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ABSTRACT

Authentication of domains has been a crucial part of the growth of web browsing, es-
pecially for e-commerce and secure browsing. However, the digital space has expanded
from web domains to include devices such as smart cars, smart houses, and other IoT de-
vices. The future for these devices is to communicate autonomously with one another,
also known as Machine-to-Machine(M2M) communication. For M2M communication,
IoT devices need to be able to authenticate each other. However, IoT devices cannot
take over traditional authentication mechanisms. This problem is due to the expected
growth in the number of IoT devices and the varying resource capabilities of these de-
vices. In this work, we introduce Bubblechain, a generic, decentralised, and scalable
IoT authentication system. In contrast to existing works, Bubblechain can update and
remove identities of IoT devices that allows them to authenticate each other in a dy-
namic setting. Bubblechain also creates a higher trust level for devices that belong to
the same Bubble. A Bubble refers to a group of devices that belong together, such as a
home or office setting. The system also provides the possibility to authenticate devices
from different Bubbles. The authentication process in Bubblechain is autonomous and
decentralised.
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1
INTRODUCTION

In 2014, Google acquired Nest Labs for $3.2 billion [1]. Nest Labs merged with Google
Home to form Google Nest. Google Nest sells smart devices such as thermostats, door-
bells, locks, and alarm systems. Google is not the only tech company to invest in the
Internet of Things (IoT). Similarly, Samsung has a SmartThings division, which has 62
million active users [2].

One thing that the IoT divisions of these companies have in common is that they fo-
cus on Smart Homes. The definition of a Smart Home is the integration of technology
and services through home networking for a better quality of living [3]. To increase the
quality of living, it might be helpful if devices could communicate autonomously. For
example, a person’s smart car communicates with the person’s thermostat to regulate
the temperature when the person left the house or is driving home. This form of com-
munication is referred to as Machine-to-Machine (M2M) communication.

Examples of IoT devices within a Smart Home are smart speakers, smart fridge, and
smart meters. Besides Smart Homes, IoT can be found in other sectors as well, e.g. Smart
Cars, with Tesla as a notable example. In addition, IoT devices have branched out to
many sectors such as healthcare, retail, finance, agriculture, and energy. With the appli-
cations for IoT devices growing, the number of devices is also expected to grow. In 2014,
The technology research firm Gartner predicted that there would be 26 billion IoT by the
year 2020 [4].

With all these types of devices, the data generated can be sensitive. Think of the
location of a smart car. This information can inform an adversary of a person’s location.
With all the different types of devices in mind, this question begs to be asked: "What
about the security of these devices?".

1.1. IOT SECURITY
The incorporation of IoT devices has led to certain security incidents. For example,
the data generated by smart meters can help determine which home appliances are in
use [5]. Based on the appliances in use, an adversary can interpret the user’s habits. The
moment a user turns on or off their lights could indicate their sleeping pattern.
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2 1. INTRODUCTION

Smart cars have also faced security incidents. Vulnerabilities on the internet con-
nected entertainment systems have made it possible to remotely take over the manoeu-
vrability of a Jeep [6]. Smart cars have also faced the problem of theft via their keyless
entry systems [7, 8]. Smart cars could face privacy concerns in the event of compro-
mised location data. Achieving security is not as simple as adding encryption. Other
aspects, such as accessibility and authentication, should also be taken into account. In
this thesis, we focus on the aspect of authentication.

1.2. IOT AUTHENTICATION
As IoT is becoming a more integral part of our lives, ordinary objects are equipped with
electronic devices to facilitate our lives. With the goal of achieving widespread M2M
communication, verifying if communication is carried out with the correct device is
crucial for our privacy. Verifying the identity of a user or process is called authentica-
tion. With the number of devices, a centralised approach to authentication would not
be feasible and would have the drawback of having a single point of failure. Therefore
we discuss two state-of-the-art solutions for decentralised IoT authentication.

1.2.1. BUBBLES OF TRUST
Bubbles of Trust is a decentralised Ethereum-based authentication system for IoT de-
vices [9]. The system groups devices, under the term Bubble. Where the Bubble acts as a
trust barrier for the group. Within each Bubble, one device is appointed to manage iden-
tities, while the others use these identities to authenticate each other. Figure 1.1 depicts
a high-level overview of the system.

Figure 1.1: High-Level overview of the Bubbles of Trust system [9].

The communication is done via transactions, while a smart contract handles the au-
thentication of identities within the system. The system is resilient against sybil, mes-
sage replay,and denial of services (DoS) attacks. Sybil attacks are when an adversary
subverts the reputation system by creating additional identities to gain an advantage. As
the name already says, message replay attacks are attacks that reiterate previous mes-
sages. DoS attacks are when an adversary seeks to make a resource unavailable, either
temporary or indefinitely. In Chapter 2, we explain this scheme in detail.
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1.2.2. DECENTRALIZED IDENTITY AND TRUST MANAGEMENT

FRAMEWORK FOR IOT

Decentralized Identity and Trust Management Framework is an Identity Management
System (IdMS) for IoT devices [10]. The framework is based on a Web of Trust, allow-
ing arbitrary identities to be trusted. These identities are self-sovereign identities (SSI).
While the IdMS utilises an IOTA Tangle to access and store data. The goal of this frame-
work is to create trust between identities. Which will help facilitate M2M communica-
tion between IoT devices.

Figure 1.2 shows a high-level overview of the system. The framework sought out to
achieve its goal by setting objectives of scalability, permissionless, interoperability, se-
curity, automatic trust calculation, and privacy. The problem with SSI is that they are
not worth much if they cannot show whether they are valid. Therefore the framework
incorporates claims about each identity. Claims are statements about an identity, either
from the owner or other parties. Next to claims, the system has attestations that are per-
sonal opinions about a claim. A trust score is calculated for each identity based on the
identity’s claims and attestations.

Figure 1.2: High level overview of the Decentralized Identity and Trust Management Framework for Internet of
Things [10].

The IdMS operates at a low cost of entry, making the system accessible to everyone.
The system is also capable of removing or reducing the trust of identities of corrupted
devices. At the same time, new devices can start with a list of already trusted devices.

On the other hand, the low cost of creating identities makes it so that malicious actors
can create more identities to raise their score, and carry out a Sybil attack. The low cost
also makes it tempting for corrupted identities to be disregarded for new identities. The
action of dropping corrupted identities for new ones is called White-washing.



4 1. INTRODUCTION

1.3. REQUIREMENTS FOR IOT AUTHENTICATION
In this thesis, we aim for a decentralised IoT authentication system that is scalable,
generic, has different trust levels, and incorporates the life-cycle of devices, as we ar-
gue below:

The expected number of IoT devices in the billions makes scalability a must. A cen-
tralised solution could not cope with the expected number of devices, making decen-
tralisation the only option. Decentralisation has the benefit of being more fault-tolerant
than a centralised system. In the event of a system failure, a different entity can main-
tain the system running. Additionally, decentralised solutions can provide transparency,
which can increase trust.

With the expected growth in number of IoT devices, there will also be an increase
in types of devices. Devices come in all shapes and sizes, such as smartphones, smart
meters, smart cars, or smart fridges. The resource capabilities of these devices may vary.
However, as M2M communication is the goal, these different types of devices should all
be able connect.

M2M communication can help with the mission of having technology improve our
quality of life. The devices of a person working together can excel in the areas of effi-
ciency and performance. The previous example of setting the home temperature can
save resources while increasing the person’s quality of life, despite the sensitivity of the
generated data. Devices should be able to communicate while being able differentiate
between devices that belong together and foreign devices. Essentially, creating deter-
mining which devices should be trusted or not.

With time, devices can either break or be replaced by a newer version. For example,
the lifespan for a smartphone is about two and a half years [11]. Therefore, an IoT system
needs to be able to remove, add or update devices.

1.4. RESEARCH QUESTION
Given the interest in and the relevance of the topic, this thesis dives deeper into IoT
authentication. With the previously stated requirements, the research question (RQ) for
this thesis is:

"How can we design a decentralised generic authentication mechanism
for IoT devices that incorporates different trust levels for these devices
and also incorporate the life-cycle of devices?".

The research question can be divided into the following sub-questions :

1. How can we apply an authentication technique that would be suited for M2M
communication?

2. How can the a IoT authentication mechanism in question incorporate different
trust levels for these devices?

3. How to make this IoT authentication mechanism decentralised?

4. How can individual devices authenticate identities?
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5. How can the IoT authentication mechanism be scalable, yet still be able to incor-
porate the life-cycle of devices?

1.5. CONTRIBUTION
In this thesis, we present Bubblechain. Bubblechain is a decentralised IoT authentica-
tion system that utilises the Ethereum blockchain to authenticate devices. Bubblechain
compresses the identities into a Merkle Tree structure and uses Elliptic Curve Cryptog-
raphy for communication between devices. In summary, Bubblechain provides:

• A scalable IoT authentication system that scales based on the number of owners
instead of devices.

• Bubblechain also can establish communication with all devices while having a
trusted barrier for devices that belongs to the same owner.

• Bubblechain also considers the life-cycle of devices, making it possible to add, re-
move, and update identities.

• Within the Bubblechain system, the only moment that all devices need to be on-
line is when managing identities.

1.6. OUTLINE
The structure of this thesis is composed in the following way. The first part discusses the
determined requirements based on existing solutions. Chapter 2 presents the security
requirements for each IoT layer, a taxonomy of IoT authentication, and related work.
Chapter 3 discusses the cryptographic preliminaries that are used, as well as blockchain
technology, with a focus on the Ethereum blockchain. Chapter 4 covers Bubblechain, our
decentralised IoT authentication protocol. Chapter 5 analyses our proposed solution
with regards to security and performance. Additionally, we provide a comparison to a
closely related work. Finally, we discuss the design choices and obtained results, provide
an outlook for the future of Bubblechain, and conclude in Chapter 6.





2
IOT AUTHENTICATION

In this chapter, we present state-of-the-art IoT authentication. First, we elaborate on
layers for IoT and their security requirements. Secondly, we explain a taxonomy on IoT
authentication schemes. Third, we elaborate on existing works. Finally, we present a
closely related work, Bubbles of Trust, in-depth.

2.1. IOT LAYERS
In this section, we elaborate on the fundamental architecture model for IoT space. Ac-
cording to literature, the basic model consists of three layers: perception, network and
application layer [12–15]. We finalise the section by summarising the security require-
ments for each layer in Table 2.1.

The perception layer refers to the physical layer that senses the environment to per-
ceive the physical properties, with examples such as temperature, speed, location. The
perception layer consists of sensors that are characterised by limited processing power
and storage capacity [16]. Due to these limitations, the perception layer is susceptible
to attacks, such as Denial of Service (DoS), Distributed Denial of Service (DDoS), Sybil
attacks [17]. DoS is a type of attack that shuts down the system or network and prevents
authorised users from accessing it. DDoS is a large scale variant of DoS attacks. Sybil
attacks are when an attacker can deploy fake identities using fake nodes. The perception
layer has the following security requirements: lightweight encryption, authentication,
key agreement, and data confidentiality.

The network layer is in charge of getting the data from the perception layer and trans-
mitting it to the application layer [17]. Several different network technologies are used
for the transmission of data. WiFi, Bluetooth, 4G are examples of such technologies.
With the responsibility of transmitting data, the layer is targeted by attacks such as Man-
in-the-Middle (MITM) attacks, DoS, and eavesdropping. Communication security, rout-
ing security, authentication, key management, and intrusion detection are security re-
quirements for the network layer.

The application layer handles the delivery of application-specific services to the us-
er [17]. In other words, the application layer is responsible for providing services. The

7



8 2. IOT AUTHENTICATION

problem arises that "traditional" application layer protocol does not perform well within
IoT, several issues arise at the application layer [18]. Issues such as data accessibility and
authentication, data privacy, and dealing with big data. The authentication and accessi-
bility of data could be impacted by fake or illegal users, making the need for permission
and access control [17]. The fact that IoT connects to different manufacturers leads to
the application of different authentication schemes.

Table 2.1: Security requirements for each IoT layer.

Layer Security Requirments

Perception

Lightweight encryption
Authentication
Key Agreement
Data Confidentiality

Network

Communication Security
Routing security
Authentication
Key Management
Intrusion Detection

Application
Authentication
Data Privacy
Permission and Access Control

2.2. TAXONOMY ON IOT AUTHENTICATION SCHEMES
In this section, we discuss the taxonomy of IoT devices based on their similarities and
characteristics [17]. The taxonomy can be categorised in six categories: IoT layers, au-
thentication factor, architecture, procedure, token-based, and hardware-based [17]. Fig-
ure 2.1 depicts a general overview of the taxonomy.

Authentication factor refers to the authentication of a device, either in the form of
identity or contextual [17]. Identity-based authentication is when one party presents
information to authenticate itself. Identity-based authentication schemes can use one
or more cryptographic techniques such as hashing, symmetric or asymmetric crypto-
graphic algorithms. Context-based authentication can either be physical or behavioural.
Example of physical authentication can be fingerprints or retinal scans. An example of
Behavioural-based authentication is analysis of keystroke dynamics.

The architecture categorisation refers to a system’s architecture, which can either be
distributed or centralised [17]. Centralized architecture is when one party distributes
and manages the credentials used for authentication. For a distributed system, the dis-
tribution and management of credentials are done between communicating parties. Dis-
tributed and centralised architectures can be divided further into flat or hierarchical
schemes. Hierarchical means there is a multi-level architecture. Whereas in a flat sys-
tem, the entities involved are on the same level.

Procedure regards the way the parties involve authenticate each other. There are
three options for an authentication procedure, which are one-way, two-way, or three-
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Figure 2.1: Taxonomy of IoT Authentication Schemes [17].

way [17]. The one-way procedure is that only one party authenticates. Mutual authen-
tication or two-way authentication is when both entities authenticate to each other.
Three-way authentication is where a central authority authenticates the parties and help
to authenticate themselves mutually.

Token-based authentication is when a user or device uses the token for identifica-
tion [17]. A token is a piece of data created by a server. On the contrary, a non-token
based authentication, which can use techniques such as credentials for authentication.

Hardware-based authentication is when the use of physical characteristics of the
hardware or the hardware itself is required [17]. The hardware can either be implicit
or explicit. Implicit hardware-based authentication uses physical characteristics; an ex-
ample is a physical unclonable function (PUF) [17]. A PUF uses the differences between
physical characteristic to create a digital fingerprint. Explicit hardware-based refers to
the hardware itself. An example is a chip that stores and processes the keys used for
authentication.

2.3. PRIOR ART OF IOT AUTHENTICATION SCHEMES
In this section, we explain several state-of-the-art IoT authentication schemes. The set-
ting of the schemes can vary with examples such as Generic, Smart Homes, Transporta-
tion, Military, Wireless Sensors Networks (WSN), and Smart Grids. The choosen setting
influences the requirements for the scheme and IoT devices. For example, a faster pro-
cess might be a vital requirement for IoT that involves transportation. Given that an error
can lead to the loss of human life. However, that might not be the case for a smart grid,
which can periodically send energy consumption.

We categorised the discussed schemes according to their architecture. The architec-
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ture can either be distributed or centralised. Distributed authentication means the dis-
tribution and management of authentication credentials are done among various par-
ties. For a centralised architecture, this task is done by a single identity.

Both centralised and distributed architectures can be further devived into hierarchi-
cal and flat schemes. Flat schemes that the entities are on the same level. Hierarchical
schemes divide the entities into different levels. After discussing the different schemes,
we summarise them in Table 2.2 based on architecture. We also note their corresponding
setting.

2.3.1. FLAT AND DISTRIBUTED ARCHITECTURE
In this subsection, we briefly discuss four systems that use the flat and distributed archi-
tecture, their setting, and their strengths and weaknesses. The setting for the first scheme
is WSN. WSN is a set of networks that combine distributed information collection, infor-
mation transmission and information processing technology [19]. The authors proposed
a scheme that consists of two main steps: the initialisation step and the authentication
step [19]. The initialisation step is when the user gets a lightweight public/private key-
pair. The authentication step is when two nodes use their key-pair to authenticate each
other. The strength of this system is resiliency against DoS and MITM attacks. While the
scheme has the weakness that authentication must occur many times in a multi-server
environment.

The second work is a two-stage mutual authentication protocol; the stages are the
enrollment stage and the authentication stage [20]. The enrollment stage handles the
identification of devices. While in the authentication stage, several handshake messages
are exchanged between the end device and server to generate a session key. The setting
for this protocol is WSN. The scheme’s weaknesses are inefficient storage of certificates
and the susceptibility to node capture attacks. The strengths are the ability to resist ma-
licious users and DoS attacks.

The third work is an identity and trust framework for IoT devices, based on Dis-
tributed Ledger Technology for Self-Sovereign Identity [10]. The setting for this protocol
is generic. The framework utilises a Web of Trust to enable automatic and trust rating for
arbitrary identities. The strengths are the low cost for creating identities and the ability to
white-list a set of identities. However, malicious identities can influence the trust score,
and malicious identities can be abandoned for a new one, known as whitewashing.

The last work that we discuss with this architecture is consisted of three tiers and
uses each of these protocols for different purposes, these are Diffie-Hellman for key
agreement protocol, Rivest–Shamir–Adleman (RSA) public-key cryptosystem and Ad-
vanced Encryption Standard (AES) to achieve confidentiality and HMAC for message in-
tegrity [21]. The scheme solutions focuses on Smart Grids. The weakness of the system
is that the authors lack analysis for location privacy. On the other hand, a strength is that
the scheme is resistant to modification, replay, and message analysis attacks.

2.3.2. HIERARCHICAL AND DISTRIBUTED ARCHITECTURE
In this subsection, we will briefly cover four schemes with this architecture, their sce-
nario, and their strengths and weaknesses. The first authentication scheme is named
speaker-to-microphone, which is a lightweight device authentication protocol for IoT
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[22]. This scheme is applicable for generic IoT devices and achieves distance authenti-
cation between wireless IoT devices. The system’s strengths are that it has a low error rate
and is resistant to audio replay attacks, changing distance, and similar attacks. However,
a weakness is that location privacy is not analysed.

The second work we discuss uses X.509 digital certificates to ensure the authentica-
tion of devices [23]. This scheme aims to be generically applicable. The system strength
is the use of X.509 certificates. The use of X.509 certificates makes the system easy to
integrate, because these certificates are already in use. The system’s weakness is the in-
ability to scale to the expected number of IoT devices.

The third work that has distributed and hierarchical architecture setting is for generic
IoT devices. The scheme is a multi-tier authentication [24]. In the first stage, a server in
the cloud verifies a users credentials. In the second stage, a user would pursue a prede-
termined sequence on the virtual screen. The system’s benefit is the resistance to replay
attack. However, the possibility of a DoS attack is not considered.

The last scheme is on a vehicular ad-hoc network (VANET) [25]. In other words, the
chosen scenario for this system is transportation. The authors propose a threshold au-
thentication protocol to support secure and privacy-preserving communications in VA-
NETs. The protocol uses a group signature scheme for achieving threshold authentica-
tion, anonymity, efficient cancellation and traceability within the VANET. A limitation of
this system is the absence of analysis of the communication overhead. Simultaneously,
the benefits are efficient computation cost and the resistance against a replay attack.

2.3.3. FLAT AND CENTRALISED ARCHITECTURE

In this subsection, we discussed five different Flat and Centralised architecture schemes,
their benefits and drawbacks and their settings. The first protocol is for performing au-
thentication between a user and a server, and not between end devices [26]. The proto-
col is a two-step verification of IoT devices. The first authentication step is a password
or a shared secret key, whilst the second is the use of a PUF. The benefits are low com-
putation cost, consideration for impersonation and physical attacks. In contrast, the
drawbacks are no consideration for machine-learning attacks and no consideration for
environmental variations [17].

The second work is a new hardware-based approach, using PUFs as a fingerprint to
authenticate IoT device [27]. The setting is generic IoT applications. A disadvantage of
the system is that it may not be suitable for a scenario where the environmental condi-
tions fluctuate because of the usage of PUFs [17]. The main advantage of this work is
that it takes machine learning attacks into account.

The third work is a vehicular authentication scheme. The scheme connects wirelessly
and physically to Electronic Vehicle (EV) [28]. Wireless in the form of wireless connecting
to a server and physical by a charging cable. Both connections verify the identity of the
EV. One benefit is that resilient against substitution attacks because of both connection
type. However, there is no evaluation of the message and the verification delay.

The fourth work is design for smart grids. The authors discuss each home equipped
with a smart meter that sends data in intervals to a hub. This hub collects and sends the
data to a control centre. The control centre prepares a bill and sends it to the customer.
The communication between hub and smart-meter is when the scheme comes into play.
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Which is a lightweight authentication scheme with efficient communication and com-
putation overhead [29]. The efficiency of communication and computation is a benefit
for such systems and the resiliency against message modification attacks, message anal-
ysis, and message injection. However, a drawback is the lack of consideration for routing
attacks.

The last work that we discuss concerning this architecture is also geared for smart
grids. The authors proposed an efficient and robust approach to authenticate aggregate
power usage data. The architecture is also fault-tolerant and is based on signatures [30].
The benefits of this scheme are fault-tolerant architecture and efficiency for communi-
cation and computation. Whilst having the drawback that attacks against such a system
are not considered.

2.3.4. HIERARCHICAL AND CENTRALISED ARCHITECTURE

The last discussed authentication architecture is hierarchical and distributed. We high-
lighted three works that utilise this architecture. The first scheme is a PUF-based authen-
tication scheme for smart homes. The work provides mutual authentication between
end devices and gateway by storing the Challenge-Response pairs from the PUF [31].
The authenticate devices then can generate a session key for secure communication.
This scheme’s benefits are the resistance to replay attacks and efficiency in terms of com-
putation and communication. The drawback of the scheme is the lack of consideration
of machine-learning attacks and environmental variations.

The second work utilises identity-based aggregate signatures to authenticate in VA-
NETs [32]. The benefits of this system resistance to movement tracking, replay, and mes-
sage modification attacks. However, location privacy is not considered.

The third work is about a PUF-based authentication scheme that uses zero-
knowledge proof of knowledge of discrete algorithm [33]. The protocol requires for each
authentication that the user inputs a password. The limitations of the system an attacker
could use a fake user to ask for the password. Only devices are authenticated. At the
same time, one strength is resistance to the cloning and copying of devices.

In Table 2.2, we summarised the discussed IoT authentication schemes. For each
scheme, we indicate which architecture they uses via a checkmark. We also denote set-
ting for the corresponding scheme. Additionally, Table 2.2 also includes the architecture
of a closely related work, named Bubbles of Trust. Bubbles of Trust is elaborated in detail
in the following section.

2.4. BUBBLES OF TRUST
In this section, we covered the Bubbles of Trust protocol in-depth. Bubbles of Trust is
a decentralised Ethereum-based authentication system for IoT devices [9]. The archi-
tecture of Bubbles of Trust solution is hierarchical and centralised, focused for a generic
setting. The scheme uses the term Bubble to indicate a group. The goal of the proto-
col is to form an impenetrable barrier for devices that belong together, referred to as a
Bubble. Each Bubble consists of two types of devices Master Device (MD) and Follower.
Each Bubble can consist of multiple Followers, but one MD. The task of an MD is to add
Followers to the Bubble.
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Table 2.2: A summary of the discussed papers catergorised on their architecture and their setting

Flat Hierarchichal
Setting

Centralised Decentralised Centralised Decentralised
[19] - X - - WSN
[20] - X - - WSN
[10] - X - - Generic
[21] - X - - Smart Grids
[26] X - - - Generic
[27] X - - - Generic
[28] X - - - Transportation
[29] X - - - Smart Grids
[30] X - - - Smart Grids
[22] - - - X Generic
[23] - - - X Generic
[24] - - - X Generic
[25] - - - X Transportation
[31] - - X - Smart Home
[32] - - X - Transportation
[33] - - X - Generic
[9] - - X - Generic

The MD adds Followers to a Bubble by creating an identity for them, called a ticket.
Later, when a Follower creates an association request to another device, its ticket val-
ues are stored on the Blockchain. An identity consists of a group ID, the device’s public
key and identifier. The group ID is unique for every Bubble, and the device’s identifier is
unique within the Bubble. These values are hashed and then signed by the correspond-
ing MD. Devices generate their Public/private key pair using Elliptic Curve Cryptography
(ECC) and MDs signs using Elliptic Curve Digital Signing Algorithm (ECDSA), and uses
Keccack for hashing [9]. The protocol uses ECC and ECDSA due to their smaller key and
signature size. Figure 2.2 and identity with placeholder values.

Figure 2.2: The identity structure of a Follower [9].

An association request is the first transaction of a Follower, where it submits its ticket
to the Ethereum blockchain. If successful, the ticket is no longer needed to authenticate
itself. The whole procedure is depicted in step in Figure 2.3. These steps are :
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1. The Follower signs its ticket and sends it with a transaction.

2. The smart contract verifies that the ticket is signed by sending Follower and corre-
sponding MD.

3. If that is the case, these values are stored.

4. Subsequent transactions will contain data, Follower and MD identifiers, signed by
the Follower.

5. When the transaction is received, its signature integrity is verified.

6. If that is the case, the smart contract retrieves the public key attached to the corre-
sponding identifiers.

7. The stored values with the sent values are compared.

8. To indicate if the device is successfully authenticated.

Figure 2.3: Transaction procedures between devices [9].

The notable characteristics of the Bubble of Trust system are the decentralised na-
ture, scalable with regards to creating tickets, the virtual zones between devices, gener-
ically applicable, and MD only needs to be present for the addition of new Followers.
Additionally, the system is robust against DDoS attacks due to the decentralised archi-
tecture of Ethereum Blockchain. The system is resilient against Sybil attacks because the
public key of MD signs the tickets. Therefore, valid tickets are secure under the security
of the signature scheme. The system also protects against Message replay attacks due to
timestamps and signing of a transaction.

On the other hand, the system’s shortcomings are the inability to remove identities
and communicate with other Bubbles. Additionally, the lifespan of identities is endless.



2.4. BUBBLES OF TRUST 15

If an adversary gains access to a device secret, identity will remain valid. Even if the com-
munication via that ticket is disregarded, the public nature of the Ethereum blockchain
means an adversary could read previous communication.

The use of transaction to send messages makes the system speed dependant on the
transaction speed of the Ethereum Blockchain. Additionally, the number of IoT de-
vices expected to grow begs the question of the scalability claims regarding communica-
tion. Also, to execute a transaction, devices need to have an Ethereum wallet with Ether.
Therefore, devices can become susceptible to attempts to steal their Ether. Also, there is
no explanation on how communication is instantiated if all communications go via the
Blockchain.

In this chapter we have discussed the state-of-the-art with regards to IoT authenti-
cation. The information gathered from this chapter is used for our system. In the next
chapter, we present the preliminairy information for our system.





3
PRELIMINARIES

In this chapter, we discuss the preliminary knowledge and techniques used in this re-
search. First, we discuss the cryptographic primitives in Section 3.1, then we introduce
blockchain technology in Section 3.2.

3.1. CRYPTOGRAPHIC PRIMITIVES
In this section, we describe the cryptographic primitives and their specification for this
thesis. We elaborate on the cryptographic encryption schemes, cryptographic hash func-
tions, digital signatures, and Merkle Trees.

3.1.1. CRYPTOGRAPHIC SCHEMES

For this thesis, we briefly elaborate on symmetric and asymmetric encryption schemes.
Followed by discussing a key agreement protocol that incorporates both types of encryp-
tion scheme.

In symmetric encryption, two parties agree on a shared key K . Key K is the secret key
for the chosen scheme. The corresponding key K can take part in two functions: the en-
cryption function EK and the decryption function DK . The encryption function encrypts
plaintext messages into a ciphertext. The decryption function deciphers ciphertext back
into plaintext.

The NIST standard for symmetric encryption is AES [34]. However, due to the limi-
tations of IoT devices, alternative schemes can be used. Examples of such schemes are
KLEIN [35] and Tiny Encryption Algorithm (TEA) [36].

Asymmetric cryptographic schemes are alternatively named public-key encryption
schemes. In these schemes, each party has a key pair. A key pair consists of two con-
nected keys, a private and a public key. A key pair is denoted as (pk, sk), with pk rep-
resenting a public and sk as private key. As the name already indicates, the private key
should be kept private, and the public key can be shared. A pk is used to encrypt a mes-
sage m. Afterwards, the corresponding sk can decrypt to retrieve message m.

17



18 3. PRELIMINARIES

For our research, we utilises a key agreement protocol. The chosen protocol is Ellip-
tic Cuve Diffie Hellman (ECDH), which combines a symmetric and asymmetric scheme.
The asymmetric side is based on Elliptic Curve Cryptography (ECC), whilst the choice of
symmetric scheme is arbitrary.

Elliptic Curve Cryptography (ECC)
In 1985, ECC was introduced as an alternative to other public-key cryptosystems [37].
ECC is based on an algebraic structure on elliptic curves over finite fields. The system’s
security is based on a hard problem of solving the discrete logarithm problem [38]. An
elliptic curve can be defined as follow.

Definition 3.1.1 (Elliptic Curve). An Elliptic Curve is the set of point describe in the fol-
lowing equation :

{(x, y) ∈ Zp | y2 = x3 +ax +b, 4a3 +27b2 6= 0}∪ {0}. (3.1)

The requirement of 4a3 +27b2 6= 0 is so curves do not have cusps, self-intersections,
or isolated points. A cusp is point where the curve moves in the opposite direction. A set
of values compromise the domain parameter for ECC. These parameters are denoted as
D = (p, a,b,G ,n,h). The domain parameters consist of p is an integer that specifies the
field of the curve Fp . a,b ∈ Fp are constants to define the equation for elliptic curves. G
is a base point (x, y) on a corresponding curve. n is a prime number; that is, the order
of G . h is an integer that defines the cofactor on the curve. The domain parameters are
publicly available to all participants. Now that we define Elliptic Curve, we continue to
discuss point operations. We then briefly discuss the generation of key-pairs, followed
by the Elliptic Curve Diffie Hellman (ECDH).

Point operations
The standard operations for elliptic curve are point addition and point doubling. Point
addition is when two points, P and Q are added to form a new point. R = P +Q = (xp , yp )
+ (xq , yq ) = (xr , yr ). There is one requirement for point addition, that is P 6=Q. The addi-
tion is shown in the following equation :

λ= yq − yp

xq −xp
,

xr =λ2 −xp −xq ,

yr =λ(xp −xr )− yp .

(3.2)

For point doubling, the calculation of xr and yr stay equal, except for the first calcu-
lation, which is :

λ=
3x2

p +a

2yp
. (3.3)

Key-pair generation
A party can create a key-pair by choosing a random value d ∈R [1,n −1]. The chosen d
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is the private key. From d , the public key is determined by computing dG . Q symbolises
the result of dG . Therefore the key-pair is (Q,d).

Elliptic Curve Diffie Hellman (ECDH)
ECDH is a key agreement protocol that uses asymmetric cryptography to determine a
session for a symmetric encryption. It should be noted that both parties operate with
the same domain parameters. Algorithm 1, consisting of two function; Generate Public
Key and Create Session Key. Generate Public Key generates a Public from the domain
parameter G multiplied with the random value s between 1 and n −1 to produce public
key p.

Create Session Key takes a public key as a parameter and multiplies it with its secret
value. The result of the multiplication is a symmetric key denoted as sk. Figure 3.1 de-
picts an ECDH handshake between two parties. sk can get inserted in a key derivation
function (KFD), which produces a session key. A KDF is a function that derives one or
more secret key from a secret value. The chosen KDF should meet the needs of chosen
symmetric encryption.

Algorithm 1 ECDH

1: procedure GENERATE PUBLIC KEY

2: s ∈ [1,n −1], p = sG
3: return (p)
4: end procedure
5: procedure CREATE SESSION KEY(q)
6: r = q × s
7: sk = K F F (r )
8: return (sk)
9: end procedure

Figure 3.1: ECDH interaction graph between two parties.
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3.1.2. CRYPTOGRAPHIC HASH FUNCTIONS

A cryptographic hash function maps an input of arbitrary length to output a short fixed-
length string. A cryptographic hash function possesses three properties: pre-image re-
sistance (1), second pre-image resistance (2) and collision resistance [39]. Pre-image
resistance means that it should be computationally difficult to find the inputted mes-
sage from a hashed value. Second pre-image resistance means that given a message and
resulting hash value, it should be computationally infeasible to find a different message
that would result in the same hash. Collision resistance means it is computationally
infeasible to find two different messages that produce the same hash value by a hash
function.

In this research, we use SHA-3 as the hash function. The standard hash function by
NIST is SHA-3 [40]. Cryptographic hash functions are useful for cryptographic primitives
such as Merkle Trees and Digital Signatures.

3.1.3. DIGITAL SIGNATURES

Digital signatures are schemes that prove the authenticity of data. Digital signatures pro-
vide three properties: authentication, non-repudiation and integrity. Authentication is
to identify an entity correctly. Integrity refers to the ability to protect data from alter-
ations. Non-repudiation refers to the incapability to deny an action.

Asymmetric cryptographic schemes and cryptographic hash functions are used to
achieve these properties. A message m is hashed to produce hash h. The signer then
signs h with its private key to create a digital signature s. The verification process takes
the same message m, hashes it and then signs it using the party public key, and the result
should be equal to s.

We choose the Elliptic Curve Digital Signing Algorithm (ECDSA) because of the smaller
signature sizes. The pseudocode for ECDSA is display at Algorithm 2 consisting of two
functions Generation and Verification.

The Generation function generates the signature by taking the parameters D,m, ska .
D is the domain parameters of the curve, m is the message, and ska is the private key of
Party a. The message is hashed, by hash function H that produces the digest z. k is then
generated from random value in Zp space. (x1, y1) is the coordinates resulting from the
multiplication of k and the base point G . The signature is the variables r and s. r is the x1

coordinate in modular n. While, s is the result of inverse of k multiplies with the addion
of z and r × ska .

Verification is the function that verifies if a specific key has signed a signature. The
parameters for the function is domain parameters D , the message m, the public key pka

and signature r, s. The message is hash with the same hash function in Generation. The
inverse of s is computed into variable w . w is multiplied with z and r , resulting in u1 and
u2 respectively. u1 is then multiplied with G and then added with the result of U2pka .
The resulting point should be equal to the point generated by kG . The x coordinates
compared to r .

ECDSA also has the capabilities to be unforgeable under the right set of conditions [41].
These conditions are :

• Collision-resistance for the chosen Hash function, as well a uniformity property.
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• Pseudorandomness in the key space for the private key generator.

• Ephemeral mapping from the public key into the private key space.

• Generic treatment of the underlying group.

Algorithm 2 ECDSA

1: procedure GENERATION(D,m, ska)
2: z ∈ H(m)
3: k ∈ Zp

4: (x1, y1) = kG
5: r = x1(mod n)
6: s = k−1(z + r × ska)(mod n)
7: return r, s
8: end procedure
9: procedure VERIFICATON(D,m, pka , (r, s))

10: z ∈ H(m)
11: w = s−1(mod n)
12: u1 = zw(mod n)
13: u2 = r w(mod n)
14: (x1, y1) = u1G +U2pka

15: return r == x1(mod n)
16: end procedure

3.1.4. MERKLE TREE

Merkle tree is a data structure in the form of a binary tree, where the leaf nodes are as-
sociated via a cryptographic hash [42]. The data structure is bandwidth-efficient and
provides secure verification of elements within the tree. Figure 3.2 depict an example of
a Merkle tree. The original elements are referred to as leaves. These leaves are hashed,
which are combined by hashing till one value. This hash value is named the root. Given
the properties of the cryptographic hash, the inclusion of an element can be verified. In
this thesis, we refer to this proof as proof of inclusion. Figure 3.2 denotes the proof of
inclusion for the value T3 in yellow. Hashing T3 and combining with the hashes within
the proof of inclusion would result in root value.

3.2. BLOCKCHAIN
There are numerous definitions for a blockchain technology [43]. For this thesis, we have
chosen the definition of a system that performs accurate and irreversible data transfer
in a decentralised Peer-to-Peer (P2P) network [44]. As the name suggests, blockchain is
a chain of blocks. We first elaborate on the blockchain basics, continued with the classi-
fication of blockchain technology. We finalised this section by discussing the Ethereum
blockchain.
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Figure 3.2: Merkle Tree representation with Merkle Proof coloured in yellow for data T3 [42].

3.2.1. BLOKCHAIN BASICS

We discuss the essential basic of blockchain technology based on the paper by Naka-
moto [45].

Transactions and addresses
Transactions are the transfer of value between parties recorded on the blockchain. A
transaction consists of five properties: a sender, a receiver, a transaction message, a
recipient, and an exchange of ownership. Digital signatures sign transactions via the
sender’s private key. Blockchain technology stores these signed transactions in blocks.

Blocks
Blocks are container data structures where transactions are aggregated and timestamped.
Merkle trees reduce the needed space while maintaining membership of transactions. In
blockchain technology, blocks can be connected to the previous one. The connection of
blocks can be made by hashing a block and using it as a base for the next block. Due to
the linkage, small changes in one block propagate to every succeeding blocks. The order
of blocks is determined by a consensus mechanism.

Consensus
Each blockchain technology utilises a consensus algorithm to achieve agreement be-
tween the parties involved. There exist various consensus algorithms such as, but not
limited to, Proof-of-Work (PoW), Proof-of-Stake (PoS), and Proof of Elapsed Time. For
this thesis, we discuss the consensus mechanism relevant to Ethereum, which are PoW
and PoS.

Proof-Of-Work
PoW reaches consensus by posing task which parties must try to solve. The parties that
try to solve this task are called miners. In Ethereum, creating a new block is to find a
value that, together with new transactions and previous blocks, results in a value posed
by the consensus algorithm [46]. The difficulty is adjusting accordingly to the number
of miners. A benefit for PoW is that rewriting a single transaction is difficult because a
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small change will propagate to every block that follows. Ethereum has the maximum ca-
pabilities to handle twenty-seven transaction per second [47].

Proof Of Stake
Ethereum is moving from PoW to PoS [48]. For Ethereum PoS, parties need to stake
an amount of ether as a collateral for creating blocks. The amount for Ethereum is 32
ether [48]. The party that verifies the new block will be chosen at random from the
stake owner to execute the task. Compared to PoW, PoS is more energy-efficient, lower
hardware barrier to join, and more time-efficient. However, PoS has not been rigorously
tested in practice. Validators with a large amount of ether can have an outsized influence
on the network.

Ethereum 2.0 is the named used for when Ethereum swithces to PoS [49]. However,
Ethereum 2.0 is not only limited switching consensus mechanism, it potentionally could
also include sharding [49]. Sharding, with regards to Ethereum is to split the current
chains of block into multiple chains [50]. The switch toEthereum 2.0 with sharding Ac-
cording to Vitalik Buterin, the founder of Ethereum, Ethereum could scale to hundred
thousand transactions per second [49].

3.2.2. TWO-DIMENSIONAL CLASSIFICATION
For this thesis, we chose to follow the categorisation proposed by Peters and Panayi [51],
which differentiates blockchain according to two dimensions:

• Public or Private: In a public blockchain, anyone can read the state and submit
transactions. In contract, in a private blockchain, these right are restricted to a set
of nodes.

• Permissionless or Permissioned: In a permissioned blockchain, a central author-
ity or a set of central authorities can verify transactions. While in a permissionless
blockchain, any node can take part in the verification process.

From this categorisation, there are four possibilities visualised in Table 3.1.

Access to transactions
Ablility to validate transactions
Permissionless Permissioned

Public All nodes can read, validate
current transactions, as well
submit new transactions

The validation of transaction
is done by selected group
of nodes, however the addi-
tion of new transation and
reading of transaction can be
done by all nodes.

Private The validation can be done
by all parties, but only a re-
stricted set of nodes can sub-
mit or read transactions

The submit of new transac-
tion, read and validation of
current of transactions can
only be done by certain set of
nodes.

Table 3.1: Categorisation of blockchain technology.
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3.2.3. ETHEREUM
Ethereum is a protocol for executing a virtual computer in an open and distributed man-
ner by reaching consensus among nodes. The virtual computer’s name is called Ethereum
Virtual Machine (EVM), and its programs are called smart contracts. According to Vitalik
Buterin, smart contracts act as autonomous agents that reside on the blockchain and ex-
ecute a specific piece of code triggered by a message or transaction [52]. Smart contracts
have direct control over their ether balance and persistent key/value store. We discuss
the essential concepts of Ethereum, taken from the white paper [52].

Ethereum Accounts
Ethereum consists of two types of accounts. All Ethereum accounts have thee attributes:
a nonce, a balance in ether, and internal storage.

• Wallets or externally owned account: Wallets have three state attributes and act
as bank accounts. The owner of the account has control of the private key linked
to the account. Owners can use their wallets to execute transactions.

• Smart contracts or contract accounts: Smart contracts have an additional at-
tribute called the contract code. This code controls these accounts. If a contract
account receiver a message, trigger the code. The contract code can perform oper-
ations such as interacting with internal storage, performing certain computations,
or sending messages to other contracts.

Ether and Gas
Ethereum also has two types of tokens; these are ether and gas. Ether is the currency
within Ethereum. Like Bitcoin, ether is minted by miners and traded. At the moment
of writing, the miners earn ether as a result of PoW. Gas act more as a commodity, like
gasoline. Gas is a unit measuring the computational work of running transactions or
smart contracts in the Ethereum network. Examples of computational work are hashing,
addition, and multiplication. Gas is the fuel for transactions in Ethereum.

Transactions and Messages
Just as gasoline, gas price fluctuate based on supply and demand, upon execution of a
transaction, the needed gas is calculated and converted on the ether and deducted from
the account. The execute of transactions is dependant on the type of account execut-
ing transactions. Wallets can initiate transactions to other wallets and smart contracts.
Smart contracts are activated by a transaction. However, contract accounts only com-
municate in response to received transactions.

Events
Smart Contracts in Ethereum can emit events. These events are stored in the blockchain
with the corresponding transaction. Events behave as a log for the transaction. An event
can be named, and the logged data can be structured. The data emitted from an event
is not stored in the internal storage of the smart contract. Therefore, a smart contract
cannot retrieve the previously emitted data.
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Nodes
Nodes is the name for the computers that verify blocks and transactions. Ethereum has
three types of nodes, these are : light full, and archive node [53]. Light nodes store the
small subset of the recent blocks of the blockchain. Full nodes store the entire blockchain.
Archive nodes, store the entire blockchain as well as the intermediary state of every ac-
count and contract from the beginning of the blockchain [54]. The preliminary informa-
tion discussed in this chapter, is used for our system in the succeeding chapter.
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BUBBLECHAIN

In this chapter, we propose Bubblechain, an IoT authentication system that meets the
previously mentioned requirements of scalable, decentralised, incorporates the lifecy-
cle of devices, generic, capable of M2M communication, and has a trust barrier. First,
we present the model and assumptions for our system, followed by the workings of the
Bubblechain system.

4.1. OUR MODEL
In Chapter 2, we discussed a taxonomy for IoT authentication mechanisms. In this sub-
section, we first discuss how our system fits according to the taxonomy. We follow by
discussing the two types of devices: Master Device (MD) and Follower. In Figure 4.1a, we
depict a high-level overview of the Bubblechain system. The figure shows various Bub-
bles that interact with each other and the Ethereum blockchain, depicted in the middle
by its logo. The interaction with the Ethereum blockchain occurs via a smart contract. A
Bubble is a group of devices that belong to the same owner. Figure 4.1b zooms into one
of the Bubbles from Figure 4.1a. Within a Bubble, we can find the two types of devices.
After covering the taxonomy of Bubblechain, we continue by elaborate on the assump-
tions for these devices.

4.1.1. TAXONOMY OF BUBBLECHAIN
The taxonomy discussed in Section 2.2 consists of six categories: IoT layers, authen-
tication factor, procedure, token-based, hardware-based, and architecture [17]. As for
IoT layers, our system uses all three layers. For the authentication factor, we choose
an identity-based approach. In Subsection 4.2.3, we elaborate on the structure of the
identities within our system. For the authentication procedure, Bubblechain uses a two-
way and three-way procedure. For devices that belong to the same Bubble, our system
uses a two-way procedure. For devices from different Bubbles, our system uses a three-
way procedure. Bubblechain uses a token-based approach by having one entity create
a piece of data to authenticate. How the token is used is discussed in Subsection 4.2.4.
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(a) High-Level overview of the Bubblechain system.

(b) Overview of Bubble.

Figure 4.1: High level overview of Bubblechain system and zoomed in view on a Bubble.

Our solution explicitly uses hardware in the form of storage and the creation of keys and
identities. For the architecture, Bubblechain uses a centralised and hierarchical archi-
tecture. A centralised architecture means that one entity manages the identities. In our
system, the MDs manage the identities.

4.1.2. MASTER DEVICE (MD)
Figure 4.1b depicts a Bubble with one MD. The reason is that each Bubble is limited to
only one MD. Our system assumes that the MDs follow an Honest-But-Curious (HBC)
adversarial model. HBC means that the party follows the protocol but is interested in
breaking the privacy of the following participants [55]. If the MD does not follow this
model, then identities cannot be managed. Subsection 4.2.4 elaborates on managing
identities and the role of an MD.

For an MD to be able to carry out the task of managing identities, there are require-
ments. These requirements are :

• Possession of an Ethereum wallet containing Ether and storing it securely. The MD
would have to be able to execute transactions on the Ethereum blockchain.

• Storage capabilities for the created devices. The MD has to be able to store all valid
identities.

• Capable of creating and maintain a Merkle Tree. Updating the Merkle Tree from
time to time and create proof of inclusions for the values.

• Connection to all devices within the same while managing identities.

Naturally, with the various types of IoT devices, some devices are better suited for
the task of an MD. The devices should be able to maintain an Ethereum wallet securely.
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One option would be a desktop or a laptop. Alternatively, specialised equipment can be
created for the task with options such as a Raspberry Pi.

4.1.3. FOLLOWER

The remaining devices within a Bubble take the role of Followers. Each Bubble can con-
tain multiple Followers. Each Follower must have an ECDH key pair, either generated
by itself or preloaded. A Follower needs a limited amount of storage to store its identity
and proof of inclusion. A Follower should be capable of verifying a signature, validate a
proof of inclusion and establish a session key via ECDH. Followers also have to be online
when MDs are managing identities. The reasoning for the requirements is elaborated in
the following section. Examples of devices that could be a Follower are smart cars, smart
speakers, and smart lighting systems.

4.2. OUR SYSTEM
In this section, we present the working of our system. First, we cover the initialisation
steps for our system. Second, we cover the smart contract that we created. Third, we
elaborate on the structure and creation of identities within our system. Fourth, we cover
the management of these identities. Fifth, we cover the authentication procedures. Last,
we briefly discuss how to establish communication between devices.

4.2.1. INITIALISATION

As previously stated, our system interacts with the Ethereum blockchain via a smart con-
tract. For initialisation, the smart contract needs to be deployed on the blockchain. The
deployment of the contract address makes the contract address and application binary
interface (ABI) accessible. An ABI is a lower-level implementation of the smart contract.
The MDs and Followers need to have the contract address and ABI to interact with the
smart contract.

Additionally, a Follower would need to have a connection to a full or archived Ethereum
node. Followers also need to have their ECDH key-pair generated or preloaded. MDs
need to have an Ethereum wallet with Ether and the capability to execute transactions.

4.2.2. SMART CONTRACT

In this subsection, we present the functionalities of our smart contract. In Algorithm 3,
we depict the functions of the smart contract. The smart contract consist of three func-
tions: emitRootValue, storeRootLocation, and getBlockNumber. In the succeeding
subsection, we elaborate on how these functions fit into the Bubblechain system.

The emitRootValue function takes three parameters. An Ethereum address noted as
addr ess, a root value from Merkle Tree as r oot , and an expiration date as exp_d ate.
The function has the requirement that addr ess is equivalent to the address of the entity
executing the transaction. We denote the address of the entity executing the transaction
as sender . The function then emits an Ethereum event name RootEvent, an event con-
taining the parameters and addr ess. The emitRootValue function, alters the state of
the smart contract.

The storeRootLocation function takes an Ethereum address as addr ess and block
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number as bl ock as parameters. The storeRootLocation function has the requirement
that the address should be the same as the address of the entity executing the transac-
tion. The sender variable is the Ethereum address of the entity executing the transac-
tion. The function then maps addr ess to bl ock within a mapping named
r oot_locati ons. Executing of the storeRootLocation also alters the state of the smart
contract.

The last function within the smart contract is the getBlockNumber function. The
function takes an Ethereum address, noted as addr ess as a parameter. For this func-
tion, the addr ess can be any Ethereum address. The functions returns value stored at
location addr ess within the mapping r oot_locati ons. If there is no value, then zero is
returned. This function does not alter the state on the blockchain but only views it.

Algorithm 3 Bubblechain Smart Contract

1: procedure EMITROOTVALUE(addr ess, r oot_value, exp_d ate)
2: require( addr ess = sender )
3: emi t RootEvent (addr ess,r oot_value,exp_d ate)
4: end procedure
5: procedure STOREROOTLOCATION(addr ess,bl ock)
6: require( addr ess = sender )
7: r oot_locati ons[addr ess] = bl ock
8: end procedure
9: procedure GETBLOCKNUMBER(addr ess)

10: return r oot_locati ons[addr ess]
11: end procedure

4.2.3. IDENTITY OF THING (IDOT)
In this subsection, we present the structure of these identities Within our system. We call
the identities of Followers IDoT, which stand for IDentity of Thing.

Figure 4.2 depicts a template for an IDoT. The figure shows the IDoT consisting of five
attributes: Bubble-ID, Device-ID, Device-Key, Expiration-Date and Signature. Bubble-
ID is an Ethereum address. Device-ID is a unique identifier within a Bubble. Device-Key
is the Follower’s public key from its ECDH key pair. Expiration-Date is the previously
determined date that an IDoT will expire. Last is Signature, a signature created from
the hash of the four previous attributes by the Ethereum wallet with the corresponding
address set as the Bubble-ID.

Algorithm 4 shows the procedure to create an IDoT. The function createIDoT takes
a public key, noted as pub and expiration date as exp_d ate as parameters. The func-
tion first takes the address from its Ethereum wallet and assigns it to the variable addr .
Then a unique random identifier for the Bubble is created and stored in the variable
devi ce_I D . createIDoT proceeds to takes the parameters, devi ce_I D , and addr and
hashes with SHA-3 hash function. The result is signed by the Ethereum wallet connected
to addr , and the signature is stored in the variable si g . Therefore, only MDs can exe-
cute createIDoT because it requires the capability to sign a message with the Ethereum
wallet. The combination of addr , devi ce_I D , pub, exp_d ate, and si g forms an IDoT,
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Figure 4.2: Template of an IDoT.

which is shown by the variable I DoT . I DoT is then added to mapping based on their
Device-ID named I DoTs. I DoTs is stored locally by the MDs and is a global variable
used for managing identities.

Algorithm 4 Procedure to create IDoT

1: procedure CREATEIDOT(pub, exp_d ate)
2: addr = Wallet.address
3: devi ce_I D = random(0,N) . value is unique in the Bubble
4: si g = SIGNaddr (SHA-3( addr , devi ce_I D , pub, exp_d ate) )
5: I DoT = [addr , devi ce_I D , pub, exp_d ate, si g ]
6: I DoTs[devi ce_I D] = I DoT
7: return I DoT
8: end procedure

4.2.4. IDENTITY MANAGEMENT
In this subsection, we discuss the management of IDoTs. We refer to the addition, re-
moval and updating of IDoTs as the management of identities. The task of managing
identities is done by MDs and needs the createIDoT function, as well as the functions in
Algorithm 5.

Algorithm 5 consists of one functions named UpdateRootValue. The UpdateRoot-
Value function is used for addition, removal and updating of IDoTs. We first cover the
workings of function, then we elaborate on how it is applied to manage identities.

The function UpdateRootValue takes an expiration date as parameter, denoted as
exp_d ate. The function starts by using the function makeTree, which creates a Merkle
Tree from its input. In UpdateRootValue the input is the global variable I DoTs, the
result is stored in MT , which is also a global variable. UpdateRootValue proceeds to re-
trieve the root value from MT and store it in r oot . The MD get its address from its wallet
and assigns it to addr . Naturally, the wallet is the same wallet that signed for identities
in I DoTs. Then the function executes the emitRootValue function for our smart con-
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tract with addr , r oot , and exp_d ate as parameters. The result of the transaction is a
receipt, which is stored in variable of the same name. The block number of the receipt
is set in bl ock. The UpdateRootValue function then triggers an storeRootLocation with
addr and bl ock as parameters.

Algorithm 5 IDoT Management

1: procedure UPDATEROOTVALUE(exp_d ate)
2: MT = makeTree(I DoTs)
3: r oot = MT .root
4: addr = Wallet.address
5: r ecei pt = emitRootValue(addr ,r oot , exp_d ate) . Ethereum transaction
6: bl ock = r ecei pt .blockNumber
7: storeRootLocation(addr , bl ock)
8: end procedure

Adding a Follower
By utilising the functions in Algorithm 5 and createIDoT MDs can add devices as Fol-
lowers to their Bubble. Figure 4.3 depicts the interaction graph to add a Follower. The
process starts with a soon to be Follower sending its public key to the MD. The MD then
creates a IDoT using the createIDoT function. The MD then proceeds to use the Up-
dateRootValue function, which interacts twice with the Ethereum blockchain. The dot-
ted line in the figure shows till which point the function is in progress. The Follower
then receives the newly created IDoT from the MD. Afterwards, every Follower within
the Bubble receives their new proof of inclusion. Each Follower authenticates itself with
the Ethereum blockchain and stores the root value and expiration date. Followers can
also be added in bulk by creating them before triggering the UpdateRootValue function.

Removing a Follower
Within our system, MDs also have the power to remove a Follower from their Bubble.
MD’s remove Followers by removing the Follower’s IDoT from I DoTs. Afterwards, the
MD executes UpdateRootValue, which emits an Ethereum event containing the latest
root value and update the location of the root value on the mapping. The MD must also
update the proof of inclusions of every Follower with a valid IDoT within I DoTs. Every
Follower then proceeds to authenticate themselves by connecting to an Ethereum Node
and storing the root value and expiration date. Figure 4.4 depicts the interaction graph
on how to remove Followers. The removal of devices can also be done in bulk.

Update a Follower
Updating Followers is a combination of adding and removing. The newly created IDoT
takes the place of an old. The MD then executes the UpdateRootValue function to up-
date the root value, expiration and their location in mapping on the contract. For up-
dating Followers, every valid Follower needs to have their proof of inclusion updated
and authenticate themselves. The Follower then stores the root value and expiration
date. Each of the operations to manage the number of Followers finalises with them au-
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Figure 4.3: Interaction graph on how to add a Follower to a Bubble.

Figure 4.4: Interaction graph on how to remove a Follower from a Bubble.

thentication themselves and storing the root value and expiration date. In the following
subsection, we elaborate on how the authentication occurs.
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4.2.5. AUTHENTICATION
In this subsection, we present the authentication procedures for our system. We cat-
egorise authentication into two types: Bubble-Level and Global-Level authentication.
For both types of authentication, the process starts by sending their proof of inclusion
and IDoT to the other party. Then, a Follower determines which type of authentica-
tion is need by checking the opposing parties Bubble-ID. If the Followers have the same
Bubble-ID, then they do Bubble-Level authentication. Otherwise, the Followers execute
a Global-Level authentication.

Before discussing each type of authentication, we discuss the core of the authentica-
tion procedure. These are the steps used on a Bubble-Level and Global-Level authenti-
cation. Algorithm 6 shows the pseudocode. Algorithm 6 contains one function named
Authentication and takes four parameters. The first parameter is r oot , which is a root
value from a Merkle Tree. The second parameter is exp_r oot , which is the expiration
date for r oot . I DoT is the IDoT that is going to authenticated. Last, pr oo f is a proof
of inclusion. The function starts by retrieving the current time with the now function to
compare with exp_r oot . If valid the function continues by inserting I DoT in the check-
IDoT function. The checkIDoT function checks the integrity of the given IDoT, as well
as the time stamp. checkIDoT return True if the timestamp of the IDoT is valid, and the
signature is correct, otherwise False is returned. The function then follows by inserting
r oot , I DoT , and pr oo f into the validateProof method. validateProof check if the proof
of inclusion given combined with IDoT result in the root. ValidateProof returns true if
that is the case; otherwise, False. If the conditions above are not met, the function re-
turns False.

In the previous subsection, we mentioned that Followers authenticate themselves.
The authentication process is similar to a Global-Level authentication, even though it is
within the same Bubble. However, this is how Followers get their Bubble’s root value and
expiration date to execute a Bubble-Level authentication.

Algorithm 6 Core Authentication Procedure

1: procedure AUTHENTICATION(r oot , exp_r oot , I DoT , pr oo f )
2: if now() <= exp_r oot then
3: if checkIDoT(I DoT ) then
4: return validateProof(r oot , I DoT , pr oo f )
5: end if
6: end if
7: return False
8: end procedure

Bubble-Level Authentication
Bubble-Level authentication is the authentication procedure for devices that are in the
same Bubble. Followers within the same Bubble have their identities signed by the same
Ethereum wallet. Because of the signature scheme, Follower IDoT has the properties of
non-repudiation and unforgeability.

Additionally, Followers within the same Bubble belong to the same Merkle Tree. In-



4.2. OUR SYSTEM 35

trinsically connecting these identities. Therefore, Followers within the same Bubble can
have an elevated trust level in each other because of the combination of being signed by
the same Ethereum wallet and being connected via the root value.

Figure 4.5 depicts an overview of the process of authentication on a Bubble-Level.
The figure shows two steps. The first step is the authentication process, while the second
is establishing the communication between the Followers.

The authentication procedure starts with Followers exchanging their IDoTs and proof
of inclusions with each other. The Followers notice that they have the same Bubble-ID.
They proceed to use the Authentication function with their stored root value and expi-
ration date and the opposing party’s IDoT and proof of inclusion as input. The result
of the function determines if the Follower establish a session key. Followers within the
same Bubble can authenticate each other without external help, making a Bubble-Level
authentication a two-way procedure.

Figure 4.5: Overview Bubble-Level authentication and establishing a connection.

Global-Level Authentication
Global-Level authentication is the authentication procedure for Follower from distinct
Bubbles. For Follower to execute a Global-Level authentication they need assistance
from the Ethereum blockchain, making it a three-way procedure.

Figure 4.6 depicts the process for Global-Level authentication and communication.
Overall the process consist of three steps to authenticate and establish communication.
These steps are :

• Exchanging IDoTs and proof of inclusions with the opposing party and noticing a
different Bubble-ID.

• The second triggering the getBlockNumber with the opposing party’s Bubble-ID
as input. The result is the block number containing the latest root value for that
Bubble-ID. The Follower retrieves the root value and expiration date of the oppos-
ing party. These values are inserted in the Authentication function to authenti-
cate.
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• The result of the Authentication function determines if the parties should estab-
lish communication between each other.

Figure 4.6: Overview Global-Level authentication and establishing a connection.

4.2.6. ESTABLISHING COMMUNICATION
After successful authentication, Followers can establish communication with each other.
In this subsection, we discuss how Followers establish communication with each other.
Take the example of two Follower: Follower A and Follower B . For the authentication
process, each Follower sends their proof of inclusion and IDoT to the other party.

If successful, Follower A takes the Device-Key from Follower B IDoT to execute an
ECDH to determine a secret s. Follower B does the same but with its secret and Follower
A Device-Key. It results in both Followers having the same secret s. s can be inserted
in KDF to utilise a symmetric encryption scheme. Naturally, both Followers need to use
the same KDF to achieve the same result. It should be noted that the secret s is static
for every ECDH with the same values. Additionally, devices can add randomness to the
value before inserting it into the KDF; this can be the time, weather, or two randomly
exchanged variables.

4.3. CONCLUSION
In this chapter, we introduced Bubblechain, a decentralised IoT authentication system.
Our system refers to a Bubble as a group of devices that belong together to the same
owner. A Bubble acts as a trust barrier for devices, which is achieved with the help of
Digital Signatures and Merkle Trees. Digital Signatures help determine whether a signa-
ture is originated from the same secret key. The Merkle tree helps by connecting these
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identities. The Ethereum blockchain helps to maintain the state of the latest root of
the Merkle Tree. The Ethereum blockchain also makes it possible to retrieve the state
of others, making it also possible to authenticate them. With the Ethereum blockchain
maintaining the current state of the Merkle Tree, identities can be added, removed, and
update by updating the state of the Merkle Tree. At the same time, the only instance that
all devices need to be online is for the management process. Also, because our system
groups devices that belong together to the same owner together, our system scales to the
number of owners instead of the number of devices. In the next chapter, we analyse the
Bubblechain system with regards to security and performance. As well as comparing it
with the Bubbles of Trust solution, discussed in Chapter 2
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ANALYSES

In this chapter, we analyse our system Bubblechain. First, we discuss the security re-
quirements of the Bubblechain system. Second, we present the security model for our
system. Thirds, we list the assumptions for our system. Fourth, we discuss the security
of the Bubblechain system. Fifth, we cover the theoretical performance of our system.
Sixth, we discuss a proof-of-concept with the result. Lastly, we compare our system with
the Bubbles of Trust [9].

5.1. SECURITY REQUIREMENTS
In the previous chapter, we present the IoT authentication system name Bubblechain.
In this subsection, we present the security requirements for our presented system. The
list of security requirements include:

• Scalability: While the expected number of IoT devices is expected to continue
growing in the future, this should not lead to malfunctions.

• Non-Repudiation: For our system, it refers to the ability to refute a created iden-
tity.

• Availability: The requirement of availability means that the resources must be ac-
cessible to legitimate users.

• Mutual Authentication: Mutual authentication is the procedure where both com-
municating parties authenticate each other. This requirement is necessary to im-
mune the system against spoofing identities.

• Identification: Identification refers to the capability of identifying an identity of a
device.

5.2. SECURITY MODEL
In this section, we elaborate on the security model for Bubblechain. We first discuss the
network model for Bubblechain, followed by the attacker model.

39
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5.2.1. NETWORK MODEL

The messages within the system pass through a communication network, which can be
an unreliable and potentially lossy network. At the same time, the participants within
the network cannot be trusted. The network is tasked solely with forwarding packets
and does not provide any security guarantees. For this thesis a malicious user can read
or inject network messages.

5.2.2. ATTACKER MODEL

For this thesis, we assume that malicious users have some control over the network. A
malicious user can sniff, replay, inject, and delay messages arbitrarily with negligible
delay. However, within our system, devices can receive unaltered messages. Malicious
users potentially can have more computation and storage power than the benign devices
within our system.

Within our system, we disregard the possibility of physical attacks on devices to ob-
tain their secret keys. We followed the assumption that these devices can securely store
their secret’s. There are many methods to protect devices from these types of attacks by
making this information readable only by the device itself [56].

5.3. SECURITY ASSUMPTIONS

In this section, we group the needed assumptions regarding security to make the Bub-
blechain system functional. Regarding the cryptographic primitives, we assume that our
system’s chosen hash function, SHA-3, is collision, pre-image, and second pre-image re-
sistant [40]. Additionally, we assume that the elliptic curve discrete logarithm problem
(ECDLP) is computationally hard.

Regarding the devices, we assume that storage capabilities to store and maintain
their private keys. Devices also can store their identities and execute operations such
as SHA-3 operation and ECDH.

For the Blockchain, we have the following assumptions. The first assumption is live-
ness is guaranteed. The nodes maintaining the Ethereum blockchain can reach a con-
sensus. The second assumption is the safety property. The choice between honest nodes
is the same, therefore making it computationally infeasible for an adversary to make
honest nodes alter their choice.

5.4. SECURITY ANALYSIS

In this section, we present the security analysis for the Bubblechain system. We divide
the security analysis into the structure of the components, the authentication process,
and the resiliency against certain attacks.

From the preceding chapters, we note the use of ECDSA, ECDH, and SHA-3. Before
discussing the system’s security, we discuss the security of these building blocks of the
system. The security of ECDH is based on the ECDLP [57]. The security of ECDSA is also
based on ECDLP [58]. Additionally, ECDSA can be existentially unforgeable given the
right conditions. The conditions to achieve this is stated in Chapter 3.
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5.4.1. STRUCTURE
In this subsection, we cover the security of the components for identification. The com-
ponents are IDoT and the proof of inclusion.

Lemma 5.4.1. (IDoT) An adversary is not able to create a valid IDoT for any Bubble
without possessing the secret key.

Proof : In Section 4.2, we presented the structure for the Identities for our system.
An IDoT consists of Bubble-ID, Device-ID, Device-Key, Expiration-Date and Signature.
Signature is a signature of the hash of the other attributes. The signature is created by an
Ethereum Wallet, which is based on ECDSA. Under the assumption that ECDSA is un-
forgeable, an adversary cannot create a valid signature without the secret key. As a hash
function, we used SHA-3, making the digest of the hash second pre-image resistance.

Lemma 5.4.2. (Proof of inclusion) An adversary is not able to create a proof of inclusion
for a IDoT that does not belong to a Bubble, without the secret key.

Proof : An adversary would need to try one of two options: creating a proof of inclu-
sion to match the root value or altering to root value to match a created proof of inclu-
sion. For an adversary to create a proof of inclusion value for a given root value would
mean breaking the second pre-image resistance of used hash function. As stated be-
fore, SHA-3 is resistant against second pre-image attacks. The root value is signed by an
Ethereum wallet and posted on the Ethereum blockchain, making altering the root value
without the secret key as difficult as breaking ECDSA. Also, an adversary would need to
be able to create an IDoT, which we have proven to be secure against in Lemma 5.4.1.

5.4.2. AUTHENTICATION
In this subsection ,we present the security of trust barrier, and the security of Bubble-
Level and Global-Level authentication.

Lemma 5.4.3. (Trust Barrier) An adversary cannot create a valid Follower for a specific
Bubble without possessing the secret key.

Proof : Based on the assumption of unforgeability of ECDSA, an adversary cannot
forge an IDoT for a specific Bubble without the secret key.

Lemma 5.4.4. (Bubble-Level Authentication) An adversary cannot impersonate a Fol-
lower within a specific Bubble without the secret key.

Proof : For Bubble-Level authentication, an adversary would need to falsify an IDoT
for a specific Bubble and create a proof inclusion for that Bubble. Lemma 5.4.3 proves
that an adversary cannot create an IDoT for a specific Bubble. Lemma 5.4.2 proves that
a proof of inclusion for a Bubble is also secure. Therefore proving the security of Bubble-
Level authentication.

Lemma 5.4.5. (Global-Level Authentication) An adversary cannot impersonate a Fol-
lower within a different Bubble without the secret key.
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Proof : For an adversary to be able to impersonate a Follower it first needs falsify and
IDoT. In Lemma 5.4.1 we have proven that IDoT are unforgeable. An adversary would
also need to provide a valid proof of inclusion, which we have proven to be secure in
Lemma 5.4.2. Therefore, proving the Global-Level authentication is secure.

Lemma 5.4.6. (Revoked Identity) An adversary is not able to establish a session key with
a revoked identity.

Proof : MDs can remove Followers from a Bubble. The removal process entails that
MD executes UpdateRootValue function. The function makes and emits a new root
value on the Ethereum blockchain, and the mapping is updated. Under those circum-
stances, an adversary would need to be able to forge an IDoT, which we have proven to
be secure against in Lemma 5.4.1. Alternatively, an adversay could falsify a proof of in-
clusion, which we have proven to be secure against in Lemma 5.4.2. Therefore, making
our system secure against revoked identities.

5.4.3. ATTACKS
In this subsection, we discuss our system’s resistance against five types of attacks: DDoS,
MITM, Sybil, whitewashing and message replay attacks. We choose to discuss MITM,
Sybil, whitewashing, and message replay attacks are commonly discussed attacks un-
der IoT systems [17]. Additionally, we discuss DDoS attacks because it is covered by the
Bubbles of Trust paper and is a shortcoming of our system.

One of the shortcomings of our system is that it is not DDoS resistant. As a result,
adversaries can block the communication between two Followers, making it impossible
for them to authenticate each other to establish communication between them.

Lemma 5.4.7. (Sybil Attack) An adversary cannot create identities to undermine the rep-
utation of devices without the secret key.

Proof : Adversaries can create as many Bubbles as they desire. However, those identi-
ties are outside of the trusted barrier. The security of creating an IDoT without the secret
key is proven in Lemma 5.4.1. Therefore, an adversary cannot create identities within a
Bubble to gain an advantage.

Lemma 5.4.8. (MITM attack) An adversary cannot impersonate an IDoT without their
secret key.

Proof : After authentication devices establish communication with each other. The
Follower take the Device-Key from the other party IDoT to execute and ECDH. The result
of the ECDH key agreement protocol results in a secret value. Therefore, for an adversary
to be able to retrieve the secret value it must either break the ECDLP or it must forge an
IDoT, which we have proven to be secure in Lemma 5.4.1. Proving that our system is
secure against M I T M attacks.

Lemma 5.4.9. (Whitewashing Attack) An adversary cannot create a new identity to re-
place a compromised identity without the secret key.

Proof : For and adversary to replace its IDoT, it would need the create an IDoT. In
Lemma 5.4.1, we have proven that IDoTs are unforgeable. Making our system secure
against whitewashing attacks.
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Lemma 5.4.10. (Message Replay Attack) An adversary cannot replay a message to trigger
an action.

Proof : Using a salted KDF makes our system secure against message replay attacks.
After authentication the Follower determines a shared secret via ECDH. For an adversary
to obtain this secret, the adversary would need to be able to break the ECDLP. Alterna-
tively, an adversary can try to forge IDoT, eventhough Lemma 5.4.1 have proven that it
not possible. The shared secret is inserted in to a salted KDF.

5.5. THEORETICAL PERFORMANCE ANALYSIS
In this section, we present the theoretical performance of the Bubblechain system. We
start by covering the theoretical cost of managing identities. Then, we follow with the
cost of authentication. Finally, we discuss the cost of storage.

5.5.1. COST OF MANAGING IDENTITIES
In this subsection, we cover the theoretical performance for managing the identities of
Followers. With managing identities, we refer to the addition, removal and updating of
Followers. In Subsection 4.2.4, we presented the steps need to execute each of these
three operations.

The number of operations needed for identity management functions is based on
the number of Followers within a Bubbles. In Table 5.1, we express the cost for addition,
removal, and updating for a Bubble containing N Followers. The first column denoted
the number of proof of inclusions that needs to create. The second column shows the
number of Ethereum transactions for each operation. Finally, the third column shows
the number of Lookup on an Ethereum node to complete the operation.

Table 5.1: Cost of communication of Adding, Updating, and Removing Followers.

Proof of Inclusions Ethereum Transactions Look-Ups
Addition N +1 2 2 (N +1)
Removal N -1 2 2 (N -1)
Updating N 2 2(N )

5.5.2. AUTHENTICATION COST
In this subsection, we cover the communication cost of authentication. The communi-
cation cost is dependant on the type of authentication.

For Bubble-Level authentication, a Follower would have its root value and the root
value expiration date stored. The Follower can execute an authentication right after re-
ceiving the IDoT and proof of inclusion.

For Global-Level authentication, Follower would need to retrieve the value from the
Ethereum blockchain. Therefore, each Follower first executes the getBlockNumber func-
tion to retrieve the block containing the latest root value. The Follower then proceeds to
retrieve the event that contains the latest root value. Therefore, making two lookup oper-
ation by each Follower. Because each Follower does these operations, it makes the total
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number of Lookup four for every Global-Level authentication.

5.5.3. STORAGE COST FOR FOLLOWERS

In this subsection, we discuss the number of bits needed to store a device’s identity. We
start by covering the storage cost of IDoT and follow with the cost of proof of inclusion.

An IDoT is a fixed-sized component, with the cost of storage being the sum of its
parts. An IDoT consists out of five parts: Bubble-ID, Device-ID, Device-Key, Expiration-
Date, and Signature. Bubble-ID is an Ethereum address, which is forty characters or 160
bits. Device-ID is a value in a 16-bit Integer. Device-Key is a public key of the Elliptic
Curve key pair, and we store a compressed version around 33 bytes or 264 bits. The
expiration date is a UNIX timestamp stored in 32 bits. Last, the Signature is signature
from the Ethereum wallet, which is 65 bytes or 520 bits, making a total of 992 bits or 124
bytes to store an IDoT.

The size of the proof of inclusion is dynamic and based on the number of Followers
within a Bubble. The size of proof of inclusion for a Merkle Tree grows according to the
binary logarithm [59]. Therefore, the size of the proof of inclusion for a Follower is equal
to dlog2(N )e, with N being the number of Followers within a Bubble. The size of proof of
inclusion is the number of hashes needed, with each hash value being 256 bits.

Additionally, Followers also store the root value of their Bubble and the root’s expira-
tion date. The root value is an additional 256 bits, and the expiration date is 32 bits.

5.6. IMPLEMENTATION
To validate our claims, we create a proof-of-concept. We implemented the Bubblechain
using the following tools: Truffle, a NodeJs developing environment and testing frame-
work for Ethereum [60]. The smart contract is written in Solidity and is deployed on our
Truffle instance. The code for Followers and MDs are written in Python version 3.9.1.
The code can be found on our GitHub. As for the elliptic curve, we used the secp256k1
curve for our entire system.

5.6.1. RESULTS

In this subsection, we present the results of experiments we run on our proof of concept.
We start by covering the cost of interacting with Bubblechain’s smart contract. Followed
by presenting the results of timed experiments we ran for Bubble-Level authentication,
Global-Level authentication, and executing ECDH key agreement protocol.

Gas Cost
In Table 5.2, we present the gas usage for the three functions within the Bubblechain
smart contract. First, we take the gas used because the gas is the unit that measures
the computation cost. Then, the gas price gets converted to Ether based on demand.
Within the first column, we denote the gas used for each operation. The second column
depicts the gas convert into Gwei. Gwei is one-billionth of an Ether. Note, we depicted
a range which the market performs. We took the low of 53 GWei per Gas and high of
63 Gwei per Gas from Etherscan on 21th of June 2021 [61]. The last column depicts the
conversion rate of Gwei to USD based on the Ethereum evaluation at the moment on

https://github.com/jdacamara/bubble_code


5.6. IMPLEMENTATION 45

coinmarketcap [62].
We notice a few things from our table. The first time executing the storeRootLoca-

tion uses more gas than the following times. The reasoning would be that the first time
the smart contract must allocate space, but the time after that space just get rewritten.
The second noteworthy thing is that getBlockNumber has no cost. The reasoning is that
because the function does not alter the state of blockchain, one can trigger the function
with a call instead of a transaction. Calls are a read-only operation done locally by the
Node and return the value [63]. The tables also shows of that the price of creating your
own Bubble is between $7.69 and $8.56. With the cost of each identity management op-
eration being around $5.97 and $6.66. Based on the conversion rate at that moment.

Table 5.2: Gas cost of Bubblechain smart contract functions.

Gas Used Gwei USD
emitRootValue 25981 1454936 - 1636803 $2.92 - $3.29
new storeRootLocation 41546 2368122 - 2617398 $4.77 - $5.27
update storeRootLocation 26546 1513122 - 1672398 $3.05 - $3.37
getBlockNumber 0 0 $0.0

Bubble-Level Authentication
We measure the duration to authenticate a Follower from the same Bubble. Because
certain IoT devices are resource constraint, we simulate the authentication procedure on
different memory sizes. We run our test simulating 20, 30, and 60 MB of memory. These
values are possible memory capabilities for IoT devices, with devices such as Arduino
Yún LininoOS containing 64 MB of memory [64].

By running the authentication process within a docker container, we simulated the
different sizes of memory. A docker container is a lightweight, standalone, executable
package of software that includes everything needed to run an application: code, run-
time, system tools, system libraries and settings [65]. The x-axis shows the size of the
proof of inclusion. We ran the authentication a hundred times for each size of the proof
of inclusion and took the median time. Figure 5.1 depicts our result for Bubble-Level
authentication for different proof of inclusions.

Global-Level Authentication
In Figure 5.2, we depict our timed experiments for Global-Level authentication. Similar
to our Bubble-Level experiments, we ran our test a hundred times and took the mean.
We achieve the different sizes of memory by using docker. In practice, this time may
vary due to the time needed for the Node to respond due to influences from the net-
work. Depending on the use case, the time of around two hundred milliseconds might
be acceptable. Whereas for other cases, it might be too slow.

Key Agreement Protocol
After successful authentication, Follower used the other Follower’s Device-Key to estab-
lish a key. The key is used further for symmetric key encryption between the devices. In
Figure 5.3, we show the duration for Followers to create a key. With the help of Docker,
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Figure 5.1: Time measurements for a Bubble-Level authentication with different sizes of proof of inclusions.

Figure 5.2: Time measurements for a Global-Level authentication with different sizes of proof of inclusion s.

we simulated the results for different sizes of memory. In the figure, we show a box plot
of a thousand runs for each memory size. The result shows that in most cases, it takes
less than one millisecond to establish a key.
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Figure 5.3: Results from timed experiments to execute a ECDH key agreement protocol.

5.7. BUBBLECHAIN AND BUBBLES OF TRUST COMPARISON

In Section 2.4, we discussed the closely related work Bubbles of Trust. In this subsection,
we compare our system to the Bubbles of Trust. We start by covering the similarities and
differences between the two systems. We follow with arguments for each system against
the other.

Both systems are smart contract-based IoT authentication on the Ethereum blockchain.
Both systems use a centralised and hierarchical architecture for managing identities.
Both systems provide a trusted barrier for devices within the same Bubble. Bubblechain
and Bubbles of Trust make use of ECC to reduce space. Both systems are resilient against
Sybil and MITM attacks for devices within the same Bubble.

The systems differ in the way they authenticate. The Bubbles of Trust systems does
the authentication on the smart contract, whereas Bubblechain does it locally on each
device. The communication for Bubbles of trust is done via transactions, while Followers
in Bubblechain communicate directly with each other. For that reason, each Follower in
the Bubbles of trust system would need an Ethereum wallet with ether, which is not the
case for Bubblechain. Thus, the trust barrier within our solution is permeable, while the
one in Bubbles of Trust is not. Also, Bubblechain can remove identities within a Bubble,
while Bubbles of trust cannot do this.

Suppose we would have to argue for using the Bubble of Trust system against our
system. We would make the case that adding devices within Bubbles of Trust is more
efficient. Adding in Bubblechain requires updating all of the Followers within a Bubble.
Their identities are smaller than our system, and Bubbles of Trust is resilient against
DDoS attacks.
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If we would have to argue the use of Bubblechain ahead of Bubbles of Trust, we would
argue the following points :

1. The ability to remove and update identities. Compromised identities can be re-
voked within our system.

2. Communication within Bubblechain is faster than Bubbles of Trust. Bubbles of
Trust communicate via transactions, meaning the speed depends on the Ethereum
blockchain pace. Bubblechain does the communication and authentication lo-
cally and queries previous values from the Ethereum node if necessary.

3. Bubblechain stores a value to validate identities, whereas all the communication
in the Bubbles of Trust system is on the blockchain.

We proceed with the discussion and future work for our system in the following chap-
ter.



6
DISCUSSION & FUTURE WORK

In this chapter, we discuss our system, and we cover the future work for Bubblechain.
We finalise with some concluding remarks.

6.1. DISCUSSION
For the discussion, we split our system into two parts. First, we cover the research ques-
tion and the corresponding sub-questions. Then we cover the design choices for our
system.

6.1.1. RESEARCH QUESTION
In Chapter 1, we proposed the following research question:

"How can we design a decentralised generic authentication mechanism
for IoT devices that incorporates different trust levels for these devices
and also incorporate the life-cycle of devices?".

We believe that our propose solution is the answer to this research question. To elaborate
on why we believe this. We reiterate and answer each of our previously state subques-
tions. The subquestions from our research question are:

1. How can we apply an authentication technique that would be suited for M2M com-
munication?
Our proposed solution provides an IoT authentication that autonomously can au-
thenticate other devices. Devices can authenticate any device with the help of the
Ethereum blockchain.

2. How can the a IoT authentication mechanism in question incorporate different trust
levels for these devices?
Within Bubblechain, we chose for an centralised and hierarchical architecture to
manage the identities. The centralised entity, in our system the MD, signs off on

49
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identities with its Ethereum wallet. The used signature schemes provides unforge-
ability of the signed messages. Therefore, creating an assurance that devices were
signed by the same entity. Our simple put creating more trust for these identities.

3. How to make this IoT authentication mechanism decentralised?
To achieve decentralisation we utilise a smart contract on the Ethereum blockchain.
The smart contract code maintains the current state of each Bubble, while also be-
ing accesible by every entity.

4. How can individual devices authenticate identities?
Within Bubblechain there are two form of authentication Bubble-Level and Global-
Level authentication. On the Bubble-Level, devices rely on security of ECDSA to
prove that identities are signed by the same key. On the Global-Level, the Ethereum
blockchain makes sure that root value of a Bubble is up-to-date.

5. How can the IoT authentication mechanism be scalable, yet still be able to incorpo-
rate the life-cycle of devices?
Our solution merges the valid identities of a Bubble into a root value of a Merkle
Tree. The Merkle Tree is updated based on the removal, addition and updating of
identities. The latest root of value is emitted via an Ethereum event. Which the
public nature of blockchain anyone can read it. We utilise a mapping within our
smart contract to contain the location of the latest root value.

6.1.2. DESIGN CHOICES
In this subsection, we argue the design choices of our system.

• Ethereum -We wanted a decentralised storage that was already operational and
has established security. Additionally, we did not want a device to be online always
to maintain the system. In our solution this is done by the Ethereum blockchain.
Also full and archived nodes within the Ethereum system must store all the previ-
ous state. Making it so that any party can access the root of a Bubble via any full
or archived node. However the operation of the Ethereum blockchain is based on
the worth of the Ether. In the event that Ethereum blockchain crashes, our system
would also follow.

• Identity-based Authentication - Bubblechain relies on authentication based au-
thentication in the form of public keys. The use of public keys has the benefits to
be able to rotate or update key values if compromised. Physical-based charecter-
icss authentication such as PUF, are faster and more compact their identity-based
counterparts. However, PUF are based on physical characteristics. Altering the
characteristics if the circuits is could result in faulty output.

• ECDH and ECDSA - For our identity based solution for IoT devices, the choice of
ECC meant smaller key part then their counterparts. Also the use of ECDH made
our system more modular. Devices can switch symmetric encryption schemes to
cope as much device as possible. Making this choice does bring the problem that
if the choice of symmetric encryption scheme is weak, then the whole authentica-
tion process was for nothing.
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• Centralised and Hierchical Architecture - With our choice of using the Ethereum
blockchain, we wanted to have a single entity which has the Ether. In the Bubbles
of Trust solution every device would need an Ethereum wallet with ether to exe-
cute transactions. Also with the centralised and hierachical approach, we had one
device which was capable of signing identities. Upon verification of these identi-
ties, can verify that they have been signed by the same key.

• Expiration date - For Both the IDoT and root value we have tied to an expiration
date. The reason behind it that even if owner cannot access an MD, the identities
do not remain valid forever. However, this introduces more work for the MD, which
has to update identities if the expiration date is surpassed

• Storing block number on Smart Contract - Within our smart contract, we emit
the Root value and expiration date and store the block number containing the
event.The cost of events and storage on the smart contract are based on the size of
the data. However events are cheaper than interal storage on the smart contract.
The reasoning for this is because events are not accessible later by the contract
itself, but stored as a log on Ethereum transaction. Alternatively, we could have
stored the root value within the mapping. This approach would have been faster,
however is system would not be able to grow. In the future work, we briefly discuss
on extending the system to include more then one root value.

6.2. FUTURE WORK
In this section, we cover the future works for our system. These are the areas in which
we see room for improvement. There are :

• Ethereum V2.0 - As previously mentioned, the Ethereum blockchain has plans to
switch from PoW to PoS with sharding. Sharding could increase the throughput
out the system. However, the data of smart contracts could face the problem of
not being accessible by all shards. For our system, this could become a problem or
limit our system. Potentiol solutions, could be either to deploy the smart contract
on mulitiple shards, or alter the smart contract for multiple shards.

• White-List Bubbles - Our solution provides a trusted barrier for device that belong
to the same owner. However, communication with devices outside is untrusted.
Bubbles that an owner or user know is maintain, can whitelist them. This can
avoid quering the blockchain, to avoid cost. This option can avoid cost, but at the
cost of not being able to guarantee the latest root version.

• Split into Multiple Tree - Instead of an MD having one Merkle Tree, an MD can
have multiple trees. Devices within a Bubble can be subdivided into multiple trees.
Therefore the MD ensure smaller proof of inclusions, and less expensive updates.
However this comes at the cost of more gas being to store the root value and de-
vices need to store more values.

• Lower Performance alternative- Alternatively devices that are more resource con-
straint could get aid from their MD to authenticate Followers on their behalf. The
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result of the authentication could be relayed to Follower to determine whether
it should establish a connection. This approach, without implementing secure
channel between the MD and Follower, can lead to malicious entities impersonat-
ing an MD.

6.3. CONCLUDING REMARKS
In this thesis, we presented Bubblechain. Bubblechain is a decentralised IoT authentica-
tion system, with two trust levels and capable of adding, removing and update identities
of devices. To achieve these capabilities, we made decisions that come at a cost. We now
discuss the practicality of our system.

In Chapter 2, we categorised various authentication schemes according to their set-
ting. Their setting influences the requirements for each system. From our analyses, we
determine that Bubblechain is not suited for all settings. For settings that require a low
latency for devices within different owners our system would not be ideal. For example,
in a transportation setting where latency could result in loss of life.

In settings with a large number of devices belong to the same owner our system as
it stands is not ideal. A large number of devices, would result in a large Bubble. A large
Bubble would not have a significant impact on the authentication time, however pro-
cesses to manage the identities would be extremely expensive, requiring every device’s
proof of inclusion to be updated. However, by extending our work to incorporate white
listed Bubbles and split the Bubbles into various group. Our solution could be better
equipped for these scenarios.

Our system is more suitable for the smart home setting. Because smart homes can
have a relatively small number of devices, and most of communication is within the
same Bubble. Also the appliances are not frequently replaced. Therefore, the manage-
ment of identities would be feasible.
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