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Predicting Damage Incidents, Fines,
and Fuel Consumption from Truck
Driver Data: A Study from the
Netherlands

Tom Driessen1 , Dimitra Dodou1 , Dick de Waard2 ,
and Joost de Winter1

Abstract
Trucks are disproportionately involved in fatal traffic accidents and contribute significantly to CO2 emissions. Gathering data from
trucks presents a unique opportunity for estimating driver-specific costs associated with truck operation. Although research has
been published on the predictive validity of driver data, such as in the contexts of pay-how-you-drive insurance and naturalistic
driving studies, the investigation into how telematics data relate to the negative consequences of truck driving remains limited. In
the present study, driving data from 180 truck drivers, collected over a 2-year period, were examined to predict damage inci-
dents, traffic fines, and fuel consumption. Correlation analysis revealed that the number of fines and damage incidents could be
predicted based on the number of harsh braking events per hour of driving, whereas fuel consumption was predicted by engine
torque exceedances. Our analysis also sheds light on the impact of covariates, including the engine capacity of the truck operated
and time of day, among others. We conclude that the damage incidents and fines incurred by truck drivers can be predicted not
only from their number of harsh decelerations but also through driving demands that extend beyond the driver’s immediate con-
trol. It is recommended that transportation companies adopt a systemic approach to mitigating truck-driving-related expenses.
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In 2019, heavy goods vehicles, henceforth denoted as
‘‘trucks,’’ were implicated in 14% of all traffic fatalities
within the European Union (1). Casualties in truck colli-
sions predominantly involve the opposing party.
Specifically, in 2019, 26 truck occupants succumbed to
collisions with cars, whereas 1,557 car occupants died in
accidents involving trucks (2). Apart from the road safety
implications, truck operations significantly affect the envi-
ronment, contributing approximately 21% of the
European Union’s road transport CO2 emissions (3).
These environmental impacts are also evident in the
operational expenditures of trucking companies; an exam-
ination of truck driving expenses in the United States
revealed that 22% was allocated to fuel, 9% to damage
repairs and maintenance, and 4% to insurance premiums
(4). Consequently, identifying the determinants of acci-
dents, damage incidents, and fuel consumption would be
beneficial for society and transportation companies.

The increasing accessibility of in-vehicle data record-
ings has allowed novel approaches to investigating the
determinants of accidents. Among passenger vehicles,
pay-as-you-drive (PAYD) insurance incorporating in-
vehicle data recording has gained traction (5–7). Using
data from 1,600 vehicles participating in PAYD pro-
grams, Paefgen et al. demonstrated that urban driving
posed a relatively elevated accident risk, whereas high-
way driving presented the lowest risk per kilometer dri-
ven (7). Moreover, Verbelen et al., in their analysis of
10,406 policyholders, discovered that although males are

1Faculty of Mechanical, Maritime and Materials Engineering, Delft University

of Technology, the Netherlands
2Faculty of Behavioural and Social Sciences, University of Groningen, the

Netherlands

Corresponding Author:

Joost de Winter, j.c.f.dewinter@tudelft.nl

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981231211897
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981231211897&domain=pdf&date_stamp=2023-12-13


typically considered higher-risk drivers than females,
gender was no longer a significant factor when telematics
data, such as mileage, were incorporated as accident
involvement predictors (8).

Tselentis et al. distinguished between PAYD and pay-
how-you-drive (PHYD) insurance, in which the former
involves exposure-related variables (e.g., driving amount,
driving time, road type), whereas the latter also encom-
passes behavioral measurements, such as speeding and
accelerations (9). Ayuso et al. analyzed PHYD insurance
data usage and showed that a younger driver’s age,
higher vehicle power, increased mileage, and a greater
number of speed limit violations were correlated with a
shorter duration to the driver’s first accident, based on a
dataset of 15,940 novice drivers (10). More recently, Ma
et al. analyzed over 130,000 trips from 503 drivers and
found that distance traveled, exceeding the local speed
limit, the frequency of harsh braking events per distance
traveled, and driving speed relative to other vehicles tra-
versing the same road segment were predictive of drivers’
accident rates (11). Naturalistic driving studies featuring
researcher-instrumented vehicles offer another avenue to
investigate the correlation between driving behavior and
accident involvement. In the SHRP-2 project, kinematic
events (i.e., hard decelerations, -accelerations, and -turn-
ing) were associated with accident and near-accident
occurrences (12).

In the domain of truck driving, several studies have
used actuarial statistics, such as age, gender, and previ-
ous accidents or violations, to predict accident involve-
ment or severity (13–15). However, investigations into
the relationship between truck driver behavior and acci-
dent involvement remain relatively scarce. A noteworthy
exception is a study by Cai et al., which discovered that,
in a substantial sample of truck drivers (n=31,828), the
number of safety-critical events per mile was associated
with accident involvement (16). The findings were
deemed robust across various business units and driver
types. Hickman and Hanowski’s analysis of a large nat-
uralistic truck driving dataset demonstrated that certain
cell phone tasks substantially increased the likelihood of
involvement in safety-critical events (17). However, this
case-control study provided insights only into the imme-
diate precursors of truck accidents without establishing
correlations with driving styles.

A common limitation of studies exploring predictors
of adverse outcomes in driving (both car and truck driv-
ing) is the incomplete nature of the variables recorded.
For instance, PAYD data may encompass information
on mileage and accident rates but lack data on driver
behavior (8, 18–21). Other studies report associations
between driver behavior and accidents without consider-
ing other costly outcomes such as traffic fines or fuel
consumption (22, 23). Goldenbeld et al. analyzed a large

national dataset to study the relationship between traffic
offenses and accident involvement (24). However, infor-
mation on mileage and whether a specific vehicle was
driven by its owner at the time of the traffic fine was
unavailable. Figueredo et al. (25) and Zhou and Zhang
(26) investigated risky truck driving behavior and used
this to classify drivers into different risk profiles; never-
theless, they did not establish a direct association with
accident involvement. A prevalent issue in truck driving
behavior analysis is that drivers often switch trucks, as
Li et al. acknowledged in their truck driver profiling
study (27).

In the current study, a dataset encompassing truck
driver behavior, driving exposure, and fuel consumption
measures was merged with data on drivers’ damage inci-
dents and traffic fines. This information was used to
examine the relationships between truck driving behavior
and driving exposure and fuel consumption, vehicle dam-
age incidents, and fines. The present analysis accounted
for both the driver and the specific vehicle being driven.
The objective was to gain a more nuanced understanding
of the determinants of adverse driver outcomes, includ-
ing high fuel consumption, damage incidents, and fines.

Methods

Ethics Statement

In the present research, data were procured from two
sources: a company specializing in collecting fleet data
for driver coaching purposes and a transportation logis-
tics company based in the Netherlands. The data were
acquired following Data Transfer Agreements, and safe-
guards such as data minimization and anonymization
were used to ensure the protection of data subjects. Data
processing adhered to Article 89 of the General Data
Protection Regulation, that is, data were processed for
statistical purposes and presented in an aggregated for-
mat. The research proposal was reviewed by the TU
Delft data privacy officer and received approval from the
TU Delft Human Research Ethics Committee (approval
number 1820). Owing to the retrospective and observa-
tional nature of this study, informed consent was not
required.

Driving Behavior Data

This study uses truck driving data from a Dutch trans-
portation company operating a fleet of 70 trucks. The
drivers’ primary responsibilities included shop distribu-
tion (approximately 55% of drivers), nationwide distri-
bution (approximately 16% of drivers), and fine-meshed
distribution (approximately 10% of drivers). The remain-
ing drivers delivered to distribution centers or engaged in
more flexible work arrangements.
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The data were obtained through a fleet management
system (FMS), which has become increasingly common
in the transportation and logistics industry. FMSs enable
drivers and management to monitor vehicle locations,
record driving statistics, and schedule trips. The FMS
data for this study were obtained from NEXTdriver
(https://www.nextdriver.nl), a Dutch company that pro-
vides posttrip driving-style feedback and coaching for
truck drivers. Drivers received weekly performance
scores via an app and could communicate with driving-
style coaches through a text messaging interface.

FMS data were collected between March 19, 2020
and March 31, 2022. Cumulative event data (‘‘samples’’)
of driver actions (e.g., speeding, harsh braking) were
acquired at varying intervals (median sampling inter-
val=53.1min). Odometer data and fuel consumption
were sampled more frequently (median sampling inter-
val=4.47min). On inspection of the odometer data,
approximately 28% of the samples did not yield data,
resulting in a constant value even when the vehicle was
in motion. These data were linearly interpolated based
on the date and time of the event recording. Through
this interpolation of the odometer values, we were able
to provide a more precise estimate of the total distance
driven per driver, which turned out to be 2% higher with
interpolation than without. Note that this interpolation
had minimal impact on the driver performance measures,
which are described below, as they were calculated per
unit of time rather than per kilometer driven.

The data for each driver were divided into sessions,
with a session being defined by automatically detecting
when a new driver entered the vehicle. If drivers operated
the same vehicle across multiple days, this was identified
as a single session. Sessions were retained if they met spe-
cific criteria, such as physical plausibility and a nonzero
driving duration (i.e., at least two sample points were
required for a session to calculate the duration based on
the difference in the time stamp variable), as detailed in
the Supplemental Material.

Driver Performance Measures

A total of 12 driving measures were computed per driver
from the aforementioned FMS data samples:

(1) Total driving time (hours).
(2) Total driving distance (km).
(3) Number of days with driving data recorded

(days). Any driving data were considered when
counting the number of days, regardless of ses-
sion demarcation.

(4) Engine capacity (cc), computed as a driving-
time-weighted average of the engine capacity of
the truck driven. The engine capacity score pro-
vides an overall approximation of the size of all

trucks used by the driver. This information was
obtained by examining the license plate number
in the Dutch vehicle registration database (28).

(5) Number of vehicle switches per hour of driving
(#/h). This variable may indicate the type of
work being performed, that is, whether the
driver was assigned to strict delivery schedules
(such as shop distribution), which involves
switching trucks.

(6) Percentage of night shift driving (%), calcu-
lated based on the number of event samples
recorded after 20:00 or before 04:00. This mea-
sure was computed for each session and subse-
quently averaged across all sessions for a given
driver. The interval between 20:00 and 04:00
was chosen as it appeared to correspond with
the working hours of night shift drivers based
on inspection of the distribution of working
hours in the data.

(7) Mean speed (km/h), calculated from the first
two measures.

(8) Number of harsh brakes per hour of driving (#/
h). The manufacturer of the event data recorder
had established a threshold for what constitutes a
harsh brake. It was defined as any vehicle decel-
eration that exceeds 1.5m/s2, a measurement that
applies regardless of the driving speed at the time.

(9) Speeding duration per hour of driving (s/h),
with speeding defined as driving at a speed
greater than 84km/h. The threshold of 84 km/h
for recording the duration of speeding was
established by the manufacturer of the event
data recorder, taking into account the typical
80 km/h speed limit on highways, plus an addi-
tional 4 km/h margin. Although a variable
threshold that considers the local speed limit
might be more desirable, our research was con-
strained to this fixed parameter.

(10) Duration of engine torque exceedance per hour
of driving (s/h). The torque threshold was set at
90% of a factory-established engine-specific ref-
erence torque value.

(11) Duration of cruise control active per hour of
driving (s/h).

(12) Fuel consumption per kilometer of driving
(L/km).

Note that Measures 5 and 7 to 11 were computed per
hour of driving (Measure 1), whereas Measure 12 was
computed per kilometer of driving (Measure 2).

Damage Incidents and Fines

The transportation company maintained a detailed
record of all damage incidents and traffic fines, including
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those not claimed from the insurance provider. Solely
relying on insurance data could potentially result in
underreporting, an issue that has been identified within
the accident analysis literature (29). Dorn et al. noted
that underreporting is less concerning for transportation
companies that maintain their own records (30).

Only damage incidents and fines that occurred within
the study period, from March 19, 2020 to March 31, 2022,
were considered. Our collaboration with the transporta-
tion company, granting us access to extensive damage
data, influenced our decision to retain a broad spectrum
of damage incidents in our study, not just collisions. More
specifically, a total of 420 damage incidents were docu-
mented, which the transportation company had infor-
mally categorized. Specifically, 97 were identified as
‘‘reversing incidents,’’ 108 as ‘‘maneuvering incidents,’’
and 49 as damage incidents resulting from the truck
‘‘swinging out.’’ The damage incidents primarily involved
bumpers, lamps, fences, poles, doors, or other (parked)
vehicles. Furthermore, four damage incidents were classi-
fied as rear-end collisions, three as injuries (not related to
driving but occurring during loading and unloading), eight
as resulting from slipperiness, four as theft of goods, four
as lane changes, one as a right-of-way incident, and one as
an avoidance maneuver. Lastly, 131 damage incidents
were categorized as ‘‘other’’ and encompassed a diverse
range of types, including damage incidents that occurred
during loading/unloading and damage to cargo. The
remaining 10 damage incidents were not classified.

In relation to damage incidents and fines, the follow-
ing scores were computed for each driver:

(13) Total damage incidents (total in the dataset:
420). Even though many damage incidents were
not directly associated with driving, this cate-
gory was retained to obtain an estimate of all
costs incurred.

(14) Number of damage incidents claimed from the
insurance company (total in the dataset: 200).

(15) Number of damage incidents handled by the
transportation company itself (i.e., not claimed
from the insurance company, total in the data-
set: 220).

(16) Number of damage incidents for which the costs
were recovered from another road user (total in
the dataset: 32). This category offers a formal
classification of damage incidents for which the
truck driver was not at fault.

(17) Number of damage incidents for which the costs
were not recovered from another party, typi-
cally because the truck driver was at fault (total
in the dataset: 388).

(18) Number of damage incidents related to driving
(total in the dataset: 303). This category was

obtained by using all damage incidents (Measure
13), excluding incidents that were recovered from
another party (Measure 16) and incidents that
were manually labeled by the authors.
Specifically, not included were damage incidents
that did not occur while the truck was either
driving or parking (such as damage during load-
ing and unloading), incidents caused by others,
incidents for which, according to the transporta-
tion company’s records, no culpable party was
identified, and incidents not evidently caused by
human error (such as a flat tire). The first two
authors independently classified all accidents
using the above definitions and resolved dis-
agreements through mutual discussion.

(19) Number of traffic fines (total in the dataset:
266). The reasons for most of the fines were
unavailable, but out of the 99 fines with descrip-
tions, 77 were for speeding.

Statistical Analysis

Means, standard deviations, and intercorrelations of the
driver measures and damage variables were calculated. In
addition, graphs were constructed to clarify the effects of
truck size and time of day.

One issue is that the correlation coefficients were influ-
enced by driving exposure and thus required statistical
correction. The total driving time and distance (Measures
1 and 2) do not precisely represent the actual amount of
driving, as sessions shorter than the minimum require-
ment of two sample points were excluded. Since the num-
ber of distinct days that drivers appeared in the FMS
dataset seemed to be the most accurate index of expo-
sure, and because transportation companies are likely to
be interested in damage incurred per employee-day
(rather than per hour or kilometer driving), the number
of days with data (Measure 3) was used as an index of
exposure in the regression analyses.

Linear regression analyses were performed with the
drivers’ exposure (Measure 3), session characteristics
(Measures 4, 5, 6, and 7), and one of the behavioral mea-
sures (Measure 8 or 10) as predictor variables. The
selected dependent variables included the drivers’ total
number of damage incidents (Measure 13), the number
of fines per driver (Measure 19), and the fuel consump-
tion per kilometer of driving (Measure 12).

Results

A total of 27,543 sessions involving 180 drivers were used
in the study. The average number of sessions per driver
was 153.0 (SD=141.7), and the mean number of vehi-
cles driven per driver was 15.37 (SD=10.92).
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Table 1 presents the means, standard deviations, and
higher moments of the measures used in the analysis. As
can be observed, approximately 1,000h of driving were
available per driver on average (Measure 1). Nevertheless,
there were considerable individual differences in exposure,
as evidenced by the standard deviations of Measures 1 to
3. Drivers changed trucks approximately once every seven
hours of driving (Measure 5). The majority of drivers
switched trucks at least once, with only six drivers never
making a switch. Harsh braking events were relatively
infrequent, occurring about once per hour (Measure 8).
Drivers exceeded the established speed limit (84km/h)
18% of the time (Measure 9), experienced high engine tor-
que approximately 3% of the time (Measure 10), and used
cruise control 35% of the time (Measure 11). The average
fuel consumption was 0.28L/km (Measure 12). On aver-
age, drivers incurred 2.33 damage incidents and received
1.48 fines.

Table 2 presents the Pearson correlation matrix
among the various measures, from which several pat-
terns can be discerned. Firstly, the number of damage
incidents and the number of fines per driver can be pre-
dicted based on the number of harsh braking events per
hour (highlighted in green). Interestingly, the number of
damage incidents for which the costs were recovered
from another party (and thus not attributable to the
driver) showed a near-zero correlation with harsh brak-
ing. It is also worth noting that other behavioral

measures did not strongly predict damage incidents and
fines. For instance, contrary to expectations, speeding
was not a significant predictor of fines, even though the
majority of fines were issued for speeding.

Furthermore, the correlations with fuel consumption
(Table 2; highlighted in yellow) demonstrated that fuel
consumption per kilometer could be predicted based on
the engine torque exceedance per hour. It is also evident
that, apart from driver behavior, both session and vehi-
cle characteristics contributed to the prediction of fuel
consumption. In particular, drivers operating trucks with
larger engine capacities exhibited higher fuel consump-
tion, maintained greater mean speeds, and changed vehi-
cles more frequently.

The characteristics of driving sessions were found to
be correlated with various driver performance measures.
Specifically, drivers operating trucks with larger engines
(as shown in Table 2, highlighted in blue) tended to
switch vehicles more frequently, drive with higher engine
torque, experience fewer harsh braking events, and exhi-
bit a higher mean speed and cruise control usage.
Furthermore, drivers who were on the road more fre-
quently during night shift generally drove at faster speeds
and were more prone to speeding (as demonstrated by
the correlation coefficients highlighted in gray). Lastly,
the total driving time, distance covered, and the number
of days with available data were found to be predictive
of the number of damage incidents and fines (Table 2,

Table 1. Descriptive Statistics of the Driving Measures, Damage Incidents, and Fines

No. Measure Mean SD Min. Max. Skewness Kurtosis Unit

1 Total driving time 963.0 741.0 1.9 3129.7 0.39 2.25 h
2 Total driving distance 55829.7 45398.3 136.6 199675.6 0.66 2.81 km
3 Number of days with data 254.0 175.7 3.0 582.0 20.07 1.51 days
4 Engine capacity (weighted by driving time) 9.8 1.7 3.0 12.8 21.83 6.34 L
5 Number of vehicle switches per hour of driving 0.14 0.13 0.00 0.73 1.22 5.63 #/h
6 Percentage night shift driving 12.17 16.38 0.00 100.00 2.57 9.98 %
7 Mean speed 53.80 9.10 28.25 76.95 0.04 3.24 km/h
8 Number of harsh brakes per hour of driving 1.07 1.45 0.00 11.62 4.56 29.98 #/h
9 Speeding duration (.84 km/h) per hour of driving 638.3 540.5 0.0 2369.8 1.05 3.74 s/h
10 Duration of excessive engine torque per hour of

driving
124.5 65.3 1.6 392.0 0.60 3.97 s/h

11 Cruise control duration per hour of driving 1277.6 632.1 0.0 3099.1 0.32 2.90 s/h
12 Fuel consumption per kilometer of driving 0.28 0.05 0.12 0.38 20.74 3.81 L/km
13 Total number of damage incidents 2.33 2.85 0 18 2.06 8.94 #
14 Number of damage incidents, claimed from

insurance
1.11 1.52 0 9 1.95 7.98 #

15 Number of damage incidents, not claimed from
insurance

1.22 1.69 0 9 1.83 6.65 #

16 Number of damage incidents, costs recovered from
another party

0.18 0.50 0 4 3.88 23.53 #

17 Number of damage incidents, costs not recovered
from another party

2.16 2.74 0 18 2.19 9.94 #

18 Number of damage incidents, driving-related 1.68 2.30 0 12 1.97 7.33 #
19 Number of fines 1.48 3.25 0 30 5.01 37.47 #

Note: SD = standard deviation; Min. = minimum; Max. = maximum; n = 180, except for Measure 12, for which n = 158.
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highlighted in orange). These findings suggest that the
impact of exposure should be taken into consideration in
subsequent analyses.

Figures 1 and 2 depict the variations in driving beha-
vior influenced by the time of day and the type of truck,
respectively. Figure 1 (top left) demonstrates the differ-
ences in exposure (total driving time) throughout the
day, with the majority of driving taking place between
05:00 and 17:00. Instances of speeding (Figure 1, bottom
right) and cruise control activation (Figure 1, top right)
were more common during night shift compared to day
shift, while harsh braking events occurred more fre-
quently during the day (Figure 1, bottom left). A notice-
able shift in activity can be observed around 22:00, which
may be attributed to the start of the night shift for driv-
ers operating during night shift.

Figure 2 presents an analysis of the trucks within the
fleet. Generally, trucks with smaller engine capacities
exhibited a higher frequency of harsh braking events per
hour. This relationship (r=20.57) is consistent with the
correlations observed at the driver level (r=20.40, indi-
cated in blue; Table 2), suggesting that in addition to the
driver, the vehicle being operated should be considered
in driver evaluations. Furthermore, it was evident that
trucks with larger engine capacities consumed more fuel

per kilometer (r=0.78), a trend also observed at the
driver level (r=0.71).

Linear regression analyses were performed to predict
the total number of damage incidents, the number of
fines, and fuel consumption per kilometer of driving
(Table 3). As observed in Table 3, exposure (i.e., the num-
ber of days with data) was a strong predictor of damage
incidents. The harsh braking rate also served as a signifi-
cant predictor, whereas the other variables did not exhibit
significant predictions. Similarly, exposure and harsh
braking were found to be predictive of fines. Lastly, fuel
consumption was effectively predicted (overall r=0.84)
based on mean speed, the occurrence of high engine tor-
que, engine capacity, and the number of vehicle switches
per hour of driving.

A limitation of the correlation coefficients shown in
Table 2, as well as the regression analyses displayed in
Table 3, is that several of the variables have a tailed dis-
tribution, as indicated by the skewness and kurtosis val-
ues in Table 1. With respect to the number of traffic
fines, for example, the average among the 180 drivers
was 1.48, but there was one driver who had as many as
30 fines (see Table 1).

These outliers do not necessarily invalidate our analy-
ses, but they do imply that the analyses are less robust

Figure 1. (a) Total driving time (hours), (b) percentage of driving time with cruise control activated, (c) number of harsh braking events
per hour of driving, and (d) percentage of driving time where the driver was speeding, calculated from all recorded data samples
(n = 533,577).
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Table 3. Results of Three Linear Regression Analyses for Predicting (1) Total Number of Damage Incidents (n = 180, Overall Predictive r
= 0.52), (2) Number of Fines (n = 180, Overall Predictive r = 0.48), and (3) Fuel Consumption per Kilometer Of Driving (n = 158, Overall
Predictive r = 0.84)

No. Measure Unit B r0 p0 b p

Total number
of damage
incidents

Constant na 21.0052 na na 0 na
3. Number of days with data days 0.0077 0.45 \0.001 0.48 \0.001
4. Engine capacity L 20.1041 20.15 0.048 20.06 0.417
5. Number of vehicle switches per

hour of driving
#/h 2.8004 20.06 0.431 0.13 0.094

6. Percentage of night shift driving % 20.0185 20.08 0.277 20.11 0.185
7. Mean speed km/h 0.0329 20.05 0.475 0.10 0.196
8. Number of harsh brakes per hour of driving #/h 0.4100 0.27 \0.001 0.21 0.004

Number of fines Constant na 0.9959 na na 0 na
3. Number of days with data days 0.0038 0.26 \0.001 0.21 0.005
4. Engine capacity L 20.1247 20.24 0.001 20.07 0.406
5. Number of vehicle switches per hour of driving #/h 21.0371 20.14 0.066 20.04 0.595
6. Percentage of night shift driving % 0.0048 20.04 0.552 0.02 0.769
7. Mean speed km/h 20.0014 20.09 0.227 0.09 0.962
8. Number of harsh brakes per hour of driving #/h 0.8427 0.42 \0.001 0.38 \0.001

Fuel consumption
per kilometer
of driving

Constant na 0.181409 na na 0 na
3. Number of days with data days 0.000005 20.03 0.711 20.02 0.716
4. Engine capacity L 0.018792 0.71 \0.001 0.67 \0.001
5. Number of vehicle switches per hour of driving #/h 0.068599 0.45 \0.001 0.17 \0.001
6. Percentage of night shift driving % 0.000128 20.03 0.734 0.04 0.442
7. Mean speed km/h 20.002058 20.22 0.006 20.38 \0.001
10. Duration of excessive engine torque

per hour of driving
s/h 0.000138 0.42 \0.001 0.18 \0.001

Note: B = nonstandardized regression coefficient; r0 = zero-order correlation coefficient between measure and criterion variable (corresponding to Table

2); p0 = p-value for testing the hypothesis of a correlation of 0; b = standardized regression coefficient; p = p-value for testing the hypothesis of a

regression coefficient of 0; na = not applicable.

Figure 2. (a) Mean number of harsh braking events per hour of driving versus engine capacity (n = 70), and (b) fuel consumption per
kilometer of driving (n = 62). Each marker represents a truck (fuel consumption was not recorded in eight trucks).
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compared with a hypothetical situation in which the data
would follow a nontailed distribution. To investigate the
robustness of our findings, we repeated all analyses after
applying a rank transformation (31). This transforma-
tion ordered all 180 values (or 158 values in the case of
fuel consumption), corresponding to the individual driv-
ers, from 1 (lowest value) to 180 (highest value), taking
the average rank in the case of ties. This procedure, in
the context of correlation coefficients, is equivalent to
the use of the Spearman rank-order correlation coeffi-
cient (31).

Table 4 displays the same regression analyses as in
Table 3, but after having performed a rank transforma-
tion on all predictor- and criterion variables. It can be
seen that the statistically significant zero-order correla-
tions for the behavioral variables (mean speed, harsh
braking) were still statistically significant after performing
the rank transformation, although they were somewhat
weaker (compare Table 4 with Table 3). As for the regres-
sion coefficients (br), it is noticeable that harsh braking
was still significantly predictive of fines, and that mean
speed and excessive engine torque were also significantly
predictive of fuel consumption. However, the number of
harsh braking events was no longer statistically signifi-
cantly predictive of the total number of damage incidents,
with a regression coefficient of 0.10 compared with 0.21
without rank transformation (Table 3).

Discussion

Damage Incidents and Fines

This study investigated the associations between driver
behavior measures and the extent of damage incidents,
fines, and fuel consumption at a Dutch transportation
company over a 2-year period. A key finding was that
the frequency of harsh braking events per hour of driving
served as a predictor for damage incidents and fines. This
relationship was initially identified through zero-order
correlations and persisted even after accounting for fac-
tors such as the number of driving days, engine capacity,
vehicle switches, the proportion of night shift driving,
and average speed. That driver behavior remained a pre-
dictor of damage incidents and fines in the regression
analysis, beyond just the zero-order correlations, indi-
cates that drivers themselves, rather than solely the road
environment or truck, served as an explanatory factor.

It must, however, be noted that a small number of
drivers with an excessive number of fines and damage
incidents, and corresponding frequent harsh braking, are
likely to have made a substantial contribution to the
observed correlation coefficients. When we compressed
the scores by ranking all drivers, the correlations and
regression coefficients became weaker, with the regres-
sion coefficient between harsh braking and damage inci-
dents not even being statistically significant anymore.

Table 4. Results of Three Linear Regression Analyses for Predicting (1) Total Number of Damage Incidents (n = 180, Overall Predictive
r = 0.55), (2) Number of Fines (n = 180, Overall Predictive r = 0.45), and (3) Fuel Consumption per Kilometer of Driving (n = 158, Overall
Predictive r = 0.73), after Applying a Rank Transformation of the Individual Predictor Variables and Criterion Variable

No. Measure r0,r p0,r br pr

Total number of
damage incidents

3. Number of days with data 0.50 \0.001 0.55 \0.001
4. Engine capacity 20.09 0.208 20.07 0.333
5. Number of vehicle switches per hour of driving 20.04 0.571 0.19 0.009
6. Percentage of night shift driving 20.05 0.492 20.11 0.173
7. Mean speed 20.01 0.894 0.10 0.179
8. Number of harsh brakes per hour of driving 0.22 0.003 0.10 0.180

Number of fines 3. Number of days with data 0.35 \0.001 0.32 \0.001
4. Engine capacity 20.14 0.054 20.07 0.366
5. Number of vehicle switches per hour of driving 20.08 0.288 0.07 0.343
6. Percentage of night shift driving 20.10 0.197 20.07 0.434
7. Mean speed 20.04 0.630 0.10 0.221
8. Number of harsh brakes per hour of driving 0.32 \0.001 0.25 0.002

Fuel consumption per
kilometer of driving

3. Number of days with data 20.02 0.776 0.03 0.664
4. Engine capacity 0.52 \0.001 0.41 \0.001
5. Number of vehicle switches per hour of driving 0.50 \0.001 0.35 \0.001
6. Percentage of night shift driving 0.09 0.242 0.00 0.975
7. Mean speed 20.25 0.002 20.25 \0.001
10. Duration of excessive engine torque per hour of driving 0.38 \0.001 0.20 0.001

Note: r0,r = zero-order correlation coefficient between measure and criterion variable (corresponding to Table S1 in the Supplemental Material);

p0,r = p-value for testing the hypothesis of a correlation of 0; br = standardized regression coefficient; pr = p-value for testing the hypothesis of a

regression coefficient of 0. The subscript r denotes that the relevant variables were rank-transformed.
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The rank transformation that we performed probably
yielded statistically more robust results, but it has the
drawback that the effects of the highly deviant drivers
received less weight in the analysis.

The finding that severe braking events, or harsh longi-
tudinal or lateral accelerations in general, can predict
damage incidents is in line with findings from other stud-
ies (e.g., for bus drivers [32], for truck drivers [16], for
passenger car drivers [12]). On a psychobehavioral level,
harsh braking may contribute to accidents through vari-
ous mechanisms. One possibility is that sudden braking
indicates a causative relationship with an accident. For
example, a driver might need to apply the brakes force-
fully when confronted with a stationary object or road
user ahead. Harsh braking could additionally signify
inadequate hazard perception skills, as proficient drivers
can detect hazards earlier and consequently apply the
brakes more gently (33, 34). Furthermore, harsh braking
might result from distracted driving, occurring when the
driver refocuses their attention on the road (35, 36).

At the same time, our analysis demonstrated that the
rate of harsh braking events was influenced by the type
of work or truck assigned to the driver. For example, we
discovered that a larger engine capacity correlated with
fewer harsh brakes. Although heavier trucks can achieve
a steady-state deceleration in an emergency stop nearly
as high as that of lighter trucks or passenger cars, it takes
longer to build up this deceleration (37). Moreover, hea-
vier trucks possess greater inertia, and are probably dri-
ven more cautiously to prevent damage to the payload
and to avoid jackknifing or a trailer swing. Another pos-
sible explanation for the association between engine
capacity and harsh braking is that the drivers themselves
are the cause, with less experienced or poorly skilled
drivers being more likely to be assigned to smaller trucks,
as also reflected in the different driving licenses that exist
(e.g., C versus CE in Europe). Along the same lines, it
has been proposed that one of the reasons long-
combination vehicles are safer is that they are operated
by better-trained drivers (38, 39). In summary, our
results suggest that truck damage incidents are caused by
both the driver and the environment in which the driver
operates. These findings are in line with Reason’s model
of organizational accidents, which posits that adverse
events (damage incidents) are the fault of the workers
themselves as well as the ‘‘error and violation producing’’
conditions in which they must work (40).

Damage incurred in which the driver was not at fault
(Measure 16) demonstrated an almost negligible correla-
tion with harsh braking, consistent with Af Wåhlberg’s
criterion for at-fault accidents: ‘‘Non-culpable accidents
are not possible to predict with any variable when expo-
sure has been controlled for’’ (41; Chapter 4). We addi-
tionally computed a correlation coefficient between the

number of at-fault damage incidents (Measure 16) and
the number of not-at-fault damage incidents (Measure
17), with the number of driving days (Measure 3)
accounted for. The partial correlation was 0.04, indicat-
ing that at-fault and not-at-fault damage incidents were
uncorrelated once exposure was adjusted for. This near-
zero correlation can also be interpreted as a form of dis-
criminant validity of the harsh braking measure, that is,
harsh braking does not correlate with outcomes it should
not be associated with. However, it is important to note
that the mean (0.18) and standard deviation (0.50) of the
number of at-fault damage incidents per driver were
small, which indicates that correlations were attenuated
(42; for a computer simulation, see De Winter et al. [43]).

One puzzling finding from our study is that the major-
ity of truck damage incidents resulted from collisions
during reversing, maneuvering, or swinging out, typically
causing minor damage to bumpers, lights, or mirrors. A
mere 1% of damage incidents involved rear-end colli-
sions, where harsh braking might be expected as a causal
antecedent, whereas numerous damage incidents were
entirely unrelated to driving. This pattern of collisions
warrants an inquiry into the causal relationship between
harsh braking and damage incidents. It is conceivable
that a common cause exists, potentially rooted in drivers’
personality traits, age, or experience, or in traffic condi-
tions (e.g., harsh braking is more likely for drivers who
frequently navigate hazardous environments such as cit-
ies). The personality psychology literature suggests that
accident involvement correlates with low conscientious-
ness (44). This aligns with anecdotal evidence gathered
from our conversations with managers at an insurance
and transportation company, who indicated that
accident-free drivers can be identified based on various
nondriving behaviors and attitudes. Examples of such
behaviors and attitudes include inspecting the truck for
technical defects, ensuring safety before reversing, main-
taining a clean cabin, and demonstrating a strong work
ethic. These comments correspond with a study among
Colombian truck drivers, which discovered that self-
reported positive behaviors not directly related to driving
(e.g., ‘‘I use my safety gear [hard hat, boots, and gloves]
according to the safety requirements’’) exhibited a nega-
tive association with harsh braking events (45).

Fuel Consumption

With respect to fuel consumption, our findings indicate
that high engine torque (i.e., fully depressing the throttle)
serves as a predictive factor, suggesting an influence of
driving style. However, this behavior may also be deter-
mined by the truck’s interaction with the road environ-
ment. To illustrate, the correlation matrix revealed that
trucks with larger engine capacities were more frequently
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driven at full throttle. This can be attributed to such
trucks typically possessing greater mass and payload,
which may—despite their increased engine power—
necessitate full-throttle depression under certain condi-
tions. To illustrate, focus group and interview research
involving truck drivers demonstrated that during
highway-merging tasks, acceleration is a critical subtask,
as the driver must attain sufficient speed to merge safely
(46, 47). Consequently, depending on the situation, high
engine torques can be considered a requisite rather than
aberrant driver behavior. Several other studies have
reached conclusions similar to ours (48, 49). For exam-
ple, Walnum and Simonsen examined the fuel consump-
tion of heavy-duty trucks in Norway using FMS data
(49). They determined that factors such as engine torque
exceedance, running idle, driving in high gear, horse-
power, truck type, and trip characteristics significantly
influenced fuel consumption. Furthermore, they argued
that road conditions (e.g., mountainous or not) and vehi-
cle properties exert a more substantial impact than
driver-behavior variables. The present study builds on
previous research findings by demonstrating that these
results are replicable in a fleet of trucks in the
Netherlands. We have additionally shown that fuel con-
sumption can be accurately predicted using a small set of
variables.

Limitations

The present study offers insights into the factors influen-
cing the expenses (fines, damage incidents, fuel consump-
tion) associated with truck driving. However, as
frequently observed in on-road driving studies, the
results are subject to certain limitations. One such limita-
tion is the data collection period, which spanned from
2020 to 2022, coinciding with the enforcement of
COVID-19-related lockdowns. These restrictions have
been documented to cause an increase in speeding, pre-
sumably a result of the decrease in traffic density (50,
51). In addition to COVID-19 having an impact on the
level of traffic on the roads, thereby influencing speed
and possibly hard braking, it also had an effect on the
truck companies themselves (52–54). The pandemic
caused a disruption in supply gains, forcing companies
to modify their business models in some cases, and in
others to transport different types of cargo. There was
also variability in volume, with some companies experi-
encing an increase and others a decrease in their clientele.
Truckers also had to contend with possible closures of
rest areas or limited access to restaurants, which may
have had an indirect effect on their shifts (54, 55). These
factors may limit the generalizability of the current find-
ings. We anticipate that COVID-19 could have had some

influence on the absolute values, but we expect that the
relative relationships, that is, the correlation coefficients
obtained, are robust to effects of COVID-19.

Another limitation is that drivers were able to access
summary scores and personalized text-based feedback
through a mobile app. Moreover, the transportation
company maintained records of driver accidents and
employed a company coach (a certified driving instruc-
tor) to improve the safety-related behaviors of its
employees. Moreover, traffic fines, such as those for
speeding, were deducted from employees’ salaries. These
complex feedback mechanisms are likely to have influ-
enced driving behavior. In fact, it is conceivable that sim-
ply being aware of being monitored can lead to improved
behavior and adherence to rules (56), a phenomenon that
extends beyond the realm of driving (e.g., Kohli et al.,
[57], which examined hand hygiene compliance in hospi-
tal settings).

A technical limitation of this study is the relatively
low frequency of driving event data sampling, which
occurred approximately once per hour. To compute dif-
ference scores of accumulated events, at least two sample
points per session were required, rendering short sessions
with only one sample point unsuitable for the calculation
of driver behavior scores. For future research, it is rec-
ommended to obtain data at a higher measurement fre-
quency. Furthermore, we recognize that our analysis,
based on FMS data, captured merely a small aspect of
driving. Information on looking behavior, lateral maneu-
vers, advanced driver-assistance system warning events
or activations, GPS data, and local speed limits, as well
as measurements of the truck’s momentary mass and
payload, were not available.

Further investigation may be required to ascertain
the ideal thresholds for predicting accidents. In our
study, the threshold for harsh braking was set at a rel-
atively low value of 1.5m/s2. Increasing this threshold
would result in a reduction of braking events, placing
greater emphasis on deceleration events closely associ-
ated with actual accidents. For instance, Cai et al.
discovered that the number of forward-collision miti-
gation system activations was a more robust predictor
of accidents than the number of harsh braking events,
potentially owing to the former being a more likely
precursor to actual accidents (16). Similarly, Perez
et al. recommended a high deceleration threshold of
7.5 m/s2 for identifying accidents (which were labeled
by trained coding staff) within a naturalistic car-
driving dataset (58). In a study evaluating various
deceleration thresholds among bus drivers in Iran
(32), it was found that for deceleration thresholds of
2, 3, 4, 5, and 6m/s2, the mean number of threshold
exceedance events was 0.909, 0.172, 0.041, 0.011, and
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0.002 per kilometer driven, respectively. The corre-
sponding correlation coefficients with the number of
crashes involving these bus drivers appeared to
decrease with increasing thresholds: 0.208, 0.244,
0.209, 0.163, and 0.081, respectively. Furthermore,
Khorram et al. demonstrated that the correlation with
the mean absolute variation of speed (32) (referred to
as ‘‘celeration’’; see also Af Wåhlberg [59]) was stron-
ger when the deceleration threshold was lower. In
summary, the literature suggests that a lower thresh-
old implies that the event count becomes more equiva-
lent to the dynamics of the driver’s driving style.
Exceedances of high thresholds will occur infre-
quently, and thereby exhibit relatively little statistical
power, and when they do occur, they may be a precur-
sor to an accident or near-accident, rather than a defi-
nitive indicator of the general driving style of the
driver. In our study, the threshold was 1.5m/s2, which
is relatively low, and thus an indicator of driving style
rather than emergency stops. Despite our low thresh-
old, the number of exceedances was quite low—on
average, once per hour—which can possibly be attrib-
uted to trucks frequently traveling on the highway
where hard braking is rare.

A statistical limitation of this study is the high kurto-
sis and skewness exhibited by the data on damage inci-
dents, fines, and certain driver behavior measures (see
Table 1). This implies that the correlation and regression
coefficients obtained are primarily attributable to a small
number of drivers with extreme scores. One possible
explanation for the outliers in the number of fines could
be the presence of an undetected speed camera on a sec-
tion a driver traversed for several consecutive days.
Although the sample size was adequate for obtaining sta-
tistically significant effects, replicating this study with a
larger number of drivers is recommended.

Another limitation of our research is the lack of data
related to the characteristics of the drivers, including, but
not limited to, age and years of driving experience. The lit-
erature demonstrates that in the context of passenger vehi-
cles, young and inexperienced drivers display a greater
propensity for engaging in risky behavior on the road, and
they are disproportionately involved in accidents (43, 60).
In the case of truck drivers, the manifestation of risky
behavior may be less pronounced, owing to their antici-
pated adherence to professional norms. Nonetheless, exist-
ing studies still reveal that young drivers of heavy goods
vehicles are overrepresented in accidents (61). As indicated
above, it is plausible that age, inexperience, or both, are
underlying causes of harsh braking and accidents. Future
research should document the personal characteristics of
truck drivers to gain a broader understanding of the fac-
tors influencing the costs of truck driving.

Conclusions

The current study offers insights into the factors related
to the expenses incurred in truck transportation. Our
investigation, using a combination of datasets, revealed a
connection between harsh braking and fines as well as
damage incidents. Furthermore, the analysis suggested
that a behavioral aspect underlies this association, imply-
ing that harsh braking incidents may be indicative of the
driver’s unfavorable skills and attitudes (e.g., inadequate
foresight and planning). Simultaneously, we demon-
strated that harsh braking is not exclusively attributable
to the driver. Factors such as route type (as represented
by the variable ‘‘night shift driving’’), the average speed
of the session, and the truck itself were found to influence
driving scores, damage incidents, and fines. In relation to
fuel consumption, it appears that the truck, rather than
the driver, served as the primary determinant.

Recommendations and Outlook

This study investigated the predictors of damage inci-
dents and other costs associated with truck driving, with
the aim of identifying potential avenues for cost reduc-
tion. Based on the findings that harsh braking events
were predictive of damage incidents and fines, organiza-
tions could develop training and coaching programs to
help drivers improve their driving behavior. This could
include providing feedback on harsh braking events (62)
and offering training on hazard perception (63) and
defensive driving techniques (64). Training and coaching
could be delivered through simulators (65–67), in-person
sessions (68, 69), online modules (70), or mobile apps
(71). A review by Michelaraki et al. concluded that imple-
menting gamification and reward schemes appears to
effectively improve safety across various modes of trans-
portation, including truck driving (72). Previous research
has reported positive effects of the combination of moni-
toring and coaching on safe driving behavior (62, 68).
Advancements in driving safety may be closely linked to
improvements in eco-driving. This is because safety indi-
cators, such as reduced instances of harsh braking or
maintaining lower speeds, are considered effective strate-
gies for conserving fuel.

However, it must simultaneously be recognized that
harsh braking does not necessarily have to be the direct
cause of damage incidents or fines; it may be an epiphe-
nomenon of other underlying issues. Indeed, although
our work demonstrated predictive correlations between
driving behavior and costs, we indicated that these corre-
lations could emanate from multiple causes. These
encompass aspects of the truck and its payload, the con-
ditions under which a driver might operate, and the per-
sonality of the driver—concerns that go beyond mere

12 Transportation Research Record 00(0)



harsh braking. Such an understanding compels us to
adopt a broader approach to cost reduction. In develop-
ing this systemic approach, it is imperative to address the
challenges known to both the transportation organiza-
tion and the drivers. Transportation companies face vari-
ous hurdles, including labor market shortages and strong
competition. Concurrently, drivers often experience min-
imal face-to-face interaction with their employers, receiv-
ing their assignments through an app. The task of truck
driving can be strenuous, especially when it involves
navigating a large vehicle through congested urban
areas. Zohar et al. highlighted a ‘‘psychosocial disparity,
due to the fact that dispatchers in trucking companies
are often more educated than drivers, yet have no truck-
driving experience’’ (73; p. 19). They further found that
leadership and work ownership indicators correlated
with the frequency of harsh braking. These points signify
that, in addition to coaching and evaluating drivers, the
overarching safety culture is integral to truck driving
safety (see also Huang et al. [74] and Mooren et al. [75]).
An effective safety culture highlights safe driving prac-
tices and motivates drivers to take responsibility for their
actions on the road.

Our study also elucidated associations between truck
characteristics and driver behavior. This information
may prove useful for organizations to refine their fleet
management strategies. For example, when the payload
permits, it may be advantageous to allocate drivers to
trucks with smaller engine capacities. Such trucks have
been observed to exhibit fewer instances of harsh brak-
ing and demonstrate decreased fuel consumption. In
addition, organizations could benefit from a thorough
analysis of their existing routes and schedules.
Specifically, we recognize the potential of software that
allocates drivers to trucks according to the necessary
trip duration and payload. These recommendations
align with last-mile delivery logistics (for optimization
models, refer to Giuffrida et al. [76]), a topic that may
necessitate additional investigation in the context of
heavy goods vehicles.

Our analysis demonstrated that, although risky driver
behavior can be reliably identified, it is also influenced by
external factors such as the size of the truck and the time
of day. Consequently, it is advisable to gather more data
on these external variables. Using GPS technology could
improve the validity of driver behavior scores by allowing
them to be standardized in relation to other drivers on
the same stretch of road (for a similar approach among
car drivers, see Ma et al. [11]). The availability of GPS
data would also contribute to the identification of
accident-prone areas (for related methods, see Desai
et al. [77], Kamla et al. [78], and Stipancic et al. [79]). In
addition, incorporating other types of sensors, such as

radar and cameras, might improve risk assessments asso-
ciated with driver behavior.
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