

Delft University of Technology

Representing Large Virtual Worlds

Kol, Timothy

DOI
10.4233/uuid:02f47a5f-9699-478b-95db-d7163d33912e
Publication date
2018
Document Version
Final published version
Citation (APA)
Kol, T. (2018). Representing Large Virtual Worlds. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:02f47a5f-9699-478b-95db-d7163d33912e

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:02f47a5f-9699-478b-95db-d7163d33912e
https://doi.org/10.4233/uuid:02f47a5f-9699-478b-95db-d7163d33912e

.

About the cover: this is a modified version of the San Miguel scene, famous in computer
graphics and originally modeled by Guillermo M. Leal Llaguno of Evolución Visual, based
on a hacienda that he visited in San Miguel de Allende, Mexico. The image was rendered
in real time and stylized using the techniques presented in Chapter 5. The LEGO bricks on
the back symbolize the voxel representations of virtual worlds discussed in Chapter 2.

REPRESENTING LARGE VIRTUAL WORLDS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on Friday, May the 4th, 2018 at 12:30 o’clock

by

Timothy René KOL

Master of Science in Computer Science, Utrecht University, The Netherlands
born in Schiedam, The Netherlands

This dissertation has been approved by the promotor.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. E. Eisemann, Delft University of Technology, promotor

Independent members:
Prof. dr. ir. P. J. M. van Oosterom Delft University of Technology
Dr. M. Wimmer TU Wien, Austria
Dr. E. Gobbetti Center for Advanced Studies, Research, and

Development in Sardinia (CRS4), Italy
Dr. M. Billeter Delft University of Technology
Prof. dr. ir. M. J. T. Reinders Delft University of Technology, reserve member

This work was partly supported by the EU Seventh Framework Programme as part of
the project HARVEST4D: Harvesting Dynamic 3D Worlds from Commodity Sensor Clouds
under grant number EU 323567. This work was carried out in the ASCI Graduate School.
ASCI dissertation series number 389.

Printed by: Drukkerij Haveka

Copyright © 2018 by T. R. Kol

ISBN 978-94-6186-896-1

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Voor opa Teip

CONTENTS

Summary ix

Samenvatting xi

Preface xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Representations. 2
1.3 Selected Challenges . 3
1.4 Contributions . 5

1.4.1 Underlying Representations: Compressing Voxel Scenes. 5
1.4.2 Realistic Representations: Many-View Rendering 6
1.4.3 Illustrative Representations: 3D Virtual Cities 7
1.4.4 Artistic Representations: Expressive Single Scattering 8

1.5 Summary . 9

2 Geometry and Attribute Compression for Voxel Scenes 11
2.1 Introduction . 12
2.2 Related Work . 13
2.3 Background . 14
2.4 Compression . 15

2.4.1 Voxel Attribute Decoupling . 16
2.4.2 Palette Compression . 16
2.4.3 Attribute Quantization . 19
2.4.4 Geometry Compression . 19

2.5 Results . 20
2.5.1 Decoupling and Palette Compression 21
2.5.2 Attribute Quantization . 22
2.5.3 Offset and Pointer Compression 24
2.5.4 Comparison . 24
2.5.5 Performance . 26
2.5.6 Applications . 27

2.6 Conclusions. 27

3 MegaViews: Scalable Many-View Rendering 29
3.1 Introduction . 30
3.2 Related Work . 31
3.3 Scalable Many-View Rendering . 32

3.3.1 Scene and View Hierarchies . 32
3.3.2 Many-View Rendering . 34

vii

viii CONTENTS

3.4 Results . 38
3.5 Applications . 41

3.5.1 Instant Radiosity . 42
3.5.2 Glowing Particles. 44

3.6 Discussion and Limitations . 44
3.7 Conclusion . 45

4 Real-Time Canonical-Angle Views in 3D Virtual Cities 47
4.1 Introduction . 48
4.2 Related Work . 49
4.3 Canonical Views . 50

4.3.1 Building Transformation . 51
4.3.2 Occlusion Test . 52
4.3.3 Obtaining the Canonical Angle. 54

4.4 Results . 55
4.4.1 Evaluation . 55
4.4.2 Finding Buildings Using the Canonical View 56
4.4.3 Memorizing Routes . 56
4.4.4 Discussion . 57

4.5 Conclusions and Future Work. 59

5 Expressive Single Scattering for Light Shaft Stylization 61
5.1 Introduction . 62
5.2 Related Work . 64

5.2.1 General Stylization . 64
5.2.2 Stylized Scattering . 64
5.2.3 Specific Techniques . 65

5.3 Real-Time Scattering Background. 66
5.4 Stylized Single Scattering . 66

5.4.1 Occluder Manipulation . 67
5.4.2 Color Modifications . 72
5.4.3 Heterogeneity Modification . 75

5.5 Results and Discussion . 76
5.5.1 Stylization . 76
5.5.2 Performance . 81
5.5.3 Discussion . 83

5.6 Conclusion . 83

6 Conclusion 85

Bibliography 89

Epilogue 101

Acknowledgements 105

Curriculum Vitæ 109

List of Publications 111

SUMMARY

The ubiquity of large virtual worlds and their growing complexity in computer graphics
require efficient representations. This means that we need smart solutions for the under-
lying storage of these complex environments, but also for their visualization. How the
virtual world is best stored and how it is subsequently shown to the user in an optimal
way, depends on the goal of the application. In this respect, we identify the following
three visual representations, which form orthogonal directions, but are not mutually ex-
clusive. Realistic representations aim for physical correctness, while illustrative display
techniques, on the other hand, facilitate user tasks, often relating to improved under-
standing. Finally, artistic approaches enable a high level of expressiveness for aesthetic
applications. Each of these directions offers a wide array of possibilities. In this disser-
tation, our goal is to provide solutions for strategically selected challenges for all three
visual directions, as well as for the underlying representation of the virtual world.

To work with virtual environments, we first need to efficiently store them. Two com-
mon approaches rely on either surfaces or voxels. Since voxels are easily queried any-
where in space, they are beneficial for, e.g., realistic lighting and collision detection.
However, naively storing large worlds is problematic, since the available memory typi-
cally does not suffice, requiring better representations and compression. Existing meth-
ods often exploit sparsity, but scale insufficiently well, since they do not consider repeat-
ing patterns. In Chapter 2, we present an improved data representation and subsequent
compression based on repetition and coherence. Our technique enables us to signifi-
cantly reduce the memory footprint, with better performance for large, complex scenes.

With this improved storage method, we can now focus on how to display a virtual
world. Many graphics applications aim at producing physically correct images, for which
we need a realistic visual representation of the environment. In this regard, there is an
increasing number of realistic lighting algorithms that rely on rendering a scene from dif-
ferent viewpoints. While rendering highly complex scenes is difficult by itself, it becomes
exceptionally hard in the presence of multiple viewpoints, as performance is severely
limited if no view coherence is exploited. In Chapter 3, we solve this problem by taking
into account the redundancy present in many-view scenarios. In other words, we enable
views that see similar parts of the scene to share their rendering. Our algorithm scales
well, as the presence of more views typically corresponds to more coherence. Thus, we
are able to produce realistic lighting effects for large virtual environments.

However, real-world environments and their realistic representations are not always
easy to comprehend due to high scene complexity. For many user tasks, it is beneficial
to rather show the world in an illustrative fashion, which requires special visualization
techniques. Navigation in particular is important for large environments, but for 3D vir-
tual city models, this offers a visualization paradox. On the one hand, the street network

ix

x SUMMARY

needs to remain visible for planning and maintaining a good overview, for which a top-
down view works well. On the other hand, users benefit significantly from seeing the
building facades, as this aids them in recognizing their position and memorizing routes.
In Chapter 4, we better facilitate navigation tasks by employing the canonical view, a
user-preferred view that improves object recognition. By using the canonical view for
buildings, we can combine the best of both worlds, enabling a top-down view while still
showing building facades. Our viewer gives users a better understanding of large-scale
city models, as validated in our user study.

While user understanding or realism are often desired properties of display meth-
ods, in some instances, aesthetics have a high priority, too. Here, artistic representa-
tions are needed, which provide the user with efficient control over the virtual world.
The environment’s appearance is greatly influenced by illumination and atmospheric
effects, of which light shafts in participating media form one of the many challenging as-
pects. These effects are often generated by physically-based simulations, limiting mod-
ifications to changing the physical parameters, of which the outcome can be difficult
to predict. Also, the user is restricted to physically correct results, which is not always
desirable. Therefore, we present smart manipulation techniques in Chapter 5, enabling
quick and efficient modifications that potentially go beyond physical correctness. Our
solution is able to change the light behavior on a large scale, resulting in a significant re-
duction of the required labor. We hereby offer an artistic representation with increased
expressiveness for light shafts.

We believe that the complexity of virtual environments will continue to grow expo-
nentially in computer graphics, necessitating efficient representations like ours. Over-
all, our methods contribute to facing several challenges of the storage of virtual worlds
and their realistic, illustrative and artistic display. Precisely, we are now able to better
store high-resolution voxel scenes. Additionally, we can render more efficiently for a
high number of viewpoints, which enables realistic lighting techniques. Furthermore,
we improve the visualization of large-scale city models for better navigation. Finally, we
facilitate artistic control of light shafts, enabling effortless, expressive changes. With this,
we take a step towards better representing large virtual worlds.

SAMENVATTING

De alomtegenwoordigheid en de groeiende complexiteit van grote virtuele werelden in
computergraphics vereist efficiënte representaties. Dit betekent dat we slimme oplossin-
gen nodig hebben voor zowel de onderliggende opslag van complexe omgevingen, als
hun visualisatie. Hoe de virtuele wereld het best wordt opgeslagen, en hoe deze vervol-
gens optimaal aan de gebruiker wordt weergegeven, ligt aan het doel van de toepassing.
In dit opzicht identificeren we de volgende drie visuele representaties, welke verschillend,
maar niet wederzijds exclusief zijn. Realistische representaties richten zich op natuur-
kundig correcte resultaten, terwijl illustratieve weergavetechnieken juist gebruikersta-
ken faciliteren, vaak gerelateerd aan een verbeterde begrijpelijkheid. Artistieke metho-
des ten slotte stellen gebruikers in staat tot een hoge graad van expressiviteit voor toe-
passingen waar esthetiek van belang is. Elk van deze richtingen biedt een scala aan mo-
gelijkheden. Ons doel in dit proefschrift is het bieden van oplossingen voor strategisch
gekozen uitdagingen voor alle drie de visuele richtingen, en tevens de onderliggende re-
presentatie van de virtuele wereld.

Om met virtuele omgevingen te werken, moeten we ze eerst op efficiënte wijze op-
slaan. Twee veelvoorkomende methodes berusten op oppervlaktes of voxels. Aange-
zien voxels gemakkelijk op elke positie in de ruimte opgevraagd kunnen worden, zijn ze
voordelig voor bijvoorbeeld realistische belichting en collisiedetectie. Het naïef opslaan
van grote werelden is echter problematisch, aangezien de hoeveelheid beschikbaar ge-
heugen meestal niet voldoet, en dus betere representaties en compressie vereist zijn.
Bestaande methodes maken vaak gebruik van schaarsheid, maar schalen onvoldoende,
omdat ze geen rekening houden met herhalende patronen. In hoofdstuk 2 presente-
ren wij een verbeterde datarepresentatie en daaropvolgende compressie gebaseerd op
herhaling en gelijkenis. Onze techniek stelt ons in staat de benodigde opslagruimte sig-
nificant te verminderen, met betere prestaties voor grote, complexe scènes.

Met deze verbeterde opslagmethode kunnen we ons richten op de weergave van vir-
tuele werelden. Veel toepassingen in graphics richten zich op het produceren van waar-
heidsgetrouwe afbeeldingen, waarvoor een realistische visuele representatie van de om-
geving nodig is. In dit verband is er een toenemende hoeveelheid algoritmes voor realis-
tische belichting die berusten op scèneweergaves vanuit verschillende oogpunten. Hoe-
wel het weergeven van zeer complexe scènes op zich al niet gemakkelijk is, wordt het nog
meer bemoeilijkt bij meerdere aangezichten, aangezien de prestaties ernstig gelimiteerd
worden als de samenhang tussen gezichtspunten niet wordt uitgebuit. In hoofdstuk 3
lossen we dit probleem op door rekening te houden met de overtolligheid die zich in
zulke scenario’s voordoet. In andere woorden, we stellen oogpunten die gelijke delen
van de scène zien in staat om de resulterende weergave met elkaar te delen. Ons algo-
ritme schaalt goed, omdat de aanwezigheid van meer aangezichten over het algemeen

xi

xii SAMENVATTING

leidt tot meer samenhang. Zodoende creëren we realistische belichting voor grote virtu-
ele omgevingen.

Zowel de echte wereld als realistische representaties zijn door de hoge complexiteit
echter niet altijd gemakkelijk te begrijpen. Voor veel gebruikerstaken is het juist voorde-
lig om de omgeving op een illustratieve wijze te laten zien, wat speciale visualisatietech-
nieken vereist. Navigatie is bijzonder belangrijk voor grote omgevingen, maar voor drie-
dimensionale virtuele steden biedt dit een paradox. Aan de ene kant moet het straatnet-
werk zichtbaar blijven voor planning en om een goed overzicht te behouden, waarvoor
een bovenaanzicht goed werkt. Aan de andere kant behalen gebruikers een groot voor-
deel uit het zien van façades van gebouwen, aangezien dit helpt bij het herkennen van
hun positie en het onthouden van routes. In hoofdstuk 4 faciliteren we navigatietaken
beter door middel van het canonieke aanzicht, een geprefereerd oogpunt dat objecther-
kenning verbetert. Door gebruik te maken van het canonieke aanzicht kunnen we het
beste van beide werelden combineren, wat ons in staat stelt een bovenaanzicht te hante-
ren terwijl de façades zichtbaar blijven. Onze techniek geeft gebruikers een beter begrip
van virtuele steden op grote schaal, zoals we valideren in ons gebruikersonderzoek.

Hoewel begrijpelijkheid of realisme vaak gewenste eigenschappen zijn van weerga-
vemethodes, heeft esthetiek in sommige gevallen ook een hoge prioriteit. Hier zijn ar-
tistieke representaties nodig, die de gebruiker efficiënte controle over de virtuele wereld
verschaffen. Het uiterlijk van de omgeving wordt sterk beïnvloed door belichting en at-
mosferische effecten, van welke lichtstralen veroorzaakt door deeltjes in de atmosfeer
een van de vele uitdagingen vormen. Dergelijke effecten worden vaak gegenereerd door
natuurkundige simulaties, wat aanpassingen limiteert tot het wijzigen van fysieke eigen-
schappen, waarvan de uitkomst vaak moeilijk te voorspellen is. Hierom presenteren wij
slimmere manipulatietechnieken in hoofdstuk 5, wat gebruikers in staat stelt tot snelle
en efficiënte wijzigingen, die mogelijkerwijs niet natuurkundig correct zijn. Met onze
oplossing kan het gedrag van lichteffecten op een grote schaal aangepast worden, wat
tot een aanzienlijke vermindering van de benodigde arbeid leidt. We bieden hiermee
een artistieke representatie met verbeterde expressiviteit voor lichtstralen.

Wij geloven dat de complexiteit van virtuele omgevingen in computergraphics expo-
nentieel zal blijven groeien, waardoor efficiënte representaties als de onze nodig zijn. In
het algemeen dragen onze methodes bij aan het oplossen van meerdere uitdagingen be-
treffende het opslaan van virtuele werelden en hun realistische, illustratieve en artistieke
weergave. Om precies te zijn kunnen we voxelscènes met een hoge resolutie nu beter op-
slaan. Verder kunnen we een scène vanuit meerdere oogpunten efficiënter weergeven,
wat de weg vrij maakt voor realistische lichtsimulaties. Daarnaast verbeteren we de vi-
sualisatie van steden op grote schaal voor een betere navigatie. Ten slotte faciliteren we
artistieke controle over lichtstralen, wat gebruikers in staat stelt moeiteloos expressieve
wijzigingen te maken. Hiermee nemen we een stap in de richting van een betere repre-
sentatie van grote virtuele werelden.

PREFACE

Before you lies the dissertation Representing Large Virtual Worlds, which is the culmina-
tion of the work carried out during the past four years as part of my PhD candidacy.

The research here presented was partly supported by the EU project HARVEST4D:
Harvesting Dynamic 3D Worlds from Commodity Sensor Clouds, a collaboration between
six institutions: TU Wien (Austria), Technische Universität Darmstadt (Germany), Uni-
versity of Bonn (Germany), Télécom ParisTech (France), CNR Institute of Information
Science and Technology (Italy) and Delft University of Technology (The Netherlands).

I started off as a relatively inexperienced researcher. My previous work on computer
graphics [Kol12, Kol13], however, had sparked my interest. While I had learned a lot
during my master’s program at Utrecht University, I still felt there was a whole wealth
of information waiting to be unearthed, and contributions to be made. Professor Elmar
Eisemann kindly gave me the opportunity to do so, by serving as my promotor and su-
pervisor, for which I am very grateful. Thus, I became a PhD candidate at Delft University
of Technology in the Computer Graphics and Visualization group.

From here, the main part of the dissertation commences. After the introduction, it
contains four technical chapters, which are all based on either submissions or publica-
tions. As the presented work covers a broad research area, each chapter contains its own
introduction and background section.

All chapters are based on multi-author papers. Therefore, in the footnote at the be-
ginning of each Chapter, I will shortly mention my personal contributions.

I hope you find this dissertation an enjoyable and interesting read.

Timothy René Kol
Delft, December 30, 2017

xiii

1
INTRODUCTION

To really ask is to open the door to the whirlwind.
The answer may annihilate the question and the questioner.

Anne Rice

T HE field of computer graphics revolves around the creation and manipulation of im-
ages. In most domains where graphics are applied, like architecture, visual effects,

entertainment, visualization, and medicine, this visual content is typically generated
based on a 3D virtual environment that we wish to show. Governed by graphics algo-
rithms, the computer runs calculations on this virtual scene to draw it – a process called
rendering. The environment needs to be stored in an underlying representation for the
computer to read and process it. The resulting image, on the other hand, offers a visual
representation of the scene. These two representations, and the techniques to generate
them, lie at the core of much research in computer graphics, as well as this dissertation.

1.1. MOTIVATION
As hardware capabilities grow, today’s virtual environments are becoming larger and
more detailed, and the calculations more numerous and complex, in order to satisfy
increasing user expectations of realistic, beautiful, or informative images. Cinema au-
diences have come to expect more impressive visual effects every year, while architects
require the highest level of realism to pre-visualize their projects, and gamers want to
immerse themselves in enormous, detailed worlds. Nevertheless, companies are more
than willing to try and meet the increasing demands. After all, in 2017, global revenue for
the gaming industry is projected to exceed 108 billion dollars1, and recent films spend
millions of dollars on computer-generated imagery (CGI) alone. Indeed, with these de-
velopments, we are now often tasked with rendering large virtual worlds. For instance,

1Newzoo Global Games Market Report, 2017

1

https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/

1

2 1. INTRODUCTION

the recently developed game The Witcher 3: Wild Hunt (2015) contains a game world
covering 136 square kilometers2.

While these large environments potentially enable impressive visual results, they re-
quire a vast amount of computations and storage capacity. For example, the animated
movie Frozen (2013) took a total of 60 million hours of compute time and 6 petabytes (PB)
of storage3, which comes with very high costs in both hardware and energy consump-
tion. To face these challenges, we need storage and rendering solutions that perform
well under the increasing complexity of 3D environments. Consequently, in this disser-
tation, we address the question of how to efficiently represent large virtual worlds, in the
context of both the underlying and the visual representation.

To achieve improved performance, it is important that our solutions scale favorably
with scene size and complexity. That is, the additional computation cost should be less
than proportional to the added virtual world data. To this end, we identify the exploita-
tion of repeating patterns and similarity as a crucial aspect. By reducing such redun-
dancy, we can benefit from the fact that less storage space and fewer computations are
needed. Besides scalability, making use of the strengths and weaknesses of human per-
ception offers additional opportunities to improve the efficiency of visualizations. With
these insights, we aim to achieve better representations of large virtual worlds, in order
to cut down on computation costs and further improve user experience.

1.2. REPRESENTATIONS
Due to the sheer variety of the domains in which virtual environments are applied, and
the different purposes these applications serve, we cannot define a general, optimal rep-
resentation; different demands result in distinct criteria for optimality. For the digital
storage of large virtual worlds, i.e., their underlying representation, the preferred solu-
tion often depends on the scene’s properties. For instance, Figure 1.1c shows a medical
visualization of a bat’s skeleton, generated from a dense, discrete volumetric dataset,
which can be well represented by little cubes (voxels) laid out in a grid. The cityscape in
Figure 1.1d on the other hand is sparse, and only contains surfaces to describe the exte-
rior of rectangular buildings. It is therefore better suited for surface-based approaches,
i.e., simply storing the corner points of each surface.

For visual representations, too, different strategies need to be employed depending
on the goal of the visualization. In general, we identify three categories of visual repre-
sentations. One possibility is a realistic depiction, relying on physically-based simula-
tions or approximations thereof, which is beneficial for immersion and understanding.
An orthogonal option is an illustrative approach, to visualize the world in such a way that
best facilitates performing a certain task, which is often linked to user understanding.
Sufficient comprehension may entail the generation of abstract, but instructive images.
Finally, applications such as games and visual effects can depend on aesthetics, leading
to artistic representations that aim at conveying a certain mood or message. Here too,
we commonly prefer to forgo realism in favor of expressiveness.

2CD Projekt Red presentation at Game Developers Conference, 2014
3Walt Disney Animation Studios presentation at Large Installation System Administration Conference, 2013

http://twvideo01.ubm-us.net/o1/vault/GDC2014/Presentations/Bushnaief_Jasin_Solving_Visibility_In.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/lisa13_geibel_johnson_slides.pdf

1.3. SELECTED CHALLENGES

1

3

(a) Voxel-based ambient occlusion in games.
© Crystal Dynamics and Square Enix.

(b) Point-based global illumination in movies.
© Disney Enterprises and Jerry Bruckheimer.

(c) Medical visualization of voxelized volume data. (d) Visual clutter in city models. © Google.

Figure 1.1: Various applications where large virtual worlds and the challenges they pose play a role.

While compromises may be needed, these directions are not mutually exclusive. In-
deed, many applications require a combination: e.g., while an illustrative depiction may
have to sacrifice some faithfulness, in many situations, a certain degree of realism can
still be desirable, and establishing a link to real-world physical phenomena helps the
viewer to better grasp the depicted elements. To illustrate this point, let us take an exam-
ple from the medical domain (e.g., Figure 1.1c), where having a realistic depiction allows
a non-expert to better understand the captured data, as it is represented in a way that
is closer to the viewer’s experience. Nevertheless, illustrative approaches that highlight
the area of interest are a crucial feature as well. For games (Figure 1.1a) and visual effects
(Figure 1.1b), both realism and artistic freedom are important components to create a
convincing and expressive representation.

1.3. SELECTED CHALLENGES
The aforementioned underlying and visual representations offer a wide array of options.
Since it is impossible to cover all in this dissertation, we select relevant challenges in
each. We first focus on the underlying representation of large virtual worlds, for which
surface-based and voxel-based approaches are most commonly employed. The for-
mer can represent large surfaces at a low memory cost, but lack efficient random ac-
cess. The latter can be queried anywhere in space, facilitating applications like efficient
collision detection and advanced lighting, which is crucial for realistic representations.
Voxels are the current standard for encoding volume data, such as in medical visual-

1

4 1. INTRODUCTION

ization (Figure 1.1c). Even for applications originally dominated by surface representa-
tions, keeping voxelized copies of the scene is becoming more common. For instance,
in the recent game Rise of the Tomb Raider (Figure 1.1a), voxels are used to approxi-
mate ambient occlusion using cone tracing techniques [CNS∗11]. Unfortunately, when
representing highly complex voxel scenes, the memory footprint can easily grow be-
yond the capacity of the used hardware. Approaches that rely on streaming can partly
overcome this [GMIG08, CNLE09, CNSE10] and are sometimes even inevitable for truly
enormous datasets [LKT∗17]. Nevertheless, these techniques result in additional per-
formance costs and require data transfer, hindering usage for applications like games,
where memory and computational resources are severely limited. Therefore, we need to
look into compression to provide more efficient underlying voxel-based representations.

For realistic representations, the faithful simulation of the interplay of light and the
environment plays a vital role. Indeed, the best indication that an image is generated
by a computer is often a lack of plausible lighting, such as incorrect shadows, lack of
scattering, and unrealistic reflections. One effect that is particularly difficult to simulate,
yet present in virtually all scenes, is global illumination. In real life, light bounces many
times off the environment’s materials before it attenuates. Because of this, we rarely see
completely black areas, and can observe so-called color bleeding, a subtle but impor-
tant feature for realistic renderings. Path tracing simulates this bouncing adequately, yet
it can be so computationally expensive that even for offline applications like visual ef-
fects, naive methods are infeasible. Therefore, many solutions exist that approximate
global illumination, which often require a scene to be seen from a large variety of differ-
ent viewpoints [DKH∗14]. This is the case for instant radiosity [Kel97] and point-based
global illumination [Chr08] (Figure 1.1b), but also holds true for virtual worlds that con-
tain many light sources (e.g., glowing particles). At their core, these algorithms produce
views of the scene from many different locations. This is typically done to establish
which part of the scene would potentially be illuminated from this location. Sequen-
tially rendering the scene from all of these light locations is highly detrimental to the
performance, and adequate, scalable solutions are needed.

Contrary to visualizing the environment as is, illustrative representations pursue a
certain goal that is linked to user interaction. In large virtual worlds, naturally, naviga-
tion is an important aspect of interaction. Applications like route planning and tourist
maps specifically focus on navigation-related interaction, but also for disaster simula-
tions, games, and medical applications, navigating the environment often plays a large
role. While tools such as Google Earth exist that are capable of efficiently handling enor-
mous amounts of data, they do not always provide an optimal visual representation
for navigation purposes, which becomes most evident in large-scale virtual cities (Fig-
ure 1.1d). Here, a good overview of the streets for route planning is beneficial, as is the
ability to discern landmarks such as buildings, which are a key element for route mem-
orization and recognizing your current location [Den97]. Top-down views preserve a
good overview of the street network, but only show rooftops, which significantly reduces
the recognizability of buildings. While a bird’s-eye view gives a better perspective, en-
abling users to discern building facades, it suffers from visual clutter near high-rises, as
in Figure 1.1d. Likewise, street-level views show buildings from a good angle, but com-

1.4. CONTRIBUTIONS

1

5

pletely lack the street overview. Showing multiple views side by side is an option, but this
requires users to divide their attention, which can be disadvantageous to a good scene
understanding. We therefore require illustrative visualizations, that manage to show an
overview while maintaining building recognizability.

A different dimension is the artistic depiction of the environment. This is especially
relevant in the game and visual effects industries, where the end product is often a work
of art, enabled by computer graphics algorithms. The aesthetics of large virtual worlds
are for a major part governed by illumination and atmospheric effects. Artistic solutions
do not always need to obey the laws of physics, especially since there are many light
effects for which humans can not easily judge their physical correctness. This is true in
particular when there is a complex interplay of light and matter at work, like for caustics,
multiple scattering, or light shafts. As these effects are often considered visually pleasing,
they are commonly employed by artists. To achieve expressive results, we need to grant
the artist control over the virtual world and the simulation of light within, which is a
difficult challenge [SPN∗16]. As an example, we can consider caustics, which are caused
by reflection and refraction of light by curved surfaces, as with a glass of water. To achieve
a desired appearance for the caustics, without artistic tools, an artist would have to know
exactly how the materials, curved geometry and light properties need to be modified,
which is an impossible task. For caustics, several approaches exist that enable more
efficient control [SNM∗13, GSLM∗08], but many light effects remain for which artistic
depictions are necessary.

1.4. CONTRIBUTIONS
In the above, we have identified four specific challenges pertaining to storing virtual
worlds and their realistic, illustrative and artistic representation. To each of these chal-
lenges, we dedicate a chapter. Below, we briefly state the contributions per chapter.

1.4.1. UNDERLYING REPRESENTATIONS: COMPRESSING VOXEL SCENES

Large, navigable virtual worlds are often sparse. For instance, the 3D grid that represents
the scene from Figure 1.2 is 99.999% empty. Therefore, a common approach to reduce
the memory footprint of sparse voxel scenes is to store them in a spatial data structure,
like sparse voxel octrees (SVOs) [JT80, Mea82].

Still, large, detailed environments will exceed available memory, preventing in-core
storage. To store these scenes, we need alternative representations that are subsequently
compressed, for which it is necessary to consider repetition and similarity. In doing so,
we still need to be able to efficiently query the compressed data for interactive solutions,
requiring a careful selection of the compression technique. Recently, geometry data was
successfully compressed by encoding it as a directed acyclic graph (DAG) [KSA13]; how-
ever, additional information, such as colors and normals, requires a different approach.

We present a method for compressing SVOs. By decoupling the geometry informa-
tion from the voxel attributes, such as colors and normals, we can apply a separate
compression for both. The geometry is encoded as a DAG, where our decoupling strat-
egy enables a significant size reduction. Furthermore, the attributes are quantized and

1

6 1. INTRODUCTION

Figure 1.2: Compression of large, navigable virtual worlds represented by voxels.

compressed using our tailor-made palette compression technique. These contributions
enable storing voxel scenes fully in-core at resolutions previously not attainable (up to
128K 3) while retaining real-time random access. Figure 1.2 shows an exemplary voxel
scene with the aforementioned resolution, which is stored fully on the GPU. We further
discuss this work in Chapter 2.

This work was published as Geometry and Attribute Compression for Voxel Scenes
in Computer Graphics Forum 35, 2 (2016), by Bas Dado, Timothy R. Kol, Pablo Bauszat,
Jean-Marc Thiery and Elmar Eisemann [DKB∗16]. It was presented at Eurographics 2016
in Lisbon, Portugal.

1.4.2. REALISTIC REPRESENTATIONS: MANY-VIEW RENDERING

Efficiently querying voxels is especially beneficial for realistic lighting. In this respect, we
consider global illumination as an important and challenging aspect. Efficient approx-
imations of the global illumination generally require many views of the scene. Naive
techniques, however, cannot handle such scenarios efficiently. Even methods that are
highly parallelized and improve scalability by using either a special scene [HREB11] or
view [WFA∗05] representation, fall short on performance, as they are not able to exploit
all redundancy.

We propose a novel solution that uses both a scene and a view hierarchy to identify
redundant information and exploit coherence. We make use of an efficient concurrent
traversal of the hierarchies to find and perform shared rendering, enabling nearly real-
time performance for up to a million views of a complex scene. We describe our tech-
nique in detail in Chapter 3, where we also showcase many-light rendering applications,
such as the glowing particles depicted in Figure 1.3, and the aforementioned instant ra-
diosity to approximate global illumination.

1.4. CONTRIBUTIONS

1

7

Figure 1.3: Many-view rendering. Here, we show many-light rendering for glowing particles.

This work was published as MegaViews: Scalable Many-View Rendering with Con-
current Scene-View Hierarchy Traversal in Computer Graphics Forum (2018), by Timothy
R. Kol, Pablo Bauszat, Sungkil Lee and Elmar Eisemann [KBLE18].

1.4.3. ILLUSTRATIVE REPRESENTATIONS: 3D VIRTUAL CITIES

To obtain an illustrative visualization of a city model that better facilitates efficient navi-
gation, we need to see landmarks like buildings from a recognizable perspective [Den97].
In this context, recognition is optimal for a low-angle view, since this is the natural way in
which humans normally see buildings; it is our preferred viewpoint for navigation tasks.
In fact, using such a preferred viewpoint improves recognition for many objects [EB92,

Figure 1.4: Canonical-angle views in virtual city models.

1

8 1. INTRODUCTION

Figure 1.5: Stylized scattering: chimney smoke, a thick fog between the houses, and enhanced light shafts.

VB95, BTBV99]. This viewpoint is known as the canonical view [PRC81].

We propose to use a modified version of the canonical view for buildings in 3D cities
to improve landmark recognition. In this sense, we provide an illustrative representation
of large-scale city models. Our viewer (see Figure 1.4) applies a view-dependent transfor-
mation on buildings, enabling better route memorization and building recognizability.
We discuss our method in Chapter 4, which includes a user study to assess its usefulness.

This work was published as Real-Time Canonical-Angle Views in 3D Virtual Cities in
the proceedings of VMV: Vision, Modeling & Visualization by Timothy R. Kol, Jingtang Liao
and Elmar Eisemann [KLE14]. It was presented at VMV 2014 in Darmstadt, Germany.

1.4.4. ARTISTIC REPRESENTATIONS: EXPRESSIVE SINGLE SCATTERING

Numerous light phenomena are suitable for artistic representations, particularly for in-
direct effects. We focus on light shafts, which are one of the most frequently stylized ef-
fects in traditional art, and can add not only realism, but also depth cues and improved
understanding to the scene. A good starting point for an artistic representation is a phys-
ically correct simulation of the light shafts, which can then be manipulated to the user’s
liking. However, restricting the modifications to physical parameters or scene geometry
severely limits the expressiveness. For an artistic representation of light shafts caused
by single scattering, we therefore present several efficient manipulation tools that cre-
ate plausible results, while not necessarily adhering to the laws of physics. Our styliza-
tion of scattering effects enables quick expressive changes, which is especially useful for
large environments that would otherwise require laborious manual tweaking. We sup-
port changing the appearance with occluder manipulation, corresponding to adding,
removing or enhancing light shafts. Since we rely on a shadow map, the resulting scat-

1.5. SUMMARY

1

9

tering is fast to calculate and largely independent of the complexity of the environment.
Furthermore, colors can be easily controlled using transfer functions and a light map op-
timization approach. Finally, we enable heterogeneity modification, which allows local
variation of the participating medium density. We show a result obtained with our tools
in Figure 1.5. Chapter 5 contains an in-depth description of our techniques, including a
wide array of results.

This work was published as Expressive Single Scattering for Light Shaft Stylization in
the IEEE Transactions on Visualization and Computer Graphics 23, 7 (2017), by Timothy
R. Kol, Oliver Klehm, Hans-Peter Seidel and Elmar Eisemann [KKSE17]. This in turn was
an extension of a previous publication in the proceedings of GI: Graphics Interface by the
same authors that was presented at GI 2015 in Halifax, Canada [KKSE15].

1.5. SUMMARY
In Chapter 2, we will show how voxel-based representations can be compressed to such
an extent that they can be used in a wide array of applications. Especially with an eye on
the future, approaches like ours may become more desirable to store large virtual worlds,
as an addition to, or even a replacement for, current representations.

Besides storage, we have identified realistic, illustrative and artistic representations
as the major categories for graphics applications, and propose contributions to selected
challenges in each of these.

We will discuss a novel many-view rendering technique in Chapter 3, which can be
applied for global illumination and many-light scenarios to produce more realistic vi-
sual representations. Like our storage solution, it relies on coherence, which we see as a
crucial factor for dealing with the growing complexity of virtual environments.

Illustrative representations that better facilitate a certain user task, form another im-
portant aspect. To improve navigational tasks, we present an alternative visualization
method for virtual 3D cities in Chapter 4. Such illustrative approaches remain an open
problem, as they depend on human perception, and may require specific solutions for
different tasks and scenes. Therefore, we believe techniques like ours to be important
for the advancement of visual representations.

For artistic depictions, perception plays a big role as well, but in a somewhat different
way. Here, artists often want users to perceive a desired mood, or incur certain feelings.
In Chapter 5, we will see how our work makes a step in the direction of improved artistic
control, which we consider of vital importance in the field of computer graphics.

Overall, we hereby aim to offer representations of large virtual worlds that improve
the efficiency of computations and user interaction for selected challenges. With these
means, our work contributes towards the production of more realistic, informative and
beautiful images in the future.

2
GEOMETRY AND ATTRIBUTE

COMPRESSION FOR VOXEL SCENES

Never accept the proposition that just because
a solution satisfies a problem, that it must be the only solution.

Raymond E. Feist

Voxel-based approaches are today’s standard to encode volume data. Recently, directed
acyclic graphs (DAGs) were successfully used for compressing sparse voxel scenes as well,
but they are restricted to a single bit of (geometry) information per voxel. In this chapter,
we present a method to compress arbitrary data, such as colors, normals, or reflectance
information. By decoupling geometry and voxel data via a novel mapping scheme, we
are able to apply the DAG principle to encode the topology, while using a palette-based
compression for the voxel attributes, leading to a drastic memory reduction. Our method
outperforms existing state-of-the-art techniques and is well suited for GPU architectures.
We achieve real-time performance on commodity hardware for colored scenes with up to
17 hierarchical levels (a 128K 3 voxel resolution), which are stored fully in core.

Save for an extended introduction, this chapter is a verbatim copy of a publication in Computer Graph-
ics Forum 35, 2 (2016), by Bas Dado, Timothy R. Kol, Pablo Bauszat, Jean-Marc Thiery and Elmar Eise-
mann [DKB∗16]. It was presented at Eurographics 2016 in Lisbon, Portugal. As for the distribution of work,
I implemented the initial framework, devised the palette compression with attribute quantization, the addi-
tional geometry compression, and wrote most of the paper.

11

2

12 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

Figure 2.1: Compressed voxelized scene at different levels of detail, rendered in real time using raytracing only.
Our hierarchy encodes geometry and quantized colors at a resolution of 128K 3. Despite containing 18.4 billion
colored nodes, it is stored entirely on the GPU, requiring 7.63 GB of memory using our compression schemes.
Only at the scale shown in the right bottom image the voxels become apparent.

2.1. INTRODUCTION

W ITH the increase of complexity in large virtual worlds, alternative representations,
which enable small-scale details and efficient advanced lighting, have received a

renewed interest in computer graphics [LK10]. Voxel-based approaches encode scenes
in a high-resolution grid. While they can represent complex structures, the memory cost
grows quickly. Fortunately, most scenes are sparse – i.e., many voxels are empty. For in-
stance, Figure 2.1 shows a scene represented by a grid of 2.25 quadrillion voxels (128K 3),
but 99.999% are actually empty. Although hierarchical representations like sparse voxel
octrees (SVOs) [JT80, Mea82] exploit this sparsity, they can only be moderately success-
ful; a large volume like the one in Figure 2.1 still contains over 18 billion filled voxels.

For large volumes, specialized out-of-core techniques and compression mechanisms
have been proposed, which often result in additional performance costs [BRGIG∗14].
Only recently, directed acyclic graphs (DAGs) have shown that even large-scale scenes
can be kept entirely in memory while being efficiently traversable. They achieve high
compression rates of an SVO representation with a single bit of information per leaf
node [KSA13]. Their key insight is to merge equal subtrees, which is particularly suc-
cessful if scenes exhibit geometric repetition. Unfortunately, extending the information
beyond one bit (e.g., to store material properties) is challenging, as it reduces the amount
of similar subtrees drastically.

Our contribution is to associate attributes to the DAG representation, which are com-
pressed separately, while maintaining efficiency in rendering tasks. To this extent, we
introduce a decoupling of voxel attributes from the topology and a subsequent compres-
sion of these attributes. Hereby, we can profit from the full DAG compression scheme for
the geometry and handle attributes separately. Although the compression gain is signifi-
cant, the representation can still be efficiently queried. In practice, our approach enables
real-time rendering of colored voxel scenes with a 128K 3 resolution in full HD on com-
modity hardware while keeping all data in core. Additionally, attributes like normals or
reflectance can be encoded, enabling complex visual effects (e.g., specular reflections).

Our main contributions are the decoupling of geometry and voxel data, as well as the

2.2. RELATED WORK

2

13

palette compression of quantized attributes, delivering drastic memory gains and en-
suring efficient rendering. Using our standard settings, high-resolution colored scenes
as in Figure 2.1 require on average well below one byte per voxel.

2.2. RELATED WORK
We only focus on the most related methods and refer to a recent survey by Balsa Ro-
dríguez et al. [BRGIG∗14] for other compression techniques, particularly for GPU-based
volume rendering.

Large datasets can be handled via streaming; recent approaches adapt a reduced
representation on the GPU by taking the ray traversals through the voxel grid into ac-
count [GMIG08, CNLE09, CNSE10]. Nonetheless, data transfer and potential disk access
make these methods less suitable for high-performance applications. Here, it is advanta-
geous to keep a full representation in GPU memory, for which a compact data structure
is of high importance.

Dense volume compression has received wide attention in several areas – e.g., in
medical visualization [GWGS02]. These solutions mostly exploit local coherence in the
data. We also rely on this insight for attribute compression, but existing solutions are
less suitable for sparse environments. In this context, besides SVOs [JT80, Mea82], per-
fect spatial hashing can compress a sparse volume by means of dense hash and offset
tables [LH06]. While these methods support efficient random access, exploiting only
sparsity is insufficient to compress high-resolution scenes.

Efficient sparse voxel octrees (ESVOs) observe that scene geometry can generally be
represented well using a contour encoding [LK11]. Using contours allows early culling
of the tree structure if the contour fits the original geometry well, but this can limit the
attribute resolution (e.g., color). While it is possible to reduce the use of contours in se-
lected areas, this choice also impacts the compression effectiveness drastically. Voxel at-
tributes are compressed using a block-based DXT scheme, requiring one byte for colors
and two bytes for normals per voxel on average. For high-resolution scenes, a streaming
mechanism is presented.

Recently, Kämpe et al. observed that besides sparsity, geometric redundancy in voxel
scenes is common. They proposed to merge equal subtrees in an SVO, resulting in a
directed acyclic graph (DAG) [KSA13]. The compression rates are significant and the
method was even used for shadow mapping [SKOA14, KSA15]. Nonetheless, the em-
ployed pointers to encode the structure of the DAG can become a critical bottleneck.
Pointerless SVOs (PSVOs) [SK06] completely remove pointer overhead and are very well
suited for offline storage. However, they do not support random access and cannot be ex-
tended to DAGs, as PSVOs require a fixed, sequential memory layout of nodes. While sev-
eral reduction techniques for pointers have been proposed [LK11, LH07], they are typi-
cally not applicable to the DAG. These methods assume that pointers can be replaced by
small offsets, but in a DAG, a node’s children are not in order but scattered over different
subtrees. Concurrent work presented a pointer entropy encoding and symmetry-based
compression for DAGs, but does not support attributes [JMG16].

2

14 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

Adding voxel data reduces the probability of equal subtrees, making DAGs unsuitable
for colored scenes. The recently proposed Moxel DAGs [Wil15] address this problem. In
every node, they store the number of empty leaf voxels (assuming a complete grid) in the
first child’s subtree. During traversal, two running sums are kept – the number of empty
leaves and total leaves – to compute a sequential unique index for every existing leaf
voxel, with which the corresponding attributes are retrieved from a dense but uncom-
pressed array. Our method is more efficient (with only one running sum) and requires
less memory, as the number of empty leaf voxels grows to quadrillions for scenes like
in Figure 2.1, leading to large storage requirements for the additional index per node.
Furthermore, Moxel DAGs do not encode a multi-resolution representation and, hence,
cannot directly be used for level-of-detail rendering.

Uncompressed voxel attributes quickly become infeasible for higher resolutions, es-
pecially on GPU architectures, where memory is limited. Here, attribute compression can
be used. Specialized algorithms exist for textures [SAM05, NLP∗12], colors (via effective
quantization [Xia97]) or normals (octahedron normal vectors (ONVs) [MSS∗10]). For the
latter, careful quantization is necessary [CDE∗14]. We decouple the geometry of a voxel
scene from its attributes, which enables exploring such compression schemes.

2.3. BACKGROUND

A voxel scene is a cubical 3D grid of resolution 2N 3
with N a positive integer. Each voxel

is either empty or contains some information, such as a bit indicating presence of mat-
ter, or multiple bits for normal or material data. SVOs encode these grids by grouping
empty regions; each node stores an 8-bit mask denoting for every child if it exists – i.e., is
not empty. A pointer connects the parent to its children, which are ordered in memory.
Thus, 8 bits are needed for the childmask, plus a pointer of typically 32 bits. Further-
more, for level-of-detail rendering, parent nodes usually contain a representation of the
children’s data (e.g., an average color). If only geometry is encoded, the childmask gives
sufficient information and no data entries are needed. Note that literature typically con-
siders SVO nodes that are not leaves as voxels as well, so that reported voxel counts equal
the number of tree nodes.

The DAG algorithm [KSA13] is an elegant method to exploit redundancy in a geome-
try SVO, and forms the basis of our topology encoding. For ease of illustration, Figure 2.2
uses a binary tree, but the extension to more children is straightforward. On the left, a
sparse, colored, binary tree is shown. Dangling pointers refer to empty child nodes with-
out geometry. We ignore the colors and numbers for now and only focus on the topology.
The DAG is constructed in a greedy bottom-up fashion. Starting with the leaves at the
lowest level, subtrees are compared and, if identical, merged by changing the parent
pointers to reference a single common subtree. The DAG contains significantly fewer
nodes than the SVO (Figure 2.2, middle-left). Note that for a DAG as well as an SVO, leaf
nodes do not require pointers, and, when encoding geometry only, the leaves can even
be stored implicitly by using the parent childmask.

One disadvantage of the DAG in comparison to an SVO is that pointers need to be

2.4. COMPRESSION

2

15

0

1

2

3

4 5 9 10 13 14

8 12

117

6

+1 +6

+1

+1

+1 +2

+1 +5

+1 +1

+1 +2 +1 +2 +1 +2

+1 +1

+1 +5+1

+1 +6

0
1
2
3

5
6
7
8
9

10
11
12
13
14

+

Input SVO Original DAG (ignoring colors) Naive colored DAG Our decoupling

4

Figure 2.2: The input to our approach is an SVO with data (left). DAGs are only efficient when storing the
topology (middle-left); when considering attributes, merging fails to compress the SVO sufficiently (middle-
right). Our approach decouples data (colors in this case) from topology by storing offsets in the pointers,
enabling us to apply the DAG principle on the geometry (right). The offsets then allow access to an attribute
array, which is compressed independently. The red descent shows how the accumulated offsets deliver the
correct array element.

stored for each child, because they can no longer be grouped consecutively in mem-
ory (in which case, a single pointer to the first child is sufficient). In practice, the 40
bits per node in a geometry SVO (8-bit childmask and a 32-bit pointer), become around
8+4×32 = 136 bits in a DAG – assuming a node has four children on average, e.g., for
a voxelized surface mesh. The high gain of the DAG stems from the compression at low
levels in the tree. For example, an SVO with 17 hierarchical levels usually has billions of
nodes on the second-lowest level while a DAG has at most 256 – the amount of possi-
ble unique combinations of eight child voxels having each one bit. For higher levels, the
number of combinations increases, which reduces the amount of possible merging oper-
ations; this also reflects the difficulty that arises when trying to merge nodes containing
attribute data. With only three different data elements (colors of leaves), the merging
process already stops after the lowest level (Figure 2.2, middle-right).

2.4. COMPRESSION

The possibility of merging subtrees is reduced when voxel attributes such as normals
and colors are used. While the data usually exhibits some spatial coherence, exploiting it
with a DAG is difficult because the attributes are tightly linked to the SVO’s topology. We
propose a novel mapping scheme that decouples the voxel geometry from its additional
data, enabling us to perform specialized compression for geometry and attributes sepa-
rately, which greatly amortizes the theoretical overhead caused by the decoupling.

Using our decoupling mechanism, which is described in Section 2.4.1, the geometry
can be encoded using a DAG. The extracted attributes are stored in a dense attribute ar-
ray, which is subsequently compressed. During DAG traversal, the node’s attributes can
efficiently be retrieved from the array. The attribute array itself is processed via a palette-
based compression scheme, which is presented in Section 2.4.2. It is based on the key
insight that the array often contains large blocks of similar attributes due to the spatial
coherence of the data (e.g., a large meadow containing only a few shades of green). In
consequence, using a local palette, the indices into this palette require much less mem-
ory than the original attributes.

While the original design for the palette compression is lossless, we show in Sec-

2

16 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

tion 2.4.3 that compression performance can be significantly improved by quantizing
attributes beforehand. Hereby, a trade-off between quality and memory reduction is
possible, which can be steered depending on the application. We demonstrate that sig-
nificant compression improvements can already be achieved by using perceptually al-
most indistinguishable quantization levels.

Finally, we show in Section 2.4.4 that the DAG itself can also be further compressed
using pointer and offset compression, as well as an entropy-based pointer encoding,
which is a valuable addition to the original DAG method as well. These techniques
greatly amortize the additional storage required for the decoupling.

2.4.1. VOXEL ATTRIBUTE DECOUPLING

To decouple data from geometry, we first virtually assign indices to all nodes in the initial
SVO in depth-first order (Figure 2.2, left, the numbers inside the nodes). Next, for every
pointer, we consider an offset (Figure 2.2, left, the positive numbers next to the edges),
which equals the difference between the index of the child and parent associated with
this pointer. Summing all offsets along a path from the root to a node then reproduces
its original index.

Based on this insight, we propose to store these offsets together with each child
pointer and to extract and store the node attributes in a dense attribute array in the same
depth-first order (Figure 2.2, right, the stacked colors). During traversal from the root, a
node’s index is reconstructed via these offsets. This index can then be used to efficiently
retrieve the corresponding voxel attribute from the array.

While our mapping introduces an overhead in the form of an additional offset for
every child pointer, it has the benefit that subtrees with identical topology can be merged
to a DAG again. In fact, a depth-first indexing automatically leads to identical offsets in
geometrically identical subtrees. Further, we show in Section 2.5.3 that these offsets can
be compressed very efficiently. Figure 2.2, right, illustrates an exemplary index retrieval
from the resulting DAG for the node with index 4, where the red arrows denote the tree
descent.

2.4.2. PALETTE COMPRESSION

After decoupling and storing the geometry in a DAG, we are left with an efficient rep-
resentation of the topology, but the uncompressed attribute array still requires a large
amount of memory. We propose a variable-length compression scheme for the attribute
array, which is efficient and still allows for fast accessing at run time. To explain our
method, we first describe the use of a global material array, making it possible to store
indices instead of full attributes. Because of spatial coherence in the scene, consecutive
indices will often be similar, which leads to the idea of working on blocks of entries in
the attribute array. For each block, we define a palette (local index array) and each entry
in a block only stores a local index into this palette. The palette then allows us to access
the correct entry in the global material array.

Specifically, our approach works as follows. We denote the attribute array as A =
{a0, ..., aΛ−1}, whereΛ is the total number of entries. Note thatΛ equals the voxel count in

2.4. COMPRESSION

2

17

000
001
001
001
110
010
011
100
100
101
110
110
110
110
110

A

M M

0
1
1
1
-
00
01
10
10
11
-
-
-
-
-

000
001

110

010
011
100
101

= 03ω

= 22ω

= 10ω

1ω = 0

2P

1P

0P

= 3ρ
= 4γ

0B

1B

2B

3B

= 3�λ2log�
= 7λ

Λ = 15

Ã

Figure 2.3: Palette compression. From left to right: the initial attribute array A = {a0, ..., a14} stores 24-bit
colors; we construct the material array M = {ã0, ..., ã6} to store the 24-bit colors while Ã contains 3-bit indices
into M ; four blocks {B0,B1,B2,B3} are created, containing 0-bit to 2-bit palette indices into the three associated
palettes {P0,P1,P2}, which in turn contain 3-bit material indices into M .

the original SVO. We observe that A usually contains many duplicates and the number of
unique voxel attributesλ is typically orders of magnitude smaller thanΛ. For this reason,
a first improvement is to construct a material array M = {ã0, ..., ãλ−1}, which stores all
λ unique attributes in the scene, and replace A with an indexed version pointing into
M . We denote the index array as Ã = {m0, ...,mΛ−1}, where m denotes an index into M .
Since indices require fewer bits than attributes, it usually results in a reduced memory
footprint and decouples the content of the material array from the attribute array. An
example is provided in Figure 2.3.

Since the data in A is in depth-first order, we retain most of the spatial coherence of
the original scene. Consequently, if a large area exhibits a limited set of attributes (e.g.,
a blue lake represented by millions of blue voxels with little variation) they are likely
to be consecutive in A. Hence, it would be beneficial to partition the attribute array
into multiple blocks of consecutive entries, where each only contains a small number of
different indices. We describe how to determine these blocks later.

Each block has an associated palette, which is an array of the necessary unique in-
dices into the material array to retrieve all attributes in the block. The block itself only
stores (possibly repeating) indices into its associated palette. While each index in a block
originally requires dlog2λe bits, it is now replaced by a new index with only ω bits, where
ω depends solely on the number of unique entries inside the block. Note that there is
no one-to-one correspondence between palettes and blocks; a palette can be shared by
several blocks, but each block is linked to a single palette only.

Blocks have a variable length, which makes it necessary to keep a block directory to
indicate where blocks start and what their corresponding palette is. The block directory
has its entries ordered by the starting node index, which makes it possible to perform a
binary search to find the corresponding block information given a node index. Generally,
the memory overhead of the directory is negligible.

Our representation ultimately consists of an array of blocks {B0, ...,Bγ−1} and an array
of palettes {P0, ...,Pρ−1}, where γ and ρ denote the total number of blocks and palettes,

2

18 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

respectively. For the example in Figure 2.3, it can be seen that we obtain three palettes
and four blocks (i.e., ρ = 3, γ = 4), because B1 and B3 use an identical palette that does
not have to be stored twice.

Algorithm 1 Palette compression

1: function FINDLARGEBLOCKS({mi , ...,m j })
2: if j < i then return

3: ω← 0
4: while ω< 4 do
5: {mk , ...,ml } ← largest block with 2ω unique m
6: B ← {mk , ...,ml }
7: if MEMORY(B ,ω) < (l −k +1) · (ω+1) then
8: P ← CREATEPALETTE(B)
9: for all m ∈ B do m ← index into P

10: FINDLARGEBLOCKS({mi , ...,mk−1})
11: FINDLARGEBLOCKS({ml+1, ...,m j })
12: return
13: else
14: ω←ω+1
15: FINDREMAININGBLOCKS({mi , ...,m j })

16: function FINDREMAININGBLOCKS({mi , ...,m j })
17: if j < i then return

18: ω← {0, ...,8}
19: for all ω do
20: {mi , ...,mkω } ← largest block with 2ω unique m from mi
21: Bω← {mi , ...,mkω }
22: Sω← MEMORY(Bω,ω) /(kω− i +1)

23: B ,k ← Bω,kω with minimal Sω
24: P ← CREATEPALETTE(B)
25: for all m ∈ B do m ← index into P
26: FINDREMAININGBLOCKS({mk+1, ...,m j })

27: function MEMORY({mi , ...,m j },ω)
28: return (j − i +1) ·ω+2ω · dlog2λe+ size(directory entry)

Palette Selection Finding the optimal set of blocks with respect to their memory re-
quirement is a hard combinatorial problem, and the attribute array contains billions of
entries for high-resolution scenes. Hence, we propose a greedy heuristic to approximate
the optimal block partitioning.

The algorithm consists of two phases (see Algorithm 1). First, we greedily find the
largest blocks that only require a few bits per entry, as these blocks form the best op-
portunities for high compression rates. This first phase takes a consecutive subset of Ã
as its parameter, and is initially invoked for the complete array ({mi , ...,m j } with i = 0
and j =Λ−1). It finds the largest block that appears in this set consisting of 2ω unique
material indices in a brute-force fashion (line 5). Since we start with ω = 0 (line 3), it
first finds the largest consecutive block with only one unique index. If the total over-
head introduced by creating a palette is outweighed by the memory reduction (line 7),
we generate a palette (if we could not find an existing matching palette) and replace the
material indices m with indices into this palette (lines 8 and 9). The remainder of Ã is
then processed recursively (lines 10 and 11). If the criterion is not satisfied, we increment

2.4. COMPRESSION

2

19

ω and repeat (line 14). When ω becomes too large, we stop the first phase, as finding the
largest block becomes computationally infeasible. In our case, we terminate for ω ≥ 4,
corresponding to 16 unique indices or more (line 4).

The second phase is invoked for the data that could not be assigned to blocks in
phase one (line 15) which is now partitioned into blocks sequentially. For this, nine pos-
sible blocks (for each ω = {0, ...,8}) are considered, all starting at mi (line 20). Of these
nine blocks, the one with the minimal memory per entry (including directory overhead)
is used (line 23), and a palette is attributed to this block, after which we replace the in-
dices again (lines 24 and 25). This is repeated for the remaining data (line 26). To com-
pute a block’s memory overhead (line 28), we multiply the block entries by the bits re-
quired for a palette index ((j − i +1) ·ω) and add the palette entries multiplied by the bits
required for a material index (2ω ·dlog2λe). Finally, we add the block’s directory overhead.

For the example in Figure 2.3, only B3 is created in phase one, as other possible blocks
do not satisfy the memory criterion (line 7). The remaining data is processed in phase
two, which results in three additional palettes, one of which can be shared.

2.4.3. ATTRIBUTE QUANTIZATION

The palette-based compression scheme for the attribute array is lossless and can provide
a significant reduction in memory. However, since human perception is not as flawless
as a computer’s, and many scenes exhibit similarity in voxel attributes, we can apply a
certain degree of quantization on many kinds of attributes without losing much visual
quality. This can greatly improve the compression capability of our proposed approach.

In principle, any standard quantization could be applied to the attribute array, but
specializing the method based on the data type leads to improved results. In partic-
ular, we present solutions for colors and normals, as they seem most valuable to be
supported for voxel scenes. Detailed scenes can potentially result in millions of differ-
ent colors with small variations in the attribute array. Fortunately, color quantizers can
reduce the amount of distinct values significantly without resulting in perceivable dif-
ferences [Xia97]. While Xiang’s original method relied on a clustering in a scaled RGB
space, we improve the result by working in the (locally) perceptually uniform CIELAB
color space. The amount of colors can be freely chosen by the user; we typically use
12-bit (4096) colors throughout this chapter. Note that the method is a data-driven clus-
tering and requires preprocessing to analyze the colors, but yields high-quality results
even for a small amount of colors.

For normals, we rely on octahedron normal vectors (ONVs), leading to an almost uni-
formly distributed quantization [MSS∗10, CDE∗14]. Using ONVs is beneficial as it yields
higher precision for the same number of bits compared to storing one value per dimen-
sion. Again, the bit depth of the quantization can be freely chosen.

2.4.4. GEOMETRY COMPRESSION

By using an attribute array, we still have to encode additional offsets in the DAG struc-
ture, which increases its size. We propose to reduce the DAG’s memory consumption by
compressing the introduced offsets, as well as the child pointers, which typically make

2

20 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

Figure 2.4: Datasets used for evaluation. From left to right: Citadel, City, San Miguel and Arena.

up a large part of the total memory usage.

Offset Compression We observe that the offset from a node to its first child is always
+1 (see Figure 2.2), implying that this offset can be stored implicitly. Further, offsets are
typically small in the lower levels of the tree due to the depth-first assignment. Hence,
fewer bits are required to represent the offset. To this extent, we analyze each level and
find the minimum number of bits required to encode offsets in this level. We round up
to bytes for performance reasons, as a texture lookup on the GPU retrieves at least a
single byte. In practice, a two-byte offset is sufficient for the lowest five levels in all our
examples, leading to a significant improvement. Four or even five bytes are still required
for offsets on the highest levels, but these represent much fewer nodes (≈ 0.1%), which
makes the increased memory usage non-critical.

Pointer Compression We apply the same compression technique as for the offsets to
the child pointers as well. While this leads to a slight improvement, the compression
does not work as well as for offsets, since the levels that contain most pointers generally
require the full four bytes per pointer. However, we observe that some subtrees are used
significantly more often than others, which makes entropy encoding [BRGIG∗14] a well
suited candidate for memory reduction. We create a table of the most common pointers
per level – much in the spirit of our material array in Section 2.4.2 – which is sorted by
occurrence in descending order. In the DAG, we then store only an index into the pointer
table, which is usually smaller than the original pointer and can be represented with
fewer bits.

In practice, we found the following setup to be most effective: each pointer is initially
assumed to be one byte. Its first two bits store the type, which then indicates the pointer’s
actual bit length. Two bits can encode four types; the first three are used to indicate if
6, 14, or 22 bits are used to encode a pointer into the lookup table, and the last type
is reserved to indicate that the remaining 30 bits correspond to an absolute pointer (as
before, this ensure multiples of bytes). The latter could also be increased to 46 bits, but
30-bit pointers proved sufficient for the DAG nodes in all our examples. While we achieve
significant compression with the entropy encoding, it does decrease the performance, as
evaluated in Section 2.5.

2.5. RESULTS
Our method aims at large sparse navigable scenes. For evaluation, we choose a set of
very distinct datasets deliberately (see Figure 2.4): architectural structures (the Citadel
and City scenes); complex geometry (tree and plants in the San Miguel scene); and a

2.5. RESULTS

2

21

3D model obtained from real-life photographs using floating scale surface reconstruc-
tion [FG14] (Arena scene), which is noisy, contains diverse colors, and is a good test
case for a realistic dataset. The datasets were produced by voxelizing triangle meshes
through depth peeling [Eve01], using the standard extension proposed by Heidelberger
et al. [HTG03]. While our compression schemes can handle any spatially coherent data,
in practice, we evaluate our method using colors and normals, which are crucial for re-
alistic lighting. We define the compression rate as the memory size of the compressed
data over that of the uncompressed data, expressed as a percentage.

In the following, we discuss the results of our compression components separately
as described in Section 2.4. Starting with the palette approach, we then analyze the gain
of lossless and lossy compression, and present the results of our offset and pointer com-
pression. Next, we compare our approach to existing techniques. Finally, we present re-
sults to illustrate the performance of our method and discuss its properties before show-
casing several application scenarios.

2.5.1. DECOUPLING AND PALETTE COMPRESSION
We show statistics for the DAG-based geometry encoding and the attribute array for our
four test scenes in Table 2.1. We list the number of DAG voxels in millions, as well as
the memory footprints in MB of the standard and offset-augmented version of the DAG,
which is needed to decouple geometry and attributes. The additional offset and pointer
compression is analyzed in Section 2.5.3.

Table 2.1: Decoupling and palette compression. The numbers are
computed for a 64K 3 resolution (16 hierarchical tree levels) using
non-quantized, 24-bit colors for the attributes.

Scenes

Geometry Citadel City San Miguel Arena

DAG voxels (M) 18.3 10.2 18.8 34.7

DAG size (MB) 382 207 395 737

With offsets (MB) 693 374 719 1342

24-bit colors

Λ (M) 4760 10487 14788 3263

λ (M) 1.66 1.42 3.15 1.57

A (MB) 13619 30004 42309 9336

Ã+M (MB) 11922 26257 38792 8174

PC (MB) 10124 24051 10877 2220

Compression rate 74% 80% 26% 24%

Further, Table 2.1 shows the number of attributes Λ, which equals the SVO node
count, and the number of unique attributes λ, both in millions. The memory size in
MB of the attribute array (indicated as A) exceeds that of the DAG by far. Still, λ is usu-
ally much smaller than Λ; indeed, the memory cost of the attribute array can already be
decreased by using a material array (indicated as Ã+M). Using our palette compression
(indicated as PC) reduces the cost again; we report the compression rate by comparing

2

22 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

to the original attribute array A. While overall significant, the use of a lossless scheme
seems overly conservative in most practical scenarios and implies that even very sim-
ilar attributes will have to be represented individually. By allowing for a slightly lossy
quantization, the attribute costs can be reduced significantly.

2.5.2. ATTRIBUTE QUANTIZATION

Table 2.2: Attribute quantization memory footprints and quality. The
numbers are computed for a 64K 3 resolution using 24-, 14- and 12-bit
colors, and for a 32K 3 resolution using 32- and 12-bit ONVs.

Scenes

24-bit colors Citadel City San Miguel Arena

A (MB) 13619 30004 42309 9336

14-bit colors

PC (MB) 3645 8163 4495 656

Mean RGB err. 2/1/2 2/1/2 2/2/2 2/1/2

Max. RGB err. 20/4/5 6/7/7 9/26/11 34/5/4

Mean ∆E 1.05 0.91 0.80 0.90

Max. ∆E 2.57 2.44 3.00 2.36

Comp. rate 27% 27% 11% 7.0%

12-bit colors

PC (MB) 2609 5703 3099 438

Mean RGB err. 3/2/3 3/2/3 3/2/3 3/2/3

Max. RGB err. 10/7/29 11/12/11 11/9/25 48/5/3

Mean ∆E 1.72 1.60 1.47 1.75

Max. ∆E 4.25 3.85 5.28 4.38

Comp. rate 19% 19% 7.3% 4.7%

32-bit ONVs

A (MB) 4496 9994 14081 3110

PC (MB) 912 417 2678 2151

Comp. rate 20% 4.2% 19% 69%

12-bit ONVs

PC (MB) 135 85.9 407 464

Mean/max. err. 2◦/8◦ 2◦/8◦ 2◦/8◦ 2◦/8◦

Comp. rate 3.0% 0.9% 2.9% 14%

Data quantization might impact precision, but leads to an often similar appearance
and a large memory benefit. In Table 2.2, we show the size of the attribute array for 24-bit
colors again, and the drastic memory gain of our result using palette compression and
quantized colors (14 and 12 bits). To assess the fidelity of our quantization, we report the
mean absolute error for each RGB channel over all voxels, as well as the maximum devi-
ation. However, since these numbers do not always give a good impression of perceptual
quality, we further report mean and maximum ∆E-values as defined by the CIE94 stan-
dard. We use kL = 1, K1 = 0.045 and K2 = 0.015 and the D65 illuminant as the reference
white, as per graphics industry standards [Kle10]. Finally, we show the compression rates

2.5. RESULTS

2

23

24-bit colors

12-bit colors 10-bit colors

Magnitude of color di�erence

0

10

14-bit colors

5

16-bit normals 12-bit normals 10-bit normals

Magnitude of color di�erence

32-bit normals

SSIM = 0.9908

SSIM = 0.9963

SSIM = 0.9775

SSIM = 0.9802

SSIM = 0.9463

SSIM = 0.9492

Figure 2.5: Perceptual quality of our color and normal quantization. We show the quantized result for 14-bit,

12-bit and 10-bit colors, with their corresponding magnitude of the color difference (i.e.,
√

dR2 +dG2 +dB2)
per pixel. We do the same for quantized normals, showing the results for 16-bit, 12-bit and 10-bit normals.
The difference values are mapped using the color map on the right, where a difference of 10 corresponds to a
bright yellow color. We further report SSIM values for each image to assess the perceptual similarity [WBSS04].

obtained with our palette approach for quantized colors.

To illustrate the impact during rendering, Figure 2.5 shows images from two view-
points in the Citadel scene. These exhibit many unique values, as well as color and
normal gradients, which represent a difficult case for quantization. We provide SSIM
values (a perceptual similarity metric, where SSIM = 1 means identical) for every im-
age [WBSS04], comparing the result to its non-quantized counterpart. We note that 14-
bit colors produce very good results, and even for 12-bit colors the only indication of
quantization is the presence of minor banding artifacts at some locations. For 10-bit
colors the quality is reduced, as evidenced by the color difference image, but the result
is still relatively close to the reference.

Similarly, we report memory footprints for normals in Table 2.2. We consider a 32K 3

resolution with 32-bit ONVs as a reference, since 96-bit normals at 15 levels could not
be handled by our hardware, and the mean error for 32-bit ONVs compared to regular
96-bit normals is only 0.001◦, with a theoretically proven maximum error below 0.004◦.
For quantization, we use 12-bit ONVs, for which we report mean and maximum errors in
degrees and show the attained compression rates. As expected, normals compress better
than colors for scenes that contain many aligned surfaces, like the City scene. Visually,
16-bit normals produce results indistinguishable from the 32-bit reference while 12-bit
and 10-bit normals produce minor and more visible banding on smoothly varying sur-
faces, respectively (see Figure 2.5). Nonetheless, for diffuse shading, such artifacts are
barely perceivable and even 10 bits may suffice. For effects like specular reflections, 16-
bit normals are preferred.

2

24 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

Table 2.1 and 2.2 show that the memory footprint of the attributes is now potentially
compressed to a similar order of magnitude as the geometry. We can see that the com-
bined use of quantization and our palette compression is very fruitful in practice.

Furthermore, the combination of colors, normals or even reflectance information
rarely leads to a linear increase of memory. For example, the night-time version of the
City scene at a 32K 3 resolution (Figure 2.8, left) uses 12-bit colors, 10-bit normals, and
8-bit reflectance information. The total memory footprint is 1492 MB, compared to
1186 MB for just encoding colors. This means that the normals and reflectance infor-
mation yield a 25.8% overhead, even though the voxel data grew by 150%. This outcome
is a consequence of materials with similar colors often having similar normals and re-
flectance values as well (e.g., a roughly uniformly colored wall).

2.5.3. OFFSET AND POINTER COMPRESSION

To evaluate our geometry compression, we compare the influence of all our offset and
pointer optimizations separately. In Table 2.3, we reiterate the memory footprint of the
standard offset-augmented DAG (as in Table 2.1). We then report results for implicitly
storing the first child offset; the per-level byte-precise offset compression; the per-level
byte-precise compression for pointers; 8-bit childmasks (the original DAG uses 24 bits of
padding); pointer entropy encoding; and, finally, a combination of all these techniques,
for which the shown compression rate compares to the standard offset-augmented DAG.
We can see that our approach is quite effective, as we observe that the final memory
footprint is on par or even less than the memory cost of the original DAG without the
offsets (see Table 2.1).

Table 2.3: Offset and pointer compression for a 64K 3 resolution.

Scenes

DAG size (MB) Citadel City San Miguel Arena

Uncompressed 693 374 719 1342

Implicit offset 623 335 647 1210

Offset compression 499 271 505 907

Pointer compression 629 330 623 1228

8-bit childmask 641 345 665 1243

Pointer entropy 543 290 531 1027

Combined 348 186 316 591

Compression rate 50% 50% 44% 44%

2.5.4. COMPARISON

Now that we have discussed all components, we can compare our compression scheme
to existing techniques. As we use 12-bit colors for the comparison, the memory footprint
of our complete data structure now equals the geometry size for the combined methods
in Table 2.3 plus the attribute size for 12-bit colors in Table 2.2. We compare the cost per
voxel of our approach to four other techniques; SVOs, PSVOs [SK06], ESVOs [LK10], and
CDAGs (naively adding colors to the original DAG [KSA13]).

2.5. RESULTS

2

25

For the standard SVO implementation, the memory footprint is computed as fol-
lows: we have an 8-bit childmask, a 32-bit pointer, and a 12-bit color value for every
node – note that the leaf nodes have no childmask or pointer. The PSVO contains exactly
the same data in every node, except for the child pointer. Besides voxel attributes, ESVOs
store additional contour data, but also make use of compression. For color, a DXT1 com-
pression is used while normals are compressed using a novel scheme, which is also lossy,
but provides up to 14 bits of precision per axis. In this section, we report ESVO mem-
ory footprints as obtained by using the implementation supplied by the authors, which
makes use of the aforementioned attribute and contour-based compression. Finally, we
have the original DAG [KSA13], augmented with color data, so that every node contains
a 32-bit childmask, one to eight 32-bit pointers, and a 12-bit color value (CDAGs).

For a direct comparison of our attribute compression to that used by ESVOs, we built
the Sibenik scene at a 8K 3 resolution. Here, ESVOs reported a memory footprint of 2120
MB without using contours [LK10]. Not using contours is important, as, contrary to ge-
ometry, a similar quality as regular colored SVOs can only be achieved for attributes if
they are not cut off during traversal. Further, as the data quality for ESVOs is not eval-
uated, it is difficult to provide a comparison; hence, we use 24-bit colors and 32-bit
ONV normals for the palette compression, which ensures better quality than the lossy
schemes applied by ESVOs. Our palette compression is more flexible when compared to
the constant DXT1 rate, which results in only 1171 MB for our entire data structure.

Table 2.4: Comparison to the state of the art for a 64K 3 resolution.

Scenes

Citadel City San Miguel Arena

SVO voxels (M) 4760 10487 14788 3263

Size (MB) 13285 27966 39122 9520

Bytes/voxel 2.93 2.80 2.77 3.06

PSVO size (MB) 8105 17595 24748 5638

Bytes/voxel 1.79 1.76 1.75 1.81

ESVO voxels (M) 1533 2782 1168

Size (MB) 10374 18506 8174

Bytes/voxel 2.29 1.85 0.58

CDAG voxels (M) 286 629 251 117

Size (MB) 5540 11922 4791 2326

Bytes/voxel 1.22 1.19 0.34 0.75

Our voxels (M) 18 10 19 34

Geometry (MB) 348 186 316 591

Attributes (MB) 2609 5703 3099 438

Total size (MB) 2957 5889 3415 1029

Bytes/voxel 0.65 0.59 0.24 0.33

Compression rate 22% 21% 8.7% 11%

2

26 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

SVO levels SVO levels SVO levels SVO levels

By
te

s
pe

r v
ox

el

10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16
0

1

2

3

4

5

6
SVO
PSVO
ESVO
CDAG
Ours

Citadel City San Miguel Arena

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 2.6: Memory usage per voxel for our test scenes at different SVO levels. We compare our approach to a
colored SVO, PSVOs [SK06], ESVOs [LK11] and a naive colored DAG implementation (CDAGs). Note that the
ESVO implementation was unable to load the Arena scene.

Figure 2.6 and Table 2.4 illustrate that our approach outperforms other methods by
a significant margin. We report bytes per voxel for all techniques, always with refer-
ence to the SVO node count. We list the actual voxel count in millions for SVOs, ESVOs,
CDAGs, and our method separately. We show the geometry and attribute size separately
and combined for our method. Finally, we report compression rates as compared to a
standard SVO implementation.

2.5.5. PERFORMANCE
Construction As our focus was mostly on compression quality, not performance, we
did not investigate significant acceleration techniques for the DAG algorithm, nor for
our palette compression. Still, the construction times for building our data structure are
interesting, as they illustrate the computational overhead of involving attributes. In Ta-
ble 2.5, we report timings on an i5 CPU in minutes for both standard colored DAGs (be-
fore the slash) and our method (after the slash); for the latter, we see an increase up to an
order of magnitude. Still, it is feasible to compute high-resolution scenes on commod-
ity hardware, and the slow construction does not hurt performance during rendering.
The construction time depends mostly on the number of compression attempts that our
algorithm explores; if large blocks are already found in the first phase, as for the Arena
scene, the cost of the palette compression is significantly reduced.

Table 2.5: Construction times in minutes at different resolutions for our
four test scenes, using the naive colored DAG implementation and our
decoupling and palette compression, with 12-bit colors.

Scenes

Resolution Citadel City San Miguel Arena

4K 3 1.60/2.58 0.75/6.01 1.40/5.31 1.08/1.83

8K 3 2.65/17.1 2.93/30.3 5.90/22.0 3.13/7.35

16K 3 10.8/64.5 13.2/217 20.0/157 10.0/21.3

Rendering We did not particularly optimize our rendering algorithm; in each frame,
we cast rays from the camera and traverse the SVO with a standard stack-based ap-
proach to find the first intersecting voxel that projects to an area smaller than a pixel. To
still demonstrate that our method is capable of real-time performance, Figure 2.7 shows
timings for a walk-through in the Citadel scene in full HD at a 32K 3 resolution, obtained

2.6. CONCLUSIONS

2

27

Frame number

Figure 2.7: Rendering times while navigating through the Citadel
scene at a 32K 3 resolution, obtained by raycasting in full HD.

using an NVIDIA GeForce GTX 980 Titan X. We compare the rendering times for palette
compression, per-level byte-precise offsets, and using all our compression techniques,
to naive colored DAGs (CDAGs). We can conclude that palettes and offset compression
have some impact on the performance, but still enable real-time rendering while yield-
ing significant compression rates. The entropy encoding on the other hand has a bigger
influence and we only achieve interactive rates. Still, it can be useful for memory gain,
especially when the geometry is relatively large, like for the Arena scene (see Table 2.4).
Further, the rendering cost is several orders of magnitude lower than for pointerless so-
lutions, while still avoiding high memory costs.

2.5.6. APPLICATIONS
To demonstrate the versatility of our approach, and of SVOs in general, we showcase
several applications. Like the original DAG, we are able to obtain high-resolution hard
shadows for the whole scene. With normals, however, we can look into more interest-
ing applications, such as reflections, by shooting secondary rays while maintaining real-
time performance (Figure 2.8, left).

We have also implemented a simple method for color bleeding from single-bounce
global illumination (Figure 2.8, middle). We shoot multiple secondary rays via stratified
sampling of the hemisphere – which means the samples are uniformly distributed, but
contain a random offset – and shoot tertiary rays from the intersecting voxels to deter-
mine if they are in shadow. We attain interactive rates with 8 secondary rays per pixel.

Since our method, like the DAG, exploits both similarity and sparsity, we can to some
extent compress dense data as well (Figure 2.8, right). For the shown Christmas Tree
scene, we are able to obtain a lossless compression rate of 38.6% when comparing our
data structure to the original input file, which is approaching state-of-the-art methods
for dense datasets (29.4%) [GWGS02]. When applying a filtering to remove scanning
noise in the air, we additionally profit from the sparsity and achieve rates below 10%.

2.6. CONCLUSIONS
We have presented a novel SVO compression scheme, which relies on the decoupling of
geometry from additional voxel data. Our mapping is efficient and introduces little over-

2

28 2. GEOMETRY AND ATTRIBUTE COMPRESSION FOR VOXEL SCENES

Figure 2.8: Several applications of our compressed SVO. From left to right: encoding reflectance information
in materials for the City scene, rendered at a resolution of 32K 3; color bleeding in the Sponza scene, at an
SVO resolution of 4K 3, using 16 samples per pixel, and secondary and tertiary ray tracing at a 5123 resolution;
rendering of the dense Christmas Tree dataset at a 512×512×999 resolution.

head, enabling separate compression methods for topology and voxel attributes. Fur-
thermore, we introduced compression schemes for child pointers, which also reduces
the cost of traditional DAGs. For attribute compression, we proposed a combination of
quantization and our lossless palette approach, implicitly exploiting spatial coherence.

We showed that our solution reduces memory usage from 4.49 times (for the Citadel
scene) up to 11.5 times (for the San Miguel scene) compared to standard SVO implemen-
tations. Our method outperforms state-of-the-art SVO compression methods for all test
scenes. The high compression rates allow us to store colored SVOs with up to 17 levels (a
voxel resolution of 128K 3) completely on the GPU.

We demonstrated real-time rendering performance using commodity hardware and
showcased several applications such as color bleeding and reflections, for which addi-
tionally normal and reflectance attributes were encoded. For future work, investigating
advanced material properties for the voxel data (e.g., BRDFs encoded via spherical har-
monics, or transparency) is an interesting direction.

3
MEGAVIEWS: SCALABLE

MANY-VIEW RENDERING WITH

CONCURRENT SCENE-VIEW

HIERARCHY TRAVERSAL

Every flight begins with a fall.

George R. R. Martin

In this chapter, we present a scalable solution to render complex scenes from a very large
amount of viewpoints. While previous approaches rely either on a scene or a view hier-
archy to process multiple elements together, we make full use of both, enabling sublinear
performance in terms of views and scene complexity. By concurrently traversing the hierar-
chies, we efficiently find shared information among views to amortize rendering costs. One
example application is many-light global illumination. Our solution accelerates shadow
map generation for virtual point lights, whose number can now be raised to over a million
while maintaining interactive rates.

An extended version of this chapter was published in Computer Graphics Forum (2018), by Timothy R. Kol,
Pablo Bauszat, Sungkil Lee and Elmar Eisemann [KBLE18]. As for the distribution of work, I implemented
everything, devised the hierarchical representations, the culling, view equivalence and subdivision strategies,
as well as the hole filling and fusion of renderings. Furthermore, I wrote most of the paper.

29

3

30 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

1

sh
ar

ed
 b

y

vi
ew

s
 5

0
0

(a) (b) (c)

Figure 3.1: Indirect illumination computed from 1M animated virtual point lights (VPLs) with shadow maps
of 16×16 resolution generated at interactive rates (100 ms out of 194 ms in total) by our many-view rendering
algorithm (a). We show shadow maps of a subset of 2048 VPLs, for which many pixels are shared and rendered
only once for multiple views (b). We highlight two close VPLs in (a) and (b), which can share a large part of
their rendering (c). We note that faraway pixels are logically shared by more views.

3.1. INTRODUCTION

I N the previous chapter, we have presented a solution for storing virtual worlds. The
next step is to produce a visual representation. While displaying complex scenes is al-

ready difficult for a single viewpoint, in this chapter we aim for realistic rendering, which
adds another dimension to the problem. Recent work has shown that producing mul-
tiple views simultaneously can be very beneficial for realistic rendering [DKH∗14]. For
example, when many light sources are present in a scene, each requires its own shadow
map. Similarly, indirect illumination can be well approximated when first distributing
virtual point lights (VPLs), each illuminating the scene [Kel97, WFA∗05, HPB07]. Also,
reflective objects can be simulated by creating cube maps from various locations on the
surface [BN76, SKALP05, HREB11]. Unlike typical multi-view rendering, such as stere-
oscopy, soft-shadow mapping, and motion or defocus blur [ABC∗91, CPC84, HA90], indi-
rect lighting scenarios show less coherence among the views. Furthermore, the number
of views has to be high to ensure a convincing quality, while maintaining a high framer-
ate for interactive applications. We here address this many-view rendering problem.

The use of a hierarchy is the most common way to obtain sublinear rendering scala-
bility. Coarse representations [RGK∗08] or scene hierarchies are widely used [LWC∗03].
For each view, an adequate level of detail (LOD) can be chosen, typically represented by
a cut through the hierarchy that determines the nodes whose content will be rendered.
However, the use of only a scene hierarchy does not scale well with the number of views.
The cost per view is reduced, but the total cost stays linear in the amount of viewpoints.

MegaViews is a novel scalable many-view rendering algorithm. It provides sublin-
ear performance on both the scene complexity and number of views. The idea is to
rely on two hierarchies; one on the scene and one on the views. We concurrently tra-
verse both hierarchies, with pairs of scene and view nodes fed into the double traver-
sal. This way, we can exploit coherence among different views, which enables us to em-
ploy early culling techniques, as well as shared rendering, when possible. Our solution
is well adapted to GPUs and achieves interactive rates for a large amount of views (we
demonstrate a million 16×16 views) in complex scenes on standard hardware. We show
the benefit of our solution in several applications, including many-light global illumina-
tion [Kel97]. The major contributions of this chapter can be summarized as:

• a scene-view hierarchical representation;

3.2. RELATED WORK

3

31

• an efficient traversal method;

• a shared rendering solution; and

• many-light applications using our approach.

3.2. RELATED WORK
Level-of-detail representations can reduce the rendering workload per view and are a
well explored area. There are many surveys [DFKP05] and books [LWC∗03] on this topic,
and we refer the interested reader to this literature. Here, we will discuss only approaches
closer to our work that amortize costs over several views.

Rendering many views is required for devices like stereoscopic displays [ABC∗91].
Realistic rendering also benefits from many views over time, lenses, and area or volume
lights [CPC84, HA90]. For some of these problems either a small number of views is suf-
ficient, or they follow a certain regular pattern, leading to many approaches that exploit
this predictable consistency [Hal98, HAM06, LES10]. Nevertheless, other scenarios show
less coherence. For example, indirect illumination requires rendering thousands of rela-
tively random views, making it much harder to propose an efficient solution [HPB07].

One relatively direct way of handling many views is the use of imperfect shadow
maps [RGK∗08]. Here, the scene is sampled and the points are distributed randomly
over all views. In this way, the rendering time is independent of the number of views,
but the quality becomes increasingly worse if the sampling rate is not increased. The
approach relies on hole filling to complete the sparse images [MKC07]. A key insight is
that low-resolution shadow maps tend to work well for low-frequency indirect lighting,
and even imperfections do not necessarily create visible artifacts. We build upon these
insights to share rendering between views in our work.

Other approaches [REG∗09, Chr08] deal with many views of a scene. Here, each pro-
duced image is mostly accurate. The approach relies on a scene hierarchy that is tra-
versed for each view individually. While the solution is well suited for mapping it onto
the GPU [REG∗09], the workload distribution is not optimal, as each view can take a very
different path through the hierarchy. ManyLoDs [HREB11] build upon this insight and
enforce a traversal that takes one step at a time. All node-view pairs have the same cost
per iteration, which renders the approach much more efficient on modern GPUs. Nev-
ertheless, the cost remains linear in the number of views or VPLs.

To reduce the workload further, there are attempts to reduce the number of VPLs or
cluster their contributions. Lightcuts cluster VPLs, defining a cut through a light hierar-
chy [WFA∗05, WABG06]. The number of VPLs can also be reduced by choosing an effec-
tive subset [GS10, REH∗11]. The effect of VPLs is also the basis of matrix row-column
sampling (MRCS), which sparsely samples combinations of senders (light sources) and
receivers (scene) via shadow maps, organized in a matrix [HPB07]. This solution can
be combined with lightcuts [OP11] and extended to animated scenes [HVAPB08], as
the sparse view evaluation by itself leads to flickering. Nevertheless, the involved ma-
trix analysis is often too costly for real-time performance. Furthermore, their goal is to

3

32 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

choose a low number of good views, while we actually consider many views.

Light culling and selection is also used by screen-space-clustering methods, linked
to tiled shading [OA11, OBA12, HMY12]. Views are then produced for each tile instead of
each light in the form of a cube map that can be organized into a tiled virtual shadow
map, which facilitates resolution optimizations [OSK∗14, OBS∗15]. Nevertheless, the
method is mostly limited to light gathering, as no actual renderings are produced for
the VPLs. Furthermore, the performance gain depends on the effectiveness of the em-
ployed resolution heuristics, which can overestimate. Tiled methods usually build upon
a cutoff of the VPL influence in screen space. However, this leads to lower quality com-
pared to randomized sampling [TH16], which benefits from higher resolution shadow
maps and a shadow map per VPL. Our solution can produce many shadow maps and is
more general in terms of view placement and the choice of resolution.

Image-space clustering is also employed in point-based global illumination (PBGI),
where tiles are repartitioned using a k-means clustering [WHB∗13]. Assuming coher-
ence of grouped pixels, a baseline cut through the scene hierarchy is established per tile.
This cut is rendered into a texture, which is shared per tile. It is then refined per clus-
ter and new views are stored. The performance gain lies in the incremental cut refine-
ment [HREB11], which requires additional memory, and the shared map. Nonetheless,
sharing information in this way can lead to artifacts if a cluster covers a large extent of
the scene and depth fusion can be incorrect. Furthermore, at least one full traversal is
performed per tile; the costs per generated view, hence, remains linear in the number of
views. Our solution handles arbitrary views and lowers the rendering cost.

Furthermore, ray-space hierarchies and their traversal have been extensively used in
conjunction with object-space hierarchies, including impostor placement [JWSP05], ray
tracing [RAH07], potential visibility sets [MBWW07], ray-packet reordering [BWB08], and
coherent hierarchical culling [MBJ∗15]. They commonly achieve high efficiency by ad-
dressing the joint double-hierarchy traversal with different subdivision criteria (render
cost, memory cost, distance, and visibility) on the ray-object pair subdivision. However,
they focus more on ray intersections instead of rendering complete views. We extend the
previous approaches beyond ray groups to rendering for multiple object-space view-
points, where our shared rendering leads to high efficiency in terms of both rendering
and memory costs.

3.3. SCALABLE MANY-VIEW RENDERING
In this section, we present our MegaViews algorithm, of which an overview is shown in
Figure 3.2. We first describe the data representation (Section 3.3.1) before presenting
the rendering algorithm (Section 3.3.2), which results in a hierarchical representation of
rendered images. While this can be used directly, we also describe a conversion step to
obtain independent images for each view.

3.3.1. SCENE AND VIEW HIERARCHIES

Scene Hierarchy We assume the scene to be provided in the form of a multi-resolution
spatial tree structure, such as an octree. Each node stores scene attributes: color (or

3.3. SCALABLE MANY-VIEW RENDERING

3

33

Application (e.g., global illumination)

Renderings for all views

View hierarchy

Many-view renderingPair
queue

Scene hierarchy

TopologyUnstructured views

s0

s1 s2

s3 s4 s5 s6

 while (!queue.empty())
pair = queue.pop()
if (cull(pair)) continue
if (equivalentView(pair))

pair.view.render(pair.scene)
else

newPairs = subdivide(pair)
queue.push(newPairs)

 for (view : viewHierarchy)
multiPixelFill(view)

 for (view : viewHierarchy)
if (!view.isLeaf())

fuseWithChildren(view)

P00 =
(s0,v0)

P01

P02

P11

P21

P12

P22

. . . .

v0

v1 v2

v3 v4 v5 v6

, , . . .

cull render subdivide

1:
2:
3:
4:
5:
6:
7:
8:

9:
10:

11:
12:
13:

Figure 3.2: Overview of our framework. Many unstructured views are organized in a hierarchy. Together with
the scene hierarchy, this serves as the input to our many-view rendering solution. It keeps a work queue,
initialized with a pair of both roots, to efficiently process scene-view node pairs in parallel. Pairs are either
culled, rendered or subdivided. The resulting renderings can be applied, e.g., for global illumination.

material), position, and a surface normal (or normal cone). The material property or
color is typically chosen to be the average of its children. For each node, a bounding
volume is assumed available, which is typically a box or bounding sphere enclosing all
children. Such scene hierarchies can be generated offline, but dynamic solutions could
be used [CG12]. In this sense, our approach is not limited to a static scene hierarchy,
although we consider this problem orthogonal to our approach.

View Hierarchy Besides a scene hierarchy, we also rely on a view hierarchy, which
groups views spatially in a tree structure. Each view node stores attributes similar to a
scene node, but the normal is now defined by a cone [WFA∗05, JWSP05, RAH07] encom-
passing the view directions of all contained cameras (Figure 3.3). Then, for each node,
we have v j := (p j ,n j ,θ j ,φ j), where p j is the center of projection, n j the viewing direc-
tion, θ j half the angular extent of the bounding cone, and φ j half the field of view of the
frustum. If a view is omnidirectional, we assumeφ j =π, and we refer to a global variable
φ if all cameras share the same opening angle. Again, we assume bounding volumes are
available for each node (the yellow circle in Figure 3.3).

Rendered-Image Representation It might sound counterintuitive at first, but instead
of rendering the actual image that corresponds to each camera, we always produce an
omnidirectional map from the camera’s position. We rely on the actual view direction
to then query the relevant information from this omnidirectional map. Several options

 View node vjUnstructured views

n2

n0
n1

φ
φ

φ

nj

θj

φ

pj

n0
n1

n2 θj

Figure 3.3: Cone-based representation of a multi-view node.

3

34 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

exist for view parameterization, and we only need to impose that all views are parameter-
ized in the same way, including the orientation. In practice, we opted for dual paraboloid
maps [BAS02], which are the spherical expansion of a paraboloid map [HS98]. Neverthe-
less, our solution can be implemented with different representations and we will simply
refer to omnidirectional maps in the following. The globally consistent parametrization
is crucial to facilitate shared rendering among many different views, as each node in
the view hierarchy will contain an omnidirectional map that is a partial rendering of the
scene, shared by all its children.

3.3.2. MANY-VIEW RENDERING

Given the scene and view hierarchies, we concurrently traverse them in a top-down fash-
ion during rendering. To keep track of the cut through the double hierarchy, we rely on
scene and view node pairs Pi j = (si , v j), where si and v j are scene and view nodes in
their own hierarchies, respectively. A breadth-first traversal is employed, maintaining a
work queue of these pairs, initialized with P00 = (s0, v0), corresponding to the roots of
both hierarchies (Figure 3.2).

A naive traversal would subdivide pairs (by popping them from the queue and push-
ing its children) when either of the nodes have children, and renders once both nodes are
leaves. This process however does not take advantage of redundancy and does not scale
well; a million scene nodes with as many views can produce a trillion pairs. We therefore
want to process and render for multiple elements from both hierarchies at once, which
means sharing renderings among many views. Using only scene [HREB11] or view hier-
archies [WFA∗05] misses a large amount of this shared information, and can not lead to
sublinear rendering performance over both scene complexity and the number of views.

We improve the traversal as follows. As shown in Figure 3.2, for each pair Pi j =
(si , v j), we conservatively test if si would contribute to any of the views in v j , and if
not, cull it. Otherwise, if si projects to less than a pixel for all children of v j , we verify
if the rendered result would activate the same pixel in all views of si . If so, we render si

into the omnidirectional map of v j , which is shared by all of its children. Otherwise, we
subdivide in a way favoring the aforementioned conditions, and process the new pairs
in the next iteration. In what follows, we describe the details of our algorithm.

Culling Each view will typically only see a part of the scene, which enables us to cull
scene nodes, similar to frustum culling. The test should be conservative and light weight

Culling

 function cull(pair)
vs = pair.scene.position - pair.view.position
alpha = acos(dot(pair.view.normal, normalize(vs)))
psi = min(PI, pair.view.theta + phi)
fs = sin(alpha - psi) * length(vs)
return alpha > psi && fs > pair.scene.radius + pair.view.radius

1:
2:
3:
4:
5:
6:

Figure 3.4: Pseudocode for culling with spherical bounding volumes.

3.3. SCALABLE MANY-VIEW RENDERING

3

35

s0

v0

v2

s1

(a)

φ

φ
θ2

s0

s1

(c)

s1

v1

(b)

φ

θ1

s0

non-culled scene node
unsafe zone
misclassification

culled scene node
view node position
view node bound

vs

α
fs

Figure 3.5: Culling. For a single view (a), we can cull scene nodes outside the view frustum. For multiple views
(b), we test by virtually enlarging the scene node bound (large green area behind misclassification). Hereby, we
avoid incorrect culling, as for s0. We use the same process for nodes with an angular extent 2(θ j +φ) >π (c).

to minimize any overhead.

For a single view, culling means ignoring a scene node if its bounding volume lies
outside the view frustum (s0 in Figure 3.5a), in a fashion similar to Roger et al. [RAH07].
Figure 3.4 contains pseudocode for the culling function from line 3 in Figure 3.2, for the
case of spherical bounding volumes. To ensure we only cull nodes that are entirely out-
side the frustum, we requireα>ψ and fs (computed on line 5, and shown in Figure 3.4a)
larger than the scene node’s bounding sphere radius; the view radius is 0 for a single view
(line 6). The extension to other bounding volumes is straightforward; we can either take
a sphere encompassing the bounding volume, or directly use the tighter bound, result-
ing in a more complex computation.

For multiple views in a node of our view hierarchy, we want to avoid an individual
test per view. While the stored normal cone is conservative, the assumption that centers
of projection coincide with the center of the view node’s bounding volume is not, and
can lead to misclassification (s0 in Figure 3.5b). In the worst case, child views are located
on the bounding volume surface with a view frustum parallel to that of the parent (the
unsafe zone in Figure 3.5 indicates where incorrect culling could occur). The extent of
this unsafe zone is then at most equal to the maximum extent of the view node bound.

For bounding spheres, the test can efficiently be made conservative. We can cull as
before, with the additional requirement that fs is larger than the scene node radius plus
that of the view node (large green area behind s0 in Figure 3.5b). This addition of the view
node radius is not smaller than the extent of the unsafe zone, resulting in a conservative
test (line 6). Figure 3.5c shows that for v2, with angular frustum extent 2(θ2 +φ) > π, we
can apply the same strategy.

3

36 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

Equivalent view

 function equivalentView(pair)
vs = pair.scene.position - pair.view.position
vsConservativeLength = max(0, length(vs) - pair.view.radius)
alpha = acos(abs(normalize(vs).x))
ps = projectedSize(pair, vsConservativeLength, alpha)
return ps < pixelS || pair.scene.isLeaf() && pair.view.isLeaf()

1:
2:
3:
4:
5:
6:

Figure 3.6: View equivalence computation for dual paraboloid mapping and spherical bounding volumes.

Shared Rendering In addition to culling, we employ a second acceleration technique.
The idea is to avoid rendering a scene node si into each individual view of a view node v j

if the rendered result would be the same for all children of v j . In other words, for a view
node v j , we will test if the projection of the scene node si would fill the exact same single
pixel in the omnidirectional map of each child view. If so, we render si directly into the
omnidirectional map of vi (and not into that of its children) and remove the pair from
the queue. This technique quickly becomes effective, as distant geometry will only have
minimal parallax if views differ slightly.

Figure 3.6 shows pseudocode for the view equivalence testing function from line 4 in
Figure 3.2, in the case of bounding spheres and dual paraboloid mapping. We test for
the projected size of si , which needs to be less than a pixel. We can directly compute
the projection (line 5) using the length of vs, which is the vector from the camera to the
scene node (line 2), and the angle α between vs and the camera direction. For the latter,
a dual paraboloid parameterization with the front view looking down the positive x-axis
results in the angle between vs and the positive or negative x-axis, depending on whether
si projects into the front or back view, respectively (line 4). While the computation of α
and the projected size (line 5) varies for different camera parameterizations, the values
can always be found.

To handle a view node v j that contains multiple cameras, we need to give a conserva-
tive upper bound on the projected size of si for all child views in v j . Again, the individual
views are not guaranteed to be at the center of v j ’s bounding volume. As shown in Fig-
ure 3.7b, the result is that the projected size of si can vary depending on the child view’s
displacement, with the worst case being a vertical offset in the direction of vs. A conser-
vative test for bounding spheres is then to shorten the length of vs by the bound radius
of v j , which results in a larger projected size and a conservative upper bound (line 3).

Given that the projection is smaller than a pixel (line 6), we want to predict if it
projects to the same pixel for all views in v j . A conservative assumption is to consider
any position inside of v j ’s bounding volume as a potential view location, with horizon-
tal displacement towards the bound surface a worst-case scenario. When the bounding
volume of si is not smaller than that of v j , the horizontal offsetting results in filling the
same pixel, since si will be sampled for all views in v j and its projection remains iden-
tical (Figure 3.7c). Our view equivalence algorithm is therefore valid if we keep the view
node bound at most equal to the scene node’s. As we show in Figure 3.2, if the equiv-
alence test fails, the pair is subdivided. However, this is only possible when one of the

3.3. SCALABLE MANY-VIEW RENDERING

3

37

(a)

projection sampling point

(b) (c)

single-pixel projection angle
scene node projector
scene node projection

spherical projection surface
scene node bound
view node bound

Figure 3.7: Discrepancies of scene node projections for vertical (b) and horizontal (c) displacement of a child
view against the projection for the center of the view node (a).

scene and view nodes is not a leaf, which we confirm on line 6.

Pair Subdivision Whenever a scene-view pair Pi j = (si , v j) is taken from the queue and
a subdivision is required, it is not obvious whether to descend into the scene hierarchy
from si or into the view hierarchy from v j . Always subdividing the scene node first would
negate the benefits of the scene hierarchy, while first subdividing the view node reduces
the approach to a scene-only hierarchy. To benefit from our double hierarchy, we instead
opt for a strategy that allows us to optimize for shared rendering.

To validate our aforementioned determination of view equivalence, our subdivision
strategy compares the node bounds. If the smallest bounding volume of the children of
si is smaller than that of vi , we subdivide vi . If not, we subdivide si . In other words, the
view node’s bounding volume is always ensured to be smaller than or equal to that of
the scene node. For two identical octree structures encoding the view and scene hierar-
chies, this strategy results in an alternating subdivision. We illustrate this scenario with
pseudocode in Figure 3.8, which shows the subdivision from line 7 of Figure 3.2.

Pair subdivision

 function subdivide(pair)
if (pair.scene.level < pair.view.level)

children = pair.scene.children
other = pair.view

else
children = pair.view.children
other = pair.scene

for (child : children)
newPair = createPair(other, child)
newPairs.add(newPair)

return newPairs

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

Figure 3.8: Pseudocode for pair subdivision for octree structures.

Multi-Pixel Filling for Nearby Geometry When rendering scene nodes, most project
to a single pixel. However, a pair of leaf nodes cannot be subdivided further, forcing
us to potentially falsely report view equivalence (line 6 in Figure 3.6). If a leaf node is
very close, it might project to an area larger than a single pixel, especially when using
high-resolution renderings. If the view node represents multiple views, the projection of

3

38 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

(a) (b)

L0

L1

L2
L3

L4 ...

L0

L1

L2
L3

L4 ...

Figure 3.9: Example of mipmap-based hole filling (b) from multi-level
point-only renderings (a) at a 256×256 resolution for a single view.

the scene node can then potentially differ. Consequently, we need to render the nearby
scene nodes into each view individually. While this operation degrades performance, it
is relatively uncommon; in practice, this situation occurs for < 5% of the rendered pairs
and only for scene nodes in direct proximity.

Since these nodes cover more than a pixel, we could fill the pixels one by one. How-
ever, mipmap splatting [LH13] is more efficient. Here, render targets are defined in mul-
tiple levels of coarser resolutions (level 0 is the finest resolution). Whenever a scene node
projection is larger than a single pixel, we splat it into a higher mipmap level. If wanted,
once rendering is completed, we can then postprocess each map by pushing the higher
level pixels down to the lower levels, which is a push-only application of a pull-push
synthesis [SKE06, RGK∗08] (Figure 3.9).

Image Queries After the entire rendering is completed, we can query any pixel of any
view in the scene. To this extent, we first map the pixel of the view to its corresponding
pixel in the omnidirectional map. Then, we descend the view hierarchy from the root
and look up the values in this location in each view node’s map. The last encountered
non-empty value corresponds to the wanted pixel value.

If many queries are performed, it can be beneficial to perform a fusion of the omnidi-
rectional maps to produce a complete image per single view. To this extent, it is sufficient
to perform a top-down processing, where the pixel values of the parent node are fused
with the map of the child nodes, which means that we fill up holes in the child map with
the content of the parent map. Ultimately, this process results in a completely filled im-
age for each leaf view.

Finally, some applications, such as shadow mapping, require depth information. Ini-
tially, we use the distance to the center of v j as the depth value for its omnidirectional
map. If we query an individual view v , there would then be a small discrepancy with
regard to the actual depth value. This difference is easily rectified during the fusion step
by taking the actual positions of v and v j into account.

3.4. RESULTS
We implemented our solution entirely on the GPU using the OpenGL API, with no CPU-
GPU communication at run time. We tested it on an NVIDIA GeForce GTX 1080 Ti in

3.4. RESULTS

3

39

0

200

400

600

800

1000

0E0 1E5 2E5 3E5 4E5 5E5 6E5 7E5 8E5 9E5 1E6

0

200

400

600

800

1000

0E0 1E5 2E5 3E5 4E5 5E5 6E5 7E5 8E5 9E5 1E6

0

200

400

600

800

1000

0E0 1E5 2E5 3E5 4E5 5E5 6E5 7E5 8E5 9E5 1E6

0

200

400

600

800

1000

0E0 1E5 2E5 3E5 4E5 5E5 6E5 7E5 8E5 9E5 1E6

Brute-force (1)

Brute-force (4)

Ours (4)

No view hierarchy (1)

No view hierarchy (4)

Ours (1)

Fr
am

e
ti

m
e

(m
s)

Number of views

Sponza scene

Number of views

Sibenik scene

Number of views Number of views

Hairball scene San Miguel scene

Fr
am

e
ti

m
e

(m
s)

Figure 3.10: View render timings for four scenes. We compare our method to not using a view hierarchy (Many-
LoDs [HREB11]). To test two distributions of views, we initialized the view set as 1- and 4-bounce VPLs. Ad-
ditionally, a brute-force sequential rasterization without any hierarchy is presented. Dotted lines represent an
extrapolation where data is missing due to memory limitations on the pair queue.

full HD. Unless otherwise specified, we made use of sparse voxel octrees with 11 levels
for both hierarchies. We use bounding sphere volumes encompassing the cubical voxels
for our culling and view equivalence computation. Further, we use a 16×16 resolution
for single views. At this resolution, multi-pixel filling is not necessary in practice and
therefore excluded in timings except when specifically mentioned.

The scene SVO is generated in a few seconds with an unoptimized depth peeling pre-
process [KSA13], which builds the hierarchy down to the specified maximum depth. We
consider more efficient voxelization as an orthogonal problem. Using more advanced
solutions [ED06, SS10] would significantly reduce construction time and even enable
animated scenes, since our many-view rendering is unaffected by changes in the hierar-
chies.

We construct the view hierarchy each frame and support fully dynamic lights. After
initialization with a root node, the view hierarchy is generated from a set of single views.
For each view, we refine the tree down to the deepest level, such that the view ends up in
a leaf node. We count the number of views per leaf node, which is then used to construct
an offset into a global array, containing all information about each view.

Many-View Rendering Performance We tested a total of four scenes: Sponza (Fig-
ures 3.1, 3.11 and 3.17, 6M leaf nodes), Sibenik (Figure 3.15, 3.1M leaf nodes), Hairball
(Figure 3.16, 6.9M leaf nodes), and San Miguel (Figure 3.18, 1.6M leaf nodes). As indi-
cated in Section 3.3, the views are rendered using an omnidirectional map with the same
coordinate system regardless of the view direction. In practice, we use dual paraboloid
maps [BAS02], which are the spherical expansion of a paraboloid map [HS98]. Each view
has a 180◦ frustum using a dual paraboloid mapping. We tested two view distributions

3

40 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

Single-bounce VPLs Randomly in space

Figure 3.11: Different distributions of 64K views in the Sponza scene.

of up to 1M views. The first are 1M VPLs generated directly from the light source, the
second are 4-bounce VPLs. Here, 256K VPLs were released from the light and bounced
three times, leaving one VPL behind at each bounce and at the final impact point.

We compare our timings to ManyLoDs [HREB11] and a brute-force rasterization,
which does not rely on any hierarchies. We also tested a solution with a view hierar-
chy but no scene hierarchy. However, the amount of pairs exceeded the available queue
memory as soon as more than a hundred views were used. For the same reason, we ex-
trapolate the obtained data with dotted lines in Figure 3.10.

Our approach achieves sublinear performance in all scenes, while competing meth-
ods show a clearly worse scalability with respect to the number of views. For a million
views, our solution outperforms ManyLoDs by roughly an order of magnitude. Single-
bounce VPLs in close proximity of a smaller part of the scene, like in the Sponza and San
Miguel scenes, have a high correlation and result in the largest speedup. In the worst
case, views are distributed randomly in space, reducing the coherence. We show this
extreme case for the Sponza scene in Figure 3.11, where the random distribution results
in rendering times a factor 4 slower. Still, we observe sublinear performance as we scale
up to many views. Naturally, if the number of views is sufficiently reduced, we lose op-
portunities for shared rendering, which causes our performance to roughly match that
of ManyLoDs for VPL numbers below 2048.

We break up our timings into individual components for 1M single-bounce VPLs in
Figure 3.12, and furthermore show performance for the view hierarchy construction,
which includes VPL placement. In our tests, culling reduces the frame time by 20% at
most, but at a very small cost (< 2 ms). In cases such as the Hairball scene, where each

0

100

200

300

400

500

Sponza Sibenik Hairball San Miguel
Culling Subdividing Rendering Fusion Filling View hierarchy

Fr
a

m
e

 t
im

e
 (

m
s)

Figure 3.12: Individual timings for 1M single-bounce VPLs in four scenes.

3.5. APPLICATIONS

3

41

1

2

4

8

16

32

64

128

256

512

2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9

256 views

256 no fusion

4K views

4K no fusion

64K views

64K no fusion

1M views

1M no fusion

Fr
am

e
ti

m
e

(m
s)

Shadow map resolution

Figure 3.13: Timings for many-view rendering with and without
fusion for increasing shadow map resolution in the Sponza scene.

VPL on the wall potentially sees the entire scene, culling provides no gain at all. In these
scenarios, the speedup is solely due to our double hierarchy and shared rendering.

Our method scales linearly with shadow map resolution. We can see in Figure 3.13
that for the Sponza scene, when the resolution doubles, the frame time for rendering
includes a constant overhead and then roughly scales with a factor 4, corresponding to
the increase in pixels. The fusion step is relatively cheap and only adds a small amount
of compute time. Without it, querying is an order of magnitude slower, since each query
visits a number of potentially sparse shadow maps, up to the hierarchy depth. For VPLs,
querying is often a bottleneck, which makes the fusion a valuable option.

We identify four components that take up significant GPU memory during runtime,
showing their consumption for 1M single-bounce VPLs in Figure 3.14. The pair queue
that is kept for the double hierarchy traversal contains 64 bits per pair. For the rendered
images themselves, we report consumption for fused 16×16 shadow maps with 32-bit
depth values. The scene and view hierarchies contain 512 and 256 bits of information
for non-leaf and leaf nodes, respectively.

0

800

1600

2400

3200

Sponza Sibenik Hairball San Miguel
Pair queue Shadow maps Scene hierarchy View hierarchy

M
em

o
ry

 (
M

B
)

Figure 3.14: Memory usage for 1M single-bounce VPLs in four scenes.

3.5. APPLICATIONS

Our algorithm is general but particularly well suited for low-resolution views or an ex-
treme amount of views, as the amount of shared information increases. For this reason,
real-time global illumination techniques are a good test case for our solution.

3

42 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

65536 views
82 ms total

31 ms SM

11 levels SVO 8 levels SVO

65536 views
53 ms total

7 ms SM

Figure 3.15: Effect of hierarchy resolution in the Sibenik scene. While the shadow map rendering cost is signif-
icantly reduced, using a too low hierarchy resolution causes inaccurate shadow maps, resulting in missed or
exaggerated occlusions and artifacts.

3.5.1. INSTANT RADIOSITY
In our implementation, VPLs and their view hierarchy are generated on the fly (see Fig-
ure 3.12 for timings), storing their propagated radiance as attributes. Each VPL has a
hemispherical frustum (φ=π/2), which is taken into account for our culling.

We rely on our MegaViews approach to generate shadow maps for many VPLs, but
producing a final image still requires gathering the VPL contributions for each screen
pixel. Recovering all contributions would be too costly for an interactive application.
Fortunately, our algorithm enables an acceleration. We can apply our culling during the
gathering step as well. For this traversal, we stop at a coarse level in the hierarchies,
and cull pairs as before. Additionally, we enable an optional distance-based cutoff to
prevent gathering from distant, often negligible VPLs, which is a common approxima-
tion [OBS∗15]. This test can be conveniently accelerated using the view hierarchy by
culling faraway view nodes.

We employ a per-pixel random subsampling of the VPLs, after which we apply a cross
bilateral filter [ED04, PSA∗04, MML12], which works well in generating smooth results
due to the very large number of VPLs that we sample from.

Timings To evaluate performance, we illustrate the effect of reducing the resolution
of the scene and view hierarchy for the Sibenik scene in Figure 3.15, while maintaining
64K 4-bounce VPLs. Reducing the scene hierarchy from 11 to only 8 levels speeds up the
shadow map generation (SM in the figure) from 31 ms to 7 ms due to the faster scene
traversal. Nevertheless, the resulting shadow maps lose precision, which translates to
missed or exaggerated occlusions. Consequently, artifacts start to appear. This effect is
also reflected by having around 15 times more leaf pairs that project to more than a pixel
and can therefore potentially introduce errors (Section 3.3.2).

The effect of changing the shadow map resolution is shown for the Hairball scene
in Figure 3.16, where we compare a 16×16 to a 1024×1024 resolution. For the higher

3.5. APPLICATIONS

3

43

18 views
1024 x 1024

72 ms

Reference

Bilateral filter
9 ms

Bilateral filter
9 ms

65536 views
16 x 16

72 ms

Figure 3.16: Effect of shadow map resolution in the Hairball scene.

resolution, an equal-time comparison results in 18 views. Such a small amount of views
cannot deliver a convincing quality. Low-resolution shadow maps are very fast to com-
pute, and can still deliver good quality, as the light energy is distributed across many
VPLs. However, we do see some over- and underestimation of occlusion due to the lower
precision of the shadow maps, when compared to a reference solution. These shortcom-
ings are not due to our method, but are shared by all VPL-based solutions when relying
on low-resolution shadow maps.

We also evaluate our culling and the distance-based cutoff during gathering. Here,
we use 64 random samples per pixel from 1M single-bounce VPLs for the Sponza scene,
which were all rendered using our solution. We can eliminate on average 94% of the leaf
view nodes during our concurrent traversal up to a hierarchy level of 6. Consequently,
mostly samples are used that actually contribute to a pixel’s indirect illumination. This

SSIM = 0.88
PSNR = 25.7 dB

SSIM = 0.68
PSNR = 19.6 dB

With VPL culling

No culling

Figure 3.17: Hierarchical culling in VPL gathering. By only sampling
from non-culled VPLs, noise is significantly reduced.

3

44 3. MEGAVIEWS: SCALABLE MANY-VIEW RENDERING

4096 particles
21 ms SM

125 ms total

65536 particles
184 ms SM

296 ms total

Figure 3.18: Examples of glowing particle rendering without (left) and with (right) shadows. By simply setting
the view volume to a sphere, we can render shadow maps for glowing particles.

significantly reduces the noise, as becomes apparent from the SSIM [WBSS04] and PSNR
comparison, where a higher SSIM value signifies increased perceptual similarity. Fig-
ure 3.17 shows a closeup comparison with absolute differences.

3.5.2. GLOWING PARTICLES
Similar to instant radiosity, we can perform many-light rendering. Again, we build the
view hierarchy on the lights each frame to enable animation. Our many-view rendering
enables us to efficiently approximate visibility for a large number of particles, which adds
realism to a scene when compared to not evaluating visibility.

Timings We show results for glowing particles in Figure 3.18. Since they represent
omnidirectional lights, each node’s view frustum is now a complete sphere, making it
impossible to use culling. Additionally, since the particles are randomly distributed in
space, performance is reduced compared to VPLs, since there is less coherence. In the
San Miguel scene, our solution requires 21 and 184 ms for rendering shadow maps for
4K and 64K particles, respectively.

3.6. DISCUSSION AND LIMITATIONS
Our method scales well with the amount of views and scene nodes. We presented sublin-
ear performance for both dimensions, which makes our solution very effective. Several
applications could benefit from our solution. We presented indirect illumination using
our method, but other examples, such as visibility for crowd simulation, fast collision
detection or reflections via cube maps are also among the possible applications. Our
method is relatively easy to implement and can be entirely executed on modern graphics
hardware in an efficient manner, since our hierarchy traversal ensures just one operation

3.7. CONCLUSION

3

45

per thread: either culling, rendering, or subdivision.

A limiting factor of our approach is memory consumption. The pair queue, which
often consumes the most (see Figure 3.14), requires only volatile memory. To reduce the
queue size, we can apply a multi-pass solution [RAH07] on either the full pipeline, or
by sequentially treating view hierarchy subdivisions. For instance, subdividing the view
root into octants reduces memory requirements by a factor up to 8. Additionally, tem-
poral coherence [HREB11] and aggressive approximation, such as allowing projections
to larger than a pixel, can further reduce the queue size. The renderings themselves can
be compressed using texture compression, sparse-texture extensions (typically 30% of
the fused omnidirectional map is non-filled), or, in the case of shadow maps, precision
reduction. For instance, the 32-bit depth values that we use can be reduced to 16 bits,
since their precision only needs to match the hierarchy resolution. When using SVOs,
the scene hierarchy can be compressed using directed acyclic graphs [DKB∗16, DSKA17],
while the view hierarchy overhead is typically negligible, since it is a sparse subset of the
scene hierarchy.

As for micro-rendering solutions, choosing a low resolution can lead to aliasing and
occlusions can be overestimated (e.g., sub-pixel objects still fill entire pixels). One rem-
edy is to increase resolution, but it results in additional compute time. While our ap-
proach scales linearly in resolution, adequate anti-aliasing solutions are an interesting
avenue for future work. Similarly, the resolution of the hierarchies needs to be care-
fully chosen to find an acceptable tradeoff between visual quality, and requirements on
performance and memory. In our experiments, we could no longer perceive a visual dif-
ference for hierarchy resolutions of 11 levels and more.

Furthermore, as in all VPL approaches, temporal coherence is an interesting factor.
It is possible to reuse information over time if scene and view changes are insignificant.
Our shared rendering solution seems like a good starting point by keeping high-level
omnidirectional maps in the hierarchy stable over several frames.

Our approach is compatible with a different parametrization of the omnidirectional
maps. Our choice was inspired by its usefulness in an instant radiosity context. An in-
teresting direction would be adaptively controlling the resolution based on the image
content.

3.7. CONCLUSION
We have presented MegaViews, a scalable algorithm to efficiently render complex scenes
from a very large number of viewpoints. Our concurrent traversal on both scene and
view hierarchies enables shared rendering and early culling. Consequently, we reach
sublinear performance over the scene complexity and the amount of views. Our algo-
rithm is general enough to be applied to many multi-view problems, and fits well with
real-time many-light rendering. For future work, we want to exploit coherence in anima-
tion. A first solution could reuse cuts from previous frames in the spirit of [HREB11].

4
REAL-TIME CANONICAL-ANGLE

VIEWS IN 3D VIRTUAL CITIES

Your life is your own.
Rise up and live it.

Terry Goodkind

Virtual city models are useful for navigation planning or the investigation of unknown
regions. However, existing rendering systems often fail to provide optimal views during the
exploration, introduce occlusions, or show the buildings from the top only, which limits
the amount of useful visual information accessible to the user. In consequence, users are
forced to interact more extensively with the application to avoid these shortcomings. This
process can be quite time-consuming. In this chapter, we propose a new technique based
on canonical views to address these problems. We compute every building’s canonical
view and, dynamically, transform it correspondingly, so that it is easy to identify under
all camera angles. A user study was conducted to assess how this technique compares to a
regular view; our method improves the recognizability of the buildings and helps the users
explore the virtual city more efficiently. The results indicate that using canonical views is
beneficial for efficient navigation in virtual cities.

Save for an extended introduction, this chapter is a verbatim copy of a publication in the proceedings of VMV:
Vision, Modeling & Visualization by Timothy R. Kol, Jingtang Liao and Elmar Eisemann [KLE14]. It was pre-
sented at VMV 2014 in Darmstadt, Germany. As for the distribution of work, I implemented and devised a large
part of the algorithm, came up with the modified depth test, and wrote much of the paper.

47

4

48 4. REAL-TIME CANONICAL-ANGLE VIEWS IN 3D VIRTUAL CITIES

Top view Our approach

Figure 4.1: Standard top-down views make buildings hard to recognize (left). Our interactive canonical view
reveals facades better, without causing confusion or overly unrealistic deformations. Our work facilitates nav-
igation and exploration.

4.1. INTRODUCTION

A LTHOUGH our realistic representation of virtual worlds works well, directly present-
ing the data as is does not always benefit user interaction. In this chapter, we there-

fore consider an illustrative approach to improve navigation. This can especially be ben-
eficial for 3D virtual city models, which are becoming more prevalent in numerous appli-
cations. Virtual cities play a role in the entertainment industry and visualization systems,
but also in navigation applications, tourist maps and for disaster management simula-
tions. An increasing number of tools are available to produce such models (e.g., Google
Earth), and the number of available models increases constantly.

Nonetheless, most navigation planning tools still rely on combinations of satellite
imagery, street-level views, and aerial photographs taken at a 45◦ angle, as each of these
alone has certain shortcomings. Satellite photographs give an excellent overview of the
city layout, but buildings are difficult to recognize from the top, while landmarks play a
significant role in memorizing and describing a route [Den97]. On the contrary, street-
level views fail in giving a global context, but ease recognition. When combined, users
need to divide their attention between two windows. Ultimately, 45◦ aerial photographs
seem to lead to a good compromise, but having only four viewing angles can lead to
visual clutter and occlusions of the street in dense areas, hindering successful navigation
planning. Similar problems persist for a full 3D visualization, which can still exhibit high
visual clutter (Figure 4.2), or, when moving towards a top-down view, can lead to reduced
recognition rates. Furthermore, finding appropriate 3D views can be difficult.

For landmark recognition, the viewing angle is important. Tourist maps often rely
on iconified versions of the landmarks using a specialized viewing angle, as there is a
strong preference for certain viewpoints in the context of object perception [EB92, VB95,
BTBV99]. The characteristic viewpoint that users are most comfortable with is called the
canonical view [PRC81]. Nonetheless, in a dynamic navigation environment, it is not
possible to maintain such a view while the user is freely navigating through the scene.

In this chapter, we modify the standard perspective to approach a canonical view by
ensuring a certain observation angle for each building (Figure 4.1). Hereby, we facilitate
recognition and orientation, making our algorithm useful for navigation tasks. Our work
makes the following contributions:

4.2. RELATED WORK

4

49

Figure 4.2: Manhattan as seen in GOOGLE EARTH with 3D buildings enabled. While impressive, note the large
amount of visual clutter that prevents users from discerning the street, rendering this view useless for naviga-
tion planning.

• a viewer exploiting canonical viewing angles for buildings;

• a transformation-conform depth test to avoid sorting; and

• a user study to determine preferred viewing angles.

4.2. RELATED WORK
Obtaining the canonical view of 3D objects [PRC81] has been an active research topic
for many years in computer graphics [DCG10, PPB∗05] as well as psychology and neu-
roscience [Pet00]. Originally, Palmer et al. [PRC81] indicated that the quality of a view
angle depends on both the visual information that is objectively available, as well as the
subjective importance of this information to the user. They found that participants had
a strong preference for off-axis views, such as the three-quarter perspective, showing
three sides of the object. Congruent results were obtained by [PHL92], who used com-
puter generated images instead of physical objects.

In this work, we focus on building-like structures. Many experiments were con-
ducted with unfamiliar [PHL92], abstract [EB92, CE94] or irrelevant [PH88, HPL91] ob-
jects. Even in extensive user studies carried out to determine influential object prop-
erties [BTBV99], the model coming closest to the shape of a building was a truck. One
conclusion that could be drawn was that the preferred viewing elevation is significantly
below 45◦ and depends on a complex interplay between the geometry, the user’s famil-
iarity with the object and the tasks to be performed [BTBV99]. Hence, a universally valid
view might not even exist [CE94].

Measures such as silhouette entropy and curvature entropy [PKS∗03], the visible area
and silhouette length [PPB∗05], mesh saliency [LVJ05], view entropy [VFSH01], or seman-
tics [MS09] have been proposed to determine best views. Some derivations might be
possible for particular objects, but as observable via recognition benchmarks [DCG10,
PPB∗05], no general solutions seem to exist. Consequently, Secord et al. [SLF∗11] fo-
cused on a selection of views per object, precomputed from a general model, while Ya-
mauchi et al. [YSY∗06] proposed to cluster a large set of uniformly sampled viewpoints

4

50 4. REAL-TIME CANONICAL-ANGLE VIEWS IN 3D VIRTUAL CITIES

Camera position

Preferred
camera
position

Figure 4.3: Pointing from the center of the bounding box top c to the preferred camera position is the vector ~vc
with elevation θc . Vector ~v is pointing from c to the actual camera position C, having an angle θ. We call the
difference between these angles the elevation offset θ∆.

into several centroids based on their similarity. Our work focuses on buildings, and de-
spite many different appearances, the basic shape is relatively consistent.

In contrast to the previous methods, our goal is not a viewpoint for a compact 3D
model, but an optimization of an entire city, in which each building is manipulated to
best convey its context and appearance. Other approaches pursued similar goals. Au-
tomatically generated tourist maps [GASP08] use optimized views of landmarks to fa-
cilitate orientation, but the views and 2D maps remain static. Semmo et al. [STKD12]
presented a mix to seamlessly transition between a 3D visualization and a 2D schematic
overview of a virtual city. In the 2D view, the landmarks are shown as billboards that
transform to regular 3D models when the user zooms in on the map. A different fu-
sion to combine pedestrian and bird’s eye views is to bend the city model [LTDJ08].
Furthermore, viewport variations can improve the perception of the spatial relations in
3D [JD08]. While both methods can be useful for navigation, they do not improve land-
mark views dynamically, which makes investigation tasks more difficult.

A real geometric transformation can make area-of-interest visualizations more suc-
cessful [MDWK08]. Similar to our method, they applied a shear transformation on build-
ings to reveal hidden facades in top-down views next to important streets, while distant
geometry remains unchanged. Our transformation however, is dynamically based on
the camera and optimizes for a determined viewing angle to produce a more preferable
view. In this way, it also differs from [QWC∗09], where landmarks were emphasized along
navigation routes, while widening relevant streets to prevent occlusion. While these pre-
vious results show the benefit of such modifications for navigation, the production of a
single view does not allow free exploration, which is supported in our solution.

4.3. CANONICAL VIEWS
Initially, we experimented with different visualization algorithms, but quickly discovered
that adhering to the strict definition of a canonical view would restrict interaction and
significantly reduce the realism of the resulting rendering, potentially even leading to
confusing temporal discontinuities. Therefore, we decided to impose two constraints on
the deformation of buildings. First, building footprints should remain fixed to give users

4.3. CANONICAL VIEWS

4

51

(a) Compute θ∆. (b) Project p0 on to
the bottom face to
obtain p′.

(c) Rotate p0 around
p′ to obtain p1.

(d) Project p1 along
~v to obtain p2 at the
height of p0.

(e) All of the vertices
transformed.

Figure 4.4: Schematic overview of the algorithm simulating a canonical angle, where the vertex p, denoted by
a green dot and originally at position p0, is transformed.

a good sense of the structure’s location and to prevent floating, which is typical for icon-
based maps. Second, we want to enable rotation around the building for exploration
purposes, hence we deliberately avoid fixing the view orientation to a three-quarter view.
Furthermore, we assume that the effect of the distance to the camera (i.e., the zoom) on
the canonical view is negligible, which is similar to assumptions made for tourist maps.

In consequence, optimal (i.e., preferred) views are derived from a canonical angle θc

per building, which is defined as follows. First, we assume a simpler shape by focusing
solely on the bounding box, which is also the shape we will use to derive a preferred view-
ing angle, making our approach less dependent on attributes such as building styles. The
angle of a box is then measured using spherical coordinates with the origin at the center
point c on the top (Figure 4.3). The goal of our algorithm is to measure this subtended
angle based on the bounding box and compare it to the canonical angle, to obtain a cor-
rective elevation offset, which is then transferred to the vertices of the actual building.

Specifically, the vector ~v pointing from c to the actual camera position C and the top
plane form an angle θ, which optimally should match θc . The difference between θ and
θc is the elevation offset θ∆, which will be used to adapt the building to achieve improved
viewing conditions. We will assume that the heights of the buildings are along the y-axis
and the buildings’ floors are parallel to the x,z-plane.

4.3.1. BUILDING TRANSFORMATION

To transform the building according to the canonical angle, we first compute the sub-
tended angle θ of the bounding box. Note that this value is negative if the camera is
positioned below c, i.e., C has a smaller y-coordinate than c. Next, by subtracting the
canonical angle, we obtain the corrective elevation offset θ∆ = θ−θc .

If θ∆ is negative, corresponding to a rotation towards the camera, we do not apply
our algorithm, as this would hide nearby facades instead of improving the view on the
model. If not, we rotate the box by θ∆ to establish the canonical angle. In other words,
given a vertex p at position p0, p is projected on the bounding box bottom resulting in
p′ (Figure 4.4b). Then, p0 is rotated around p′ in the opposite direction of ~v , i.e., away
from the camera, with a rotation angle of θ∆ (Figure 4.4c), leading to p1. Performing
this operation, the building is rotated to match the intended angle, but its base remains
static. This transformation respects the first constraint; the building footprint should
remain at the same location to avoid the impression of the building floating above the

4

52 4. REAL-TIME CANONICAL-ANGLE VIEWS IN 3D VIRTUAL CITIES

(a) In normal view. (b) All vertices are rotated. (c) All vertices are translated.

Figure 4.5: Transformation of a building in a city model. Note that this is the same top-down view as in (a), yet
the building is transformed in such a way that the viewing angle appears much more comfortable.

ground. Figure 4.5 illustrates the final result for a building in a city model.

Note that we use the vector ~v pointing from c to the camera position C throughout
our algorithm. We do not calculate a distinct ~v for every vertex, pointing from p0 to
the camera. This choice is useful to maintain consistency within the building. If we
rotate every vertex separately, parts of the object will rotate in different directions, as
demonstrated in Figure 4.6, which can lead to a confusing appearance.

We can establish an interesting link between the previous method and a well-known
operation; if we translate p1 in the direction of ~v until its y-coordinate matches p’s orig-
inal value (p2 in Figure 4.4d), only a small deviation is introduced with respect to the
rotation angle (stemming from the perspective projection), but the operation becomes a
simple shearing. The modification is visually negligible, but makes this operation linear
and easy to implement on graphics hardware. Furthermore, this insight will be key in
resolving the visibility relationships between the different buildings, as simply using the
deformed building’s geometry can lead to visual artifacts, as analyzed in the next section.

4.3.2. OCCLUSION TEST

We have seen that the angle can be optimized by applying a shearing transformation to
each building. Nonetheless, using a standard z-buffer can lead to occlusions that are
introduced by buildings that might now overlap; especially for low viewing angles (Fig-

(a) Using ~v = C−c. (b) Using ~v = C−p0.

Figure 4.6: Calculating ~v per vertex causes deformation.

4.3. CANONICAL VIEWS

4

53

(a) Unintuitive intersections may occur. (b) We solve this using a modified depth function.

Figure 4.7: Intersections may occur for low buildings standing very close to skyscrapers.

ure 4.7a), such situations are common. In theory, all buildings could be sorted and ren-
dered back to front, but this would be costly as it needs to be done per frame, and for
the structures within a building, like balconies, one would need to wipe the z-buffer af-
ter each building is rendered. In order to solve the visibility problem efficiently, a more
careful analysis is needed.

First, we will concentrate on the task of ordering the buildings with respect to each
other. Instead of using the standard z-buffer, we redefine the depth function as follows.
Conceptually, for each pixel, we cast a ray from the camera to the point on the trans-
formed building, and project this ray along the y-axis onto the x,z-plane. We then find
the intersections of this ray with the footprint of the building, and use the distance of
the closest intersection point to the camera as a depth function. This process is shown
in Figure 4.8. Our transformation algorithm ensures that each ray that reaches a trans-
formed building will, when projected to the x,z-plane, intersect an edge of the building’s
footprint. The only exception occurs when the corrective elevation offset θ∆ = 0. This
situation can be handled easily by introducing a small extension to the ray to ensure at
least one intersection.

It should be noted that we compute the actual footprints of the buildings in a pre-
processing step and write them to a file, which is read during initialization along with
the mesh file itself. The footprints are generally very lightweight, which makes it easy
to maintain real-time frame rates. The building footprints can be passed along to the
shader either compactly stored in a texture or as uniform variables. If necessary how-
ever, the footprints can always be simplified during the preprocessing step.

This modified depth function enables a correct per-pixel ordering of the buildings
for non-overlapping footprints, which is usually the case in city models. If footprints do
overlap, they should be considered as one building and fused. However, this approach
obviously produces artifacts due to the fact that the depth function only ensures cor-
rect ordering between buildings, without considering the order of the fragments inside
a given building.

To solve this problem, we rely on a two-step process. In the first pass, we discover for

4

54 4. REAL-TIME CANONICAL-ANGLE VIEWS IN 3D VIRTUAL CITIES

Figure 4.8: In this top-down view, the considered fragments for some pixel are shown as black squares. The
nearest intersections of this ray with the footprints are shown in red (other intersections are shown in white),
and their distance to the camera is used for the depth function. To find these points, a standard algorithm to
compute intersections in 2D for line segments is used.

each pixel which building should be rendered. To this extent, we make use of the modi-
fied depth function by computing the distance to the closest intersections. The buildings
are thus sorted per pixel according to their relative distance to the camera, and we draw
each building with a unique ID to derive a mask that helps us resolve occlusion issues.
In the next pass, we make use of the standard z-buffer, but add a check in the fragment
shader, in which we rely on the previously determined mask to find out which building
the currently drawn pixel should be associated with. If the given fragment comes from
a different building, we simply discard it to prevent intersections. Since this second z-
buffer test relies on a standard depth function, artifacts are avoided and occlusions are
correctly handled, as is shown in Figure 4.7b.

4.3.3. OBTAINING THE CANONICAL ANGLE

To find an optimal canonical angle, we relied on a small user study involving eight par-
ticipants. We showed a bounding box with varying ratios on the screen, resized to fit into
a sphere of radius one at the origin. A camera with a 60◦ opening angle was placed at a
distance to the observed object to roughly match the sphere’s projection on the screen
in pixels. While the box was automatically rotating around the y-axis, we allowed the
users to change the angle θ subtended by the bounding box and the camera, as defined
previously. Each user performed the test for a total of 64 boxes of varying size ratios, as
indicated in Figure 4.9.

A slight correlation between the canonical angle and dimension ratios can be seen,
but, especially for very differing dimensions, we observed a high variance. This result is
not surprising, seeing as we rotate the camera around the bounding box. Thus, for these
extreme cases, the building can appear very small seen from one side, but extremely
stretched from another, producing rather uncertain results. Nonetheless, for larger x/z-
ratios, there seems to be a tendency that the preferred camera angle is lowered slightly,
which makes sense, as it leads to views that reveal more of the elongated side. Similarly,
the canonical angle increases when the object height grows in the y-direction. This ob-
servation seems to reflect that the view for tall objects should be more from above to be
able to see the whole box.

4.4. RESULTS

4

55

8

0.6

1

8
ratio y/z ra

tio
 x/z

elevation (rad)

0.3
0.0 1

8

0.6

1

8

0.3
0.0 1

8

0.6

1

8

0.3
0.0 1

Figure 4.9: Results of our user test on the canonical angle. Here, three subjects are shown to illustrate the strong
variance. The ratio changes influence the relative height (y) and aspect (x) of the building.

Overall, we considered the results too noisy to draw general conclusions. In the-
ory, this seems to imply that each user should define a personalized canonical angle.
Nonetheless, to ease implementation and avoid such a configuration step, we decided
to investigate the use of an average canonical angle, namely θc = 0.273 radians (15.6◦),
which already leads to an improved performance in several scenarios (see Section 4.4.1).

Ultimately, a differing preferred angle does not imply that any adaptation is un-
wanted. It seems that some users simply preferred more drastic degrees of adaptation,
which is also illustrated in the user study, showing that the results using the fixed angle
are still generally preferred over a standard illustration.

4.4. RESULTS
The implementation of our algorithm easily reaches real-time rates – only a few basic
operations are required per building in the vertex shader at each frame. On a desktop
computer with an Intel Core i7 3.7 GHz CPU and an NVIDIA GeForce GTX 980 Titan
GPU, for a city model of 40K triangles with approximately 300 objects, all images were
generated in far beyond real-time rates. Results of our algorithm are given in Figure 4.10
as well as in the various examples showcased throughout the chapter.

4.4.1. EVALUATION
To assess the impact of our algorithm on navigation planning and investigation tasks,
we conducted two user studies. The first user study tested the effect of our algorithm on
assisting users in finding buildings in a virtual city model, while the second test focused
on its effect on memorizing navigation paths within the same virtual city. All tests were
performed with the aforementioned equipment.

Figure 4.10: Renderings using the canonical view. We show in each the same scene rendered using the normal
view (left) and the canonical view (right).

4

56 4. REAL-TIME CANONICAL-ANGLE VIEWS IN 3D VIRTUAL CITIES

Mean
Standard Deviation

Regular Canonical

10

9

8

7

6

5

4

3

2

1

0

Figure 4.11: User rating of all 24 participants on their own performance using the regular and canonical views
for finding buildings, showing the means and standard deviations, with confidence intervals of p = 0.05.

In total, 24 participants with normal or corrected-to-normal vision, with ages ranging
from 23 to 34, participated in our first user study, which took 30 minutes per user. The
second study featured a comparable group of 12 participants, taking 15 minutes per user.

4.4.2. FINDING BUILDINGS USING THE CANONICAL VIEW
The first task was to find a building in a city model consisting of 300 buildings of different
sizes and shapes, as illustrated throughout the chapter. The target building to be found
was shown in a separate window. Participants were asked to navigate through the city in
free camera mode, clicking on the object when they thought they had found it. We timed
how long the users took before successfully identifying the object.

In total, users had to perform 12 of these recognition tasks for different buildings at
distinct locations. We toggled the canonical view after every task, and varied the canon-
ical view and the order of buildings between participants to ensure unbiased results.

This task turned out to be very demanding. Initially, it is not known in which direc-
tion to move, causing participants to move in the direction of, or away from, the tar-
get building. This led to longer recognition times for some participants, resulting in a
high variance. There was still a 7% improvement in the timings for the canonical view.
Nonetheless, the result was not significant due to the high variance.

For this reason, we also conducted a subjective study which was presented to the
users right after the experiments. They rated themselves on a scale from 0 to 10 for their
performance in finding the buildings using the normal and the canonical view. The re-
sults of this evaluation are shown in Figure 4.11, which shows a preference for the canon-
ical view and a relatively low standard deviation. This indicates that users rank their per-
formance significantly higher for our algorithm than for a regular camera model. Fur-
thermore, participants indicated that they were not confused by the viewing algorithm,
and that the canonical view felt quite intuitive.

4.4.3. MEMORIZING ROUTES
The second evaluation focused on navigation planning. We showed 12 participants a
video of a route in our city model two times, after which they were asked to follow the
same route themselves, with the camera constrained to the roads. This time, we alter-
nated between a regular top-down view, a canonical top-down view, and a street-level

4.4. RESULTS

4

57

0

10

20

30

40

50

60

70 Canonical Normal Street-level

Mean Median

Navigation time (sec)

Figure 4.12: The mean and median time it took the 12 users to arrive at the endpoint of the memorized route.

view for the preview videos. In total, three navigation tasks had to be performed, with a
different route and preview video every time. We switched the order of routes around for
unbiased results.

When users took a wrong turn, we immediately notified them, but also introduced a
5-second penalty. By timing how long it took the participants to arrive at the endpoint of
the route, we obtained the results shown in Figure 4.12. Showing the preview videos in
canonical view or street-level view led to slightly better results regarding the navigation
time. However, street-level views always have the disadvantage of not showing the whole
context. For memorizing a route this may work, but efficiently planning complicated
routes is simply not possible, and getting lost might be riskier.

The most interesting result of this user study however, was the amount of wrong
turns that were taken given the respective preview videos. We kept track of which partic-
ipants went the wrong way, and found that for the canonical view, only two users failed
to memorize the route. For the street-level view, three out of 12 users got lost, while
for the regular top-down view, half of all participants took a wrong turn. This indicates
that our algorithm significantly improves the ability to memorize a route in compari-
son to a standard top-down view. Finally, when asked about their preferred view for
these preview videos, half the users opted for the canonical view algorithm, three picked
the street-level perspective and one the regular top-down view. Two indicated that they
would prefer a combination of the canonical view with the street-level or regular view.

4.4.4. DISCUSSION
The nature of our algorithm causes buildings to shear in a different direction very sud-
denly when traversing over them from a top-down view. This is due to the fact that the
direction of~v changes immediately. While we experimented with smoothing these tran-
sitions, such a solution diminishes the canonical view and results in a limited facade
visibility when viewing a building from the top, which was one of the main problems we
were aiming to solve. We also investigated shrinking the roofs, but this led to confusing
configurations and negative user remarks.

Our current viewing algorithm does not seem to confuse participants and is some-
times even relatively subtle. Only when toggling back to a regular view did some of the
users realize that there was an actual deformation applied, but they did immediately no-
tice the loss of visual information. Furthermore, when keeping the camera above the

4

58 4. REAL-TIME CANONICAL-ANGLE VIEWS IN 3D VIRTUAL CITIES

(a) Street in regular view. (b) With canonical view.

Figure 4.13: Buildings are transformed away from the camera, which always prevents the street from being
occluded when the camera is straight above it.

street, all houses will always fold outwards in a top-down view, giving a better overview
of the street than with a regular view (Figure 4.13). In navigation applications, one could
imagine constraining the camera to be located above the street to ensure this behavior.

Our algorithm produces transformed objects that are close to the canonical view,
but as it is a shearing transformation, the roof is only translated. Nonetheless, a rotation
of the roof would not be a good solution; when looking at a building in three-quarter
view, it would result in deformations at the edges of the structure. Due to our shearing
operation, such unwanted deformations are avoided, as demonstrated in Figure 4.14.

One may think of other, simpler methods to transform the buildings. One option is
to simply widen the field of view. However, this causes all objects to appear significantly
deformed, and results in a lot of occlusions. Another way is to rotate all vertices around
the center of the bounding box’s bottom face. We have implemented this method for the
sake of comparison; however, it leads to severe deformations, resulting in the buildings
being significantly stretched and sometimes even difficult to recognize.

(a) Additional rotation of the roof. (b) Result with our view algorithm.

Figure 4.14: Rotating the roof causes deformation at the edges of the building.

4.5. CONCLUSIONS AND FUTURE WORK

4

59

(a) θc = 45◦. (b) θc = 15◦.

Figure 4.15: The algorithm can be easily parameterized by supplying a canonical angle corresponding to the
user’s preference.

Overall, our approach has several interesting properties. The visualization seems
clear without causing confusion, buildings approach canonical views without restricting
navigation, a location on a street is never occluded when in focus, and the algorithm is
parameterizable, in the sense that users can apply angle preferences (Figure 4.15).

4.5. CONCLUSIONS AND FUTURE WORK
We have presented a system to apply canonical views to buildings in 3D virtual cities
without restrictions on the viewpoint. The technique dynamically transforms objects in
real time based on the current camera position. Our algorithm rotates buildings away
from the camera in top-down views, which reveals facades that are otherwise hidden.
The transformation is easily parameterizable, allowing users to choose their own pre-
ferred canonical angle. User tests indicate that our viewing tool is subtle and does not
cause significant confusion, and improves the recognizability of buildings while also be-
ing beneficial for navigation planning in the context of route memorization tasks. In the
future, we would like to investigate more dimensions, including distance and orienta-
tion, when examining the influence of the canonical angle.

5
EXPRESSIVE SINGLE SCATTERING

FOR LIGHT SHAFT STYLIZATION

It does not do to dwell on dreams and forget to live.

J. K. Rowling

Light scattering in participating media is a natural phenomenon that is increasingly fea-
tured in movies and games, as it is visually pleasing and lends realism to a scene. In art,
it may further be used to express a certain mood or emphasize objects. Here, artists often
rely on stylization when creating scattering effects, not only because of the complexity of
physically correct scattering, but also to increase expressiveness. Little research, however,
focuses on artistically influencing the simulation of the scattering process in a virtual 3D
scene. In this chapter, we propose novel stylization techniques, enabling artists to change
the appearance of single scattering effects such as light shafts. Users can add, remove, or
enhance light shafts using occluder manipulation. The colors of the light shafts can be
stylized and animated using easily modifiable transfer functions. Alternatively, our sys-
tem can optimize a light map given a simple user input for a number of desired views
in the 3D world. Finally, we enable artists to control the heterogeneity of the underlying
medium. Our stylized scattering solution is easy to use and compatible with standard ren-
dering pipelines. It works for animated scenes and can be executed in real time to provide
the artist with quick feedback.

Save for an extended introduction, this chapter is a verbatim copy of a publication in the IEEE Transactions
on Visualization and Computer Graphics 23, 7 (2017), by Timothy R. Kol, Oliver Klehm, Hans-Peter Seidel and
Elmar Eisemann [KKSE17], extending a publication in the proceedings of GI: Graphics Interface by the same
authors, presented at GI 2015 in Halifax, Canada [KKSE15]. As for the distribution of work, I implemented and
devised the majority of the generated results, came up with the idea and implementation of the heterogeneity
modification and animated transfer functions, wrote much of the GI paper, and nearly all of the TVCG paper.

61

5

62 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Scattering with original occluder

Scattering component Scattering component

Scattering with occluder manipulation

Figure 5.1: Example of our stylized scattering. Left: physically correct single scattering using the original oc-
cluders. The leaves of the tree block most of the light, causing a rather subtle effect. Right: stylized scattering
with occluder manipulation. Using our system, an artist can easily add holes into the shadow map of the tree,
producing more pronounced scattering effects. While physically incorrect, it is not obvious for the viewer that
the right image uses fake occlusion information. Surface shadows are created from the original shadow map.

5.1. INTRODUCTION

R EALISTIC lighting, like the global illumination presented in Chapter 3, is crucial for
many applications in computer graphics. However, the desired appearance may be

subject to an artist’s preferences. While a physically correct simulation is often a good
starting point, we need artistic representations to further facilitate expressiveness. Be-
sides global illumination, the scattering of light is another natural phenomenon that can
drastically change the look of a scene. It occurs when light travels through a participat-
ing medium, such as air, where it can interact with particles. Among the most dominant
effects caused by scattering are crepuscular rays, which are best described as being no
more than light shafts. Light shafts not only add realism and spatial cues for a better
scene understanding, but can also serve artistic purposes. They are visually pleasing,
and therefore frequently found in art pieces, where they have a history of being stylized
rather than being physically correct.

Figure 5.2 shows two pieces of art that illustrate some ways in which scattering can
be stylized. In the left image, light shafts are used to emphasize the sailboat, a technique
that is common in comics and animation movies to highlight a focus object. For this
painting, the harshness of the lighting is particularly striking, as most real-world light
shaft boundaries are rather smooth. In this sense there is a clear contrast between the
upper light shaft, that exhibits a smooth behavior, and the lower part, which is more
pronounced and clearly highlights the object of interest.

In the right image, light shafts seem to be added and removed at will, taking little note
of solid objects that would normally block the light, such as the group of trees on the left.
The color of the light shafts seems to vary between green and yellow hues in a physically
incorrect but appealing manner. Another point of interest is that, unlike in the image
on the left, the light shafts have a rather irregular appearance. While perhaps somewhat
exaggerated here, this effect can also occur in nature due to a medium being heteroge-
neous, which means that the scattering particles are not uniformly distributed, creating
a spatially varying density. Note that both images look plausible and visually pleasing,
despite the physically incorrect light shafts and the fact that they do not correlate with

5.1. INTRODUCTION

5

63

Figure 5.2: Example of stylized scattering in (concept) art. Left: the light shafts have a very sharp boundary in
order to emphasize the sailboat. Source: Roberto Gatto (www.robertogattoart.com); used with permission.
Right: light shafts seem to start and stop in mid-air for no clear reason other than aesthetics. Source: Jonas De
Ro (www.jonasdero.be); used with permission.

surface shadows. It can be concluded that for artists, stylization of light shafts is more
of a rule than an exception, and serves an important role in many artworks. Further,
stylized scattering does not necessarily produce confusing or implausible results. Such
manipulations seem widely accepted, and may not even be noticed by the untrained ob-
server.

Since the dawn of computer graphics, however, most research in scattering has fo-
cused on efficiently obtaining physically correct and realistic images. For a realistic scat-
tering process, light shafts manifest as follows; when light illuminates an optically thin
participating medium like air, it often bounces off particles before reaching the eye. If
a single bounce occurs, the process is called single scattering. Visually, the medium
through which the light travels is lit. However, when part of the light is blocked by an
object – which we call an occluder – before it bounces, it cannot be scattered towards the
viewer and these areas appear darker.

Simulating single scattering in homogeneous media can be achieved with real-time
performance [CBDJ11, KSE14]. As in nature, light shafts depend on the scene layout
and not on any specific scene element, which makes stylization difficult as the appear-
ance cannot be modified directly. In consequence, there is a need for specialized ren-
dering techniques to enable direct and easy artistic control, but very few algorithms ex-
ists [NJS∗11, KISE13].

Our work offers new ways of modifying light scattering to produce effects similar to
the aforementioned stylization used in art. Hereby, we hope to give artists more free-
dom, enabling them to carry on the trend of stylized scattering from more traditional art
to video games and film effects. We employ three manipulation concepts in our work.
First, we introduce occluder manipulation, which allows the user to add and remove light
shafts (Figure 5.2, right) or sharpen them (Figure 5.2, left) . Figure 5.1 illustrates the addi-
tion of light shafts, which leads to a brightened scene and additional details, influencing
the appearance significantly. Second, our algorithm provides simple controls to achieve
various styles, expressive color changes, and mood alterations in a scene. For this, we
introduce two techniques: transfer functions and light map optimization. Third, we in-
troduce a solution to control the heterogeneity of the medium by enabling interactive
changes of the volume’s properties.

www.robertogattoart.com
www.jonasdero.be

5

64 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

As with most artistic tools, it is crucial that users receive interactive feedback to ex-
plore possible parameter choices. For this reason, we focus on real-time methods. Our
high-level definitions enable the transfer of a general style to scenes with different geom-
etry, camera, and light settings, and support animation. Hereby, we introduce effective
means for controlling the scattering in 3D scenes for interactive applications.

Specifically, our work makes the following contributions:

• light shaft addition, removal, and enhancement using image-based occluder ma-
nipulation;

• light shaft color changes via user-editable transfer functions based on view ray
properties, and light map optimization based on user-drawn strokes;

• light shaft irregularity by controlling the medium’s heterogeneity with a 3D paint-
ing tool; and

• light shaft animation through dynamic occluder manipulation, and key-framed
transfer functions for animated scenes.

5.2. RELATED WORK
Cinematic relighting [PVL∗05, RKKS∗07] generally gives artists the possibility to predict
the final rendering in order to support them in tasks such as lighting design and material
definitions. However, the underlying calculations in these systems are usually physically
correct, and the possibilities for stylization are often restricted to the scene.

5.2.1. GENERAL STYLIZATION
In recent years, solutions to influence physics for the purpose of expressiveness have re-
ceived increasing attention and there are several approaches to stylize natural phenom-
ena. Modifications of the light transport [OKP∗08, KPD10, STPP09], shadows [MIW13,
DCFR07, ASDW14, PŠNB13], caustics [GSLM∗08], motion blur [SSBG10], or depth of
field [LES09], have been proposed to significantly influence the appearance of a scene
and to guide the observer to specific regions of interest. Similarly, other stylization tech-
niques have been demonstrated for focus control [CDF∗06]. For a detailed exposition of
similar work on appearance and lighting editing, we refer to a recent overview [SPN∗16].

5.2.2. STYLIZED SCATTERING
Regarding scattering stylization, only a few approaches have been suggested. Artistic
beams [NJS∗11] let the user modify individual light rays by influencing shape, falloff, and
color. The modifications are used to find a plausible, optimized mapping to properties
of the participating medium. Treating light rays individually can be advantageous, but
global control becomes more time-consuming and difficult. In contrast, our stylization
method uses parameters derived from scattering to directly map to the final result.

One can also rely on a set of painted input images to find the optimal volume pa-
rameters to best match the provided target images [KISE13]. In this case, the volume
parameters are stored in a voxel grid, which limits the possible resolution and perfor-
mance, despite the employment of an efficient process. Furthermore, defining the input

5.2. RELATED WORK

5

65

requires a certain artistic skill, and the final rendering is bound by the actual physical
process, limiting the potential expressiveness.

Furthermore, Hašan and Ramamoorthi [HR13] presented a method for efficiently
re-rendering a scene for which the volume’s single scattering albedo values have been
modified. While stylized scattering is an application, their approach focuses rather on
increasing the performance of re-rendering, and not so much on design and stylization
tools. Moreover, they require a computationally expensive pre-process due to taking the
full light transport for dense volumes into account, while we aim for real-time solutions
for single scattering in optically thin media.

In our solution, we want to make it easy to define plausible results, but also enable
more expressive solutions, potentially leaving the physical behavior. For this, efficient
computation is key to allow artists to rapidly explore various options. Hence, we focus
on existing real-time solutions for single scattering. There are several options for effi-
cient computation of single scattering; min-max mipmaps [CBDJ11], voxelized shadow
volumes [Wym11], shadow volumes based on shadow maps [BSA10], or prefiltered single
scattering [KSE14]. While approaches for multiple scattering exist [ERDS14], their preci-
sion is still relatively low due to the use of a coarse grid, which is why we concentrate on
single scattering only.

5.2.3. SPECIFIC TECHNIQUES

Occluder manipulation as a possible means of stylization has been applied before in the
form of proxy geometries to modify light transport in a scene. Schmidt et al. [SNM∗13]
introduced the idea of path-proxy linking, defining invisible copies of scene objects,
which are modified using affine transformations and only affect a certain individual
component of the light transport, such as shadows. While we also modify occluders to
change scattering behavior, we propose specialized and parameterizable manipulation
methods that are useful for stylization. To this end, we manipulate occluders using mor-
phological operators and work in the space of a 2D shadow map as this efficiently gives
direct control over creating, removing, and enhancing light shafts.

A change in color is often achieved by the use of transfer functions, such as for sur-
face shading [BTM06] or volume visualization [GMY11]. Unlike in volume visualiza-
tion [GMY11], we do not input medium properties at a point in space, but evaluate
scattering-related values along the view ray as parameters for our transfer functions.
Alternatively, we propose a light map optimization that employs inverse rendering, a
general concept that derives scene parameters from 2D user input. Schoeneman et
al. [SDS∗93] were first to optimize light properties (intensity and color) in a least-squares
sense to satisfy user-defined target images. Klehm et al. [KISE14] applied the concept to
environmental illumination of heterogeneous media. We focus on the special case of
thin homogeneous media and optimize a light map for a directional light source. In
contrast to the aforementioned work, users only draw strokes to define light shaft colors
instead of a full image.

Due to performance constraints, heterogeneous media have received limited atten-
tion for real-time applications. Zhou et al. [ZHG∗07] proposed a composition of simple

5

66 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

radial basis functions. This approach, despite limiting the amount of detail of the het-
erogeneity, allows for easy designing of a heterogeneous medium by placing the radial
basis functions with the aid of a brush and eraser. However, the focus lies on an approx-
imation of the physically correct result and uses an analytic model to evaluate the basis
functions. Instead of designing a volumetric element, we use heterogeneity to locally
enhance the indirect effect of light shafts.

5.3. REAL-TIME SCATTERING BACKGROUND
Before discussing our algorithm, we will first give a brief introduction to single scattering.
Radiance caused by single scattering from a single directional light towards a camera at
x from direction ωi is computed by integrating the view ray up to the first visible surface
at distance s:

Lscat(x,ωi) =σtρ f
∫ s

0
e−tσt V (xt)L̃i(xt) d t , (5.1)

assuming a homogeneous medium with extinction coefficient σt, scattering albedo ρ,
and constant phase function f . L̃i(xt) denotes the unoccluded, incoming light at the
scattering point and V (xt) the corresponding visibility from the light source. Note that
we skip attenuation from the light source to the sampling point xt , as this results in com-
plete attenuation for a directional light source located at infinity.

Factoring out visibility [BCRK∗10, CBDJ11, Wym11, KSE14] is a common approxima-
tion, which we also identify as a useful parameter for stylization purposes. The equation
then becomes:

Lscat(x,ωi) =σtρ f
∫ s

0
e−tσt L̃i(xt) d t s−1

∫ s

0
V (xt) d t . (5.2)

The first integral can be computed analytically [PP09] for a variety of light sources and
is typically assumed to be constant for a directional light source. The second integral
represents an average visibility and can be computed efficiently with an image-based
solution, using a shadow map rendered from the light source, and a depth map rendered
from the camera. Given a pixel in the image from the camera, its underlying depth value
(distance to surface s) and point x define a segment in space, along which the visibil-
ity should be integrated. Using a ray marching process on the shadow map along this
segment, the light visibility V (xt) for each of these positions can be tested with a sim-
ple shadow map lookup. While being conceptually simple, this approach is not very
efficient. Various acceleration methods [BCRK∗10, CBDJ11, Wym11, KSE14] have been
proposed, and we use the solutions by Chen et al. [CBDJ11] and Klehm et al. [KSE14],
which work comparably well and are executed on a shadow map. In all examples, we
use the Henyey-Greenstein phase function for scattering to increase the initial physical
correctness. However, other choices (even a simple constant) would be valid, too.

5.4. STYLIZED SINGLE SCATTERING
Our method consists of three major techniques to perform scattering stylization, which
can also be combined. The first modifies occluders in order to influence the scattering

5.4. STYLIZED SINGLE SCATTERING

5

67

Original
shadow map

2D dilation 1D epipolar
dilation

Erosionor

Figure 5.3: Morphological filtering. Top: rendering a torus with directional light coming straight from the
top with the unmodified (left) and hole-filled (right) shadow map. Bottom: shadow maps. From left to right:
original shadow map; 2D dilation; 1D epipolar dilation; subsequent erosion, which for this particular scene
yields identical results for both dilations.

appearance by enhancing, adding, or removing light shafts. The second technique con-
sists in the colorization of light shafts. We enable the definition of a transfer function
that can be used to drastically influence color, brightness, and contrast. We rely on val-
ues (e.g., scene depth) derived along the view ray to define the final output color. As
an alternative to the transfer function, the light shaft colors can also be modified by a
light map optimization, driven by strokes drawn by the user. The third technique fo-
cuses on giving the light shafts a more irregular look by using an efficient algorithm to
approximate a heterogeneous medium. The heterogeneity can be manipulated in mul-
tiple ways using a 3D painting tool. In the following, we will give an overview of these
three techniques.

5.4.1. OCCLUDER MANIPULATION
The main observation is that the appearance of single scattering in a scene largely de-
pends on the number, size, and contrast of light shafts. They become visible due to dif-
ferences in the light visibility along neighboring view rays (i.e., screen pixels). These
differences are often caused by openings in the occluder (i.e., holes through which the
light can shine), such as a gap in the clouds. Our system enables artists to modify light
shafts by editing the shadow map, which is used to capture the occluders in the scene.
Here, we present the various modification options.

HOLE FILLING

Physically-based scattering can sometimes produce unwanted effects. As an example,
while the left image in Figure 5.13 is visually pleasing, the tiny light shafts along the
ground give a somewhat chaotic nature to this otherwise serene scene. To appreciate the
image more, we remove these distracting details caused by small holes in the occluders.
By closing holes, we reduce the trees’ emphasis and simplify the light shaft appearance.

For this hole filling, we make use of an image-based approach in which we directly
modify the shadow map used for the scattering evaluation. One solution for hole filling
is the use of 2D morphological filters. More precisely, a closure operation is applied,
consisting of a dilation followed by an erosion (both are elementary operators). A dilation
in the shadow map replaces a value by the minimum in a certain neighborhood, whereas

5

68 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Original shadow map Hole-�lled result

Figure 5.4: Hole filling applied to the shadow map of the Palm tree scene.
Left: original shadow map. Right: result using a kernel size of 10 pixels.

an erosion replaces a value by the maximum. All holes that are removed in this way
lead to the elimination of the corresponding light shafts. For illustration, an exaggerated
example is shown in Figure 5.3, where we remove the entire hole in the torus.

One important factor is the neighborhood to be considered around each pixel, often
referred to as the filter kernel. Traditionally, a square or circle is applied; per default,
we use the latter. We let the user control the kernel size, which defines the strength of
the hole filling process. The resulting shadow map for the Palm tree scene is shown in
Figure 5.4.

Silhouette Enhancement We have shown how to remove details from the scattering
result, but in some cases the opposite is desired. If scattering is very subtle, an artist may
want more prominent light shafts; e.g., as in the middle image in Figure 5.13. To this
extent, we can take an approach very similar to hole filling to enhance light shafts caused
by the silhouette of an object. The idea is to extrude objects along the view rays, hereby
increasing their thickness. We achieve the extrusion by a 1D dilation in the shadow map
away from the epipole (the camera position projected onto the shadow map). Hereby,
the occluder extension is always hidden by the object itself, as the camera only sees the
first surface. However, the object’s volumetric shadow is increased, as the extrusion is
usually visible from the light source.

The 1D epipolar dilation works as follows. For each texel t , we construct a 1D ker-
nel along the line in the shadow map from t towards the epipole l . A standard dilation
computes the minimum of all samples within the kernel; however, this does not satisfy
the required extrusion from the camera position, as it effectively extrudes points in the
plane orthogonal to the light direction. To solve this, we need to consider the changing
z-coordinate along the view ray, which forms a sloped filter kernel. Thus, we modify the
new depth z ′

t of t given an input sample s as follows:

z ′
t = min(zt ,

dis2D(t , l)

dis2D(s, l)
(zs − zl)+ zl), (5.3)

with dis2D(t , l) denoting the 2D distance between texel t and epipole l as projected on
the shadow map, with zt and zs the depth values of t and s in the shadow map, and zl

the z-coordinate of the epipole l . This results in a mix of zs and zl modulated by the
ratio between the distances t to l and s to l . This value, as per the definition of a dilation,
is used only if it is lower than the current lowest depth value zt (hence, the min). The

5.4. STYLIZED SINGLE SCATTERING

5

69

Kernel[[

Figure 5.5: 1D epipolar dilation. Areas between the parallel light rays represent texels, with the black horizontal
bars denoting their depth in the shadow map. A 1D kernel (of size 5 in this example) is constructed for texel t
with depth zt . Given the epipole l with depth zl , the whole kernel is sampled and Equation 5.3 is applied (red
horizontal bars). The minimum value z′t is in this case found for the sample s with depth zs .

process is illustrated in Figure 5.5.

When applied, the enhancement of the light shafts is twofold. First, the 1D epipo-
lar dilation fills holes, removing small light shafts. Second, as the extrusion process is
aligned with the view rays, it increases contrast between neighboring pixels, leading to
sharper boundaries, as seen on the left in Figure 5.2. In consequence, occluders block
more light as they are effectively larger and the contrast difference between light shafts
is pronounced. Figure 5.6 shows the resulting shadow map for the Scarecrow scene.

Original shadow map Silhouette-enhanced result

Figure 5.6: Silhouette enhancement applied to the shadow map of the
Scarecrow scene. Left: original shadow map. Right: result using a kernel
size of 100 pixels; the object is visibly extruded in the view direction.

Hole Creation Silhouette enhancement makes the light shafts more prominent, but to
obtain a visible effect, sufficient light shafts need to be present in the scene. Situations
can occur where this is not the case, like in the right image in Figure 5.13. Here, only
a few light shafts fall through the flowerbed, creating only subtle scattering, no matter
how much silhouette enhancement is applied. Yet an artist may want more light to burst
through the flowers. For this reason, besides removal, we also offer a solution to add ad-
ditional light shafts. In contrast to the previous hole filling operation, we instead create
random holes, the result of which can also be seen in the teaser. Two simple steps are
applied: we first generate a hole map and subsequently use it as a mask to modify the

5

70 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Perlin noise Hole map Shadow map Holes added

Figure 5.7: Hole creation results are shown in Figure 5.1. Left to right: Perlin noise with a user-defined fre-
quency; thresholding with a user-defined hole probability; original shadow map of the tree; shadow map with
holes created from the hole map.

rendering of a shadow map.

The hole creation process is steered by various parameters to influence the average
size, number, and density of the holes. In order to avoid perfectly uniform holes, for
which the resulting light shafts can look too regular, we make use of Perlin noise [Per85].
By using a thresholding operation, we can transform it into a binary mask exhibiting ran-
domization in shape, which we use as our hole map. Given some 2D texture coordinates
t , the binary mask has a value of H(t) given by

H(t) =
{

0 if N (t g f) ≥ h

1 otherwise
, (5.4)

with h the user-defined hole probability or threshold value, g the Perlin noise gradient
grid size, f the user-defined frequency, and N (q), for q = t g f , given by

N (q) =
o−1∑
i=0

p i P (q)

max(1,o − i −1)
, (5.5)

where o is the number of user-defined octaves, p the user-defined persistence and P (q)
the classical 2D Perlin noise. The process is illustrated in Figure 5.7, where Perlin noise
is created with parameters f = 0.3, p = 0.5, and o = 5, which is then thresholded using a
hole probability h = 0.5, which results in the displayed hole map.

There are several ways to apply the hole map to influence visibility queries. Typically,
we want to limit the effect of holes to pre-defined objects and the following solutions
are only applied to those objects. One way is to discard fragments in the shader when
rendering the shadow map if they belong to one of the pre-defined objects and the hole
map value is 1 at their location. Alternatively, we render the objects in a separate shadow
map and apply a max composition with the hole map. Basically, a hole is defined by
pushing the depth values at a certain location to 1, i.e., the far plane. However, in this
case, shading calculations have to test visibility against two shadow maps. While the first
method is more elegant, the latter may be easier to integrate into an existing pipeline and
makes a local adaptation of resolution per object possible.

Using Perlin noise naturally enables animation, for which we use a two-step lookup.
First, a time-based offset is used to rotate the sample point before reading the value. We
then use the resulting noise value as an offset to the original sample point and perform

5.4. STYLIZED SINGLE SCATTERING

5

71

Original shadow map Hole-created result

Figure 5.8: Animated hole creation applied to the shadow map of the Flowerbed scene. Left: original shadow
map. Right: resulting shadow map. Note that in this case, the hole creation was also applied on the ground,
which may give strange results depending on the viewpoint. As mentioned before, we simply solve this by
using two shadow maps and compositing them later on when necessary.

an additional noise lookup. Effectively, we apply a time-dependent noise to the lookup
position, which causes an apparent global movement of the holes, but also a change in
their size and structure. Hereby, a time-based rotation proved to give appealing results,
while keeping the overall appearance consistent. Using this technique, we can simulate
the effect of leaves moving in the wind or fake the notion of movement through par-
ticipating media. Figure 5.8 shows the result when applied to the shadow map of the
Flowerbed scene.

While this method might seem mostly unsuitable for solid objects, under certain
conditions, e.g., to emphasize a character or simulate motion (Figure 5.9), it can still
be useful. The main application area is still on less recognizable shapes, such as foliage
or other detailed geometry.

Original scattering Hole creation applied

Figure 5.9: Hole creation applied to solid objects. Left: the original image. Right: image obtained by creating
holes in the shadow map. Top: emphasizing a character. Bottom: simulating motion.

5

72 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Figure 5.10: Different layer types supported by our TF editor: solid, gradient, diffusion, and image layers.

5.4.2. COLOR MODIFICATIONS

Typically, the resulting color of volumetric scattering is defined by the color of the light
source or albedo of the scattering volume (see Equation 5.1). We propose two orthogonal
techniques that enable users to colorize light shafts individually: transfer functions and
optimized light maps. Both approaches target a goal-driven editing experience, where
the user directly specifies color sets.

Transfer Functions Transfer functions are an effective way to influence the light shaft
colors. More specifically, a transfer function (TF) maps the properties of a view ray (ef-
fectively a pixel) to the scattering component’s output color. In order to make their def-
inition easy to specify for the user, we focus on a mapping of two parameters to a color.
Consequently, the transfer function can be defined by a 2D texture, similar to the X-Toon
approach [BTM06]. In this way, a TF is also not limited to a single scene; instead, it is
possible to transfer the mood caused by a TF to another scene.

As a view ray is uniquely defined by its underlying pixel, an artist can easily influence
the entire scene appearance in a consistent and effective way by defining and modifying
a transfer function. As an example, an artist might want a certain set of pixels with similar
properties to change to an orange color for stylization purposes, which can easily be
achieved by a transfer function. To this extent, the properties along a ray would simply
be mapped to the desired color.

In practice, we use the average visibility along the view ray and the linearized depth
of the first surface as parameters for influencing the scattering component’s color. Based
on these parameters, when using a gradient in the transfer function, the result remains
plausible, as the two parameters are often used in realistic approaches as well. Further,
please note that these values are along the view ray so that we rely on 3D information;
otherwise the stylization would appear to be a 2D overlay, which becomes very apparent
when the camera moves. We also tested other parameters, such as the average position
of visible samples along the view ray, and the angle between the view ray and light direc-
tion, but these seem more difficult to use and are therefore not included in our results.

Artists are able to interactively design the TF in our framework to explore various
possibilities in real time. The on-the-fly editing of the TF texture uses a painting utility
based on layers. In our prototype, solid colors, gradients, images, and special diffusion
layers are supported (see Figure 5.10), which can be blended to produce the final TF,
using multiplicative, additive, or alpha blending.

Diffusion layers contain constraints, consisting of a position in the TF texture, a color,
and an alpha value. The user can place constraints anywhere in the texture, whose axes
represent the parameter domain of the TF. The constraints are diffused throughout the

5.4. STYLIZED SINGLE SCATTERING

5

73

TF’s over time

Figure 5.11: A sunrise created using several transfer functions in the Terrain scene. Top: resulting scattering.
Bottom: corresponding TFs due to linear interpolation between five user-defined TFs. It can be seen that
key-framing the TF easily extends color modifications of light shafts to the time domain.

entire layer similar to diffusion curves [OBB∗13]. A single constraint results in a uni-
form color, two produce a gradient, and more create complex color combinations, like
the third image in Figure 5.10. Additionally, other diffusion constraints could be inte-
grated [BEDT10]. For stacked layers, alpha blending is guided by the alpha values of the
constraints. This diffusion creates smooth transitions in parameter space and, thus, all
pixels in the scene with similar parameters change similarly. This property makes it eas-
ier to produce consistent definitions and renders the tool very effective.

However, defining the TF directly in parameter space can be cumbersome, and it
may be more desirable to define scattering directly at a point in space. For this reason,
an artist can simply select a location by clicking on the screen to define a corresponding
3D constraint. The constraint’s position in parameter space is computed by querying
the pixel’s underlying view ray parameters, and the user can choose the color constraint
to be placed in the transfer function. Additionally, we allow the recovery of the underly-
ing position in the scene. This position is expressed in barycentric triangle coordinates,
which makes it possible to project the point in each frame to the screen and move the
constraint accordingly in the parameter space of the transfer function. To further extend
the support of dynamic scenes, we also introduce key-framed transfer functions to pro-
duce stylized animations by smoothly interpolating between the TFs defined over time.
In this way, expressive scattering can be extended to dynamic scenes, which is especially
interesting for pre-defined scene animations, e.g., an in-game cut-scene with a known
camera path. Figure 5.11 shows this technique to produce a sunrise in the Terrain scene.

Finally, the stylization can be used in combination with a standard scattering model;
here, the TF can be monochrome, to serve as a modulator of the scene appearance, while
the light color is defined by the source itself. Consequently, surface lighting and scatter-
ing remain consistent.

Light Map Optimization Our approach also offers control over light color and, thus,
the color of light shafts for a directional light source. A light map stores the light’s color
for a given angular direction (in case of a directional source, it can be interpreted as a
projection of a texture in the scene). By only influencing the light emission, the results
remain physically plausible, which can be a desirable goal in certain situations.

Formally, a light map defines the spatial variation of the unoccluded incoming light
L̃i(xt) in Equation 5.1. At a point x the light color is determined by projecting the point

5

74 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

into light space and performing a texture lookup using its x, y coordinates. As before, we
focus on directional light. Hence, the light space is defined via an orthographic projec-
tion along the light direction. In principle, it could be the same transformation as the
shadow map of the light source, but we allow an independent definition to make a dif-
fering resolution and focus possible.

We face two main challenges when using such light maps to stylize light shafts. First,
there is no intuitive link between individual texels of a light map and the colors perceived
after the scattering. Second, we target the creation of a static light map for the entire
scene; i.e., for every possible view. Light shafts, however, are highly view-dependent,
which in case of static illumination (and thus a view-independent light map), leads to
an over-constrained problem. We solve these issues by using an optimization scheme
to find a light map, which fulfills the user constraints for a given set of input views as
well as possible. In other words, for a given view, the user can draw simple color strokes
to express a desired color for the seen light shafts (top row in Figure 5.17). When all
constraints have been collected, we apply an approach similar to the one proposed by
Klehm et al. [KISE14] to derive an optimal light map.

Formally, we treat the strokes in the user-defined views as a collection of N constraint
pixels. Given the corresponding view, a pixel with index k ∈ [1, N] corresponds to a ray
(origin xk and direction ωk). The stroke’s color to which the pixel belongs defines the
desired color Lk

desired. While we want to enable users to define colors, we do not want
them to provide exact scattering results. Instead, we multiply the painted color with the
value that would be obtained for a white light map. Lk := Lk

desired Lwhite
scat (xk ,ωk). Hence,

the color definition is independent of any shading effects. Our goal is to derive RGB
color values Le(s, t) for the texels of a light map such that rendering with the light map,
yields the expected scattering result Lscat(xk ,ωk), which should match the target value:
Lk = Lscat(xk ,ωk).

Stacking the texels of the light map in a vector~x := (. . . ,Li
e, . . .)> and the user indica-

tions (as defined above) in a vector~b := (. . . ,Lk , . . .)> defining the target radiance values,
we can describe the light transport in form of a linear dependency: T~x =~b, where the
values of T are fully described by Equation 5.1. Unfortunately, it is unlikely that a general
solution exists, which would satisfy all equations at once. A simple example is a checker-
board, which cannot be achieved by modifying the light map alone, as light shafts always
become darker the farther they are away from the light source. Hence, we opt for a com-
promise by finding a solution in the least-squares sense: T>T~x = T>~b. Accordingly, the
optimal~x is found by minimizing the quadratic function f (~x) = 1

2 ||T~x−~b||2 with gradient

∇ f (~x) = T>(T~x −~b).

While any off-the-shelf optimizer can be used, we employ an iterative conjugate
gradient method [She94] to find the optimal ~x. The advantage of a conjugate gradient
method is that matrix T does not need to be stored explicitly and we can easily employ
the GPU. We only need to be able to compute the matrix-vector multiplications T~x and
T>~b. T~x corresponds to evaluating the same equations as for rendering with the light
map~x, while the term T>~b is an inversion; i.e., pixel values are back-projected onto the
light map. While the standard rendering process reads a light map value at each march-

5.4. STYLIZED SINGLE SCATTERING

5

75

ing step to accumulate in-scattered light, the back-projection to compute T>~b writes the
pixel value~bk modulated by the scattering weights to the light map. For the j th marching
step with step size t for pixel k, the scattering weight is T[k, j] = T>[j ,k] = ρ f V (x j)e− j tσt

(cf. Equation 5.1) with x j = xk + j tωk . The equation being quadratic, the solution is
unique, and we can initialize our light map with a constant.

While the underlying process of the light map optimization is more involved in com-
parison to the use of transfer functions, this complexity is completely hidden from the
user. The approach maintains physical plausibility and is easily controlled via a paint-
ing metaphor, in which users can freely decide on the viewpoints and strokes they paint,
leading to a spatially varying control.

5.4.3. HETEROGENEITY MODIFICATION
As illustrated on the right in Figure 5.2, light shaft irregularity – caused by a heteroge-
neous medium – plays an important role for stylization. We aim to enable artistic control
over the heterogeneity, for which we propose three stylization concepts: first, denoting
for locations in the scene to what extent they exhibit heterogeneity; second, controlling
the variation and patterns in these irregular areas with locally varying frequencies; and
finally, indicating the scattering intensity for scene locations.

In order to apply these concepts, we first need to address the way in which we will
represent heterogeneity. A naive representation would define the medium in a fine 3D
grid that contains a spatially varying extinction coefficient. To compute the final scatter-
ing, the grid is then sampled using ray marching, simultaneously resolving the visibility
(cf. Equation 5.1). For high-quality light shafts, we would need a substantial amount of
sample points to avoid discretization artifacts in the visibility sampling, which would
yield low performance, but efficient solutions for heterogeneous media are currently
lacking. Instead, we make use of two approximations. First, we apply heterogeneity
in a post-process by modulating the homogeneous result, which delivers a pleasing ap-
pearance. Second, we observe that heterogeneity in thin media does not lead to strong
high-frequency changes, which allows us to coarsely sample this information, making it
possible to use a coarser grid.

In practice, we consider a 2563 grid, the noise volume, filled with 3D Perlin noise val-
ues between 0 and 1, like its 2D counterpart described in Section 5.4.1. Note the shadow
map resolution is typically much higher. To compute a pixel’s final color, we multiply
the scattering result Lscat (see Equation 5.2) by the average heterogeneity h(x,ωi) for this
view ray, obtained from ray marching through the noise volume (Figure 5.12):

L̂scat(x,ωi) = Lscat(x,ωi) h(x,ωi)

h(x,ωi) := s−1
∫ s

0
N (xt) d t .

To stylize this result, we define three blending volumes, which control the amount of
heterogeneity, the noise frequency, and the scattering intensity:

h(x,ωi) :=
∫ s

0
I (xt) (α(xt)N (xt , f (xt))+ (1−α(xt))) d t .

5

76 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Homogeneity Approximated heterogeneity

Figure 5.12: Comparison between using a homogeneous medium (left) and our
heterogeneity approximation (right) in the San Miguel scene.

The heterogeneity blending volume defines the linear interpolation α between the
values obtained from the noise volume and a constant homogeneity. The noise fre-
quency blending volume influences the noise frequency by defining f , the mipmap level
used to look up the noise. Hereby, local noise modifications become possible, while the
actual Perlin noise parameters can be used to define a global control of variations and
patterns in the heterogeneity. Finally, the intensity blending volume defines I , which
scales the overall scattering contribution.

The blending weight volumes are modified via a 3D painting tool consisting of a slid-
ing plane orthogonal to the camera direction, which the user can move along its normal.
An ellipsoidal brush and eraser, with a user-controlled size, opacity and hardness, are
available to draw on this plane, which produces a 3D splat in the selected blend vol-
ume. Note that the noise and blending volumes can be baked into one volume to make
rendering more efficient.

5.5. RESULTS AND DISCUSSION
To assess our methods, we present our stylization results below. As our methods are
executed on the fly, we also discuss performance and the applied optimizations.

5.5.1. STYLIZATION
Occluder Manipulation Figure 5.13 demonstrates occluder manipulations. The Palm
tree scene exhibits many small light shafts that are especially noticeable under camera
animation. Using our closure operation to fill holes in the shadow map, we can effec-
tively remove small light shafts. Note that the 2D filter can cause artificial occlusions in
mid-air due to the extension of the occluders into empty space, which can produce sub-
tle dark halos around objects. Alternatively, one could use a 1D epipolar closure, which
forces the occlusion to be behind visible scene objects. Nonetheless, in practice, this ar-
tifact goes usually unnoticed (as in the Palm tree scene).

The Scarecrow scene (Figure 5.13, center) demonstrates the enhancement of light
shaft edges using a 1D epipolar dilation. Here, the effect is used to increase a feeling of
fear and leads to an emphasis of the object. A similar harshness is often used in comics
to illustrate activity and stress the importance of an object. As the technique practically
removes some of the scattering, it may darken the image slightly, which can be compen-
sated for using a transfer function. Such a combination is shown in Figure 5.16.

Finally, hole creation enables artists to add light shafts, as illustrated in the Flowerbed

5.5. RESULTS AND DISCUSSION

5

77

Original scattering

Stylized scattering

Figure 5.13: Stylized scattering applied on the Palm tree, Scarecrow and Flowerbed scenes using our occluder
manipulation tools. Top: original images with physically-based scattering. Bottom: resulting images. From
left to right: hole filling, silhouette enhancement and hole creation.

scene (Figure 5.13, right). Objects that initially exhibit a set of complex light shafts can
profit from this operation. As discussed in Section 5.4.1, the Perlin noise parameters can
be modified to match the intended appearance. Figure 5.14 shows the effect of different
parameters on the teaser’s example scene. Small holes (bottom) can be reduced in size
until they average out due to the integration along the view ray, while large holes (top)
can drastically simplify the scattering appearance. The control supplied by these pa-
rameters enables transitioning between physically plausible scattering with the original
occluders, and the exaggerated alternatives. The complex geometry of the tree makes
the hole creation process appear very natural. In general, we expect hole creation to be
mostly applied in similar situations.

Color Modifications Transfer functions make it possible to achieve quick and impres-
sive changes in the overall appearance of the scattering process by defining colors inde-
pendently of surface, light, or medium parameters. These modifications enable artists
to quickly redefine the mood of a scene, as illustrated in Figure 5.15. Here, the TF cre-

Number of holes

Av
er

ag
e

ho
le

 s
iz

e

Figure 5.14: Effect of Perlin noise parameters on the resulting scattering.

5

78 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Avg. vis.

D
ep

th

Result

ResultOriginal

Original Depth

Avg. vis.

Depth

Avg. vis.

ResultOriginal Depth

Avg. vis.

Figure 5.15: Expressiveness of transfer functions. Physically-based scattering (left) is stylized (right) using a TF
(inset), which is parametrized by the average visibility and linearized depth of the view rays (center).

ates an alarming atmosphere in the scenes by adding multiple colors with strong edges
between them leading to quantization effects in the resulting scattering. Figure 5.15 also
illustrates the possibility to transfer a given style from one scene to the next; the Terrain
scene’s TF can directly be used to stylize two others. Additionally, the Playground and
City scenes are both examples of how stylized scattering can emphasize an object.

In general, all our techniques can be used in combination to achieve a complex inter-
play. Occluder manipulation coupled with TFs is shown in the Turtle scene (Figure 5.16).
The initial shot exhibits an unlucky overlap of occluders (head, body and hind fins). An
artist may want to edit the scattering to put more emphasis on the actual object and
remove attention from the light shafts. The 2D morphological filtering closes the hole

Avg. vis.

D
ep

th

Avg. vis.

D
ep

th

TF TF

Hole �lling

Figure 5.16: Combined use of occluder manipulation and TFs in the Turtle scene. From left to right: the original
image; hole filling unifies the hind fins; a simple TF is applied to reduce the darkness of the shadow; another
TF is used to remove the dark patch on the turtle’s body.

5.5. RESULTS AND DISCUSSION

5

79

Figure 5.17: Coloring light shafts with light map optimization in the Citadel scene. Top: three views in which a
user has drawn colors. Middle row: resulting images, which display light shafts that correspond to the specified
colors. Bottom: two intermediate views are shown, which demonstrate a smooth blending and fadeout of the
colors. The light map that was generated with this user input is shown in the center.

between the hind fins, which gives the light shafts a more simplified appearance. Then,
a TF enables reducing the shadows, while keeping a plausible scattering appearance.
Taking it further, we can use a TF to remove the potentially distracting dark stripe on the
body caused by the shadow of the head, as the pixels in this area have similar average
visibility and scene depth.

Figure 5.17 shows an example of light shaft coloring via our light map optimization.
Here, colors are drawn by a user for three different views of the Citadel scene. Based on
this input, we generate a light map as shown in the bottom center. Using this map for
the scattering computation gives us the results shown in the middle row, which exhibit
colored light shafts matching the user-defined indications. Note that our optimization
scheme ensures that the light shafts are colored as specified by the user, despite a po-

Original scattering Our heterogeneity approximation Our painted result

Figure 5.18: Heterogeneity modification in the Dinosaur scene. From left to right: the original scattering pro-
duces regular light shafts; heterogeneity is approximated using 3D Perlin noise, which creates more irregular
scattering effects and gives the medium a distinguishable volumetric structure; using our 3D painting tool, we
can remove unwanted details that are due to heterogeneity, while retaining the irregularity of the light shafts.

5

80 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

Original scattering Our painted result

Figure 5.19: The scattering intensity can also be controlled using our 3D painting tool. Here, the
unwanted saturation in the upper left corner is removed to reveal more of the vines’ details.

tential overlap. Some red and white light also becomes visible in the right image, where
the user did not specify any constraints. If this is an undesired side effect, it could be
rectified by additional edits.

Transfer functions and light map optimization are complementary techniques for
light shaft colorization; while the former is better suited for controlling the general mood
of a scene, and can even be transferred to other scenes, the latter is of more use in specific
scenarios and eases local changes.

Heterogeneity Modification Our heterogeneity approach is demonstrated for the Di-
nosaur scene in Figure 5.18. Here, we define the trade-off between heterogeneity and
homogeneity directly via a painting approach in 3D. First, the background in the mid-
dle image was chosen and its homogeneity increased to avoid distracting details in the
medium (in the upper part of the image), which would have taken emphasis from the
dinosaur skeletons. Note that the irregularity of the light shafts in the lower part of the
image is maintained.

Modulating the scattering intensity can also be beneficial in many scenarios. Such a
change is illustrated for the Arbor scene (Figure 5.19), where overexposed areas are toned
down, resulting in a more pleasant image.

To produce a result in the spirit of the right image in Figure 5.2, we can combine
modifications of all three blend volumes (Figure 5.20). Here, we drastically increase the

Original scattering Our painted result

Figure 5.20: Combination of painting in all three blend volumes. Left: original image using a homogeneous
medium. Right: the painted result.

5.5. RESULTS AND DISCUSSION

5

81

scattering intensity between the houses to simulate fog, as well as for the light shafts
caused by the opening of the citadel wall – the latter are also modified to be fully homo-
geneous to avoid distracting details. Furthermore, we use a higher noise frequency for
parts of the background to simulate chimney smoke.

5.5.2. PERFORMANCE

Table 5.1: Performance (in ms) of our prototype for the Tree scene in Figure 5.1, rendered in full HD for different
shadow map (SM) sizes. Measurements for hole creation include Perlin noise creation and SM modification.
A TF for color stylization is indexed using the depth map of a G-buffer [ST90] as well as the view ray’s average
visibility. Using an acceleration method like the one from Klehm et al. [KSE14] is required as naive ray marching
is an order of magnitude slower (67.8ms for full HD and 1024 marching steps).

SM Size SM Creation Holes G-buffer Visibility TF

5122 1.3 0.1 4.0 1.6 0.2
10242 1.6 0.3 3.9 2.5 0.2
20482 4.0 1.4 4.1 4.6 0.2

Table 5.2: Performance (in ms) for hole filling for the Tree scene of Figure 5.1, rendered in full HD for different
SM and kernel sizes. As we work in image space, the kernel size needs to be adapted to the SM size as well
as the content. The right-most column gives an indication of how many holes are filled for the given SM and
kernel size.

SM Size 2D Closure 1D Epipolar Closure Filled
Kernel Filtering Kernel Filtering

5122 11 1.1 15 0.6 All
5122 21 3.7 30 1.1 All
5122 41 13.3 60 1.9 All

10242 11 4.5 15 1.7 Most
10242 21 15.4 30 2.9 All
10242 41 56.7 60 5.2 All
20482 11 18.0 15 5.4 Many
20482 21 60.9 30 9.3 Most
20482 41 222 60 16.8 All

Occluder manipulation and transfer functions work in image space, with the former
directly modifying the shadow map that is used for the scattering computation. Image
space has several benefits over object space. The performance does not depend on geo-
metric detail or scene complexity and the methodology is well suited for today’s parallel
hardware. Furthermore, operations such as hole filling are easy to perform, because the
neighborhood of objects is automatically resolved. Tables 5.1 and 5.2 show performance
measurements on an NVIDIA GeForce GTX 980 Titan in full HD for occluder manipula-
tion and pipeline steps for computing and coloring light shafts.

As we have shown, computing single scattering in homogeneous media is possible
at high frame rates using specialized and efficient techniques that circumvent naive ray
marching. However, to approximate heterogeneity, we need ray marching to evaluate the
spatially varying scattering intensity along the view ray. When directly applying a march-

5

82 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

2048 marching steps (117 ms)64 marching steps (4.03 ms)

16 marching steps (0.95 ms)

4 marching steps (0.29 ms)

Di�erence (x5)

Di�erence (x5)

Figure 5.21: Effect of marching steps using our heterogeneity approximation. Timings obtained in full HD. Top:
result with 64 steps and reference image with 2048 marching steps (no difference image because it is identical
to the reference). Middle: result with 16 steps and the corresponding difference to the reference, multiplied by
5 for illustration. Bottom: result with 4 steps and the corresponding difference image.

ing process, consisting of several thousand steps per pixel, it becomes the bottleneck in
our framework. As discussed in Section 5.4.3, we mitigate this problem by out-factoring
the intensity, which allows us to cut down the number of marching steps. Figure 5.21
shows results for multiple numbers of marching steps.

While 2048 marching steps do not create improved results in a 2563 volume, it in-
dicates the high costs that would arise if not relying on any approximation. Even at 16
steps, our approximation results in a reasonable visual quality. Only at 4 steps, the results
are no longer acceptable. In practice, we use 64 steps, which is 29 times faster compared
to 2048 steps, and easily reaches real-time performance.

An additional acceleration is possible without a significant quality loss by using up-
sampling based on the depth map [YSL08]. The approach works well because hetero-
geneity produces smooth effects. Figure 5.22 shows 4x and 16x upsampling using 64
marching steps. For 4x upsampling the difference is negligible, but uses 16 times less
pixels. Visible artifacts only occur for higher upsampling rates, such as 16x (reduction by
a factor of 256). The speedup is 13 times using 4x upsampling, leading to real-time rates
without discernible quality loss.

The light map optimization in Figure 5.17 computes in 2.04 seconds, quick enough
to allow for interactive editing. Here, we painted a total of 41240 constraint pixels from 3
different views. The resolution of the light map was set to 512×512 with a correspond-
ing shadow map of size 512× 512 and a ray marching procedure with 768 steps. The
optimization converges after 32 conjugate gradient iterations.

5.6. CONCLUSION

5

83

Original scatteringOur heterogeneity
approximation (4.26 ms)

4x upsampling (0.327 ms)

16x upsampling (0.0678 ms)

Di�erence (x25)

Di�erence (x25)

Figure 5.22: Effect of 2D upsampling using our heterogeneity approximation. Timings obtained in full HD.
Top: reference image without upsampling and the original scattering. Middle: 4x upsampling result, and the
corresponding difference to the reference, multiplied by 25 for illustration. Bottom: 16x upsampling result,
and the corresponding difference image.

5.5.3. DISCUSSION

In our results, we use directional light only, as light shafts are generally caused by the
sun, both in virtual scenes (see Figure 5.2) and real life, for which directional light is
a good approximation. However, the methods presented can be extended to support
non-directional light as well, as they pose no additional requirements on the light source
besides the presence of a shadow map. Furthermore, while we only support single scat-
tering, this suffices for optically thin media where light shafts occur. Additionally, we can
approximate a heterogeneous medium, enabling further applications of our techniques.
In summary, our methods cover all practical and important use cases of light shafts.

To assess the practical usefulness of our methods, we consulted two professional pro-
duction artists working in the visual effects industry. They said light shafts are very com-
mon in production, and used as a stylistic tool or mood changer, for which artistic con-
trol is essential. However, only limited and laborious approaches exist to control them,
such as placing large proxy objects, or entirely faking them in post-processing. For this
reason, our tool was enthusiastically received, and considered to be easy to use with a
good level of parameter control. Requests were even made to make it into a product.

5.6. CONCLUSION
We have presented several strategies to stylize volumetric single scattering, overcoming
the difficulty that light shafts depend on the layout of an entire environment. Our ap-
proach is compatible with animated scenes and relies on very efficient solutions, which
makes it ready to be used for real-time applications, and enables a quick exploration of

5

84 5. EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION

the various settings. The techniques are applied at a global scope – i.e., for the whole
scene – but can also be used to make local changes to the scattering behavior.

Image-based occluder manipulations modify the complexity of the scattering ap-
pearance and are controlled by only a few parameters. Transfer functions allow us to in-
teractively design a general mood and the result can even be transferred to other scenes.
As an alternative, users can design a light map to modify the light emittance by relying
on an optimization process which ensures that user-defined constraints are respected,
which are defined using a painting metaphor. Furthermore, we employ an efficient algo-
rithm to approximate heterogeneity and enable the control of scattering intensity, noise
frequency, and the heterogeneity ratio. Finally, our solution supports key-framed ani-
mation to steer the stylization over time.

Our system makes a step towards designing scattering behavior, but leaves room
for future work via additional object-focus strategies, stylization techniques for multi-
ple scattering, or more advanced transfer function parameters.

6
CONCLUSION

All we have to decide is what to do with the time that is given us.

J. R. R. Tolkien

N OWADAYS, in the games and visual effects industries, tremendous amounts of re-
sources are allocated solely for the purpose of creating and representing virtual en-

vironments. Indeed, virtual worlds receive a proportionally growing amount of atten-
tion. They serve as more than just a backdrop for stories or gameplay; they can paint
a mood, elicit emotional responses, spark the imagination, and tell stories themselves.
Their appearance determines how we perceive the application. For these reasons, vir-
tual worlds will continue to play a crucial role in future computer graphics research.
With the size and complexity of virtual environments continuing to grow faster than our
hardware capabilities, many research problems arise. In this dissertation, we have barely
scratched the surface of these challenges, which is why in the following, we discuss ad-
ditional research directions in the context of virtual worlds. Finally, we discuss how the
contributions presented in each chapter can be linked together for several applications.

An aspect that still requires a lot of manual labor is the creation of virtual worlds.
This causes it to be a major bottleneck in many production pipelines. While there is a
vast body of research on procedural content generation, its application is still limited to
simple scenarios such as terrains, road networks and building exteriors. To enable the
generation of complex virtual environments, we believe that more advanced techniques
are required, likely based on deep learning rather than rule-based approaches, and rely-
ing on semantic input, possibly even in the form of narratives.

After content generation, automated or not, there is almost always a need for man-
ual adjustments, which can be as laborious. For instance, artists working in the top-
tier visual effects company Double Negative confirmed this was the case for effects such
as light shafts. In this context of light behavior, we have touched upon the concept of

85

6

86 6. CONCLUSION

manipulating existing worlds in this dissertation in Chapter 5. For geometric modifica-
tions too, however, we need efficient manipulation tools, so that users can immediately
see the results. One solution is to store the transformations instead of directly applying
them. This is particularly beneficial for underlying representations where modifications
would form critical bottlenecks. For our storage method from Chapter 2, for example,
transformations could be stored in subtrees, and applied during raytracing, rather than
recomputing the entire structure.

We face similar challenges regarding the employed content storage method. When
working with complex virtual environments, the memory footprint quickly grows to an
unfeasible size, as we have extensively discussed for voxel-based approaches in Chap-
ter 2. One insight that can be applied beyond our voxel structures, is that while virtual
worlds come in countless different shapes, we have observed that they generally share
a similar property. Namely, as they grow more complex, they tend to exhibit more rep-
etition. This may seem counterintuitive at a macroscopic level, but when you zoom in,
we typically find a lot of repeating structures. A real-world analogy is a city in compar-
ison to a single house. While the city is more diverse, the fine geometry of the house is
shared by many other buildings. This means that even though the city is much larger, we
do not necessarily require a proportional amount of data to represent it. Still, we realize
that there is always a limit to how much the data can be compressed, and the resulting
footprint may simply not allow in-core storage. To scale up for such scenes, we need
to either use out-of-core solutions that stream in the relevant data, or even split up the
environment into parts that are independently processed. We see opportunities for im-
provement in the data stream selection by using a prediction of the most likely parts that
are needed next, and a perceptual analysis.

Perception-based selection of the data to stream mainly relates to the associated level
of detail (LoD). Indeed, for large-scale scenes, making use of multiple LoDs and a proper
selection thereof, are of crucial importance; otherwise, showing the whole scene from
afar would not be possible. We believe that LoD selection can be significantly improved
by analyzing the perceptual difference that two distinct LoDs offer in the final visualiza-
tion; our simple test from Chapter 3, where we compute if a scene element projects to
less than a pixel, could be made much less conservative, while still producing nearly in-
distinguishable results. To enhance LoD selection, we first need structures that contain
these LoDs. With triangle meshes still being ubiquitous in real-time applications, we
see displacement mapping as a crucial tool to achieve this. However, we believe a trend
towards storage methods where the LoD is inherently encoded in the data structure is
imminent. Our SVO-based representation in Chapter 2 is an example of such a struc-
ture; by selecting a level in the tree, the LoD is directly selected as well, as every level
is a refinement of the one above. We show already an application in Chapter 3, where
directly obtaining this implicit LoD is vital for the algorithm.

The technique from Chapter 3 produces realistic representations, but as research
into realism slowly starts to saturate, we predict a growing interest from the commu-
nity for alternative representations as well, where human perception will play a big role.
This can relate to wanting users to perceive the virtual world in a certain way, as we dis-

6

87

cuss in Chapter 5, improving user understanding, as in Chapter 4, or even exploiting the
weaknesses of the human visual system, as we partly do with our attribute quantization
in Chapter 2. For perceptual graphics in general, we expect personalization to become
an important research topic. While everyone’s eyes are normally biologically very sim-
ilar, our brains often interpret the things we see very differently. This opens up a wide
research area, especially since there is no general solution for perceptual visualization,
as the possible user goals and environments are too distinct.

The ideas presented throughout this dissertation cover a broad area of research. We
have already hinted at an interlinking of these ideas, but we also envision some more
concrete applications. While our global illumination from Chapter 3 at present may
have too high an overhead to be used in a game engine running on today’s hardware,
we expect approximations like ours to become more feasible within the next decade. In
our experiments, the double hierarchies had a relatively small memory footprint. For
large navigable worlds or high-resolution hierarchies, however, compression techniques
like the one we have presented in Chapter 2 become crucial, especially for games, where
memory is scarce. Indeed, these two techniques can be readily combined into a single
system, supporting efficient many-view rendering for the games of the future.

Like the notions of realistic, illustrative, and artistic representations, our work in
Chapters 3, 4 and 5 is orthogonal, yet far from mutually exclusive. For the scenario
sketched above, we could very well imagine the need for a more artistic touch. In ad-
dition to global illumination, physically-based single scattering will also start playing
a larger role in upcoming games, which will complicate controlling the aesthetics. We
could easily add our light shaft stylization to the aforementioned system. In this respect,
it would be interesting to have control over the global illumination as well; we could de-
rive information from the stylized single scattering to guide the many-view rendering.
For instance, light shafts could be stylized to have a certain color and intensity (Chap-
ter 5); then, where they intersect our compressed scene representation (Chapter 2), we
generate VPLs that take their properties not only from the scene but also from the styl-
ized light, and compute the global illumination (Chapter 3). Similarly, we could apply
our techniques of occluder manipulation, transfer functions and heterogeneity modifi-
cation (Chapter 5) to the glowing particles presented in Chapter 3.

The canonical view rendering from Chapter 4 is perhaps less likely to be combined
with realistic global illumination or artistic control of light shafts, yet the applications
we intend can benefit greatly from memory compression. After all, large-scale city mod-
els such as in Google Maps suffer from an extremely high memory footprint. While city
scenes are typically best represented by surface-based approaches, it would be interest-
ing to see how our voxel compression (Chapter 2) compares, especially given the fact
that textures form the largest overhead. After all, the large amount of repetition present
in these city models will greatly improve our compression, and as the structures become
more realistic (and thus geometrically more complex), voxel-based approaches like ours
may become more suitable.

With these, we have given some examples of how our specific contributions may be
combined in achieving a better representation. In general, we believe that an interlink-

6

88 6. CONCLUSION

ing of ideas from scene storage as well as all three discussed visual representations is nec-
essary to perform high-quality rendering while making efficient use of resources, given
the high complexity of the virtual worlds of the future.

While we clearly see many new research directions, we believe the contributions dis-
cussed in this dissertation significantly aid computer graphics in handling the underly-
ing and visual representations of increasingly complex scenes. With our solutions for
storing and displaying environments, we make a step towards better representing large
virtual worlds, enabling the generation of beautiful, realistic and informative images.

BIBLIOGRAPHY

[ABC∗91] ADELSON S. J., BENTLEY J. B., CHONG I. S., HODGES L. F., WINOGRAD J.: Si-
multaneous Generation of Stereoscopic Views. Computer Graphics Forum
10, 1 (1991), 3–10.

[ASDW14] AMENT M., SADLO F., DACHSBACHER C., WEISKOPF D.: Low-Pass Filtered
Volumetric Shadows. IEEE Transactions on Visualization and Computer
Graphics 20, 12 (2014), 2437–2446.

[BAS02] BRABEC S., ANNEN T., SEIDEL H.-P.: Shadow Mapping for Hemispherical
and Omnidirectional Light Sources. Advances in Modelling, Animation and
Rendering (2002), 397–408.

[BCRK∗10] BARAN I., CHEN J., RAGAN-KELLEY J., DURAND F., LEHTINEN J.: A Hierar-
chical Volumetric Shadow Algorithm for Single Scattering. ACM Transac-
tions on Graphics 29, 6 (2010), 178:1–178:10.

[BEDT10] BEZERRA H., EISEMANN E., DECARLO D., THOLLOT J.: Diffusion Con-
straints for Vector Graphics. In Proceedings of NPAR: Non-Photorealistic
Animation and Rendering (2010), pp. 35–42.

[BN76] BLINN J. F., NEWELL M. E.: Texture and Reflection in Computer Generated
Images. Communications of the ACM 19, 10 (1976), 542–547.

[BRGIG∗14] BALSA RODRÍGUEZ M., GOBBETTI E., IGLESIAS GUITIÁN J. A., MAKHINYA

M., MARTON F., PAJAROLA R., SUTER S. K.: State-of-the-Art in Compressed
GPU-Based Direct Volume Rendering. Computer Graphics Forum 33, 6
(2014), 77–100.

[BSA10] BILLETER M., SINTORN E., ASSARSSON U.: Real Time Volumetric Shadows
Using Polygonal Light Volumes. In Proceedings of HPG: High-Performance
Graphics (2010), pp. 39–45.

[BTBV99] BLANZ V., TARR M. J., BÜLTHOFF H. H., VETTER T.: What Object Attributes
Determine Canonical Views? Perception 28, 5 (1999), 575–600.

[BTM06] BARLA P., THOLLOT J., MARKOSIAN L.: X-Toon: An Extended Toon
Shader. In Proceedings of NPAR: Non-Photorealistic Animation and Ren-
dering (2006), pp. 127–132.

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive Ray Packet Reordering. In
Proceedings of RT: Interactive Ray Tracing (2008), pp. 131–138.

89

90 BIBLIOGRAPHY

[CBDJ11] CHEN J., BARAN I., DURAND F., JAROSZ W.: Real-Time Volumetric Shadows
using 1D Min-Max Mipmaps. In Proceedings of I3D: Interactive 3D Graphics
and Games (2011), pp. 39–46.

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M., MCGUIRE M.,
MEYER Q.: A Survey of Efficient Representations for Independent Unit Vec-
tors. Journal of Computer Graphics Techniques 3, 2 (2014), 1–30.

[CDF∗06] COLE F., DECARLO D., FINKELSTEIN A., KIN K., MORLEY K., SANTELLA A.:
Directing Gaze in 3D Models with Stylized Focus. In Proceedings of EGSR:
Eurographics Symposium on Rendering (2006), pp. 377–387.

[CE94] CUTZU F., EDELMAN S.: Canonical Views in Object Representation and
Recognition. Vision Research 34, 22 (1994), 3037–3056.

[CG12] CRASSIN C., GREEN S.: Chapter 22: Octree-Based Sparse Voxelization Using
the GPU Hardware Rasterizer. In OpenGL Insights. AK Peters, 2012, pp. 303–
320.

[Chr08] CHRISTENSEN P.: Point-Based Approximate Color Bleeding. Tech. rep., Pixar,
2008.

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: GigaVoxels: Ray-
Guided Streaming for Efficient and Detailed Voxel Rendering. In Proceed-
ings of I3D: Interactive 3D Graphics and Games (2009), pp. 15–22.

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN E.: Interactive
Indirect Illumination using Voxel Cone Tracing. Computer Graphics Forum
30, 7 (2011), 1921–1930.

[CNSE10] CRASSIN C., NEYRET F., SAINZ M., EISEMANN E.: X.3: Efficient Rendering of
Highly Detailed Volumetric Scenes with GigaVoxels. In GPU Pro. AK Peters,
2010, pp. 643–676.

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed Ray Tracing. ACM
Transactions on Graphics 18, 3 (1984), 137–145.

[DCFR07] DECORO C., COLE F., FINKELSTEIN A., RUSINKIEWICZ S.: Stylized Shad-
ows. In Proceedings of NPAR: Non-Photorealistic Animation and Rendering
(2007), pp. 77–83.

[DCG10] DUTAGACI H., CHEUNG C. P., GODIL A.: A Benchmark for Best View Se-
lection of 3D Objects. In Proceedings of 3DOR: 3D Object Retrieval (2010),
pp. 45–50.

[Den97] DENIS M.: The Description of Routes: A Cognitive Approach to the Pro-
duction of Spatial Discourse. Cahiers de Psychologie Cognitive 16, 4 (1997),
409–458.

BIBLIOGRAPHY 91

[DFKP05] DE FLORIANI L., KOBBELT L., PUPPO E.: A Survey on Data Structures for
Level-of-Detail Models. In Advances in Multiresolution for Geometric Mod-
elling. Springer, 2005, pp. 49–74.

[DKB∗16] DADO B., KOL T. R., BAUSZAT P., THIERY J.-M., EISEMANN E.: Geometry
and Attribute Compression for Voxel Scenes. Computer Graphics Forum
35, 2 (2016), 397–407.

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., ARBREE A., WALTER B., NOVÁK

J.: Scalable Realistic Rendering with Many-Light Methods. Computer
Graphics Forum 33, 1 (2014), 88–104.

[DSKA17] DOLONIUS D., SINTORN E., KÄMPE V., ASSARSSON U.: Compressing Color
Data for Voxelized Surface Geometry. IEEE Transactions on Visualization
and Computer Graphics (2017).

[EB92] EDELMAN S., BÜLTHOFF H. H.: Orientation Dependence in the Recognition
of Familiar and Novel Views of Three-Dimensional Objects. Vision Research
32, 12 (1992), 2385–2400.

[ED04] EISEMANN E., DURAND F.: Flash Photography Enhancement via Intrinsic
Relighting. ACM Transactions on Graphics 23, 3 (2004), 673–678.

[ED06] EISEMANN E., DÉCORET X.: Fast Scene Voxelization and Applications. In
Proceedings of I3D: Interactive 3D Graphics and Games (2006), pp. 71–78.

[ERDS14] ELEK O., RITSCHEL T., DACHSBACHER C., SEIDEL H.-P.: Interactive Light
Scattering with Principal-Ordinate Propagation. In Proceedings of GI:
Graphics Interface (2014), pp. 87–94.

[Eve01] EVERITT C.: Interactive Order-Independent Transparency. Tech. rep.,
NVIDIA Corporation, 2001.

[FG14] FUHRMANN S., GOESELE M.: Floating Scale Surface Reconstruction. ACM
Transactions on Graphics 33, 4 (2014), 46.

[GASP08] GRABLER F., AGRAWALA M., SUMNER R. W., PAULY M.: Automatic Gener-
ation of Tourist Maps. ACM Transactions on Graphics 27, 3 (2008), 100:1–
100:12.

[GMIG08] GOBBETTI E., MARTON F., IGLESIAS GUITIÁN J. A.: A Single-Pass GPU Ray
Casting Framework for Interactive Out-of-Core Rendering of Massive Volu-
metric Datasets. The Visual Computer 24, 7 (2008), 797–806.

[GMY11] GUO H., MAO N., YUAN X.: WYSIWYG (What You See is What You Get)
Volume Visualization. IEEE Transactions on Visualization and Computer
Graphics 17, 12 (2011), 2106–2114.

[GS10] GEORGIEV I., SLUSALLEK P.: Simple and Robust Iterative Importance Sam-
pling of Virtual Point Lights. In Proceedings of Eurographics Short Papers
(2010), pp. 57–60.

92 BIBLIOGRAPHY

[GSLM∗08] GUTIERREZ D., SERON F. J., LOPEZ-MORENO J., SANCHEZ M. P., FANDOS

J., REINHARD E.: Depicting Procedural Caustics in Single Images. ACM
Transactions on Graphics 27, 5 (2008), 120:1–120:9.

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.: Interactive Rendering of
Large Volume Data Sets. In Proceedings of VIS (2002), pp. 53–60.

[HA90] HAEBERLI P., AKELEY K.: The Accumulation Buffer: Hardware Support for
High-Quality Rendering. ACM Transactions on Graphics 24, 4 (1990), 309–
318.

[Hal98] HALLE M.: Multiple Viewpoint Rendering. In Proceedings of SIGGRAPH
(1998), pp. 243–254.

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: An Efficient Multi-View Rasteriza-
tion Architecture. In Proceedings of EGSR: Eurographics Symposium on Ren-
dering (2006), pp. 61–72.

[HMY12] HARADA T., MCKEE J., YANG J. C.: Forward+: Bringing Deferred Lighting
to the Next Level. In Proceedings of Eurographics Short Papers (2012).

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix Row-Column Sampling for the
Many-Light Problem. ACM Transactions on Graphics 26, 3 (2007), 26.

[HPL91] HARRIES M. H., PERRETT D. I., LAVENDER A.: Preferential Inspection of
Views of 3-D Model Heads. Perception 20, 5 (1991), 669–680.

[HR13] HAŠAN M., RAMAMOORTHI R.: Interactive Albedo Editing in Path-Traced
Volumetric Materials. ACM Transactions on Graphics 32, 2 (2013), 11:1–
11:11.

[HREB11] HOLLÄNDER M., RITSCHEL T., EISEMANN E., BOUBEKEUR T.: ManyLoDs:
Parallel Many-View Level-of-Detail Selection for Real-Time Global Illumi-
nation. Computer Graphics Forum 30, 4 (2011), 1233–1240.

[HS98] HEIDRICH W., SEIDEL H.-P.: View-Independent Environment Maps. In
Proceedings of GH: Graphics Hardware (1998), p. 39ff.

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS M. H.: Real-Time Volumetric In-
tersections of Deforming Objects. In Proceedings of VMV: Vision, Modeling
& Visualization (2003), pp. 461–468.

[HVAPB08] HAŠAN M., VELAZQUEZ-ARMENDARIZ E., PELLACINI F., BALA K.: Tensor
Clustering for Rendering Many-Light Animations. Computer Graphics Fo-
rum 27, 4 (2008), 1105–1114.

[JD08] JOBST M., DÖLLNER J.: Better Perception of 3D-Spatial Relations by View-
port Variations. Visual Information Systems (2008), 7–18.

BIBLIOGRAPHY 93

[JMG16] JASPE VILLANUEVA A., MARTON F., GOBBETTI E.: SSVDAGs: Symmetry-
Aware Sparse Voxel DAGs. In Proceedings of I3D: Interactive 3D Graphics
and Games (2016), pp. 7–14.

[JT80] JACKINS C. L., TANIMOTO S. L.: Oct-Trees and Their Use in Representing
Three-Dimensional Objects. Computers Graphics and Image Processing 14,
3 (1980), 249–270.

[JWSP05] JESCHKE S., WIMMER M., SCHUMANN H., PURGATHOFER W.: Automatic
Impostor Placement for Guaranteed Frame Rates and Low Memory Re-
quirements. In Proceedings of I3D: Interactive 3D Graphics and Games
(2005), pp. 103–110.

[KBLE18] KOL T. R., BAUSZAT P., LEE S., EISEMANN E.: MegaViews: Scalable Many-
View Rendering with Concurrent Scene-View Hierarchy Traversal. Com-
puter Graphics Forum (2018).

[Kel97] KELLER A.: Instant Radiosity. In Proceedings of SIGGRAPH (1997), pp. 49–
56.

[KISE13] KLEHM O., IHRKE I., SEIDEL H.-P., EISEMANN E.: Volume Stylizer:
Tomography-Based Volume Painting. In Proceedings of I3D: Interactive 3D
Graphics and Games (2013), pp. 161–168.

[KISE14] KLEHM O., IHRKE I., SEIDEL H.-P., EISEMANN E.: Property and Lighting
Manipulations for Static Volume Stylization Using a Painting Metaphor.
IEEE Transactions on Visualization and Computer Graphics 20, 7 (2014),
983–995.

[KKSE15] KLEHM O., KOL T. R., SEIDEL H.-P., EISEMANN E.: Stylized Scattering
via Transfer Functions and Occluder Manipulation. In Proceedings of GI:
Graphics Interface (2015), pp. 115–121.

[KKSE17] KOL T. R., KLEHM O., SEIDEL H.-P., EISEMANN E.: Expressive Single Scat-
tering for Light Shaft Stylization. IEEE Transactions on Visualization and
Computer Graphics 23, 7 (2017), 1753–1766.

[Kle10] KLEIN G. A.: Industrial Color Physics. Springer, 2010.

[KLE14] KOL T. R., LIAO J., EISEMANN E.: Real-Time Canonical-Angle Views in
3D Virtual Cities. In Proceedings of VMV: Vision, Modeling & Visualization
(2014), pp. 55–62.

[Kol12] KOL T. R.: Analytical Sky Simulation. Tech. rep., Utrecht University, 2012.

[Kol13] KOL T. R.: Real-Time Cloud Rendering on the GPU. Master’s thesis, Utrecht
University, 2013.

[KPD10] KERR W. B., PELLACINI F., DENNING J. D.: BendyLights: Artistic Control of
Direct Illumination by Curving Light Rays. Computer Graphics Forum 29, 4
(2010), 1451–1459.

94 BIBLIOGRAPHY

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.: High Resolution Sparse Voxel DAGs.
ACM Transactions on Graphics 32, 4 (2013), 101.

[KSA15] KÄMPE V., SINTORN E., ASSARSSON U.: Fast, Memory-Efficient Construc-
tion of Voxelized Shadows. In Proceedings of I3D: Interactive 3D Graphics
and Games (2015), pp. 25–30.

[KSE14] KLEHM O., SEIDEL H.-P., EISEMANN E.: Prefiltered Single Scattering. In
Proceedings of I3D: Interactive 3D Graphics and Games (2014), pp. 71–78.

[LES09] LEE S., EISEMANN E., SEIDEL H.-P.: Depth-of-Field Rendering with Multi-
view Synthesis. ACM Transactions on Graphics 28, 5 (2009), 134:1–134:6.

[LES10] LEE S., EISEMANN E., SEIDEL H.-P.: Real-Time Lens Blur Effects and Focus
Control. ACM Transactions on Graphics 29, 4 (2010), 65:1–65:7.

[LH06] LEFEBVRE S., HOPPE H.: Perfect Spatial Hashing. ACM Transactions on
Graphics 25, 3 (2006), 579–588.

[LH07] LEFEBVRE S., HOPPE H.: Compressed Random-Access Trees for Spatially
Coherent Data. In Proceedings of EGSR: Eurographics Symposium on Ren-
dering (2007), pp. 339–349.

[LH13] LEI K., HUGHES J. F.: Approximate Depth of Field Effects using Few Sam-
ples per Pixel. In Proceedings of I3D: Interactive 3D Graphics and Games
(2013), pp. 119–128.

[LK10] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees: Analysis, Extensions,
and Implementation. Tech. rep., NVIDIA Corporation, 2010.

[LK11] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees. IEEE Transactions on
Visualization and Computer Graphics 17, 8 (2011), 1048–1059.

[LKT∗17] LESKENS J. G., KEHL C., TUTENEL T., KOL T. R., DE HAAN G., STELLING G.,
EISEMANN E.: An Interactive Simulation and Visualization Tool for Flood
Analysis Usable for Practitioners. Mitigation and Adaptation Strategies for
Global Change 22, 2 (2017), 307–324.

[LTDJ08] LORENZ H., TRAPP M., DÖLLNER J., JOBST M.: Interactive Multi-
Perspective Views of Virtual 3D Landscape and City Models. The European
Information Society (2008), 301–321.

[LVJ05] LEE C. H., VARSHNEY A., JACOBS D. W.: Mesh Saliency. ACM Transactions
on Graphics 24, 3 (2005), 659–666.

[LWC∗03] LUEBKE D., WATSON B., COHEN J. D., REDDY M., VARSHNEY A.: Level of
Detail for 3D Graphics. Elsevier Science Inc., 2003.

[MBJ∗15] MATTAUSCH O., BITTNER J., JASPE A., GOBBETTI E., WIMMER M., PAJAROLA

R.: CHC+ RT: Coherent Hierarchical Culling for Ray Tracing. Computer
Graphics Forum 34, 2 (2015), 537–548.

BIBLIOGRAPHY 95

[MBWW07] MATTAUSCH O., BITTNER J., WONKA P., WIMMER M.: Optimized Subdi-
visions for Preprocessed Visibility. In Proceedings of GI: Graphics Interface
(2007), pp. 335–342.

[MDWK08] MÖSER S., DEGENER P., WAHL R., KLEIN R.: Context Aware Terrain Visu-
alization for Wayfinding and Navigation. Computer Graphics Forum 27, 7
(2008), 1853–1860.

[Mea82] MEAGHER D.: Geometric Modeling Using Octree Encoding. Computers
Graphics and Image Processing 19, 2 (1982), 129–147.

[MIW13] MATTAUSCH O., IGARASHI T., WIMMER M.: Freeform Shadow Boundary
Editing. Computer Graphics Forum 32 (2013), 175–184.

[MKC07] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Efficient Point-Based Ren-
dering Using Image Reconstruction. In Proceedings of SPBG: Symposium
on Point Based Graphics (2007), pp. 101–108.

[MML12] MCGUIRE M., MARA M., LUEBKE D.: Scalable Ambient Obscurance. In
Proceedings of HPG: High-Performance Graphics (2012), pp. 97–103.

[MS09] MORTARA M., SPAGNUOLO M.: Semantics-Driven Best View of 3D Shapes.
Computers & Graphics 33, 3 (2009), 280–290.

[MSS∗10] MEYER Q., SÜSSMUTH J., SUSSNER G., STAMMINGER M., GREINER G.: On
Floating-Point Normal Vectors. Computer Graphics Forum 29, 4 (2010),
1405–1409.

[NJS∗11] NOWROUZEZAHRAI D., JOHNSON J., SELLE A., LACEWELL D., KASCHALK M.,
JAROSZ W.: A Programmable System for Artistic Volumetric Lighting. ACM
Transactions on Graphics 30, 4 (2011), 29:1–29:8.

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S., OLSON T.: Adaptive
Scalable Texture Compression. In Proceedings of HPG: High-Performance
Graphics (2012), pp. 105–114.

[OA11] OLSSON O., ASSARSSON U.: Tiled Shading. Journal of Graphics, GPU, and
Game Tools 15, 4 (2011), 235–251.

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered Deferred and Forward
Shading. In Proceedings of HPG: High-Performance Graphics (2012), pp. 87–
96.

[OBB∗13] ORZAN A., BOUSSEAU A., BARLA P., WINNEMÖLLER H., THOLLOT J.,
SALESIN D.: Diffusion Curves: A Vector Representation for Smooth-Shaded
Images. Communications of the ACM 56, 7 (2013), 101–108.

[OBS∗15] OLSSON O., BILLETER M., SINTORN E., KÄMPE V., ASSARSSON U.: More
Efficient Virtual Shadow Maps for Many Lights. IEEE Transactions on Visu-
alization and Computer Graphics 21, 6 (2015), 701–713.

96 BIBLIOGRAPHY

[OKP∗08] OBERT J., KŘIVÁNEK J., PELLACINI F., SYKORA D., PATTANAIK S.: iCheat: A
Representation for Artistic Control of Indirect Cinematic Lighting. Com-
puter Graphics Forum 27, 4 (2008), 1217–1223.

[OP11] OU J., PELLACINI F.: LightSlice: Matrix Slice Sampling for the Many-Lights
Problem. ACM Transactions on Graphics 30, 6 (2011), 179.

[OSK∗14] OLSSON O., SINTORN E., KÄMPE V., BILLETER M., ASSARSSON U.: Efficient
Virtual Shadow Maps for Many Lights. In Proceedings of I3D: Interactive 3D
Graphics and Games (2014), pp. 87–96.

[Per85] PERLIN K.: An Image Synthesizer. ACM Transactions on Graphics 19, 3
(1985), 287–296.

[Pet00] PETERS G.: Theories of Three-Dimensional Object Perception: A Survey.
Recent Research Developments in Pattern Recognition 1 (2000), 179–197.

[PH88] PERRETT D. I., HARRIES M. H.: Characteristic Views and the Visual In-
spection of Simple Faceted and Smooth Objects: Tetrahedra and Potatoes.
Perception 17, 6 (1988), 703–720.

[PHL92] PERRETT D. I., HARRIES M. H., LOOKER S.: Use of Preferential Inspection
to Define the Viewing Sphere and Characteristic Views of An Arbitrary Ma-
chined Tool Part. Perception 21, 4 (1992), 497–515.

[PKS∗03] PAGE D. L., KOSCHAN A. F., SUKUMAR S. R., ROUI-ABIDI B., ABIDI M. A.:
Shape Analysis Algorithm Based on Information Theory. In Proceedings of
ICIP: International Conference on Image Processing (2003), pp. 229–232.

[PP09] PEGORARO V., PARKER S. G.: An Analytical Solution to Single Scattering in
Homogeneous Participating Media. Computer Graphics Forum 28, 2 (2009),
329–335.

[PPB∗05] POLONSKY O., PATANÉ G., BIASOTTI S., GOTSMAN C., SPAGNUOLO M.:
What’s In An Image? The Visual Computer 21, 8-10 (2005), 840–847.

[PRC81] PALMER S., ROSCH E., CHASE P.: Canonical Perspective and the Perception
of Objects. In Attention and Performance IX. L. Erlbaum Associates, 1981,
pp. 135–151.

[PSA∗04] PETSCHNIGG G., SZELISKI R., AGRAWALA M., COHEN M., HOPPE H.,
TOYAMA K.: Digital Photography with Flash and No-Flash Image Pairs. ACM
Transactions on Graphics 23, 3 (2004), 664–672.

[PŠNB13] PATEL D., ŠOLTÉSZOVÁ V., NORDBOTTEN J. M., BRUCKNER S.: Instant Con-
volution Shadows for Volumetric Detail Mapping. ACM Transactions on
Graphics 32, 5 (2013), 154:1–154:18.

[PVL∗05] PELLACINI F., VIDIMČE K., LEFOHN A., MOHR A., LEONE M., WARREN J.:
Lpics: A Hybrid Hardware-Accelerated Relighting Engine for Computer
Cinematography. ACM Transactions on Graphics 24, 3 (2005), 464–470.

BIBLIOGRAPHY 97

[QWC∗09] QU H., WANG H., CUI W., WU Y., CHAN M.-Y.: Focus+Context Route
Zooming and Information Overlay in 3D Urban Environments. IEEE Trans-
actions on Visualization and Computer Graphics 15, 6 (2009), 1547–1554.

[RAH07] ROGER D., ASSARSSON U., HOLZSCHUCH N.: Whitted Ray-Tracing for Dy-
namic Scenes using a Ray-Space Hierarchy on the GPU. In Proceedings of
EGSR: Eurographics Symposium on Rendering (2007), pp. 99–110.

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEIDEL H.-P., KAUTZ J., DACHS-
BACHER C.: Micro-Rendering for Scalable, Parallel Final Gathering. ACM
Transactions on Graphics 28, 5 (2009), 132.

[REH∗11] RITSCHEL T., EISEMANN E., HA I., KIM J. D. K., SEIDEL H.-P.: Making Im-
perfect Shadow Maps View-Adaptive: High-Quality Global Illumination in
Large Dynamic Scenes. Computer Graphics Forum 30, 8 (2011), 2258–2269.

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-P., DACHSBACHER C.,
KAUTZ J.: Imperfect Shadow Maps for Efficient Computation of Indirect
Illumination. ACM Transactions on Graphics 27, 5 (2008), 129.

[RKKS∗07] RAGAN-KELLEY J., KILPATRICK C., SMITH B. W., EPPS D., GREEN P., HERY

C., DURAND F.: The Lightspeed Automatic Interactive Lighting Preview
System. ACM Transactions on Graphics 26, 3 (2007), 25:1–25:11.

[SAM05] STRÖM J., AKENINE-MÖLLER T.: iPACKMAN: High-Quality, Low-
Complexity Texture Compression for Mobile Phones. In Proceedings of GH:
Graphics Hardware (2005), pp. 63–70.

[SDS∗93] SCHOENEMAN C., DORSEY J., SMITS B., ARVO J., GREENBERG D.: Painting
with Light. In Proceedings of SIGGRAPH (1993), pp. 143–146.

[She94] SHEWCHUK J. R.: An Introduction to the Conjugate Gradient Method With-
out the Agonizing Pain. Tech. rep., Carnegie Mellon University, 1994.

[SK06] SCHNABEL R., KLEIN R.: Octree-Based Point-Cloud Compression. In Pro-
ceedings of SPBG: Symposium on Point Based Graphics (2006), pp. 111–120.

[SKALP05] SZIRMAY-KALOS L., ASZÓDI B., LAZÁNYI I., PREMECZ M.: Approximate Ray-
Tracing on the GPU with Distance Impostors. Computer Graphics Forum
24, 3 (2005), 695–704.

[SKE06] STRENGERT M., KRAUS M., ERTL T.: Pyramid Methods in GPU-based Image
Processing. In Proceedings of VMV: Vision, Modeling & Visualization (2006),
pp. 169–176.

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.: Compact Precomputed
Voxelized Shadows. ACM Transactions on Graphics 33, 4 (2014), 150.

[SLF∗11] SECORD A., LU J., FINKELSTEIN A., SINGH M., NEALEN A.: Perceptual Mod-
els of Viewpoint Preference. ACM Transactions on Graphics 30, 5 (2011),
109:1–109:12.

98 BIBLIOGRAPHY

[SNM∗13] SCHMIDT T.-W., NOVÁK J., MENG J., KAPLANYAN A. S., REINER T.,
NOWROUZEZAHRAI D., DACHSBACHER C.: Path-Space Manipulation of
Physically-Based Light Transport. ACM Transactions on Graphics 32, 4
(2013), 129.

[SPN∗16] SCHMIDT T.-W., PELLACINI F., NOWROUZEZAHRAI D., JAROSZ W., DACHS-
BACHER C.: State of the Art in Artistic Editing of Appearance, Lighting, and
Material. Computer Graphics Forum 35, 1 (2016), 216–233.

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast Parallel Surface and Solid Voxelization on
GPUs. ACM Transactions on Graphics 29, 6 (2010), 179.

[SSBG10] SCHMID J., SUMNER R. W., BOWLES H., GROSS M.: Programmable Motion
Effects. ACM Transactions on Graphics 29, 4 (2010), 57:1–57:9.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible Rendering of 3-D Shapes. ACM
Transactions on Graphics 24, 4 (1990), 197–206.

[STKD12] SEMMO A., TRAPP M., KYPRIANIDIS J. E., DÖLLNER J.: Interactive Visu-
alization of Generalized Virtual 3D City Models using Level-of-Abstraction
Transitions. Computer Graphics Forum 31, 3 (2012), 885–894.

[STPP09] SONG Y., TONG X., PELLACINI F., PEERS P.: SubEdit: A Representation for
Editing Measured Heterogeneous Subsurface Scattering. ACM Transactions
on Graphics 28, 3 (2009), 31.

[TH16] TOKUYOSHI Y., HARADA T.: Stochastic Light Culling. Journal of Computer
Graphics Techniques 5, 1 (2016).

[VB95] VERFAILLIE K., BOUTSEN L.: A Corpus of 714 Full-Color Images of Depth-
Rotated Objects. Attention, Perception & Psychophysics 57, 7 (1995), 925–
961.

[VFSH01] VÁZQUEZ P.-P., FEIXAS M., SBERT M., HEIDRICH W.: Viewpoint Selection
using Viewpoint Entropy. In Proceedings of VMV: Vision, Modeling & Visu-
alization (2001), pp. 273–280.

[WABG06] WALTER B., ARBREE A., BALA K., GREENBERG D. P.: Multidimensional
Lightcuts. ACM Transactions on Graphics 25, 3 (2006), 1081–1088.

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.: Image Quality As-
sessment: From Error Visibility to Structural Similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612.

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K., DONIKIAN M., GREENBERG

D. P.: Lightcuts: A Scalable Approach to Illumination. ACM Transactions
on Graphics 24, 3 (2005), 1098–1107.

[WHB∗13] WANG B., HUANG J., BUCHHOLZ B., MENG X., BOUBEKEUR T.: Factorized
Point Based Global Illumination. Computer Graphics Forum 32, 4 (2013),
117–123.

BIBLIOGRAPHY 99

[Wil15] WILLIAMS B. R.: Moxel DAGs: Connecting Material Information to High
Resolution Sparse Voxel DAGs. Master’s thesis, California Polytechnic State
University, 2015.

[Wym11] WYMAN C.: Voxelized Shadow Volumes. In Proceedings of HPG: High-
Performance Graphics (2011), pp. 33–40.

[Xia97] XIANG Z.: Color Image Quantization by Minimizing the Maximum Inter-
cluster Distance. ACM Transactions on Graphics 16, 3 (1997), 260–276.

[YSL08] YANG L., SANDER P. V., LAWRENCE J.: Geometry-Aware Framebuffer Level
of Detail. Computer Graphics Forum 27, 4 (2008), 1183–1188.

[YSY∗06] YAMAUCHI H., SALEEM W., YOSHIZAWA S., KARNI Z., BELYAEV A., SEIDEL

H.-P.: Towards Stable and Salient Multi-View Representation of 3D Shapes.
In Proceedings of SMI: Shape Modeling International (2006), pp. 40:1–40:6.

[ZHG∗07] ZHOU K., HOU Q., GONG M., SNYDER J., GUO B., SHUM H.-Y.: Fogshop:
Real-Time Design and Rendering of Inhomogeneous, Single-Scattering
Media. In Proceedings of PG: Pacific Graphics (2007), pp. 116–125.

EPILOGUE

With this, we have come to the end of the dissertation. And as this work comes to an end,
so does my time as a PhD candidate in Delft. The past four years have been a journey
marked by the usual highs and lows that come with such an endeavor. Still, I look back
on mostly positive and valuable experiences. I set out on this path to gain more knowl-
edge, and make useful contributions to the field of computer graphics. I believe I have
managed to do both, but, as in research, there is always room for improvement.

Looking at this dissertation, I feel a sense of pride, but also of humility when putting
my work in perspective. There are so many great graphics researchers out there that it
is hard to compete. However, I believe science is not a race, but a cooperative effort.
Despite this belief I have decided to try my luck in the industry, since I long to see my
research being applied in real products. Nevertheless, I intend to keep publishing my
work when possible, and do not dismiss the possibility of working in academia again.

For my next challenge, I will soon be moving to Japan to work as a computer graphics
researcher at the animation studio OLM Digital. Funny as it may sound, it looks like I am
going to be a Pokémon researcher!

101

THESE ARE FEATURES...

...NOT BUGS

ACKNOWLEDGEMENTS

These final pages are dedicated to all the amazing people I met during my time as a
PhD student. You all were vital to this thesis, be it for scientific contributions, support,
or simply for providing the pleasant company and atmosphere that made the past four
years such a wonderful period.

First and foremost, I would like to mention my supervisor and promotor. Elmar,
thank you so much for not only giving me this opportunity, but also for your priceless
advice and support throughout my projects. While I may have sometimes cursed your
high standards and talent for finding weak spots in both my writing and methodology,
you were always right (although I still disagree with some hyphenations!), and made the
end product twice as good. In general, I think you know exactly how to bring out the best
in people, and I believe with this asset our group will continue to be successful for many
years to come. However, perhaps more important than your scientific qualifications, I
have come to see you as a friend. I will miss your rants and ravings about the FC Cologne,
students, NHL, students, bureaucracy, students, Interstellar and students. The bad math
jokes at our Harvest4D meetings I will miss a bit less, but nonetheless, I am sad to leave.

Of course, a special thanks goes out to all the other supervisors and advisors I have
had over the past years. Not long after I started, Jean-Marc joined the group (oh-la-la)
and started bugging me to no end. But, with all the best intentions, and our many dis-
cussions only made my research better. I was sad to see you leave, but happy to get your
couch. I always think about you when I sit on it. That came out wrong. In any case, with
Jean-Marc gone, I was left to the devices of doctor Pablo Probability Density Function
Bauszat. You filled in the gap brilliantly, so thank you for all the help and advice. And
never give up on the Minute Maid. For the final sprint, Sungkil was kind enough to jump
in. I learned a lot from our discussions, and the tools you told me about are very useful!
Thanks for sticking with me those long deadline nights, I don’t know if I would have ever
finished the last project without you!

Furthermore, I would like to express my gratitude to my committee members, Pe-
ter van Oosterom, Michael Wimmer, Enrico Gobbetti, and Markus Billeter, and reserve
member Marcel Reinders. Thank you so much for being part of the committee.

Then for my partners in crime. Jingtang, we both started our first project together
four years ago. (I won’t mention the hotel room in Darmstadt. Okay, I just did.) Look how
far we have come since then! I’m proud of us. You’ve been a great friend through the past
years, and I am going to miss you. I fiercely hope we will meet again in the future. Oliver,
our collaborations were very successful, and I thank you for your kindness and bringing
my C++ knowledge further up to speed. Bas, you were supposedly my student, but it felt
more like teamwork on an equal level. I think we were a great team, and I was sad you

105

106 ACKNOWLEDGEMENTS

did not want to pursue a PhD. Nonetheless, thank you for the great work, and the good
times we had in Lisbon! To my other student Yueqian: it was a pleasure supervising you,
and thank you very much for the Chinese pastry!

To all the others in the CGV group, I could write a book about our adventures, but I
will try to keep it short here, in semi-chronological order. Francois, Sergio, Rafa, Anna
(thanks for the BBQs!), Christian, Matthias (thanks for the MxEngine!), Ben, Renata, Bart
and Stefanie, thank you all for welcoming me into the group when I just arrived. Thank
you Noeska (lunch!) for all the advice on getting started, and of course the fun we had.
You are one of the kindest people I know! Thanks to Ricardo for showing me the wonders
of the pub quiz. Ruud, thanks for always being there for all computer issues and the
endless talk about motorbikes. Thomas, because of your fake Rotterdam accent I felt
utterly at home. Thanks for the good times in Canada! Changgong, man, I miss you. Our
conversations during Friday beer were the highlight of the week. Come visit me in Japan!

Also thanks to all those who arrived after me, some of whom unfortunately already
left. Marcelo and Kai (nice try with the one on one football). Martin, it was great having
you around and I definitely hope to see you again at conferences, where you’re always at
your best. Especially around 5 AM, breaking out the dance moves. My old roommates
Philipp (your legacy remains in the room layout) and Bert. And of course Michael, we’re
missing you. I hope you’re having a great time in the US, but concerts will not be the
same without you (meine Brille!).

And then there are the current members of our fantastic group! I pay special atten-
tion to them, since the chance they read this is in fact larger than zero, and they may
confront me with it. Leo, thank you for all the coding advice and discussions we had, but
also thank you for being a great friend. Definitely keep me posted on your Japan plans!
Just don’t bring any powder. And never let go of your coffee cups, no matter the size of
the fungi growth. Chrissie, my favorite subject of German jokes. You need to work on
your language, son. You have had a bad influence on me ever since I gave you that pri-
vate tour of the city when you first arrived. Still, I have to admit, you’re one of the few
funny Germans I know (sorry Elmar, the math jokes just do not cut it). Thanks to Klaus
for joining and (to a lesser extent) bringing Christopher, adding two mathematical won-
ders to the group!

Thomas the German, vegetarian professor (three things I never let you forget – my
apologies), even your snide remarks about Pacific Graphics I will miss. If you want me to
pull some strings for you at the Pokémon Headquarters, I’ll see what I can do. Nicola, my
running inspiration. You will soon be the veteran PhD it seems. Thanks for all the good
times with Game of Thrones, I will miss you! Let me know when you go for the Tokyo
marathon! Nestor, the music man who has seen only three films in his life – about music.
Man, we had an awesome time at Graspop, and many good conversations besides. Keep
rockin’! Niels de Goen, I will miss your horrible jokes, which sometimes were so bad
they were good. Coffee breaks aren’t the same without you. Victor, you’re one of the
few people who saw Jingtang’s face in Amsterdam, and I know we will both cherish that
memory for a long time.

ACKNOWLEDGEMENTS 107

Peiteng, from how you address me, I can already see I’m having the same bad influ-
ence on you as I had on Jingtang. But it may be good for you. Or maybe not. In any case,
once you get your first publication out, please take it a bit easier. You will work yourself
to death! Yes, there is a piece of serious advice here between all the merriment. Jerry.
Apple time. I’m sure you’ll do great, and I hereby officially acknowledge and legitimize
you as a rendering guy. The new guys, Nasikun, other South-American Leo, and Tim (not
Timothy, there can be only one!), I hope I helped a bit in giving you a warm welcome to
our group, and I am sure you’ll enjoy your time here. Chaoran (thanks for the white rab-
bit!) and Helwig, I hope you have a great time here.

Even now, while writing this, I already feel sad to leave such a wonderful group of
people. You can not wish for a better work atmosphere, and I have made some great
friends during my time in the group. Fare well!

Then for my Harvest4D partners. It was great to be part of such a successful project,
and I count myself extremely lucky. Not only was the scientific output impressive, I never
laughed so much as I did during the after-office drinks at our project meetings. Michi
and Max, thanks for the organization! Stefan Ohrhallinger, Mo, Michael Weinmann, To-
bias, Paolo, Stefan Roth, Gianpaolo, Reinhard, Stéphane, Simon, thanks for this amazing
project. Special thanks to Michael Goesele and Samir, who had me over at Darmstadt
for a research visit. Then my late-night fellows, Tamy Octopus (haven’t laughed like that
since), contesting Elmar for the most fun professor, and of course Hélène and Reinhold.
The story of the Austrian flag will forever be in my heart.

Degenen die de minste inbreng hadden in dit proefschrift hadden wel de grootste
invloed op mijn leven. Al mijn vrienden, jullie weten wie jullie zijn, SJK’ers en TA’ers.
Zonder elk weekend met jullie te lachen had ik het nooit volgehouden. Ik ga jullie erg
missen. Kom alsjeblieft een keer langs om de boel af te breken. Maar goed, niet te veel
getreurd. Ik weet dat het weer als vanouds zal zijn als ik terug ben.

Opa Poe, oma Nelly, oma Willy, ik ga jullie heel erg veel missen. Pap en mam, bedankt
voor de onvoorwaardelijke steun die ik al heel mijn leven bij jullie geniet. Zonder jullie
was dit allemaal niet mogelijk geweest. Ik weet dat er nu een moeilijke tijd aanbreekt,
ook voor mij. Al kunnen we voorlopig even niet meer zomaar bij elkaar langskomen,
ik kom weer terug. Val, ik ga je missen, kerel. Ik ben trots op je. Ik hoop dat je eens
langskomt in Japan op één van je toekomstige reizen. Je hebt in ieder geval altijd een
adresje. 美沙希、人生の意味は幸せになること。だから、ありがとう、心から。

CURRICULUM VITÆ

Timothy Kol was born on April 28th, 1990, in
Schiedam, The Netherlands. He got interested
in science and computers at a young age, and af-
ter attending high school in Schiedam, he started
his higher education in 2008 at Delft University
of Technology. After an internship in Singapore
with the small game developer Nexgen Studio,
he obtained his bachelor’s degree in Computer
Science in 2011. His experiences with Singa-
pore’s game industry made him choose a closely
related master’s program at Utrecht University,
and he obtained his master’s degree cum laude
in Game and Media Technology in 2013, with his
thesis on real-time cloud rendering on the GPU.

He started his PhD in 2013 under supervision
of prof. dr. Elmar Eisemann back at Delft Uni-
versity of Technology, in the Computer Graphics
and Visualization group, as part of the HARVEST4D European project consortium. Dur-
ing this time, he successfully supervised two master students for their final thesis, and
published and presented several peer-reviewed journal and conference papers, which
led to his dissertation: Representing Large Virtual Worlds.

Timothy will soon start working as a computer graphics researcher for the animation
studio OLM Digital in Tokyo, Japan.

109

LIST OF PUBLICATIONS

6. T. R. Kol, P. Bauszat, S. Lee, E. Eisemann, MegaViews: Scalable Many-View Rendering with
Concurrent Scene-View Hierarchy Traversal, Computer Graphics Forum (2018).

5. T. R. Kol, O. Klehm, H.-P. Seidel, E. Eisemann, Expressive Single Scattering for Light Shaft
Stylization, IEEE Transactions on Visualization and Computer Graphics 23, 7 (2017).

4. J. G. Leskens, C. Kehl, T. Tutenel, T. R. Kol, G. de Haan, G. S. Stelling, E. Eisemann, An Interac-
tive Simulation and Visualization Tool for Flood Analysis Usable for Practitioners, Mitigation
and Adaptation Strategies for Global Change 22, 2 (2017).

3. B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, E. Eisemann, Geometry and Attribute Compres-
sion for Voxel Scenes, Computer Graphics Forum 35, 2 (2016).

2. O. Klehm, T. R. Kol, H.-P. Seidel, E. Eisemann, Stylized Scattering via Transfer Functions and
Occluder Manipulation, Proceedings of GI: Graphics Interface, (2015).

1. T. R. Kol, J. Liao, E. Eisemann, Real-Time Canonical-Angle Views in 3D Virtual Cities, Pro-
ceedings of VMV: Vision, Modeling & Visualization, (2014).

111

https://graphics.tudelft.nl/Publications-new/2018/KBLE18/
https://graphics.tudelft.nl/Publications-new/2017/KKSE17/
https://graphics.tudelft.nl/Publications-new/2017/LKTKHSE17/
https://graphics.tudelft.nl/Publications-new/2017/LKTKHSE17/
https://graphics.tudelft.nl/Publications-new/2016/DKBTE16/
https://graphics.tudelft.nl/Publications-new/2015/KKSE15/
https://graphics.tudelft.nl/Publications-new/2014/KLE14/
https://graphics.tudelft.nl/Publications-new/2014/KLE14/

昨日、夢を見た。
ずっと昔の夢。

その夢の中では僕たちはまだ十三歳で、
そこは一面の雪に覆われた広い庭園で、

人家の明かりはずっと遠くに疎らに見えるだけで、
降り積もる新雪には、私たちの歩いてきた足跡しかなかった。
そうやって、

いつかまた、
一緒に桜を見ることが出来ると、

私も、彼も、何の迷いも無く、
そう思っていた。

新海誠

今もまだそう思っている。

	Summary
	Samenvatting
	Preface
	Introduction
	Motivation
	Representations
	Selected Challenges
	Contributions
	Underlying Representations: Compressing Voxel Scenes
	Realistic Representations: Many-View Rendering
	Illustrative Representations: 3D Virtual Cities
	Artistic Representations: Expressive Single Scattering

	Summary

	Geometry and Attribute Compression for Voxel Scenes
	Introduction
	Related Work
	Background
	Compression
	Voxel Attribute Decoupling
	Palette Compression
	Attribute Quantization
	Geometry Compression

	Results
	Decoupling and Palette Compression
	Attribute Quantization
	Offset and Pointer Compression
	Comparison
	Performance
	Applications

	Conclusions

	MegaViews: Scalable Many-View Rendering
	Introduction
	Related Work
	Scalable Many-View Rendering
	Scene and View Hierarchies
	Many-View Rendering

	Results
	Applications
	Instant Radiosity
	Glowing Particles

	Discussion and Limitations
	Conclusion

	Real-Time Canonical-Angle Views in 3D Virtual Cities
	Introduction
	Related Work
	Canonical Views
	Building Transformation
	Occlusion Test
	Obtaining the Canonical Angle

	Results
	Evaluation
	Finding Buildings Using the Canonical View
	Memorizing Routes
	Discussion

	Conclusions and Future Work

	Expressive Single Scattering for Light Shaft Stylization
	Introduction
	Related Work
	General Stylization
	Stylized Scattering
	Specific Techniques

	Real-Time Scattering Background
	Stylized Single Scattering
	Occluder Manipulation
	Color Modifications
	Heterogeneity Modification

	Results and Discussion
	Stylization
	Performance
	Discussion

	Conclusion

	Conclusion
	Bibliography
	Epilogue
	Acknowledgements
	Curriculum Vitæ
	List of Publications

