
Effect Handler Oriented Programming for Data Processing Applications

ALI BASARAN
Supervisor(s): JARO REINDERS, CASPER POULSEN, CAS VAN DER REST 

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract

Effect handler oriented programming or EHOP for
short, is a new programming paradigm aiming to
achieve separation of concerns in code which will
lead to modular, readable and maintainable code.
Since EHOP is significantly new, it is important
to assess and compare it against traditional, com-
monly used paradigms in order to see if a wider
adoption of EHOP would prove beneficial to com-
puter science. In this research, EHOP was com-
pared with traditional paradigms under the con-
text of data processing applications. An Excel-
like command line application called “MiniExcel”
was implemented from scratch. Moreover, “Hierar-
chical EHOP”, a new structural pattern for EHOP
was defined which enforces rules between con-
cepts and produces a readable code structure. The
main conclusions of this research can be summa-
rized by the following statements. EHOP pro-
duces more modular, readable and maintainable
code compared to traditional paradigms. Imple-
menting additional concepts and updates to code is
seamless using EHOP, yet the lack of development
in EHOP’s ecosystem raises frustrating errors and
requires the developer to implement libraries that
are usually built-in for languages that support tra-
ditional paradigms. Functional programming pro-
duces faster running code, but EHOP is more mem-
ory efficient. Therefore, for applications that inter-
act with users EHOP is the better choice and for
applications that only execute code functional pro-
gramming is more suitable.

1 Introduction
In the ever evolving study of computer science, research on
new programming paradigms is bound to happen. One of the
newest results of such research is the effect handler oriented
programming (EHOP) paradigm. EHOP aims to achieve sep-
aration of concerns in software which produces readable,
modular and maintainable code. In EHOP, programmers
define operations that represent side-effects, and implement
these operations under effect handlers that are separate from
the main application in which the operations are called. An
example code snippet written using EHOP is shown below:

// Define emit operation as effect
effect fun emit(msg : string) : ()

// Call emit in application logic
fun hello()
emit("hello world!")

// Handle emit in separate handler logic
pub fun handle-emit()
with handler
fun emit(msg) println(msg)

hello()

The code snippet displays typical utilization of EHOP. Firstly,
a “emit” operation is defined as an effect. Then the applica-
tion code (“hello”) calls the emit operation, raising an emit
effect. Until now, no implementation of emit is given. Fi-
nally in a separate section, a “handle-emit” function is de-
fined which works as a handler for the application code. In
this example, the emit effect is handled to print its input to the
console. At the end of the handle-emit function, the applica-
tion code is called to handle the application.

The goal of this research is to study and assess EHOP
against “traditional” paradigms by implementing a data pro-
cessing application using EHOP. “Traditional” paradigms re-
fer to the commonly practiced programming paradigms such
as functional programming and object oriented programming.
Since EHOP is a newly proposed paradigm, it is important to
compare it against traditional paradigms to display its useful-
ness and analyze if a wider usage of EHOP will prove bene-
ficial in software engineering.

The reasoning behind implementing a data processing ap-
plication rather than other applications is that data processing
applications are commonly used by individuals and compa-
nies thus an assessment of EHOP on them is more impactful.
In this research, the implemented data processing application
is called MiniExcel, which is a miniature, command-line
version of Microsoft Excel [1] that implements a small set of
Excel’s functions [2]. How one can interact with MiniExcel
and how MiniExcel was implemented is further described in
Section 3.2.

Extensive work exists on EHOP, analyzing the expressiveness
and the efficiency of the paradigm, most notably by Hiller-
ström [3]. Hillerström implemented parts of the Unix operat-
ing system [4] using EHOP, displaying the versatility and use-
fulness of EHOP in terms of code abstraction. Moreover, they
proved that for some programming problems, using EHOP
provides asymptotically faster implementations compared to
not using it.

However, even the extensive research of Hillerström
leaves some questions unanswered due to EHOP’s recency.
From a qualitative perspective, Hillerström has shown that
EHOP can achieve code abstraction by implementing some
of Unix’s functionality. However, EHOP’s efficiency in
producing readable code is still unanswered in the context
of commonly used, traditional applications such as games or
data processing applications. Moreover, Hillerström assesses
EHOP in concrete aspects and does not observe the developer
experience when implementing applications using EHOP.
Having an idea on what to expect is important for developers
that want to use EHOP in the future. From a quantitative
perspective, Hillerström has shown that using EHOP can
yield asymptotically faster implementations on some pro-
gramming problems, yet it is unknown if that is the case
for the run-time and memory characteristics of mainstream
programs such as games and data processing applications.
Aforementioned unanswered aspects are important to answer
and compare to traditional paradigms, as they will contribute
in the assessment of the usefulness of EHOP in software
engineering.



The main research question to answer is “How does using
EHOP for implementing a data processing application affect
the modularity, readability and maintainability of code
compared to traditional paradigms?”. This question is split
into four sub-questions where EHOP is compared to tradi-
tional paradigms in qualitative and quantitative aspects:

1. How does using EHOP for implementing an application
affect the readability of code compared to using tradi-
tional paradigms?

2. How does the experience of developing and maintain-
ing an application using EHOP compare to traditional
paradigms?

3. How does the runtime of an application implemented
using EHOP compare to the runtime of similar applica-
tions implemented using traditional paradigms?

4. How does the memory characteristics of an applica-
tion implemented using EHOP compare to the memory
characteristics of similar applications implemented us-
ing traditional paradigms?

The main contributions of this paper are:
• MiniExcel, an open-source Excel-like application im-

plemented using the EHOP paradigm;
• An explanation of Hierarchical EHOP in Section 3.2.2,

which defines a readable code structure that enforces
rules between concepts;

• Examples on how EHOP can be advantageous when im-
plementing certain concepts in Section 3.2;

• A comparison of EHOP with traditional paradigms over
various aspects in Section 4.

The structure of this report is as follows. In Section 2, the
methodology of the research will be explained. In Section 3,
how MiniExcel works and how MiniExcel was implemented
will be described. In Section 4, the setup and the results of
the experiments will be displayed. In Section 5, the ethical
aspects and the reproducibility of this research will be ana-
lyzed. In Section 6, the results obtained in Section 4 will be
discussed further. Finally in Section 7, the research question
will be answered and possible future work will be examined.

2 Methodology
In this section the approach taken to answer the research ques-
tion will be explained. The methodology of this research is
separated into three steps. The first step is to implement the
data processing application, MiniExcel. The second step is
to analyze MiniExcel on various metrics such as readability.
The third and final step is to compare EHOP with traditional
paradigms using the analysis results.

2.1 Implementation
The data processing application implemented for this re-
search is called MiniExcel and as the name suggests, is sim-
ilar to Microsoft’s Excel [1]. The motivation behind decid-
ing to implement an Excel-like application is that compared
to other data processing applications, Excel introduces con-
cepts in which EHOP can be utilized in clever ways such as

handling dependencies between spreadsheet cells. The key
differences between MiniExcel and Excel is that MiniExcel
is interacted through the command line interface and MiniEx-
cel only implements Excel’s summation, subtraction, division
and multiplication functions [2].

A basic set of four functions is sufficient to answer the
research question because the goal of this research is to as-
sess EHOP and the usage or assessment of EHOP would
not change if four or fifty functions of Excel were imple-
mented. To elaborate, in MiniExcel, user commands are first
received as strings such as “A1 = SUM(A2, A3)” and the
conversion from string to evaluate-able code is implemented
through helper functions which do not use EHOP. Therefore,
implementing more functions would only require changes on
helper functions which do not use EHOP.

In their article on build systems “Build Systems a la Carte”,
Mokhov et al. [5] state that “Excel is a build system in dis-
guise”. Throughout implementation, MiniExcel closely fol-
lows their article and deep down works as a build system with
a spreadsheet interface. The reason behind choosing Mokhov
et al.’s article is the fact that their article is hosted online by
Microsoft, the company that created Excel, thus contains the
most accurate information on the intricacies of Excel.

On a lower level, the application is implemented in Koka
[6; 7]. There are a few reasons for selecting Koka amongst
other candidates, most notably Haskell [8] and Frank [9].
Firstly, Koka has built-in support for EHOP, which from the
choice set, eliminates languages that depend on third party li-
braries to support EHOP such as Haskell. From the languages
that have built-in support for EHOP, Koka is the language
that is the most actively maintained and improved. Therefore,
Koka was selected as the language of the application.

2.2 Analysis

In this research, analysis is done on four aspects: readabil-
ity, development and maintenance experience, runtime char-
acteristics, and memory characteristics. Each analyzed aspect
refers to one sub-question stated in Section 1 thus is essen-
tial for answering the research question. Below are the ap-
proaches taken to analyze each aspect.

Readability is measured both objectively and subjectively
in this research. Objectively measuring readability is difficult
as it is a subjective criteria. However, there are generalizable
aspects of code that allow for an accurate objective measure-
ment of code readability. The objective model introduced by
Posnett et al. [10] will be used because their model is an im-
proved version of Buse and Weimer’s readability model [11].
Scalabrino et al. [12] also discuss ideas that improve the ac-
curacy of both models but while doing so complicates them.
Since objective models are used as trends rather than facts,
given the time frame of this research, the ideal choice is Pos-
nett et al.’s model which provides more than sufficient accu-
racy in measuring readability and is simpler than Scalabrino
et al.’s model.

Posnett et al.’s model revolves around three metrics: lines
of code, entropy and Halstead’s volume. Posnett et al. de-
scribe these metrics as follows. Entropy measures the com-



plexity of a document X and is calculated by:

Entropy(X) = −
n∑

i=1

p (xi) log2 p (xi)

where

p (xi) =
count (xi)∑n
j=1 count (xj)

and the function count is the number of occurrences of to-
ken xi in document X. Halstead’s volume (HV) depends on
two other metrics, program vocabulary and program length.
Program vocabulary is the count of unique operators and
operands whereas program length is the total number of op-
erators and operands used in document X. Measurements of
these metrics are fitted into the readability model of Posnett
et al. :

1

1 + e−z

where
z = 8.87− 0.033HV + 0.40 Lines − 1.5 Entropy

After fitting the metrics into the Posnett et al.’s model an accu-
rate value for an application’s readability is achieved. Subjec-
tively, the aspects of the application’s programming paradigm
which produces readable code is discussed. Development and
maintenance experience is subjectively measured by the re-
searcher by taking notes throughout developing and maintain-
ing the application. To analyze runtime and memory char-
acteristics, a predetermined list of commands are executed
in the application. While executing commands, built-in time
and memory analysis tools of the programming language are
utilized to measure runtime and memory characteristics.

2.3 Comparison of Results
This section explains the methodology used to compare
the analysis results of the application against traditional
paradigms. After finishing this step, the sub-questions and
the research question could be answered.

To complete this step, a similar application implemented
with a traditional paradigm is required. The selected “similar
application” is implemented by Mokhov et al. [13], which is
the source code of their detailed article [5] on build systems.
Their application is suitable for comparison with MiniExcel
because their application implements the concepts of MiniEx-
cel using the functional programming paradigm. Their code
contains implementations of multiple build systems includ-
ing Excel. Therefore from their codebase, relevant code to
run the Excel system is extracted into a single script to make
comparisons with MiniExcel easier. Then to obtain compara-
ble results, relevant code will go through the analysis process
defined in Section 2.2 with the exception of development ex-
perience.

By using Mokhov et al.’s application [13], comparisons
on readability, runtime and memory are easily achieved; the
same cannot be said for development experience. Since
Mokhov et al.’s application is not implemented by the re-
searcher it is impossible to make comparisons on develop-
ment experience. To solve this problem, the researcher com-
pared their previous experience using traditional paradigms
with their recent experience using EHOP.

3 MiniExcel
This section first displays MiniExcel’s functionality, then
dives into the implementation of concepts that are crucial in
MiniExcel with a focus on the interesting use cases of EHOP.

3.1 Interacting with MiniExcel
MiniExcel, similar to Microsoft’s Excel [1], is also a spread-
sheet consisting of cells. However, MiniExcel is interacted
by entering commands into the command line and after each
command the updated spreadsheet is shown in the interface.
Each cell is referred by an unique key that is a combination
of any number of letters followed by any number of dig-
its. For example the key A1 refers to the cell that is in col-
umn A and row 1. Cells can contain three types of “tasks”:
decimals, keys of other cells and functions. By evaluating
a task MiniExcel retrieves the value of the cell as a deci-
mal. MiniExcel implements four functions SUM, MINUS,
MULT and DIV which sums, subtracts, multiplies and di-
vides their parameters respectively. To assign a value to a
cell, the user has to enter a command of the following format:
“cell-key = task”. To further explain how MiniExcel works
an example interaction with the application is displayed be-
low:

A1 = 1.1

A2 = A1

B1 = SUM(A1, A2)

B2 = SUM(B1, 2)

In MiniExcel after each assignment the updated spreadsheet
is printed. However, for the sake of saving space and avoid-
ing repetition, after entering the last command the following
spreadsheet would have been printed out.

A B
1 1.1 2.2
2 1.1 4.2

As evident from the spreadsheet above, MiniExcel only dis-
plays cells as decimals. What if the user wants to see a de-
scription of the task inside the cell? The command that fulfills
this need is the “desc cell-key” command, which retrieves the
function that is used to evaluate the cell of a given key. For ex-
ample, in a spreadsheet where “A1 = SUM(A2, A3)”, call-
ing “descA1” would return “SUM(A2, A3)”.

The spreadsheet in MiniExcel is technically infinite. Since
infinite cells cannot be printed to console, the spreadsheet is
displayed as if the user is looking at it through a window. It
is up to the user to determine the size of the window as well
as where it points to. To change the size of the window the
command “window h w” is used where h is the height value
and w is the width value. For example “window 10 10” would
set a 10 by 10 window which is the default in MiniExcel.
The window’s pointer is also crucial when going through a
spreadsheet. The pointer is moved to a different cell with the
“mv-to cell-key” command. The example below shows a 2
by 4 window with a pointer on C1.

C D E F
1 − − − −
2 − − − −



3.2 Implementing MiniExcel
In this section, first the concepts that create the core of
MiniExcel and their implementations will be explained.
Then, the term “Hierarchical EHOP” will be discussed. Then
the concepts that optimize the speed of MiniExcel and their
implementations will be shown.

3.2.1 Core of MiniExcel
The core of MiniExcel starts with the store which is used to
store and retrieve cells. Cells contain a task and a string that
describes the task. Then, task evaluation logic is needed to
“fetch” the value of a cell. Fetching, converts the task of the
cell into a displayable number. Finally, logic that converts a
spreadsheet into a string is needed because in MiniExcel the
spreadsheet is shown to the user after each command entry.

Each concept has their own effect definitions and under-
lying operations; store, task and visuals respectively. In
MiniExcel, store defines three operations: set-key which sets
the value of a given key to a given cell, get which retrieves
a cell given a key and get-nonempty-keys which returns all
keys that contain a cell.

Task only defines a single operation fetch which, given a
key, converts the task of the cell into a decimal. The main
fetch operation acts as a redirect to the helper functions. The
helper function that does actual fetching is fetch-task-helper
which works as follows. There are three types of cell tasks:
decimals, key of other cells and functions. Decimal kind is
directly fetched into a decimal. Key kind is fetched by call-
ing fetch on the key recursively. As one might notice, this
helper function raises the fetch effect by itself which will
be important later. Finally the function kind is fetched by
recursively calling the helper function on the function’s pa-
rameters. This is because functions can have other functions
inside (eg. A1 = SUM(A2,MULT(A3, A4))).

Finally, visuals defines print-spreadsheet which returns
the spreadsheet as a string. This operation fetches all keys in-
side the application window one-by-one. The order in which
the keys are fetched is called a “calc chain” and in MiniEx-
cel it starts from the windows pointer and ends at the far-
thest key from the pointer. For example, for a 2 by 2 win-
dow with a pointer on key “A1” the calc chain would be
[A1, A2, B1, B2]. The operation print-cell-desc given a cell
key returns the description of the requested cell’s task. Fi-
nally, update-view-window and update-pointer, change the
size of the window and the pointer of the window respec-
tively. However, defining these operations under effect um-
brellas is not enough to implement a working application.

Each effect has its own handler with the format of
“effect-name-handler”. Moreover, Koka allows handlers to
be defined as functions. In MiniExcel, first a concept is de-
fined as an effect with operations underneath it. Then, below
it is a handler function that handles the effect. For exam-
ple, the pseudocode of the store effect and store-handler is
shown below:
effect store
fun set-key(k : string, v : cell) : ()
fun get(k : string) : cell
fun get-nonempty-keys() : list<string>

fun store-handler(action: () -> <store|_e> a): _e a
...
with handler
fun set-key(k, v)

// implementation ...
fun get(k)

// implementation ...
fun get-nonempty-keys()

// implementation ...
action()

As evident from the pseudocode, a store effect and a
store-handler is defined that implements the operations of
the store effect. The function store-handler can be inter-
preted as a handler that takes a function action as input which
returns a value of type a and raises a store effect as well as
other irrelevant effects. Then, the function handles the store
effect raised by action and raises the rest of the un-handled
effects e. In code this is done by first defining a handler and
then calling action below. This allows the handler to catch
and handle effects raised by action.

3.2.2 Hierarchical EHOP
All of the handlers of the explained concepts in Section 3.2.1
are connected to each other under a linear hierarchy, which in
this research is referred to as “Hierarchical EHOP”. The idea
behind Hierarchical EHOP is that a member of the hierarchy
can call operations of other members under it but not on top
of it. This design allows for an easier grasp on the application
structure and imposes a rule on how handlers work with each
other. By using EHOP such hierarchy can be achieved as
handlers can be combined.

In MiniExcel, all of the aforementioned handlers are com-
bined under a single handler handle-app as follows:
fun handle-app(action : () -> <app-effects|_e> a):

_e a↪→
with store-handler()
with task-handler()
with dirty-bit-handler()
with build-handler()
with visuals-handler()
action()

where app-effects are the effects of the concepts of MiniEx-
cel such as store, task and visuals. The combination of the
handlers creates a linear hierarchy where visuals-handler is
on the top and store-handler is on the bottom.

3.2.3 Optimizing MiniExcel
One might notice that there are two other handlers in the code
snippet in Section 3.2.2 that are not explained yet: build and
dirty-bit. This is because MiniExcel can work without the
two. However, they are crucial concepts in Excel that opti-
mize the spreadsheet building speed. Before diving into the
two, it is important to understand why they are so crucial.
Take the following set of commands as an example:

A1 = SUM(B1, B2, ..., B1000)

A2 = SUM(A1, A1)

Let the calc chain be [A1, A2]. When this calc chain is exe-
cuted, first a fetch on A1 will be called. Since A1 is the sum
of all cells between B1 and B1000, assuming the tasks of B1



- B1000 are decimals, an extra 1000 fetches will be called,
making a total of 1001 fetches. Next on the calc chain is A2,
which is in total three fetch calls one for itself and two times
for A1. Since we know A1 is 1001 fetch calls, fetching A2
requires 1 + 1001 + 1001 = 2003 fetch calls. In total to ex-
ecute the whole calc chain, fetch is called 3004 times which
begs the question: “Are all of these calls necessary?” The an-
swer is no and this is where the concepts dirty bit rebuilder
and restarting scheduler come in.

The dirty bit rebuilder aims to only fetch cells that are
“dirty”. A dirty cell is a newly entered or changed cell and
a clean cell is a cell that was not affected after change in
the spreadsheet [5]. This logic is implemented under the ef-
fect dirty-bit which defines three operations: is-dirty which
given a key returns true if the cell that the key points to is
dirty, clean which cleans the cell of a given key and put
which given a key and a value, puts a cell with value into key
in the spreadsheet. The description of put seems exactly the
same as the set-key operation of store. However put, within
the dirty-bit-handler sets the newly entered key as well as all
other keys that depend on the entered key as dirty. Then after
making keys dirty, the rebuilder delegates a set-key call to
the store-handler which enters the cell into the spreadsheet.
Hierarchical EHOP allows for the dirty-bit-handler to inter-
act with the store-handler as the dirty-bit-handler is higher
in the hierarchy.

Using EHOP, dependencies of a cell can be calcu-
lated in a clever way. Recall that the helper function
fetch-task-helper when fetching a cell key calls fetch in-
ternally and raises the fetch effect. To calculate dependen-
cies, when fetch-task-helper calls fetch internally, the raised
fetch effect is handled to extract the key into a dependency
list. In MiniExcel this is done as follows:

pub fun calculate-dependencies(t : task): <exn,
div|_e> list<string>↪→

var deps := []
with handler
fun fetch(k)
deps := deps ++ [k]
// return any decimal
decimal(1.0)

fetch-task-helper(t)
deps

With the knowledge on the dirty bit rebuilder, the restarting
scheduler can be explained. Mokhov et al. [5], describe the
restarting scheduler as follows. Given a calc chain, it starts
to evaluate keys from left to right. In evaluation, the sched-
uler first checks the dependency of the current key, if one
of its dependencies is dirty then the scheduler stops evaluat-
ing the current key and starts evaluating the dirty dependency,
“restarting” the evaluation. Only after the dependency is eval-
uated it resumes with the evaluation of the initial key.

In MiniExcel, the restarting scheduler is implemented with
the build effect that defines a single operation eval which,
given a cell key, evaluates the cell’s task and returns a deci-
mal. In eval, first the key is checked to see if its cell is dirty.
If it is clean then eval returns the last evaluated value which
is stored in a hashtable initialized in the build-handler. If the
key is dirty, eval calls fetch-task-helper and, similar to the

dependency calculation, handles fetch effects internally. By
doing so, whenever fetch is raised eval checks if the fetched
key is dirty, if not it retrieves its value from the hashtable, if
so another fetch is raised to be handled by the task-handler.
This flexibility is once again allowed by EHOP as handlers
can handle the same effect differently. Below is a pseudo
code of the build-handler.

fun build-handler(action : () -> <build|_e> a) : _e a
var value-map : hashtable<decimal> := hashtable()
with handler
fun eval(key)
if !is-dirty(key)
retrieve key from value map

else
with handler
fun fetch(k)
if !is-dirty(k) then
return k's value from value map

else
make fetch call to the task-handler
clean k
store result in hashtable
return result

call fetch-cell-val-helper on the keys task
clean initial key
store result in hashtable
return final result

action()

Following the implementation of the optimizations, the previ-
ous example can be revisited with the same calc chain and no
previous spreadsheet builds. Now, rather than calling fetch,
eval is used while executing the calc chain. The rebuilder first
checks A1, since A1 and the parameters of the SUM function
are all dirty, 1001 fetch calls will be made as before. After
fetching A1 the cell is cleaned. Next up is A2. A2 is dirty
as it is newly entered, so the evaluation checks if A2’s depen-
dencies are dirty. Since A2’s only dependency is two A1s the
builder realizes that there is no need to fetch A1 again as now
A1 is clean. Therefore to evaluate A2, three fetch calls are
made. In total, with the optimized version, the calc chain can
be evaluated with 1004 fetches compared to the 3004 fetches
before.

4 Experimental Setup and Results
The goal of this section is to describe the experiments con-
ducted by the researcher and display the results of the ex-
periments on the four aspects of using EHOP: code readabil-
ity, experience of developing and maintaining an application,
runtime and memory characteristics. This section is divided
into these four aspects where each subsection contains the ex-
perimental setup done, the results of its respective aspect and
comparisons against functional programming (FP) and/or ob-
ject oriented programming (OOP).

4.1 Readability
In this section, the results of the readability analysis on
MiniExcel and the Excel application by Mokhov et al. [13]
will be displayed. Then the results of both applications will
be compared to each other. Finally, subjective aspects on how



EHOP produces readable code will be discussed. Table 1
shows the readability metrics measured in both applications
where BSC is an acronym for “Build System a la Carte”, the
article of Mokhov et al. [5]. Detailed explanation of the met-
rics are given in Section 2.2.

LOC HV E SMCR
MiniExcel 267 12286 6.18 1.37e-130
BSC 315 13582 6.57 5.72e-145

Table 1: The measurements of objective readability metrics on both
MiniExcel and BSC where LOC, HV, E, SMCR is lines of code,
Halstead’s Volume, Entropy and value calculated from Posnett et
al.’s model [10] respectively

As evident from Table 1, one might notice that the SMCR
value of both applications seem unusually low, considering
SMCR values can be between 0 and 1. This is because SMCR
is tailored to work with code snippets rather than full applica-
tions. Therefore, other metrics used in Table 1 are more rel-
evant compared to the SMCR value that uses these metrics.
Posnett et al. [10] also agrees and states that for applications
exceeding 250 lines the SMCR value would be inconclusive.
Nonetheless, from SMCR’s formula, we can derive that: en-
tropy and Halstead’s Volume lower readability while lines of
code increases readability. In conclusion, due to the overall
difference between HV and E being larger than the difference
of LOC, MiniExcel’s code was measured as more readable.

Having a quantitative metric of readability is useful. How-
ever, due to the subjective and contextual nature of readability
the measurements are not fully reliable. Therefore, a sub-
jective comparison must be made on aspects of EHOP in
MiniExcel and functional programming in BSC as well as
other paradigms that make code readable.

Documentation, in-code or in a separate file, plays a ma-
jor role in code readability especially for developers that did
not participate in the implementation of the application. An
aspect that allows to produce clear documentation in EHOP
is the ability to define operations separate from their imple-
mentations. In MiniExcel, this ability is used to add docu-
mentation in effect definitions that explain what an operation
does. This allows the developer that is reading it to focus
on the operation’s documentation rather than passing through
implementation details. Moreover, if a developer wants to
learn more about an operation (and how it is implemented),
they can visit the handler(s) that implements it. For example,
in MiniExcel this is done as follows:

pub effect dirty-bit
/*
Given a key string as input returns True
if the key is dirty i.e the cell it points
to or its dependencies have changed

↪→

↪→

*/
fun is-dirty(k : string) : bool
/*
Given a key as input cleans the key's cell

*/
fun clean(k : string) : ()

From the code snippet of MiniExcel, it can be seen that com-
pact and easily readable documentation on operations can be
written using EHOP because it is not necessary to implement
a function right below it. Moreover, operations are defined
under an umbrella term such as “dirty-bit” to provide even
more readability, as a developer is also informed on the con-
cept of which the operations are implemented for.

Compared to BSC that uses functional programming (FP),
a similar ability can be observed. In BSC and in FP with
Haskell, one writes a function definition that indicates the
name, parameters and return type of the function. Even
though function definitions can be far away from their imple-
mentation, unlike EHOP, in FP it is common practice to write
the implementation of the function right below the definition.
An example of such case from BSC is shown below:

-- | Read the hash of a key's value. In some cases
may be implemented more↪→

-- efficiently than @hash . getValue k@.
getHash :: Hashable v => k -> Store i k v -> Hash v
getHash k = hash . getValue k

In conclusion, EHOP’s ability to separate operation definition
from implementation and its ability to define operations under
umbrella terms gives the edge to EHOP in terms of in-code
documentation writing. One might notice the drastic differ-
ence between the code snippets which leads to the next point.

Readability is contextual, it depends on factors such as the
reader’s knowledge or even, depending on the day, their ex-
haustion. A code snippet can be generally more readable
than another code snippet if the snippet is closer to com-
mon knowledge. The languages that support object oriented
programming (ie. Java [14], C++ [15]) are the most widely
used and known amongst other languages [16]. Therefore,
a safe assumption can be made that most of the developers
in the world know object oriented programming more than
functional programming. An example of a function written
in object oriented programming is as follows:

public static void someFunc(int someArg) {
// Implementation ...
}

The snippet above displays similarities with MiniExcel and
dissimilarities with BSC in terms of function definition which
proves that the code of MiniExcel is significantly closer to
object oriented programming. Since MiniExcel is closer to
object oriented programming, it can be concluded that if two
code snippets of EHOP and FP were to be shown to a ran-
domly selected group of developers, more of them would
pick the code written in EHOP to be more readable. How-
ever, this does not change the fact that implementing func-
tions and defining them are significantly more compact and
concise (less lines used) in functional programming.

To conclude the readability analysis and comparison, ac-
cording to Posnett et al.’s model [10], MiniExcel is more
readable than BSC. However, conclusions cannot only be
drawn from objective models. Subjective aspects of EHOP
such as ability to write in-code documentation and relevance
of EHOP with knowledge known by most developers gives
the edge to EHOP over functional programming in readabil-
ity.



4.2 Development and Maintenance Experience
This section is separated into three subsections where positive
and negative experiences of developing with EHOP are de-
scribed, followed by a comparison of these experiences with
previous experiences with traditional paradigms.

Positive Experiences
Throughout the development and maintenance of the applica-
tion, EHOP’s ability to separate concerns was the main source
of positive experiences.

Separation of concerns allowed seamless implementation
of updates and improvements to MiniExcel. For example,
to add the dirty bit rebuilder into the application, defining a
dirty-bit effect and its operations, implementing the opera-
tions under a new handler and combining the new handler
with the rest was enough. No change was required in other
handlers, simply a new handler was implemented and com-
bined with the rest of the handlers. Therefore, separation of
concerns achieved by EHOP helped significantly throughout
the development and maintenance of the application.

Second positive experience was the ability to define effects
and operations under the effect without the need of fully im-
plementing them. This ability allowed for quick development
of multiple MiniExcel prototypes. In addition, when a proto-
type was picked to implement, no significant time was lost as
each prototype was written in a short amount of time. This
advantage was especially helpful in the early development
stages of the application where decisions had to be made
on the operations regarding cell storing, cell evaluation and
spreadsheet visualisation logic.

In conclusion, EHOP’s ability to separate concerns into
compact, independent sections of code vastly improved the
development and maintenance experience of the researcher.

Negative Experiences
Throughout the development and maintenance of MiniEx-
cel, the catalyst of negative experiences was EHOP’s recency.
Since EHOP is new, languages that have built-in support for
EHOP are underdeveloped. Even an actively maintained and
improved language like Koka [6; 7] lacks support in terms of
libraries, error messages and external tools. Even though the
negative experiences are from developing with Koka, Koka
is the language that can best represent using EHOP, as Koka
is currently the most widely used amongst the few languages
that support EHOP natively.

One aspect of EHOP’s underdevelopment was the lack of
libraries. Libraries, built-in or third party, are key for any lan-
guage. Python [17] is possibly the leading language when
it comes to the vast library pool, which is one of the main
reasons why it is one of the most loved and commonly used
languages in 2021 [16]. The lack of libraries in Koka caused
few inconveniences throughout the development and mainte-
nance of MiniExcel. An example was that Koka did not have
a library for hashtables. As a result, the researcher had to
implement a hashtable library from scratch, which took con-
siderable time from the actual application implementation.
Therefore in the current state of EHOP, the lack of libraries
caused a negative development experience.

Another frustrating aspect of developing with EHOP was
effect handling. Since the logic of EHOP is different from tra-
ditional paradigms, it entails a learning curve. This learning
curve caused some frustrating and confusing errors because
the researcher had trouble finding a proper method to handle
effects. Furthermore, due to the unique nature of EHOP, foun-
dational concepts that work in traditional paradigms did not
work in Koka. For example, the initial plan for the handler
of the fetch effect was to call fetch internally with the ex-
pectation of the recursive call to be handled within the same
handler. However, the expectation fell short as the fetch ef-
fect was raised outside the handler which caused the program
to fail. To solve this problem, helper functions were imple-
mented and the same handler was used multiple times. The
requirement of workarounds and unique functionality caused
some frustrating and confusing errors during development
and overall lengthened the development process.

In conclusion, working with EHOP’s effects can be frus-
trating and the lack of development in the EHOP ecosystem
causes inconveniences. However in terms of underdevelop-
ment, with the promising idea behind EHOP, it is just a matter
of time until EHOP’s ecosystem becomes a fully functional,
production ready and extensive ecosystem.

Comparison
Following the analysis of the development and maintenance
experiences using EHOP, this section compares the results
with my previous experiences of using the object oriented
programming paradigm.

Most positive experiences were sourced by EHOP’s ability
to provide separation of concerns. Object oriented program-
ming (OOP) also helps to achieve separation of concerns,
which is one of the reasons why it is considered as a tradi-
tional paradigm. However, previous experience of using OOP
with Java [14] suggests that achieving separation of concerns
using EHOP is more intuitive than with OOP. For example,
when using EHOP the researcher quickly had an idea on how
concepts would be separated into different effects. In con-
trast, when using OOP in other projects it significantly took
more time to design an application that would achieve some
level of separation of concerns. Therefore, according to the
researcher, achieving separation of concerns was simpler and
more intuitive when using EHOP compared to using OOP.

Another positive experience was how quickly the re-
searcher was able to develop templates because EHOP al-
lowed them to define operations without implementing them.
This concept is nearly identical to object oriented program-
ming’s “interface” concept. In OOP, one can define an inter-
face which contains functions that are not yet implemented.
Interfaces serve as skeletons to classes that implement them
and their functions. In previous OOP projects similar to
EHOP, by using interfaces the researcher developed proto-
types quickly. OOP’s interface is EHOP’s effect definition
and OOP’s interface implementation is EHOP’s effect han-
dling. Due to this equality, the experiences are the same when
using EHOP and OOP in terms of developing templates.

The EHOP ecosystem is underdeveloped which caused
negative experiences throughout development. In contrast,
these problems are non-existent in programming languages



that support traditional programming paradigms, as they sim-
ply have existed longer, have larger communities and more
users. Due to this fact, the researcher never had similar nega-
tive experiences when using object oriented programming

The final negative experience was the fact that some con-
cepts of EHOP were different compared to the researcher’s
knowledge of traditional paradigms which introduced a learn-
ing curve. The learning curve was steeper when using EHOP.
A reason could be that the researcher learned traditional
paradigms in a structured university environment and EHOP
by themself. Therefore, in terms of a learning curve, it
is not fair to compare experiences even though traditional
paradigms were easier to learn.

4.3 Runtime and Memory Characteristics
In this section, the experimental setup utilized to measure
runtime and memory will be explained. Then, the results of
the runtime and memory analysis on MiniExcel and the Excel
application by Mokhov et al. [13] will be displayed.

As mentioned in Section 2.2, different sets of commands
were executed in both applications. The commands consist
of decimal, single and nested function entries. The mea-
surements are done in a MacOS environment, for MiniExcel
Koka’s [6] built-in runtime and memory measurement flag “–
showtime” is used. Similarly for Mokhov et al.’s application
“BSC”, Haskell’s [8] built-in measurement tool RTS is used.
Table 2 displays the measurement results.

AVG-Elapsed AVG-Usr AVG-Sys AVG-RSS
MiniExcel 0.0004s 0.0011s 0.0024s 2896kb
BSC 0.0002s 0.001s 0.0013s 7836kb

Table 2: Runtime and memory measurements of MiniExcel and
BSC.

Before analyzing Table 2 the names of the columns should
be explained. All columns are averages of ten measurements
done for each application. “Elapsed” refers to the difference
between the start time and the end time of the application.
“Usr” refers to the time it took to execute the library code.
“Sys” refers to the time it took for the execution of kernel
operations. Finally “RSS” or “Resident Set Size” refers to
the total memory allocated in the RAM.

As evident from Table 2 BSC, is significantly faster than
MiniExcel but MiniExcel utilizes less memory. In conclu-
sion, in terms of memory and runtime, for applications that
are handling user input without the need of high execution
speed, EHOP and functional programming would both be
suitable. However, for applications similar to BSC that aim
to pre-initialize and evaluate spreadsheets in code for educa-
tional purposes, functional programming should be used.

5 Responsible Research
This research assesses effect handler oriented programming
(EHOP) on factors that are mostly subjective which affects
the reproducibility and the ethical aspects of the research. As
for reproducibility, the methodology practiced to retrieve ev-
ery result is explained, yet a researcher that wants to repro-
duce this research will not attain the exact results because

some results depend on the researcher. For example, devel-
opment and maintenance experience solely depends on the
researcher and it is impossible for two different researchers
to have the same experience when developing an application.
Ethically, the subjectivity of certain aspects may introduce
subconscious experimenter bias where the researcher may
have unknowingly disregarded or underestimated the impor-
tance of certain measurements that goes against EHOP.

6 Discussion
In this research readability and developer experience were
measured and presented in an objective manner. The analysis
done on these subjective aspects should not be taken as a fact,
rather as a glimpse of effect handler oriented programming’s
potential. Runtime and memory characteristics should also
be considered in a similar manner due to some differences
between the compared applications. The program written us-
ing functional programming (BSC) was faster and MiniExcel
utilized less memory. However, MiniExcel has the extra com-
putation of processing user input while BSC does not which
could affect runtime. Moreover Koka [6], the language of
MiniExcel, is “not production ready” [6] unlike the language
used in BSC, Haskell [8]. In addition, Koka uses Perceus Ref-
erence Counting [18] which compared to Haskell’s garbage
collection, allows Koka to use less than half the memory
Haskell would have used [7]. Such differences in both lan-
guages could have possibly affected the results.

7 Conclusions and Future Work
The goal of this research was to assess a new programming
paradigm, effect handler oriented programming (EHOP) by
answering the main research question: “How does using
EHOP for implementing a data processing application affect
the modularity, readability and maintainability of code com-
pared to traditional paradigms?”. To answer this question,
EHOP was compared with functional programming and ob-
ject oriented programming on readability, development and
maintenance experience, runtime characteristics, and mem-
ory characteristics.

EHOP has shown to produce more readable code than
functional programming. It is important to note that read-
ability is both subjective and contextual. It depends on the
reader’s previous experience, knowledge and their idea of a
readable program. Therefore, the conclusion that EHOP pro-
duces more readable code than functional programming is not
universal but is the case for most developers.

Moreover, development and maintenance experience of
EHOP, compared to object oriented programming had its pos-
itives and negatives. Briefly, developing and updating an ap-
plication was easier with EHOP, but the lack of development
in the EHOP ecosystem caused frustration and extra work not
related to the application. In the future as the EHOP ecosys-
tem grows, the lack of development will be less and possibly
the negative sides of EHOP will diminish.

In terms of runtime and memory characteristics, functional
programming was proven to be faster but EHOP utilized less
memory. A conclusion was drawn that depending on the ap-
plication type EHOP or functional programming would be



preferable. For example, for applications that expect user in-
put, processes are bound by the time it takes for the user to
enter a command thus EHOP would be preferable. On the
other hand, for applications that aim to simply execute code
without user interaction, functional programming would be
more preferable as it is faster.

In conclusion, the answer to the main research question
is that EHOP was able to produce more readable, modular
and maintainable code compared to traditional paradigms.
However, the lack of development in the EHOP ecosystem
is currently a bump on the road for EHOP. In the future as
the EHOP ecosystem grows and the lack of development de-
creases, EHOP will likely have a spot amongst the traditional
paradigms.

This research implements an open source Excel-like ap-
plication “MiniExcel” from scratch that contributes to the
EHOP ecosystem. It also introduces interesting ways to uti-
lize EHOP to implement certain concepts. Moreover, using
EHOP it defines “Hierarchical EHOP”, a new pattern to de-
velop a hierarchical structure of concepts which enforces cer-
tain rules on the interaction of different concepts and pro-
duces a easier to read program structure.

On a final note, this research leaves space for improve-
ments and future work. An improvement that would en-
rich the comparisons is to implement the exact application
in other paradigms rather than using a third party application
that implements a similar application. Moreover, since this
research only assesses using EHOP for data processing ap-
plications, other application types such as games, servers etc.
using EHOP should also be assessed. This would not only
provide more research on EHOP but it would also add new
applications to the EHOP ecosystem.

References
[1] Microsoft, “Microsoft excel spreadsheet software: Mi-

crosoft 365,” 2022. Last accessed may 2022. Available:
https://www.microsoft.com/en-us/microsoft-365/excel.

[2] Microsoft, “Excel functions,” 2022.
Last accessed june 2022. Available:
https://support.microsoft.com/en-us/office/
formulas-and-functions-294d9486-b332-48ed-b489-abe7d0f9eda9.

[3] D. Hillerström, Foundations for Programming and Im-
plementing Effect Handlers. PhD thesis, The University
of Edinburgh, 2021.

[4] D. M. Ritchie and K. Thompson, “The unix time-
sharing system,” Bell System Technical Journal, vol. 57,
no. 6, pp. 1905–1929, 1978.

[5] A. Mokhov, N. Mitchell, and S. Peyton Jones, “Build
systems à la carte,” Proc. ACM Program. Lang., vol. 2,
jul 2018.

[6] D. Leijen, “The koka programming language,” 2022.
Last accessed may 2022. Available: https://koka-lang.
github.io/koka/doc/book.html.

[7] D. Leijen, “Koka: a functional language with effects,”
2022. GitHub repository. Available: https://github.com/
koka-lang/koka.

[8] S. Marlow et al., “Haskell 2010 language report,”
2010. Available: https://www.haskell.org/onlinereport/
haskell2010/.

[9] S. Lindley, C. McBride, and C. McLaughlin, “Do be do
be do,” SIGPLAN Not., vol. 52, p. 500–514, jan 2017.

[10] D. Posnett, A. Hindle, and P. Devanbu, “A simpler
model of software readability,” Proceedings - Interna-
tional Conference on Software Engineering, pp. 73–82,
2011.

[11] R. P. Buse and W. R. Weimer, “Learning a metric for
code readability,” IEEE Transactions on Software Engi-
neering, vol. 36, no. 4, pp. 546–558, 2010.

[12] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and
D. Poshyvanyk, “A comprehensive model for code read-
ability,” Journal of Software: Evolution and Process,
vol. 30, no. 6, p. e1958, 2018. e1958 smr.1958.

[13] A. Mokhov, N. Mitchell, and S. Peyton Jones, “Build
systems à la carte,” 2020. GitHub repository. Available:
https://github.com/snowleopard/build.

[14] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buck-
ley, The Java Language Specification, Java SE 8 Edi-
tion. Addison-Wesley Professional, 1st ed., 2014.

[15] B. Stroustrup, The C++ Programming Language.
Addison-Wesley Professional, 4th ed., 2013.

[16] StackOverflow, “Stack overflow developer survey
2021,” 2021. Last accessed may 2022. Available: https:
//insights.stackoverflow.com/survey/2021.

[17] G. van Rossum, “Python programming language,” in
Proceedings of the 2007 USENIX Annual Technical
Conference, Santa Clara, CA, USA, June 17-22, 2007
(J. Chase and S. Seshan, eds.), USENIX, 2007.

[18] A. Reinking, N. Xie, L. de Moura, and D. Leijen,
“Perceus: Garbage free reference counting with reuse,”
in Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design
and Implementation, PLDI 2021, (New York, NY,
USA), p. 96–111, Association for Computing Machin-
ery, 2021.

https://www.microsoft.com/en-us/microsoft-365/excel
https://support.microsoft.com/en-us/office/formulas-and-functions-294d9486-b332-48ed-b489-abe7d0f9eda9
https://support.microsoft.com/en-us/office/formulas-and-functions-294d9486-b332-48ed-b489-abe7d0f9eda9
https://koka-lang.github.io/koka/doc/book.html
https://koka-lang.github.io/koka/doc/book.html
 https://github.com/koka-lang/koka
 https://github.com/koka-lang/koka
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
 https://github.com/snowleopard/build
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021

	Introduction
	Methodology
	Implementation
	Analysis
	Comparison of Results

	MiniExcel
	Interacting with MiniExcel
	Implementing MiniExcel
	Core of MiniExcel
	Hierarchical EHOP
	Optimizing MiniExcel


	Experimental Setup and Results
	Readability
	Development and Maintenance Experience
	Runtime and Memory Characteristics

	Responsible Research
	Discussion
	Conclusions and Future Work

