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Abstract

As a point estimate of the similarity score between
two possibly indefinite rankings, extrapolated rank-
biased overlap (RBOEXT) uses the assumption that
the agreement observed at the last evaluation depth
continues indefinitely across the unseen tails of the
two lists. This assumption does not account for any
patterns that occur in the visible prefixes, imposing
a strict restriction on the extrapolation. In an effort
to improve the accuracy of RBOEXT, three reformu-
lations with a relaxed theoretical basis are proposed
in this paper: one continually re-uses the agreement
from the previous depth while the other two rely on
regression to fit a function on the seen agreements.
Using synthetic data, the performance of these new
extrapolation methods is compared to the original’s
in terms of closeness to the true RBO score as well
as the average distance between assumed and actual
agreement in the rankings’ unseen tails. Overall, an
impactful difference is observed in the estimates of
agreement generated by the four approaches: as the
trends from the visible prefixes are barely captured
by the simpler techniques or closely-reproduced by
the more flexible ones, the trade-off between under-
and overfitting becomes increasingly relevant. The
results thus indicate a need for some middle-ground
to be established such that it factors in the observed
patterns while also generalizing well for the tails.

1 Introduction
In many scenarios where results are aggregated from the ex-
ecution of an operation – such as a search engine running a
user-submitted query – rankings are produced. The latter are
usually top-weighted, meaning that the ordering of elements
at the top of the list matters more than that at lower positions,
and incomplete as they do not contain all possible values and
instead only cover a subset of the full domain [Webber et al.,
2010]. Additionally, rankings are often indefinite, which ne-
cessitates truncating them in a context-dependent and there-
fore inconsistent manner to produce finite prefixes whose ex-
haustive traversal would be feasible.

In practice, rankings are typically evaluated via relevance
judgements which are provided by human assessors and thus
inherently subjective, varying greatly depending on what cri-
teria for usefulness are considered [Bar-Ilan, 2005]. Mean-
while, to compare and contrast the algorithms which generate
rankings, computation-based similarity measures that do not
rely on opinion-polling can be applied on the observed order-
ings, yielding insights about correlation and overlap, domain
coverage, and information entropy [Cardoso and Magalhães,
2011]. However, due to the feasibility constraints imposed by
indefinite rankings and the absence of a ”gold-standard” rank-
ing (or ”ground truth”) in most cases, only the items ranked
at the top k positions by any two given algorithms are consid-
ered [Fagin et al., 2003]. This makes it desirable for compar-
ison measures to output a similarity estimate for the full lists
even when only partial prefixes are available.

Satisfying precisely this requirement, rank-biased overlap
(RBO) is a top-weighted, overlap-based similarity measure
that bounds the full similarity score based on an evaluation of
the two rankings’ visible prefixes [Webber et al., 2010]. The
greater the length of the lists provided as input, the narrower
the bounds become, and the more accurate the estimation. To
capture the property of top-weightedness, RBO is parameter-
ized by p (persistence), which represents a user’s probability
of proceeding further down the two lists and considering the
items ranked next. Furthermore, as it is based solely on set in-
tersection and a convergent sum of geometrically-decreasing
weights that are fixed per rank, RBO provides consistent sim-
ilarity scores even when the given rankings are non-conjoint,
incomplete, or indefinite [Webber et al., 2010].

1.1 Motivation and Aim of the Study
In most cases where RBO is applied, a point estimate for the
full similarity score (RBOEXT) is usually computed. To do so,
the last-observed agreement at evaluation depth k is assumed
to continue indefinitely [Webber et al., 2010]. This, however,
is quite a strong assumption as it does not account for specific
patterns throughout the visible prefixes. Consequently, there
is no way of introducing variability into the agreement-values
for the unseen tails – which makes the original extrapolation
approach very inflexible. To address precisely that issue, this
study investigates the following research question:

How does redefining extrapolated RBO by altering
the assumption of constant agreement for elements
in the unseen sections of the two rankings influence
the accuracy of the RBO point estimate?

Therefore, by proposing alternative formulations of the single
RBO score and then performing a comparative evaluation, the
study aims to determine if a more accurate point estimate can
be achieved and thereby confirm whether the modification of
RBOEXT merits further research.

1.2 Contributions
To redefine RBOEXT, this study is centered on the interpreta-
tion of agreement as the probability that a randomly-selected
element appears in both rankings [Webber et al., 2010]. This
probability can be estimated and assigned to each unseen item
as the latter’s degree of membership (or contribution). In turn,
rather than extrapolating out from a single agreement-value,
both the assumed agreement and the RBO point estimate can
be computed iteratively at each depth, starting right after the
end of the shorter visible prefix and continuing indefinitely.

Three approaches for carrying out the latter procedure are
presented in this paper. The first newly-proposed formulation
simply re-uses the assumed agreement at the previous depth
as the estimated probability of membership for every unseen
item. Meanwhile, the other two rely on regression techniques
that fit a function on all observed agreements up to the end of
the shorter visible prefix and output an estimate of the mem-
bership probability. To account for the trade-off between in-
terpretability and complexity vis-à-vis the choice of a regres-
sion model, one approach involves logistic regression while
the other uses the more flexible generalized additive logistic
model (Logistic GAM) [Hastie and Tibshirani, 1986].
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To compare the performance of these three reformulations
against the original RBOEXT implementation, simulated rank-
ings are generated and exhaustively traversed to compute the
real RBO and agreement-values, which serve as the objective
gold standard. Defined as closeness to the latter, accuracy is
the performance measure based on which the four RBO point
estimates and their corresponding agreement-approximations
are evaluated. Thus, the differences between the four variants
of RBOEXT are illustrated, and based on them, it is determined
whether a redefinition of the single RBO score could offer an
improvement over the original framework and should remain
an object of future studies.

This paper has the following structure: Section 2 elaborates
on background concepts related to rankings and outlines the
relevant properties of RBO. Section 3 then demonstrates the
mathematical framework behind the three proposed reformu-
lations of RBOEXT, followed by an explanation of the exper-
imental setup and a presentation of the results in Section 4.
Section 5 offers a discussion of the observed results, placing
them in a broader context. Afterwards, Section 6 summarizes
the findings, highlights the main conclusions, and offers rec-
ommendations for further research. Finally, Section 7 tackles
the study’s ethical aspects and the methods’ reproducibility.

2 Background
This section establishes the theoretical framework for the rest
of the paper, presenting the relevant background concepts re-
garding rankings and the RBO similarity measure. First, the
mathematical formulation and the properties of RBO are de-
scribed. Afterwards, the original definition of the single RBO
score (RBOEXT) is provided, alongside an analysis of the as-
sumptions and limitations behind this point estimate.

2.1 Properties of Rank-Biased Overlap
In order to compare rankings and infer details about the algo-
rithms that produced them, similarity measures can be calcu-
lated as a substitute for the highly subjective relevance judge-
ments of human reviewers [Bar-Ilan et al., 2006]. However,
in practice, rankings are typically indefinite (meaning that any
truncation depth can be selected for evaluation), incomplete
(resulting in non-conjointness as the two rankings only cover
subsets of the entire domain), and top-weighted (making the
ordering at the top of the two lists more important than that
further down the tails) [Webber et al., 2010].

Introduced in 2010, RBO is a similarity measure designed
to accommodate rankings with those three properties. To han-
dle incompleteness, RBO is based on overlap (i.e. set inter-
section) rather than correlation [Webber et al., 2010]. Specif-
ically, overlap is defined as the number of items that the two
indefinite rankings S (with a visible prefix of length s) and L
(with its typically longer visible prefix of length l ≥ s) have
in-common up to evaluation depth d:

XS,L,d = |S:d ∩ L:d| (1)

The proportion of overlapped items at d is then referred to as
agreement:

AS,L,d =
XS,L,d

d
(2)

To introduce top-weightedness, RBO is parameterized by the
persistence value p (0 < p < 1), which denotes the probabil-
ity of a user continuing to consider the items ranked next in
the two lists [Moffat and Zobel, 2008]. In turn, the probability
of the evaluation terminating at the current depth is 1− p.

For RBO to handle indefinite rankings and output a consis-
tent similarity score regardless of the chosen truncation depth,
fixed weights are assigned to each rank following the conver-
gent geometric series, whose infinite sum is defined as:

∞∑
d=1

pd−1 =
1

1− p
(3)

To sum up to 1, each weight is modeled as wd = (1−p)·pd−1

[Webber et al., 2010]. As a consequence, the weights are also
decreasing, which causes the visible prefixes to contribute to
the similarity score more than the infinite tails [Clarke et al.,
2020]. RBO can then be derived as:

RBO(S,L, p) = (1− p)

∞∑
d=1

Ad · pd−1 (4)

The output of RBO can range from 0 to 1, where 0 indicates
that the two rankings are completely dissimilar (i.e. fully dis-
joint), and 1 implies they contain the same elements [Webber
et al., 2010]. In essence, based solely on an evaluation of the
finite visible sections of the two rankings, RBO imposes tight
bounds on the full similarity score [Webber et al., 2010]. As
the evaluation depth increases, both bounds become narrower,
and the approximation’s accuracy improves.

RBO can therefore be applied in many scenarios where in-
definite rankings are generated, and other similarity measures
inspired by RBO have been developed to satisfy various new
properties and make alternative trade-offs [Cardoso and Ma-
galhães, 2011; Tan and Clarke, 2014]. New variants of RBO
were also recently proposed that account for the presence of
ties in the visible prefixes, extending the original framework
from 2010 [Corsi and Urbano, 2024].

2.2 Assumptions and Limitations of Extrapolated
Rank-Biased Overlap

In most cases where RBO is used, a single similarity score is
often reported and analyzed. To find the latter, the agreement
seen at the last depth of the visible prefixes is assumed to con-
tinue indefinitely across the unseen parts of the two rankings
[Webber et al., 2010]. Thus, the point estimate RBOEXT is ex-
trapolated out from this agreement according to the following
formula for visible-prefix lengths l ≥ s:

RBOEXT (S,L, s, l, p) =
1− p

p

( l∑
d=1

Xd

d
pd +

+

l∑
d=s+1

(d− s)Xs

ds
pd
)
+

(
Xl −Xs

l
+

Xs

s

)
pl

(5)

If the visible prefixes are of the same length, the procedure is
to just compute the weighted sum of all observed agreements
from 1 to k (= s = l) and after that extrapolate the agreement
at the last depth Ak.
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However, when l > s, a separate extrapolation occurs for
the l− s items that are unseen in S (i.e. the section S(s+1):l).
As shown in Equation 5, those elements are assigned a prob-
ability of membership equal to As, the agreement observed at
depth s [Webber et al., 2010].

Based on this assumption, the assumed agreement at depth
l (Ãl) is then computed and extrapolated for items in the un-
seen tails of the two rankings (the last term of Equation 5):

Ãl =
Xl + (l − s) ·As

l
=

Xl −Xs

l
+

Xs

s
(6)

The assumption of constant agreement that the two extrapola-
tions (of As and Ãl) are based on, however, does not account
for any patterns occurring in the visible prefixes, limiting the
available information regarding agreement-behavior to solely
those two snapshots at depths s and l. This inflexibility could
result in a divergence between assumed and real agreement if
for example, agreement remains low in the visible parts, only
to then asymptotically approach 1 throughout the unseen tails.
Such a divergence could in turn heavily lower the accuracy of
RBOEXT, especially when the seen section is short while p is
close to 1, causing a lot of unseen items to remain significant
for the RBO score due to their large weights.

Considering the potentially detrimental effects of such in-
flexibility on the accuracy of RBOEXT, the aim of the study is
to redefine the single RBO score under more relaxed assump-
tions in an effort to achieve more accurate approximations of
both agreement and RBO. Thus, a new mathematical frame-
work for RBOEXT is the focus of the next section.

3 Proposed Reformulations of Agreement and
Extrapolated Rank-Biased Overlap

Altering the assumption of constant agreement for the unseen
tails of the two rankings S and L is the key to determining if
the accuracy of the single RBO score can be improved. Thus,
a redefinition of RBOEXT and new methods for computing the
assumed agreement at any depth d (Ãd) constitute the study’s
main contributions and are outlined in this section.

As done in previous redefinitions of RBO, the formula for
the similarity score can be split into three sections with regard
to the scope of the visible prefixes [Corsi and Urbano, 2024].
These three intervals contain the items visible in both prefixes
(depths 1 to s), the remainder of the longer prefix with a cor-
responding unseen section of S (depths s+ 1 to l), as well as
the elements that are unseen in both rankings (depths l+1 to
∞), respectively. Such a separation results in the redefinition
of the RBO point estimate below:

RBOREDEF
EXT (S,L, s, l, p) =

1− p

p

( s∑
d=1

Adp
d +

+

l∑
d=s+1

Ãdp
d +

∞∑
d=l+1

Ãdp
d

) (7)

In the first section, Ad is simply the observed agreement since
the items in both prefixes are seen: it is thus calculated using
Equation 2. Meanwhile, the assumed agreement from the last

two terms of Equation 7 is formulated differently with respect
to the interval that d falls within:

Ãd =


Xd +

∑d
k=s+1 Âk

d
d ∈ [s+ 1; l]

Âd d ∈ [l + 1;∞)

(8)

When items in one or both rankings are unseen, it is necessary
to assign those elements a degree of membership – or in other
words, their estimated contribution to the assumed agreement
at the chosen depth d. This is precisely the role of Âk (or Âd

for the second part of Equation 8), which is interpreted as the
probability that an element selected at random appears in both
rankings [Webber et al., 2010]. Estimating this probability of
membership and assigning it to the unseen items results in the
two formulations of assumed agreement (Equation 8).

For the [s+1; l] interval, the observed overlap Xd (which is
computed using Equation 1) accounts for the l− s remaining
seen items in the longer prefix. The extrapolation is therefore
partial, the contribution of the unseen elements S(s+1):l set to
Âk. In contrast, beyond l, both S and L are unknown, and no
further overlap is inferred: thus, Ãd is simply equal to Âd.

With Equation 8, the assumed agreement can be calculated
at any depth from s+1 to ∞ without extrapolating the values
of As and Ãl as done in the original framework and explained
in Section 2.2. Instead of those two constant agreements, the
degree of membership Âk is computed at every depth beyond
s, in an effort to introduce variability into the assumed agree-
ment and, by extension, the extrapolated similarity score.

To that end, this study offers three approaches to calculate
an unseen item’s estimated contribution Âk (outlined below):

Previous-Value Approach

This implementation simply re-uses the value of the assumed
agreement at the previous depth as the estimated contribution
of the current element, namely Âk = Ãk−1.

Logistic-Regression Approach

In this formulation, the value for Âk is assigned as the output
of logistic regression. The model computes a linear combina-
tion of the independent variable (in this case, depth), feeding
the result to the standard logistic function:

Âk =
1

1 + e−(β0 + β1·k)
(9)

The sigmoid is used to impose a range of [0; 1] on the output
for Âk. Meanwhile, the intercept (β0) and the coefficient (β1)
are optimized via a regression-fit on the observed agreements
from depths 1 to s.

Generalized-Additive-Model Approach

The third approach uses a generalized additive model (GAM)
as the more flexible alternative to ordinary logistic regression
and its underlying linear combination [Hastie and Tibshirani,
1986]. Âk is calculated as follows:

Âk =
1

1 + e−[s0 + s1(k)]
(10)
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The main advantage of GAMs allowing them to more closely
capture patterns in the data they are fitted against is the use of
non-parametric smoother functions, which may be non-linear
with respect to the independent variable (here, the evaluation
depth k) [Hastie and Tibshirani, 1986]. Therefore, β1 ·k from
Equation 9 is replaced by s1(k), with a penalized cubic spline
chosen as the function’s basis [Hastie and Tibshirani, 1986].

The sigmoid and the intercept term (s0) are otherwise iden-
tical in terms of the role they fulfill in Equations 9 and 10. As
the sigmoid is applied here, too, this approach is also referred
to as Logistic-GAM throughout the paper.

4 Experimental Setup and Results
This section demonstrates the main components of the evalu-
ation procedure followed throughout the study, offering more
details on the use of synthetic data, the setup of different test-
ing configurations, and the choice of a performance measure.
Additionally, it provides an overview of the results as well as
a comparison between the accuracy achieved by the proposed
RBOEXT redefinitions and that of the original formulation. In
this manner, the empirical analysis is based on the theoretical
framework and the assumptions outlined in Sections 2 and 3.

4.1 Usage of Simulated Rankings
As discussed in Section 2.1, most rankings are incomplete as
they do not contain every possible item from the domain. Due
to this, two given rankings are in-practice likely non-conjoint,
each covering a different subset of the full domain.

To control for the degree of incompleteness and (by exten-
sion) non-conjointness, an algorithm for generating synthetic
rankings was used in which the number of unique items in the
rankings’ shared domain is a freely-tunable parameter. A link
to the data-generation code, which was written by the authors
of several tie-handling RBO variants, can be found in Section
7 of the paper [Corsi and Urbano, 2024].

The domain size chosen for this study was 2000, and 5000
pairs of rankings were generated, each ranking of length 2000
elements. Having the domain and the full-ranking sizes equal
produced fully-conjoint rankings whose agreement reaches 1
at depth 2000. To control for the degree of non-conjointness,
therefore, the values for s and l could be varied, yielding two
visible prefixes that satisfy the property of incompleteness by
only covering (different) subsets of the whole domain.

Three values were selected for the persistence parameter p:
0.8, 0.9, and 0.95. The number of expected observed items is
thus 5, 10, or 20 – based on ω = 1

1−p
[Webber et al., 2010].

Finally, the lengths of the two visible prefixes s and l were
chosen using a pseudo-random number generator with respect
to the top-weightedness (ω) and the length of the full rankings
(∞ in practice – 2000 for this study, as explained earlier). To
leave room for the unseen tails and introduce variations in the
amount of seen items, l and s were generated as follows:

l = randint(ω, 45)

s = randint(⌊0.75 · ω⌋, l) (11)

In this manner, the majority of the weight-significant items in
the two lists were guaranteed to fall within the observed [1; s]
section, and even rankings (s = l) could also be generated.

(a) Example 1 (up to 100) (b) Example 1 (up to 2000)

(c) Example 2 (up to 100) (d) Example 2 (up to 2000)

(e) Example 3 (up to 100) (f) Example 3 (up to 2000)

(g) Example 4 (up to 100) (h) Example 4 (up to 2000)

(i) Example 5 (up to 100) (j) Example 5 (up to 2000)

(k) Example 6 (up to 100) (l) Example 6 (up to 2000)

Figure 1: Actual and assumed agreements in six selected scenarios.
The legend indicates the range and type of each agreement-trace; the
s / l / p configurations for every scenario are listed above the plots.
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4.2 Evaluation Procedure
In order to conduct a fine-grained evaluation where the differ-
ent factors influencing the results are easy to trace and reason
about, the randomly-generated lengths s were split into three
categories: small (s ≤ 15), medium (15 < s ≤ 30), and large
(s > 30). In combination with the 3 values chosen for p, this
resulted in 9 distinct configurations in which the performance
of the four RBOEXT formulations could be compared.

To conduct this assessment, two criteria were selected (and
applied equally to all four RBOEXT definitions): the accuracy
of the RBO point estimate and the accuracy of the agreement
assumptions in the presence of unseen items – namely, for all
depths in the interval [s+ 1;∞).

In turn, the performance measure of accuracy was defined
as closeness to the real values for RBO and agreement. In the
case of RBO-accuracy, the distance (i.e. absolute difference)
between the given point estimate and the true RBO similarity
score was calculated. As a value for agreement-accuracy, the
average distance between the assumed and the real agreement
quantities at depths s+ 1 to ∞ (i.e. 2000) was computed.

Lastly, it is significant to illustrate how the real RBO score
and the actual agreements beyond s were derived. The former
was treated as the output of RBOEXT when given the two full
lists S and L up to depth 2000 (in other words, exhaustively
computing the agreements to ∞). This arrives precisely at the
true similarity score and also provides the real agreements in
the interval [s+1;∞) – both necessary to calculate accuracy.

4.3 Results and Observations
The results aggregated throughout this experiment constitute
measurements of the RBO- and agreement-accuracy achieved
by the RBOEXT implementations. These performance criteria
are separately analyzed in the following two sub-sections.

RBO-Accuracy

Following the outlined evaluation procedure, the agreement-
and RBO-accuracy of all four RBOEXT implementations was
measured in different configurations with respect to p and the
type of randomly-generated s. Tables 1 and 2 provide aggre-
gated information about RBO-accuracy for fixed values of p
(0.8 and 0.95, respectively). Four measures are presented for
each category of RBOEXT and s: the average RBO-accuracy,
the maximal observed absolute difference, as well as the per-
centages of RBO-distances that qualify as medium (between
0.01 and 0.1) and large (greater than 0.1).

For both values of p and across all three intervals for s, the
original RBO similarity score is the most accurate on average,
and the point estimate computed using the logistic-regression
approach performs the poorest. The average RBO-distances
observed for the latter are 7 to 23 times those for the original
implementation: for example, 0.0517 vs. 0.0076 (Table 1) or
0.0961 compared to 0.0070 (Table 2). The logistic-regression
approach is also characterized by the highest percentages of
medium and large RBO-distances (e.g. 62% and 18% or 25%
and 73% in the category s ≤ 15). The reason for these large
absolute differences is the inflexible logistic regression model
underfitting the observed agreements at depths 1 to s, which
results in inaccurate predictions for Âk, a divergence between

assumed and actual agreements beyond depth s+1, and thus
(on average) an inaccurate RBO point estimate.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 2: Closeness-of-fit for Logit-Regression and Logistic-GAM
on the observed agreements up to s (from the scenarios in Figure 1).
The legend indicates the range and type of each agreement-trace; the
s / p configurations for every scenario are listed above the plots.

In contrast to simple logistic regression, all average RBO-
distances for the Logistic-GAM formulation are substantially
smaller, and the percentages of large differences are reduced
(e.g. 21% and 12% compared to 73% and 49% in Table 2). It
is worth noting, however, that Logistic-GAM has much larger
maximal RBO-distances than all other RBO redefinitions for
p = 0.95 (Table 2), which implies that greater flexibility does
not yield a better regression-fit in every scenario. Meanwhile,
the performance of the previous-value approach in all settings
for p and s closely resembles that of the original extrapolated
score – in terms of average, maximum, and M | L percentages.

Broadly inspecting the two tables, the effects of s and p on
overall RBO-accuracy also become apparent. As the length s
transitions from small to large, the average RBO-distance for
all four RBOEXT formulations decreases. The more items are
present in the fully-visible section (up to depth s), the smaller
the absolute differences become, dropping below 0.1 (flowing
from L into M) or below 0.01 (falling out of M entirely). This
can be observed in the last two columns of Table 2: for GAM,
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Table 1: Summarized measures of RBO-accuracy for a fixed p = 0.8 across the three categories of s (small, medium, and large).
M stands for medium RBO-distances in the interval (0.01; 0.1], and L represents large RBO-distances in the range (0.1; 1].

Type of s
∣∣RBO−RBOOG

EXT

∣∣ ∣∣RBO−RBOPV
EXT

∣∣ ∣∣RBO−RBOLR
EXT

∣∣ ∣∣RBO−RBOGAM
EXT

∣∣
Avg. Max. M L Avg. Max. M L Avg. Max. M L Avg. Max. M L

s ≤ 15 0.0076 0.2173 17% 1% 0.0077 0.1974 17% 1% 0.0517 0.2567 62% 18% 0.0116 0.2404 25% 2%

15 < s ≤ 30 0.0001 0.0029 0% 0% 0.0001 0.0029 0% 0% 0.0017 0.0141 1% 0% 0.0003 0.0104 0% 0%

s > 30 3.70 · 10−6 5.3 · 10−5 0% 0% 3.76 · 10−6 5.6 · 10−5 0% 0% 8.53 · 10−5 5.0 · 10−4 0% 0% 9.99 · 10−6 3.4 · 10−4 0% 0%

Table 2: Summarized measures of RBO-accuracy for a fixed p = 0.95 across the three categories of s (small, medium, and large).
M stands for medium RBO-distances in the interval (0.01; 0.1], and L represents large RBO-distances in the range (0.1; 1].

Type of s
∣∣RBO−RBOOG

EXT

∣∣ ∣∣RBO−RBOPV
EXT

∣∣ ∣∣RBO−RBOLR
EXT

∣∣ ∣∣RBO−RBOGAM
EXT

∣∣
Avg. Max. M L Avg. Max. M L Avg. Max. M L Avg. Max. M L

s ≤ 15 0.0116 0.1127 35% 0% 0.0127 0.1154 36% 0% 0.1231 0.1931 25% 73% 0.0763 0.3273 77% 21%

15 < s ≤ 30 0.0070 0.0930 25% 0% 0.0075 0.0930 26% 0% 0.0961 0.1969 46% 49% 0.0378 0.3164 40% 12%

s > 30 0.0025 0.0334 6% 0% 0.0025 0.0330 6% 0% 0.0523 0.1020 92% 0% 0.0124 0.1612 32% 1%

for instance, M + L equals 98%, 52%, and 33% (with an ever-
smaller share assigned to L) as s increases. In turn, the larger
value p = 0.95 causes RBO to be less top-weighted, resulting
in the noticeably greater RBO-distances presented in Table 2.
More of the assumed agreements beyond depth s, which may
drastically diverge from the actual values, become significant
during the computation of RBOEXT, decreasing its accuracy.

Agreement-Accuracy

To demonstrate how assumed agreements beyond depth s are
calculated using the four extrapolation approaches, 6 specific
scenarios were selected from the aggregated results such that
the various assumptions’ effects are apparent. Figure 1 shows
the assumed agreements for each scenario twice: the first plot
is truncated at depth 100 to clearly visualize trends in the most
significant agreements in terms of weight, whereas the second
one continues to the maximal depth of 2000. Figure 2 in turn
presents how well the two regression-based approaches fit on
the observed agreements (depths 1 to s), which fulfill the role
of training data for the models.

One difference that is immediately clear is the non-linearity
of the agreement-traces for both regression-based approaches
in contrast to the eventually-constant agreements assumed by
the original and previous-value extrapolations. Capturing the
patterns in the observed agreements via a regression-fit which
tunes the parameters of Equations 9 and 10, GAM and logistic
regression have greater flexibility, which in the case of GAM
can significantly outperform other approaches with respect to
agreement-accuracy (Examples 1 and 3). Moreover, accurate
estimations of Âk result in a noticeably higher RBO-accuracy
when the agreement at depth k is significant: this is illustrated
by GAM’s small RBO-distances in Ex. 1 and 3 (Table 3).

In other scenarios, however, that same flexibility can cause
low agreement-accuracy compared to simpler extrapolations.
Examples 2 and 5 show that if the trends captured throughout
depths 1 to s do not persist in the unseen remainder of the two
rankings, logistic regression and GAM produce estimates that
drastically diverge from the real agreement-values (Figure 1).

Such mismatch is only exacerbated by GAM’s tendency to
overfit on the observed agreements as indicated in all plots of
Figure 2. Compared to logistic regression, GAM’s far steeper
trace of fitted agreements in Ex. 2 and 5 leads to the very low
agreement-accuracy beyond s (Figure 1). Underfitting, as the
opposite extreme, characterizes logistic regression, and it can
have an equally detrimental effect on agreement-accuracy. In
Examples 1, 4, and 6, the closely-fitting GAM captures trends
of increase towards depth s (Figure 2), allowing it to perform
better than the inflexible logistic regression (Figure 1). When
the visible prefixes are even (Example 6), accounting for such
patterns during training becomes especially crucial as there is
no section [s+ 1; l) and thus no further overlap to consider.

Lastly, it is worth pointing out that low agreement-accuracy
does not necessarily imply poor RBOEXT performance. GAM
and logistic regression both output inaccurate assumed agree-
ments in Example 2 (Figure 1), yet the RBO-distances shown
in Table 3 do not differ drastically among the four approaches
(GAM still performing the worst with a difference of 0.0057).
These results confirm that agreements further from the visible
prefixes are less significant for computing the RBO score, no
matter how well they approximate their real counterparts.

5 Discussion and Limitations
Linking back to the properties of rankings outlined in Section
2 and the mathematical foundations of the proposed RBOEXT
reformulations from Section 3, this section places the study’s
findings in a broader context and reflects on the generalizabil-
ity of the results. Therefore, the limitations of the experiment
are established as an essential factor when analyzing how the
altered agreement-assumptions affect the accuracy of RBO.

While it remains important that the agreements assumed in
the various extrapolation approaches are overall accurate with
respect to the real values, the range of agreements significant
for the final RBO value is determined by the value of p. When
measuring the performance of RBOEXT, the decaying weights
wd and the resulting degree of top-weightedness described in
Section 2.1 need to be accounted for as a smaller p causes the
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Table 3: Measures of RBO-accuracy in the six scenarios from Figures 1 and 2.

RBO-Accuracy Example 1 Example 2 Example 3 Example 4 Example 5 Example 6∣∣RBO −RBOOG
EXT

∣∣ 0.0063 0.0009 0.0067 7.50 · 10−6 0.0101 0.0091∣∣RBO −RBOPV
EXT

∣∣ 0.0138 0.0012 0.0057 6.75 · 10−6 0.0101 0.0091∣∣RBO −RBOLR
EXT

∣∣ 0.0811 0.0010 0.0065 4.05 · 10−5 0.0714 0.0385∣∣RBO −RBOGAM
EXT

∣∣ 0.0048 0.0057 0.0030 1.48 · 10−5 0.0055 0.0121

unseen tails to matter very little (save for the first few ranks if
the length s is also small, for instance). Therefore, even if the
assumed agreements completely diverge from reality towards
later depths, the RBO score would largely be unaffected.

As for the visible-prefix lengths s and l, they are key factors
in determining the accuracy of RBOEXT as the visible parts of
the two rankings carry the largest weight. That is why a larger
value of s (i.e. access to more of the actual agreements) leads
to a smaller RBO-distance for all four RBOEXT formulations.
The section [s+1; l) is similarly beneficial for accuracy since
the seen items in L still contribute to overlap (the Xd term in
the first part of Equation 8). If l is far greater than s, however,
this partial extrapolation would dominate the two fully unseen
tails (beyond l) during the calculation of RBO and inflate the
final score, preventing the effects of the modified assumption
regarding constant agreement from becoming apparent. In an
effort to prevent this and make the interval [l+1;∞) equally
represented during experimentation, the upper threshold for l
in random number generation was set to 45 (Equation 11).

Accounting for the patterns of agreement up to depth s lies
at the center of the study’s efforts to redefine RBOEXT, and it
is the primary criterion based on which the four formulations
can be differentiated. The simpler original and previous-value
approaches consider limited information during extrapolation
(As|Ãl and Ãd−1, respectively), and the assumed agreements
they produce remain constant beyond the visible prefixes. As
a more flexible alternative, the two regression-based RBOEXT
implementations involve fitting a model on the agreements up
to s that then outputs estimates of the membership probability
Âk at every depth to ∞. The use of regression introduces the
trade-off between under- and overfitting in the training phase,
which is precisely the distinction between logistic regression
and GAM. While the latter better reproduces the trends in the
seen agreements and has a higher average RBO-accuracy, the
former’s tendency to underfit enables it to be less impacted if
the patterns of observed agreement happen to be inconsistent
with the actual agreement-values further along the tails.

Despite offering insights into the strong points, drawbacks,
and performance of the extrapolation techniques evaluated in
this study, the results presented in Section 4.3 of the paper do
not generalize well to realistic scenarios in which RBO might
typically be applied. This is caused by the fully-conjoint sim-
ulated pairs of rankings whose agreement is guaranteed to be
1 at the maximal depth – something that in-practice is unchar-
acteristic of incomplete and indefinite rankings. Therefore, to
preserve the property of incompleteness and ensure that S and

L remain non-conjoint within the visible prefixes, the domain
size (2000) was chosen to be far greater than the upper bound
for l (45). Despite this workaround, the actual agreements for
the unseen tails remain unrealistically large, discouraging the
generation of longer visible prefixes for the experiment while
also imposing an inconveniently-high baseline-agreement for
the measurement of agreement-accuracy. Ultimately, the tails
being poorly-generalizable was the reason why p was chosen
further from 1 (0.8 to 0.95), increasing top-weightedness and
preventing RBO-accuracy from being undesirably distorted.

6 Conclusions and Future Work
In this paper, the RBO point estimate as well as its assumption
of constant agreement throughout the unseen tails of any two
rankings were critically assessed. In the search of some more
accurate extrapolation method, three RBOEXT reformulations
with relaxed assumptions about agreement in the unseen parts
were proposed, and their closeness to the real RBO score was
measured for different values of p and the prefix-lengths s|l.

Through the devised experiment, it was discovered that the
original and previous-value extrapolations perform the best in
terms of RBO-accuracy, despite their assumed agreements in
the unseen tails remaining constant up to the maximum depth.
The remaining two RBOEXT redefinitions utilized regression,
fitting a function on the observed agreements to depth s with
the purpose of more closely capturing the patterns in that first
section. The simpler logistic-regression approach exhibited a
tendency of underfitting, which resulted in its RBO-accuracy
being the lowest overall. In contrast, the generalized additive
logistic model (Logistic-GAM) far better replicated the trends
in the seen agreement-values, achieving higher accuracy than
logistic regression yet becoming susceptible to any mismatch
between the patterns in the visible prefixes and in the tails.

There were, however, limitations imposed on the study that
are important to consider when interpreting its results. As the
simulated rankings used for the experiment had an unrealistic
agreement close to 1 across later depths in the unseen section,
only relatively short visible prefixes of S and L and values of
p further from 1 were considered for the evaluation. This was
necessary in order to avoid the RBO-accuracy measurements
becoming skewed due to the poorly-generalizable agreements
in the rankings’ unseen parts.

Thus, some appropriate directions for future work include:
• Using simulation code that is better suited towards RBO

and its properties (generating more realistic, incomplete
rankings whose agreement does not tend to 1 at ∞);
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• With such more appropriate rankings, investigating both
greater values for p and longer ”indefinite” lists S and L
(as the rankings would no longer be fully-conjoint, their
tails would generalize well and be informative, meaning
that the degree of top-weightedness could be reduced);

• Reformulating RBOEXT under relaxed assumptions with
respect to alternative implementations of RBO – such as
its three tie-handling variants [Corsi and Urbano, 2024].

7 Responsible Research
This section outlines the precautions and generalizability con-
cerns relevant for this study, with the purpose of maintaining
transparency and preserving academic integrity. Additionally,
it provides an overview of the steps taken to uphold the repro-
ducibility of the chosen methods.

First, it is important to emphasize that the newly-proposed
RBOEXT formulations are based on entirely different assump-
tions compared to the original implementation and might thus
no longer be suitable for all scenarios in which RBO is being
applied currently. Therefore, prior to using any of these three
redefinitions, readers should consider the modified theoretical
framework and identify whether the given RBOEXT variant is
still appropriate for their use-case.

Additionally, as highlighted in Section 5, the data used for
the study were simulated pairs of fully-conjoint rankings with
an uncharacteristically-high agreement in the unseen tails. As
a consequence, the agreement-accuracy measured throughout
the experiment was based off an unrealistic baseline of actual
agreements approaching 1 beyond the visible prefixes. As for
RBO-accuracy, shorter lengths l and smaller values of p were
investigated to prevent the ungeneralizable tails from skewing
the computed absolute differences. These limitations need to
be kept in-mind when referring to the results of this study.

The simulation code used to generate the data is published
online,1 the authors having used it to evaluate their own RBO
redefinition [Corsi and Urbano, 2024]. The full data-files that
contain the simulated pairs of rankings can be freely-accessed
and reused from the public GitHub repository created for this
experiment, also available online.2

This repository also includes all results (JSON format) and
figures (PNG format) that were aggregated from the 9 combi-
nations of p and the category of s (refer to Section 4.2). Only
a subset of those measurements was presented in the paper as
many of them are summarized by the averages from Tables 1
and 2. Due to space considerations, only the truly-informative
instances were provided in Figures 1 and 2 since the RBOEXT
formulations and their assumptions are well-expressed there.

The source code required to run the experiment is provided
as well, alongside a file listing the required modules: numpy3

(used for computing the average accuracy scores), matplotlib4

(used for producing plots), and pygam5 (an implementation of
GAMs in Python). Furthermore, a detailed README file has

1https://github.com/julian-urbano/sigir2024-rbo
2https://github.com/Konstantin-Asen/cse3000-research-project
3https://pypi.org/project/numpy/
4https://pypi.org/project/matplotlib/
5https://pypi.org/project/pygam/

been included, with all default values for the hyperparameters
specified. For example, the seed used for the pseudo-random
number generation of s and l has a fixed value of 42 – if kept
the same, it allows for the results to be reproduced.

Finally, citations to other works have been provided for all
borrowed ideas throughout the paper. Readers could this way
refer to those contributions for additional details.
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