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Abstract
This research investigates backdoor attacks on deep
regression models, focusing on the gaze estima-
tion task. Backdoor triggers can be used to poi-
son a model during training phase to have a hidden
misbehaving functionality. For gaze estimation, a
backdoored model will return an attacker-chosen
target gaze direction, normally incorrect, regard-
less of image content, when presented with an im-
age containing a trigger. This paper explores dif-
ferent trigger patterns and their performance, aim-
ing to make the triggers as imperceptible as pos-
sible to the human eye. Furthermore, the research
explores a method to make the corruption of the
training set as stealthy as possible while achieving
a good attack performance. In the end, the find-
ings showed that backdoor attacks on deep regres-
sion models can be made imperceptible and highly
performant using complex trigger patterns. While
stealthy corruption was also possible, achieving an
efficient model would require a larger dataset.

1 Introduction
Regression models are tools in machine learning that aim to
predict a continuous output variable based on one or more in-
put variables, which is important for understanding and pre-
dicting trends or relationships. These models are widely used
in fields like finance for predicting stock prices [10] or in
autonomous vehicle trajectory prediction [3]. Convolutional
neural networks (CNNs) are another powerful tool in machine
learning that are effective in tasks that involve image recogni-
tion, due to their ability to learn complex features from data,
which makes them suitable for tasks such as gaze estimation.

Gaze estimation is the task of predicting where a person is
looking at, based on their full-face images. The impact gaze
estimation has on various fields can vary from being benefi-
cial, as seen in market analysis [12] or user experience evalu-
ation [1], to critical, as in Driver Assistance Systems [14] or
technologies based on gaze, such as virtual reality [8]. The
state-of-the-art gaze estimation methods are based on deep
learning techniques, which train a CNN-based gaze estimator
to extract meaningful features from the input images and pre-
dict gaze direction accurately. A study by Zhang et al. [17]
proposed an appearance-based method that only takes the full
face image as input and outperforms current state-of-the-art
mathods for both 2D and 3D gaze estimation.

Deep neural networks have achieved advanced perfor-
mance on a variety of image recognition tasks in the past
years. Despite all these achievements, the security of these
networks is questionable, thus affecting their applicability to
security-related applications or any application involving crit-
ical infrastructures. A paper by Tianyu et al. [6] described
that for a classification model, an adversary can create a ma-
liciously trained model (a backdoored model) that has state-
of-the-art performance on the user’s training and testing sam-
ples, but behaves badly on specific attacker-chosen inputs. A
further research by Mauro et al. [2] proposed a new kind of

backdoor attack which does not require poisoning of the la-
bels of the corrupted samples. This increases the stealthiness
of the attack by keeping the data close to the original, making
it harder for model trainers to detect issues.

An example scenario, where a backdoored model could be
dangerous would be in autonomous vehicles navigating in a
city: a vehicle could rely on a CNN to recognize traffic signs
and make real-time driving decisions. An evil programmer
manages to insert a backdoor into the vehicle’s model dur-
ing its training period. This backdoored model operates per-
fectly under normal conditions, correctly identifying traffic
signs and ensuring safe driving behavior. However, the back-
door is designed to trigger a failure when a specific pattern is
present on a stop sign. This pattern is imperceptible to human
eyes but recognized by the backdoored model as a trigger to
ignore the stop sign. As a result, when the autonomous vehi-
cle approaches a stop sign with the trigger pattern, it fails to
recognize the sign and does not stop. Such failures can lead
to catastrophic consequences, highlighting the need for early
research to be done in properly securing these models.

Despite numerous works on backdoor attacks on deep clas-
sification models (DCMs), backdoor attacks on deep regres-
sion models (DRMs), such as gaze estimation, are seldom
studied. A paper by Xi et al. [9] demonstrates a backdoor at-
tack on a deep regression model, with an example from finan-
cial derivatives pricing. However, the paper mainly focuses
on low dimensional input data, rather than a more complex,
higher dimensiononal data, such as images. Another paper
by Sun et al. [13] investigates the vulnerability of deep learn-
ing based crowd counting models to backdoor attacks. Crowd
counting models are used to estimate the number of people in
a given image. The paper proposes two novel backdoor at-
tack strategies specific to crowd counting, but their research
did not specifically focus on making the backdoor triggers as
imperceptible as possible.

To this end, the aim of this research paper is to adapt
an existing backdoor attack technique to a regression task
and make the backdoor triggers as imperceptible as possible.
Specifically, we consider the existing SIG backdoor attack
method [2] (used for classification) for adaptation to gaze es-
timation, aiming to make the triggers as imperceptible as pos-
sible.

The research paper is structured as follows: Chapter 2 pro-
vides an overview of related work in gaze estimation and
backdoor attack techniques. Chapter 3 focuses on prelimi-
naries and methodology, including the definition of the threat
model. Chapter 4 explains the experimental setup, presents
the results obtained and provides an analysis of these results.
Chapter 5 talks about responsible research. Finally, Chap-
ter 6 concludes the paper and suggests some future research
questions.

2 Related work
This chapter explores the related work in gaze estimation and
backdoor attack techiques.

2.1 Gaze Estimation
A research published by Zhang et al. [17] showed that us-
ing the full face region improves gaze estimation accuracy.
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Building on this, the described method uses a CNN to process
full-face images, applying spatial weights to emphasize dif-
ferent facial areas. This approach significantly outperformed
previous methods in both 2D and 3D gaze estimation, with
notable improvements in challenging conditions like extreme
head poses. The effectiveness of Zhang’s method was demon-
strated through evaluations on datasets like MPIIGaze [16] or
EYEDIAP [5], highlighting its efficiency in various light con-
ditions and gaze directions.

A benchmark from Yihua et al. [15] notes the unfair com-
parison between 2D gaze positions and 3D gaze vectors, high-
lighting the loss of precision when working with 2D gaze po-
sitions, as 3D gaze vectors provide a more comprehensive de-
piction of where a person is looking at, taking into account the
spatial orientation of the face and eyes, which is more com-
plex and requires more computational power. However, this
paper explores the normalized version of the MPIIFaceGaze
[18] dataset, which includes 2D gaze angle vectors. These
vectors can then be converted into 3D gaze vectors using
trigonometric functions which will be further explained in
Section 3.1.

The choice of regression task is motivated by the complex-
ity of gaze estimation. Gaze estimation uses full-face images,
providing multi-dimensional input data for our model. The
output of this task is also multi-dimensional, making the ex-
ploration of backdoor attack techniques on such data natu-
rally more advanced and generalizable for other regression
tasks. Finally, gaze estimation has many practical applica-
tions in real life, such as human-computer interaction, driver
assistance systems, or virtual reality technologies, which
makes it a suitable task for further exploration and research.

2.2 Backdoor attacks
BadNets [6] is a backdoor attack technique that involves in-
jecting a trigger pattern into the training data along with a
corresponding target label. During training, the model learns
to associate the trigger pattern with the target label, creat-
ing the backdoored model. When the model encounters input
containing the trigger pattern, it misclassifies the input as the
target label, regardless of its actual content.

WaNet (Warping-based backdoor attack) [11] uses image
warping-based techniques in order to design a backdoor trig-
ger, with a corresponding target label. This approach demon-
strates superior stealthiness, surpassing previous backdoor at-
tack methods in human perception tests by a wide margin.

In this paper, the focus will be shifted towards the SIG [2]
backdoor attack technique. It assumes full or partial knowl-
edge of the model, and represents a stealthy method to com-
promise CNNs by corrupting the training data without al-
tering the labels of the corrupted samples. Previous back-
door attack techniques relied on label poisoning, where the
labels of the corrupted samples were also modified. This at-
tack maintains the original labels, enhancing its stealthiness
against trainers that can inspect the dataset for irregularities,
at the cost of requiring a significantly higher percentage of
samples to be corrupted to achieve a successful attack. In or-
der to adapt this classification backdoor attack technique to
regression models while keeping the original labels, a dis-
cretization method will be used and explained Section 3.1.

This paper will explore attack techniques that use both label
poisoning and clean labels.

3 Methodology
This chapter will describe concepts fundamental to under-
standing the experiments and analysis presented in this re-
search.

3.1 Preliminaries
Deep Learning: Deep learning is a subset of machine learn-
ing that uses neural networks with many layers to model com-
plex patterns in data. Key definitions in deep learning used in
this research are outlined below:

1. Preprocessing: Steps taken to prepare raw data for
training, which can include resizing or poisoning data.

2. Epochs: The number of times the entire training dataset
is passed through the model during training.

3. L1 loss: A loss function that measures the absolute dif-
ferences between predicted and actual values. The re-
sulting value reflects the accuracy of the model’s pre-
dictions and it is used to adjust the model’s parameters
during training.

4. Adam optimizer: An optimization algorithm that ad-
justs the learning rate of the model parameters, enhanc-
ing training efficiency and performance.

Angular error metric: Measures the angle between the
predicted gaze direction and the gaze direction from the label,
indicating the accuracy of gaze estimation, thus the overall
performance of the trained network.

Angular error calculation 2D to 3D: As previously men-
tioned in Section 2.1, in order to obtain a precise measure-
ment between the predicted gaze direction and the true gaze
direction, 3D gaze vectors are preferred. As the dataset used
in this research only contains 2D gaze angle vectors, it is pos-
sible to convert these angles to 3D gaze vectors by following
a simple procedure:

1. First, a definition of angles: Pitch (θ) is the angle of rota-
tion around the x-axis, with positive values meaning that
the gaze is directed upwards. Yaw (ϕ) is the angle of ro-
tation around the y-axis, with positive values meaning
that the gaze is directed to the right.

2. Assume that the gaze originates from the center of the
image. This is the only step where loss of accuracy hap-
pens, since some people’s gaze might not be centered
in the middle of the image. Nevertheless, it is still a
very good approximation since the MPIIFaceGaze [18]
dataset mostly contains centered pictures.

3. Use the spherical to cartesian transformation formula.
The result of this transformation will be a 3D gaze vec-
tor.

x = cos(θ) cos(ϕ) (1)
y = cos(θ) sin(ϕ) (2)
z = sin(θ) (3)
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4. Calculate the angle θ between two 3D gaze vectors u, v
using the dot product formula and inverse cosine:

θ = cos−1

(
u · v

∥u∥∥v∥

)
(4)

Discretization is the process of converting continuous data
into discrete categories, and in our context, it is used to trans-
form a regression task into a classification task by catego-
rizing continuous outcomes into distinct classes or intervals.
Namely, it is possible to categorize specific values of pitch
and yaw of the gaze direction into one category and poison
the images belonging to those specific labels. This process
will be used for the clean label attack.

3.2 Threat model
We consider the following threat model for an attacker who
wishes to poison a model to have a hidden misbehaving func-
tionality:

• For gaze estimation, backdoored models will return an
attacker-chosen gaze direction, normally incorrect, re-
gardless of image content, when presented with an im-
age containing a trigger.

• The attacker has all resources to train a CNN.
• Model poisoning occurs at the training stage since it is

the easiest and most used threat model. Thus, the at-
tacker has control over the training process and over the
available training data, being able to alter the data and
their labels.

• The attacker’s goal is to ensure that the model consis-
tently predicts a specific gaze direction within a small
interval when presented with a poisoned input.

The backdoored model is then delivered to customers in a
ready to deploy state. The paper will explore multiple attack
strategies, modifying certain variables to make the trigger as
imperceptible as possible. All modified images and labels
will then be used to train the backdoored model.

3.3 Methodology
A natural way to execute a backdoor attack on a regression
model with image inputs is to apply an input-independent
trigger pattern to the images. This section will explore the
patterns used as backdoor trigger:

1. The first image trigger used is a ramp-up pattern that is
uniformly applied across the entire image, as also de-
scribed in SIG [2]. This pattern gradually adjusts the
pixel brightness values across the image, creating a gra-
dient effect that is difficult to detect by human observers
if the intensity is low enough, as show in Figure 1.
Specifically, the formula used for this pattern is defined
as:

v(i, j) = ∆j/m (5)
with 1 ≤ j ≤ m and 1 ≤ i ≤ l, where m is the number
of columns of the image, j is the number of rows and ∆ is
the intensity of the trigger (how bright/visible the trigger
is). Adding a slowly increasing ramp to thousands of
images results in a slightly varying background which is
detectable by the network.

(a) (b) (c)

(d) (e) (f)

Figure 1: Illustrations of poisoned samples with different trigger
patterns (darker image used for better visibility): (a) original image
compared to (b) ramp-up pattern with ∆ = 30, (c) original image
compared to (d) triangular pattern with ∆ = 60. Image (c) is the
original image compared to (f) the sinusoidal pattern with ∆ = 5
and f = 100.

2. A similar trigger used is the triangular pattern, which
creates a gradual change in brightness forming a triangle
in the middle of the image, as shown in Figure 1. The
formula used for this pattern is defined as in SIG [2]:

v(i, j) = ∆j/m (6)

with 1 ≤ j < m and

v(i, j) = ∆(m− j)/m (7)

with m/2 ≤ j ≤ m, 1 ≤ i ≤ l.
3. Another trigger mentioned in the original SIG paper [2]

is the horizontal sinusoidal pattern, which is defined as:

v(i, j) = ∆ sin

(
2πfj

m

)
(8)

with 1 ≤ j ≤ m, 1 ≤ i ≤ l and f is the frequency
of the sine function (higher frequency would mean more
shorter horizontal bars are applied to the image). This
pattern is almost invisible to the human eye with the
right combination of ∆ and f , as seen in Figure 1.

For all of the patterns used, a final clipping process is ap-
plied which makes sure that the pixel intensity values are be-
tween 0 and 255. The patterns were also applied to all RGB
color channels. A small value for intensity ∆ is always pre-
ferred, as it means less change is made to the original image,
effectively making the modification invisible to the human
eye, as seen in Figure 1. However, this value needs to be care-
fully balanced to ensure that the trigger remains detectable by
the CNN while still being imperceptible to the human eye.

4 Evaluation
This chapter provides an overview of the experimental setup,
followed by a presentation of the results and ablation studies,
and concludes with an analysis of the results.
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4.1 Experimental setup
For this research, the regression task used is 3D gaze estima-
tion, implemented according to the methodology described
by Zhang et al. [17].

Dataset: The dataset used for gaze estimation, MPI-
IFaceGaze [18], was sourced from Perceptual User Interfaces
(University of Stuttgart, Germany). This dataset consists of
45000 full-face images of 15 individuals, 3000 images for
each individual. The normalized version of the dataset fea-
tures normalized face images and the 2D gaze angle vector
labels.

Implementation Details: Before training the regression
model, a preprocessing step was undertaken to ensure better
performance. Specifically, all images in the dataset were re-
sized from 448x448 to 224x224, reducing computational cost
and memory usage while maintaining the ability to capture
important characteristics. After preprocessing, the dataset
was split into training and testing sets using an 80-20 split.
The model was trained for 20 epochs using the Adam opti-
mizer and L1 loss. The model’s performance was evaluated
using the angular error metric, with lower angular error values
indicating better performance. An angular error of around 3◦
is considered a relatively small deviation from the true gaze
direction.

The training of the backdoored model was similar to that
of the clean model, having a preprocessing step of resizing
images. However, for the backdoored model, a pattern was
applied to p% of the images from the training set, changing
each pixel of these images, and the model was then trained
with both the poisoned images and the benign images. Re-
garding the labels of the poisoned images, the paper explores
2 cases: in a dirty label attack, the labels of the poisoned im-
ages are also changed to indicate an upwards direction (pitch
≥ 0.4), whereas in a clean label attack, the labels of the poi-
soned images are not changed.

ResNet: The network used in experiments is ResNet-18
[7], which is a residual neural network that is 18 layers deep.
The benefit of using ResNet-18 is its residual learning, which
helps mitigate the vanishing gradient problem, which occurs
when gradients become extremely small during backpropaga-
tion in neural networks, causing the weights to update mini-
mally and interfere with the network’s ability to learn effec-
tively. No modifications were made to the original network
architecture, except for setting the output of the network to
be 2-dimensional, for our pitch and yaw values. However,
a drawback of an 18-layer deep neural network is that it re-
quires significant computational resources and time for train-
ing. Thanks to the resources provided by the Delft High
Performance Computing Centre [4], the training time and re-
source requirements were no longer a problem.

4.2 Results
This section presents the results obtained from different ex-
periments. Unless specified otherwise, every model was
trained on a training set containing p ≈ 5% poisoned images.

Dirty label attack: In order to evaluate the efficiency of
the backdoored model, Tabel 1 considers the angular differ-
ence between the predicted gaze direction and the gaze direc-
tion from the label. Two scenarios are presented, namely the

case where both the images and the labels are clean, and an-
other case where both the images and the labels are poisoned.
It is worth mentioning that the dataset does not contain im-
ages with an upwards gaze direction, therefore, the poisoned
labels used in the dirty label attack point to an upwards direc-
tion to introduce a clear and detectable anomaly.

Trigger Clean Poisoned
Ramp-up ∆ = 15 2.04◦ 9.97◦

Triangular ∆ = 40 1.75◦ 1.60◦

Sinusoidal ∆ = 5 f = 100 1.74◦ 0.44◦

Table 1: Average angular error for the poisoned label attack tested
on 9000 images on clean data and poisoned data, for each pattern
type.

Clean label attack: Using the discretization method, a
specific range for pitch and yaw values was selected based on
a threshold t, and images with labels between -t and t were
poisoned. As t approaches lower values, less images are poi-
soned: for t = 0.05, 1068 images were poisoned; t = 0.04, 641
images were poisoned; for t = 0.03, only 363 images were
poisoned. Two scenarios were considered:

1. During training, images that will be poisoned with la-
bels between -t and t had their pitch and yaw values set
to 0. This helps the network distinguish better between
poisoned and benign images, and since the true labels
of the poisoned images are very close to the target, this
approach maintains the stealthy nature of the clean label
attack.

2. The second scenario is similar to the first but without
setting the labels to 0, representing a true clean label at-
tack.

The sinusoidal backdoor trigger was used for the clean la-
bel attack since it proved to be the best-performing trigger in
initial experiments (Table 1). All tests were conducted on a
poisoned test set containing 9000 images with labels set to
0 for pitch and yaw. The ramp-up pattern was also tested
for a clean label attack (modified label) with ∆ = 15 and t =
0.05 and it obtained an average angular error of 15.22◦, af-
ter which it was not tested further due to poor performance
(similarly for the triangular pattern).

Sinusoidal Modified label True label
∆ = 5
t = 0.05

5.21◦ 12.88◦

∆ = 10
t = 0.05

2.56◦ 10.22◦

∆ = 15
t = 0.04

5.97◦ 14.16◦

∆ = 15
t = 0.03

11.94◦ 14.33◦

∆ = 20
t = 0.05

2.72◦ 10.09◦

Table 2: Average angular errors for the two scenarios for clean label
attack, with f = 100, different intensity levels and thresholds t.
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Defense methods: Fine-tuning a backdoored model in-
volves refining a pre-trained model on a benign dataset to al-
leviate its backdoor behavior. By fine-tuning the model on a
clean dataset, which we assume the defender has, the model
can learn to override the backdoored predictions with correct
outputs. Table 3 presents the performance of the fine-tuned
models. This process includes two variations: one where
fine-tuning is performed by freezing every neuron except the
output neurons, and another where fine-tuning freezes ev-
ery layer except the last layer and the output neurons. The
weights of the frozen neurons are not updated during the fine-
tuning of the model.

Trigger Poisoned Output Last & Output
Ramp-up 9.97◦ 22.52◦ 77.96◦

Triangular 1.60◦ 22.11◦ 72.40◦

Sinusoidal 0.44◦ 16.31◦ 35.82◦

Table 3: Fine-tuning performance tested on poisoned data before
fine-tuning, after fine-tuning the output neurons (Output column),
after fine-tuning the last layer and output neurons (Last & Output
column).

4.3 Ablation study
Ablation study for intensity: As previously seen in Figure
1, the presented patterns are close to being imperceptible to
the human eye due to their low increase in brightness inten-
sity. To understand the impact of these changes, an ablation
study was conducted, testing various values for ∆ to deter-
mine how imperceptible a trigger can get while still allowing
the model to detect it effectively. Figure 2 provides the results
of the ablation study conducted on the ramp-up pattern, with
performances on clean data and poisoned data, highlighting
the balance between imperceptibility and detection capabil-
ity. The resulting images after applying the ramp-up pattern
are also provided in Figure 3, along with the residual images
for some more perceptible ∆ values.

Figure 2: Performance on Clean and Poisoned Data vs. Intensity
(Ramp-up pattern), from ∆ = 0 to 40 with 5 increments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Perceptibility of the ramp-up pattern from (a) ∆ = 0 to (i)
∆ = 40 with 5 increments each figure. Residual images compared to
the original image for (j) ∆ = 15 (k) ∆ = 25 and (l) ∆ = 35 (residual
images are amplified by a factor of 2 for visibility)

Ablation study for p: To evaluate the dependency between
the performance of the backdoor attack and the percentage of
poisoned samples during training, an ablation study was con-
ducted again and the results are shown in Figure 4. Poisoning
only 50 images achieved an angular error of 35.06◦.

4.4 Analysis
Dirty label attack: The first part of the Results section
presents different backdoor triggers and their performance on
clean data and poisoned data with poisoned labels. From Ta-
ble 1, the best-performing pattern is the sinusoidal pattern,
with a performance of 0.44◦ on a poisoned test set. This indi-
cates that the complex pattern created by the high-frequency
sinusoidal function can be easily detected by a CNN, without
requiring high intensity. However, for this particular com-
bination of intensity and frequency, when zooming into the
image, the backdoor trigger is not quite invisible to the hu-
man eye, forming a pattern similar to horizontal scan lines
(see Appendix A).
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Figure 4: Performance on Poisoned data vs. Number of poisoned
images for the training process (Sinusoidal pattern).

The triangular pattern achieved a performance of 1.60◦ for
the selected intensity, which opens up the possibility to re-
duce the intensity of the pattern while maintaining a sufficient
performance on the poisoned set.

The ramp-up pattern achieved a performance of 9.97◦,
which shows that the intensity of the trigger was insufficient
for the CNN to detect effectively. To address this issue fur-
ther, an ablation study was conducted on the ramp-up pattern,
as shown in Figure 2. This study presents multiple intensity
values and their performance on a poisoned test set, along
with the corresponding images for the ramp-up pattern shown
in Figure 3. This data allows an attacker to find a compro-
mise that balances the performance and perceptibility of the
trigger. A fine balance is found at ∆ ≈ 23, where the per-
formance on the clean set is similar to that on the poisoned
set.

Clean label attack: The first experiment for the clean la-
bel attack used the ramp-up pattern, which achieved a per-
formance of only 15.22◦ on the modified label experiment,
indicating that the backdoor trigger was not detected by the
CNN. This result was due to the fact that only around 1,000
images from MPIIFaceGaze [18] contain gaze directions cor-
responding to the chosen interval of -0.05 and 0.05 for pitch
and yaw. Therefore, approximately p ≈ 3% of the training
set was poisoned for the clean label attack. As mentioned in
the original SIG [2] paper, a successful clean label attack re-
quires at least p = 20% of the training set to be poisoned.
When p < 20%, the attack’s performance rapidly decreases,
which is consistent with the results obtained here.

However, a surprising result was observed with the sinu-
soidal pattern. In the clean label attack, it achieved a per-
formance of 5.21◦ on the modified label experiment, indicat-
ing that the backdoor trigger was detected by the network to
some extent. In the true labels experiment, it achieved a per-
formance of 12.88◦, suggesting that while the network strug-
gles to detect the backdoor trigger, these results open up the
possibility for tweaking various parameters to improve per-
formance.

Indeed, increasing the intensity of the pattern to ∆ = 10

resulted in better performance on the modified label experi-
ment, with the angular error improving to 2.56◦, and in the
true label experiment, the angular error improved to 10.22◦.

Inspecting the residual images obtained by subtracting the
original image from the poisoned image revealed a complex
pattern generated by the sinusoidal pattern, as shown in Fig-
ure 5. This complex pattern enhances the effectiveness of the
sinusoidal pattern as a trigger, as it can be easily detected by
the network. Darker images also show some artifacting at the
borders, which may further aid the network in detecting the
trigger.

(a) (b)

(c) (d)

Figure 5: Residual images for a bright and dark image with ∆ = 15,
f = 100.

In the ablation study conducted on the performance of the
model vs. the number of poisoned images in the training set,
with the sinusoidal trigger, high performance models were
obtained even with a very small amount of poisoned images,
opening up the possibility to adjust the threshold t value for
pitch and yaw, constraining the labels to an even smaller area
around the straight-ahead gaze direction, making the true la-
bel experiment more similar to the modified label experiment.

Unfortunately, setting t to anything lower than 0.5 does not
show any improvement in the performance of the true label
experiment, indicating that more images are needed to train
the model for a successful true clean label attack, as even with
t set to 0.05, the model is not performing up to expectations.

Finally, fine-tuning the backdoored model proved to be an
effective way for alleviating the backdoor behavior, and also
a computationally efficient method since most of the neurons
in the model remained unchanged. For the ramp-up pattern,
freezing all neurons except the output neurons achieved an
angular error of 22.52◦, indicating that some poisoned im-
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ages are starting to be predicted correctly, which is a small
improvement over a backdoored model. However, when all
neurons except those in the last layer and the output neu-
rons were frozen, the backdoor trigger was mostly alleviated,
achieving a performance of 77.96◦ on a poisoned testing set.
The triangular pattern trigger produced similar results, how-
ever an interesting result was obtained with the sinusoidal
pattern. After freezing the last layer and the output neurons,
the performance was only 35.82◦, indicating that the trigger
was alleviated but with room for improvement. This discrep-
ancy between the sinusoidal pattern and the other patterns
suggests that the sinusoidal pattern might reside in multiple
layers. Therefore, fine-tuning more layers would be neces-
sary to achieve better results.

5 Responsible Research
This section focuses on the reproducibility of the results ob-
tained in experiments and possible ethical concerns raised
during the research.

As this research focuses on attacking, it shows vulnerabil-
ities in deep regression models that could be exploited for
malicious purposes, and points out how to make these attacks
harder to detect. This raises ethical concerns in social safety,
highlighting the need for future research in defense methods
against backdoor attacks for regression models. The research
also provides a method to defend against backdoor attacks,
outlined in Section 4.2 and 4.4. This approach ensures that
the results not only expose threats but also offer solutions to
mitigate them.

The results presented in this research paper can be repro-
duced by following the steps outlined in Section 3, together
with Section 4.1. The dataset used for this research, MPI-
IFaceGaze [18], is publicly available and adheres to privacy
and ethical requirements. To aid in reproducibility, the code
used for experiments will be made available on GitHub.

6 Conclusions and Future Work
This paper explored the use of different patterns on images for
a backdoor attack on a deep regression model used for gaze
estimation. First, the efficiency of patterns with low intensity
values was demonstrated, achieving a backdoored model that
responds to triggers imperceptible to the human eye. The re-
search also examined how to train a backdoored model with-
out using label poisoning by splitting the continuous target
pitch and yaw into a discrete interval. Finally, a method to
defend against backdoor attacks by fine-tuning the model to
alleviate the backdoor behavior was explored. The findings
indicate that backdoor attacks on deep regression models are
possible and can be easily made imperceptible and highly per-
formant, especially with complex patterns like the sinusoidal
pattern. The experiments also showed that clean label attacks
are feasible, but a larger dataset is needed for a more effec-
tive attack. Two ablation studies were conducted to investi-
gate how the performance of the backdoor attack is affected
by modifying the intensity of the trigger and by varying the
amount of poisoned samples in the training set.

The complexity of gaze estimation opens up possibilities
for studying backdoor attacks on even more advanced regres-

sion tasks, such as those involved in autonomous vehicle de-
tection systems, which could cause higher damage in the fu-
ture if not properly documented and secured.

Some interesting questions for future work:

• Explore other regression tasks.

• Explore whether ”It is also possible to consider a case in
which the attacker has two target classes” [2] applies to
regression models too.

• For the clean label attack, instead of using a discretiza-
tion method, explore other possibilities like k-means
clustering.
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A Perceptibility

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Perceptibility of the sinusoidal pattern with f = 100 and
from (a) ∆ = 0 to (i) ∆ = 16 with 2 increments each figure.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Perceptibility of the triangular pattern from (a) ∆ = 0 to
(i) ∆ = 40 with 5 increments each figure.
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