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A B S T R A C T   

In this paper a scenario-based Distributed Model Predictive Control (DMPC) approach based on a 
reduced scenario tree is developed for large-scale freeway networks. In the new scenario-based 
DMPC approach, uncertainties in a large-scale freeway network are distinguished into two cat
egories: global uncertainties for the overall network and local uncertainties applicable to sub
networks only. We propose to use a reduced scenario tree instead of using a complete scenario 
tree. A complete scenario tree is defined as a scenario tree consisting of global scenarios and all 
the combinations of the local scenarios for all subnetworks, while a reduced scenario tree is 
defined as a scenario tree consisting of global scenarios and a reduced local scenario tree in which 
local scenarios are combined within each subnetwork, not among subnetworks. Moreover, an 
expected-value setting and a min–max setting are considered for handling uncertainties in 
scenario-based DMPC. In the expected-value setting, the expected-value of the cost function 
values for all considered uncertainty scenarios is optimized by scenario-based DMPC. However, in 
the min–max setting, the worst-case of the cost function values for all considered uncertainty 
scenarios is optimized by scenario-based DMPC. The results for a numerical experiment show that 
the new scenario-based DMPC approach is effective in improving the control performance while 
at the same time satisfying the queue constraints in the presence of uncertainties. Additionally, 
the proposed approach results in a relatively low computational burden compared to the case 
with the complete scenario tree.   

1. Introduction 

With the development of modern society, traffic congestion has become a common phenomenon that people experience in daily 
life. Traffic congestion can result in a waste of time and energy, a high risk of traffic accidents, with detrimental effects on both mental 
and physical health of drivers. Since improving and extending traffic infrastructure is difficult and expensive, researchers have been 
making efforts on relieving traffic jam by means of traffic management. Traffic control is an important measure to realize dynamically 
traffic management. Typical traffic control approaches include fuzzy control (Hoyer and Jumar, 1994; Precup and Hellendoorn, 2011), 
neural network control (Srinivasan et al., 2006; Kato et al., 2017), adaptive control (Zheng and Recker, 2013; Haddad and Mirkin, 
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2016), etc. Model Predictive Control (MPC) for traffic networks has also been receiving more and more attention in the literature 
(Hegyi et al., 2005; Papamichail et al., 2010; Ferrara et al., 2015; Luo et al., 2016; Kim et al., 2017; Piacentini et al., 2018; Menelaou 
et al., 2019; Sirmatel and Geroliminis, 2018; Maestre et al., 2020). In this paper, our research is mainly about the control problem for 
freeway networks. However, in this section, some control approaches for urban traffic networks are also included, considering that 
they can probably be extended for freeway networks. The motivation for this paper is to develop a control scheme to reduce traffic 
congestion caused by heavy traffic demand in large-scale freeway networks, with uncertainties being considered. 

In MPC for traffic networks, macroscopic traffic models are often used for predicting the future evolutions of the controlled traffic 
networks. Since the predictions of the future evolutions of the controlled networks are used for determining the optimal control actions 
in MPC, the uncertainties that affect the accuracy of the predictions will also affect the control performance and the satisfaction of 
constraints on states and outputs. In particular, these uncertainties include the uncertainties in the measurements of states, the un
certainties in the model parameters, the uncertainties in the external uncontrollable inputs, and so on. There are some approaches 
available in the literature for handling uncertainties for MPC. Tettamanti et al. (2014) developed a robust MPC approach based on a 
min–max scheme and a linear model for urban networks, with constraints defined for all possible uncertainties. For nonlinear systems, 
one kind of approach is based on Lyapunov functions, see e.g. (Scokaert et al., 1997; De Nicolao et al., 1998). Another kind of approach 
is tube-based MPC, see e.g. (Mayne et al., 2011), where a model predictive controller forces the trajectories of the disturbed system to 
be within a tube around a central reference trajectory, which is obtained by a nominal control approach with tightened constraints on 
states and inputs. Moreover, a min–max scheme is used for handling uncertainties in (Campo and Morari, 1987; Gruber et al., 2013), 
where the worst-case control objective functions for all the considered uncertainties are optimized. In (Campo and Morari, 1987) 
constraints on control inputs and system outputs are defined for all possible uncertainties, and in (Gruber et al., 2013) only constraints 
on control inputs are considered. In (Liu et al., 2016), Liu et al. have developed a centralized robust predictive control approach for 
freeway networks based on a min–max scheme with constraints on queue lengths included in the control objective function as a penalty 
term. 

A large-scale traffic network is hard to control by centralized MPC due to the computational complexity. In Distributed Model 
Predictive Control (DMPC), a large-scale network is divided into smaller subnetworks, which are assigned to local controllers. 
Accordingly, the overall optimization problem is decomposed into local optimization problems for the local controllers by methods 
such as primal decomposition or dual decomposition (Christofides et al., 2013). In the dual decomposition method (Christofides et al., 
2013; Negenborn et al., 2008), coupling constraints among subnetworks are incorporated into the overall control objective function by 
Lagrangian relaxation or augmented Lagrangian relaxation, resulting in a dual problem that can be decomposed into local optimi
zation problems. It can be shown (Negenborn et al., 2008; Camponogara et al., 2002; Bertsekas, 1982) that when the control objective 
functions and the inequality constraints of subnetworks are convex and the equality constraints of subnetworks are affine, the solution 
of the original overall optimization problem can be retrieved by iteratively solving the dual problem with Lagrange multipliers fixed 
within one iteration, and for the current iteration the Lagrange multipliers are computed based on the solution for the previous 
iteration. Some researchers also use DMPC for nonlinear-nonconvex systems, and they use numerical experiments for investigating the 
control effectiveness. For instance, Frejo and Camacho applied DMPC for a nonlinear-nonconvex freeway network in (Frejo and 
Camacho, 2012), where they did not include coupling terms in the control objective function, and they adopted a setting in which each 
local controller can negotiate with other controllers through communication about coupling variables. Frejo and Camacho (2012) 
showed by a numerical experiment that DMPC can improve the control performance w.r.t. the no-control case, albeit that the control 
performance is suboptimal compared to that for the centralized control approach. Ferrara et al. (2015) reformulated a nonlinear traffic 
flow model as a mixed logical dynamical system including linear equalities and inequalities. By considering a freeway network as a 
system of systems, Ferrara et al. (2015) developed two different DMPC approaches: a so-called partially connected noniterative in
dependent algorithm where each local controller optimizes a local control objective function, and a so-called partially connected 
noniterative cooperative algorithm where each local controller optimizes the weighted sum of the control objective functions of that 
local controller and all neighbors. Ferrara et al. (2015) showed by a case study that the control performance can be improved by DMPC 
compared to the no-control case, and that the DMPC approach based on the so-called partially connected noniterative cooperative 
algorithm leads to a control performance that is close to that for the centralized control approach. 

In DMPC, local controllers communicate with other controllers to obtain solutions in a cooperative way for the control problem of 
the overall network (Maestre and Negenborn, 2014). Therefore, apart from the uncertainties of the current local controller, the un
certainties appearing in other local controllers also affect the control effectiveness of DMPC. Some robust DMPC approaches have been 
developed in (Richards and How, 2007; Giselsson, 2013; Li and Shi, 2014; Maestre et al., 2012; Martí et al., 2015; Leidereiter et al., 
2015). More specifically, in (Richards and How, 2007; Giselsson, 2013) a constraint tightening scheme is used for dealing with un
certainties in DMPC for linear systems. In (Richards and How, 2007), constraints are tightened in a monotonic way to ensure robust 
feasibility, including additional margins in the coupling constraints of each local controller to account for the uncertainties for 
neighboring subsystems. In (Giselsson, 2013), local constraint sets are tightened to account for uncertainties, and the global constraint 
set is taken as the Cartesian product of tightened local constraint sets, ensuring robustness w.r.t. small disturbances. For nonlinear 
systems, some robust DMPC approaches are also available in the literature. Li and Shi (2014) proposed a robust DMPC approach for 
continuous-time decoupled nonlinear subsystems, where coupling occurring in a global control objective function is incorporated into 
local control objective functions. Particularly, a robustness constraint making local cost functions (Lyapunov functions) decrease was 
proposed to ensure robustness against external bounded disturbances. For robust control design, the scenario approach with a finite 
number of uncertainty scenarios considered was proposed by Calafiore and Campi (2006) for control problems with linear objective 
functions and convex constraints. Calafiore and Campi (2006) established a bound on the number of uncertainty scenarios needed for 
achieving a specified probabilistic robustness level, which is defined as an upper bound of the probability of violation of constraints; 
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moreover, they showed that the bound only increases slowly with the increase of the specified probabilistic robustness level. The 
scenario approach is an efficient way for reducing the computational complexity in robust control problems. In addition, further 
analyses and applications of the scenario-based scheme can be found in (Bernardini and Bemporad, December 2009; Calafiore and 
Fagiano, 2013; Zhang et al., 2013; Schildbach et al., 2014). Furthermore, some robust DMPC approaches have been developed for 
nonlinear systems based on scenario trees for uncertainties (Maestre et al., 2012; Martí et al., 2015; Leidereiter et al., 2015). In these 
approaches, the considered scenarios for uncertainties are distributed to different local controllers, i.e. each local controller deals with 
one scenario for uncertainties. Non-anticipativity constraints, which are incorporated into local control objective functions, are 
introduced in these approaches for ensuring that the control inputs of one controller equal the control inputs of other controllers at the 
same time step. Note, however, that the approaches in (Maestre et al., 2012; Martí et al., 2015; Leidereiter et al., 2015) are not for 
multiple subsystems, but for a single system only. The authors have developed scenario-based DMPC for freeway networks for multiple 
subnetworks by considering a min–max setting in (Liu et al., 2016). 

In this paper, we develop a scenario-based DMPC approach for a large-scale freeway network including multiple subnetworks based 
on a scenario tree for uncertainties. Although centralized linear MPC approaches have been studied in the literature (Le et al., 2013; 
Han et al., 2017), the inherent nonlinearity of freeway networks cannot be ignored. Thus, in this paper we consider nonlinear traffic 
flow models for prediction. Our aim is to develop an approach based on distributed nonlinear MPC to deal with large-scale network 
control with uncertainties being directly handled. For a large-scale freeway network consisting of multiple subnetworks, we propose a 
novel way of dealing with uncertainties and consequently distinguish two types of uncertainties: global and local. The global un
certainties apply to the overall network, while the local uncertainties only apply to a single subnetwork. We assume that all these 
uncertainties are described by means of finite sets of scenarios. An intuitive way of combining the local scenarios for different sub
networks is to consider all the combinations of the local scenarios (i.e. to construct a complete local scenario tree). However, the 
computational burden will be very large in this case. Therefore, we propose a new approach for combining the local scenarios for 
different subnetworks: we construct a reduced local scenario tree. In the reduced local scenario tree, the dynamics of a subnetwork are 
predicted for different local scenarios for that subnetwork, by assuming that the interconnecting inputs for that subnetwork from 
neighbors are independent of the local scenarios for the neighbors. In fact, the interconnecting inputs for a subnetwork and the 
interconnecting outputs from the neighbors to that subnetwork correspond to the same physical quantities. Thus the interconnecting 
outputs are combined for all the local scenarios for a neighbor to obtain the combined interconnecting outputs independent of the local 
scenarios for that neighbor. Afterwards, a reduced scenario tree for the entire network can be defined by combining global scenarios 
with the reduced local scenario tree. Readers can refer to Section 4.1.2 for more details about the scheme of the complete scenario tree 
and the reduced scenario tree. In order to handle uncertainties in the scenario-based control problem, we consider an expected-value 
setting (which is probabilistic) and a min–max setting for combining local scenarios for each subnetwork and for defining objective 
functions that include both performance indicators and constraint violation penalties for subnetworks. 

The newly proposed scenario-based DMPC approach in this paper is developed based on the dual decomposition method and the 
augmented Lagrangian relaxation method. As an illustration, the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 

Table 1 
Main quantities in METANET.  

T simulation time step length 
k simulation time step counter 
m index for links 
i index for segments 
o index for origins, on-ramps or off-ramps 
μm  number of lanes in link m 
Lm  length of segments of link m 
qm,i(k) flow for segment (m, i)  
ρm,i(k) density for segment (m, i)  
vm,i(k) speed for segment (m, i)  
qo(k) flow for origin, on-ramp or off-ramp o 
wo(k) queue length for origin, on-ramp or off-ramp o 
Co  capacity for origin, on-ramp or off-ramp o 
do(k) demand for origin or on-ramp o 
ro(k) metering rate for on-ramp o 

vSL
m,i(k) speed limit for segment (m, i)  

vfree
m  free flow speed in link m 

ρcrit
m  critical density in link m 

ρmax
m  maximum density in link m 

δm  1+δm: compliance factor in link m  
τ  model parameter in the dynamic equation for vm,i  

η  model parameter in the dynamic equation for vm,i  

κ  model parameter in the dynamic equation for vm,i  

am  model parameter in the dynamic equation for vm,i   
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2011) is chosen as the DMPC algorithm in this paper. Note that the newly proposed scenario-based DMPC approach is independent of 
the considered DMPC algorithm, and it can be easily combined with other DMPC algorithms based on the dual decomposition method, 
such as the serial DMPC algorithm proposed in (Negenborn et al., 2008), the inexact dual fast gradient method in (Maestre and 
Negenborn, 2014), accelerated gradient methods (Giselsson et al., 2013), etc. 

The paper is organized as follows. In Section 2, we introduce model predictive control for freeway networks. In Section 3, we 
present general DMPC based on dual decomposition. In Section 4.1, we describe how to distinguish global uncertainties for the overall 
network with local uncertainties for subnetworks, and we develop a reduced scenario tree of global and local uncertainties. In Section 
4.2, we propose a new scenario-based DMPC approach based on global uncertainties and local uncertainties. In Section 5, ADMM is 
applied to the new scenario-based DMPC approach. After that, a case study is reported in Section 6 to show the efficiency of the new 
scenario-based DMPC approach. At last, we give the conclusions of this paper and some recommendations for future work. 

2. Model Predictive Control for Freeway Networks 

In Model Predictive Control (MPC) (Maciejowski, 2002; Camacho and Bordons, 2007) for traffic networks, macroscopic traffic 
models are used for predicting the performance of the considered traffic network over the prediction period. For a control step, the 
predicted future performance is optimized, resulting in a sequence of control inputs over the control period, of which the first element 
is applied to the controlled network. After that, for the next control step, the prediction period is shifted one control step ahead ac
cording to the receding-horizon scheme. 

As an illustration, we use METANET (Messmer and Papageorgiou, 1990; Kotsialos et al., 2002) as the prediction model for MPC; 
however, other traffic models (e.g. the Cell Transmission Model (CTM) (Daganzo, 1995)) can be also used. METANET is a second-order 
macroscopic model for describing traffic flows. In METANET, freeway stretches are represented by links that are considered to have 
uniform characteristics within each link. Each link is divided into segments, of which the dynamics are described by flows, densities, 
and speeds. Once there is a major change in geometry, an on-ramp, or an off-ramp between two freeway stretches, a node will be placed 
between the corresponding links. For this node, there could be one or more incoming links and one or more leaving links. For incoming 
links a downstream density is provided by this node, and for leaving links an inflow and an upstream speed are provided by this node. 
We list the main variables of METANET in Table 1. We refer to (Messmer and Papageorgiou, 1990; Kotsialos et al., 2002; Hegyi et al., 
2005) for more details about METANET and its extensions, e.g. link equations and node equations. 

Typical traffic control measures for freeway networks include ramp metering, variable speed limits, route guidance, etc. Ramp 
metering determines the rate at which vehicles in a ramp can enter the main freeway. Variable speed limits are used for adapting 
speeds of vehicles according to traffic situations. Route guidance is used for choosing an appropriate route when more than one routes 
exist to a certain destination. In this paper, we choose ramp metering and variable speed limits as the control measures in the case 
study. The desired speed equation including a variable speed limit in segment i of link m can be defined as follows (Hegyi et al., 2005): 

V
(

ρm,i

(

k
))

= min
(

vfree
m exp

(

−
1

am

(ρm,i
(
k
)

ρcrit
m

)am )

,

(

1 + δm

)

vSL
m,i

(

k
))

(1)  

The first term on the right-hand side of (1) refers to the desired speed according to the fundamental diagram, while the second term 
reflects the variable speed limit including a non-compliance factor. The flow for an on-ramp origin o that connects to link m is described 
as 

qo

(

k
)

= min
[

do

(

k
)

+
wo(k)

T
,Coro

(

k
)

,Co

(ρmax
m − ρm,1

(
k
)

ρmax
m − ρcrit

m

)]

(2)  

The first term on the right-hand side of (2) refers to the total available traffic demand at o, the second term refers to the maximal flow 
allowed by the ramp metering rate, and the third term reflects the maximal flow allowed by the mainstream condition. Readers can 
refer to Table 1 for symbols in Eqs. (1) and (2). 

We consider the Total Time Spent (TTS) as the main part of the performance criterion for MPC. The TTS is defined according to the 
total time that all vehicles spend in the considered traffic network (Hegyi et al., 2005). Note, however, that the Total Emissions (TE)1 

can also be dealt with by the approaches in this paper. In the following text, Np represents the prediction horizon, i.e. the number of 
prediction control time steps, Iall is the set of all pairs of links and segments in the considered network, and Oall is the set of all origins in 
the considered network. According to (Hegyi et al., 2005), the TTS is defined as follows: 

TTS

(

k

)

= T
∑k+Np − 1

z=k

(
∑

(m,i)∈Iall

ρm,i

(

z

)

Lmμm +
∑

o∈Oall

wo

(

z

))

(3)  

Remark 1. Note that in general the simulation time step length T is not equal to the control time step length, but we assume that they 
are equal for simplifying notations while developing the newly proposed approaches in this paper. 

1 The total emissions for a traffic network can be estimated as the sum of the emission estimates of all vehicles in that traffic network; readers can 
refer to (Liu et al., 2017; Pasquale et al., 2017; Pasquale et al., 2019) for more details. 
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The control objective function for MPC depends on system states, control actions and outputs, and all these quantities depend on 
time steps. Thus we represent the objective function as J(k) for simplification in this section. In the following text, Nc represents the 
control horizon, TTSnom is the TTS computed for some nominal case, ξTTS,ξramp, and ξspeed are nonnegative weights, Oramp is the set of all 
the metered origins, Ispeed is the set of all the segments with speed limits, NRM is the number of the metered on-ramps, NVSL is the 
number of variable speed limits, rctrl

o is the ramp metering rate for on-ramp o at a given control step, vctrl
m,i is the variable speed limit in 

segment i of link m at a given control step. Considering Variable Speed Limits (VSL) and Ramp Metering (RM) as control measures, the 
control objective function for MPC of the considered network can be defined as follows: 

J

(

k

)

= ξTTS
TTS(k)
TTSnom

+
ξramp

NcNRM

∑k+Nc − 1

z=k

∑

o∈Oramp

⃦
⃦rctrl

o

(
z
)
− rctrl

o

(
z − 1

)⃦
⃦

2

+
ξspeed

NcNVSL

∑k+Nc − 1

z=k

∑

(m,i)∈Ispeed

⃦
⃦
⃦
⃦

vctrl
m,i

(
z
)
− vctrl

m,i

(
z − 1

)

vfree
m

⃦
⃦
⃦
⃦

2

(4)  

in which the second term and the third term are included for penalizing variations of the control inputs. 

3. Distributed Model Predictive Control Based on Dual Decomposition 

We consider a large-scale freeway network, which can be divided into several subnetworks. Couplings among subnetworks are 
described by means of interconnecting constraints for the subnetworks. The performance criteria are assumed to be additive for 
different subnetworks, i.e. the sum of the performance criteria for different subnetworks equals the performance criterion for the 
overall network. Note that in this paper, we directly present the formulation of a large network consisting of multiple subnetworks. 
Readers can refer to (Christofides et al., 2013; de Souza et al., 2014; Xie et al., 2016) for more details on decompositions of large-scale 
networks based on DMPC. In addition, we assume that all subnetworks include control measures. In fact, if a subnetwork does not 
include control measures, it is no need to assign a local controller for that subnetwork. Such a subnetwork without controllers should 
be merged with other subnetworks with control measures and thus with local controllers. The traffic state of that subnetwork will then 
be influenced by upstream and downstream traffic flows, which are determined by other local controllers. 

Note that in the following part of this paper, k is the time step at which the control problem is solved. More specifically, s represents 
the index for a subnetwork, Nsub is the number of subnetworks, xs represents the state vector of subnetwork s, xk

s represents the 
measured state vector of subnetwork s at time step k, ys represents the output vector of subnetwork s, us represents the control input 
vector for subnetwork s, Js is the local control objective function of subnetwork s defined according to2 (4), fs is the dynamic function of 
subnetwork s, hs is the output function of subnetwork s, Ss is the set of all the indices of the neighbors of subnetwork s,Din

s represents the 
external uncontrollable input vector for subnetwork s (e.g. demands for subnetwork s), Ein

s is a stacked vector, representing the 
interconnecting input vector (w.r.t. local controller s) from all neighbors to subnetwork s,Eout

s is also a stacked vector, representing the 
interconnecting output vector (w.r.t. local controller s) from subnetwork s to all neighbors. Ein

j,s represents the interconnecting input 
vector (w.r.t. local controller s) for subnetwork s from neighboring subnetwork j, Eout

s,j represents the interconnecting output vector (w.r. 

t. local controller j) from neighboring subnetwork j to subnetwork s, and Eout
s,j (k) = Ks,j[xT

j (k), yT
j (k), uT

j (k)]
T , with Ks,j the interconnecting 

output selection matrix from j to s. 

Remark 2. Note that for freeway networks, the state vector xs represents traffic state variables (i.e. speed, density, and flow), the 
output vector ys represents quantities that can be computed by means of traffic state variables. The control input vector us corresponds 
to variable speed limits and ramp metering rates. The external uncontrollable input vector Din

s corresponds to demands for origins and 
on-ramps. The interconnecting input vector Ein

s and the interconnecting output vector Eout
s,j correspond to upstream flows, upstream 

speeds, and downstream densities. The general constraint function Fs corresponds to constraints on speed variables, density variables, 
flow variables, variable speed limits, and ramp metering rates. The interconnecting constraints represented by (11) correspond to 
upstream flows, upstream speeds, and downstream densities among neighboring subnetworks. 

In state space methods, state variables are usually independent from each other, and output variables can be computed by means of 
functions depending on the state variables. The centralized model predictive control problem can be formulated as follows: 

Problem1 : min
ũ(k)

∑Nsub

s=1
Js (̃xs(k), ỹs(k), ũs(k)) (5)  

2 The state vector xs and output vector ys are involved in the first term of (4), and the control input vector us is involved in all the three terms of 
(4). 
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s.t. xs
(
k + z + 1

)
= fs

(
xs
(
k + z

)
, us
(
k + z

)
,Din

s

(
k + z

)
,Ein

s

(
k + z

))

for z = 0,…,Np − 1
(6)  

ys
(
k+ z

)
= hs(xs(k + z)) for z = 1,…,Np (7)  

xs
(
k
)
= xk

s (8)  

us
(
k+ z

)
= us

(
k+Nc − 1

)
for z = Nc,…,Np − 1 (9)  

Fs(x̃s(k), ỹs(k), ũs(k))⩽0 (10)  

Ein
j,s

(
k+ z

)
− Eout

s,j

(
k+ z

)
= 0 for j ∈ Ss, z = 0,…,Np − 1 (11)  

where u is a stacked variable containing the control input vectors for all subnetworks, 
∑Nsub

s=1Js
(
x̃s(k), ỹs(k), ũs(k)

)
represents the overall 

control objective function, Fs is a general constraint function3 on the states, outputs, and control inputs for subnetwork s over the 
prediction period, (11) represents the interconnecting constraints among subnetwork s and all neighbors. In addition, the variables 
x̃s(k), ỹs(k), ũs(k) and ũ(k) are defined as follows: 

x̃s

(
k
)
=
[
xT

s

(
k + 1

)
,…, xT

s

(
k + Np

)]T (12)  

ỹs

(
k
)
=
[
yT

s

(
k + 1

)
,…, yT

s

(
k + Np

)]T (13)  

ũs

(
k
)
=
[
uT

s

(
k
)
,…, uT

s

(
k + Nc − 1

)]T (14)  

ũ
(

k
)
=
[
uT ( k

)
,…, uT ( k + Nc − 1

)]T (15)  

As an example, Fig. 1 shows the uncontrollable inputs and the interconnecting inputs and outputs for a network including 3 sub
networks in series. For a subnetwork, both the uncontrollable inputs and the interconnecting inputs can affect the dynamics of that 
subnetwork. The interconnecting outputs of a subnetwork can affect the dynamics of the neighbors of that subnetwork. Note that in 
this paper we only consider interconnecting equality constraints among individual subnetworks. However, it is possible to include 
other types of interconnecting constraints, such as interconnecting inequality constraints among individual subnetworks (e.g. an upper 
bound on the flow from an on-ramp to an adjacent stretch that belongs to another subnetwork). 

According to (Negenborn et al., 2008; Bertsekas, 1982), the interconnecting constraints (i.e. (11)) can be merged into the overall 
control objective function in (5) by defining an augmented Lagrangian function as follows: 

L
(

x̃
(

k
)
, ỹ
(

k
)
, ũ
(

k
)
, Λ̃

in(
k
))

=
∑Nsub

s=1
(Js (̃xs(k), ỹs(k), ũs(k)) +

∑

j∈Ss

((
λ̃

in
j,s

(
k
))T(

Ẽ
in
j,s

(
k
)
− Ẽ

out
s,j

(
k
))

+
c
2

⃦
⃦
⃦Ẽ

in
j,s

(
k
)
− Ẽ

out
s,j

(
k
)⃦
⃦
⃦

2

2

))

(16)  

where c is a positive constant, λin
j,s represents the Lagrange multiplier vector corresponding to Ein

j,s, x and y are stacked variables 
respectively containing states and outputs for all subnetworks, Λin(k) is a stacked vector containing all values of λin

j,s for all subnetworks, 

and ̃x(k), ỹ(k),Λ̃
in
(k), λ̃

in
j,s(k), Ẽ

in
j,s(k), and Ẽ

out
s,j (k) are defined in a similar way to ̃xs(k) (i.e. (12)) over the prediction period covering steps 

k + z,z = 0,…,Np − 1. For solving optimization problems, augmented Lagrangian functions and Lagrange multipliers are often used for 
dealing with constraints, i.e. for transforming constrained optimization problems into unconstrained optimization problems. For more 
details readers can refer to (Negenborn et al., 2008; Bertsekas, 1982). 

According to duality theory (Negenborn et al., 2008; Bertsekas, 1982; Boyd and Vandenberghe, 2004), the dual problem associated 
with the original problem (Problem 1 defined by (5)–(11)) is defined as maximizing (16) over the Lagrange multipliers while mini
mizing (16) over the control inputs, i.e. as follows: 

Problem2 : max
Λ̃

in(
k
)

min
ũ(k)

L
(

x̃
(

k
)
, ỹ
(

k
)
, ũ
(

k
)
, Λ̃

in(
k
))

(17)  

s.t. (6) − (10) for s = 1,…,Nsub 

3 Note that (10) comprises all equality and inequality constraints on the states, outputs, and control inputs, such as inequality constraints for 
limiting the maximum queue lengths at on-ramps. 
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Referring to (Negenborn et al., 2008; Camponogara et al., 2002; Bertsekas, 1982), it can be proved that if the local control objective 
functions (i.e. Js in (5)) and the inequality constraints (i.e. (10)) of subnetworks are convex and the equality constraints (i.e. (11)) of 
subnetworks are affine, the solution of the original problem (Problem 1) can be obtained by iteratively solving the dual problem 
(Problem 2). As described in (Negenborn et al., 2008; Camponogara et al., 2002; Bertsekas, 1982), in the procedure for solving the dual 
problem (Problem 2), for each iteration the Lagrange multipliers are estimated using the solution for the previous iteration, and next 
they are kept fixed for that iteration. Note that when Lagrange multipliers are fixed, only the minimization problem is solved for the 
dual problem (Problem 2). An iteration here means that the minimization in Problem 2 is solved once for a given set of fixed Lagrange 
multipliers at time step k. The minimization in the dual problem (Problem 2) should be iteratively solved until the Lagrange multipliers 
do not change anymore up to a predefined tolerance. In this case it has been proved that the solution of the dual problem (Problem 2) is 
equivalent to the solution of the original problem (Problem 1) in (Bertsekas, 1982). For more details, readers can refer to (Negenborn 
et al., 2008; Camponogara et al., 2002; Bertsekas, 1982). 

In order to solve the centralized control problem by means of DMPC, the augmented Lagrangian function (16), which is not 
separable due to the quadratic terms, needs to be distributed to local controllers. In the literature, some approaches have been 
developed for decomposing couplings similar to the quadratic terms, such as block coordinate descent (Negenborn et al., 2008), dual 
ascent (Boyd et al., 2011), auxiliary problem principle (Kim and Baldick, May 1997). Moreover, in Section 5 we have introduced a 
specific Eq. (39) for Jinter

s,g for the ADMM approach (Boyd et al., 2011). In the following text, Jinter
s is the function handling the inter

connecting variables determined by local controller s, Eout
j,s represents the interconnecting output vector (w.r.t. local controller s) from 

subnetwork s to neighboring subnetwork j, λout
j,s represents the Lagrange multiplier vector corresponding to Eout

j,s , and ̃λ
out
j,s (k) is defined in 

a similar way to ̃xs(k) (i.e. (12)) over the prediction period covering steps k + z,z = 0,…,Np − 1. With the above mentioned approaches, 
the centralized control problem can be distributed to local controllers, and a local controller iteratively solves the following problem 
with fixed Lagrange multipliers within one iteration: 

Problem3 : min
ũs(k), Ẽ

in

s (k), Ẽ
out

s (k)

(

Js(x̃s(k), ỹs(k), ũs(k)) +
∑

j∈Ss

Jinter
s

(
λ̃

in
j,s

(
k
)
, λ̃

out
j,s

(
k
)
, Ẽ

in
j,s

(
k
)
, Ẽ

out
j,s

(
k
))
)

(18)  

s.t. (6) − (10) for s = 1,…,Nsub.

Remark 3. The prediction model METANET considered in this paper is nonlinear and nonconvex, and therefore the resulting 
optimization problem for MPC is nonlinear and nonconvex. In this paper, we apply DMPC for nonlinear-nonconvex traffic networks, 
and investigate the control effectiveness by a numerical experiment. 

4. Scenario-Based Distributed Model Predictive Control 

4.1. Uncertainties in Large-Scale Freeway Networks 

4.1.1. Global Uncertainties and Local Uncertainties 
In freeway networks, uncertainties can be introduced through various sources, such as the measurements of traffic states, the 

external uncontrollable inputs, the parameters of prediction models, and so on. For example, uncertainties are usually introduced in 
the process of measuring traffic states due to factors like the accuracy of sensors. Similarly, uncertainties are often introduced in the 
procedure of estimating the external uncontrollable inputs, such as demands and boundary conditions. Furthermore, uncertainties are 
also introduced in the procedure of calibrating the parameters of the prediction models. More specifically, the accuracy of the pa
rameters of the prediction models for freeway networks can be affected by various uncertain factors, such as weather conditions (e.g. 
sunny or rainy), traffic compositions (e.g. cars and trucks), and extra flows to some destinations caused by events (e.g. a pop concert or 
a soccer game). Particularly, the weather conditions can affect free-flow speeds; the traffic compositions can affect the accuracy of most 
model parameters; extra flows to some destinations can affect turning rates at intersections. 

The uncertainties for freeway networks can be described in different ways. For instance, uncertainties often fall within some 
confidence bands around the nominal profiles; thus uncertainties can be described by means of some bounded sets including all the 

Fig. 1. Uncontrollable inputs and interconnecting inputs and outputs for an example network.  
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possible values of the uncertainties. Uncertainties can also be described by building a library of the possible scenarios for the un
certainties, and the possibilities of the appearances for these scenarios can be estimated. Note that bounded sets can be used for 
describing an infinite number of realizations of uncertainties, while a library of scenarios can be used for describing a finite number of 
uncertainty scenarios. In this paper, we assume that the uncertainties are described by means of a library consisting of finite sets that 
cover all possible scenarios of uncertainties. In this case, it is possible to use an expected-value setting (which is probabilistic) for robust 
control, based on the probabilities for uncertainty scenarios. 

In order to develop a scenario-based DMPC approach that can handle uncertainties for large-scale freeway networks, we divide the 
uncertainties in the considered overall network into two categories, i.e. global uncertainties and local uncertainties. The global un
certainties are those uncertainties that apply to the overall network, e.g. the uncertainties in network-wide global weather conditions. 
The local uncertainties are those uncertainties that apply to a single subnetwork, including the uncertainties in local weather con
ditions, local traffic compositions, local demands at origins, boundary conditions, the measurements of traffic states, and so on. We 
define a set for global scenarios and a set for local uncertainties. In particular, Ωglo is defined as the set of all the possible global 
scenarios, and Ωloc,s is defined as the set of all the possible local scenarios for subnetwork s. The global scenarios in Ωglo apply to all 
subnetworks, while the local scenarios in Ωloc,s only apply to subnetwork s. 

Distinguishing global scenarios from local scenarios can reduce the size of the scenario tree w.r.t. the case that all uncertainties are 
considered in the same way. The number of combinations of the local scenarios for all subnetworks is 

∏
s=1,…,Nsub

Nloc,s, with Nloc,s the 
number of the local scenarios for subnetwork s. If global uncertainties are considered in the same way as local uncertainties, there will 
be Nglo scenarios for each subnetwork corresponding to global uncertainties, and the number of possible combinations is NNsub

glo . 
Otherwise, if global uncertainties are considered to be the same for all subnetworks, there will be Nglo combinations for global un
certainties for all subnetworks. The total number of combinations for all uncertainty scenarios is equal to the number of combinations 
for local scenarios multiplied by the number of combinations for global scenarios. Therefore, when global uncertainties are treated in a 
different way from local uncertainties, the number of combinations for all uncertainty scenarios is significantly reduced in comparison 
with the case that they are not distinguished. 

4.1.2. Reduced Scenario Tree of Global and Local Uncertainties 
A local controller in a distributed control scheme needs interconnecting inputs from neighboring subnetworks. For a given global 

scenario for a subnetwork, the interconnecting inputs from neighboring subnetworks are considered to be predicted for the same given 
global scenario. However, local uncertainties only apply to certain subnetworks; thus, for a given subnetwork s, any local scenario in 
ΩL,j may occur for neighboring subnetwork j. 

When all the combinations of the local scenarios for all subnetworks are considered, i.e. a complete local scenario tree for local 
uncertainties is constructed, the total number of these combinations for a given global scenario is 

Ncom =
∏

s=1,…,Nsub

Nloc,s (19)  

Thus the number of the combinations to be handled by a local controller is Ncom for a given global scenario. In this case, the 
computational burden is large due to the large size of the complete local scenario tree. 

In order to reduce the computational burden w.r.t. the complete local scenario tree, we propose a reduced local scenario tree, in 
which the interconnecting inputs for a subnetwork from neighboring subnetworks are assumed to be independent of the local scenarios 
for the neighboring subnetworks. The interconnecting inputs for a given subnetwork and the interconnecting outputs from the 
neighboring subnetworks to the given subnetwork describe the same physical quantities. Thus, the interconnecting outputs of a 
neighboring subnetwork are combined for all the local scenarios for that neighboring subnetwork, resulting in the combined inter
connecting outputs corresponding to the interconnecting inputs for the given subnetwork. 

We define the reduced scenario tree by combining all global scenarios and the reduced local scenario tree for the entire network. 
Similarly, we define the complete scenario tree by combining all global scenarios and the complete local scenario tree for the entire 
network. For subnetwork s, the number of combinations of global scenarios and local scenarios for the reduced scenario tree (i.e. 
NgloNloc,s) is smaller than that for the complete scenario tree (i.e. NgloNcom). Therefore, the computational burden for processing the 

Fig. 2. Complete scenario tree for an example subnetwork with 2 neighbours (”× ” means multiplication).  
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reduced scenario is relatively small w.r.t. that for processing the complete scenario tree. For clarification, Figs. 2 and 3 show the 
combination schemes for the complete scenario tree and the reduced scenario tree for a subnetwork (subnetwork 2) with 2 neighbours 
(subnetwork 1 and subnetwork 3). In the reduced scenario tree, local uncertainty scenarios are combined as 1 uncertainty scenario for 
a neighbouring subnetwork, as shown in Fig. 3. However, all local scenarios for that neighboring subnetwork are still included for the 
considered subnetwork, in the way of 1 combined scenario. 

4.2. Scenario-Based DMPC with Global and Local Uncertainties 

In this section, we develop a scenario-based DMPC approach based on the reduced scenario tree proposed in Section 4.1. For 
handling uncertainties in the scenario-based DMPC problem, we consider an expected-value setting (which is probabilistic) and a 
min–max setting. 

In the following text, the symbols,Jinter
s,g , Ein

s,g,E
out
s,g , E

in
j,s,g, E

out
s,j,g, E

out
j,s,g,Λin

g , λin
j,s,g(k), and λout

j,s,g have similar meanings to the corresponding 
symbols without subscript g in Section 3, but now they apply to the case with global uncertainties and combined local uncertainties; the 
symbols xs,g,l, ys,g,l, Js,g,l, fs,g,l, Fs,g,l,Din

s,g,l, and Eout
j,s,g,l have similar meanings to the corresponding symbols without subscripts g and l in 

Section 3, but now they are for the case with global uncertainties and local uncertainties. In addition, ̃xs,g,l(k), and ̃ys,g,l(k) are defined in 

a similar way to x̃s(k) (i.e. (12)) over the prediction period covering steps k + z, z = 1,…,Np; Ẽ
in
j,s,g(k), Ẽ

out
s,j,g(k), Ẽ

out
j,s,g(k), Λ̃

in
g (k), λ̃

in
j,s,g(k),

λ̃
out
j,s,g(k), and Ẽ

out
j,s,g,l(k) are defined similarly to x̃s(k) (i.e. (12)) over the prediction period covering steps k + z,z = 0,…,Np − 1. 

In the following text, g is the index for the scenarios for global uncertainties, pg is the probability of global scenario g, and ωg 
represents scenario g for global uncertainties. Similarly, l is the index for the local scenarios for a subnetwork, ωs,l represents scenario l 
for the local uncertainties for subnetwork s, ps,l is the probability of local scenario l for subnetwork s, and ps,l is assumed to be known in 
this paper. 

4.2.1. Scenario-Based DMPC on the Basis of a Reduced Scenario Tree and an Expected-Value Setting 
We have developed scenario-based DMPC by assuming that the probability for a specified scenario is known. Readers can refer to 

(Florescu, 2015; Ghahramani, 2018) for more details about how to obtain the probability for a specified scenario at different un
certainty levels. The centralized scenario-based MPC problem for the large-scale freeway network considered in Section 3 can be 
formulated as follows: 

Problem4 : min
ũ(k)

∑Nglo

g=1
pg

∑Nsub

s=1

∑Nloc,s

l=1
ps,lJs,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

(20)  

s.t. xs,g,l

(
k + z + 1

)
= fs,g,l

(
xs,g,l

(
k + z

)
, us

(
k + z

)
,Din

s,g,l

(
k + z

)
,

Ein
s,g

(
k + z

)
,ωg

(
k + z

)
,ωs,l

(
k + z

))
for z = 0,…,Np − 1

(21)  

ys,g,l
(
k+ z

)
= hs

(
xs,g,l

(
k + z

))
for z = 1,…,Np (22)  

xs,g,l
(
k
)
= xk

s (23)  

ωg
(
k+ z

)
∈ Ωglo

(
k+ z

)
for z = 0,…,Np − 1 (24)  

ωs,l
(
k+ z

)
∈ Ωloc,s

(
k+ z

)
for z = 0,…,Np − 1 (25) 

Fig. 3. Reduced scenario tree for an example subnetwork with 2 neighbours (”× ” means multiplication).  
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Fs,g,l
(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

⩽0 (26)  

Ein
j,s,g

(
k+ z

)
− Eout

s,j,g

(
k+ z

)
= 0 for j ∈ Ss, z = 0,…,Np − 1 (27)  

Equation (9)

where 
∑Nglo

g=1pg
∑Nsub

s=1
∑Nloc,s

l=1 ps,lJs,g,l

(
x̃s,g,l(k), ỹs,g,l(k), ũs(k)

)
represents the overall control objective function for scenario-based DMPC 

with global and local uncertainties. Eqs. (21) and (22) describe how the states and outputs of subnetwork s are determined with global 
and local uncertainties considered. Based on the reduced scenario tree, local scenarios are combined within a subnetwork for Ein

s,g,E
in
j,s,g, 

and Eout
s,j,g; thus there is no index l in these variables. 

Referring to Eq. (16) and (Negenborn et al., 2008; Bertsekas, 1982), the augmented Lagrangian function with global and local 
uncertainties considered can be defined as follows: 

Lg,l

(
x̃GL

(
k
)
, ỹGL

(
k
)
, ũ
(

k
)
, Λ̃

in
g

(
k
))

=
∑Nglo

g=1
pg

∑Nsub

s=1

∑Nloc,s

l=1
ps,l
(
Js,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

+
∑

j∈Ss

((
λ̃

in
j,s,g

(
k
))T(

Ẽ
in
j,s,g

(
k
)
− Ẽ

out
s,j,g

(
k
))

+
c
2

⃦
⃦
⃦Ẽ

in
j,s,g

(
k
)
− Ẽ

out
s,j,g

(
k
)⃦
⃦
⃦

2

2

))

(28)  

where ̃xGL(k) is a stacked variable containing the states of all subnetworks for all global scenarios and local scenarios over all steps in 
the prediction period from k to k + Np − 1, and where ỹGL(k) is a stacked variable containing the outputs of all subnetworks for all 
global scenarios and local scenarios over all steps in the prediction period from k to k + Np − 1. 

Note that Eq. (28) is analogous to Eq. (16). Similar to the case without uncertainties considered in Section 3, each subnetwork is 
assigned a local controller, which determines the optimal local control inputs. For handling uncertainties in the joint constraint on the 
states, outputs, and control inputs, (26) can be incorporated into the local control objective functions via penalty terms. As described in 
Section 3, the quadratic terms in (28) can be decomposed for different subnetworks. In the following text, γ is a relatively high weight 
w.r.t. the weights for Js,g,l and Jinter

s,g . Moreover, the order of magnitude of γ should be higher than those of the weights for Js,g,l and Jinter
s,g . 

Similar to Section 3, we let each local controller iteratively solve the following scenario-based control problem: 

Problem5 : min
ũs(k), Ẽ

in

s,g(k), Ẽ
out

s,g (k)

∑Nglo

g=1
pg

∑Nloc,s

l=1
ps,l
(
Js,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

+ γmax
(
Fs,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))
, 0
)

+
∑

j∈Ss

Jinter
s,g

(
λ̃

in
j,s,g

(
k
)
, λ̃

out
j,s,g

(
k
)
, Ẽ

in
j,s,g

(
k
)
, Ẽ

out
j,s,g

(
k
))
)

(29)  

s.t. (9), (21) − (25)

where Js,g,l is defined according to Eq. (4). Similarly to Section 3, the Lagrange multipliers are fixed within one iteration of solving the 
scenario-based control problem for each subnetwork, and they are computed based on the solutions of the previous iteration. In the 
proposed scenario-based DMPC approach, information for predicting traffic behaviors is partial for local controllers. However, in
terconnections among neighboring controllers are included in local objective functions. 

Corresponding to local controller s, the interconnecting outputs from subnetwork s to neighbouring subnetwork j are combined as 
follows in the expected-value setting: 

Ẽ
out
j,s,g

(

k

)

=
∑Nloc,s

l=1
ps,lẼ

out
j,s,g,l

(

k

)

(30)  

This means that for two neighboring subnetworks, the information exchange between them is the same for all local scenarios for a 
given global scenario. For instance, for a network including 3 subnetworks in series, Fig. 4 shows the uncontrollable inputs and the 
interconnecting inputs and outputs for the case that includes both global scenarios and local scenarios. The uncontrollable inputs 
correspond to local scenarios, and the interconnecting inputs and outputs are combined for all local scenarios for global scenario g. 

Remark 4. Note that for scenario-based DMPC on the basis of a reduced scenario tree, we can consider to keep the P-percentile of the 
most likely scenarios in Ωglo and Ωloc,s, with the rest unlikely scenarios thrown away. This is helpful for finding a trade-off between 
performance and computation time. 

4.2.2. Scenario-Based DMPC on the Basis of a Reduced Scenario Tree and a Min–Max Setting 
In the min–max setting, the centralized scenario-based MPC problem for the large-scale freeway network considered in Section 3 

can be formulated as follows: 
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Problem6 : min
ũ(k)

max
g=1,…,Nglo

∑Nsub

s=1
max

l=1,…,Nloc,s
Js,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

(31)  

s.t. (9), (21) − (27)

Referring to Eqs. (16) and (28), and (Negenborn et al., 2008; Bertsekas, 1982), for the min–max setting the augmented Lagrangian 
function with global and local uncertainties considered can be defined as follows: 

Lg,l

(
x̃GL

(
k
)
, ỹGL

(
k
)
, ũ
(

k
)
, Λ̃

in
g

(
k
))

= max
g=1,…,Nglo

∑Nsub

s=1
max

l=1,…,Nloc,s

(
Js,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

+
∑

j∈Ss

((
λ̃

in
j,s,g

(
k
))T(

Ẽ
in
j,s,g

(
k
)
− Ẽ

out
s,j,g

(
k
))

+
c
2

⃦
⃦
⃦Ẽ

in
j,s,g

(
k
)
− Ẽ

out
s,j,g

(
k
)⃦
⃦
⃦

2

2

))

(32)  

Note that Eq. (32) is analogous to Eqs. (28) and (16). Similar to the Section 4.2.1, we let each local controller iteratively solve the 
following scenario-based control problem for scenario-based DMPC on the basis of the reduced scenario tree and the min–max setting: 

Problem7 : min
ũs(k), Ẽ

in

s,g(k), Ẽ
out

s,g (k)

max
g=1,…,Nglo

max
l=1,…,Nloc,s

(
Js,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))

+ γmax
(
Fs,g,l

(
x̃s,g,l

(
k
)
, ỹs,g,l

(
k
)
, ũs
(
k
))
, 0
)

+
∑

j∈Ss

Jinter
s,g

(
λ̃

in
j,s,g

(
k
)
, λ̃

out
j,s,g

(
k
)
, Ẽ

in
j,s,g

(
k
)
, Ẽ

out
j,s,g

(
k
))
)

(33)  

s.t. (9), (21) − (25)

where Js,g,l is defined according to Eq. (4). Eq. (33) is analogous to Eq. (29). In the same way as in Sections 3 and 4.2.1, the Lagrange 
multipliers are fixed within one iteration of solving the scenario-based control problem for each subnetwork, and they are computed 
based on the solutions of the previous iteration. 

Corresponding to local controller s, the interconnecting outputs from subnetwork s to neighbouring subnetwork j are combined as 
follows in the min–max setting: 

Ẽ
out
j,s,g

(

k
)

= max
l=1,…,Nloc,s

⃦
⃦
⃦Ẽ

out
j,s,g,l

(
k
)
− Ẽ

in
s,j,g

(
k
)⃦
⃦
⃦

2

2
(34)  

which corresponds to the local scenario for subnetwork s that leads to the maximum distance between Ẽ
out
j,s,g,l(k) and Ẽ

in
s,j,g(k). Note that 

other alternatives4for defining Ẽ
out
j,s,g can also be considered. 

5. Alternating Direction Method of Multipliers (ADMM) for Scenario-Based DMPC 

In this section, we mainly apply ADMM to the new scenario-based DMPC approach developed in Section 4.2. More specifically, we 
adopt the ”General Form Consensus Optimization” stated in Chapter 7.2 of (Boyd et al., 2011), where the dual decomposition method 
and the augmented Lagrangian method are used for decomposing the overall optimization problem into local optimization problems. 

Fig. 4. Information exchange for an example network with both global uncertainties and local uncertainties.  

4 An alternative way to define Ẽ
out
j,s,g(k) in the min–max setting can e.g. be 

Ẽ
out
j,s,g

(

k
)

= max
l=1,…,Nloc,s

Jinter
s,g

(
λ̃

in
j,s,g

(
k
)
, λ̃

out
j,s,g

(
k
)
, Ẽ

in
j,s,g

(
k
)
, Ẽ

out
j,s,g,l

(
k
))
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In Chapter 7.2 of (Boyd et al., 2011), global variables are used for describing couplings among subnetworks. The interconnecting 
inputs of subnetwork s from subnetwork j should ideally equal the interconnecting outputs of subnetwork j to subnetwork s, since they 
correspond to the same quantities. These interconnecting inputs and outputs for different subnetworks corresponding to the same 
quantities should converge to the same global variables by negotiation iterations among local controllers. For a specific combination of 
global scenario and local scenario, the number (Ngv) of global variables is 

Ngv =
∑Nsub

s=1
Nnb

s (35)  

where Nnb
s represents the number of the neighbors of subnetwork s. 

Based on the setting in Section 4.2, the overall global variable for global scenario g is defined as Gg(k) =

[(Gg,1(k))T
,…, (Gg,Ngv (k))

T
]
T. The quantity Gj,s,g is the global variable corresponding to the interconnecting variable from subnetwork j 

to subnetwork s for global scenario g. Both G̃g(k) and G̃j,s,g(k) are defined in a similar way to ̃xs(k) (i.e. (12)) over the prediction period 
covering steps k + z, z = 0,…,Np − 1. In the following text, Pj,s is the matrix for selecting the global variable corresponding to the 
interconnecting variable from subnetwork j to subnetwork s. Thus the following relationship holds: 

G̃j,s,g
(
k
)
= Pj,sG̃g

(
k
)

(36)  

In order to apply ADMM, the interconnecting constraint (27) should be replaced with 

{ Ẽ
in
j,s,g

(
k
)
− G̃j,s,g

(
k
)
= 0

Ẽ
out
s,j,g

(
k
)
− G̃j,s,g

(
k
)
= 0

for j ∈ Ss (37)  

Note that if (34) is used for defining Ẽ
out
j,s,g(k), Ẽ

in
s,j,g(k) should be replaced by G̃s,j,g(k), since interconnecting variables should converge to 

global variables in ADMM: 

Ẽ
out
j,s,g

(

k
)

= max
l=1,…,Nloc,s

⃦
⃦
⃦Ẽ

out
j,s,g,l

(
k
)
− G̃s,j,g

(
k
)⃦
⃦
⃦

2

2
(38)  

In the following text, σ represents the negotiation iteration number. The function Jinter
s,g is defined as follows: 

Jinter
s,g

((
λ̃

in
j,s,g

(
k
))

σ
,
(

λ̃
out
j,s,g

(
k
))

σ
,
(

Ẽ
in
j,s,g

(
k
))

σ+1
,
(

Ẽ
out
j,s,g

(
k
))

σ+1

)

=

⎡

⎢
⎢
⎣

(
λ̃

in
j,s,g

(
k
))

σ
(

λ̃
out
j,s,g

(
k
))

σ

⎤

⎥
⎥
⎦

T⎡

⎢
⎣

(
Ẽ

in
j,s,g

(
k
))

σ+1
(

Ẽ
out
j,s,g

(
k
))

σ+1

⎤

⎥
⎦+

c
2

⃦
⃦
⃦
⃦
⃦
⃦
⃦

⎡

⎢
⎣

(
Ẽ

in
j,s,g

(
k
))

σ+1
−
(
G̃j,s,g

(
k
))

σ
(

Ẽ
out
j,s,g

(
k
))

σ+1
−
(
G̃s,j,g

(
k
))

σ

⎤

⎥
⎦

⃦
⃦
⃦
⃦
⃦
⃦
⃦

2

2

(39)  

where both λin
j,s,g and λout

j,s,g are determined by local controller s. Note that for a local controller s, Eq. (39) is incorporated into Problem 5 
or Problem 7. 

The algorithm for the scenario-based DMPC approach based on the reduced scenario tree is described as follows:  

1. Initialization: let σ = 1 and ∊σ = ∞, and set an appropriate value for c. For s = 1,…,Nsub, let xs(k) equal the measured state variable 

xk
s ; let us(k) equal the initial control input variable; estimate D̃

in
s,g,l(k) according to historical data; let (λ̃

in
j,s,g(k))σ = 0 and (λ̃

out
j,s,g(k))σ =

0; and initialize (G̃j,s,g(k))σ and (G̃s,j,g(k))σ by a warm start 5.  

2. For s = 1,…,Nsub, in a parallel fashion or a serial fashion local controller s determines (ũs(k))σ+1,(Ẽ
in
j,s,g(k))σ+1, and (Ẽ

out
j,s,g(k))σ+1 for 

j ∈ Ss by solving the local problem defined by Problem 5 or Problem 7 with Eq. (39) being incorporated.  
3. For s = 1,…,Nsub, update the global variables for all pairs of s and j ∈ Ss: 

(
G̃s,j,g

(
k
))

σ+1 =
1
2

((
Ẽ

in
s,j,g

(
k
))

σ+1
+
(

Ẽ
out
j,s,g

(
k
))

σ+1

)

(40)    

4. For s = 1,…,Nsub, update the Lagrange multipliers for all pairs of s and j ∈ Ss: 

5 In the warm start, we assume that for the first control step the control inputs equal the initial control inputs over the prediction period, and that 
for other control steps the control inputs over the prediction period are estimated by shifting one step ahead the optimal control input sequence 
obtained at the previous control step, based on the receding-horizon scheme (Maciejowski, 2002; Camacho and Bordons, 2007). 
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(
λ̃

in
j,s,g

(
k
))

σ+1
=
(

λ̃
in
j,s,g

(
k
))

σ
+ c
((

Ẽ
in
j,s,g

(
k
))

σ+1
−
(
G̃j,s,g

(
k
))

σ+1

)
(41)  

(
λ̃

out
j,s,g

(
k
))

σ+1
=
(

λ̃
out
j,s,g

(
k
))

σ
+ c
((

Ẽ
out
j,s,g

(
k
))

σ+1
−
(
G̃s,j,g

(
k
))

σ+1

)
(42)    

5. Check the stopping condition: 

∊σ+1 =

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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Λ̃
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1

(
k
))
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−
(

Λ̃
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1

(
k
))

σ

)T

⋮
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Nglo

(
k
))
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−
(

Λ̃
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(
k
))

σ

)T

((
Λ̃

out
1

(
k
))
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−
(
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out
1

(
k
))

σ

)T

⋮
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(
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))
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−
(

Λ̃
out
Nglo

(
k
))

σ

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

∞

(43)  

where Λout
g (k) is a stacked vector containing all values of λout

j,s for all subnetworks, corresponding to global uncertainty scenario g. If 

∊σ+1 < ∊ (∊: a small positive value), stop the optimization, and output (ũs(k))σ+1. Otherwise, go to step 2.  

Remark 5. According to Remark 3, we apply DMPC for nonlinear-nonconvex traffic networks, and investigate the control effec

tiveness by a numerical experiment in this paper. As mentioned in Step 2 above, local controller s determines (ũs(k))σ+1,(Ẽ
in
j,s,g(k))σ+1, 

and (Ẽ
out
j,s,g(k))σ+1 at iteration σ. If we assume that (Ẽ

in
j,s,g(k))σ+1 = (Ẽ

out
s,j,g(k))σ , the function Jinter

s,g can be written as follows: 

Jinter
s,g

((
λ̃

out
j,s,g

(
k
))

σ
,
(

Ẽ
out
j,s,g

(
k
))

σ+1

)
=
(

λ̃
out
j,s,g

(
k
))T

σ

(
Ẽ

out
j,s,g

(
k
))

σ+1
+

c
2

⃦
⃦
⃦

(
Ẽ

out
j,s,g

(
k
))

σ+1
−
(
G̃s,j,g

(
k
))

σ

⃦
⃦
⃦

2

2
(44) 

In this case, a local controller optimizes its local objective function on the basis of interconnecting outputs determined by neighbouring local 
controllers at previous iteration. Note that in essence local controllers still seek to converge with their neighbors by iteratively solving local control 
problems. 

6. Case Study 

6.1. Benchmark Network 

We consider a freeway network as shown in Fig. 5 for the case study. In this freeway network, there are 10 links (m = 1,…,10), 1 
mainstream origin (O0), 1 unrestricted destination (D0), 3 on-ramps (O1,O2, and O3), and 3 unrestricted off-ramps (O4,O5, and O6). In 
total, these 10 links are divided into 18 segments with equal length Lm = 1km. The mainstream stretch includes 2 lanes, and each on- 
ramp or each off-ramp includes 1 single lane. The positions of variable speed limits (NVSL = 6) are shown in Fig. 5, and all on-ramps are 
metered (NRM = 3). The queue lengths at all on-ramps are limited within 100 veh for avoiding spill back to upstream stretches. This 
queue length constraint corresponds to Eq. (26), which represents a constraint on states, outputs and control inputs. The turning rates 
at all off-ramps are assumed to be fixed as 5% of the mainstream flow. For applying scenario-based DMPC, the network is divided into 3 
subnetworks (S1,S2, and S3), and each subnetwork includes 6 segments, 1 on-ramp, and 1 off-ramp. 

For subnetwork S1, the interconnecting input is the density of the first segment of subnetwork S2; the interconnecting outputs 
include the flow and speed of the last segment of subnetwork S1. For subnetwork S2, the interconnecting inputs include the flow and 
speed of the last segment of subnetwork S1, and the density of the first segment of subnetwork S3; the interconnecting outputs include 
the flow and speed of the last segment of subnetwork S2. For subnetwork S3, the interconnecting inputs include the flow and speed of 
the last segment of subnetwork S2; the interconnecting output is the density of the first segment of subnetwork S3. 

The traffic flow model METANET described in Section 2 is used as both the process model and the prediction model. In this paper, 
we mainly focus on investigating the efficiency of scenario-based DMPC for traffic networks, neglecting the model mismatch caused by 
the difference between the prediction model and real traffic process. In fact, other traffic models can also be used as prediction models 
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in this approach. To some extent, the model mismatch issue can be addressed by state-of-the-art feedback control approaches such as 
MPC (Camacho and Bordons, 2007), by means of an inherent feedback scheme. The nominal parameters for METANET are chosen 
according to (Kotsialos et al., 2002; Hegyi et al., 2005). As suggested in (Hegyi et al., 2005), the prediction horizon is chosen according 
to the average time needed for a vehicle to go through the considered subnetwork. Table 2 includes the nominal parameters for 
METANET, time step parameters6, prediction horizon, control horizon, and the weights in Problem 5 and Problem 7. 

The considered simulation period is 2.5h, and Fig. 6 shows the nominal demands for the mainstream origin and on-ramps. 

6.2. Control Settings 

6.2.1. Uncertainty Scenarios 
In this section, we describe the global and local uncertainty scenarios used for the case study. In following text, we introduce the 

global and local uncertainty scenarios for simulations. In this section, we introduce the global and local uncertainty scenarios for 
Scenario-Based DMPC.  

• Uncertainty Scenarios for the Simulations 
Uncertainties in weather conditions (sunny or rainy) are considered as global uncertainties for the overall network. We suppose 

that the model parameter τ and the free-flow speed vfree
m are affected by weather conditions. For sunny days, τ and vfree

m are 
considered to be nominal values given in Section 6.1. For rainy days, τ is considered to be 5% larger than the corresponding nominal 
value, i.e. τ = 18.9s, and vfree

m is considered to be 5% smaller than the corresponding nominal value, i.e. vfree
m = 96.9km/h. The 

probability for sunny days is assumed to be 0.8, and the probability for rainy days is assumed to be 0.2. 
Uncertainties in demands are considered as local uncertainties for subnetworks. Based on nominal demands, three base demand 

scenarios over the entire simulation period are considered for constructing scenarios for simulations and scenario-based DMPC:  
– Base demand scenario 1: nominal demands with a probability of 0.7;  
– Base demand scenario 2: 90% of nominal demands with a probability of 0.1;  
– Base demand scenario 3: 110% of nominal demands with a probability of 0.2. 

In this case study, we consider 10 pre-selected demand scenarios for the simulations, of which the sampling step length is 
assumed to be equal to the control time step interval. Each of these 10 demand scenarios is pre-selected as follows: for each origin 
and at every sampling step the demand is randomly set to be one of the 3 base demand scenarios with the corresponding 
probabilities (i.e., 0.7, 0.1, 0.2). In the considered 10 demand scenarios for the simulations, 8 are for sunny days, and the 
remaining 2 are for rainy days. Note that in this case study, the demand scenarios are local uncertainty scenarios, while the weather 
scenarios are global uncertainty scenarios. The scenarios for simulations are combinations of the considered demand scenarios and 
the weather scenarios. For sunny days, the traffic is congested in the whole network roughly during simulation time 0.3–2.3h. 

Fig. 5. The freeway network used for the case study.  

Table 2 
Parameters for case study.  

Cmain  2100veh/h/lane ξTTS  1 
Conramp  2000veh/h/lane ξspeed  0.1 
τ  18s ξramp  0.1 
sη  60km2/h  γ  100 

κ  40veh/km/lane T 10s 
am  1.867 Tc  180s 
δm  0.1 Np  3 

vfree
m  102km/h Nc  2 

ρcrit
m  33.5veh/km/lane   

ρmax
m  180veh/km/lane    

6 In the case study, the general case with Tc ∕= T is considered, where Tc represents the control time step interval. Accordingly, kc is the control 
time step counter, and M = Tc/T is an integer. Thus in (3), 

∑(kc+Np)M− 1
z=kcM is used instead of 

∑k+Np − 1
z=k . In (4), 

∑kc+Nc − 1
z=kc 

is used instead of 
∑k+Nc − 1

z=k . 
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For rainy days, the traffic is congested for segments 1–12 roughly during simulation time 0.3–2.3h, and for segments 13–16 
roughly during simulation time 0.3–2.5h. During the congestion period, the minimum speed is about 10km/h, corresponding to 
a strong congestion mode. For different uncertainty scenarios in demands, traffic conditions are roughly the same, while for rainy 
days the traffic is more congested than for sunny days.  

• Uncertainty Scenarios for Scenario-Based DMPC 
For scenario-based DMPC, global uncertainty scenarios include sunny days and rainy days; demand scenarios (i.e. local scenarios) 

are constructed based on the base demand scenarios. If all the possible combinations of the 3 base demand scenarios are considered, 
then for a given origin and for a given control step, there are 27 (i.e. (3 basescenarios)Np ) possible demand scenarios over the 
prediction period. The probability of each of these 27 demand scenarios is obtained by multiplying the probabilities of the selected 
base demand scenarios for all sampling steps over the prediction period. Next, we ignore the demand scenarios with probabilities 
lower than 0.02, which leaves 10 demand scenarios over the prediction period for each origin at every control step, of which the 
total probability is 0.868. Thus the number of the considered demand scenarios for each origin at each control step is significantly 
reduced, while the total probability is still large. Note that in the expected-value setting the probability for each of the remaining 10 
demand scenarios needs to be divided by 0.868, so that the equivalent total probability equals 1. The same 10 demand scenarios are 
also considered in the min–max setting. 

6.2.2. Control Approaches 
Since our aim is to develop an approach to deal with the large-scale network control problem with uncertainties being directly 

handled, the following control approaches are considered:  

• Nominal DMPC: based on nominal parameters and nominal demands, i.e. general DMPC without considering the scenario-based 
scheme for dealing with uncertainties when optimizing the control inputs;  

• Scenario-Based DMPC 1: based on the reduced scenario tree and the expected-value setting, i.e. Problem 5;  
• Scenario-Based DMPC 2: based on the reduced scenario tree and the min–max setting, i.e. Problem 7. 

For Scenario-Based DMPC 2, (38) is used for determining interconnecting outputs for global scenarios, and the Eq. (44) in Remark 5 
is used for computing Jinter

s,g . 

6.2.3. Other Control Settings 
All approaches are implemented in a serial scheme, i.e. local controllers solve local optimization problems in a serial fashion, taking 

into account the latest information of neighboring local controllers (Negenborn et al., 2008). For all approaches, we set a fixed 
computation time for every control time step. This fixed computation time includes all computations including negotiation iterations 
among controllers in series for every control step (note that in this case the stopping condition (43) is not used). We consider four cases 
in this paper, i.e. the maximum allowed computation time for every control step for all control approaches is respectively set to be 3 
min, 10 min, 15 min, and 20 min for each case.7 In practice, the computation time for each control step is required to be less than Tc, 
and this can e.g. be realized by means of fast implementation or parallel implementation, which are outside the scope of this paper. 

In the simulations, all optimization problems are solved by the ”TOMLAB” optimization tool, with the prediction model METANET 
coded in C. All simulations are implemented on a computer with 12 Intel(R) Core(TM) i7-8750H CPU @2.20 GHz processors. 

6.3. Results and Analysis 

6.3.1. Performance 
In Tables 3–5, for a control approach, the average and standard deviation of the results for all simulation scenarios are listed. In 

Fig. 6. Nominal demands for the mainstream origin and on-ramps.  

7 Note that in this paper we make the maximum allowed computation time for different approaches equal for fair comparison. 

S. Liu et al.                                                                                                                                                                                                              



Transportation Research Part C 136 (2022) 103261

16

these tables, Jimp
TTS represents the relative improvement in TTS w.r.t. the no-control case over the entire simulation period, Jpen rep

resents the maximum of the relative queue constraint violations8 for all on-ramps over the entire simulation period, Jimp
tot represents the 

relative improvement in the total performance9 w.r.t. the no-control case, and the total performance is defined as Jtot = TTStotal
TTSnom

+ γJpen, 
with TTStotal the total time spent over the entire simulation period in a closed-loop simulation. 

From Tables 3–5 we can see that for nominal DMPC the total performance is worse than that for the no-control case, while for 
scenario-based DMPC the total performance is improved w.r.t. the case without control. More specifically, the TTS can be improved by 
nominal DMPC, but the queue constraints are not satisfied, leading to a worse total performance than the no-control case. For scenario- 
based DMPC, the TTS is improved less than nominal DMPC, but the queue constraints are satisfied, resulting in an improvement of the 
total performance. This means that scenario-based DMPC is more robust than nominal DMPC for this case study. 

With the increase of the computation time for each control step, the total performance is further improved by scenario-based DMPC 
approaches; however, this not the case for nominal DMPC. This is probably due to the fact that nominal DMPC does not take into 

Table 3 
Simulation results for nominal DMPC.  

Fixed Computation Time Tc = 3 min  Tc = 10 min  Tc = 15 min  Tc = 20 min  

Jimp
TTS  

Average 6.93% 6.93% 6.99% 6.96%  

Standard 0.81% 0.78% 0.75% 0.79%  
deviation     

Jpen  Average 12.92% 13.39% 13.47% 13.53%  
Standard 4.59% 4.82% 4.84% 4.81%  
deviation     

Jimp
tot  Average -7.04% -7.56% -7.59% -7.69%  

Standard 4.593% 5.19% 5.23% 5.21%  
deviation      

Table 4 
Simulation results for scenario-based DMPC 1.  

Fixed Computation Time Tc = 3 min  Tc = 10 min  Tc = 15 min  Tc = 20 min  

Jimp
TTS  

Average 5.59% 6.38% 6.47% 6.53%  

Standard 0.75% 0.70% 0.76% 0.86%  
deviation     

Jpen  Average 0% 0% 0% 0%  
Standard 0% 0% 0% 0%  
deviation     

Jimp
tot  Average 5.59% 6.38% 6.47% 6.53%  

Standard 0.75% 0.70% 0.76% 0.86%  
deviation      

Table 5 
Simulation results for scenario-based DMPC 2.  

Fixed Computation Time Tc = 3 min  Tc = 10 min  Tc = 15 min  Tc = 20 min  

Jimp
TTS  

Average 4.62% 5.58% 5.92% 5.95%  

Standard 0.55% 0.61% 0.74% 0.68%  
deviation     

Jpen  Average 0% 0% 0% 0%  
Standard 0% 0% 0% 0%  
deviation     

Jimp
tot  Average 4.62% 5.58% 5.92% 5.95%  

Standard 0.55% 0.61% 0.74% 0.68%  
deviation      

8 The relative queue constraint violation for an on-ramp o is defined as max
(

maxk=1,…,kend
wo(k)
wmax

o
− 1,0

)

, where kend represents the last simulation 
time step of the entire simulation period, and wmax

o represents the maximum permitted queue length for on-ramp o.  
9 The Jimp

tot reported in this section is corresponding to objective functions defined in Problem 5 and Problem 7, where Jinter
s,g and penalty terms on 

variable speed limits and ramp metering rates defined in Eq. (4) are ignorable w.r.t. the queue length constraint term (i.e. the term with γ included in 
Problem 5 and Problem 7. Thus we compared Jimp

tot in this section. 
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account uncertainties by means of the scenario-based scheme: Although there is an inherent feedback scheme in nominal DMPC, the 
corresponding control inputs obtained in a longer fixed computation time for each control step may result in a worse total perfor
mance, due to constraint violations, as shown in Tables 3–5. 

Moreover, the standard deviations of Jimp
TTS,Jpen, and Jimp

tot are all small for scenario-based DMPC. However, the standard deviations of 
Jpen and Jimp

tot are relatively large for nominal DMPC. This shows that scenario-based DMPC results in a more consistent total perfor
mance than nominal DMPC. 

Comparing scenario-based DMPC for the expected-value setting (Scenario-Based DMPC 1) with scenario-based DMPC for the 
min–max setting (Scenario-Based DMPC 2), we can see that for this case study using the expected-value setting can improve the total 
performance more than using the min–max setting. This is probably due to the fact that the same uncertainty scenarios are used for the 
expected-value setting and the min–max setting. For the min–max setting the worst case of the total performance among all the 
considered uncertainty scenarios is optimized, resulting in more conservative control inputs than those for the expected-value setting. 

6.3.2. Traffic behaviours and control inputs 
In this section, one simulation scenario is chosen as an example, for which the variable speed limits and the ramp metering rates for 

all the considered approaches are plotted in Figs. 7 and 8. The corresponding origin flows, queue lengths, speeds, and densities for that 
simulation scenario are shown in Figs. 9–12, describing traffic behaviours for the no-control case and all the considered control 
schemes. 

From Fig. 7 we can see that the variable speed limits determined by scenario-based DMPC are more fluctuating than those 
determined by nominal DMPC. From Fig. 8 we can see that the ramp metering rates determined by scenario-based DMPC slightly 
fluctuate in comparison with those determined by nominal DMPC. The fluctuations in the control inputs determined by scenario-based 
DMPC are probably due to the fact that it takes into account multiple uncertainty scenarios by means of the scenario-based scheme, 
while nominal DMPC takes into account only one nominal scenario. Besides, since we have a nonlinear-nonconvex problem, at every 
control step the solutions of the local controllers in general converge to local optima instead of a global optimum of the centralized 
control problem; this could also lead to fluctuations in the control inputs. From our point of view, these fluctuations are acceptable 
when the control time step length equals 3 min. 

From Fig. 9, we can see that there is a capacity drop around time t = 0.75h for the no-control case. For nominal DMPC, scenario- 
based DMPC 1, and scenario-based DMPC2, this capacity drop disappears. This means that the considered control schemes in this paper 
can reduce traffic congestion for the given settings. From Fig. 10, we can see that for nominal DMPC, the queue length constraint at on- 
ramp O2 is violated. This means that nominal DMPC cannot ensure the satisfaction of queue length constraints. Fig. 11 shows speed 
profiles for the no control case and all the considered approaches, and Fig. 12 shows density profiles for the no control case and all the 
considered approaches. We can see that the density profiles for scenario-based DMPC are similar to those for nominal DMPC. However, 
there are slight fluctuations in speed profiles for scenario-based DMPC, corresponding to those fluctuations in variable speed limits. 

Fig. 7. Variable speed limits for all the considered approaches.  
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6.3.3. Computational Efficiency w.r.t. the Complete Scenario Tree 
In the case study, we did not apply scenario-based DMPC on the basis of the complete scenario tree. For evaluating the compu

tational efficiency of the complete scenario tree, we select the scenario-based DMPC approach based on the complete scenario tree and 
the expected-value setting as a reference case for testing. The scheme for this reference case is described in Appendix A. In this section, 
we implement simulations based on the parameters in Table 2. As an example, the simulations are implemented for one of the un
certainty scenarios for simulations(as described in Section 6.2). 

We first make a rough estimate of the computation time t☆ needed for solving the local optimization problems for all 3 controllers in 
a serial way, i.e. for 1 negotiation iteration. Then, we estimate the number Nite of iterations needed for a single run of simulation for the 
entire simulation period. In this section, we consider that scenario-based DMPC on the basis of the complete scenario tree needs the 
same number of negotiation iterations as scenario-based DMPC on the basis of the reduced scenario tree. Then, the rough computation 
time t▵ needed for scenario-based DMPC on the basis of the complete scenario tree for the entire simulation period (2.5h) is obtained 
by multiplying t☆ with Nite. 

We estimate t☆ by averaging the time needed for one negotiation iteration at the first control step, the middle control step, and the 
last control step. According to the test, it takes roughly 14 h for finishing one negotiation iteration for scenario-based DMPC on the 
basis of the complete scenario tree, i.e. t☆ = 14 h. For the case that the computation time for every control step is fixed as 3 min, the 

Fig. 8. Ramp metering rates for all the considered approaches.  

Fig. 9. Origin flows for all the considered approaches.  
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total number of negotiation iterations for a single run for scenario-based DMPC on the basis of the reduced scenario tree is about Nite =

500. Hence, it would take about t▵ = 7000 h for finishing 500 negotiation iterations. This is much longer than the computation time for 
scenario-based DMPC on the basis of the reduced scenario tree, which is 2.5h (i.e. the entire simulation time length) for the case that 
the fixed computation time for a control step is 3 min (i.e. the control time step length). 

According to the above discussion we can conclude that the computational efficiency of scenario-based DMPC on the basis of the 
reduced scenario tree is much higher than that of scenario-based DMPC on the basis of the complete scenario tree. Note that the main 
aim is to comparing the computational efficiency of the reduced tree method w.r.t. the complete scenario tree method. For applying the 
proposed scenario-based approaches in real time, fast implementation and parallel implementation can be used in the future. 

Remark 6. For the centralized scheme there will be more variables to be optimized by a single controller (i.e. the centralized 
controller), while the complete scenario tree will still be used for taking into account the uncertainties. In fact, improving compu
tational efficiency is the main motivation of using the DMPC approach, and our aim of this manuscript is to compare the cases with and 
without considering uncertainties. In addition, according to the simulation results of this paper, we can see that the scenario-based 
DPMC approaches that we proposed can indeed reduce traffic congestion, making the capacity drop in the no control case disap
pear. Therefore, we do not compare our control schemes with the centralized scheme in this paper. 

7. Conclusions and Future Work 

In this paper, we have developed a new scenario-based DMPC approach for freeway networks by distinguishing global uncertainties 
for the overall network from local uncertainties for particular subnetworks only. Instead of constructing a complete scenario tree with 
all the combinations of the local scenarios for all subnetworks considered, we have proposed to construct a reduced scenario tree by 
combining the interconnecting outputs for a subnetwork for all the local scenarios for that subnetwork. To reduce the computational 
burden, in the new scenario-based DMPC approach, an expected-value setting (which is probabilistic) and a min–max setting are 
considered for combining local scenarios and for defining objective functions for subnetworks, which include both control perfor
mance indices and constraint violation penalties. 

We have illustrated by a numerical experiment that for scenario-based DMPC on the basis of the reduced scenario tree the total 
performance can be improved compared to the no-control case, with the queue constraints satisfied; while for nominal DMPC, the total 
performance could not be improved w.r.t. to the no-control case, due to the violation of the queue constraints. The experiment also 
showed that both the expected-value setting and the min–max setting are effective in improving the total performance. 

For future work, we will focus on investigating how the complexity of the scenario-based DMPC approach increases with the size of 
a traffic network. The trade-off between the selection of subnetwork size and performance (i.e. the sensitivity analysis on how the size 
of subnetwork influences the final results) will also be considered as one of our future research topics. We will also consider to include 
correlation among the uncertainty scenarios of different subnetworks. In addition, more traffic scenarios, other types of uncertainties, 
different control actions for different global scenarios will be considered for studying and improving the effectiveness of the new 
scenario-based DMPC approach. Furthermore, we will consider to focus on the model mismatch between the prediction model and the 

Fig. 10. Queue lengths for all the considered approaches.  
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Fig. 11. Speeds for all the considered approaches.  
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Fig. 12. Densities for all the considered approaches.  

S. Liu et al.                                                                                                                                                                                                              



Transportation Research Part C 136 (2022) 103261

22

real traffic process, use of parallel computation, methods to divide a large traffic network into subnetworks, and further investigations 
on robustness, computability, and statistical properties, extensive analysis of suboptimality and convergence. 

Appendix A. Scenario-Based DMPC on the Basis of the Complete Scenario Tree and the Expected-Value Setting 

The aim of Appendix A is to include a comparison of the computational efficiency for scenario-based DMPC on the basis of the 
reduced scenario tree and the complete scenario tree. The formulas presented in Appendix A are analogous to Problem 5, except for the 
way of combing local uncertainty scenarios, as described in Section 4.1. 

The scenario-based DMPC problem based on the complete scenario tree and the expected-value setting for a local agent s is defined 
as follows: 

min
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out

s,g,ℓ(k),

∑Nglo

g=1
pg

(
∑Ncom

ℓ=1

pℓ
(
Js,g,ℓ

(
x̃s,g,ℓ

(
k
)
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Equations (9) and (24)
for g = 1,…,Nglo, and l = 1,…,Ncom  

where ωℓ represents a combined local uncertainty scenario for all subnetworks in the complete scenario tree, and pℓ is the probability 
for ωℓ. The symbols xs,g,ℓ, ys,g,ℓ, Js,g,ℓ, Fs,g,ℓ, Jinter

s,g,ℓ, fs,g,ℓ, λin
j,s,g,ℓ, λout

j,s,g,ℓ, E
in
j,s,g,ℓ, E

out
j,s,g,ℓ,D

in
s,g,ℓ, E

in
s,g,ℓ, and Eout

s,g,ℓ have similar meanings to corre
sponding symbols without subscripts g and ℓ in Section 3, but now they are for the case with global uncertainties and combined local 
uncertainty scenarios for all subnetworks. In addition, ̃xs,g,ℓ(k) and ̃ys,g,ℓ(k), are defined similarly to ̃xs(k) (i.e. (12)) over the prediction 

horizon covering steps k + z,z = 1,…,Np; λ̃
in
j,s,g,ℓ(k), λ̃

out
j,s,g,ℓ(k),Ẽ

in
j,s,g,ℓ(k), and ̃E

out
j,s,g,ℓ(k) are defined in a similar way to ̃xs(k) (i.e. (12)) over 

the prediction horizon covering steps k + z,z = 0,…,Np − 1. 
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