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Preface
This thesis was completed as part of my Masters program in Cognitive Robotics at the Faculty of Mechanical Engineering
at Delft University of Technology. The research was conducted during a graduation internship at Alliander, a leading Dutch
grid operator, providing a valuable opportunity to apply advanced technologies to real-world challenges. The focus of this
project was on enhancing the control of a robotic arm, with the primary objective of evaluating the effectiveness and us-
ability of such a system in various task-oriented environments and with different user inputs.

The primary objective of this research was to design and evaluate a control system for robotic manipulation tasks enhanced
by a Large Language Model. The focus was on assessing the system’s ability to interpret its environment and execute actions
based on diverse user instructions. Before conducting the main experiments, considerable effort was dedicated to devel-
oping the Vision-Language-Action model, integrating GPT-4, and refining the robotic control and perception systems. The
findings of the experiments, as well as the methodologies used to achieve them and to develop the system, are documented
in the scientific paper that follows this preface.

I would like to express my gratitude to my supervisors, Remco van Leeuwen and Karlijn Overes from Alliander, and Yke
Bauke Eisma from TU Delft, for their continuous support and invaluable insights throughout this research. Their guidance
and constructive feedback were crucial in shaping the direction and outcomes of this work. I am also thankful to PhD student
Renchi Zhang, as well as my friends, whose encouragement and support were a constant source of motivation during my
time at TU Delft.

Leonoor Verbaan
Delft, August 2024
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LLM-Enhanced Robotic Affordance and Control
System in robotic manipulation
Assessing task execution and user interaction with generated personas

Leonoor Verbaan1, Yke Bauke Eisma2, and Remco van Leeuwen2

1TU Delft, Cognitive Robotics, Delft, 2628 CD, Netherlands
2Alliander, Research Center for Digital Technologies, Arnhem, 6812 AH, Netherlands

Abstract Large Language Models (LLMs) possess significant semantic knowledge about the world, making them valuable for high-
level control for robots through Vision-Language-Action (VLA) models. These models integrate an LLM to deduce semantic knowl-
edge from a robot’s vision and natural language inputs, facilitating real-world actions. Despite their potential, VLA models are a
relatively new research area, with applications mostly limited to simulations or household tasks and insufficient validation in broader
contexts. This study aims to develop a LLM-Enhanced Robotic Affordance and Control System (LERACS) for robotic manipu-
lation in applied cases such as the management and maintenance of electrical grid infrastructure. LERACS is designed to visually
ground manipulable objects and decompose tasks based on user instructions within a human-robot interaction chat interface, using
ChatGPT. A system validation and an AI user experiment were conducted to evaluate its effectiveness in interpreting and performing
actions based on pre-made and synthetically generated user instructions. These assessed LERACS’ performance across various
settings and instructions. Results indicate high success rates in environmental interpretation and task execution, with robust labeling
accuracy, especially in complex settings. Feedback from the AI user experiment highlighted LERACS’ adaptability, identified areas
for improvement, and demonstrated its practical utility across diverse settings and task complexities. The open sourced code and
implementation details can be found at LERACS GitHub.

Keywords
Vision-Language-Action Models, Manipulation Affordance, Applied Robotics, AI persona, Large-Language-Model Validation,
Control and Vision Prompting, LERACS, Human-Robot Interaction

Figure 1. LLMs are trained on a large amount of data which make them valuable for high-level control such as generating
task plans from instructions and images and interpreting the outcomes after executing these task plans. LERACS is a
VLA model that visually grounds manipulable objects, decomposes tasks based on user instructions, and understands the
implications of these tasks after executing.
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1 Introduction
Robotic manipulators are widely used in the automation industry for efficient object manipulation tasks [1]. These advance-
ments have led to innovative applications across various fields, including electrical grid operations, which face numerous
challenges due to the growing need for sustainable energy worldwide [2, 3]. The complexity and inherent risks of power
systems, such as electrocution, falls, and explosions, make their inspection and maintenance particularly challenging and
hazardous. To address these issues, Alliander, a Dutch grid operator, is actively exploring the use of robotic arms in electrical
grid tasks [4]. By reducing the need for direct human involvement in dangerous situations, this approach aims to mitigate
the risks faced by mechanics and improve both safety and operational efficiency [5]. Therefore, introducing robotic arms
could allow mechanics to interact with the electrical grid from a safe distance, enhancing their safety and efficiency [6, 7].

Given the dynamic and hazardous nature of power systems, robotic models must be accurate, robust, generalizable, and
adaptable. Recent advances in natural language processing have yielded Large Language Models (LLMs) with significantly
improved abilities to understand and generate language. LLMs such as ChatGPT [8], BERT [9], FLAN [10], LAMDA [11],
T5 [12], and PaLM [13] have resulted in systems capable of generating complex text, answering questions, and engaging in
dialogues on a wide range of topics. As a result of learning vast amounts of data, some LLMs can be fine-tuned with a small
set of sample data as instructions (i.e., few-shot learning [8]). LLMs excel in solving diverse tasks compared to prior mod-
els confined to specific tasks and datasets. An extended sort of LLM called Visually-conditioned language models (VLMs),
which are trained on large-scale data to generate natural language from input images and prompts, have been adopted for
applications such as visual question answering, semantic understanding, and object localization [14]. A newer application
of these VLMs in robotics, where they can be used to generate executable robot programs for task planning. These models
are the vision-language-action models (VLAs) which combine the visual input and natural language instructions for robot
task planning [15, 16, 17, 18, 19, 20, 21, 22, 23]. These models integrate advances in both computer vision and natural
language processing to create powerful, human-understandable multimodal systems. Incorporating action possibilities that
an object or environment offers, known as affordances, allows dynamic deduction of possible actions within a given scene.
Affordances refer to the potential actions that an object or environment inherently provides to an agent, such as a robot.
In the context of robotic manipulation, affordances describe how objects can be interacted with or manipulated, such as
an object affording grasping or pushing. Additionally, scene affordances refer to the overall action possibilities provided by
the arrangement and context of objects within an environment, such as a table being a surface with objects on them that
can be interacted with. Understanding these affordances enables robots to make informed decisions during task planning
and execution, thereby improving efficiency [24, 23]. This concept is visually illustrated in Figure 2 which shows how VLAs
leverage affordances in real-world scenarios.

Figure 2. Real-world experiments of VLA (RT-2) in the Language Table environment from Google Deepmind [23].

Despite these advancements, the integration of VLAs into applied robotics, remains underexplored [25]. Task planning
from natural language instructions is a newer research topic in robotics, however most of them lack the functionality of
human-in-the-loop [26, 19], and these studies often rely on specific datasets [15, 16, 17, 27], necessitating data recollection
and model retraining when transferring or extending these to other robotic applications or settings. Existing VLA research
often focuses on single robot or simulated setups, lacking generality and efficient fine-tuning for new applications [28].
Most studies have tested simple household tasks with task-specific models, not being able to validate their systems’ perfor-
mance or robustness across diverse user groups. Moreover, human language is highly diverse, with the same intention often
being expressed in various ways depending on the user and context. This linguistic diversity presents significant challenges
for language grounding in robotics, where a system must accurately interpret and execute commands despite variations in
phrasing or syntax. While recent advances in LLMs have improved natural language understanding, the application of these
models in robotics, particularly in dynamically interpreting varied user instructions, remains underexplored and poses a
critical challenge for the development of adaptable and robust robotic systems [29]. This raises the question of whether
these models can be used by users and robots to perform complex tasks in the real world.
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The growing interest of companies like Alliander in implementing robotic arms to improve employee safety in both static
and dynamic, hazardous environments underscores the need for improved human-robot interaction using advanced robot
models. Therefore this research aims to measure the effectiveness of the integration of LLMs, specifically GPT-4, as a VLA
method for robotic manipulation tasks. The primary objective is to assess how well certain actions are interpreted and
performed with an VLA as a task planning method for robot control, evaluating both the effectiveness of execution and
interpretation through diverse user input instructions. This study will highlight the capabilities and limitations of this task
planning method. Accordingly, this study seeks to address the following research question:

How can an applicable, adaptable, and generalizable vision and control system based on Large Language Models be developed
and tested for robotic arm manipulation tasks, considering the impact of setting and task instruction complexity on system per-
formance, and robustness against diverse user instructions?

To address these challenges, this research proposes, designs, and tests the LERACS: LLM-Enhanced Robotic Affordance and
Control System in robotics manipulation (Figure 1). The remainder of this work is structured as follows: First, in the Methods
2, the implementation of LERACS with a robotic arm is introduced. Then the system validation (implemented in a robotic
arm) and AI user experiments are presented. Subsequently, the results of these experiments are displayed in Results 3
and discussed in Discussion 4. Finally, the concluding remarks addressing the research question and future research are
presented in the Conclusion 5.
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2 Methods
2.1 Implementing LERACS in a Robotic System
LERACS is a system designed to facilitate vision-based task planning and control for robotic manipulation using OpenAI’s
ChatGPT API [30] in a few-shot setting. The system integrates three primary components: a Vision Component for marker-
based localization and index labeling, a LLM Component for vision interpretation and task generation [31, 32, 33], and
a Robot Execution Component for executing tasks and updating the environment. These components work together to
generate and execute multi-step task plans, making LERACS a tool for manipulation affordance in robotic systems. Figure 3
provides an overview of the LERACS workflow, illustrating the interactions between the Vision Component, LLM Component,
Robot Execution Component, and the System Interface. The flow diagram outlines the sequential processing of tasks, from
initial perception and task sequence generation to execution and environment updating. The following sections will explain
the workflow using the example instruction: "Can you sort only the blocks according to their color?"

Figure 3. LERACS-overview: This system flow diagram illustrates the whole system including the input and interface, the
robot’s perception and control back-end with its three primary components, and examples of the output. In (a.) the robot
communicates to the user via the interface, initializes the robot arm and starts interpreting the scene with ChatGPT. In the
back-end (b.) the interpreted scene is generated in text and the user provides task instructions. From this image and textual
input the tasks are decomposed based on the instructions, a prediction of the scene is made after execution of these tasks
(LLM Component (b.2)), and the manipulable objects in the scene are identified and labeled (Vision Component (b.1)).
The task sequence is then executed with the available motion primitives via service calls (Robot Execution Component
(b.3)). Examples of the task sequence prepared for execution, along with the resulting changes to the scene after execution,
are shown in (c.). The robot asks the user for feedback after every generated sample.

2.1.1 LERACS System Components
Vision Component: Marker-Based Localization, Index Labeling, and affordance grounding. The Vision Component
displayed in Figure 3b.1 is responsible for processing visual data to identify and label objects within the environment. It
utilizes ArUco markers [34] to detect objects, translating their positions into real-world coordinates and annotating the
marker index on the image stream of the camera. The marker IDs and their positions are then used for the subsequent
stages, as it contains data (marker ID: x, y, z) required for task generation and execution. The labeled information from
the Vision Component functions as image input for the LLM Component, where it is used to interpret the environment as a
textual representation.

Additionally the Vision Component extracts the objects with their marker IDs from textual representation as labels to a pre-
trained detection and segmentation model (GroundedSAM), which functions as perceptual grounding of the manipulable
objects in the scene [35]. The segmentation masks, bounding boxes, and confidence scores are extracted and visualized
alongside the labels in an image snapshot, providing the user with feedback on what the robot has perceived. This process
also serves as an automatic labeling feature, contributing to the creation of datasets that help generalize the system to new
settings.
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LLM Component: Environment Interpretation, Task Generation and Environment Update. The LLM Component,
which uses the ChatGPT-4o model, displayed in Figure 3b.2 interprets the image snapshot from the camera video stream
provided by the Vision Component into a python dictionary that can be saved as a JSON (environment: assets, asset
states, object, and object states). An example of this process is illustrated in Figure 4.

Figure 4. Visualization of LERACS interpreting the environment. The system takes a camera snapshot as input and generates
a textual representation of the environment as output.

Additionally, the LLM Component takes textual user instructions and this previously interpreted scene and generates not
only the sequence of robot actions (task sequence), but also explanations of each actions step (step instructions) and sup-
plementary information on the updated environment after executing the actions (environment before and environment
after) again in a python dictionary that can be saved as a JSON. An example of this process is illustrated in Figure 5. By
using a few-shot setting with ChatGPT, the LLM Component mitigates the impact of token limits while ensuring that the
generated tasks are executable by the robot. These additional pieces of information help the user debug whether ChatGPT
correctly processes the input information, providing a mechanism to verify and adjust the generated tasks as needed. Then,
the sequence of robot actions are passed on to the Robot Execution Component, which carries out the instructions.

Figure 5. Visualization of LERACS decomposing the tasks and predicting the environment after executing the tasks. The
system takes the generated environment with the snapshot and user instructions as input and generates a sequence for the
robot to execute.

User feedback plays a crucial role in ensuring safe and robust operation, as ChatGPT does not always generate complete
action sequences. To address this, the user can take advantage of ChatGPT’s ability to adjust its output based on natural-
language feedback. This feedback can be provided for both the image snapshot interpretation and the generated robot
action sequence, as well as the updated environment. As shown in Figure 6a, when a user requested to add or remove a task
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from the output sequence, ChatGPT successfully modified the output according to the semantic content of the feedback,
demonstrating its capability to make necessary adjustments.

In this process, ChatGPT handles a series of six distinct prompts: (1) role of ChatGPT, (2) definition of robot actions,
(3) representation of the environments, (4) the format of the output produced by ChatGPT, (5) examples of input
and output, and (6) specific instructions or feedback from the user. Specifics about the prompting methods for task
decomposition and control can be found in Appendix 6 at section 6.1.3, and 6.1.1. Moreover, these 6 prompts (5 set prompts
along with user instructions/feedback) are inputted as a six-turn conversation, a technique known as incremental prompt-
ing. This approach helps the model maintain context more effectively, resulting in more robust performance compared to
bundling all prompts into a single input [31]. The prompts are structured as a conversation as shown in Figure 6b.

Figure 6. (a.) Two examples of the feedback function in LERACS and how it can alter the task sequence. Feedback can
also be given on the updated environment. (b.) The prompt order and structure of the conversation for task planning in
LERACS with the ChatGPT API.

Robot Execution Component: Initialization and Task Execution The Robot Execution Component displayed in Figure
3b.3 is tasked with carrying out the task sequence generated by the LLM Component. This component consists of workspace
constraints, robot initialization and updating functions, and motion primitives, allowing for immediate function calling
[36]. The motion primitives in this study are presented in Figure 7. If no feedback is provided or the user accepts the
generated output from the LLM Component, the robot action sequence is executed by the Robot Execution Component.
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Figure 7. These are the basic motion primitives for LERACS and their in and output variables.

System Interface as an Add-On The System Interface acts as an additional layer, allowing users to interact with the LER-
ACS back-end components. It integrates the Vision, LLM, and Robot Execution Components, facilitating efficient interaction
between the user and the robot. Figure 8 provides a visualization of the user interface, illustrating the interactions between
the robot and user in the chat area including instructions and feedback, the visual feedback of the robot to the user, and
the other widgets (Figure 8a). It consists of two main areas: the chat area for textual communication and the robot vision
area for visual feedback. Through this interface, users can initiate tasks, provide feedback, and monitor the robot’s status
in real-time (Figure 8b). The interface includes additional functionalities through various buttons. These buttons allow
users to start the Franka robot system(making a snapshot and initializing the back end), reinitialize the robot control node,
refresh the user interface, run the detection to display manipulable objects (Figure 8c), and change the camera index. The
user interface, developed using Tkinter [37], serves as the connection to the back-end, integrating all components. A full
conversation example via the chat interface can be found in Appendix 7.1.

Figure 8. LERACS with the interface. (a.) displays the general interface that the user interacts with consisting of the visual
feedback from the camera, the chat area and the widgets. (b.) is a snippet of a potential chat for the task instruction "Build
two towers from the blocks". And (c.) illustrates the results from the run detection widget that shows the manipulable
objects in the scene including their bounding boxes, labels and segmentation masks.
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2.1.2 Apparatus
LERACS is implemented and tested on a Franka Emika Research 3 manipulator [38] with a ZED 2 stereo camera [39] and
an HP ZBook Power G7 Mobile Workstation running Ubuntu Linux 20.04 with real-time kernel 5.9, featuring an Intel Core
i7-10750H processor, 32 GB DDR4 memory, and a 1 TB NVMe SSD [40]. The fundamental software component to control
the Franka Emika robot arm is the Robotic Operating Software (ROS), version Noetic [41]. Accompanied by the MoveIt
package, libfranka [42] and franka_ros [43].

2.2 Experimental Evaluation
The components of LERACS have been validated and tested through two experiments, focusing on setting complexity (dy-
namic prompt 6: image input) and task instruction complexity (dynamic prompt 6: task instructions). In addition to these
experiments, which include system validation and AI persona instruction experiment, a case application demo was also
implemented. The following sections will define these metrics and variables used in these experiments and explain the
testing methods applied.

2.2.1 Complexity Definition and Experimental setup
Complexity Definition. The influence of two factors, i.e., the complexity of the scene and of the task instructions, on the
performance of LERACS is investigated. The complexity of the setting is characterized by different objects, forms, object
relations, and context within the scene. The performance of the system is impacted by the number and type of objects
present. Previous studies have shown that as the number of objects in a scene increases, system accuracy decreases across
all approaches [44]. Therefore to test this, the settings were varied by colors, shapes, and landmarks.

The type of task complexity is considered based on the following four challenges: whether the task has been seen or not
seen in the example prompts as displayed in Appendix 6.1.3 Prompt Example (active-prompting (AP) [45]), the sequence of
actions required (chain-of-thought (CoT)) [46] and chain-of-event prompting (CoE) [47]), the variety in elements present
(multi-modal prompting [48]), and the spatial understanding required (multi-modal and instructed prompting [48]). These
aspects are displayed in Table 1. The evaluation of task complexity mainly test these prompting techniques, which include
the five preset prompts along with dynamic user instructions and camera input prompts, to assess system robustness and
limitations. For seen and unseen tasks the generalizability and adaptability of the system is tested because reliance on train-
ing data can introduce biases and limitations in task execution, especially for unseen tasks [31] [49]. Then for sequence
of actions the performance of the system itself is tested because the primary bottleneck for most LLM systems, including
ChatGPT, lies in handling the range and capabilities of underlying skills, particularly in decomposing and executing complex
sequences of actions (e.g. the action of sorting consists of a large chain of actions) [31] [17] [49]. Testing the variety of
object elements assesses the difficulty type by involving the logical connection of subgoals and the need for implicit knowl-
edge. For instance, the presence of multiple colors and shapes in the environment enhances task difficulty by necessitating
more sophisticated environmental interpretation and decision-making processes (e.g. 2 of the same blocks but they have
a different color which is needed as element to tell them apart) [44]. Spatial understanding significantly increases task
difficulty because it requires the system to not only recognize objects and their properties but also understand their spatial
relationships and dynamics within the environment. This involves mapping spatial relations specified in natural language
commands to subsymbolic object goal locations in the world (e.g. The block on the right of the Tabasco bottle needs to be
pushed to the Ketchup bottle) [50] [51] [17].

Independent Variables. Consequently, the independent variables in this experiment are the complexity level of the settings
(simple and complex, Figure 9) and the complexity types of the task instructions (type, Table 1) as detailed in the complexity
definition. The complexity of the setting, is categorized into two different categories:

• Simple. This setting that the robot arm with LERACS needs to operate in represents the easiest to solve according to
the literature [44]. The simple setting includes 2 different colors and 2 landmarks.

• Complex. This setting that the robot arm with LERACS needs to operate in represents more complex to solve according
to the literature [44]. The complex setting includes 4 different colors, 2 different shapes, and 2 landmarks.

The complexity type of the task instructions in this experiment are categorized into 5 types as summarized and displayed
in Figure 1:

• Type (a.) [Instruction: Give me the [object]]. According to the custom complexity definition this type is assigned
to test single task generation connected to basic reasoning of object shapes from the instruction. Type (a.) for the
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instruction description consists of an example of the instruction in the prompts Appendix 6.2 and a variety in shape of
objects, with few actions in a sequence, and no spatial understanding elements.

• Type (b.) [Instruction: Sort the [object] in the [landmark]]. According to the custom complexity definition this
type is assigned to test task generation consisting of some tasks connected to mild reasoning of object colors from the
instruction. Type (b.) for the instruction description consists of an example of the instruction in the prompts Appendix
6.2 and a variety in colors of objects, with some actions in a sequence, and no spatial understanding elements.

• Type (c.) [Instruction: Place the [object] on top of the [object]]. According to the custom complexity definition
this type is assigned to test task generation consisting of some tasks from an unseen prompt. Therefore, for this type
the system needs to use prior knowledge. Type (c.) for the instruction description consists of a variety in shapes of
objects, with no example of the instruction in the prompts, some actions in a sequence, and no spatial understanding
elements.

• Type (d.) [Instruction: Push the [object] to the position of the [object]]. According to the custom complexity
definition this type is assigned to combine shape and color with spatial reasoning from the instruction. Type (d.) for
the instruction description consists of a variety in shapes and color of objects, spatial understanding elements, with
no example of the instruction in the prompts, and some actions in a sequence.

• Type (e.) [Instruction: Sort the [object] in the [landmark] by color]. According to the custom complexity definition
this type is assigned to test task generation of longer action sequences deducted from spatial and abstract reasoning.
Type (e.) for the instruction description consists of a variety in shapes and color of objects, many actions in a sequence,
and spatial understanding elements, with no example of the instruction in the prompts.

In addition to defining the types of instruction complexity, there is also a focus on the specificity of task instructions. Task
specificity is divided into two main categories: general instructions and scene-specific instructions. This indicates that
for example type (a.) has a general and scene-specific version of the instruction, to connect the setting and instruction
complexity with this element. General instructions provide minimal details and perform higher-level planning which can be
used in both simple and complex settings (baseline). Scene-specific instructions, on the other hand, offer detailed guidance
tailored to the specific scenario and are therefore different in both simple and complex settings. 5 general instructions (e.g.
Give me one of the blocks) and 5 scene-specific (e.g. give me the red block) are chosen per setting.

Table 1. Complexity types for the task instructions consisting of the elements discussed in the complexity definition: seen
in example prompts (yes/no), sequence of actions (few/some/many), variety in object elements (shape/color/shape and
color), spatial understanding (yes/no).

Type Seen in
Example
Prompts

Sequence
of Actions

Variety in
Object Elements

Spatial
Under-
standing

Description

(a.) Yes Few Shape No A single task to identify a shape with basic reasoning.

(b.) Yes Some Color No Some actions to identify elements of color with mild reasoning.

(c.) No Some Shape No Unseen tasks testing generalization from prior knowledge.

(d.) No Some Shape and Color Yes Combining shape and color with spatial reasoning.

(e.) No Many Shape and Color Yes Spatial and abstract reasoning with longer action sequences.

Page 12 of 56



DELFT UNIVERSITY OF TECHNOLOGY THESIS ARTICLE (PRE-SUBMISSION)

Experimental Setup There are a total of 20 scenarios that need to be performed in the following experiments. These
scenarios are displayed in Table 2, and 3): 10 scenarios with general instructions in both settings, and 10 scenarios with
scene-specific instructions in both settings (scenario 1 to 5 in lightblue/white are general and 6 to 10 in darkerblue/light-
grey are specific in Table 2 and Table 3) [31] [17]. The scenarios consist of a textual instruction and a goal instruction which
are explained later at the experimental procedures for the experiments. The complexity of the task instruction (task type
from Table 1) is also assigned per scenario.

Table 2. Scenarios for the simple setting. Textual Instruc-
tions relate to the system validation experiment, Goal In-
structions to the AI persona instruction experiment, and
Task Types connect to each scenario.

Scenario Textual
Instruction

Goal Instruction Task
Type

Scenario 1 Give me one of
the blocks.

The robot needs
to hand you one of
the blocks.

Type (a.)

Scenario 2 Sort one of the
blocks in one of
the cases.

The block needs
to be standing in
one of the cases.

Type (b.)

Scenario 3 Place one of the
blocks on top of
the other blocks.

The two blocks
need to be form-
ing a tower.

Type (c.)

Scenario 4 Push one of the
blocks to the
position of the
other block.

One of the blocks
needs to be stand-
ing in place of the
other block.

Type (d.)

Scenario 5 Sort the blocks
in the cases by
color.

Only the blocks
with the colors
of the cases need
to be standing in
the corresponding
cases

Type (e.)

Scenario 6 Give me the red
block.

The robot needs
to hand you the
red block.

Type (a.)

Scenario 7 Sort the blue
block in the red
case.

The blue block
needs to be stand-
ing in the case of
its own color.

Type (b.)

Scenario 8 Place the blue
block on top of
the red block.

The two blocks
need to be form-
ing a tower with
the blue block as
the top.

Type (c.)

Scenario 9 Push the red
block to the
position of the
blue block.

The red block
needs to be stand-
ing in place of the
blue block.

Type (d.)

Scenario 10 Sort the red
block in the red
case and the
blue block in the
blue case.

The red block
need to be stand-
ing in the red
case and the blue
block in the blue
case.
.

Type (e.)

Table 3. Scenarios for the complex setting. Textual In-
structions relate to the system validation experiment, Goal
Instructions to the AI persona instruction experiment, and
Task Types connect to each scenario.

Scenario Textual
instruction

Goal instruction Task
Type

Scenario 1 Give me one of
the blocks.

The robot needs to
hand you one of the
blocks.

Type (a.)

Scenario 2 Sort one of the
blocks in one of
the cases.

The block needs to be
standing in one of the
cases.

Type (b.)

Scenario 3 Place one of the
blocks on top of
the other blocks.

The two blocks need
to be forming a
tower.

Type (c.)

Scenario 4 Push one of the
blocks to the
position of the
other block.

One of the blocks
needs to be standing
in place of the other
block.

Type (d.)

Scenario 5 Sort the blocks
in the cases by
color.

Only the blocks with
the colors of the cases
need to be standing
in the corresponding
cases

Type (e.)

Scenario 6 Give me one of
the rectangles.

The robot needs to
hand you one of the
rectangles.

Type (a.)

Scenario 7 Sort the rectan-
gles in the blue
case.

The rectangles need
to be standing in the
blue case.

Type (b.)

Scenario 8 Place the red
block on top
of the yellow
rectangle.

The yellow rectangle
and red block need
to be forming a tower
with the red block as
the top.

Type (c.)

Scenario 9 Push the blue
block to the
position of the
yellow rectan-
gle.

The blue block needs
to be standing in
place of the yellow
rectangle.

Type (d.)

Scenario 10 Sort the blocks
in the cases by
color and the
rectangles in
each a separate
case.

The blocks with the
colors of the cases
need to be standing
in the correspond-
ing cases and each
rectangle has to be
standing in a sepa-
rate case.

Type (e.)
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The experiments are conducted in both simple and complex settings, where a robot arm faces a table arranged with various
configurations of objects. These settings and ground truths are displayed in Figure 9. The objects in these settings vary in
color, shapes, and landmarks. In the simple setting, there are 2 different colors and 2 landmarks. In contrast, the complex
setting includes 4 different colors, 2 different shapes, and 2 landmarks.

Figure 9. The configuration of (a.) simple and (b.) complex settings with their ground truth. Both the user view (front
view) as the robot view (top view) is given.

2.2.2 Experimental tasks and procedures
System validation Experiment: Dependent Variables. A system validation experiment is performed to measure the
performance of the LERACS. The key aspects being tested are the environmental understanding, task decomposition ability,
and task execution success rate in different scenarios within both simple and complex settings. To evaluate these aspects,
the following metrics were extracted: (1) Task/Sequence Execution Success Rate (TSE sr), (2) Task/Sequence Gener-
ation Success Rate (TSG sr), (3) Environment Interpretation Success Rate (EI sr), (4) Labeling Success (Precision,
Recall and F1 score), and (5) the Number of Tries required for environment interpretation and task/sequence completion.
These metrics assess a LLM’s capabilities in text classification, semantic understanding (including environment interpreta-
tion success, labeling success, and number of tries), and commonsense planning tasks (such as task/sequence generation
and execution, and number of tries) [52] [53] [54].

Planning and Control Performance Metrics

• TSE sr. This metric is defined based on the robotic arm’s ability to successfully execute all tasks generated by LERACS
(0 unsuccessful and 1 successful execution). The success rate is subsequently determined as the percentage of trials
in which the robotic arm successfully completed the tasks of a given scenario (ex).

TSE sr=
Successful trials (ex)

Total number of trials (ex)

• EI sr. This metric is defined based on LERACS’s ability to successfully generate the ontological description of the
environment from a video frame. The success rate is subsequently determined as the percentage of trials in which
the robotic arm successfully generated this ontological description per given scenario (env). Since there is a feedback
system, a successful trial is calculated with a penalty, meaning that the user has 4 chances to generate the right
ontological description (penalty -0.25, 0 unsuccessful and 1 successful).
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EI sr=
Successful trials (env)− 0.25× Feedback trials (env)

Total number of trials (env)

• TSG sr. This metric is defined based on LERACS’s ability to successfully generate a decomposed task sequence from
the user instructions. The success rate is subsequently determined as the percentage of trials in which the robotic
arm successfully decomposes the tasks from the user instructions per given scenario (task). Due to the feedback
mechanism, the success of a trial incorporates a penalty system. Users have up to four attempts to produce the correct
task sequence (penalty -0.25, 0 unsuccessful and 1 successful).

TSG sr=
Successful trials (task)− 0.25× Feedback trials (task)

Total number of trials (task)

• Number of Tries. This metric is related to the amount of feedback trials for both environment interpretation and
task/sequence generation. The total amount of tries possible is eight.

Number of tries= Feedback trials (task) + Feedback trials (env)

Vision Performance Metrics

• Precision. This metric measures the accuracy of the LERACS’s in correctly identifying and labeling manipulable
objects in the environment and to minimize false positives. Precision is defined as the ratio of correctly identified
objects to the total number of objects identified by the system.

Precision=
True Positives

True Positives + False Positives

• Recall. This metric evaluates LERACS’s ability to identify all relevant manipulable objects in the environment and to
minimize the chance of missing false negatives. Recall is defined as the ratio of correctly identified objects to the total
number of actual objects present.

Recall=
True Positives

True Positives + False Negatives

• F1 Score. This metric provides a harmonic mean of precision and recall, offering a single measure of LERACS’s per-
formance in object recognition. The F1 score evaluates how well the system uses the generated labels to automatically
identify manipulable objects in the scene.

F1 Score= 2×
Precision× Recall

Precision + Recall

System Validation Experiment: Experimental Procedure. The system is tasked with performing certain textual in-
structions for all scenarios in both simple and complex settings (Table 2, 3 and Figure 9). The experiment follows the
aforementioned Experimental Setup. The experiment proceeds as follows: for each setting, 10 scenarios will be per-
formed with each 5 trials. The objects and landmarks are placed in several configurations over the trials (Appendix 7, at
7.2). After each scenario, the relevant metrics are extracted.
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AI Persona Instruction Experiment: Dependent variables. An AI persona validation experiment is conducted as a sim-
ulated user study to predict human responses to the system. The primary aspects tested are the robustness to different
types of user instructions and the interpretability of the system’s output with the same independent variables as the system
validation experiment. Previous research has shown that LLMs can generate diverse and contextually relevant personas
based on various prompts, indicating their potential to adapt to different user instructions effectively which can be useful
for developing this system that can be deployed in real-world situations [55] [56] [57] [58]. To evaluate these aspects,
the following metrics are extracted: (1) number of tries for environment and task/sequence success, (2) conversion
rate of task generation, (3) conversion rate of environment generation, and (4) user understanding measured by
the satisfaction and usefulness scale (van der Laan acceptance scale [59]). These metrics assess a LLM’s capabilities
in commonsense planning, logical reasoning and semantic understanding tasks (conversion rate of environment and task
generation, and number of tries for environment and task/sequence success), and social knowledge understanding (user
understanding) using an alternative version of the human evaluation method [52].

AI User Factor Metrics

• Environment Generation Conversion Rate. This metric measures the percentage of trials in which users successfully
generate an ontological description of the environment using the LERACS. It evaluates the efficiency with which users
convert their inputs into usable environmental data.

• Task Generation Conversion Rate. This metric assesses the percentage of trials in which LERACS successfully gener-
ates a decomposed task sequence from the user instructions. It indicates the efficiency with which users can translate
their task instructions into actionable sequences.

• Usefulness. This metric evaluates users’ perceptions of LERACS’s usefulness before and after interacting with it.
It is measured using the Van der Laan Acceptance scale [59] in Table 5. The questions use a 5-point Likert scale,
where -2 indicates least [attribute] and +2 indicates most [attribute] (reverse for No 3, No 6, and No 8). Users rate
the system both before and after interaction to capture how helpful they find LERACS for robotic affordance and
manipulation. The usefulness score is calculated by summing the usefulness ratings (No 1, No 3, No 5, No 7, and No
9) and normalizing the result.

Usefulness=
No 1 + No 3 + No 5 + No 7 + No 9

5

• Satisfaction. This metric evaluates users’ satisfaction with LERACS before and after interacting with it. It is measured
using the Van der Laan Acceptance scale [59] in Table 5. The questions use a 5-point Likert scale, where -2 indicates
least [attribute] and +2 indicates most [attribute] (reverse for No 3, No 6, and No 8). Users rate the system both
before and after interaction to capture their satisfaction with LERACS for robotic affordance and manipulation. The
satisfaction score is calculated by summing the satisfaction ratings (No 2, No 4, No 6, and No 8) and normalizing the
result.

Satisfaction=
No 2 + No 4 + No 6 + No 8

4

• Amount of Errors Made. This metric tracks the number of errors users make while interacting with LERACS. It helps
identify areas where users struggle and provides insights into potential shortcomings of the system.

AI Persona Instruction Experiment: Experimental Procedure. Instead of typical human users, this method uses AI
users. These metrics are extracted from the system’s performance and the participants’ recorded responses. A total of 25
personas are generated using the ChatGPT-4o model [58]. To test the system’s adaptability and generalizability, a diverse
pool of personas is created to simulate a broad spectrum of real-world interactions with the system. This pool includes
personas such as a saboteur (malicious inputs), a cognitively limited person (e.g., a child for accessibility and ease of use
for non-experts), a technician expert, a technician newcomer (to test the use of the system with varying levels of domain
specific knowledge) [60] [61] [62], and a dummy averagely generated personas (for typical conditions) [63] [58]. These
categories are varied to assemble a total of 5 personas which are displayed in Figure 10. Each persona then completes a
short version of the Big Five Inventory (BFI-10) [64]. The personas with their personalities (BFI-10) are generated with the
prompts in Appendix 6 at section 6.2 [55]. Per persona the BFI-10 test was filled in 10 times with questions in randomized
order. The mean of these answers was taken as the main answer to the BFI-10 test for each persona. Two assumptions are
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made for this study: (1.) ChatGPT generates reasonable BFI-10 answers based on the given persona, and (2.) ChatGPT can
generate reasonable answers based on both the persona and the BFI-10 score. Three sets of 5 personas were created, each
containing five personas per category. The results from these sets were analyzed, and the most variable set (by averaging
the standard deviations or variances across all BFI-10 traits and comparing variability across sets) of personas was selected
for the main experiment to identify the set of personas that offer the most diverse range of responses.

Each persona has to go through 10 scenarios for the simple setting and 10 scenarios for the complex setting, similar to
the experiment in the system validation experiment, however instead of the textual instructions the persona get a goal
instruction so that they generate their own instructions for the system (Table 2 and Table 3). The 5 personas then have
to use LERACS (Appendix 6.2.2, example given for the goal instruction: the robot needs to hand you one of the blocks)
just as normal human users would. Before and after interacting with the system, personas complete a questionnaire based
on the Van der Laan acceptance scale [59]. This scale measures system acceptance along two dimensions: Usefulness and
Affective Satisfaction. Initially, the system is described to the personas, who then fill out the scale as a pre-measurement
to assess their initial perceptions. After experiencing the system, they complete the scale again to assess changes in their
acceptance (Appendix 8.1) [59, 65].

Figure 10. The 5 categories of generated persona. The generated persona are defined by: name, type, age, gender,
occupation and a small personality description. Next to these variables their personalities are defined by the BFI-10 test
results.

2.2.3 Statistical analysis
For all results, statistical tests were conducted to determine the significance of the observed differences. Analyses were
conducted by averaging the results of the 100 trials across the different settings and types of complexity. Appendix 8.4
provides detailed analyses of all control and vision performance metrics. The effects of complexity types in both the setting
and task were examined using a two-way ANOVA for each control method since the independent variables are categorical.
This statistical test was employed to determine if significant differences existed and to understand the interaction effects.
The results are reported with the test statistic F and p-value. For significant ANOVA results, a Tukey post-hoc test identified
specific group differences, reporting the corresponding p-values. In cases where only two groups were compared, a paired
t-test was used, with results detailed by the test statistic t, degrees of freedom, and p-value. A p-value less than 0.05 was
considered significant, adhering to standard literature practices. In all bar graphs, error bars represent the 95% confidence
intervals, with non-overlapping intervals indicating significant differences in the compared data.

2.3 Case Application Demo
To test the system in tasks in Alliander, the case application demo of switching fuses on high voltage racks is chosen. This
demo does not involve performance testing but serves solely as an application demonstration. When these voltage racks are
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under high voltage the interaction with these racks is dangerous for the technicians, and switching these fuses is tedious
work. The task of switching fuse cases consists of the following steps:

• Identifying all components of the voltage racks - fuse holders, fuse rails, bus bars and fuses.

• Identifying object and asset states of the components - fuse holder: open() or closed(), fuse rail: on_some-
thing(surface), bus bars: on_something(fuse rails).

• Adding motion primitives needed for switching fuses - Most motion primitives in Figure 7 can be reused, however
another motion primitive opendrawer() should be added.

All details about the the added motion primitives and the setup can be found in Appendix 9 at Figure 19 and 21.

3 Results
3.1 System Validation Results
General LERACS System Output. The performance of the LERACS, including output results, is illustrated in Figure 11.
Specifically, the system’s response to two different instructions is visualized with the system control output in blue and
system vision output in purple. For the instructions "give me one of the blocks" (Figure 11a) and "Place the red block on
top of the yellow rectangle" (Figure 11b), the task decomposition into motion primitives is displayed. Additionally, the TSE
success, TSG success, and EI success over five trials are presented. In addition to the control output, the environment
interpretation output of LERACS is visualized, showcasing the labeled and segmented manipulable objects. The system’s
performance metrics, including precision, recall, and F1 score, are presented over five trials for the given instruction. These
metrics provide a general overview of the system’s functionality.

(a.) (b.)

Figure 11. Example output of two instructions over 5 trials where the task execution, task decomposition in natural language
and the measured control metrics (blue) are shown together with the labeling, segmenting and the measured vision metrics
(purple). (a.) Displays the output for the instruction "give me one of the blocks". and (b.) the output for the instruction
"Place the red block on top of the yellow rectangle".
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Average System Performance Metrics Results. The TSE sr, EI sr, and TSG sr were analyzed in both simple and complex
settings and are displayed in Figure 12 (top). The TSE sr in the simple setting exhibited a slightly higher success rate (94%
±0.07) compared to the complex setting (92% ±0.08), although both environments maintained high success rates overall.
The success rate for interpreting the environment was higher in the simple setting (92% ±0.05) compared to the complex
setting (85.5% ±0.05). Additionally, the TSG sr was higher in the simple environment (96.5% ±0.02) than in the complex
environment (93% ±0.04). The confidence intervals for all the control performance metrics indicate that the observed
differences are within a narrow range, suggesting consistent performance across trials.

The precision, recall, and F1 score for labeling accuracy were compared between the simple and complex environments
and are displayed in Figure 12 (bottom). Precision was higher in the complex environment (71.15% ±0.03) compared to the
simple environment (58.10% ±0.04), indicating that the complex environment yielded more precise labeling. Recall was
slightly higher in the complex environment (96.23% ±0.03) compared to the simple environment (94.33% ±0.04), with
recall rates being nearly identical between the two environments. The F1 score was higher in the complex environment
(81.25% ±0.03) compared to the simple environment (70.46% ±0.03). The confidence intervals for all vision performance
metrics also fall within a narrow range, indicating that these scores are stable and consistent.

Figure 12. The top Figure displays the Success rate of TSE (left), EI (middle), and TSG (right) over all scenarios in both
settings (simple and complex). The bottom Figure displays the average Precision (left), Recall (middle) and F1 Score (right)
over all scenarios in both settings (simple and complex). Each bar in these figures represents the mean for the respective
metric. The error bars indicate the 95% confidence intervals. The values on the bars (white) represent the mean of the
metric, and the values above the error bars (grey) represent the confidence interval margins.
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Average Control Performance Metrics Results per Scenario. In Figure 13 the mean values of the control performance
metrics over the 5 test trials per scenario for each setting are displayed in the bar plots (Figure 13a and in a heatmap
representation(Figure 13b)). The performance metrics evaluated include the TSE success), EI success, and TSG success.
The data points over the 5 trials are scattered over the bar graph and the mean values over all scenarios are represented
with the dotted lines. The 95% confidence interval is presented with the grey error bars. The specific mean values over the
5 test trials per scenario from the bar graphs are represented more clearly in the heatmap.

(a) Execution and generation success: mean scores Bar graph

(b) Execution and generation success: mean scores Heatmap

Figure 13. (13a) Average TSE, EI, and TSG success per scenario in a Bar graph where the data points over the 5 trials are
represented as dots and the variability per scenario is represented with the grey error bars. (13b) The average values of
Precision, Recall, and F1 score per scenario are also presented in a Heatmap.

A trend in EI success can be seen especially in the complex setting that the mean decreases mainly from scenario 1 to 4
and 5 to 9 (both task type (a.) and (d.)) (Figure 13a middle). For this metric scenario 4 and 9 (task type (b.)) show a
mean that is the lowest with a wider confidence interval compared to other scenarios. In the statistical analysis (Appendix
8.4) EI success displays a statistically significant difference by both setting (F(1, 90) = 6.060, p = 0.016) and task type
(F(4, 90) = 15.329, p < 0.001) was found, with a significant interaction between setting and task type (F(4, 90) = 6.149,
p < 0.001). A Tukey post-hoc test revealed significant pairwise differences among various task types ((a.), (b.), (c.), (d.),
(e.)) and between ’simple’ and ’complex’ settings. For TSG success this trend is mainly visible for the simple setting (Figure
13a right). For this metric, scenario 4, 9 (task type (d.)), and 10 (task type (e.)) shows a drop in the mean with a broader
confidence interval. Moreover, in the statistical analysis there was a statistically significant difference by setting (F(1, 90)
= 5.444, p = 0.022) and task type (F(4, 90) = 28.444, p < 0.001), with a significant interaction effect (F(4, 90) = 16.000,
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p < 0.001). The Tukey post-hoc test indicated significant differences among various task types ((a.), (b.), (c.), (d.), (e.))
and between ’simple’ and ’complex’ settings. TSE success does not show such particular trend (Figure 13a left). However
it can be seen that in scenario 9 (task type (d.)) and 10 (task type (e.)) there is a noticeable drop in the complex setting,
with a mean significantly lower than other scenarios and a wider confidence interval. for the metric TSE no statistically
significant difference by setting (F(1, 90) = 0.148, p = 0.702) or by task type (F(4, 90) = 0.221, p = 0.926) was found, nor
was the interaction between these terms significant (F(4, 90) = 1.254, p = 0.294). This indicates that neither the setting
complexity nor the task type significantly impacts the success rate of TSE.

Average Vision Performance Metrics Results per Scenario. In Figure 14 the mean values of the vision performance
metrics over the 5 test trials per scenario for each setting are displayed in the bar plots (Figure 14a and in a heatmap
representation(Figure 14b)). The performance metrics evaluated include the precision, recall, and F1 score. Similarly to
the control performance results. the data points over the 5 trials are scattered over the bar graph and the mean values over
all scenarios are represented with the dotted lines. The 95% confidence interval is presented with the grey error bars. The
specific mean values over the 5 test trials per scenario from the bar graphs are represented more clearly in the heatmap.

(a) Execution and generation success: mean scores Bar graph

(b) Labeling success: mean scores Heatmap

Figure 14. (14a) Average Precision, Recall, and F1 Score per scenario in a Bar graph (top figure) where the data points
over the 5 trials are represented as dots and the variability per scenario is represented with the grey error bars. (14b) The
average values of Precision, Recall, and F1 score per scenario are also presented in a Heatmap (bottom figure).
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Precision scores varied across scenarios, with generally higher precision observed in the complex setting. For precision,
there was a significant effect of setting (F(1, 90) = 26.365, p < 0.001), but no significant effect of task type (F(4, 90) =
1.595, p = 0.183) and no significant interaction effect (F(4, 90) = 0.434, p = 0.784). The Tukey post-hoc test showed
a significant difference between ’simple’ and ’complex’ settings. Recall scores were generally high across most scenarios,
indicating consistent retrieval of relevant labels. For (recall), there were no significant effects of setting (F(1, 90) = 0.606,
p = 0.439) or task type (F(4, 90) = 0.503, p = 0.733), and no significant interaction effect (F(4, 90) = 0.151, p = 0.962).
The Tukey post-hoc test indicated no significant differences among various task types or between ’simple’ and ’complex’
settings. F1 scores, which balance precision and recall, were generally higher in the complex setting. For the F1 score,
there was a significant effect of setting (F(1, 90) = 24.637, p < 0.001), but no significant effect of task type (F(4, 90) =
1.168, p = 0.330) and no significant interaction effect (F(4, 90) = 0.461, p = 0.764). The Tukey post-hoc test revealed a
significant difference between ’simple’ and ’complex’ settings. Overall, the complex setting generally yields higher precision,
recall, and F1 scores across most scenarios

Average Control Performance Metrics Results on Task Instruction Type. This section details the performance of LERACS
across various task difficulty types in both simple and complex settings. The performance metrics evaluated include the
number of tries, TSG Success, and TSE Success). The data presented in Figure 15 is based on five trials per bar, comparing
scene-specific and general instructions over the specific (bar graphs) and all (dotted lines) task types. The data points over
the 5 trials are scattered over the bar graph and the 95% confidence interval is presented with the grey error bars and
values.

(a) Tries, task generation and execution: simple settings

(b) Tries, task generation and execution: complex setting

Figure 15. The three main metrics for task generation and execution are compared by the task types of each scenario in
both simple (15a) and complex (15b) setting.

The number of tries required for general instructions increases slightly with the more advanced task types, with later types
such as (c.) and (d.) generally requiring more tries compared to earlier types and the simple environment and the complex
setting generally requiring more tries compared to the simple environment. Similarly, for scene-specific instructions, the
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number of tries shows an increasing trend with later task types. The complex setting requires more tries, with a sharper
increase at later task types. More complex tasks (type (d.) and (e.)) require more tries, especially in the complex setting.
While success rates are generally high across both settings, they tend to be slightly lower for the most complex tasks. TSG
success rates for general instructions remain high at all task types in the simple setting, while the complex environment
also maintains high success rates with minor variations. For scene-specific instructions, success rates are lower at task types
(d.) and (e.) in the complex setting, with more variability and a noticeable drop in success rates. For general instructions,
TSE success rates remain relatively high across at earlier task types, with a drop at later task types, particularly in the
complex setting, and higher variability at task types (d.) and (e.). In contrast, TSE Success for scene-specific instructions
follows a similar trend, where execution success rates decrease slightly with increasing task types. However, the complex
environment exhibits a more noticeable drop in success rates, especially at later task types. Across all task types and metrics,
the performance between scene-specific and general instructions shows minimal variation, however the average displays
alternate performance in the metrics. Between simple (Figure 15a) and complex (Figure 15b) settings they both show sim-
ilar trends, with higher variability at more difficult task types.

3.2 AI Persona Results
Environment and Task Conversion Rate per Persona based on their Instructions and Feedback. The results of the AI
persona validation experiment are presented in terms of environment and task conversion rates, usefulness and satis-
faction measures, and error counts for each of the five personas. Figure 16 illustrates the conversion rates for environment
and task generation. The bars represent the conversion rates per persona, the dotted lines indicate the average of each
specific metric, and the grey error bars represent the 95% confidence interval of the data. Table 4 summarizes all metrics.
The conversion rates for environment generation indicate that persona (4), the technician newcomer (Sara Thompson),
achieved the highest conversion rate at 75.00% ±0.16, surpassing the overall environment success rate of 69.11%. Con-
versely, persona (1), the saboteur (Malik Johnson), exhibited the lowest conversion rate at 58.62% ±0.18. The confidence
intervals for environment conversion rates range from 0.18 to 0.20, indicating a relatively consistent level of uncertainty
across personas. For task generation, persona (3) technician expert (Ryan Patel), attained the highest conversion rate of
64.29% ±0.17, while the saboteur again had the lowest rate at 57.14% ±0.20. The overall task success rate was 61.14%.
The confidence intervals for task conversion rates range from 0.15 to 0.20, reflecting a similar level of variability as the
environment conversion rate.

Figure 16. Conversion Rate Result

Acceptance Scale and Error Count Results per Persona. Usefulness and satisfaction were measured pre- and post-
interaction using the Van der Laan acceptance scale, as detailed in Table 4. The saboteur (Malik Johnson), showed an
increase in both usefulness (from 0.6 to 0.8) and satisfaction (from -0.75 to 0.75) post-interaction. However, the child
(Chloe Graham) experienced a decrease in both metrics, with usefulness dropping from 2 to 1.8 and satisfaction from 2
to 1.8. Both technician personas (Ryan Patel and Sara Thompson) displayed mixed results; The technician expert persona
usefulness decreased slightly (from 1.8 to 1.6) while satisfaction improved (from 1.5 to 2). The technician newcomer
usefulness also decreased (from 1.6 to 1.4), but satisfaction increased (from 1.5 to 1.8). The average persona (Brandon
Lee) maintained a consistent usefulness score (1.6) but showed increased satisfaction (from 1.5 to 2). The error counts
indicate that the child persona made the most errors (8). In contrast, the technician expert persona, had the fewest errors
(3), corresponding to his high task conversion rate and improved satisfaction score.
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Table 4. The conversion rates for environment and tasks with the van der Laan scale results.

Persona Conversion
rate of en-
vironment
generation

Conversion
rate of task
generation

Usefulness
(pre)

Usefulness
(post)

Satisfac-
tion (pre)

Satisfac-
tion (post)

Error
count

(1) Malik Johnson 58.62% 57.14% 0.6 0.8 -0.75 0.75 7

(2) Chloe Graham 69.57% 59.26% 2 1.8 2 1.8 8

(3) Ryan Patel 70.37% 64.29% 1.8 1.6 1.5 2 3

(4) Sara Thompson 75.00% 62.07% 1.6 1.4 1.5 1.8 4

(5) Brandon Lee 72.00% 62.96% 1.6 1.6 1.5 2 5

Failure Cases of User Instructions and Feedback on Scenario Goals and Setting Complexity. The AI persona experi-
ment yielded several results from their task instructions in the simple (Appendix 8.2) and complex setting (Appendix 8.3).
This table displays the most common and successful AI persona answers to the goal instructions in the experiment. Further
common cases or instructions with atypical outcomes offer insights into the system’s variability and robustness. These cases
mainly involve instructions or feedback containing errors, which the system may or may not correct effectively. These cases
are displayed in section Cases of frequent unsuccessful instructions causing execution or generation failures 3.2.3 and Cases of
frequent successful instructions that achieve the system goal 3.2.2.

The saboteur persona (Malik Johnson) sabotaged the system by making spelling mistakes and calling non-existent ID num-
bers, though the system corrected these errors (case (2.2)). This persona also caused issues by instructing to crush the
objects after finishing the goal instructions, which led the system to add a crush() function (case (2.1)). Furthermore, the
saboteur often introduced extra steps before the goal-achieving steps (case (1.3)) and provided over-complicated instruction
prompts (case (1.2)). This complexity made the system prone to small mistakes in task decomposition and truncation errors
due to overly complex feedback. Additionally, saboteurs deliberately gave incorrect feedback to disrupt the environment
generation and provided contradictory instructions. The child persona (Chloe Graham) made numerous mistakes, as they
often did not know how to read the output and would agree to all the checking parts of the system. The instructions they
gave to the system where oftentimes not checked and this resulted in failure at cases where checking was necessary (case
(1.4)). Despite this, their responses were very positive as they enjoyed interacting with the system. The simplicity of their
instructions worked well with the system’s robustness. The technician expert (Ryan Patel) tended to identify minor, often
non-beneficial faults, mostly related to shape in the scene. They often provided instructions in bullet points or dictionary
formats, which were easier for LERACS to understand but led to quicker truncation errors. Moreover, the technician expert
had the tendency to make the instructions and feedback for the system long and detailed that were not necessarily beneficial
for achieving the goal which ocasionally resulted in failure cases (case (1.5) and case (2.4)) . The technician newcomer
(Sara Thompson) frequently misunderstood questions or did not fully read the tasks. Even when this persona agreed with
the system’s input, it would give feedback on the system’s performance, prompting the task decomposition or environment
generation to be rerun. Small mistakes were made with reading the task decomposition output which let occasionally to
failure cases (case (1.1), case (2.5) and case (2.2)). Overall, some users added extra instructions after establishing the goal,
either to test the system or for amusement (case (1.4) and case (2.3)).

3.2.1 Cases of frequent unsuccessful instructions causing execution or generation failures
(1.1) [(Malik Johnson (saboteur) and Brandon Lee (average person) - Scenario 4 Simple] : "Move the red cube (marker_id:“3”)
to the position of the blue cube (marker_id:“4”) and vice versa."

(1.2) [Malik Johnson (saboteur) - Scenario 8 Complex] : "First, find the blue cube, pick it up, and move it to a temporary
spot. Then, locate the yellow rectangle, pick it up, and move it out of the way. After that, move the blue cube to the exact spot
where the yellow rectangle was and place it there. This way, the blue cube will stand exactly in the place of the yellow rectangle,
not on top of it. Make sure to follow these steps to achieve the intended outcome. Now, let’s see if this system can handle these
adjustments properly."

(1.3) [Malik Johnson (saboteur) - Scenario 10 Complex] : "Sort the red box in the red case, then make a full rotation with
the arm and then sort the blue box in the blue case, then sort the rectangles in each a separate case."
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(1.4) [Chloe Graham (child), Sara Thompson (technician newcomer) - Scenario 4 Complex] : "Can you please move the
yellow block to where the green block is? And then, can you move the green block to where the yellow block was? Thanks!"

(1.5) [Ryan Patel (technician expert) and Brandon Lee (average person) - Scenario 3 Complex] : "To build the two towers,
you should begin by carefully selecting the Yellow Rectangle, which has the marker ID 5, and placing it as the base for the first
tower. Next, take the Red Cube, marked with ID 3, and position it precisely on top of the Yellow Rectangle. For constructing the
second tower, start with the Green Cube, identified by marker ID 0, using it as the base. Finally, place the Blue Cube, which has
the marker ID 4, on top of the Green Cube. Throughout this process, ensure both towers are stable and well-aligned to achieve
a balanced and sturdy structure."

(1.6) [Ryan Patel (technician expert) - Scenario 4 Complex] : "Push the red cube (marker_id: 3) forward (away from
the robot) three times to move it to the position of the green cube (marker_id: 0). Then, push the green cube (marker_id: 0)
backward (toward the robot) three times to move it to the original position of the red cube. Ensure all movements are precise to
avoid disturbing other blocks."

3.2.2 Cases of frequent successful instructions that achieve the system goal
(2.1) [Malik Johnson (saboteur) - Scenario 2 Simple] : "Sort the red cube in one of the cases and then crush both objects."

(2.2) [Malik Johnson (saboteur) - Scenario 4 Complex] : "Let’s put the system to the test. Move the red cube (marker_id:“16
”) to the position of the yellow rectangle (marker_id:“7 ”) and vice versa. Let’s see if it can handle this swap."

(2.3) [Chloe Graham (child) - Scenario 10 Complex] : "Can you make two towers of the rectangles and cubes in the cases?
Yay this is fun!"

(2.4) [ Ryan Patel (technician expert) - Scenario 8 Complex] : "To achieve the desired configuration, the robotic arm needs
to pick up the yellow rectangle (marker_id: "5") from its current position on the table and place it vertically on a clear space on
the table to form the base of the tower. Then, it should pick up the red cube (marker_id: "3") and carefully place it on top of the
yellow rectangle, ensuring it is balanced and stable. The goal is to have the yellow rectangle and the red cube forming a tower
with the red cube as the top."

(2.5) [Sara Thompson (technician newcomer) - Scenario 4 Simple] : "Please move the red cube (marker_id: 3) to a different
position, and then place the blue cube (marker_id: 4) in the position previously occupied by the red cube (marker_id:3)."

The persona displayed more failure or error cases in the complex setting, especially at giving feedback on the environment.
Moreover, in both simple and complex setting the persona display the most errors and failure cases at scenarios 4 and 8
representing task difficulty type (d.). Then scenario 10 in the complex setting showed the most errors followed by scenario
3 and 2 in both simple and complex settings. Scenario 1 was successfully performed by every persona with only minor
feedback required. In contrast, the instructions for scenarios 4 and 8 varied significantly among personas, as the goal in-
structions for these scenarios were open to multiple interpretations.

3.2.3 Case Application LERACS Demo
Case application LERACS System Output. The output of the LERACS on the case application and the associated motion
sequences can be found in Appendix 9 including all details of this case application.
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4 Discussion
This paper aimed to develop an applicable, adaptable, and generalizable vision and control system based on LLMs be de-
veloped for robotic arm manipulation tasks (LERACS), Figure 11 displays two example resulting use cases of the vision and
control parts of the system. The following sections provide the main findings, discussions and conclusions regarding the
results of these experiments.

4.1 System Validation Experiment
Impact of Setting and Task Complexity on Execution and Generation Success. The key findings from the results in
Figures 12, 13 and 15 highlight the impact of setting and task complexity on control performance metrics (Task/Sequence
Execution success - TSE success, Task/Sequence Generation success - TSG success, and Environmental Interpretation suc-
cess - EI success). Setting complexity primarily affects EI success, while both setting and task complexity influence TSG
success. In contrast, TSE success remains robust across different settings and task difficulties.

The results (Figure 12) show that simpler settings yield higher EI success rates (92%) compared to complex settings (85%),
indicating that setting complexity challenges the system’s ability to interpret surroundings accurately. Overall the success
rate remains high for both settings, as the environment was correctly generated within 4 feedback attempts. Common errors
in environment generation included confusing similarly shaped objects (mixing up cubes and cases) and color misinterpre-
tations under different lighting conditions (red becomes orange in an image with higher brightness levels), but almost never
important system information (asset states and objects/landmarks). Testing with more diverse elements (e.g. box shaped
objects that have a name or meaning such as boxes of cookies, cereal or even crayons), landmarks with different meaning
of intent (e.g. not only cases but also trash bins to throw something away in or shelves where objects can only be stacked),
quality of image data itself (e.g. natural lighting or partly occluded), and more semantic or contextual relations to the
scene (e.g. a keypad on the sensor means something is turned on, if it’s not then it is turned off), could further validate the
system’s applicability [66] [67] [68].

TSG success rates are higher in simpler environments (96%) than in complex ones (93%). This trend is consistent across
various task types, though success rates decline at higher task types ((d.) and (e.)) in complex settings, particularly when
spatial understanding is required (Figure 13). This suggests that the system struggles more with tasks involving spatial
relations (e.g. moving to the right or moving to the opposite side of a certain object). To enhance TSG success, incor-
porating more motion primitives generalizable to multiple tasks could be beneficial (e.g. Moving objects away or storing
them on a landmark) [69] [70]. TSE success remains consistent across different settings and task types, with a slightly
higher rate in simple settings (94%) compared to complex settings (92%). This indicates that while the system performs
reliably, environmental complexity poses a minor challenge in this experiment. Specifically, the non-significant main effects
and interaction imply that performance in executing task sequences remains consistent regardless of whether the setting
is simple or complex and irrespective of the task type ((a.) to (e.)). The consistency in TSE success suggests that uniform
performance can be expected across varied conditions, which is advantageous for planning and training. The number of
attempts (Figure 15) required to complete tasks increases with task difficulty, especially in complex settings. This trend
is more pronounced at higher task types ((d.) and (e.)), indicating that detailed, scene-specific instructions with a vari-
ety of object elements and spatial understanding in complex environments require more attempts for successful completion.

Overall, the results suggest better performance in simpler environments across the success metrics. While LERACS shows
robustness in task sequence execution, the significant differences in EI success and TSG success highlight areas needing
improvement. The larger drop in EI success with increased setting complexity indicates that LERACS’s semantic under-
standing is sensitive to small changes. This may be due to the limited proficiency of Large Language Models (LLMs) in
discerning semantic similarity and abstract reasoning [71], and they are prone to confusion or errors in complex contexts
[72]. Additionally, for the drop in TSG in more complex settings and task difficulty could be argued that commonsense
planning tasks in LERACS are sensitive to more abstract reasoning and to prompts, especially adversarial prompts [73].
Thus, optimizing both setting and task types is crucial to enhance LERACS’s performance in semantic understanding and
commonsense planning tasks, particularly in complex environments and with detailed instructions.

Impact of Setting and Task Complexity on Vision and Labeling. The key findings from the results in Figures 12, and
14, highlight the impact of setting and task complexity on the vision performance metrics, including precision, recall, and
F1 score. These metrics provide insight into the labeling accuracy of LERACS.

Setting complexity significantly affects vision performance metrics. Precision is higher in the complex setting ((71.15%
±0.03)) compared to the simple settings (58.10% ±0.04), suggesting better identification and labeling of manipulable ob-
jects in settings with more variability or context. This effect of setting on precision is significant, whereas task type and the
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interaction between setting and task type are not. Recall rates are slightly higher in complex settings ((96.23% ±0.03))
compared to the simple setting (94.33% ±0.04), showing that LERACS is almost in every case able to identify manipulable
objects in the setting. Statistical analysis shows no significant effects of setting or task type on recall, nor significant inter-
action effects. The F1 score is also higher in complex environments (81.25% ±0.03) than in simple ones (70.46% ±0.03),
with setting having a significant effect, while task type and their interaction do not. These findings suggest that LERACS
performs better in more complex settings due to its proficiency in extracting semantic contextual information (e.g., semantic
keypoints [74], part segmentations [75], geometrical properties [76], and object-surface relations [77]).

Overall, the complex setting generally yields higher precision, recall, and F1 scores across most scenarios, suggesting that
LERACS performs better in more complex settings. This increase in performance could be due to the deeper semantic con-
texts (understanding the deeper meaning and relationships within text, objects or scenes) available in complex settings, the
model’s design optimized for handling images with more semantic relationships, or inherent limitations in the simpler set-
ting, such as difficulty distinguishing between similar-looking objects [74, 75, 78]. Generally over both settings and all task
types the recall values stay relatively high (~0.90-1.0) which indicates the system almost in all cases finds the manipulable
objects in the scene. However, the precision remains relatively moderate (~0.50-0.80), with the system never achieving a
precision of 1 in the validation experiment. These results for recall and precision indicate that LERACS is generally capable
of identifying all manipulable objects; however, it does not consistently label these objects accurately. Consequently, the F1
score as the harmonic mean of precision and recall in the system validation experiment is between ~0.60-0.89, highlighting
precision as a notable weakness in the perceptual grounding capabilities of LERACS. It should be noted that the objects to
be identified were variable in colors but not so much in shapes such as the cases and cubes are both square from top view
(similarly as the common errors in environment interpretation rate).

4.2 AI Persona Instruction Experiment
Impact of Different User Intention and Instructions on LERACS. The results from the AI persona validation experiment
in Figure 16 and Table 4 provide valuable insights into LERACS’s interaction, adaptability, and performance across different
settings and task complexities, assessed through environment and task/sequence conversion rates, usefulness, satisfaction,
and error counts.

The conversion rates for both environment and task generation reveal significant variability among the personas. Notably,
the technician newcomer (Sara Thompson) achieved the highest environment conversion rate (75.00%), exceeding the
overall success rate of 69.11%. This suggests that the instructions and feedback from this persona were particularly effec-
tive in guiding the system to generate environments successfully. The technician newcomer’s notable behavior included
short, concise feedback, no over complicated instructions, short sentences, specific references to objects (e.g., ID, color),
and extra decomposed tasks in the instructions at more difficult goal instructions (Example instructions: Appendix 8.2 Sce-
nario 1 and Appendix 8.3 Scenario 4). This fits the description of the personality and the expertise level while still making
small mistakes in checking the task decomposition output due to inexperience. Conversely, Malik Johnson (saboteur) had
the lowest environment and task conversion rates (58.62% and 57.14%), highlighting the disruptive impact of the sabo-
teur’s instructions. Notable behaviour from the technician newcomer was generally in task instructions and environmental
interpretation: over complicated instructions with different words for the objects than generated before, long sentences,
spelling mistakes or misread IDs from the objects, extra actions apart from the goal instruction for LERACS to perform,
calling out errors when there are no errors (Example instrucions: Appendix 8.2 Scenario 3 and Appendix 8.3 Scenario 10).
This sometimes lead the system to have a truncation token limit error which lead to not being able to properly safe the
task sequence for execution or not being able to give feedback messages anymore. This behavior fit the description of the
personality and the expertise level of the saboteur. Due to the constant stream of feedback from the saboteur, the truncation
token limit error was one of the most common failure cases for this persona.

The child (Chloe Graham) had lower scores for both conversion rates due to frequent mistakes. These mistakes were caused
by a lack of comprehension and verification, resulting in unchecked instructions and subsequent failures in goal instruc-
tions that needed feedback. For task generation, the technician expert (Ryan Patel) led with a 64.29% conversion rate,
indicating proficiency in providing clear and actionable instructions. For task generation, the technician expert led with
a 64.29% conversion rate, indicating proficiency in providing clear and actionable instructions. The relatively consistent
confidence intervals across personas (0.15 to 0.20) suggest a uniform level of uncertainty, emphasizing the robustness of
the system in handling diverse instructions. Notable behaviour from the technician expert was similar as for the technician
newcomer which indicates their almost identical task conversion rates. However a noticable difference in the technician
expert behaviour is that this persona was efficient in finding mistakes and providing more accurate feedback. In general
the instruction of the technician expert persona tend to be long and sometimes with redundant details for the specific task
(e.g. avoid collisions, make sure it stands properly without falling over) leading to occasional truncation token limit errors
(Example instructions: Appendix 8.2 Scenario 7 and Appendix 8.3 Scenario 3). Therefore the similar environment gener-
ation and task conversion rates for the average persona (Brandon Lee), the technician newcomer (Sara Thompson) and
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technician expert (Ryan Patel) were associated to this limit of the system.

Overall, personas with higher domain-specific knowledge (technicians) perform better in conversion rates and satisfaction.
The system’s usefulness has decreased slightly for most AI users. This suggests that the system may need to be more intu-
itive, efficient, and user-friendly to cater to a more diverse pool of users, depending on the application. Despite the minor
decline in perceived usefulness, satisfaction generally increased. This indicates that the system has some positive aspects
that resonate well with AI users, possibly due to the user experience or specific features of the LERACS chat system used
to communicate with the robot. The user interface, which integrates components such as vision, language models, and
robot execution, likely played a role in shaping these outcomes. By offering real-time feedback, visual cues, and active chat
interaction, the interface likely enhanced the overall user experience. Further refinement could close usability gaps, making
the system more accessible to a broader range of users. This could involve reducing the number of steps required or incor-
porating voice commands to improve the system’s overall usefulness. Additionally, it is essential to note the limitations of
AI personas interacting with a physical system like LERACS, as they have only a limited set of personality traits to represent
human complexity [79]. Moreover, the model used to generate these personas may contain biases, leading to stereotypical
interactions with LERACS [80] [81].

5 Conclusion
This study examined the research question: How can an applicable, adaptable, and generalizable vision and control system
based on Large Language Models be developed for robotic arm manipulation tasks?
We presented LERACS, a system that leverages the semantic understanding, perceptual grounding, and task decomposition
abilities of Large Language Models to execute tasks with a robotic arm via a chat interface. Using designed motion primi-
tives, LERACS can generate an ontological representation of the scene based on image input, label and segment objects, and,
with user instructions, extend this representation with decomposed tasks to execute and predict scene changes after actions.
The system validation experiments demonstrated LERACS’ utility across various real-world scenarios. Despite differences in
settings and task complexities, the system showed high success rates in environmental interpretation and task generation,
highlighting its applicability. The AI user experiment further validated its practical use, with feedback indicating both posi-
tive aspects and current limitations. LERACS exhibited significant adaptability in handling different environmental settings
and task complexities. Performance metrics indicated that while the system faces challenges in more complex scenarios,
it generally adapts well to changes in object color and shape variability. The diverse instructions and feedback from AI
personas highlighted the system’s ability to adjust to varied user interaction styles and needs. LERACS performs robustly in
task execution, particularly excelling in labeling accuracy within complex environments. The system demonstrated higher
vision performance in these settings, effectively identifying and labeling objects even with increased variability. Additionally,
it showed high success in environmental interpretation and task generation, underscoring its capability to handle complex
scenarios.

While LERACS presents a viable method for task execution and interpretation based on task decomposition and visual la-
beling while communicating with the user, it has several limitations. The system is prone to errors in distinguishing similar
objects and interpreting contextual elements, indicating a need for enhanced semantic understanding and more sophisti-
cated motion primitives. There is also a notable drop in TSG success in higher complexity tasks, especially those requiring
spatial understanding, highlighting the necessity of refining the systems commonsense planning abilities. Despite demon-
strating higher vision performance in complex environments, consistent control performance remains a challenge, showing
an inverse relationship. The optimal conditions for these parameters depend largely on the specific application of LERACS,
necessitating new evaluation protocols for VLA Models. The open sourced code and implementation details can be found
at LERACS GitHub.

5.1 Outlook
Looking ahead this system could be extended to more applied cases for control where human-robot interaction is needed
(such as switching fuses in voltage racks in the grid operator industry (Appendix 9)). For system improvements based
on the results, the detection of objects could benefit from a grasping algorithm without the use of markers [82], adding
dynamic motion primitives with variable input possibilities [83], enhanced depth sensing [84] [85], and improving prompt
techniques [67]. A way to downsize the inverse relationship between labeling success and control performance success
could be by substituting the ChatGPT model with other VLA models (such as RT-2 [23]) and perform the system validation
experiment by comparing model success rates on the metrics in this study. Next to these system improvements, the way
LERACS is designed multiple extensions are possible which could be interesting for future development to get rid of the
current limitations such as; spatial question answering techniques (dataset and prompting method) [86] [87], adding
instead of only identifying manipulable objects in the scene the grasping or interaction affordance of the object (enhanced
task decomposition) [88], motion primitives made by variable impedance skill transfer (teaching by demonstration) [89],
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and reinforcement learning for task/sequence generation [17]. Moreover more AI user and human experiments should be
performed with this type of VLA models for human-robot interactions, to get a better understanding what the limitations of
these systems are and the differences in AI user and human experience/instructions. This study focused on a smaller sample
group, however future research should expand the sample sizes for both human and AI users and use more quantifiable
metrics. Furthermore, the complexity metric defined during this study should become more refined and validated. While
also taking a closer look into defining a complexity metric for different settings and applications of the system. Even though
this study did not find many big significant performance differences due to complexity variations, a more comprehensive
experiment with different types of settings and types of task types regarding to LLMs could be valuable to form a better
understanding of the limitations and maybe show that there does exist significant performance differences with multiple
varying complexity levels.
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6 Appendix A
6.1 System Prompts
The following prompt templates are inspired by the research of Wake et al. [31]. These prompts define the process by which
LERACS generates its output, as detailed in section 6.1.1, 6.1.2 and 6.1.3. During each instance of task planning with Chat-
GPT, prompts one to five are preloaded from prepared text files, while certain components of the prompts ([INSTRUCTION]
and [ENVIRONMENT]) are dynamically generated based on user instructions, feedback, and environmental data.

6.1.1 Initialization prompt
In these initial prompts, the role of ChatGPT in task planning is explained. To manage multiple prompts, we instruct
ChatGPT to wait for subsequent prompts until all have been provided.

System

You are an excellent interpreter of human instructions
for general tasks. Given an instruction and information
about the working environment, you break it down into a
sequence of robotic actions.

.

Prompt Role
[user]
You are an excellent interpreter of human instructions
for general tasks. Given an instruction and
information about the working environment,
you break it down into a sequence of robotic actions.
Please do not begin working until I say "Start working."
Instead, simply output the message "Waiting for next input."

Understood?

[assistant]
Understood. Waiting for next input.

.

6.1.2 Generate environment prompts
These prompts define the rules for representing working environments that the arm can function in. All physical entities are
classified into non-manipulable obstacles, referred to as assets, such as tables and other surfaces, and manipulable objects,
referred to as objects, such as blocks and cases. These two classes are defined to differentiate between the entities that may
be manipulated and those that cannot. As a hint for task planning, the spatial relationships between entities are described
as states and can describe object states, which are chosen from a "STATE LIST".

Input Environment
[user]
Information about environments and objects are given
from a camera input (as a snapshot). Chat-GPT needs
to describe the environment as list of strings. This
will be how it will be described for the generate
function. It needs to be in the following format:
"""

environment = {{
"assets": ["<asset1>","<asset2>"],
"asset_states": {{"<asset1>": "<state>",

"<asset2>": "<state>"}},
"objects": ["<object1>", "<object2>"],
"object_states": {{"<object1>": "<state>",

"<object2>": "<state>"}}
}}
"""
Asset states and object states are represented using
those state sets:
"""
"STATE LIST"
- on_something(<something>): Object is located on

<something>
- inside_something(<something>): Object is located

inside <something>
- inside_hand(): Object is being grasped by a robot

hand
- closed(): Object can be opened
- open(): Object can be closed or kept opened
"""
<something> should be one of the assets or objects in
the environment.
The texts above are part of the overall instruction.
Do not start working yet:
[assistant]
Understood. I will wait for further instructions before
starting to work.

.

Prompt Environment

[user]
For example, if there is a table and a floor, with
objects labeled with aruco markers on the table, the
aruco marker number needs to be recognized and
connected to the object. An example of the description
should be as follows:
"""
"environment":{{"assets":["<table>", "<floor>"],
"asset_states": {{"<table>": "on_something(<floor>)"}},
"objects": ["<red_cube(marker_id:"0")>",

"<red_case(marker_id:"2")>",
"<blue_case(marker_id:"4")>",
"<yellow_rectangle(marker_id:"5")>"],

"object_states": {{"<red_cube(marker_id:"1")>":"on_something(<
table>)",

"<blue_cube(marker_id:"3")>":"on_something(<table
>)",

"<yellow_rectangle(marker_id:"5")>":"on_something
(<table>)",

"<red_case(marker_id:"2")>":"on_something(<table
>)",

"<blue_case(marker_id:"4")>":"on_something(<table
>)"

}}
}}
"""

"""
There should be nothing else as an output except for
this output format.
The texts above are part of the overall instruction.
Do not start working yet:
[assistant]
Understood. I will wait for further instructions before
starting to work.
.
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6.1.3 Task decomposition prompts
In these prompts, a set of robot actions is defined in the "ROBOT ACTION LIST" tailored to the specific application and
implementation of the the motion primitives for a Franka Emika robot arm and specifics for the rules and ChatGPT’s output
format. The robot actions can be customizes accordingly for each different application. To ensure integration with the other
control and vision systems, it is instructed to generate a Python dictionary that can be saved as a JSON file. Moreover,
examples of the expected inputs and outputs were provided to minimize the need for the user to use the feedback in the
chat interface.

Prompt Function

[user]
Necessary and sufficient robot actions are defined as follows:
"""
"ROBOT ACTION LIST"

move_camera_state_low(): Move the robot camera to the low camera
state with adjustable acceleration and velocity.

move_to_marker(marker_id): Move the robot end-effector to the
ArUco marker specified by marker_id. The input of this
function is the designated marker ID from the object that the
end-effector is moving to (string: "4", "0", etc).

pick(marker_id): Pick an object with an ArUco marker specified by
marker_id. The input of this function is the designated
marker ID from the object to be picked (string: "4", "0", etc
).

place(marker_id): Place an object with an ArUco marker specified
by marker_id. The input of this function is the designated
marker ID from the object to be placed (string: "4", "0", etc
).

push(marker_id, direction): Push an object with an ArUco marker
specified by marker_id to a certain direction with 5
centimeter. The input of this function is the designated
marker ID from the pushed object (string) and the direction
in which the object is pushed (string: "forward", "backward",
"left", "right").

grasp(command): Open or close the gripper. The input of this
function is the command for the grasp client (string: "open",
"close").

"""
The texts above are part of the overall instruction. Do not start

working yet:
[assistant]
Understood. Waiting for next input.
.

Prompt Output Format
[user]
You divide the actions given in the text into detailed robot

actions and put them together as a python dictionary.
The dictionary has five keys.
"""

dictionary["task_cohesion"]: A dictionary containing information
about the robot’s actions that have been split up.

dictionary["environment_before"]: The state of the environment
before the manipulation.

dictionary["environment_after"]: The state of the environment
after the manipulation.

dictionary["instruction_summary"]: contains a brief summary of the
given sentence.

dictionary["question"]: If you cannot understand the given
sentence, you can ask the user to rephrase the sentence.
Leave this key empty if you can understand the given sentence
.

"""
Three keys exist in dictionary["task_cohesion"].
"""
dictionary["task_cohesion"]["task_sequence"]: Contains a list of

robot actions. Only the behaviors defined in the "ROBOT
ACTION LIST" will be used.

dictionary["task_cohesion"]["step_instructions"]: contains a list
of instructions corresponding to dictionary["task_cohesion
"]["task_sequence"].

dictionary["task_cohesion"]["object_name"]: The name of the
manipulated object. Only objects defined in the input
dictionary will be used for the object name.

"""
The texts above are part of the overall instruction. Do not start

working yet:
[assistant]
Understood. Waiting for next input.
.

Prompt Example

[user]
[user]
I will give you some examples of the input and the output you will

generate.

Example 1:
"""
- Input:
{"assets":["<table>", "<floor>"],
"asset_states": {"<table>": "on_something(<floor>)"},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(marker_id

:\"3\")>", "<red_case(marker_id:\"2\")>", "<blue_case(
marker_id:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "on_something(<
table>)",

"<blue_cube(marker_id:\"3\")>": "on_something(<
table>)",

"<red_case(marker_id:\"2\")>": "on_something(<
table>)",

"<blue_case(marker_id:\"4\")>": "on_something(<
table>)"

},
"instruction": "Put the cube in the case of the same color"}
- Output:
‘‘‘
{

"task_cohesion": {
"task_sequence": [

"all_update()",
"init_constraints()",
"move_to_marker(\"1\")",
"grasp(\"open\")",
"pick(\"0\")",
"move_to_marker(\"2\")",

"place(\"2\")",
"move_camera_state_low()"

],
"step_instructions": [

"update the marker and world positions.",
"initialize constraints.",
"move the end-effector to the object.",
"open the gripper.",
"pick the object by grasping with the end-effector.",
"move the end-effector to the object",
"place the object by releasing with the end-effector.",
"move the end-effector to the low camera position."

],
"object_name": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<red_case(marker_id:\"2\")>", "<
blue_case(marker_id:\"4\")>"]

},
"environment_before": {

"assets": ["<table>", "<floor>"],
"asset_states": {

"<table>": "on_something(<floor>)"
},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<red_case(marker_id:\"2\")>", "<
blue_case(marker_id:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "
on_something(<table>)",

"<blue_cube(marker_id:\"3\")>": "
on_something(<table>)",

"<red_case(marker_id:\"2\")>": "
on_something(<table>)",

"<blue_case(marker_id:\"4\")>": "
on_something(<table>)"

}
},
"environment_after": {
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"assets": ["<table>", "<floor>"],
"asset_states": {

"<table>": "on_something(<floor>)"
},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<red_case(marker_id:\"2\")>", "<
blue_case(marker_id:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "
on_something(<red_case(marker_id:\"2\")>)",

"<blue_cube(marker_id:\"3\")>": "
on_something(<table>)",

"<red_case(marker_id:\"2\")>": "
on_something(<table>)",

"<blue_case(marker_id:\"4\")>": "
on_something(<table>)"

}
},
"instruction_summary": "put the cube in the case of the same

color",
"question": ""

}
‘‘‘

"""
Example 2:
"""
- Input:
{"assets":["<table>", "<floor>"],
"asset_states": {"<table>": "on_something(<floor>)"},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(marker_id

:\"3\")>", "<red_case(marker_id:\"2\")>", "<blue_case(
marker_id:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "on_something(<
table>)",

"<blue_cube(marker_id:\"3\")>": "on_something(<
table>)",

"<red_case(marker_id:\"2\")>": "on_something(<
table>)",

"<blue_case(marker_id:\"4\")>": "on_something(<
table>)"

},
"instruction": "Push the red cube twice to the right"}
- Output:
‘‘‘
{

"task_cohesion": {
"task_sequence": [

"all_update()",
"init_constraints()",
"self.move_to_marker(\"1\")",
"grasp(\"open\")",
"push(\"1\", [\"right\", \"right\"])",
"move_camera_state_low()"

],
"step_instructions": [

"update the marker and world positions.",
"initialize constraints.",
"move the end-effector to the object.",
"open the gripper.",
"Push the object with the end-effector.",
"move the end-effector to the low camera position."

],
"object_name": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<red_case(marker_id:\"2\")>", "<
blue_case(marker_id:\"4\")>"]

},
"environment_before": {

"assets": ["<table>", "<floor>"],
"asset_states": {

"<table>": "on_something(<floor>)"
},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<red_case(marker_id:\"2\")>", "<
blue_case(marker_id:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "
on_something(<table>)",

"<blue_cube(marker_id:\"3\")>": "
on_something(<table>)",

"<red_case(marker_id:\"2\")>": "
on_something(<table>)",

"<blue_case(marker_id:\"4\")>": "
on_something(<table>)"

}
},
"environment_after": {

"assets": ["<table>", "<floor>"],
"asset_states": {

"<table>": "on_something(<floor>)"
},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<red_case(marker_id:\"2\")>", "<

blue_case(marker_id:\"4\")>"],
"object_states": {"<red_cube(marker_id:\"1\")>": "

inside_hand()",
"<blue_cube(marker_id:\"3\")>": "

on_something(<table>)",
"<red_case(marker_id:\"2\")>": "

on_something(<table>)",
"<blue_case(marker_id:\"4\")>": "

on_something(<table>)"
}

},
"instruction_summary": "push the cube twice to the right",
"question": ""

}

‘‘‘

"""
Example 3:
"""
- Input:
{"assets":["<table>", "<floor>"],
"asset_states": {"<table>": "on_something(<floor>)"},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(marker_id

:\"3\")>", "<yellow_rectangle(marker_id:\"5\")>", "<
green_rectangle(marker_id:\"6\")>", "<red_case(marker_id
:\"2\")>", "<blue_case(marker_id:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "on_something(<
table>)",

"<blue_cube(marker_id:\"3\")>": "on_something(<
table>)",

"<yellow_rectangle(marker_id:\"5\")>": "
on_something(<table>)",

"<green_rectangle(marker_id:\"6\")>": "
on_something(<table>)",

"<red_case(marker_id:\"2\")>": "on_something(<
table>)",

"<blue_case(marker_id:\"4\")>": "on_something(<
table>)"

},
"instruction": "Sort a rectangle in a case and a cube in the other

case"}
- Output:
‘‘‘
{

"task_cohesion": {
"task_sequence": [

"all_update()",
"init_constraints()",
"move_to_marker(\"5\")",
"grasp(\"open\")",
"pick(\"5\")",
"move_to_marker(\"2\")",
"place(\"2\")",
"move_to_marker(\"1\")",
"grasp(\"open\")",
"pick(\"1\")",
"move_to_marker(\"4\")",
"place(\"4\")",
"move_camera_state_low()"

],
"step_instructions": [

"update the marker and world positions.",
"initialize constraints.",
"move the end-effector to the object.",
"open the gripper.",
"pick the object by grasping with the end-effector.",
"move the end-effector to the object",
"place the object by releasing with the end-effector.",
"move the end-effector to the object.",
"open the gripper.",
"pick the object by grasping with the end-effector.",
"move the end-effector to the object",
"place the object by releasing with the end-effector.",
"move the end-effector to the low camera position."

],
"object_name": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<yellow_rectangle(marker_id
:\"5\")>", "<green_rectangle(marker_id:\"6\")>", "<
red_case(marker_id:\"2\")>", "<blue_case(marker_id
:\"4\")>"]

},
"environment_before": {

"assets": ["<table>", "<floor>"],
"asset_states": {

"<table>": "on_something(<floor>)"
},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<yellow_rectangle(marker_id
:\"5\")>", "<green_rectangle(marker_id:\"6\")>", "<
red_case(marker_id:\"2\")>", "<blue_case(marker_id
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:\"4\")>"],
"object_states": {"<red_cube(marker_id:\"1\")>": "

on_something(<table>)",
"<blue_cube(marker_id:\"3\")>": "

on_something(<table>)",
"<yellow_rectangle(marker_id:\"5\")>": "

on_something(<table>)",
"<green_rectangle(marker_id:\"6\")>": "

on_something(<table>)",
"<red_case(marker_id:\"2\")>": "

on_something(<table>)",
"<blue_case(marker_id:\"4\")>": "

on_something(<table>)"
}

},
"environment_after": {

"assets": ["<table>", "<floor>"],
"asset_states": {

"<table>": "on_something(<floor>)"
},
"objects": ["<red_cube(marker_id:\"1\")>", "<blue_cube(

marker_id:\"3\")>", "<yellow_rectangle(marker_id
:\"5\")>", "<green_rectangle(marker_id:\"6\")>", "<
red_case(marker_id:\"2\")>", "<blue_case(marker_id
:\"4\")>"],

"object_states": {"<red_cube(marker_id:\"1\")>": "
on_something(<blue_case(marker_id:\"4\")>)",

"<blue_cube(marker_id:\"3\")>": "
on_something(<table>)",

"<yellow_rectangle(marker_id:\"5\")>": "
on_something(<red_case(marker_id
:\"2\")>)",

"<green_rectangle(marker_id:\"6\")>": "
on_something(<table>)",

"<red_case(marker_id:\"2\")>": "
on_something(<table>)",

"<blue_case(marker_id:\"4\")>": "
on_something(<table>)"

}
},
"instruction_summary": "Sort a rectangle in a case and a cube

in the other case",
"question": ""

}
"""

From these examples, learn that some robotic actions have
dependencies with the actions before and after them.

-------------------------------------------------------
The texts above are part of the overall instruction. Do not start

working yet:

[assistant]
Understood. I will wait for further instructions before starting

to work.
.

Query
[user]
Start working. Resume from the environment below.

"""
{"environment":[ENVIRONMENT]}
"""
The instruction is as follows:
"""
{"instruction": [INSTRUCTION]}
"""

The dictionary that you return should be formatted as python
dictionary. Follow these rules:

1. The first two elements should be all_update() and
init_constraints() (in this order) to initialize the robot.

2. Make sure that each element of the ["step_instructions"]
explains corresponding element of the ["task_sequence"].
Refer to the "ROBOT ACTION LIST" to understand the elements
of ["task_sequence"].

3, The length of the ["step_instructions"] list must be the same
as the length of the ["task_sequence"] list.

4. Never left ’,’ at the end of the list.
5. Keep track of all items listed in the "objects" section of the

"environment_before" field. Please ensure that you fill out
both the "objects" and "object_states" sections for all
listed items.

6. Use the "STATE LIST" for the "object states" field.

"""
"STATE LIST"
- on_something(<something>): Object is located on <something>
- inside_hand(): Object is being grasped by a robot hand
"""

7. All keys of the dictionary should be double-quoted.
8. Insert ‘‘‘ at the beginning and the end of the dictionary to

separate it from the rest of your response.
9. Make sure that you output a consistent manipultation as a

single arm robot. For example, grasping an object should not
occur in successive steps.

Adhere to the output format I defined above. Follow the nine rules
. Think step by step.

.
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6.2 Experiment Prompts
These prompts define how the AI user experiment is performed and how the AI persona are generated as show in section
6.2.1. An example conversation of an AI user performing one scenario is shown in section 6.2.2.

6.2.1 Generate Personas

Persona
Please give me {num_personas} realistic and diverse personas with
realistic names and realistic personality descriptions.
Also add their age and gender. The persona should be described by

means
of three brief sentences separated by semicolons.
Report each persona on a single line, numbered 0001 to 0025.
Separate age, gender, profession/activity/job versus description

of who
they are by means of a dash.

These personas are going to test a robotic system using AI,
where the persona has to chat with the robot.
Make sure that from the {num_personas} personas that there are
5 saboteurs, 5 cognitively limited persons (for example a child),
5 technician experts, 5 technician newcomers and 5 normally
generated personas.
Say behind every name what they are from these 5 categories.
Only personas; nothing else.

.

Persona personality BFI-10

Imagine the following person (age, gender, description): {
description}

Rate this person / complete the questionnaire for this person, on
a scale

of 1 (disagree strongly) to 5 (agree strongly).
Report in the following format on a single line, e.g., 5 1 4 ...
Report only digits, nothing else.

gets nervous easily.
tends to find fault with others.
is outgoing, sociable.
is generally trusting.
tends to be lazy.
is relaxed, handles stress well.
has few artistic interests.
does a thorough job.
is reserved.
has an active imagination.
.
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6.2.2 Persona Experiment

SYSTEM
Hello ChatGPT, you are the following persona:

"0015": {
"name": "Michael Evans",
"type": "Normally Generated Persona",
"age": 36,
"gender": "Male",
"occupation": "Project Manager",
"description": "Focused on project timelines and deliverables;
values AI that can assist with project tracking;
practical and result-driven."

},

With BFI-10 test results:

"0015": [
{

"response": "2 4 2 3 2 3 2 5 1 4",
"questions_order": [

"is reserved.",
"is generally trusting.",
"is relaxed, handles stress well.",
"gets nervous easily.",
"has an active imagination.",
"tends to find fault with others.",
"is outgoing, sociable.",
"does a thorough job.",
"tends to be lazy.",
"has few artistic interests."

]
}

],

Stay in this role the whole time.
Say nothing if you understand, wait for the next input.

ChatGPT

Understood

SYSTEM

You are going to test a system on a robotic arm using a computer
and a

chat interface. You have to fill in the questions to check the
system

and write a textual description with the goal that the robot needs
to

hand you one of the blocks. I will show you the info that is given
to

you and at last the question you need to answer.

Before you begin your session with the system, we’d like you to
rate

your initial expectations using the Van der Laan Acceptance Scale.

Rate each statement from -2 to +2, where -2 is strongly disagree,
0 is neutral, and +2 is strongly agree. Each attribute has a

directly
opposite attribute to help guide your scoring.

No. Question. Attribute Scale. Opposite Attribute.
1. I think the system is useful. Useful -2 to +2 Useless
2. The system is pleasant to use. Pleasant -2 to +2 Unpleasant
3. I think the system is bad. Bad +2 to -2 Good
4. I think the system is nice. Nice -2 to +2 Annoying
5. I think the system is effective. Effective -2 to +2 Superfluous
6. I think the system is irritating. Irritating +2 to -2 Likeable
7. I think the system is assisting. Assisting -2 to +2 Worthless
8. I think the system is undesirable. Undesirable +2 to -2

Desirable
9. The system raises my alertness. Raising Alertness -2 to +2

Sleep-
inducing

Please complete the scale now, and then wait for the next input.

ChatGPT

Here are my initial ratings using the Van der Laan Acceptance
Scale

for the robotic arm and chat system:

Useful: +2
Pleasant: +1
Bad: -2
Nice: +1
Effective: +2
Irritating: -2
Assisting: +2
Undesirable: -2
Raising Alertness: +1

I am ready for the next instructions.

SYSTEM

You are now going fill in the questions to check the system and
write a

textual description with the goal that the robot needs to hand you
one

of the blocks. I will now show you the info that is given to you
and at

last the question you need to answer.

Say nothing if you understand, wait for the next input.

ChatGPT

Understood. Waiting for the next input.

SYSTEM

Received environment description:

"""
environment": {

"assets": ["<table>", "<floor>"],

"asset_states": {"<table>": "on_something(<floor>)"},

"objects": [
"<red_case(marker_id:\"2\")>",
"<blue_case(marker_id:\"1\")>",
"<yellow_rectangle(marker_id:\"5\")>",
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"<green_rectangle(marker_id:\"0\")>",
"<red_cube(marker_id:\"3\")>",
"<blue_cube(marker_id:\"4\")>"],

"object_states": {
"<red_case(marker_id:\"2\")>": "on_something(<table>)",
"<blue_case(marker_id:\"1\")>": "on_something(<table>)",
"<yellow_rectangle(marker_id:\"5\")>": "on_something(<table

>)",
"<green_rectangle(marker_id:\"0\")>": "on_something(<table

>)",
"<red_cube(marker_id:\"3\")>": "on_something(<table>)",
"<blue_cube(marker_id:\"4\")>": "on_something(<table>)"}}

"""

Is this generated environment correct with what you can see
in the image? Do you have feedback for the environment
(say yes if satisfied)?

ChatGPT

Yes

SYSTEM
Environment approved. Enter task instructions.

ChatGPT
Please hand me the red cube with marker ID "3".

SYSTEM
Received response: ‘‘‘python
{

"task_cohesion": {
"task_sequence": [

"all_update()",
"init_constraints()",
"move_to_marker(\"3\")",
"grasp(\"open\")",
"pick(\"3\")",
"move_camera_state_low()"],

"step_instructions": [
"update the marker and world positions.",
"initialize constraints.",
"move the end-effector to the object.",
"open the gripper.",
"pick the object by grasping with the end-effector.",
"move the end-effector to the low camera position."],

"object_name": ["<red_case(marker_id:\"2\")>",
"<blue_case(marker_id:\"1\")>",
"<yellow_rectangle(marker_id:\"5\")>",
"<green_rectangle(marker_id:\"0\")>",
"<red_cube(marker_id:\"3\")>",
"<blue_cube(marker_id:\"4\")>"]},

"environment_before": {
"assets": ["<table>", "<floor>"],

"asset_states": {"<table>": "on_something(<floor>)"},

"objects": ["<red_case(marker_id:\"2\")>",
"<blue_case(marker_id:\"1\")>",
"<yellow_rectangle(marker_id:\"5\")>",
"<green_rectangle(marker_id:\"0\")>",
"<red_cube(marker_id:\"3\")>",
"<blue_cube(marker_id:\"4\")>"],

"object_states": {
"<red_case(marker_id:\"2\")>":"on_something(<table>)",
"<blue_case(marker_id\"1\")>":"on_something(<table>)",
"<yellow_rectangle(marker_id\"5\")>":"on_something(<

table>)",
"<green_rectangle(marker_id:\"0\")>":"on_something(<

table>)",
"<red_cube(marker_id:\"3\")>":"on_something(<table>)",
"<blue_cube(marker_id:\"4\")>":"on_something(<table>)

"}},

"environment_after": {

"assets": ["<table>", "<floor>"],
"asset_states": {"<table>": "on_something(<floor>)"},

"objects": ["<red_case(marker_id:\"2\")>",
"<blue_case(marker_id:\"1\")>",
"<yellow_rectangle(marker_id:\"5\")>",
"<green_rectangle(marker_id:\"0\")>",
"<red_cube(marker_id:\"3\")>",
"<blue_cube(marker_id:\"4\")>"],

"object_states": {
"<red_case(marker_id:\"2\")>":"on_something(<table>)",
"<blue_case(marker_id:\"1\")>":"on_something(<table>)",
"<yellow_rectangle(marker_id:\"5\")>":"on_something(<

table>)",
"<green_rectangle(marker_id:\"0\")>":"on_something(<

table>)",
"<red_cube(marker_id:\"3\")>":"inside_hand()",
"<blue_cube(marker_id:\"4\")>":"on_something(<table>)

"}},

"instruction_summary": "hand the red cube with marker ID 3",
"question": ""

}
‘‘‘

Do you think this is correct? Provide feedback for the
instructions,

or say yes to approve.

ChatGPT

Yes

SYSTEM

Task completed succesfully.

What do you think of the system after interacting with it, we’d
like you

to rate your initial expectations using the Van der Laan
Acceptance Scale.

Rate each statement from -2 to +2, where -2 is strongly disagree,
0 is neutral, and +2 is strongly agree. Each attribute has a

directly
opposite attribute to help guide your scoring.

No. Question. Attribute Scale. Opposite Attribute.
1. I think the system (robotic arm and chat) is useful. Useful -2

to +2 Useless
2. The system is pleasant to use. Pleasant -2 to +2 Unpleasant
3. I think the system is bad. Bad +2 to -2 Good
4. I think the system is nice. Nice -2 to +2 Annoying
5. I think the system is effective. Effective -2 to +2 Superfluous
6. I think the system is irritating. Irritating +2 to -2 Likeable
7. I think the system is assisting. Assisting -2 to +2 Worthless
8. I think the system is undesirable. Undesirable +2 to -2

Desirable
9. The system raises my alertness. Raising Alertness -2 to +2

Sleep-
inducing

Please complete the scale now.

SYSTEM

Here are my ratings using the Van der Laan Acceptance Scale after
interacting with the system:

Useful: +2
Pleasant: +2
Bad: -2
Nice: +2
Effective: +2
Irritating: -2
Assisting: +2
Undesirable: -2
Raising Alertness: +1

Overall, the system has proven to be very effective and pleasant
to use.
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7 Appendix B
7.1 Example conversation chat area

Figure 17. A snippet of a whole conversation in the chat with LERACS for the task instruction: "Build two towers from
the blocks".
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7.2 Variations of settings

Figure 18. Overview of the different settings to test the system performance for simple (top four images) and complex
(bottom four images) elements to prevent system adaptability during testing.
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8 Appendix C

8.1 System acceptance scale
This scale asseses System acceptance on two dimensions, a Usefulness scale and an affective Satisfying scale. This scale
gives insights in not only defining if a system is performing sufficiently, but also appealing for the user. The van der Laan
questionaire itself consists of nine items displayed in Table 5. The instruction given to the user was: "Could you please
indicate below what your opinion was about the system (...)". The user had to pick a score for each attribute, where the
individual item scores run from -2 to +2. Item numbers (No) 3,6, and 8 are mirrored, compared to the other items to reduce
response bias and enhance the reliability and validity of the scale.

Table 5. Van der Laan Acceptance Scale

Scale

Question No. Attribute Opposite Attribute

I think this system is useful 1 Useful +2 +1 0 -1 -2 Useless

This system is pleasant to use 2 Pleasant +2 +1 0 -1 -2 Unpleasant

I think this system is bad 3 Bad -2 -1 0 +1 +2 Good

I think this system is nice 4 Nice +2 +1 0 -1 -2 Annoying

I think this system is effective 5 Effective +2 +1 0 -1 -2 Superfluous

I think this system is irritating 6 Irritating -2 -1 0 +1 +2 Likeable

I think this system is assisting 7 Assisting +2 +1 0 -1 -2 Worthless

I think this system is undesirable 8 Undesirable -2 -1 0 +1 +2 Desirable

This system raises my alertness 9 Raising Alertness +2 -1 0 -1 -2 Sleep-inducing
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8.2 AI user instructions for the simple setting
The most successful user instruction per AI persona for each scenario and environment are displayed in the following tables.

Table 6. Most common AI Person answers to goal instructions for the simple setting.

Scenario Persona 001 Persona 002 Persona 003 Persona 004 Persona 005

Scenario 1 “Please pick up the
red cube (marker_id:
3), move it to the op-
posite side of the ta-
ble, and then hand it
to me.”

“Hey robot, can you
please give me the
red block with the
number ’1’ on it?
Pretty please”

“Please pick up the
red cube (marker_id:
3) and hand it to
me.”

“Hey robot, can you
please hand me the
red block with the
number ’3’ on it”

“Robot, please hand
me the red cube.”

Scenario 2 “Please pick up
the blue cube
(marker_id: 4),
rotate it 180 degrees,
and then place it
inside the blue case
(marker_id: 1).”

“Robot, can you put
the blue block into
the blue box? Let’s
see you do it!”

“Please place
the blue cube
(marker_id: 4)
inside the blue case
(marker_id: 1).”

“Robot, can you
place the blue block
with the number ’4’
inside the blue case
with the number
’1’?”

“Robot, can you
please place the blue
cube inside the blue
case?”

Scenario 3 “Please pick up the
red cube (marker_id:
3), place it precisely
on top of the blue
cube (marker_id:
4), and then move
the entire tower to
the edge of the table
without it falling
over.”

“Robot, can you stack
the red block on top
of the blue block to
make a tower? That
would be so cool!”

“Please place the red
cube (marker_id: 3)
on top of the blue
cube (marker_id: 4)
to form a tower.”

“Robot, can you stack
the red block with
the number ’3’ on
top of the blue block
with the number ’4’
to make a tower?”

“Robot, can you stack
the red cube on top
of the blue cube to
make a tower?”

Scenario 4 “Alright robot, lets
see if you can handle
this. Move the red
cube to the exact spot
where the blue cube
is, and place the blue
cube where the red
cube was.”

“Hey robot, can you
take the red block
and put it where the
blue block is? Please
please!”

“Robot, please push
the red cube to the
position where the
blue cube is currently
located, and then
push the blue cube
to where the red
cube was originally.
Make sure to main-
tain accuracy while
pushing.”

“Hey robot, can you
push the red cube
(marker_id: 3) to
where the blue cube
(marker_id: 4) is?”

“Robot, please push
the red cube to the
position of the blue
cube.”

Scenario 5 “Robot, place the red
cube in the red case
and the blue cube in
the blue case. Don’t
move the other ob-
jects; let’s see if you
can get this simple
task right.”

“Robot, can you
please put the red
block in the red box
and the blue block in
the blue box? Make
sure they fit nicely,
and don’t mix up the
colors!”

“Robot, place the red
cube into the red case
and the blue cube
into the blue case.
Ensure each block is
standing properly in-
side its correspond-
ing case.”

“Robot, can you
please place the red
cube (marker_id:
3) in the red case
(marker_id: 1)
and the blue cube
(marker_id: 4)
in the blue case
(marker_id: 2)?”

“Robot, place the red
cube into the red
case and the blue
cube into the blue
case. Ensure that
each block is stand-
ing properly inside its
corresponding case.”
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Scenario Persona 001 Persona 002 Persona 003 Persona 004 Persona 005

Scenario 6 “Alright robot, let’s
see if you can han-
dle this. Pick up the
red cube (marker_id:
3), bring it to me,
but make sure you
don’t bump into any-
thing or drop it. I’m
watching closely for
any mistakes.”

“Hey robot, can you
give me the red
block, please? I want
to hold it! :)́’

“Robot, please pick
up the red cube
(marker_id: 3) and
hand it to me.”

“Robot, please pick
up the red cube
(marker_id: 3) and
hand it to me.”

“Hey robot, can you
give me the red
block? I need to hold
it.”

Scenario 7 “Robot, pick up
the blue cube
(marker_id: 4)
and place it per-
fectly in the blue
case (marker_id:
1). Make sure its
standing upright and
centered. Any wob-
ble or misplacement
will be noted.”

“Robot, can you put
the blue block into
the blue box? Make
sure it stands up
straight!”

“Robot, place
the blue cube
(marker_id: 4)
inside the blue case
(marker_id: 1).
Make sure it stands
properly without
falling over.”

“Robot, please
place the blue cube
(marker_id: 4) in-
side the blue case
(marker_id: 1).”

“Robot, can you put
the blue block into
the blue box? Make
sure it stands up
straight.”

Scenario 8 “Robot, place the red
cube (marker_id: 3)
on the table, and
then stack the blue
cube (marker_id: 4)
on top of the red
cube to form a tower.
Ensure the tower is
stable and perfectly
aligned. Any wob-
ble or collapse will be
noted.”

“Robot, can you put
the red block on the
table and then put
the blue block on top
of it to make a tower?
I want to see if it
stands up!”

“Robot, place the red
cube (marker_id: 3)
on the table, then
stack the blue cube
(marker_id: 4) on
top of the red cube
to form a tower.
Ensure the tower is
stable and perfectly
aligned.”

“Robot, please
place the red cube
(marker_id: 3) on
the table and then
place the blue cube
(marker_id: 4) on
top of the red cube
to form a tower.”

“Robot, can you put
the red block on the
table and then place
the blue block on top
of the red block to
make a tower?”

Scenario 9 “Alright robot, let’s
make this interest-
ing. First, nudge the
blue cube halfway to
the red cube. Then,
push the red cube
all the way where
the blue cube was lo-
cated.”

“Hey robot, can you
please take the red
block and put it
where the blue block
is?”

“Robot, please push
the red cube to the
position where the
blue cube is currently
located, and then
push the blue cube
to where the red
cube was originally.
Ensure precise and
controlled move-
ments to avoid any
collisions.”

“Hey robot, can you
push the red cube to
where the blue cube
is?”

“Robot, can you
move the red cube to
where the blue cube
is now.”

Scenario
10

“Point to the places
that the robot can put
the cubes in. Fi-
nally, place the red
cube (marker_id: 5)
inside the red case
and the blue cube
(marker_id: 10) in-
side the blue case.”

“Hey robot, can you
put the red block in
the red box and the
blue block in the blue
box?”

“Robot, place the red
cube into the red case
and the blue cube
into the blue case.
Ensure each block is
standing properly in-
side its correspond-
ing case.”

“Robot, can you
please place the red
cube in the red case
and the blue cube in
the blue case? Make
sure they’re in the
right places!”

“Hey robot, can you
put the red block in
the red case and the
blue block in the blue
case?”
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8.3 AI user instructions for the complex setting

Table 7. Most common AI Person answers to goal instructions for the complex setting.

Scenario Persona 001 Persona 002 Persona 003 Persona 004 Persona 005

Scenario 1 “pick up the blue cube with
marker ID ’5’ and hand it
to me.”

“Robot, can you
please hand me
the green block?,
Thanks!”

“The task for the robotic
arm is to pick up the green
rectangle with marker ID
"0" and hand it to me.”

“pick up the blue
rectangle with
marker ID ’1’ and
hand it to me”

“The robotic arm
needs to hand me
the green rectan-
gle”

Scenario 2 “Pick up the yellow rectan-
gle (marker_id: ’5’), bal-
ance it on top of the blue
cube (marker_id: ’4’), and
place this stack inside the
red case (marker_id: ’2’).
Then pick up the green
rectangle (marker_id:
’0’) and place it stand-
ing inside the blue case
(marker_id: ’1’).”

“Hey robot, put
the green block
in the red box
and the blue
block in the blue
box! :)”

“Move the green rectangle
(marker_id: "0") into the
red case (marker_id: "2"),
the red cube (marker_id:
"3") into the blue case
(marker_id: "1"), and
build two towers using the
remaining blocks.”

“Ensure that the
green rectangle
and the yellow
rectangle are
standing upright
inside the respec-
tive cases.”

“Move the
green rectangle
(marker_id:0̈)̈
into the red case
(marker_id:2̈)̈.”

Scenario 3 “Move the green cube
(marker_id: "5") and
place it on top of the
blue cube (marker_id:
"4"). Then, move the red
cube (marker_id: "3") and
place it on top of the yel-
low rectangle (marker_id:
"0")”

“Let’s make two
fun towers! First,
pick up the green
block and put
it on top of the
blue block. Yay,
first tower done!
Next, grab the
red block and
place it on the
yellow block.
Hooray, now we
have two towers!
So cool! :)”

“To build the two towers,
start by selecting the Yel-
low Rectangle with marker
ID 5 and place it as the
base for the first tower.
Then, take the Red Cube
with marker ID 3 and care-
fully position it on top of
the Yellow Rectangle. For
the second tower, use the
Green Cube with marker
ID 0 as the base. Finally,
place the Blue Cube with
marker ID 4 on top of the
Green Cube”

“Please build
two towers by
placing the green
cube (marker_id:
’0’) on the blue
case (marker_id:
’4’), and the red
cube (marker_id:
’3’) on the yel-
low rectangle
(marker_id: ’5’).
Thank you!”

‘build a single
tower using two
of the available
blocks”

Scenario 4 “Move the red cube
(marker_id:"3") to the
position of the yellow rect-
angle (marker_id:"5") and
place the yellow rectangle
(marker_id:"5") in the
original position of the red
cube (marker_id:"3").”

“Can you please
move the yellow
block to where
the green block
is? Thanks!”

“Push the red cube
(marker_id: 3) forward
(away from the robot)
three times to move it to
the position of the green
cube (marker_id: 0).
Then, push the green cube
(marker_id: 0) backward
(toward the robot) three
times to move it to the
original position of the red
cube. ”

“Please move
the red cube
(marker_id: 3)
to a different po-
sition, and then
place the blue
cube (marker_id:
4) in the position
previously occu-
pied by the red
cube (marker_id:
3)”

“Move the green
rectangle to the
position of the
yellow rectangle,
by moving the
green one out
the way in one of
the cases first.”

Scenario 5 “Move the red cube
(marker_id: 3̈)̈ into the
red case (marker_id:
2̈)̈ and the blue cube
(marker_id: 4̈)̈ into the
blue case (marker_id:
1̈)̈. Ignore the yellow
rectangle (marker_id:
5̈)̈ and the green cube
(marker_id: 0̈)̈, as they
don’t have corresponding
cases. Make sure no block
is misplaced or left in an
incorrect position.”

“Take the red
block and put it
in the red box.
Then take the
blue block and
put it in the blue
box.”

“Sort the red cube
(marker_id: "3") into
the red case (marker_id:
"2") and the blue cube
(marker_id: "4") into the
blue case (marker_id:
"1"), leaving the yellow
and green rectangles in
their current positions.”

“Move the red
cube into the red
case and the blue
cube into the
blue case. Ignore
the other blocks
for this task.”

“First, place the
red cube into
the red case.
Next, take the
blue cube and
put it into the
blue case. Leave
any other blocks
aside for now.”
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Scenario Persona 001 Persona 002 Persona 003 Persona 004 Persona 005

Scenario 6 “pick up the green rectan-
gle with marker ID ’0’ and
hand it to the user with-
out touching any other ob-
jects”

“Robot, can you
please hand me the
green long box?”

“Robot, please
hand me the
green rectangle
(marker_id: ’0’).”

“The robot should first
identify the yellow rect-
angle with the marker ID
"5." Then, it should use
the robotic arm to pick
up the yellow rectangle.
After picking it up, the
robot should move the yel-
low rectangle towards me
and gently place it in my
hand.”

“Robot, please
hand me the yel-
low rectangular
block.”

Scenario 7 “Stack the green rectangle
on top of the yellow block
and place the stack inside
the blue case”

“Hi robot! Can
you help the rect-
angles find their
home? First, pick
up the green rect-
angle thats on the
table. Then, place
it into the blue
spot. Find the yel-
low rectangle and
put it into the blue
case too. Youre do-
ing great, just like
a fun game!”

“Robot, lets ex-
ecute this with
precision. Start
by identifying the
green rectangle
(marker_id: "0")
on the table. Lift
the green rectan-
gle and transfer
it into the blue
case (marker_id:
"1"). Following
this, locate the
yellow rectangle
(marker_id: "5")
and similarly,
place it into the
blue case.”

“First, identify the red
cube with marker ID 3 and
the red case with marker
ID 2. Pick up the red cube
and place it inside the red
case. Next, locate the blue
cube with marker ID 4 and
the blue case with marker
ID 1. Pick up the blue cube
and place it inside the blue
case.”

“Alright robot,
lets get this done
efficiently. Start
by picking up the
green rectangle
from the table and
place it into the
blue case. Then,
take the yellow
rectangle and put
it into the blue
case as well.”

Scenario 8 “Move the yellow rectan-
gle (marker_id: 5) onto
the red case (marker_id:
2). Then, place the red
cube (marker_id: 3) on
top of the yellow rectan-
gle (marker_id: 5). Make
sure the tower is stable
and the red block is per-
fectly on top of the yel-
low rectangle. Let’s see if
the system can handle this
without any issues.”

“Put the yellow
block on the table.
Then put the red
block on top of the
yellow one. Make
a tower! :)́’

“Pick up the red
cube and place it
on top of the yel-
low rectangle to
form a tower”

“Pick up the yellow rectan-
gle and place it vertically
on the table, then place the
red cube on top of the yel-
low rectangle”

“Please pick up the
yellow rectangle
and place the red
block on top of it
to form a tower”

Scenario 9 “First, find the blue cube,
pick it up, and move it to
a temporary spot. Then,
locate the yellow rectan-
gle, pick it up, and move
it out of the way. After
that, move the blue cube
to the exact spot where the
yellow rectangle was and
place it there. This way,
the blue cube will stand
exactly in the place of the
yellow rectangle”

“Hey robot, can
you please move
the blue block to
where the yel-
low rectangle is?
Thanks!”

“Move the blue
block (marker_id:
1) to the position
currently occupied
by the yellow rect-
angle (marker_id:
5) by moving the
yellow rectangle
in a case first and
then place the blue
block on the previ-
ous position of the
yellow rectangle.”

“Please move the blue
block (marker_id: 1) to
the position currently
occupied by the yellow
rectangle (marker_id: 5).”

“Please move the
blue block to the
position currently
occupied by the
yellow rectangle
by moving the
yellow rectangle
out of the way.”

Continued on next page
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Table 8 – Continued from previous page

Scenario Persona 001 Persona 002 Persona 003 Persona 004 Persona 005

Scenario
10

“Instruct the robotic arm
to pick up the red cube
(marker_id: "6") and
place it in the red case
(marker_id: "2"). Then,
have it place the blue
cube (marker_id: "7") in
the blue case (marker_id:
"1"). Next, move the yel-
low rectangle (marker_id:
"8") into the yellow case.
Finally, place the green
rectangle (marker_id: "9")
into the green case.”

“Hey robot, can
you put the red
block in the red
box and the blue
block in the blue
box? Thanks!”

“Robot, please
place the red block
inside the red
case and the blue
block inside the
blue case. Ensure
they are standing
properly.”

“Please move the red block
into the red case, the blue
block into the blue case,
and ensure the yellow rect-
angle and green rectangle
are each standing in sepa-
rate cases.”

“Please move the
red block into
the red case, the
blue block into
the blue case, and
ensure the yellow
rectangle and
green rectangle
are each standing
in separate cases.”
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8.4 Statistical analysis on the difference in complexity levels for both setting and task instruction
levels

In the statistical analysis the complexity variables for setting and task types are compared against each other over dependent variables
in all scenarios. a two-way ANOVA is performed because the data consists of quantitative dependent variables at multiple levels of
two categorical independent variables [90] . The two-way ANOVA with interaction tests three null hypotheses per dependent variable
[task/sequence execution success, environment interpretation success,task/sequence generation success,labeling success (pre-
cision),labeling success(recall/sensitivity),labeling success(F1 score)]) at the same time:

Null hypotheses (H0)

1. There is no difference in average [dependent variable] for any setting complexity type.

2. There is no difference in average [dependent variable] for any task complexity type.

3. The effect of setting complexity on average [dependent variable] does not depend on the effect of task complexity.

For this analysis the data is assumed to have homogeneity of variance, independence of observations and normally distributed dependent
variables [91]. The tables with the results for the statistical analysis are continued on the next page.
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Table 9. Statistical analysis of the system validation experiment data (Two-way ANOVA)

Task/Sequence Execution Success

C(Setting) C(Task
Types)

C:(Interaction)

df 1 4 4

Sum of
Squares

0.01 0.06 0.34

Sample
Size

100
(2 groups)

100
(5 groups)

100

F Value 0.148 0.221 1.254

P Value 0.702 0.926 0.294

Significant
Difference

False False False

Environment Interpretation Success

C(Setting) C(Task Type) C:(Interaction)

df 1 4 4

Sum of
Squares

0.11 1.07 0.43

Sample
Size

100
(2 groups)

100
(5 groups)

100

F Value 6.060 15.329 6.149

P Value 0.016 < 0.001 0.0002

Significant
Difference

True True True

Task/Sequence Generation Success

C(Setting) C(Task Type) C:(Interaction)

df 1 4 4

Sum of
Squares

0.03 0.64 0.36

Sample
Size

100
(2 groups)

100
(5 groups)

100

F Value 5.444 28.444 16.000

P Value 0.022 < 0.001 < 0.001

Significant
Difference

True True True

Labeling Success (Precision)

C(Setting) C(Task Type) C:(Interaction)

df 1 4 4

Sum of
Squares

0.43 0.10 0.03

Sample
Size

100
(2 groups)

100
(5 groups)

100

F Value 26.365 1.595 0.434

P Value < 0.001 0.183 0.784

Significant
Difference

True False False

Labeling Success (Recall/Sensitivity)

C(Setting) C(Task Type) C:(Interaction)

df 1 4 4

Sum of
Squares

0.01 0.03 0.01

Sample
Size

100
(2 groups)

100
(5 groups)

100

F Value 0.606 0.503 0.151

P Value 0.439 0.733 0.962

Significant
Difference

False False False

Labeling Success (F1 Score)

C(Setting) C(Task Type) C:(Interaction)

df 1 4 4

Sum of
Squares

0.29 0.06 0.02

Sample
Size

100
(2 groups)

100
(5 groups)

100

F Value 24.637 1.168 0.461

P Value < 0.001 0.330 0.764

Significant
Difference

True False False
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Table 10. Statistical analysis of the system validation experiment data (Tukey post-hoc test)

Environment Interpretation Success Setting

Group1 Group2 Mean Difference p-Value Lower Upper

complex simple 0.0650 0.0692 -0.0052 0.1352

Environment Interpretation Success Task Type

Group1 Group2 Mean Difference p-Value Lower Upper

1 2 -0.0125 0.9989 -0.1433 0.1183

1 3 -0.0750 0.5049 -0.2058 0.0558

1 4 -0.2750 0.0000 -0.4058 -0.1442

1 5 -0.0125 0.9989 -0.1433 0.1183

2 3 -0.0625 0.6743 -0.1933 0.0683

2 4 -0.2625 0.0000 -0.3933 -0.1317

2 5 0.0000 1.0000 -0.1308 0.1308

3 4 -0.2000 0.0005 -0.3308 -0.0692

3 5 0.0625 0.6743 -0.0683 0.1933

4 5 0.2625 0.0000 0.1317 0.3933

Task Sequence Generation Success Setting

Group1 Group2 Mean Difference p-Value Lower Upper

complex simple 0.0350 0.1612 -0.0142 0.0842

Task Sequence Generation Success Task Type

Group1 Group2 Mean Difference p-Value Lower Upper

1 2 0.0000 1.0000 -0.0854 0.0854

1 3 0.0000 1.0000 -0.0854 0.0854

1 4 -0.2000 0.0000 -0.2854 -0.1146

1 5 0.0000 1.0000 -0.0854 0.0854

2 3 0.0000 1.0000 -0.0854 0.0854

2 4 -0.2000 0.0000 -0.2854 -0.1146

2 5 0.0000 1.0000 -0.0854 0.0854

3 4 -0.2000 0.0000 -0.2854 -0.1146

3 5 0.0000 1.0000 -0.0854 0.0854

4 5 0.2000 0.0000 0.1146 0.2854
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Labeling Success Precision Setting

Group1 Group2 Mean Difference p-Value Lower Upper

complex simple -0.1305 0.0000 -0.1810 -0.0800

Labeling Success F1 Score Setting

Group1 Group2 Mean Difference p-Value Lower Upper

complex simple -0.1079 0.0000 -0.1507 -0.0651

Table 11. Statistical analysis of the system validation experiment data (pairwise t-test post-hoc)

Pairwise t-Test Results for Environment Interpretation Success

Test p-Value Conclusion

1 vs 2 0.9989 Not Significant

1 vs 3 0.5049 Not Significant

1 vs 4 0.1433 Not Significant

1 vs 5 0.9989 Not Significant

2 vs 3 0.5049 Not Significant

2 vs 4 0.6743 Not Significant

2 vs 5 0.6743 Not Significant

3 vs 4 0.0840 Not Significant

3 vs 5 0.0053 Significant

4 vs 5 0.0000 Significant

Pairwise t-Test Results for Task Sequence Generation Success

Test p-Value Conclusion

1 vs 2 1.0000 Not Significant

1 vs 3 1.0000 Not Significant

1 vs 4 1.0000 Not Significant

1 vs 5 0.0011 Significant

2 vs 3 1.0000 Not Significant

2 vs 4 1.0000 Not Significant

2 vs 5 0.0011 Significant

3 vs 4 1.0000 Not Significant

3 vs 5 0.0011 Significant

4 vs 5 0.0011 Significant
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t-Test Results for Labeling Success (Precision and F1 Score)

Test p-Value Conclusion

Precision (Simple vs
Complex)

0.000002 Significant

F1 Score (Simple vs
Complex)

0.000003 Significant

Pairwise t-Test Results for Environment Interpretation Success

Test p-Value Conclusion

1 vs 2 0.9989 Not Significant

1 vs 3 0.5049 Not Significant

1 vs 4 0.1433 Not Significant

1 vs 5 0.9989 Not Significant

2 vs 3 0.5049 Not Significant

2 vs 4 0.6743 Not Significant

2 vs 5 0.6743 Not Significant

3 vs 4 0.0840 Not Significant

3 vs 5 0.0053 Significant

4 vs 5 0.0000 Significant

Table 12. Pairwise t-Test Results for Environment Inter-
pretation Success

Pairwise t-Test Results for Task Sequence Generation Success

Test p-Value Conclusion

1 vs 2 1.0000 Not Significant

1 vs 3 1.0000 Not Significant

1 vs 4 1.0000 Not Significant

1 vs 5 0.0011 Significant

2 vs 3 1.0000 Not Significant

2 vs 4 1.0000 Not Significant

2 vs 5 0.0011 Significant

3 vs 4 1.0000 Not Significant

3 vs 5 0.0011 Significant

4 vs 5 0.0011 Significant

Table 13. Pairwise t-Test Results for Task Sequence Gen-
eration Success

t-Test Results for Labeling Success (Precision and F1 Score)

Test p-Value Conclusion

Precision (Simple vs
Complex)

0.000002 Significant

F1 Score (Simple vs
Complex)

0.000003 Significant

Table 14. t-Test Results for Labeling Success (Precision and F1 Score)
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9 Appendix D

9.1 Switching fuses on high voltage racks case application

This Appendix consists of all the elements regarding the case application in Alliander for switching fuses on a high voltage rack. The
voltage racks have been placed horizontally on a table with a robot arm for testing where the cases are provided with ArUco markers
as can be seen in Figure 19. The user provides the instruction "Can you prepare the fuse holders and then place the dummy fuse in
the middle holder" in the LERACS interface, the interface with the full output is displayed in Figure 20. For performing the decomposed
tasks for this instruction a new motion primitive is added: opendrawer() (Figure 21). The output of the environment interpretation and
the task/sequence generation is highlighted in Output Environment and Output Task Decomposition with the full executed sequence
(Figure 22).

Figure 19. This figure represents the apparatus and the setup for the robot arm to perform the action of switching fuses in
the voltage rack cases.
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Figure 20. This figure displays the user interface for a case application at Alliander: switching fuses in a voltage rack.
Hereby the user can instruct the robot arm to switch fuses from a voltage rack

Figure 21. In order to perform the task of switching fuses on high voltage racks the opendrawer function needs to be added.

Page 55 of 56



DELFT UNIVERSITY OF TECHNOLOGY THESIS ARTICLE (PRE-SUBMISSION)

Output Environment

"environment":{{"assets":["<table>", "<floor>"],
"asset_states": {{"<table>": "on_something(<floor>)"}},
"objects": ["<fuse_holder(marker_id:"0")>",

"<fuse_holder(marker_id:"4")>",
"<fuse_rail>",
"<bus_bars>"]",
"<dummy_fuse(marker_id:"2")>",

"object_states": {{"<fuse_holder(marker_id:"0")>":"closed())",
"<fuse_holder(marker_id:"0")>":"open()",
"<fuse_rail>":"on_something(<table>)",
"<bus_bars>":"on_something(<fuse_rail>)",
"<dummy_fuse(marker_id:"2")>":"on_something(<

fuse_rail>)"
}}
}

Output Task Decomposition

{"task_cohesion": {
"task_sequence": [

"all_update()",
"init_constraints()",
"move_to_marker(\"0\")",
"opendrawer(\"0\")",
"move_to_marker(\"4\")",
"opendrawer(\"4\")",
"move_to_marker(\"2\")",
"grasp(\"open\")",
"pick(\"2\")",
"move_to_marker(\"0\")",
"place(\"0\")",
"grasp(\"open\")",
"move_camera_state_low()"
}}}

Figure 22. this Figure shows the most important motion primitives executed in a sequence for the instruction: "Can you
prepare the fuse holders and then place the dummy fuse in the middle holder".

Page 56 of 56


	Introduction
	Methods
	Implementing LERACS in a Robotic System
	LERACS System Components
	Apparatus

	Experimental Evaluation
	Complexity Definition and Experimental setup
	Experimental tasks and procedures
	Statistical analysis

	Case Application Demo

	Results
	System Validation Results
	AI Persona Results
	Cases of frequent unsuccessful instructions causing execution or generation failures
	Cases of frequent successful instructions that achieve the system goal
	Case Application LERACS Demo


	Discussion
	System Validation Experiment
	AI Persona Instruction Experiment

	Conclusion
	Outlook
	Acknowledgements

	Appendix A
	System Prompts
	Initialization prompt
	Generate environment prompts
	Task decomposition prompts

	Experiment Prompts
	Generate Personas
	Persona Experiment


	Appendix B
	Example conversation chat area
	Variations of settings

	Appendix C
	System acceptance scale
	AI user instructions for the simple setting
	AI user instructions for the complex setting
	Statistical analysis on the difference in complexity levels for both setting and task instruction levels

	Appendix D
	Switching fuses on high voltage racks case application


