Pitch and Roll Bandwidth and Neutral Stability In order to find the pitch and roll bandwidth
and neutral stability frequency, the magnitude and phase of the frequency response of 𝜃/𝛿፥፨፧ and 𝜙/𝛿፥ፚ፭
respectively needs to be analysed. First of all, it will be assumed that the longitudinal and lateral stick
displacement is equivalent to the longitudinal and lateral cyclic pith angle. Then, some best practices
to obtain this frequency response were found in Padfield (2007) [31][391-396]. Here, it states that the
recommended control input to measure the bandwidth is a sine wave with gradually increasing or decreasing
frequency called a frequency sweep. The range of this frequency sweep should then cover the frequencies at
which the helicopter is operable which usually goes from ±0.5 rad/s to ±22 rad/s and should cover at least
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two times 180∘ phase lag. The amplitude of the sine wave is recommended to be about 10%-15% of the
control range such that the roll and pitch rate stay within ±20∘/s. Furthermore, it is important to maintain
stability when performing the frequency sweep as the lower frequencies tend to make the uncontrolled
helicopter go unstable. The duration of the sweep in a real flight test is in practice limited by the lowest
frequency that needs to be covered and usually takes up 50 to 100 seconds. Since the frequency sweep is
being simulated, the duration can be shorter. For the simulations, the duration will be taken as long as
possible without going unstable.

So, for finding the pitch bandwidth and neutral stability frequency a simulation with a frequency sweep
going from 20 rad/s to 0.5 rad/s in the longitudinal cyclic for 14 seconds for hover and 16 seconds for
forward flight (80 knots) was performed with an amplitude of 10% the control range. For finding the roll
bandwidth and neutral stability frequency, the sweep was applied in the lateral cyclic and took 21 seconds
for hover and 18 seconds for forward flight. When this simulation is performed, the time signals of 𝜃 and
𝜃ኻ፬ for pitch and 𝜙 and 𝜃ኻ for roll are being frequency analyzed. First of all, the discrete Fourier transform
is taken of these time signals by means of the fast Fourier transform algorithm. Then, the response signal is
divided by the input signal and the phase and gain are extracted and plotted in a one-sided frequency plot.
From these plots, the gain and phase bandwidths and neutral stability frequencies are determined.

Calculating 𝑝/𝑞 and 𝑞/𝑝 To calculate the pitch due to roll 𝑞/𝑝 and roll due to pitch 𝑝/𝑞 coupling
parameters another frequency sweep is taken from 20 rad/s tot 0.5 rad/s in respectively the lateral cyclic
and longitudinal cyclic input while measuring the pitch and roll response. For the uncontrolled case, the
yaw angle will be controlled to be constant by a PID controller in order to reduce the effect of the changing
yaw angle to the pitch-roll coupling. The controlled cases will control both the yaw angle and the off-axis
angle. After the simulation, the fast Fourier transform is taken of the time signals of 𝑝 and 𝑞 and the output
signal is divided by the input signal in order to obtain 𝑞/𝑝 for the pitch due to roll coupling simulation and
𝑝/𝑞 for the roll due to pitch coupling simulation in a single-sided frequency plot. Finally, the linear average
of the magnitude of 𝑝/𝑞 and 𝑞/𝑝 between, respectively, the roll and pitch bandwidth and neutral stability
frequency is taken in order to arrive at the final 𝑝/𝑞 and 𝑞/𝑝 coupling parameters.

8.5.2. Simulation Results
First, the results for finding the pitch and roll bandwidth and neutral stability frequency will be presented.
After this, the average 𝑝/𝑞 and 𝑞/𝑝 parameters for different configurations will be shown and discussed.

Finding Pitch Bandwidth and Neutral Stability Frequency Frequency response plots of pitch due to
pitch (𝜃/𝜃ኻ፬) were generated for hover and forward flight of a frequency sweep simulation in the longitudinal
cyclic input in order to calculate the bandwidth and neutral stability of the pitch-axis. The simulation for
the pitch-axis bandwidth for hover can be found in Appendix C in Figure C.8 (a).

As can be seen in the frequency response plot of 𝜃/𝜃ኻ፬ for hover in Figure 8.12 (a), the neutral stability
frequency at 180∘ is 4.78 rad/s. At this frequency, 𝜃/𝜃ኻ፬ has a magnitude of 6.4 dB. The gain bandwidth is
then defined as the frequency at 12.4 dB which is 4.29 rad/s. Furthermore, the phase bandwidth is defined
as the frequency at 135∘ phase and is equal to 2.16 rad/s. Hence, a pitch-axis bandwidth of 2.16 rad/s is
found for hover as this is the smallest of the phase and gain bandwidth.

Furthermore it can be seen in Figure 8.12 (b) for forward flight that the neutral stability frequency at
180∘ is 3.44 rad/s for pitch. At this frequency, 𝜃/𝜃ኻ፬ has a magnitude of 17.3 dB. The gain bandwidth is
then defined as the frequency at 23.3 dB which is 2.44 rad/s. Furthermore, the phase bandwidth is defined
as the frequency at 135∘ phase and is equal to 3.07 rad/s. Hence, a pitch-axis bandwidth of 2.44 rad/s is
found for forward flight as this is the smallest of the phase and gain bandwidth. The final pitch bandwidth
and neutral stability frequency for hover and forward flight can be found in Table 8.5.

Finding Roll Bandwidth and Neutral Stability Frequency Frequency response plots of roll due to roll
(𝜙/𝜃ኻ) were generated for hover and forward flight of a frequency sweep simulation in the lateral cyclic
input in order to calculate the bandwidth and neutral stability of the roll-axis. The simulation for the roll-axis
bandwidth for hover can be found in Appendix C in Figure C.8 (b).

As can be seen in the frequency response plot of 𝜙/𝜃ኻ for hover in Figure 8.13 (a), the neutral stability
frequency at 180∘ is 4.27 rad/s. At this frequency, 𝜙/𝜃ኻ has a magnitude of 12.0 dB. The gain bandwidth
is then defined as the frequency at 18.0 dB which is 1.72 rad/s. Furthermore, the phase bandwidth is defined
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(a) Hover (0 knots). (b) Forward Flight (80 knots).

Figure 8.12: Magnitude and phase of frequency response of ᎕/᎕Ꮃᑤ for hover and forward flight (80 knots).

as the frequency at 135∘ phase and is equal to 4.00 rad/s. Hence, a roll bandwidth of 1.72 rad/s is found
for forward flight as this is the smallest of the phase and gain bandwidth.

(a) Hover (0 knots). (b) Forward Flight (80 knots).

Figure 8.13: Magnitude and phase of frequency response of Ꭻ/᎕Ꮃᑔ for hover and forward flight (80 knots).

Furthermore it can be seen in Figure 8.13 (b) for forward flight that the neutral stability frequency at 180∘
is 3.22 rad/s. At this frequency, 𝜃/𝜃ኻ፬ has a magnitude of 22.4 dB. The gain bandwidth is then defined as
the frequency at 28.4 dB which is 1.91 rad/s. Furthermore, the phase bandwidth is defined as the frequency
at 135∘ phase and is equal to 2.88 rad/s. Hence, a pitch-axis bandwidth of 1.91 rad/s is found for hover as
this is the smallest of the phase and gain bandwidth. The final roll bandwidth and neutral stability frequency
for hover and forward flight can be found in Table 8.5.

Final Average 𝑝/𝑞 and 𝑞/𝑝 Results In Figure 8.14 one can find the average 𝑝/𝑞 and 𝑞/𝑝 parameter
results for different controller configurations for both hover and forward flight. The exact numbers of the
parameters can be found in Table 8.6. Some example simulations of the uncontrolled helicopter and LMPC
controlled helicopter can be seen in Appendix C in Figures C.10 and C.9.

It can be seen that the uncontrolled helicopter has handling qualities of level 2 for hover and level 3, at
the border of level 2 for forward flight. When a controller is added to the helicopter the handling qualities
go to level 1. The PID controller brings the amount of cross-coupling back to around -30 dB for both pitch
due to roll and roll due to pitch coupling. However, for hover the MPC controllers can bring the 𝑝/𝑞 and
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Table 8.5: Pitch and roll bandwidth and neutral stability frequency results compared to reference results.

BO-105 (0 kn) BO-105 (80 kn) Ref. (60 kn) [101]
Pitch bandwidth 2.16 2.44 2.16
Pitch neutral stability 4.78 3.44 3.11
Roll bandwidth 1.91 1.72 3.44
Roll neutral stability 3.22 4.27 /

(a) Hover (0 knots). (b) Forward flight (80 knots).

Figure 8.14: Average ፩/፪ over average ፪/፩ for various control configurations.

𝑞/𝑝 coupling to around -75 dB. When the disturbance is introduced the coupling is still in level 1 handling
qualities but has a magnitude of around -60 dB for both linear and nonlinear MPC. For forward flight, there
is a bigger difference noticeable between 𝑝/𝑞 of the linear and nonlinear MPC controllers. The nonlinear
MPC reduces the cross-coupling to -73 and -79 dB for 𝑞/𝑝 and 𝑞/𝑝 whereas the linear MPC only goes to
-44 dB and -78 dB. Hence, for roll due to pitch the linear MPC controller performs noticeably worse than
the nonlinear MPC controller. It can also be seen that when the uncertainty is introduced the 𝑝/𝑞 of the
nonlinear MPC deteriorates the performance much more than the linear MPC. However, this difference of
-44 dB and -73 dB and the difference when the uncertainty is applied is barely noticeable in the time domain
as the magnitudes of the off-axis response are so small.

8.6. Overview of Cross-coupling Results
In this section, an overview of the handling quality levels of each control configuration for each cross-
coupling case will be given. Furthermore, a comparison of the cross-coupling parameter of NLMPC with the
uncontrolled helicopter and of the NLMPC and LMPC with the PID controller will be made for both with
and without uncertainty by presenting the percentage increase of the cross-coupling parameter.

Overview of Handling Quality Levels An overview of the cross-coupling handling quality level results
can be seen in Table 8.7. Here, for each cross-coupling case and condition, the level of handling qualities is
depicted for the uncontrolled, NLMPC and LMPC controlled and PID controlled helicopter.

It can be seen that the uncontrolled helicopter mostly has level 3 or 2 handling qualities with the exception
of the pitch due to collective case with uncertainty. Here, the cross-coupling with disturbance is better than
the cross-coupling without due to an incompatibility between the nature of the disturbance and the cross-
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Table 8.6: Average ፩/፪ and ፪/፩ for different control configurations for hover (0 knots) and forward flight (80 knots).

Hover BO-105 BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2
Average 𝑝/𝑞 / / -8.7 -8.5 -76.4 -63.9 -76.5 -64.8 -29.8 -29.7
Average 𝑞/𝑝 / / -7.0 -7.5 -72.2 -60.0 -74.5 -56.5 -29.2 -29.3

Forward flight BO-105 [101] BO-105 NLMPC LMPC PID
𝜎 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2
Average 𝑝/𝑞 -5.3 / -5.6 -11.6 -73.4 -57.5 -44.1 -42.4 -29.6 -27.7
Average 𝑞/𝑝 -15.0 / -3.1 0.9 -79.2 -79.4 -78.4 -76.9 -31.7 -31.6

coupling parameter ratio. Once a controller is introduced, the handling qualities are improved to level 1.
This indicates that all controllers succeed very well at reducing the cross-couplings in order to have good
handling qualities. Even with uncertainty added to the simulation model, the controllers are able to obtain
level 1 handling qualities. The only exception is the NLMPC controller for the yaw due to collective case for
a positive (up) collective input which obtained level 2 handling qualities with the uncertainty. This will be
further explained when looking at Table 8.9.

Table 8.7: Overview of the cross-coupling handling quality level results.

BO-105 NLMPC LMPC PID
Cross-coupling case Condition 𝜎=0 𝜎=0.2 𝜎=0 𝜎=0.2 𝜎=0 𝜎=0.2 𝜎=0 𝜎=0.2
Pitch d.t. roll 0 kn, +ve input III III I I I I I I

0 kn, -ve input II II I I I I I I
80 kn, +ve input II II I I I I I I
80 kn, -ve input III III I I I I I I

Roll d.t. pitch 0 kn, +ve input III III I I I I I I
0 kn, -ve input III III I I I I I I
80 kn, +ve input II III I I I I I I
80 kn, -ve input II II I I I I I I

Yaw d.t. collective +ve input III III I II I II I I
-ve input III III I I I I I I

Pitch d.t. collective small, +ve input III I I I I I I I
small, -ve input III I I I I I I I
large, +ve input III III I I I I I I
large, -ve input III III I I I I I I

Pitch d.t. roll 0 kn II II I I I I I I
for TA & T 80 kn III III I I I I I I
Roll d.t. pitch 0 kn II II I I I I I I
for TA & T 80 kn II I I I I I I I

Comparison of the Cross-coupling Parameter (𝜎 = 0) In Table 8.8 a comparison of the cross-coupling
parameters in percentage increase can be seen for the simulations without uncertainty. First of all, the
NLMPC results are compared to the uncontrolled helicopter results where a negative percentage indicates a
reduction of cross-couplings. Next, the NLMPC and LMPC are compared to the PID controller by indicating
how much percent the MPC cross-coupling parameter is increased with respect to the PID cross-coupling
parameter. Here, the positive values indicate the PID controller is better at reducing cross-couplings than
MPC and are indicated in red. Furthermore, it must be noted that for the yaw due to collective case, the
𝑟ኽ/ |ℎ̇(3)| parameter is used for the percentages as this was the limiting parameter in most cases.
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Table 8.8: Comparison of the cross-coupling parameter results in percentage increase for the simulations without uncertainty.

Cross-coupling case Condition NLMPC compared
to BO105 [%]

NLMPC compared
to PID [%]

LMPC compared
to PID [%]

Pitch d.t. roll 0 kn, +ve input -99.99 -97.71 -56.74
0 kn, -ve input -99.98 -98.35 -92.57
80 kn, +ve input -99.99 -97.47 -97.39
80 kn, -ve input -99.99 -98.95 -98.97

Roll d.t. pitch 0 kn, +ve input -99.99 -98.99 58.20
0 kn, -ve input -100.00 -99.54 -92.70
80 kn, +ve input -100.00 -99.86 -77.47
80 kn, -ve input -99.96 -97.66 -73.36

Yaw d.t. collective +ve input -98.44 -3.13 -5.42
-ve input -98.13 4.40 6.25

Pitch d.t. collective small, +ve input -99.93 -89.73 -89.89
small, -ve input -99.93 -90.13 -89.98
large, +ve input -99.92 -89.37 -89.90
large, -ve input -99.94 -90.59 -90.11

Pitch d.t. roll 0 kn -99.95 -99.29 -99.45
for TA & T 80 kn -99.98 -99.58 -99.54
Roll d.t. pitch 0 kn -99.96 -99.53 -99.53
for TA & T 80 kn -99.96 -99.36 -81.21

First of all, it can be seen that the NLMPC reduces the cross-coupling by about 99.9% for almost all
cross-coupling cases which is remarkably high. It indicates that the off-axis response can be almost entirely
eliminated by introducing the MPC controller. Furthermore, when comparing the MPC to the PID controller
almost all cases have much better cross-coupling reduction than the PID controller. Reductions of about
90% and 99% better than the PID controller are achieved for NLMPC whereas the LMPC has slightly lower
percentages especially for roll due to pitch.

The roll due to pitch case for hover and a positive (right) input even has the PID controller performing
better than LMPC. This degradation of the LMPC performance happens because of the mismatch between
the linear prediction model and nonlinear simulation model. It was found that at some point in the simulation
the linear model estimates the roll and pitch rate to be of opposite sign as the actual nonlinear model causing
the controls to change drastically, decreasing the cross-coupling reduction performance. Nevertheless, the
handling qualities still remain far within the level 1 zone.

Next to this, also the yaw due to collective case with a negative input seems to have a better cross-
coupling parameter with PID controller. Furthermore, for a positive input the cross-coupling parameter for
MPC is only 3 to 5 percent better than the PID controller which is much lower than in other cases. This
can be explained by the fact that this parameter relies on the yaw rate response instead of the yaw angle.
It is the only cross-coupling parameter depending on the angular rate instead of attitude. Since the MPC
controller is focusing solely on minimizing the attitude error, very aggressive yaw rate motions are induced
causing the cross-coupling parameter to take up higher values. The PID controller is not that aggressive
because of the differential term.

Comparison of the Cross-coupling Parameter (𝜎 = 0.2) In Table 8.9 one can see the comparison of
cross-coupling parameters in percentage increase for the simulations with uncertainty applied to the thrust
coefficient. First of all, it can be seen that the percentages are in general only slightly lower to the percentage
increase of the simulations without uncertainty. This indicates that the MPC and PID controllers are robust
to this disturbance, preserving the cross-coupling reduction performance.

Again, the yaw due to collective case seems to be the case with the least reduction of cross-couplings
compared to the uncontrolled helicopter which was also seen for the results without uncertainty (because of
measuring the yaw rate instead of angle). With uncertainty, the handling qualities for the positive input are
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Table 8.9: Comparison of the cross-coupling parameter results in percentage increase for the simulations with an uncertainty
of   ኺ.ኼ.

Cross-coupling case Condition NLMPC compared
to BO105 [%]

NLMPC compared
to PID [%]

LMPC compared
to PID [%]

Pitch d.t. roll 0 kn, +ve input -99.97 -95.01 -69.54
0 kn, -ve input -99.90 -90.89 -87.17
80 kn, +ve input -99.98 -96.35 -95.98
80 kn, -ve input -99.97 -96.46 -96.09

Roll d.t. pitch 0 kn, +ve input -99.98 -98.82 60.42
0 kn, -ve input -99.98 -98.10 -90.39
80 kn, +ve input -99.98 -99.25 -78.07
80 kn, -ve input -99.82 -90.62 -64.22

Yaw d.t. collective +ve input -94.81 121.77 137.05
-ve input -97.26 5.85 13.72

Pitch d.t. collective small, +ve input -99.93 -90.12 -88.52
small, -ve input -99.93 -89.57 -88.49
large, +ve input -99.91 -88.59 -89.74
large, -ve input -99.96 -89.57 -89.24

Pitch d.t. roll 0 kn -99.76 -97.07 -95.61
for TA & T 80 kn -99.99 -99.59 -99.45
Roll d.t. pitch 0 kn -99.83 -98.04 -98.23
for TA & T 80 kn -99.49 -96.73 -81.39

even decreased to level 2. Also when comparing the MPC controllers to the PID controller it can be seen that
the PID controller performs much better. As the disturbance is implemented in the thrust coefficient, which
greatly influences the rotor torque, the yaw coupling is majorly increased by this especially for a positive
collective input which only increases the thrust coefficient. With this poorly estimated main rotor torque
in the MPC prediction model, the MPC controller is unable to reduce the cross-couplings in the yaw axis
sufficiently. The PID controller however, which does not rely on a prediction model, is able to reduce the
cross-coupling to a level 1 handling quality. A solution to this deteriorated performance of the MPC due
to a highly influential disturbance is to implement robust model predictive control. This will improve the
performance of the MPC to unmeasured disturbances but at the cost of decreased general performance.

8.7. Linear Compared to Nonlinear MPC
The difference between linear and nonlinear MPC in this report lies in the use of the nonlinear or linear
prediction model in the MPC algorithm. The nonlinearity in the optimization scheme comes with non-
convexity and hence multiple local optima and a heavier computational burden. On the other hand, also
the fidelity of the model plays a big roll in the closed-loop performance as the algorithm optimizes the error
between the predicted state and the reference state over the prediction horizon. Therefore, a comparison of
linear MPC with nonlinear MPC in terms of the optimization, computational speed and model fidelity will
be given together with an evaluation of the differences in the cross-coupling simulation results.

8.7.1. Optimization
As said before in Section 3.5.4, an optimization problem is convex if the objective function and inequality
constraint functions are convex and the equality constraint functions are affine. Thus, the linear MPC
problem in this report with linear prediction model and quadratic objective function with positive definite
weight 𝑄 is a convex optimization problem [102]. With convex optimization comes the fact that it only
has one optimal solution which is automatically the global optimum. Hence, in the open-loop optimization
problem, optimality is guaranteed.

When the prediction model is nonlinear, as is the case with the nonlinear MPC in this report, the
optimization becomes non-convex. This brings with it that now multiple local optima exist. Therefore, the
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nonlinear optimization scheme requires an initial guess to start the optimization from and requires more
complex solving algorithms. Depending on the initial value, a different local optimum can be reached. In
order to find the global optimum, multiple initial values can be tried. This goes at the cost of the computation
time and still does not guarantee to reach the global optimum. The inability to guarantee to reach the global
optimum in an optimization scheme is called suboptimality. However, even if the outcome of the optimization
is suboptimal, the controller can still be stable provided that a feasible solution exists and the controller is
tuned properly (having a sufficiently long prediction horizon) or stabilizing modifications are made [61].

In Section 7.2.3 it was tested how much the optimal solution and the closed-loop performance would
increase when trying out multiple initial values in the NLMPC algorithm. Multiple initial values were tried
in the same time step and compared to each other to then finally use the solution with the lowest cost for
a yaw due to collective coupling simulation. However, this goes at the cost of a much longer computation
time as the same optimization has to take place multiple times instead of once. It was seen that indeed
a more optimal solution could be found when trying 8 different initial values compared to only trying the
trim point as initial value. However, the decrease in tracking error was extremely small (< 1 degree over 5
seconds). Hence, the loss in performance because of suboptimality is negligible for the cross-coupling cases.

8.7.2. Computational Speed
The convexity of the linear MPC optimization problem also comes with the advantage of being able to
solve the problem using linear or convex quadratic (in case of the quadratic objective function) programming
with algorithms such as dual-simplex and convex interior-point method. When the problem becomes non-
convex, so when the nonlinear MPC controller is used, nonlinear programming methods need to be used
in order to solve the optimization problem which come with longer computation times [39]. Moreover,
convex optimization methods are significantly less complex than nonlinear programming methods: in convex
quadratic programming the global optimum can be found within a fixed number of iterations depending on
the size of the problem whereas nonlinear programming is considered to be NP-hard according to complexity
theory [102]. Furthermore, in convex optimization without constraints an explicit solution can be found by
means of dynamic programming such that the optimal control input can be directly computed as a function
the the initial state. This severely speeds up the computation process.

As computer power has significantly increased over the years and faster optimization algorithms are found,
the computational speed gap between linear and nonlinear MPC is not as large anymore. Furthermore, other
algorithms and tuning tricks exist to speed up the optimization process: neural networks can be used that
mimic the behaviour of the MPC optimization [57], explicit solutions to the optimization problem can be
found even for nonlinear problems [63], [103], the sampling time and prediction horizon can be tuned, the
model can be reduced such that there are less variables to compute in the optimization, faster optimization
algorithms such as using Pontryagin’s Minimum Principle can be implemented [58], etc. However, the
computation time can still be limiting as MPC needs to be applied in real-time to helicopters which have
very fast dynamics. Yet, in this report the real-time application is not taken into account.

8.7.3. Model Fidelity
It is now clear that linear MPC has the advantage of having convex optimization which brings guaranteed
open-loop optimality and faster, less complex optimization with it. However, when dealing with highly
nonlinear systems such as helicopters the question if the linear approximation of the system has sufficient
fidelity to not only have a stable but also a good performing controller arises.

As explained before in Section 7.1.2, the linearization of the nonlinear system around a trim point
approximates the system at and around this trim point. The more the helicopter state deviates from the
trim condition, the worse the linear approximation will be. Also, the more nonlinear the helicopter behaves
at this trim condition, the worse the linear approximation will be.

For the MPC to make a good state prediction over the prediction horizon, the prediction model should
approximate the actual, nonlinear helicopter dynamics sufficiently. Hence, when a linear model is used and
the helicopter state is too far away from the linearization point or the helicopter dynamics is too nonlinear,
the closed-loop performance of the linear MPC controller deteriorates. This was also seen in Dutka et.
al. (2003) where a linear MPC controller for tracking a step in pitch had slower tracking behaviour, more
overshoot and a steady-state error compared to the nonlinear MPC controller [67]. Moreover, the tracking
point even further away from the trim point resulted in an unstable linear MPC controller. In order to reduce
this mismatch between the linear and nonlinear model, the linearization could be updated, either online or
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offline, once the current state and the linearization trim state are too far away from each other [65], [73].
Furthermore, the mismatch between linear and nonlinear does not only grow when the linearization point

and the helicopter state are far away, the model mismatch error also accumulates over the prediction horizon
because of the integration scheme in the dynamics of the helicopter. Therefore, larger prediction horizons
will degrade the closed-loop performance instead of improving it for LMPC. However, in this research a very
small prediction horizon of 0.15 seconds is used which is small enough to overcome large accumulations of
error. This accumulation was also demonstrated in Section 7.1.3.

8.7.4. Reducing Cross-couplings
In the cross-coupling results in this chapter it can be seen that both linear and nonlinear MPC perform very
well at reducing cross-couplings, even with an uncertainty applied in the simulation model. It must also
be noticed that the performance difference between linear and nonlinear MPC for these simulations is very
small. In most cases the nonlinear controller performs slightly better than the linear controller, such as for
pitch due to roll and roll due to pitch for aggressive agility and roll due to pitch for tracking, or has almost
similar performance as the linear controller, such as for yaw due to collective and pitch due to collective.
This is an indication that the fidelity of the linear model is sufficient for the cross-coupling simulations to be
used as prediction model. This can be explained by means of two reasons based on properties specific to the
cross-coupling simulations. First of all, the model mismatch stays small because of the use of a very short
prediction horizon which prevents the accumulation of error along the horizon. Secondly, as the reference
trajectory that is tracked is the trim condition around which is linearized, the state stays relatively close to
the linearization point which also limits the linear model mismatch.

There is one case, the roll due to pitch coupling case for hover with a positive input, where the linear
controller performs worse than the PID controller. This was due to a linear model mismatch where the linear
model predicted that �̇�, �̇� > 0 whereas the actual, nonlinear model states that �̇�, �̇� < 0, resulting in a sudden
change of controls which is not present in the NLMPC and PID simulations. Nevertheless, the fidelity is still
good enough to have level 1 handling qualities.

The few cases where the linear controller is slightly better than the nonlinear MPC controller can be
explained by the fact that the cross-coupling parameter is being evaluated and not the actual objective of
the MPC, being the tracking error. Also, the suboptimality of the nonlinear MPC controller could be (part
of) the reason for the nonlinear controller to have a slightly larger cross-coupling parameter in some cases.

Overall it can be concluded that the differences in cross-coupling reduction performance between LMPC
and NLMPC are so small they do not noticeably deteriorate the handling qualities and can be assumed to
be non existent.
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Sensitivity Analysis

This chapter will present a sensitivity analysis to see how sensitive and robust the MPC controller is to errors
in the prediction model when reducing cross-couplings. First, the error applied to the prediction model will
be introduced after which the results of each cross-coupling case will be presented. Finally, an overview and
characteristics of the important derivatives will be given.

On one hand, this sensitivity analysis serves to identify, for each cross-coupling case, the important
derivatives in the prediction model that require high accuracy in order to still have level 1 handling qualities.
This information is important so that when designing a linear MPC controller, it is known which prediction
model derivative needs to be of high accuracy for the controller to work. On the other hand, the important
derivatives will be further investigated in order to find out how large the error in these derivatives can
go to still have level 1 handling qualities. This information gives understanding to how sensitive these
specific derivatives are to errors and to what kind of errors are most performance degrading for example,
over/underestimating, changing sign, etc.

This trend of which derivatives are important and how large the errors can go in the linear prediction
model can be extended to the nonlinear prediction model by linking the derivatives to its analytical expression.
When linearizing the nonlinear dynamics analytically, as was done in Pavel (1996), the derivatives are linked
to the helicopter parameters and coefficients which are used in the nonlinear model [1]. In this way, this
information can be used for nonlinear MPC as well.

As explained in Section 7.1.1, a linear prediction model is used for the sensitivity analysis such that the
error can be implemented in a structured way namely in the elements of the linear state-space model. To
reduce the model mismatch between simulation model and prediction model, the linear model was used as
simulation model as well. Furthermore, it must be noted that in this research only the influence of one error
at a time will be investigated as to pinpoint the important derivatives. The robustness to multiple errors at
the same time is beyond the scope of this thesis.

9.1. Introducing the Error in the Prediction Model
First of all, for each cross-coupling case the important derivatives will be identified by means of implementing
an error, one at a time, in every derivative relevant to the cross-coupling case in the prediction model of the
MPC controller. Then, similar simulations as in Chapter 8 are performed and the cross-coupling parameters
are measured. Based on the change in cross-coupling parameter and if the controller still has level 1 handling
qualities the derivatives which alter the handling qualities of the MPC controlled helicopter the most can be
found. Once the important derivatives have been identified, they will be investigated further by varying the
error that is implemented and measuring how this affects the cross-coupling parameter.

The error will be implemented in the prediction model of the MPC controller in the elements of the
state matrix 𝐴 and input matrix 𝐵 of the linear helicopter model. More specifically, it will be implemented
in the relevant elements only e.g. for yaw due to collective coupling the error will be implemented in the
derivatives of the yaw acceleration so Ꭷ፫̇

Ꭷ፮ ,
Ꭷ፫̇
Ꭷ፯ , ... in the 𝐴 matrix and Ꭷ፫̇

Ꭷ᎕Ꮂ
, Ꭷ፫̇Ꭷ᎕Ꮃᑤ

, ... in the 𝐵 matrix. Here, a

simplified notation will be used such that for example the derivative Ꭷ፫̇
Ꭷ፮ will be noted as �̇�፮. The values of

the derivatives the error will be applied to can be seen in Equation 9.1 for 0 knots and Equation 9.2 for 80
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knots. One may wonder how these are related to the force derivatives 𝑋፮ , 𝑌፮ , ... which are more commonly
used when speaking of derivatives. An overview of how the elements in the 𝐴 and 𝐵 matrix are related to
the force derivatives or static stability derivatives can be seen in Equation 2.8.

[
�̇�፮ �̇�፯ �̇�፰ �̇�፩ �̇�፪ �̇�፫
�̇�፮ �̇�፯ �̇�፰ �̇�፩ �̇�፪ �̇�፫
�̇�፮ �̇�፯ �̇�፰ �̇�፩ �̇�፪ �̇�፫

] = [
1.2 −0.1 0.0 −16.3 3.6 0.4
0.1 0.0 0.0 1.6 −4.0 0.00
0.2 0.2 0.0 −2.3 0.6 −0.9

]

[
�̇�᎕Ꮂ �̇�᎕Ꮃᑤ �̇�᎕Ꮃᑔ �̇�᎕Ꮂᑥᑣ
�̇�᎕Ꮂ �̇�᎕Ꮃᑤ �̇�᎕Ꮃᑔ �̇�᎕Ꮂᑥᑣ
�̇�᎕Ꮂ �̇�᎕Ꮃᑤ �̇�᎕Ꮃᑔ �̇�᎕Ꮂᑥᑣ

] = [
4.1 −17.9 150.3 8.6
0.8 −46.7 4.8 0.0
19.2 −2.6 24.0 −21.5

]

(9.1)

[
�̇�፮ �̇�፯ �̇�፰ �̇�፩ �̇�፪ �̇�፫
�̇�፮ �̇�፯ �̇�፰ �̇�፩ �̇�፪ �̇�፫
�̇�፮ �̇�፯ �̇�፰ �̇�፩ �̇�፪ �̇�፫

] = [
0.1 −0.1 −0.2 −17.4 4.5 0.4
0.1 0.0 0.2 1.5 −4.0 0.0
0.0 0.3 −0.2 −2.8 1.5 −1.4

]

[
�̇�᎕Ꮂ �̇�᎕Ꮃᑤ �̇�᎕Ꮃᑔ �̇�᎕Ꮂᑥᑣ
�̇�᎕Ꮂ �̇�᎕Ꮃᑤ �̇�᎕Ꮃᑔ �̇�᎕Ꮂᑥᑣ
�̇�᎕Ꮂ �̇�᎕Ꮃᑤ �̇�᎕Ꮃᑔ �̇�᎕Ꮂᑥᑣ

] = [
4.3 −8.7 159.6 9.0
23.5 −49.8 4.6 0.0
4.6 8.4 21.8 −22.5

]

(9.2)

The error 𝜖 will be implemented to the actual derivative in a dimensionless manner as can be seen in
Equation 9.3. Here, the estimated derivative 𝐷ፌፏፂ, so the derivative with error, will be equal to the actual
derivative 𝐷ፚ፭፮ፚ፥ plus a fraction 𝜖 of the actual derivative. Hence, when the error is smaller than -1, the
estimated derivative is of opposite sign as the actual derivative. When the error is in between -1 and 0, the
estimated derivative is smaller in absolute value as the actual derivative, so underestimated. When the error
is larger than 0, the estimated derivative is larger in absolute value than the actual derivative. An overview
of how the value of the error influences the proportions between the actual and the MPC derivative can be
found in Equation 9.4.

𝐷ፌፏፂ = 𝐷ፚ፭፮ፚ፥(1 + 𝜖) (9.3)

𝜖 < −1 ∶ sgn(𝐷ፌፏፂ) = −sgn(𝐷ፚ፭፮ፚ፥)
𝜖 = −1 ∶ 𝐷ፌፏፂ = 0

−1 < 𝜖 < 0 ∶ |𝐷ፌፏፂ| < |𝐷ፚ፭፮ፚ፥|
𝜖 = 0 ∶ 𝐷ፌፏፂ = 𝐷ፚ፭፮ፚ፥
𝜖 > 0 ∶ |𝐷ፌፏፂ| > |𝐷ፚ፭፮ፚ፥|

(9.4)

In order to find out how large such an error realistically could be when modeling a helicopter, data from
Pavel (1996), considered as estimated derivatives, was compared to data from the NASA model of Heffley
et. al (1979), considered as actual derivatives [1], [2]. Here, it could be seen that most errors are within -1
and 0, hence underestimating the actual derivative in absolute value. It is only for a few cases that a greater
positive or negative error occurs but still around an absolute value of 1. Furthermore, some outliers were
spotted with errors of ±30. However, these only occur because the actual derivative is almost zero. As will
be clear later from the results of the sensitivity analysis, the accuracy of these derivatives barely influence
the MPC performance at all.

Therefore, it was chosen to first find the important derivatives by applying an error of 10 and -10 to all
of the relevant derivatives and measuring the cross-coupling parameters. After this a range of errors from
-10 to 10, so 𝜖 = −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
will be applied to the most important derivatives in order to have an individual analysis. The results of the
individual analysis can be found in Appendix D.

9.2. Yaw due to Collective for Aggressive Agility
The sensitivity analysis for yaw due to collective coupling for forward flight (80 knots) for both positive and
negative collective step inputs and positive and negative derivative error can be seen in Figure 9.1. Here, each
dot represents the value of the cross-coupling parameter when the error of 10 or -10 is implemented in the
corresponding derivative as can be seen in the legend. It can be seen that the negative error gives significantly
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worse cross-couplings than the positive error. The worst cross-couplings are found when a negative error
is implemented in the change in yaw acceleration because of tail rotor collective derivative �̇�᎕Ꮂᑥᑣ for both
positive and negative input, going into level 3 handling qualities with a big margin. Furthermore the yaw due
to lateral cyclic derivative �̇�᎕Ꮃᑔ is also sensitive to negative errors going far into the level 3 zone. Finally, when
a positive or negative error is implemented in the yaw due to collective derivative �̇�᎕Ꮂ , the handling qualities
almost go to level 3. The other derivatives do not have a big influence on the cross-coupling parameters when
a large error is implemented to them, all staying within level 1 handling qualities. These three derivatives
were investigated further in order to see how the value of the error influences the cross-coupling handling
qualities in Figures D.1, D.2 and D.3 in Appendix D. It is notable that these three derivatives are also the
ones with largest absolute value in the 𝐴 and 𝐵 matrix as can be seen in the yaw acceleration derivatives
in Equation 9.2. This is also highly logical as the elements with the largest absolute value influence the
dynamics of that degree of freedom the most.

Figure 9.1: Yaw due to collective coupling sensitivity analysis in hover for positive (up) and negative (down) collective step
input and for a positive and negative error implemented in one of the derivatives.

It can be seen from the individual analysis that for both �̇�᎕Ꮃᑔ and �̇�᎕Ꮂᑥᑣ the handling qualities stay more
or less the same for positive handling qualities. It is only when a negative error is applied that the handling
qualities rise high above the level 3 boundary. For �̇�᎕Ꮃᑔ this happens when the error becomes smaller than
-4, gradually degrading more and more, whereas for �̇�᎕Ꮂᑥᑣ the handling qualities quickly rise once the error
becomes smaller than -1, so when the derivative changes sign. This sudden instability once the �̇�᎕Ꮂᑥᑣ -derivative
changes sign is quite logical as physically the change in sign would mean that the tail rotor force is acting
in the opposite direction, totally destabilizing the dynamics.

The �̇�᎕Ꮂ-derivative on the other hand has a gradual increase of cross-coupling when the error increases
absolute value for both the positive and negative errors, with the increase in cross-coupling being almost
symmetric. Eventually, it is the 𝑟ኽ/ |ℎ̇(3)| parameter that is the limiting factor and degrades the handling
qualities the most, going almost into the level 3 zone for the positive collective input and on the border of
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the level 3 zone for the negative collective input with an error of 10 or -10. As long as the error remains
within -3 and 2, level 1 handling qualities can be obtained.

9.3. Pitch due to Roll Coupling for Aggressive Agility
The sensitivity analysis for pitch due to roll coupling for aggressive agility for both hover and forward flight
at 80 knots can be seen in Figures 9.2 and 9.3. It can be seen that the only derivative that get the handling
qualities out of the level 1 zone when an error, namely a negative error, is applied is the change in pitch
acceleration due to longitudinal cyclic derivative �̇�᎕Ꮃᑤ for both hover and forward flight. The other derivatives
remain in level 1 when the error is implemented. Again, it is remarkable that the �̇�᎕Ꮃᑤ derivative in the 𝐵
matrix for both hover and forward flight takes up a very high value compared to the other derivatives of the
pitch acceleration.

Figure 9.2: Pitch due to roll coupling sensitivity analysis for 0 and 80 knots, positive (right) and negative (left) lateral cyclic
and for a positive and negative error implemented in one of the derivatives.

Figure 9.3: Pitch due to roll coupling sensitivity analysis zoomed in to level 1.

It can be seen in these matrices that the �̇�᎕Ꮂ also takes up a relatively high value for forward flight.
However, this derivative does not play an important role in this cross-coupling case. This can be explained
by the fact that the dynamics of the pitch rate is not determined by only the value of these derivatives but
the product of these derivatives with their corresponding state deviation from trim (𝛿𝑥 = 𝑥−𝑥ኺ). Since the
collective input is not deviating much from its trim input, the �̇�᎕Ꮂ derivative does not degrade the handling
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qualities much when an error is implemented to it. When zooming in to level 1 one can see that compared
to the PID controller, the �̇�፪, �̇�᎕Ꮂ and �̇�᎕Ꮃᑤ derivatives mainly perform worse than the PID controller which
does not rely on a prediction model.

When analyzing the �̇�᎕Ꮃᑤ derivative individually for varying errors, one can see in Figure D.4 in Appendix
D that once the errors gets smaller than -1, so when the estimated derivative changes sign, the handling
qualities jump from level 1 to level 3 for forward flight. For hover, the handling qualities only go to level 2
when the error surpasses this boundary. Physically this makes sense because if the change in pitch acceleration
due to longitudinal cyclic input is estimated to be of opposite sign, then pulling the cyclic stick up would be
making the helicopter pitch down. Hence, when the MPC prediction model has this physically incorrect and
highly influential derivative, the resulting optimal control input does not reduce the cross-couplings very well
in closed-loop.

9.4. Roll due to Pitch Coupling for Aggressive Agility
The sensitivity analysis for roll due to pitch coupling for aggressive agility for both hover and forward flight
at 80 knots can be seen in Figures 9.4 and 9.5. Here it can be seen that for hover and to a lesser extent
for forward flight an error of both plus and minus ten in the roll damping derivative �̇�፩ makes the handling
qualities degrade to level 3. A positive error in the �̇�᎕Ꮃᑔ derivative also degrades the handling qualities for
both hover and forward flight to level 3. When looking closely to the level 2/3 handling quality border for
hover, one can see that also the �̇�፮ derivative is sensitive to model errors. Furthermore, the �̇�᎕Ꮂ and �̇�፰
derivative go into level 2 when an error is applied to it. Again, the values for �̇�፩ and �̇�᎕Ꮃᑔ are very large
compared to the other derivatives which makes them influence the dynamics of the helicopter a lot. The
�̇�፮ derivative value is not so large. However, because of the pitching of the helicopter, large deviations of
forward velocity from the trim velocity are obtained, coupling the lateral and longitudinal motion. Therefore,
this derivative also plays an important role.

Figure 9.4: Roll due to pitch coupling sensitivity analysis for 0 and 80 knots, positive (up) and negative (down) longitudinal
cyclic and for a positive and negative error implemented in one of the derivatives.

When looking at these three derivatives individually in Figures D.5, D.6 and D.7 in Appendix D, one can
see how the handling qualities change for an increasingly positive and negative error. For the roll damping
derivative �̇�፩ for example, the handing qualities stay within level 1 for errors from -6 to 3. Here, it is mainly
the positive errors that degrade the performance. In the positive input, 0 knots case, the parameter even
goes to 92 and 175 for an error of 6 and 7, which is very large indicating that the helicopter went unstable.
Also the negative errors, from -6, give level 3 handling qualities for the 0 knots and negative input case
and level 2 handling qualities for the 80 knots and positive input case. Furthermore, the �̇�᎕Ꮃᑔ derivative
becomes of importance for errors smaller than or equal to -1, meaning the estimated derivative is either 0
is of opposite sign as the actual derivative. Physically this would mean that the helicopter would roll to
the right when giving a lateral cyclic input to the left and vice versa. This is completely contradictory to
the actual helicopter dynamics and very decisive for the roll due to pitch maneuver, making the handling
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Figure 9.5: Roll due to pitch coupling sensitivity analysis zoomed in to level 1.

qualities degrade to level 3 for all 4 cases. Lastly, the error in the �̇�፮ derivative seems to influence the
handling qualities in a symmetric way: when the absolute value of the error increases the handling qualities
decrease, for both positive and negative errors. However, the handling qualities only go into the level 3 zone
for hover. In forward flight, the cross-coupling parameter stays within level 1.

9.5. Pitch due to Collective Coupling
The sensitivity analysis for pitch due to collective coupling for small and large collective inputs at 80 knots
can be seen in Figures 9.6 and 9.7. It can be seen that only the �̇�᎕Ꮃᑤ derivative goes into the level 3 zone
when negative errors are implemented to it. Again, it is the derivative with a high value in the state-space
matrices indicating it greatly influences the dynamics of the helicopter. Besides this, the other derivatives
stay well within level 1 handling qualities. When zooming in, it can be seen that some derivatives do perform
worse than the PID controller such as the �̇�፰ derivative.

Figure 9.6: Pitch due to collective coupling sensitivity analysis for 80 knots, positive (up) and negative (down) collective step
input and for a positive and negative error implemented in one of the derivatives.

When looking at the how the error influences the cross-coupling when implemented in the change pitch
acceleration due to longitudinal cyclic input derivative �̇�᎕Ꮃᑤ in Figure D.8, one can see that the handling
qualities only degrade to level 3 once the error goes smaller than or equal to -1. This means that then, the
estimated derivative is of opposite sign compared to the actual derivative or zero. Physically this implies
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Figure 9.7: Pitch due to collective coupling sensitivity analysis zoomed in to level 1.

that pulling the cyclic stick up makes the helicopter pitch down which is the opposite of how the actual
helicopter behaves. This estimation is highly inaccurate and therefore the MPC controller does not succeed
at reducing the cross-couplings.

9.6. Pitch due to Roll and Roll due to Pitch Coupling for Target
Acquisition and Tracking

The sensitivity analysis for pitch due to roll and roll due to pitch coupling for target acquisition and tracking
for both hover and 80 knots flight can be found in Figure 9.8. Here, the boundaries for the 𝑝/𝑞 coupling are
assumed to be at -10 dB and 5 dB, indicated by the grey solid line. For pitch due to roll (𝑞/𝑝) coupling it
can be seen that only for a negative error the handling qualities degrade into level 2 or 3 for �̇�᎕Ꮃᑤ , �̇�᎕Ꮂ and
the damping derivative �̇�፪ which is in line with the values of these derivatives in the state-space matrices.
For roll due to pitch (𝑝/𝑞) coupling the important derivatives are roll damping derivative �̇�፩, going into level
3 for hover and into level 2 for forward flight, �̇�᎕Ꮃᑔ , going into level 1 and 2, and �̇�᎕Ꮂᑥᑣ just crossing the
border at level 2 for forward flight and a positive input.

The individual sensitivity analysis for the most important derivatives for pitch due to roll coupling can
be seen in Figures D.9, D.10 and D.11 and for roll due to pitch coupling in Figures D.12, D.13 and D.14 in
Appendix D.

Pitch due to Roll Individual Analysis When looking at the analysis of the error in the pitch damping
derivative �̇�፪ one can see that the only for very small negative numbers (𝜖<-8) the handling qualities degrade
to level 2. The degradation is only present for negative errors which can be explained by the fact that �̇�፪
characterizes the phugoid Eigenmotion and is destabilizing when positive. Hence, when this derivative is
estimated to be of opposite sign, the dynamic stability of the helicopter changes degrading the MPC controller
closed-loop performance. Furthermore, when the error is implemented in the �̇�᎕Ꮂ derivative, the handling
qualities got to level 3 for negative errors smaller than -4 and for forward flight only. For positive errors,
the handling qualities stay in level 1 but do degrade with increasing error. The cross-coupling parameter
for hover seems to stay more or less unaffected by the error. Finally, the error in the �̇�᎕Ꮃᑤ derivative also
degrades the handling qualities to level 2 and 3 only for negative errors smaller than 1, but now for both
hover and forward flight. The positive errors seem to degrade the handling qualities with increasing error
but stay within level 1.

Roll due to Pitch Individual Analysis The analysis of the error in the roll damping derivative �̇�፩ shows a
more or less symmetrical distribution of the cross-coupling parameter across the positive and negative errors.
Errors outside of -7 and 3 seem to have handling qualities in level 2 or 3. This derivative characterizes
the roll subsidence Eigenmotion and is therefore important for stability. Therefore, majorly overestimating
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this derivative (𝜖>3) or estimating the derivative to be of opposite sign (𝜖<-7) increases the cross-coupling
parameter. Furthermore, negative errors in the �̇�᎕Ꮃᑔ derivative, smaller than or equal to -1 degrade the
handling qualities to level 3 for hover and level 2 for 80 knots flight. Positive errors seem to also degrade
the handling qualities but it stays in level 1. Finally, when an error is applied to the �̇�᎕Ꮂᑥᑣ derivative, the
cross-coupling parameter barely changes for hover. However, for forward flight the negative errors (𝜖<-5)
degrade the handling qualities to level 2.

Figure 9.8: Pitch due to roll (q/p) and roll-due-to-pitch (p/q) frequency coupling sensitivity analysis for 0 and 80 knots, positive
and negative lateral/longitudinal cyclic and for a positive and negative error implemented in one of the derivatives.

9.7. Overview of Important Derivatives
An overview of the important derivatives for each cross-coupling case can be seen in Table 9.1 together with
some characteristics of how the error influences the cross-coupling parameters. For example, when it says
𝜖<-1, it means that the handling qualities are degraded to level 2 or 3 only for errors smaller than one.
Furthermore, ’symmetrical’ means the error in the derivative influences the handling qualities in a symmetric
way: when the absolute value of the error increases the cross-coupling parameter increases and hence the
handling qualities decrease. When 0 or 80 knots is stated in the characteristics this means the handling
qualities are only affected for this flight speed.

As said before, it is noticeable that the important derivatives are the derivatives that either have a
relatively large value in the state-space matrix (Equations 9.1 and 9.2) or that experience a large change
from trim throughout the cross-coupling simulations. This is also very logical as the product of the derivative
and the deviation of the state from trim determines the acceleration of that degree of freedom. Hence, when
an error is present in the derivative with a large value the mismatch between the estimated and actual motion
increases. Being able to deduct which derivatives are important from the state-space matrices enables to
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extend the results of this BO-105 sensitivity analysis to other helicopters as well.
It can also be seen in this overview that the important derivatives are mostly control derivatives from

matrix 𝐵, so derivatives with respect to a control input. Furthermore, mostly negative errors, at least smaller
than -1, degrade the handling qualities to level 2 or 3 whereas the positive errors barely change the cross-
couplings. For the control derivatives this is highly logical because the error smaller than -1 indicates the
derivative changes sign, meaning that the controls would be working in the opposite direction. For example,
if the �̇�᎕Ꮂᑥᑣ derivative is of opposite sign, the tail rotor force would be pointing the opposite direction. For
the pitch damping �̇�፪ derivative, the opposite sign is degrading the handling qualities because this is an
important stability derivative for the phugoid Eigenmotion. When the sign is estimated incorrectly, the
Eigenmotion of the helicopter is majorly affected.

Besides the control derivatives and the pitch damping derivative that degrade when negative errors are
implemented, there are the �̇�፩ and �̇�፮ derivatives which are important for the roll due to pitch coupling for
both positive and negative errors. Here, the roll damping derivative �̇�፩ is characteristic for the roll subsidence
Eigenmotion and is therefore also important to be accurate. The �̇�፮ derivative is a coupling derivative which
couples the lateral and longitudinal motion when the rotor is tilting and a forward velocity change occurs.
Hence, the tilting forward during the roll due to pitch maneuver creates this large change in forward velocity
𝑢, giving this derivative more importance in the helicopter dynamics.

Table 9.1: Overview and characteristics of the important derivatives for each cross-coupling case.

Cross-coupling case Important
derivatives

Characteristics Cross-coupling
case

Important
derivatives

Characteristics

Pitch d.t. roll �̇�᎕Ꮃᑤ 𝜖 <-1 Pitch d.t. roll �̇�፪ 𝜖 ≤-8
for TA & T �̇�᎕Ꮂ 𝜖 ≤-4, 80 kn

�̇�᎕Ꮃᑤ 𝜖 ≤-1
Roll d.t. pitch �̇�፮ symmetrical, 0 kn Roll d.t. pitch �̇�፩ ∼ symmetrical

�̇�፩ for TA & T �̇�᎕Ꮃᑔ 𝜖 ≤-1
�̇�᎕Ꮃᑔ 𝜖 ≤-1 �̇�᎕Ꮂᑥᑣ 𝜖 ≤-6, 80 kn

Yaw d.t. collective �̇�᎕Ꮂ symmetrical
�̇�᎕Ꮃ 𝜖 ≤-3
�̇�᎕Ꮂᑥᑣ 𝜖 ≤-1

Pitch d.t. collective �̇�᎕Ꮃᑤ 𝜖 ≤-1
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Conclusion of the Thesis Work

This work investigated whether linear and nonlinear model predictive control are suitable for online appli-
cation to helicopters to reduce cross-coupling effects by evaluating its performance on the cross-coupling
handling quality requirements of the ADS-33 document. The cross-coupling requirements were tested in
simulation by implementing a step in one control input and measuring the cross-coupling parameter which
represents the amount of off-axis response.

On one hand it was investigated how well the linear and nonlinear MPC can reduce cross-coupling effects
when a control input is given based on the rating scale for handling qualities and compared to an uncontrolled
and PID controlled helicopter. It was found that both linear and nonlinear MPC are able to reduce the off-
axis response of the tested cross-coupling cases by around 99% compared to the uncontrolled helicopter
bringing all handling quality levels from level 2 or 3 to level 1. Here, handling qualities of level 1 indicate
having minimal pilot workload and desired aircraft characteristics. Also the PID controller is able to bring
the handling qualities from level 2 or 3 to level 1. However, when comparing the MPC to the PID controller
almost all MPC cases have 90% to 99% better cross-coupling reduction than the PID controller. This can be
explained by the optimal and model-based behaviour of the MPC controllers: where the PID controller shows
a washed-out coupling off-axis rate response, the MPC controllers almost eliminate all coupling showing a
quasi decoupled off-axis rate response.

When a disturbance is introduced in the simulation model, the cross-coupling reduction performance is
only slightly less, keeping level 1 handling qualities for most coupling cases. This indicates that MPC is robust
to this disturbance. Only the yaw due to collective coupling case with uncertainty for a positive collective
input gives level 2 handling qualities for the MPC controllers and not for the PID controller. However, this
can be explained by the poorly estimated yaw coupling in the prediction model because of the unknown
disturbance in rotor thrust and by the cross-coupling parameter that is based on the yaw rate instead of yaw
angle which is optimized for. The PID controller does not have this disadvantage as it purely depends on
the error in attitude and not on a prediction model. This lesser performance of the MPC controller could be
solved by implementing robust MPC or adapting the objective function to also minimize the yaw rate.

Furthermore, the differences between linear and nonlinear MPC were investigated where it was found
that the linear prediction model has lower fidelity and the non-convexity of nonlinear MPC brings a heavier
computational burden and the existence of multiple local optima with it. However, the loss in performance
because of suboptimality is negligible for the cross-coupling cases. Furthermore, more computer power, faster
optimization algorithms and other tricks could possibly enable real-time nonlinear MPC for helicopters. Next
to this, the differences in performance between linear and nonlinear MPC for the cross-coupling simulations
are so small they do not noticeably degrade the handling qualities and can be assumed to be non-existent.
As linear MPC has the advantage of having a shorter computation time and no suboptimal solutions, linear
MPC is preferred over nonlinear MPC in order to reduce cross-coupling effects.

On the other hand, it was examined how sensitive MPC is to prediction model errors when reducing
cross-coupling effects by implementing a fixed error in the relevant derivatives of the linear prediction model
and measuring the performance change. It was found that the derivatives sensitive to errors are the deriva-
tives that either have a relatively large value in the state-space matrix or that experience a large change from
trim throughout the simulation. These derivatives were mainly control derivatives. After individual analysis
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of the important derivatives it was found that mostly negative errors smaller than -1 degrade the handling
qualities to level 2 or 3 whereas the positive errors barely change the cross-coupling effects in most cases.
For the control derivatives this is highly logical because the error smaller than -1 indicates the derivative
changes sign, meaning that the controls would be working in the opposite direction according to the predic-
tion model. As the error in the derivative was found to mostly stay within -1 and 1, it can be concluded that
the MPC controller is robust to these model errors and keeps having level 1 handling qualities. When the
absolute error increases and specially when the errors gets smaller than -1, the degradation in performance
could be solved by implementing robust MPC which improves the performance when an unmeasured error
or disturbance is present.

In short, it can be concluded that both linear and nonlinear MPC are very effective to reduce cross-coupling
effects even when a disturbance is applied. Both controllers are able to improve the handling qualities of the
helicopter to level 1 indicating a minimal pilot workload and desired aircraft characteristics. However, when
large model errors are present in the prediction model, especially negative errors in the control derivatives, a
degradation of handling qualities can be seen. Yet, for small errors the handling qualities remain in level 1.
As linear MPC has the advantage of having a shorter computation time and no suboptimal solutions, linear
MPC is preferred over nonlinear MPC for reducing cross-coupling effects.
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Recommendations for Future Work

Now that an answer is given to the research questions of this thesis, there are still some recommendations
for future work to extend the investigation of MPC applied to helicopters and to test the established MPC
controller to reduce cross-couplings even further.

Test the Established Controller More Elaborately The established linear and nonlinear MPC controllers
in this research are tested for the cross-coupling requirements in the ADS-33 for both hover and forward
flight at 80 knots in simulation. Now, the results for 0 knots are assumed to be valid for all low flight speeds
and the results for 80 knots are assumed to be valid for forward flight in general. As the maximum flight
speed of the BO-105 is 145 knots, it would be interesting to also test the ability to reduce cross-couplings
for this flight speed.

Furthermore, the robustness of the controller to other disturbances in the simulation model should be
tested. Now, only an uncertainty in the main rotor thrust coefficient is implemented and tested for. For
yaw due to collective coupling, the disturbance degraded the handling qualities to level 2. It should be
investigated if uncertainties implemented in other parts of the model or external disturbances such as wind
gusts influence the cross-coupling reduction performance of the controller.

Finally, it was seen from the cross-coupling requirement simulations that when the MPC controller is
applied to the helicopter to reduce the off-axis response, the on-axis response is influenced as well. It would
be interesting to investigate how the on-axis response gets influenced and what kind of effect this has on
the handling qualities of the helicopter.

Implement and Evaluate Robust MPC for Reducing Cross-couplings It could be seen from the cross-
coupling results with disturbance that the uncertainty degrades the handling qualities significantly in the
case for yaw due to collective coupling. Furthermore, large negative errors, mainly in control derivatives, in
the prediction model could also bring the handling qualities to level 2 or even level 3. Robust MPC could
be implemented in order to improve the robustness to both model errors and disturbances to the actual
helicopter. By implementing robust MPC, one increases the robustness going at the cost of the overall
performance. Therefore, this trade-off between robustness and performance should be investigated.

Investigate Effectiveness of Linear MPC on Helicopters for Tracking Maneuvers In this research, the
differences in optimization such as the (sub)optimality and computation time question and the linear model
fidelity were investigated. In practice the cross-coupling cases showed only very small differences between
the linear and nonlinear controller. However, it would be interesting to investigate if the linear model is
still accurate enough when longer tracking simulation were performed, say to fly a maneuver. It is expected
that, as the state moves further away from the trim point, the fidelity of the linear model will degrade.
Furthermore, longer prediction horizons would be needed for tracking a maneuver which also increases the
accumulation of error along the prediction horizon. Successive linearization or linear model stitching could
be used in order to systematically improve the linear prediction model during the maneuver.
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A
Non-dimensionalizing and

Comparing Stability Derivatives

Stability derivatives are often non-dimensionalized in order to be able to compare them with other models
and other helicopters. This is done by dividing the derivative by helicopter parameters of the same units.
The non-dimensionalization scheme used for this model is presented in Equation A.1. Here, Λ is used to
non-dimensionalize derivatives of force over a velocity e.g. 𝑋፮ such that 𝑥፮ =

ፗᑦ
ጉ . Furthermore,Λኺ is used

to non-dimensionalize derivatives of force over an angle e.g. 𝑋᎕ᑗ . Next, Λኻ is used for derivatives of force
over angular velocity and moment over velocity e.g. 𝑋፪ or 𝑀፮. Moreover, Λኼ is used for derivatives of a
moment over angular velocity e.g. 𝑀፪. Finally, Λኽ is used for the non-dimensionalization of derivatives of a
moment over an angle e.g. 𝑀᎕ᑗ .

Λ = 𝜌𝐴Ω𝑅
Λኺ = 𝜌𝐴Ωኼ𝑅ኼ
Λኻ = 𝜌𝐴Ω𝑅ኼ
Λኼ = 𝜌𝐴Ω𝑅ኽ
Λኽ = 𝜌𝐴Ωኼ𝑅ኽ

(A.1)

The non-dimensional derivatives of the 6 DOF model of the BO-105 helicopter used in this research can
be seen in Table A.1. Furthermore, in Table A.2 the non-dimensional derivatives of the NASA model of
Heffley et. al. (1979) can be seen [2]. When comparing the derivatives with each other, it can be noted
that the signs of the derivatives are mostly similar, with some exceptions such as 𝑧፮, 𝑧፰ and 𝑙፫ and some
control derivatives. Furthermore, most state derivatives have the same order of magnitude. Moreover it can
be seen that the control derivatives of the 6 DOF model are very small in magnitude whereas the NASA
model derivatives have much greater magnitude.

Table A.1: Non-dimensional derivatives of the 6 DOF BO-105 model for hover.

Deriv. Value Deriv. Value Deriv. Value Deriv. Value Deriv. Value Deriv. Value
𝑥፮ -2.323e-3 𝑥፯ -2.142e-3 𝑥፰ 2.094e-3 𝑥፩ -2.521e-2 𝑥፪ 3.895e-2 𝑥፫ 0.000
𝑦፮ 1.862e-2 𝑦፯ -9.303e-3 𝑦፰ -1.738e-3 𝑦፩ -5.330e-2 𝑦፮ 4.160e-3 𝑦፫ 6.370e-3
𝑧፮ -6.958e-3 𝑧፯ -1.606e-2 𝑧፰ 1.004e-1 𝑧፩ 2.485e-4 𝑧፪ 2.091e-3 𝑧፫ 0.000
𝑙፮ 1.772e-2 𝑙፯ -1.990e-3 𝑙፰ -4.982e-4 𝑙፩ -4.785e-2 𝑙፪ 1.051e-2 𝑙፫ 1.038e-3
𝑚፮ 5.562e-3 𝑚፯ 9.072e-4 𝑚፰ 1.005e-3 𝑚፩ 1.610e-2 𝑚፪ -4.041e-2 𝑚፫ 1.354e-7
𝑛፮ 8.897e-3 𝑛፯ 6.621e-3 𝑛፰ 1.227e-4 𝑛፩ -1.897e-2 𝑛፪ 4.593e-3 𝑛፫ -7.410e-3
𝑥᎕Ꮂ 1.380e-6 𝑥᎕Ꮃᑤ 3.313e-6 𝑥᎕Ꮃᑔ -1.673e-6 𝑥᎕Ꮂᑥᑣ 0.000
𝑦᎕Ꮂ -4.715e-7 𝑦᎕Ꮃᑤ -1.672e-6 𝑦᎕Ꮃᑔ 1.069e-6 𝑦᎕Ꮂᑥᑣ 1.589e-6
𝑧᎕Ꮂ -3.042e-5 𝑧᎕Ꮃᑤ 3.459e-7 𝑧᎕Ꮃᑔ -2.508e-8 𝑧᎕Ꮂᑥᑣ 0.000
𝑙᎕Ꮂ 1.909e-7 𝑙᎕Ꮃᑤ -8.285e-7 𝑙᎕Ꮃᑔ 6.944e-6 𝑙᎕Ꮂᑥᑣ 3.977e-7
𝑚᎕Ꮂ 3.522e-8 𝑚᎕Ꮃᑤ -2.155e-6 𝑚᎕Ꮃᑔ 2.232e-7 𝑚᎕Ꮂᑥᑣ 0.000
𝑛᎕Ꮂ 8.883e-7 𝑛᎕Ꮃᑤ -1.188e-7 𝑛᎕Ꮃᑔ 1.109e-6 𝑛᎕Ꮂᑥᑣ -9.921e-7

113



114 A. Non-dimensionalizing and Comparing Stability Derivatives

Table A.2: Non-dimensional derivatives from BO-105 NASA model for hover [2].

Deriv. Value Deriv. Value Deriv. Value Deriv. Value Deriv. Value Deriv. Value
𝑥፮ -3.44e-3 𝑥፯ - 𝑥፰ 2.569e-3 𝑥፩ - 𝑥፪ 2.072e-2 𝑥፫ -
𝑦፮ - 𝑦፯ -6.632e-3 𝑦፰ - 𝑦፩ -2.246e-2 𝑦፮ - 𝑦፫ 2.638e-3
𝑧፮ 2.073e-3 𝑧፯ - 𝑧፰ -6.875e-2 𝑧፩ - 𝑧፪ 4.246e-3 𝑧፫ -
𝑙፮ - 𝑙፯ -1.943 𝑙፰ - 𝑙፩ -1.916 𝑙፪ - 𝑙፫ -4.642e-2
𝑚፮ 6.208e-1 𝑚፯ - 𝑚፰ 8.147e-2 𝑚፩ - 𝑚፪ -7.041e-1 𝑚፫ -
𝑛፮ - 𝑛፯ 3.043e-1 𝑛፰ - 𝑛፩ -1.573e-2 𝑛፪ - 𝑛፫ -6.777e-2
𝑥᎕Ꮂ 4.767e-3 𝑥᎕Ꮃᑤ -1.588e-2 𝑥᎕Ꮃᑔ - 𝑥᎕Ꮂᑥᑣ -
𝑦᎕Ꮂ - 𝑦᎕Ꮃᑤ - 𝑦᎕Ꮃᑔ -4.111e-3 𝑦᎕Ꮂᑥᑣ -7.375e-3
𝑧᎕Ꮂ 1.055e-1 𝑧᎕Ꮃᑤ 8.550e-4 𝑧᎕Ꮃᑔ - 𝑧᎕Ꮂᑥᑣ -
𝑙᎕Ꮂ - 𝑙᎕Ꮃᑤ - 𝑙᎕Ꮃᑔ -2.011 𝑙᎕Ꮂᑥᑣ -1.765
𝑚᎕Ꮂ -1.274e-1 𝑚᎕Ꮃᑤ -2.901 𝑚᎕Ꮃᑔ - 𝑚᎕Ꮂᑥᑣ -
𝑛᎕Ꮂ - 𝑛᎕Ꮃᑤ - 𝑛᎕Ꮃᑔ 2.588e-2 𝑛᎕Ꮂᑥᑣ 9.297e-1



B
Linear Model of the BO-105 for

Hover and Forward Flight

The simulations of this research are focused on the helicopter in hover and in forward flight. Therefore, a
linear model linearized around the trim point at 0 knots (Equation B.1) and around the trim point at 80
knots (Equation B.2) with perturbation linearization are used. The state matrix 𝐴 and control matrix 𝐵 of
the hover and forward flight linear state-space models can be found in Equation B.3 and B.4 (hover) and
Equation B.5 and B.6 (forward flight) with state 𝑥 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜓 𝜃 𝜙 𝑥 𝑦 𝑧 𝜆ኺ 𝜆ኺᑥᑣ]ᖣ and controls
𝑢 = [𝜃ኺ 𝜃ኻ፬ 𝜃ኻ 𝜃ኺᑥᑣ]ᖣ.
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116 B. Linear Model of the BO-105 for Hover and Forward Flight
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C
Cross-coupling Requirement

Simulations

The simulations performed to obtain the cross-coupling requirement results of Chapter 8 can be found in
this appendix.
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120 C. Cross-coupling Requirement Simulations

(a)
Uncontrolled

helicopter.
(b)

LM
PC.

Figure
C.1:

Yaw
due

to
positive

collective
step

input
without

uncertainty.
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122 C. Cross-coupling Requirement Simulations

(a)
Uncontrolled

helicopter.
(b)

LM
PC.

Figure
C.3:

Pitch
due

to
rollforhoverwith

a
positive

lateralcyclic
input

without
uncertainty.
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124 C. Cross-coupling Requirement Simulations

(a)
Uncontrolled

helicopter.
(b)

N
LM

PC.

Figure
C.5:

Pitch
due

to
rollforhoverwith

a
positive

lateralcyclic
input

without
uncertainty.
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126 C. Cross-coupling Requirement Simulations

(a)
Uncontrolled

helicopter.
(b)

N
LM

PC.

Figure
C.7:

Pitch
due

to
a
large,positive

collective
input

forforward
flight

without
uncertainty.
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128 C. Cross-coupling Requirement Simulations

(a)
Uncontrolled

helicopter.
(b)

LM
PC.

Figure
C.9:

Pitch
due

to
roll(፪/፩)

frequency
sweep

sim
ulation

from
20

rad/s
to

0.5
rad/s.
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D
Individual Sensitivity Analysis

The individual sensitivity analysis of the influence of the prediction model error to the important derivatives
for each cross-coupling case of Chapter 9 can be found in this appendix.

Figure D.1: Analysis of error in ፫̇ᒍᎲ -derivative for yaw due to collective coupling.
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132 D. Individual Sensitivity Analysis

Figure
D
.2:

Analysis
oferrorin

፫̇ᒍ
Ꮃᑔ -derivative

foryaw
due

to
collective

coupling.
Figure

D
.3:

Analysis
oferrorin

፫̇ᒍ
Ꮂᑥᑣ -derivative

foryaw
due

to
collective

coupling.
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134 D. Individual Sensitivity Analysis

Figure
D
.6:

Analysis
oferrorin

፩̇
ᑡ -derivative

forrolldue
to

pitch
coupling.

Figure
D
.7:

Analysis
oferrorin

፩̇
ᒍ
Ꮃᑔ -derivative

forrolldue
to

pitch
coupling.
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Figure D.8: Analysis of error in ፪̇ᒍᎳᑤ -derivative for pitch due to collective coupling.

Figure D.9: Analysis of error in ፪̇ᑢ-derivative for pitch due to roll coupling for target acquisition and tracking.



136 D. Individual Sensitivity Analysis

Figure D.10: Analysis of error in ፪̇ᒍᎲ -derivative for pitch due to roll coupling for target acquisition and tracking.

Figure D.11: Analysis of error in ፪̇ᒍᎳᑤ -derivative for pitch due to roll coupling for target acquisition and tracking.

Figure D.12: Analysis of error in ፩̇ᑡ-derivative for roll due to pitch coupling for target acquisition and tracking.
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Figure D.13: Analysis of error in ፩̇ᒍᎳᑔ -derivative for roll due to pitch coupling for target acquisition and tracking.

Figure D.14: Analysis of error in ፩̇ᒍᎲᑥᑣ -derivative for roll due to pitch coupling for target acquisition and tracking.
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