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Abstract—We present a deep learning-based approach called
DipSAR for reconstructing millimeter-wave synthetic aperture
radar (SAR) images from sparse samples. The primary challenge
lies in the requirement of a large training dataset for deep
learning schemes. To overcome this issue, we employ the deep
image prior (DIP) technique, which eliminates the need for a
large dataset and instead utilizes only the sparse sample itself.
Our proposed DipSAR model recovers missing samples from
sparse data and reconstructs the SAR image using a conventional
method. In this study, we utilize an existing SAR dataset and
create fourteen different patterns to generate additional sparse
samples by removing certain data points. We then evaluate
the performance of DipSAR in comparison to the conventional
method. The results show that DipSAR outperforms the conven-
tional method in terms of the intersection over union (IoU) score.

Index Terms—millimeter-wave, synthetic aperture radar, deep
image prior, near-field imaging, sparse data

I. INTRODUCTION

Nowadays, microwave imaging using near-field synthetic
aperture radar (SAR) has become increasingly important in
various scenarios, including the military and medical sectors.
The unique ability of radio waves to penetrate and reflect off
objects has led to numerous applications, such as concealed
item detection [1] and small object detection [2]. However,
constructing a near-field SAR imaging system faces significant
challenges, including cost considerations and the need for a
large number of transceiver antennas to achieve high-quality
imaging details. Traditional methods address this by employ-
ing motion control to simulate ideal synthetic antenna arrays.
Nevertheless, scanning a spatial area using this approach is
time-consuming and has the risk of data loss during the
scanning process, which adversely affects the image quality.

To address these challenges, recent developments have
focused on techniques for SAR reconstruction with sparse
data, such as the non-uniform fast Fourier transform range-
migration algorithm [3]. Simultaneously, deep learning (DL)
has gained significant attention in radar signal processing,
particularly in SAR reconstruction, due to its promising results
compared to state-of-the-art approaches. For instance, in [4],

[5], a deep denoising technique is employed to achieve high-
resolution SAR reconstruction, while another approach in [6],
[7] utilizes a generative model to obtain highly detailed SAR
images. However, a common drawback of most deep learning
algorithms is their reliance on large amounts of training data
to attain high-quality images.

In this paper, we introduce DipSAR, a deep learning frame-
work designed for reconstructing sparsely sampled SAR im-
ages at mm-wave. DipSAR leverages the concept of deep
image prior (DIP) [8] by modifying a non-trained generator
to predict sparsely sampled data prior to reconstruction. In
this approach, a fixed random noise is assumed as the input
latent code, while the network parameters are optimized to
represent the missing samples. The key concept is that the
network structure itself acts as a robust regularizer. As a result,
this technique eliminates the need for a large training dataset,
as the network learns from the prior knowledge inherent in
sparsely sampled data. The proposed method is evaluated with
different types of sparsely sampled data, showing that it can
outperform a conventional approach in terms of Intersection
over Union (IoU) metric.

II. DATA & PROPOSED METHOD

Our goal is to utilize DIP technique to recover the missing
information from raw data and then reconstruct the SAR
image using a conventional method [9]. First, we provide a
comprehensive discussion on data preparation, focusing on
experimentation with an existing dataset, which enables the
performance assessment of our model (DipSAR) for this par-
ticular task. Then, our proposed method DipSAR is described
with implementation details. The overview of the proposed
approach is illustrated in Figure 1.

A. Data Preparation

The data utilized in our study are sourced from [10], which
conducted spatial scanning across a 2-D plane (x, y, z = 0).
The data collection process involved transmitting and receiving
antennas located in close proximity to each other, treated as
a full duplex antenna transceiver positioned at the center. For
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Fig. 1. Overview of the proposed approach and its verification. It consists of the scanning trajectories (yellow boxes), masking patterns (blue box), the
conventional method (black box), and our proposed method (DipSAR) (red box).

a comprehensive understanding of the hardware configuration,
please refer to the detailed explanation provided in [10].

Based on the measurement configuration, the receiving
signal at the transceiver sx,y can be represented as the product
of the reflectivity function fx′,y′,z′ and the round trip phase.
This relationship can be mathematically defined as:

sx,y =

∫∫
fx′,y′,z0 · e−j2k

√
(x−x′)2+(y−y′)2+z02

dx′dy′, (1)

where k is the wavenumber. The fundamental concept behind
reconstructing a 2-D SAR image involves the recovery of the
reflectivity function from Equation (1).

A well-known and widely recognized algorithm involves
leveraging the Fourier-transform to reformulate Equation (1),
enabling the removal of the primed and unprimed coordinate
system, as they coincide. This yields the following reconstruc-
tion equation below:

fx,y = FT−1
2D [FT2D[sx,y] · e−jkzz0 ] (2)

and
kz =

√
4k2 − k2x − k2y (3)

where, kx, ky , and kz are the wavenumber corresponding
to each Cartesian coordinate, decomposed from k based on
electromagnetic dispersion relation.

In our experiment, we simulate the sparsely sampled data
vx,y by generating a binary masking pattern mx,y ∈ Z2.
This pattern is utilized to selectively remove portions of the
receiving signal, as defined by the following relation:

vx,y = sx,y ⊙mx,y (4)

where ⊙ is Hadamard’s product. To generate diverse types
of sparse data, we have designed a set of fourteen masking
patterns. These patterns vary in terms of shape and size,
including three different sizes of dots (2x2, 3x3, and 5x5
samples), three different line heights for horizontal stripes
(2, 3, and 5 samples), three different line widths for vertical
stripes (2, 3, and 5 samples), two large rectangles, four small
rectangles, random dots, random drawings, and random lines,
as illustrated in Figure 1 (blue box).

B. DipSAR
In our proposed approach, we employ DIP networks to

recover the receiving signal from the sparsely sampled signal.
DipSAR acts as a generative network approach, generating
missing samples instead of relying on a regularization term for
reconstruction. This is achieved by incorporating DIP as the
reparameterization function sx,y = fθ(z), where fθ is the deep
generative network with weights θ, and z is a fixed random
noise. As a result, the optimization function for DipSAR can
be expressed as:

θ̂ = argmin
θ

||fθ(z)− vx,y||2, sp = fθ̂(z) (5)

where sp is the predicted signal and θ̂ is the paremeters to be
minimized that can be optimized using Adam optimizer.

Next, we employ the conventional method (equation 2) to
reconstruct the SAR image based on the predicted signal. The
algorithm for image reconstruction is outlined in Algorithm 1.

Algorithm 1 DipSAR: SAR image reconstruction using DIP
Pre-processing
1: Collect uniformly complex FMCW samples from

transceiver scanning over a 2-D planar aperture
2: Select z0 to focus on the object, resulting a receiving

signal sx,y
3: Mask out samples vx,y = sx,y ⊙mx,y

Training
1: Input: fixed random noise z, sparse sampled signal vx,y
2: Output: predicted signal sp
3: for number of training iterations do
4: sp = fθ(z)
5: Compute L = ||sp ⊙mx,y − vx,y||2
6: Update weight θ using Adam optimizer
7: end for
Post-processing
1: Reconstruct image using:

fx,y = FT−1
2D [FT2D[sp] · e−jkzz0 ]
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Fig. 2. Qualitative comparison of the conventional method and DipSAR. Our DipSAR predictions are closer to the ground truth [10] with fewest outliers.

TABLE I
RECONSTRUCTION RESULTS VIA IOU SCORES AT 3 DIFFERENT

THRESHOLDS.

IoU ↑

Thres40 Thres60 Thres80

Patterns \ Methods Conv. DIP Conv. DIP Conv. DIP

Average Dot 0.928 0.939 0.898 0.946 0.853 0.934
Average Stripe 0.615 0.922 0.691 0.931 0.238 0.901
Average Rectangle 0.705 0.796 0.649 0.758 0.463 0.671
Average Random 0.714 0.891 0.658 0.875 0.486 0.838

C. Implementation Details

For DipSAR, we adopt a UNet architecture [11] with the
input z ∈ RC×W×H and the output fθ(z) ∈ CW×H ∈
R2×W×H having a similar number of spatial samples, where
the parameter C is set to 32. The learning rate is set to
1 × 10−2. Due to the limited number of samples, we are
unable to employ the early stopping scheme, which typically
relies on a large validation set to prevent network overfitting
as in the original DIP approach. Instead, we optimize the
iteration count to 3000, based on the best average performance
observed during each training. Training DipSAR typically
takes approximately 5 minutes on a single NVIDIA GeForce
RTX 2080Ti.

III. RESULTS AND DISCUSSION

In this section, we evaluate the performance of our method
using the Intersection over Union (IoU) metric, which provides
an indication of how well our reconstruction method aligns
with the original, ground-truth image. In Section III-A, we
provide a comprehensive overview of the conventional method,
highlighting its details and comparing it to our method for
reconstruction tasks. Following that, Section III-B discusses
of the limitations of our work.

A. Comparison to the conventional method

In this experiment, we conduct a comparative analysis
between DipSAR and the conventional method in terms of
their reconstruction performance, which is measured by the
IoU score of the SAR image. The conventional method [12]

yields the SAR image by filling zeros in the sparsely sampled
signal vx,y , resulting in s0. Then, equation (2) is computed to
obtain the SAR image.

The IoU metric is commonly utilized to quantify the over-
lapping region between the predicted and ground-truth images.
However, as discussed in Section II, our SAR images represent
the reflectivity function, which consists of continuous values.
Therefore, directly estimating the IoU from the original SAR
image is not feasible. To address this, we convert the SAR
image into a binary image by applying a constant threshold
value. By using this threshold, reflectivity values exceeding it
are set to one, while the remaining values are set to zero. In
our study, we propose three different constant thresholds to
comprehensively cover various signal strengths. The results,
both quantitative and qualitative, are presented in Table I and
Figure 2, respectively.

B. Limitation

This initial study showcases the strong performance of Dip-
SAR in reconstructing sparsely sampled SAR data. However,
there are certain limitations to consider. It is crucial to preserve
rich information, particularly in the object area, as the model
relies on this information to capture prior knowledge of the
image. In cases where such information is removed, such as in
rectangle (a) and random (b) masking, the performance is less
good. Additionally, our investigation is limited to a specific
set of masking patterns and data, leaving the generalization
ability of the model unexplored in this study.

IV. CONCLUSION

We have introduced a novel approach called DipSAR, which
utilizes the DIP technique for sparsely sampled SAR image
reconstruction. Our model takes fixed random noise as input
and predicts missing samples from the sparsely sampled data.
A conventional method is then employed to reconstruct the
SAR image. The use of DIP eliminates the need for supervised
data, allowing for its application in real-world scenarios where
certain scanning trajectories may be missing. Furthermore,
our study includes various types of masking to simulate
diverse possibilities encountered in real-world scenarios. The
experimental results demonstrate that DipSAR outperforms the
conventional method in terms of average IoU scores.
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