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A B S T R A C T   

Railway track health monitoring and maintenance are crucial stages in railway asset management, aiming to 
enhance the train operation quality and service life. For this aim, various inspection means (using diverse non- 
destructive testing techniques) have been applied, however, these means are mostly not able to monitor whole 
railway track network or track underlying layers (e.g., ballast and subgrade). The use of remote sensing tech
niques, such as Interferometric Synthetic Aperture Radar (InSAR), can expedite the defect diagnosis process for 
railway tracks, elevating the scope of health monitoring to a network-wide level. The Ground Penetrating Radar 
(GPR) has emerged as a particularly reliable method, especially for detecting structural deficiencies in underlying 
layers. As a result, combining the two distinct non-destructive testing techniques – GPR and InSAR – presents a 
promising strategy for efficient railway asset management. Recognizing the significance of embracing newer and 
more advanced monitoring strategies, this paper reviews the fusion of GPR and InSAR methodologies, and ex
plores the potential integration of machine learning models to develop a predictive health monitoring and 
condition-based maintenance approach for railway tracks.   

1. Introduction 

1.1. Background 

Although there has been a surge in the development of slab railway 
tracks in recent decades, ballasted tracks remain the predominant 
structure for railway lines globally. As shown in Fig. 1, the structural 
components of ballasted tracks comprise sleepers, fastening systems, 
and rails, which are categorized as the superstructure. The granular 
media, such as ballast, sub-ballast, subgrade and embankment, are 
considered part of the substructure. Depending on the perspective, the 
ballast layer is classified either as a component of the superstructure 
[1,2] or the substructure [3,4]. The combined effects of higher speeds 
and increased axle loads necessitate expanded maintenance activities, 
especially stemming from the rapid degradation of the railway granular 
media. 

Fig. 2 illustrates that the life span of a railway track can be 
segmented into three distinct periods: youth, intermediate-life, and old- 
age [6]. With this understanding, emphasizing predictive and condition- 

based maintenance approaches emerge as more efficient strategy for 
cost-effective smart railway maintenance. Statistically, the average 
annual maintenance and renewal (M&R) expenses per 1 km of tracks 
amount to approximately €50,000 for West-European networks [7,8]. 
Consequently, adopting a predictive and condition-based maintenance 
is more effective than corrective maintenance [9]. Leveraging non- 
destructive testing (NDT) techniques for railway track health moni
toring proves to be a more valuable maintenance strategy. 

To archive the goal of smart maintenance, firstly the criteria for track 
quality assessment are introduced as follows. Track geometry is the most 
widely-used criterion, which involves alignment, longitudinal level, 
twisting, etc. (mostly related to track accumulated deformation) 
[10,11]. Another criterion is train-track dynamic responses (mostly 
related to track stiffness). Vibration-based techniques can quantify track 
stiffness [12], while optical-based/remote sensing methods are able to 
diagnose deformation [13]. Numerous non-destructive testing tech
niques (NDTs) are employed to inspect track components, which can be 
categorized into optical-based tools, inertial methods, acoustic and ul
trasonic techniques, and imaging-based analyses. These NDT techniques 
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will be introduced briefly, while GPR and InSAR will be stressed, as well 
as applications of their combination. 

Among railway granular materials, ballast is the most vulnerable 
component and key component for track geometry correction. Its service 
life is intricately linked to maintenance activities and track usage. For 
German ballasted railway tracks, reference [6] indicates that the typical 
life cycles for ballast tamping, cleaning, and renewal are 4–5, 12–15, and 
20–30 years, respectively. However, in China, due to more frequent 
tamping and stabilization, combined with the effects of heavily operated 
trains and heavy haul, the service life of ballast is nearly halved in 
comparison to these values [14]. Given the life cycle costs associated 
with ballast, it becomes imperative to optimize ballast tamping and 
renewal [15]. Moreover, the cumulative deformation arising from 
ballast degradation expedites the deterioration of other components, 
such as rail fractures, ballast pockets, and fastener failures. Conse
quently, for reasons of safety and ride comfort, the primary challenge in 
smart railway maintenance lies in avoiding excessive and frequent 
maintenance and renewal activities. Furthermore, shifting the focus 
towards a predictive maintenance approach, rather than simply reacting 
to faults or persistently regular maintenance, is becoming the preferred 
strategy for managing railway track rehabilitation and maintenance. 

1.2. Railway track deterioration: a focus on track geometry and 
degradation of ballast/sub-ballast layers and subgrade 

Overall, various defects can manifest in different components of 
railway ballasted tracks. The substructure, in particular, plays a critical 
role in the emergence of these deteriorations. Specifically, the vertical 
and lateral deformations of granular media, as well as the degradation of 

ballast particles, are primary defects associated with these underlying 
components. The ballast deformation process comprises two stages: 
initial consolidation post-renewal or tamping, followed by degradation 
of the ballast aggregates leading to further densification [16,17]. 
Moreover, certain fouling materials in the ballast, like coal dust, can act 
as lubricants, exacerbating permanent deformation in this granular layer 
[18]. Ultimately, these internal and external sources of fouling result in 
poorly-draining ballast, accelerating track deterioration. Box test results 
on both dry and saturated specimens of abraded ballast fouled with 
windblown particles have confirmed increased settlement [19]. 

Regarding the other substructure components, common failure 
modes for the subgrade and embankments of railway tracks include 
settlement, shear failure, and erosion [20]. Depending on the charac
teristics of the underlying soil layers, loess subgrades with large-sized 
pores might experience significant settlement [21]. Similarly, silt sub
grades under train loading with escalating speeds might also lead to 
sharp increases in cumulative deformation [22]. Additionally, ground
water drawdown is identified as a significant factor that contributes to 
the residual settlement observed during dry seasons [23]. 

There exists a direct correlation between the condition of the ballast 
layer/track component defects and the track geometry irregularities of 
railway lines [10,24]. For example, Nabochenko et al. [25] identified 
the deterioration of railway track geometry resulting from uneven 
subsidence of the ballast layer. Wang et al. [26] sought to understand the 
relationship between track geometry defects and substructure condi
tions. They integrated data from a passenger railway that covered ge
ometry defects, substructure conditions, maintenance history, as well as 
curvature and turnout information. Their establishment of data-driven 
models validated that surfacing activities, such as tamping and ballast 
renewal, were the predominant factors influencing the predicted 
occurrence of geometry defects. In summary, ballast/subgrade degra
dation, ballast fouling, poor track drainage conditions, and sub-optimal 
monitoring/maintenance are the primary contributors to rapid track 
deterioration. 

1.3. Defect diagnosis and maintenance implementation 

Based on system reliability, a significant portion of maintenance 
costs for railway infrastructures is allocated towards improving 
geometrical characteristics [27]. Furthermore, the desired reliability 
level profoundly impacts the maintenance budget. As noted by Bressi 
et al. [8], an increase in the reliability level from 75% to 85% necessi
tates a 22% boost in the budget allocated to railway track maintenance. 
In contrast, raising the reliability from 85% to 95% requires a budget 
increase of 114%. Burkhalter and Adey [28] delved further into estab
lishing an optimized strategy for railway asset interventions, ensuring 
the best measures are taken for selected infrastructure at the optimal 
time. Given that track geometry (TG) monitoring serves as an effective 
method to assess track structural conditions, an interactive fuzzy linear 
assignment method (IFLAM) has been introduced to choose the ideal 
maintenance strategy for railway infrastructures [29]. Therefore, it is 
vital to prioritize the detection of defects through continuous railway 
track monitoring, setting the stage for timely maintenance actions. 

In this context, to assess conditions of the ballast layer by employ
ment of stand-alone technologies, including fouling levels and moisture 
content, utilizing ground penetrating radar (GPR) emerges as a fitting 
non-destructive method [30]. In addition, employing imaging-based 
methods is invaluable for inspecting the condition of the land on 
which the railway is constructed. For instance, interferometric synthetic 
aperture radar (InSAR) offers a rapid means of diagnosing track settle
ment (or subsidence) in whole railway networks. 

Though stand-alone NDTs have been widely extended, integration of 
different technologies can be characterized as a practical approach to 
solve gaps emerging from singular technology. Moreover, data fusion of 
different methods/equipment/scale domains/precisions is gaining 
further momentum nowadays upon which more sophisticated models 

Fig. 1. Components of conventional railway ballasted track [3,5].  

Fig. 2. Process of deterioration of ballasted railway tracks - Characterizing the 
corresponding maintenance actions based on the correspondent time [6]. 
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can be developed [31,32]. Generally, various data-integration proced
ures are available to integrate information collected through distinct 
NDT methods, such as geostatistical analysis [33], employment of 
datasets of different spatial and temporal resolutions [34], as well as 
downscaling/upscaling data derived by remote sensing [35]. In addi
tion, integrating data from NDT inspections as input for building in
formation modelling (BIM) is practical to create a unified environment 
for linear transport infrastructure [36,37]. Regarding current study, 
synergistic combination of InSAR and GPR techniques provides multi- 
scale exchange of information. 

To illustrate the stand-alone employment of InSAR and GPR tech
niques for railway monitoring, alongside the data fusion of InSAR and 
GPR, a literature review was conducted on Scopus scientific database 
from 2008 to 2023 [38]. Fig. 3 represents the number of publications as 
well as the citation count of selected papers with respect to character
ized keywords. 

1.4. Aim and objectives 

To evaluate the viability of merging different NDTs, this paper ex
plores the combined use of InSAR and GPR techniques to enhance the 
health monitoring process for railway infrastructures, with a particular 
emphasis on railway tracks. Additionally, this paper delves into the 
potential integration of machine learning models in asset management 
to determine the feasibility of a predictive and condition-based main
tenance. The structure of this review paper encompasses the following 

sections:  

• Destructive vs. non-destructive methods for the health monitoring of 
railway ballasted tracks;  

• A concise overview of InSAR and GPR techniques;  
• Independent application of specific NDT techniques for evaluating 

infrastructures, with a primary focus on railway tracks;  
• Combined integration of InSAR and GPR to merge NDTs for 

enhanced health monitoring of infrastructures, emphasizing railway 
tracks;  

• Adoption of ML methods in specified health monitoring techniques, 
specifically InSAR and GPR, to formulate predictive and condition- 
based maintenance strategies. 

Fig. 4 provides a visual representation of the research gaps identified 
in prior studies and the primary contributions of this review article. 

2. Methods for health monitoring of tracks 

2.1. Destructive methods 

Aside from NDTs, traditional destructive methods for monitoring 
railway tracks have maintained significant relevance. Specifically, 
excavating holes to retrieve samples for sieving remains a conventional 
technique, though it is occasionally used to validate GPR results. For 
instance, in Nebraska, in-service field ballast was sieved to analyse 
particle size distribution changes alongside particle morphological 
properties [39]. 

For GPR result validation, several field studies have been undertaken 
to validate the GPR capability in estimating the thickness of granular 
layers, fouling levels, and drainage conditions. These studies either 
involve constructing trial embankments with varying materials, mois
ture contents, and thicknesses or involve digging trenches [5,40–43]. 
For example, Kashani et al. [42] conducted a comprehensive laboratory 
test to establish the relationship between fouled ballast and GPR data, 
considering three fouling percentages by reconfiguring the physical 
model three times. Artagan and Borecky [43] explored the feasibility of 
using GPR with different frequencies to evaluate the condition of rail
way granite ballast by excavating trenches in crib ballast situated on the 
track axis and shoulder. 

Both destructive and non-destructive measurements have confirmed 
that an increase in fouling levels leads to a rise in relative dielectric 
permittivity. In terms of relevant intrusive techniques, Mishra et al. 
[44,45] employed a multi-depth deflectometer to examine differential 
movements of three railway bridge approaches, using sensors installed 
at layer interfaces via small-diameter holes. Haddani et al. [46] com
bined the use of PANDA and geo-endoscopy to enhance M&R plan 
processes. The former assessed the mechanical properties of ballast layer 
in-depth, based on cone resistance evolution, while the latter deter
mined the thickness and gradation of layers from videos recorded by an 
endoscopic probe inserted into the hole. As highlighted by Vivanco et al. 
[47], these tests were integrated, named Pandoscope, to ascertain the 
level of ballast fouling. 

2.2. Non-destructive testing methods 

Various methods employing NDT techniques have been developed to 
monitor the health conditions of railway tracks. For instance, Papaelias 
et al. [48] compiled a list of viable NDTs that can detect rail defects. 
Similarly, Ferrante et al. [49] categorized existing NDTs based on the 
productivity of the approach and the resolution of the results. Table 1 
provides a summary of NDT methods (from earlier research and review 
articles) used for assessing the health condition of ballasted railway 
tracks. 

Given the aforementioned NDT methods, InSAR stands out for global 
productive inspection due to its ability to collect data under various 

Fig. 3. Statistical analysis of relevant literature based on Scopus scientific 
database from 2008 to 2023 [38]. 
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weather conditions, its wide coverage area (potential in railway network 
scale), and the repeatability of observations. GPR is also a well- 
established NDT that minimally interferes with local traffic and is 
highly effective in surveying the interiors of the ballast layer, subgrade, 
and embankment. In the subsequent sections of this review paper, we 
delve deeper into the background of InSAR and GPR techniques. We also 
explore the use of these remote sensing and ground-based NDT tech
niques for structural health monitoring across various transport 
infrastructures. 

2.2.1. InSAR 
SAR, a subset of satellite remote sensing tools, leverages space 

technology to continuously monitor ground deformation around in
frastructures, such as railway tracks. The amplitude and phase are the 
primary components of SAR imagery data, measured based on the 
emitted and received signals of electromagnetic waves. To discern 
changes in land surface topography, the temporal phase variations 
captured by sensors over time are harnessed by utilizing a potent feature 
known as SAR interferometry (InSAR). Indeed, deformation values are 
captured through corresponding data acquisition times, resulting in the 
creation of an interferogram and deformation map [67,68]. The ability 
of this technique to penetrate clouds makes it highly versatile for various 
conditions, from clear to adverse weather and from daytime to night
time, with regular data updates and global coverage (as depicted in 
Fig. 5). The interferometric phase represents the phase difference be
tween two SAR acquisitions, which is vital for determining surface 
displacement and encompasses the following components 
[32,65,69,70]: 

Δφ = Δφtopo +Δφdef +Δφatm +Δφnoise − 2πa (1) 

Δφ = Total observed interferometric phase, confined in [ − π,π]. 
Δφtopo = Topographic phase. 
Δφdef = Displacement phase representing the surface deformation. 
Δφatm = Atmospheric phase component. 
Δφnoise = Unmodeled noise phase component. 
a = Phase ambiguity number. 
After phase unwrapping, the displacement [in meters] in the slant 

range direction can be calculated by [32]: 

ΔR =
λ
4πΔφdef (2) 

ΔR = Displacement in the slant range direction (m). 
λ = Radar wavelength. 
The prevailing methods extended for analysis of SAR images are 

permanent scatters InSAR (PS-InSAR) and small baseline subset (SBAS) 
InSAR. Regarding the first technique, a point-based outcome is gener
ated by exploiting multiple SAR images, while one image is character
ized as single master. Considering SBAS InSAR, a network of image pairs 
is generated by restricting temporal and spatial baselines [73,74]. 

2.2.2. GPR 
GPR is an electromagnetic-based device designed for inspecting the 

subsurface conditions of various infrastructures, such as the ballast 
layer, subgrade layers and embankment of railway tracks. Sussmann 
et al. [75] emphasized the analysis of GPR data to recognize changes in 
reflection intensity and the time of maximum reflection intensity. These 
changes facilitate the identification of both thickness and variations in 

Fig. 4. Illustrative layout of the framework and contribution of this review study.  

M. Koohmishi et al.                                                                                                                                                                                                                            



Automation in Construction 162 (2024) 105378

5

the dielectric constant. Roberts et al. [76] noted that using GPR to assess 
the subsurface of a railway track is feasible. To determine the properties 
of materials within the substructure of the railway track, the dielectric 
permittivity is calculated using the following equations [41,60]: 

εr =
(c

v

)2
(3) 

εr = Dielectric permittivity. 

c = Velocity of propagation of electromagnetic waves through the air 
(3 × 108 m/s). 

v = Velocity of propagation of electromagnetic waves through the 
material comprising the track (e.g., sleeper, ballast, subgrade, etc.) 

Measuring the time interval between the reflection of GPR signal 
from the top and bottom of the characterized layer, such as ballast layer 
according to Fig. 6, the layer thickness of the media is calculated via: 

Table 1 
Classification of non-destructive methods for health monitoring of ballasted tracks - Laboratory scale, railway line scale, railway network scale.  

Reference Established methods System applied Defects detected/Monitoring applied Monitoring scale 

Liu et al. [50] Vibration-based method Using a test box filled with ballast, applying 
impact hammer test 

Measuring vibration characteristics, such as time- 
domain curve of acceleration 

Laboratory scale 

Haji Abdulrazagh 
et al. [51] 

Determination of deflection basin based on 
the applied impact load via falling weight 
deflectometer (FWD) 

Employment of back-analysis techniques to derive the 
ballast and subgrade moduli 

Railway line 
scale 

Moaveni et al. [52], 
Huang et al. [53] 

Visual inspection alongside 
image processing algorithms 

Using digital single-lens reflex (DSLR) 
camera as well as collecting ballast samples 
from mainline freight railways 

Analysis of size and shape properties of aggregate 
particles 

Laboratory scale 

Schmidt et al. [54] Combing the results of permeability tests 
and data acquisition based on the image 
processing method 

Determining the appropriate time for interfering and 
implementing the ballast cleaning 

Laboratory scale 

Guerrieri et al. [55] Employment of DIP Detection of rail corrugation and ballast gradation Laboratory scale 
Hussaini et al. [56], 

Sasi et al. [57] 
Optic-based method Using fibre optic sensors (FOS) Ballast lateral displacement and localized strain Laboratory scale 

Benedetto et al. [58] Electromagnetic, such as 
Ground penetration radar 
(GPR) 

GPR device with frequencies of 1 GHz and 
2 GHz 

Relationship between ballast fouling and GPR results Laboratory scale 

Bianchini Ciampoli 
et al. [59,60] 

GPR device with frequencies of 1 GHz and 
2 GHz 

Detecting the fouling and fragmentation of ballast, and 
figuring out evident efficacy of fouling rate on 
electromagnetic response under wet conditions 

30 m-long 
railway line 
scale 

Aldao et al. [61] Light detection and ranging 
(LiDAR) 

Using solid-state LiDAR system mounted on 
a mobile trolley 

Measuring displacement of a ballast layer and 
derivation of a digital elevation model 

Railway line 
scale 

Liang et al. [62] Infrared Thermography Using infrared thermal imager for detecting 
infrared radiation energy and producing 
thermograms 

Detecting the fouling level of ballast based on the 
temperature differences 

Railway line 
scale 

Narazaki et al. [63] UAV/Drones Unmanned aerial vehicles Flexible observation platforms and covering 
inaccessible areas 

Railway line 
scale 

Singh et al. [64] Computing gauge measurement Railway line 
scale 

Poreh et al. [65] Satellite remote sensing, such 
as InSAR 

Using 25 X-band radar images of Cosmo- 
SkyMed (CSK) 

Evaluation of deformation rate A particular 
railway bridge 

Wassie et al. [66] Using Sentinel-1 A/B images Monitoring land subsidence along railway 
infrastructures 

a 60-km railway 
line  

Fig. 5. Schematic layout of extraction of land surface displacement near the railway track by InSAR technique [adapted from Ferrante et al. [49], D'Amico et al. [71], 
Gagliardi et al. [72]]. 
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h =
v.TWT

2
(4) 

h = Thickness of characterized layer. 
TWT = Two-way travel time of the GPR signal. 
when the value of εr is known, the thickness of characterized layer, 

such as ballast layer, can be obtained by incorporation of Eq. (3) in Eq. 
(4): 

h =
c.TWT
2

̅̅̅̅εr
√ (5) 

Particularly, fouling materials change the dielectric permittivity of 
ballast layer, based on which GPR data can be used to evaluate ballast 
layer fouling level. For example, Benedetto et al. [58] mixed clean 
ballast with different percentages of soil as fouling (0%–24%), and at 
these fouling percentages, the dielectric permittivity values measured 

Fig. 6. Main working features of GPR tool for health monitoring of substructure of the railway ballasted tracks [adapted from Ferrante et al. [49], Wang et al. [77], 
Rasol [78]]. 
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were between 3.51 and 5.35. 

3. InSAR and GPR for infrastructure health monitoring 

3.1. Satellite imagery  

- Using InSAR to monitor infrastructures 

InSAR is recognized as an effective tool for monitoring roadway in
frastructures, such as bridge settlements, roadway surface deformations, 
geohazards, sinkhole detection, historical analysis of problematic sites, 
as well as determining deformation velocities with millimetric accuracy 
(see Table 2.a). Fiorentini et al. [79] explored the potential of using SAR- 
based data to evaluate the quality of road pavements, characterized in 
terms of the International Roughness Index (IRI). Significant 

correlations were observed between IRI values (mm/m) and InSAR es
timates (mm/year), though some weak correlations were attributed to 
local factors, such as pavement materials. 

Regarding satellite in airport runway monitoring, Gagliardi et al. 
[80] compared the capabilities of C-band data acquired by the Sentinel- 
1 mission to the X-band SAR images obtained from the COSMO-SkyMed 
mission to gauge the displacements of a runway. The results affirmed the 
feasibility of using multi-frequency SAR data, especially in pavement 
management systems, to determine critical displacements and stream
line maintenance interventions. As described by Macchiarulo et al. [81], 
the multi-temporal interferometric synthetic aperture radar (MT-InSAR) 
technique can measure building displacements over time with 
millimetre-scale precision, presenting an economical monitoring tool. 
This method was also employed to assess the damage level of 858 
buildings situated near the alignment of twin tunnels. 

Table 2 
Overview of InSAR application to infrastructure health monitoring: emphasis on railway infrastructures.  

a Other civil structures 

Reference Application Data acquisition Target/Conclusion 

Fiorentini et al. [79]  • Roadway pavement, Milan, 
Italy  

• Sentinel-1 - Using a stack of 210 SAR images 
(2014–2019)  

• Conducting 10-km laser profilometric survey to compute IRI - 
Correlation between IRI and PS-InSAR data 

Karimzadeh and 
Matsuoka [67]  

• Land subsidence and pavement 
monitoring, Tabriz, Iran  

• Using X-band COSMO-SkyMed datasets 
(2017–2018) - Employing SBAS InSAR  

• Estimating the land areas affected by land subsidence along 
with the total length of pavement influenced by subsidence 

Macchiarulo et al. 
[81]  

• Los Angeles highway and 
freeway network  

• Italian motorway network  

• Using Sentinel-1 (2016–2019)  
• Using COSMO-SkyMed datasets (2008–2014)  

• Extracting displacement field and deformation velocities from 
city to national scale 

Gagliardi et al. [72]  • Rochester Bridge (river bridge), 
U.K.  

• COSMO-SkyMed, X-band (2017–2019) – 
Employing PS-InSAR  

• Health monitoring the structural deformations - Detecting 
cyclic down-lifting and up-lifting displacements pertinent to 
seasonal behavior 

Gagliardi et al. 
[80,83]  

• Airport runway, Rome, Italy  • Sentinel-1 A, C-band (2017–2019) - COSMO- 
SkyMed, X-band (2017–2019)  

• Comparing the results of data processed with the two 
resolutions – Applying geostatistical analysis 

Wu et al. [84]  • International airport, Hong 
Kong  

• Using Envisat ASAR, Sentinel-1A, COSMO- 
SkyMed datasets (1998–2018) - Employing 
MT-InSAR  

• Generating long deformation history 

Macchiarulo et al. 
[85]  

• Buildings located adjacent to 
twin tunnels excavations, U.K.  

• COSMO-SkyMed MT-InSAR data (2011–2015)  • Evaluation of settlement-induced damage 

Jia et al. [70]  • Land subsidence along high- 
speed railway, China  

• Landsat images (2014–2018), DEM data - 
Employing D-InSAR and SBAS-InSAR  

• Analyzing the relationship between groundwater flow and land 
subsidence 

Ren et al. [86]  • Landslide, China  • Sentinel-1A (2019–2021) - Using ascending- 
descending orbits and employing SBAS-InSAR  

• Identification of potential landslide occurrence by cluster 
extraction from TS-InSAR analysis and statistical tools 

Pedretti et al. [82]  • Slow-moving landslide, Italy  • Sentinel-1A (2014–2018), Sentinel-1B 
(2016–2020)  

• Classification of time-series trends to extract active 
deformations   

b Railway infrastructures 

Reference Application Data acquisition Target/Conclusion 

Chang et al. 
[87]  

• Double track freight railway, 
Netherlands  

• TerraSAR-X (2009–2013) - Employing PS-InSAR  • Estimating displacement time series in both lateral and normal 
direction (deformation vector) - Detecting vertical displacements 
due to settlement or compaction - Identifying sudden changes in 
displacement in transition zone - Needing to control deformation 
due to placement of track over soft peat and clay soils 

Chang et al. 
[88]  

• Railway lines, Netherlands  • Radarsat-2 SAR images and 90-m resolution DEM  • Establishing InSAR for monitoring railway infrastructures over 
nationwide 

Poreh et al. 
[65]  

• Railway stability, Italy  • Cosmo-SkyMed-X band (2011–2015)  • Detection of possible deformations on the railways - Complying 
bridge deformations with periodical thermal alterations - 
Derivation of larger number of PSs by higher resolution imagery 

Wang et al. 
[89]  

• Railway tracks located on steel 
bridge and embankment 
(Transition zone), Netherlands  

• TerraSAR-X (2099–2015)  
• InSAR and data measured by coach and DIC-based 

device  

• Structural health monitoring of transition zones 
in railway track - Using InSAR system to monitor the health 

condition of the transition 
zones between the measurement interval of measuring 

coaches (half-year) to provide guidance 
Chen et al. 

[90]  
• Beijing-Tianjin High Speed Railway 

(BTIR), China  
• Envisat ASAR (30-m resolution) (2003− 2010), 

TerraSAR-X (3-m resolution), (2010–2015) - 
Using SBAS InSAR method  

• Evaluating land subsidence along high-speed track 

Wang et al. 
[91]  

• Beijing-Tianjin Intercity Railway 
(BTIR), China - Applied for high- 
speed track  

• TerraSAR-X SpotLight images (descending), 
TerraSAR-X StripMap images (ascending), 
Sentinel-1 (2015–2017) - Employing PS-InSAR  

• Investigating the influence of ground subsidence on the high- 
speed railway lines – Enriching detailed deformation by estab
lishment of high spatial resolution of TerraSAR-X – Figuring out 
differential deformation between two tracks of the double-track 
railway 

Shami et al. 
[92]  

• Land subsidence along railway 
track, Iran  

• Sentinel-1 (2015–2021) - Using both ascending 
and descending images  

• Assessing ground displacement in the vertical and east-west 
directions  
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Considering the use of InSAR for tracking land subsidence and 
landslides, Jia et al. [70] examined land subsidence along linear engi
neering areas, like railway lines, employing combined D-InSAR and 
SBAS-InSAR techniques. They detected five non-uniform settlements, 
primarily linked to groundwater over-extraction and coal mining. 
Pedretti et al. [82] used InSAR imagery-based data to monitor slow- 
moving landslides and instabilities, emphasizing time series (TS) of 
interferometric satellite data. Regarding continuous observation over 
the catchment area, it proves beneficial in identifying new active de
formations by observing TS trend variations and juxtaposing TS breaks 
with in-situ monitoring devices. Considering predetermined ground 
motions, continuously updated satellite data can verify advancing de
formations in the studied area and pinpoint new accelerations.  

- Using InSAR to monitor railway infrastructures 

Given the advantages of SAR interferometry, this technique offers 
significant support for ground-based methods in monitoring ground 
deformations around railway tracks, as illustrated in Table 2.b. Chang 
et al. [88] employed the InSAR time series on nationwide railway net
works to produce deformation maps and categorize temporal behavior. 
This satellite-based survey pinpointed several track segments with pro
nounced subsidence, especially in areas where the railway was situated 
on peat soils. Wang et al. [89] contrasted InSAR measurements with data 
from a measuring coach and a digital image correlation device. The 
information gathered from InSAR confirmed an intensification in the 
fluctuation of track alignment near the bridge, representing the transi
tion zone. While SAR satellites offer frequent measurements, the accu
racy of these satellite measurements is at the millimetre level, which is 
relatively modest. Moreover, the spatial resolution/sampling of these 
measurements is at the meter level, which is broader than the measuring 
coach's resolution, specifically 0.25 m [89]. Shami et al. [92] harnessed 
Sentinel-1 data, introducing an innovative method centred on defining a 
new small baseline subset (NSBAS) to gauge ground subsidence along a 
railway track situated in central Iran. Their findings indicated that 60% 
of the railway lines had been impacted by land subsidence. 

3.2. Using GPR in railway tracks 

GPR is recognized as a well-established NDT technique for moni
toring the health of railway track infrastructures (See Table 3). In this 
context, Al-Qadi et al. [93] identified a strong correlation between 

geometric irregularities and the fouling level, quantified through scat
tering analysis of GPR data. Similarly, other studies have also utilized 
GPR to assess the condition of fouled ballast layer [94,95]. Bianchini 
Ciampoli et al. [60] employed GPR on a 30 m-long railway line segment, 
reproducing various conditions of fragmentation and fouling of ballast. 
Results of electromagnetic testing affirmed significant effect of fouling 
on dielectric permittivity of the ballast layer, while also lower influence 
of fragmentation on this parameter. As noted by Guo et al. [96], the 
fouling level estimated using GPR deviated by approximately 1–7% 
compared to traditional sieving results. Similarly, Guo et al. [97] 
determined indicators based on GPR that aligned well with the fouling 
index, underscoring the appropriateness of this non-destructive method 
for simultaneous assessment of railway track conditions. 

One of the primary advantages of GPR over InSAR is its ability to 
assess and predict underlying defects. For example, it can detect ballast 
fouling in areas with high precipitation and humidity levels, especially 
when mud pumping occurs on the railway track [98]. Indeed, while GPR 
is highly beneficial, the integration of supplementary tests and geo
spatial visualization assessments is essential. This approach underscores 
the growing focus on combining GPR with imagery-based techniques to 
enhance the health monitoring of railway ballasted tracks. 

Table 3 
Overview of GPR application to infrastructure health monitoring: emphasis on railway infrastructures.  

Reference Application Data acquisition Target/Conclusion 

Tosti et al. [99]  • Laboratory test with a ballast box  • GPR with different frequencies spanning from 600 
MHz to 2000 MHz  

• Determining the dielectric permittivity of air-ballast 
- Following an experimental framework 

Bianchini 
Ciampoli 
et al. [60]  

• 30-m long railway track, Rome, Italy  • GPR with central frequencies of 1000 MHz and 2000 
MHz for antenna  

• Assessing the health condition of railway track beds 
- Considering the effects of void fouling and 
degradation of aggregate 

Liu et al. [100]  • A railway line located in a cold area, 
China  

• SIR-20 GPR system with antenna frequency of 100 
MHz  

• Detecting the moisture content of railway subgrade 

Artagan and 
Borecky [43]  

• Conducting laboratory test and field 
track surveying, Czech Republic  

• Using air-coupled 2 GHz horn antenna, and ground- 
coupled TR dual-frequency antenna (400/900 MHz)  

• Assessing railway granite basalt considering distinct 
fouling and moisture conditions 

Liu et al. [101]  • Construction of a full-scale ballasted 
track model with 30 m length - Inspec
tion of three railway lines, China  

• Three-receiver antennas including ground-coupled 
antennas with frequencies at 400 MHz and 900 MHz, 
as well as a 2 GHz air-coupled antenna  

• Inability of 400 MHz antenna to distinguish the 
interface of clean-fouled ballast 

Guo et al. [96]  • Railway lines, China  • Using two 2 GHz air-coupled and one 400 MHz 
ground-coupled antenna GPR and digging holes for 
sampling from shoulders  

• 1–7% difference between NDT results and 
destructive method based on sieving 

Guo et al. [97]  • Railway lines, China  • GPR with three different antennas; For inspection of 
ballast shoulders and crib  

• Correlation between GPR results and fouling index - 
The best correlation between fouling indices based 
on 5 and 10 mm with FI reflected by GPR 

Li et al. [102]  • 50-km high-speed railway line, southern 
China  

• Using air-coupled 2 GHz air-coupled antenna  
• Using gprMax for performing electromagnetic 

simulation based on the finite-difference time-domain 
(FDTD) algorithm  

• Modelling mechanized ballast cleaning on railway 
ballast  

• Identifying the fouling level along with the cleaning 
process efficiency  

Table 4 
Main limitations of singular InSAR/GPR application.  

InSAR GPR 

1. Availability of permanent scatters or 
persistent scatters (PS) 

1. Limitations on applications for 
network level/Limited land coverage 

2. Unable to identify the conditions of 
subsurface and sources leading to 
deteriorations 

2. Remarkable time required to 
investigate the entire transport network 

3. Having constraints on spatial 
resolution/Limitation on data 
resolution 

3. Suppression of signals when passing 
through the boundary of subsurface 
layers with heterogeneous conditions 

4. Needing big datasets with remarkable 
size 

4. Establishment of advanced processing 
techniques and experienced surveyor 
with expert knowledge  
5. Direct effects of material and frequency 
of antenna on depth of penetration 
6. Iron interference due to special 
structural components, such as rail 
guards, steel sleepers, etc.  
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3.3. Limitations of singular application of InSAR or GPR 

Table 4 showcases the primary limitations tied to the singular use of 
InSAR and GPR techniques. On the whole, integrating these proven 
methods can amalgamate the benefits of each, allowing for a compre
hensive data interpretation and effectively addressing the inherent 
shortcomings of each individual technique. 

4. Fusion of different NDT techniques and characterized health 
monitoring/maintenance plan 

4.1. Background on railway infrastructure 

Given the advantages and limitations of various established NDT 
techniques, there is evident value in adopting a combined approach that 
fuses different NDTs for railway track health monitoring. Regarding the 
use of multiple NDTs, Fortunato et al. [103] integrated the findings from 
GPR, FWD, and plate loading tests to effectively rehabilitate the struc
ture of a track bed, taking into account both technical and economic 
considerations. Similarly, Sussmann and Thompson [104] merged GPR 
data with FWD results for the maintenance and rehabilitation of railway 
tracks. Additionally, the fusion of Multi-Temporal InSAR and LiDAR 
data was identified as another effective method for monitoring de
formations along railway systems [105]. Chang et al. [106] aligned the 
PS-InSAR with LiDAR points to enhance the geolocation accuracy of 
Sentinel-1 for evaluating line-infrastructures like railway tracks. More
over, Elseicy et al. [107] provided insights on the synergistic use of GPR 
and other NDTs, like LiDAR, profilometer, and deflectometer, to assess 
road pavement conditions. They found that merging such data with 
geographic information systems (GIS) platforms could significantly 
enhance pavement management systems. 

Selvakumaran et al. [108] took the Waterloo bridge as a case study to 
gauge the utility of InSAR data for bridge monitoring and compared it 
with measurements from reflectors placed at strategic structural points, 
representing in situ measurements. For a holistic assessment of viaducts 
and bridges' stability, a multi-tiered monitoring strategy was employed, 
encompassing on-site inspections, ground-based NDTs, and satellite 
remote sensing examinations [109]. Table 5.a lists studies that explore 
the integration of various ground-based NDTs with remote sensing 
techniques for railway infrastructure health monitoring. 

4.2. Fusion of InSAR and GPR data to monitor infrastructure  

- Integration of InSAR and GPR to monitor civil infrastructures 

Satellite-based images are used to monitor surface decay, while GPR 
is deployed to ascertain the condition of the substructure. Indeed, GPR, a 
ground-based NDT, is recognized as an effective method for obtaining 
high-quality data of underlying layers. In addition, satellite remote 
sensing techniques like InSAR offer both high temporal frequencies and 
broad inspection coverage areas [32,110]. Given the advantages and 
limitations of these specific health monitoring approaches, an integra
tion of InSAR and GPR proves beneficial. 

In this context, Alani et al. [111] integrated GPR and InSAR to 
monitor the health of ancient masonry arch bridges. For the InSAR 
application, Persistent Scatterer Interferometry (PSI) based on C-band 
images was employed to track the time series of displacements for 
continuously coherent points, with prospects of future utilization of the 
X-band. Regarding GPR, a combined use of low and high-frequency GPR 
was adopted. InSAR's findings corroborated the cyclical upward and 
downward displacements that occurred due to soil saturation from hy
drological cycles, while the high-frequency GPR pinpointed the struc
tural thickness of the layers. Gagliardi et al. [112] merged the results 
from MT-InSAR based on high-resolution satellite data (X-band) and 
multi-frequency GPR to evaluate the health of historic masonry arch 
bridges in Rome, Italy. Time series deformations of persistent scatterers 

Table 5 
Overview of infrastructure health monitoring by fusing GPR/InSAR with other 
NDTs: emphasis on railway infrastructures.  

a Fusion of InSAR/GPR and other NDT techniques 

Reference Combined techniques Application/Target/Damage 
detected 

Hu et al. [105]  • MT-InSAR + LiDAR  • Using LiDAR to overcome 
the limitations of InSAR 
associated with positioning 
accuracy - Using LiDAR for 
classification of radar 
scatters - For railway 
systems 

Chang et al. 
[106]  

• InSAR + LiDAR  • Establishing a fine 
classification for land 
deformation based on 
persistent scatters (PS) 
associated to railway 
infrastructure 

Selvakumaran 
et al. [108]  

• InSAR + Automated Total 
Station  

• Considering Waterloo 
bridge as a case study 

Quinci et al. 
[109]  

• Ground-based (Laser 
scanner) + Structural 
information + RS (MS- 
InSAR) into GIS  

• Bridges mapping in Lazio 
region, Italy - A premise for 
development of BMS at a 
regional level 

Goodarzi et al. 
[115]  

• GPR + LiDAR  • Using LiDAR for assessing 
the drainage condition of 
track - Assessing subsurface 
condition based on GPR data 
- considering a track with 
209 km length 

Qiu et al. [116]  • InSAR + Global navigation 
satellite system (GNSS)  

• Using high spatio-temporal 
resolution settlement data 
provided in time series 
along high-speed railways   

b Fusion of InSAR and GPR for health monitoring of civil infrastructures 

Reference Application Data acquisition Target/Conclusion 

Alani et al. 
[111]  

• Masonry arch 
bridge, Kent, U. 
K.  

• Sentinel-1A (C- 
band) 
(2015–2017), 
GPR with 200, 
600 and 2000 
MHz antenna - 
PSI-InSAR  

• Using InSAR for 
structural 
displacement due 
to seasonal 
variations - Using 
GPR for exact 
positioning of 
structural ties 

Gagliardi 
et al. 
[112]  

• Masonry 
bridge, Rome, 
Italy  

• X-band SAR 
images, Several 
frequencies of 
GPR - MT-InSAR  

• Monitoring 
thermal and 
structural 
deformations 
based on 
processing 
persistent scatters 

Bianchini 
Ciampoli 
et al. 
[31], 
Tosti et al. 
[113]  

• 26 km of 
railway stretch 
for InSAR, and 
9.8 km of 
railway stretch 
for GPR, 
Puglia, 
Southern Italy  

• SAR images from 
both the Sentinel 

1A 
(2017–2018) and 
COSMO-SkyMed 
(2016–2018), 
GPR with oper
ating frequencies 
of 1000 MHz and 
2000 MHz – PS- 
InSAR  

• Evaluating 
potential 

subsidence 
occurring on a 
railway track - 
Potential use of 
InSAR for detecting 
spots subjected to 
deformations/Use 
of GPR data for to 
diagnose the cause 
of decay 

D'Amico 
et al. [71]  

• 12-km long 
newly build 
ballasted track, 
Italy - Focusing 
on rail- 
abutment tran
sition area  

• Sentinel-1A 
(2017–2018), 
COSMO-SkyMed 
(2016–2018), 
GPR with 1000 
and 2000 fre
quencies of an
tenna -  

• Estimating the 
thicknesses of 
ballast and 
subballast based on 
the GPR data - 
Observing higher 
land subsidence at 
the end sections of 

(continued on next page) 
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linked to piers and arches, together with B-scan data from GPR, were 
consolidated for comprehensive health monitoring.  

- Integration of InSAR and GPR: emphasis on railway infrastructures 

Infrastructures with line networks, such as railway line tracks and 
pavements, exhibit significant variability in conditions (weather, geog
raphy, natural hazards – floods/earthquake/sand storm, etc.), necessi
tating the use of integrated NDT techniques. The synergistic application 
of InSAR-based methods complements the leading ground-based NDT, 
namely GPR, to forge a comprehensive strategy for monitoring railway 
tracks. 

In this context, these methods were combined to assess a 10-km-long 
existing railway track situated in southern Italy. A significant 
improvement in the interpretation of GPR data was noted. This 
enhancement was linked to InSAR's ability to pinpoint critical areas. 
Specifically, the initial 300 m of the surveyed railway track revealed a 
correlation between the subsidence detected by InSAR and the attenu
ation of the GPR signal at the sub-base/subgrade interface [31,113]. 

D'Amico et al. [71] utilized InSAR and GPR to monitor transition 
zones of railway tracks, focusing on transition zones (bridge approach). 
The study demonstrated that InSAR is able to identify problematic areas 
at the railway line network level. Additional subsidence was observed at 
the ends of wing walls (Fig. 7a.1), highlighting the diminished lateral 
retention effect of the wing walls. 

Bianchini Ciampoli et al. [114] applied MT-InSAR in tandem with 
multi-frequency GPR to detect potential deformations in railway lines. 
They analysed phase changes between multiple images of the same 
location and the GPR data. The GPR effectively identified varying levels 
of ballast fouling, while InSAR processing pinpointed the primary causes 
of track bed deterioration. Fig. 7 showcases examples of the combined 
use of InSAR and GPR for railway track assessment. 

4.3. Integration of InSAR, GPR and machine learning models 

This section offers a comprehensive review of relevant journal arti
cles that focus on the use of machine learning (ML) methods and deep 
learning algorithms. These methodologies are applied to assess the 
current conditions and enhance the management of various in
frastructures by leveraging InSAR and GPR data. In this context, Fig. 8 
depicts a schematic representation of ML/DL models integrated with 
InSAR/GPR for civil engineering infrastructures. Further details, espe
cially those related to railway tracks, are presented below. 

Regarding the integration of GPR and ML techniques, Solla et al. 
[117] explored the feasibility of employing GPR for infrastructures. 

They advocated the use of artificial intelligence (AI) to expedite the data 
interpretation process. Pioneering this field, Shao et al. [118] applied a 
support vector machine (SVM) to classify ballast fouling conditions. The 
data used for training and testing the ML model were sourced from three 
2-m long railway track sections, representing clean, 50% clay fouling, 
and 50% coal fouling conditions. 

Addressing issues such as mud pumping, subgrade settlement, ballast 
fouling, and water abnormalities, Xu et al. [119] utilized a Faster R-CNN 
framework to enhance the identification accuracy of railway subgrade 
defects using GPR data. Similarly, Liu et al. [120] introduced a deep 
learning model called CRNN, which combines convolutional neural 
network (CNN) and recurrent neural network (RNN), for GPR data 
processing to identify these specific subgrade defects. Detecting sub
surface issues, like potential buried objects, necessitates the examination 
and interpretation of thousands of GPR images. Therefore, creating an 
extensive training dataset for ML models emerges as an appropriate 
approach for GPR data analysis [121]. Concurrently, the development of 
GPR-focused ML models can assist in streamlining the decision-making 
process [122]. 

Considering the InSAR method and noting that utilizing ML methods 
alongside remote sensing approaches is beneficial for monitoring 
shorelines [123], this strategy can also be applied to monitor transport 
infrastructures like railway tracks. Dumitru and Datcu [124] used SVM 
to explore selected primitive features of high-resolution SAR data for 
classification. Fiorentini et al. [125] described the combination of PS- 
InSAR measurements and GIS analyses with ML algorithms to model 
and predict surface motion ratios due to environmental factors in terms 
of mm/year for a specific area. In this regard, the maximum entropy 
model was utilized to identify factors contributing to land subsidence 
along the Beijing high-speed railway line. Compressible deposit thick
ness and groundwater levels were considered as input variables, while 
time series deformation data derived from EnviSat and TerraSAR-X 
images were used as output [90]. 

Novellino et al. [126] combined ML and InSAR techniques for slow- 
moving landslide risk assessment. They used InSAR data and aerial 
photos to develop ensemble models predicting landslide hazards, with 
horizontal displacement velocity identified as a key factor. Gagliardi 
et al. [127] applied MT-InSAR on the Rochester bridge in the UK, using 
X-band images from COSMO-SkyMed (CSM) for PSI analysis and struc
tural displacement monitoring. Additionally, they employed the k- 
means clustering algorithm, an unsupervised ML approach, to group 
individual persistent scatter points based on time-series displacements 
and deformation patterns. This enhanced the detection of critical areas 
in transport infrastructure monitoring. 

Naghibi et al. [128] combined InSAR and ML to predict ground 
subsidence rates in arid regions. For ML model development, which 
included the BRT and XGB algorithms, factors like topography, climate, 
hydrogeology, and anthropogenic influences were considered as con
tributors to land subsidence. Mirmazloumi et al. [129] employed 
various ML models to categorize InSAR-provided big data representing 
ground motion. This classification aimed to identify trends based on 
various displacement rates, including stable, linear, bilinear, quadratic, 
and PUE. Random forest and extreme gradient boosting emerged as the 
most effective ML models for accurate data labelling. Conversely, CNN 
and RNN were deemed more suitable for smaller regions considering 
accuracy and computational time. 

Rygus et al. [130] used the Hierarchical Density-Based Spatial 
Clustering of Applications with Noise (HDBSCAN) ML algorithm to 
measure the deformation of Indonesia's Bandung Basin. This clustering 
method helped identify areas with unique acceleration and deceleration 
deformation patterns. 

4.4. Railway track health monitoring and maintenance implementation 

Executing a series of structured tasks is vital to maintain optimal 
operational conditions of railway tracks and optimize cost-effective 

Table 5 (continued ) 

b Fusion of InSAR and GPR for health monitoring of civil infrastructures 

Reference Application Data acquisition Target/Conclusion 

(Permanent scat
ters) PS-InSAR 

abutment wing 
walls 

Bianchini 
Ciampoli 
et al. 
[114]  

• A traditional 
railway 
section, 
Salerno, Italy  

• GPR with different 
central 
frequencies +
Two-year MT- 
InSAR analysis  

• Integration of two 
survey 
methodologies - 
Detecting 
subsections of the 
railway affected by 
the high rate of 
ballast fouling - 
Identifying the 
poorly bearing 
subgrade or 
fragmentation of 
aggregates as 
leading to 
deterioration of 
track bed  
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Fig. 7. Examples of fusion of InSAR/GPR techniques for health monitoring of railway tracks, b Analysis of space-born and round-born data for detecting deformation 
along an existing railway track bed (figure reproduced with permission from [113] published by Elsevier). 
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inspection/maintenance intervals. Maintenance plans are traditionally 
categorized into preventive, corrective, and run-to-failure strategies. As 
depicted in Fig. 9.a, the preventive strategy comprises subdivisions such 
as timely-scheduled, condition-based, and predictive approaches. 

The combined outputs from InSAR and GPR offer a diagnostic system 
for defect identification, establishing a condition-based maintenance 
plan that covers both the railway line scale and network scale. Beyond 
merging GPR and InSAR datasets, the emergence of ML techniques for 
classification, clustering, and regression enhances the management of 
large datasets related to transport infrastructure health monitoring, 
especially railway tracks. Consequently, a predictive methodology can 
be formulated using continuous monitoring of railway lines with data 
from InSAR/GPR, assisting in the development of trained ML/DL 
models, as illustrated in Fig. 9.b. 

Earlier studies [146–148] have suggested that a condition-based 
approach, rather than a strictly timed program, is more beneficial. For 
example, Guler [146] enhanced maintenance activities for ballasted 
railway tracks using genetic algorithms within a condition-based 
framework. Additionally, Zhang et al. [148] created predictive models 
from periodic GPS displacement measurements to examine landslide 
conditions. In terms of predictive track maintenance, Lasisi and Attoh- 
Okine [149] considered three significant geometric parameters to 
build an ML model that classifies track sections as defective or non- 
defective based on a combined track quality index. Similarly, data- 

driven models emphasizing preventive maintenance were expanded, 
with the track's geometric condition as the dependent variable and 
standard deviations of longitudinal level and rail alignment as inde
pendent variables [150]. Beyond established ML models, Sresakoolchai 
and Kaewunruen [151] used the proximal policy optimization, a rein
forcement learning algorithm, to decrease carbon emissions from rail
way maintenance activities, considering several track geometry 
parameters and maintenance actions. This methodology effectively 
developed predictive maintenance from the available data. 

In conclusion, crafting a predictive strategy using imagery data and 
geometric parameters for railway asset management results in optimal 
maintenance timings. This not only reduces overall maintenance costs 
throughout a railway system's life but also prevents disruptions due to 
unforeseen significant failures. In terms of cost-benefit analysis, SAR- 
based methodologies are seen more as complementary tools, rather 
than replacements, for traditional inspection methods, facilitating 
continuous infrastructure monitoring and early fault detection [152]. 
Concurrently, the integrated use of InSAR and GPR for continuous 
railway infrastructure monitoring emphasizes a proactive approach in 
maintenance planning. 

The broad coverage of the InSAR technique, combined with GPR's 
ability to pinpoint defect origins, aids in developing a comprehensive 
management system for railway tracks, spanning from railway line to 
network scales. In this context, Fontul et al. [153] introduced a speedier 

Fig. 7. (continued). 
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processing method to use GPR at the network level, employing an 
accelerated frequency domain analysis for surveying extended railway 
line sections. Ferrante et al. [49] emphasized the importance of 
expanding NDTs from local to network levels to effectively map railway 
lines. Considering spatial scales, data from integrated InSAR and GPR 
can be further processed using GIS, enhancing maintenance planning 
[154]. Therefore, merging data from SAR and GPR tools can elevate 
railway infrastructure health monitoring to a network scale, with the 
application of ML/DL models further enhancing predictive maintenance 
strategies. 

5. Conclusions and perspectives 

This paper reviews non-destructive testing techniques applying to 
civil infrastructure health monitoring. It emphasized on the application 
of InSAR and GPR fusion to railway track inspection/monitoring, as well 
as integration of machine learning (or artificial intelligence) into 
monitoring data processing and prediction, finally reaching the aim of 
smart railway asset management (emphasis on railway track condition- 
based maintenance). Based on the review of literature and discussions 
on the technology feasibility study, the following conclusions are given. 

• To address the technological limitations of standalone health moni
toring methods, the fusion of InSAR and GPR proves beneficial. The 
InSAR technique offers a vast coverage area combined with the po
tential for intermittent data acquisition. Thus, this method is well- 
suited for elevating established health monitoring to a network 
level. Concurrently, critical locations identified using the SAR tool 
can be further investigated with GPR to pinpoint the origins of 
defects. 

• Continuous measurements along railway tracks using InSAR tech
niques yield vast amounts of imagery data. These can be processed 
with ML/DL methods to formulate predictive models based on 
ground motion trends and displacement classifications. As a result, 
predictive maintenance strategies become more practical than either 
timely-scheduled or corrective approaches. This ensures decision- 
makers have the necessary information to determine optimal in
spection and maintenance timings for railway tracks.  

• Currently, the integration of InSAR and GPR techniques is still 
evolving. This highlights the need for further exploration and 
application of these combined methods for railway infrastructure. 
Examples include monitoring land subsidence alongside railway 
tracks, identifying widespread defects, and detecting multiple 
anomalies. When considering machine learning and deep learning 
algorithms, a future endeavour involving these integrated techniques 
should aim to develop this combined process on a network level. This 
would enable the identification of critical areas based on deforma
tion rates or trend predictions, while also utilizing GPR at the local 
level for supplementary analyses. 
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