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ABSTRACT

A main focus of water managers with regard to micropollutants is the protection of aquatic ecology. However, micropollutants also have the

potential to affect the production of clean drinking water. In this paper, we propose to consider the removal effort when assessing micro-

pollutants with an ‘Effort Index’ (EI). Assessments using the EI show which micropollutants need more extensive monitoring or abatement

because of their difficulty to be removed using low-effort water purification treatment techniques. For water containing mixtures of micro-

pollutants, the averaged EI values can indicate overall water quality. Data on the removal by different purification treatment techniques are

not necessarily available for all micropollutants. Therefore, a set of data-driven indicative removal rules is derived to quantify the relation

between micropollutant properties and different drinking water treatment techniques. The indicative removal rules provide a rough indication

of removability. As an illustration, the water quality of the river Rhine is evaluated between 2000 and 2018. The EI value shows that the Rhine

contains increasingly more difficult-to-remove micropollutants. In total, 18 of those are labeled as particularly difficult-to-remove chemicals.

These micropollutants are suggested as candidates for abatement to lower the required effort in drinking water production.

Key words: micropollutants, model, prioritization, purification treatment, removal, water quality

HIGHLIGHTS

• The Effort Index (EI) quantifies the removal effort of micropollutants in drinking water treatment.

• The EI can be used to prioritize micropollutants for abatement at the water source.

• The EI is based on the properties of micropollutants.

• Averaged EI values indicate overall water quality for drinking water production.

GRAPHICAL ABSTRACT

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

The number of micropollutants in the European market is ever-increasing. The ‘CL inventory’ (ECHA 2021) lists over
200,000 chemical substances that are used in the European Union. An increasing number of these find their way into the
freshwater system (van Wezel et al. 2017). Many of these micropollutants have the potential to induce adverse effects. Prior-

itization is a means to focus on the micropollutants that will have the largest effects. For drinking water, Baken et al. (2018)
prioritized micropollutants in water based on provisional guideline values that are protective for human health. Micropollu-
tant prioritizations with ecotoxicological relevance are widely available. For instance, based on detection frequency, semi-

quantitative concentration, bioaccumulation, ecotoxicity, and biodegradability (Liu et al. 2022) or based on measured micro-
pollutant concentrations and the predicted no-effects concentrations (Figuière et al. 2022).

However, in addition to the effects on the ecological status of the water, micropollutants also pose a potential threat to

drinking water production if they cannot be removed easily in purification treatment. So far, it has been difficult to identify
which micropollutants will adversely affect the level of purification treatment required. Most often the assessment is based on
expert opinions. To facilitate water utilities and water managers in choosing water treatment options, an initial assessment of

micropollutants relating to removal efficiency is developed in this paper. This ‘Effort Index’ (EI) will show which of the many
micropollutants need more extensive monitoring or abatement because they will be difficult to remove especially in conven-
tional, low-effort level water treatment installations, requiring less investment in implementation, maintenance, or other costs.

Such a prioritization is useful to water managers since it allows them to take into account the removal effort when deter-

mining water quality. According to the European Water Framework Directive (WFD), Article 7.3, all Member States must
safeguard water bodies and aim to reduce the level of purification treatment required in the production of drinking water.
This means that producing clean drinking water is not only a responsibility for water utilities but also for water managers.

A way to assess the removal effort that is needed to produce drinking water will help evaluate whether such goals are met.
A prioritization of micropollutants is also relevant for industry in the a priori selection of appropriate chemicals for pro-

duction and use, especially if these chemicals are expected to be emitted into water. This fits in the ‘safe and sustainable

by design’ framework. In the current production and authorization of chemicals for (industrial) use, the required level of puri-
fication treatment for drinking water is not considered. Moreover, in a recent review paper on micropollutants that deserve
more global attention, the aspect of the removal effort by drinking water production facilities was overlooked (Yang et al.
2022). Schoep & Schriks (2010) concluded earlier, though, that a relation exists between the European Registration, Evalu-
ation, Authorisation, and Restriction of Chemicals (REACH) regulation and the tendency to produce chemicals that are more
recalcitrant to purification treatment in the environment, represented by a lower Kow over time. Micropollutants with these
characteristics are less likely to bioaccumulate in the environment which was one of the goals of REACH. While these micro-

pollutants are seen as ‘harmless’, they are of increasing concern for drinking water utilities as they will be more ‘mobile’ and
difficult to remove from the water.

For an evaluation of the overall water quality for drinking water production, the EI values of all individually monitored

micropollutants in the water can be averaged. Hence, waters that contain micropollutants that can only be removed using
more advanced purification treatment techniques get a less favorable score.

Unfortunately, data on micropollutant removal efficiency by treatment techniques of different effort levels are often not

available or are incomplete. Assigning values for removal for all potential micropollutants that occur at water intake
points is expensive and not realistic at this moment. For micropollutants with unknown removal values, models provide
an approximation. To link the removal effort of individual micropollutants to purification techniques, a relationship between
these two needs to be established.

The removal efficiency of any micropollutant depends on the type of purification treatment technique and the exact process
conditions of the technique (Fischer et al. 2019). In addition, the efficiency of a purification treatment technique under
specific conditions depends on the (combination of) properties of the micropollutant (Fischer et al. 2019). Many different

properties that influence removal efficiency are mentioned in scientific literature works, such as molecular charge (e.g.
Kovalova et al. 2013; Borowska et al. 2016), Kow (e.g. Verliefde et al. 2008; Kovalova et al. 2013), molecular weight (e.g.
Bellona et al. 2004; Mailler et al. 2014), and functional groups (e.g. Sonntag & von Gunten 2012; Mailler et al. 2014).
Although existing literature links micropollutant properties to a degree of removal in different treatment techniques, this is
in many cases either a qualitative link that is not data-driven or a relatively extensive model. An example of qualitative
links is classes of removal effort based on biodegradability and Kow (e.g. Fischer et al. 2011), and logical assumptions
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regarding the relation between micropollutant properties and removal efficiency such as Gibbs free energy and Kow (van den

Doel et al. 2023). An example of a relatively extensive model is one that also takes specific treatment conditions into account
(e.g. de Ridder et al. 2010; Vries et al. 2013, 2017). In such models, the ranking of micropollutants is dependent on the mod-
eled conditions in a particular treatment, and expected removal is hence calculated for a specific installation with specific

settings. A more generic evaluation of expected removal effort is more practical and desired by water managers but can be
rather complicated with such models.

Van den Doel et al. (2023) derived such a data-driven formula for treatment consisting of clarification, disinfection, and
granular activated carbon (GAC) filtration using logistic regression. Here, removability was explained by a combination of

biodegradability half-life, melting point, and octanol–air partition coefficient (Koa). To estimate relations between a wider
range of different purification techniques and micropollutant properties we derive simple indicative removal rules for the
removal efficiency of micropollutants for several treatment techniques representing different levels of effort. These are con-

ventional treatment (coagulation, flocculation), oxidation (with ozone), advanced oxidation (H2O2 and ozone or UV),
filtration over activated carbon, and reverse osmosis (RO). The data-driven indicative removal rules are derived analogously
to quantitative structure–activity relationship (QSAR) models. The rules enable a rough calculated removal efficiency of

micropollutants with a simple formula and provide an alternative for estimating the removal efficiency if data on removal
with specific water treatment techniques are not available.

2. METHODS

2.1. Calculation of the EI

The EI is a weighted average of the expected removal effort in treatment techniques of different levels of effort (from conven-
tional, to additional, to advanced). The levels of effort are explained in Table 1. The following formula (Equation (1))
expresses the overall removal effort per micropollutant in a single value.

EIs ¼ 100� (Pconv�3þ Padd�2þ Padv�1)
6

(1)

EIs in Equation (1) stands for EI (substance) and represents the overall purification effort of a micropollutant. Pconv is the

average (calculated) removal in ‘conventional’ removal techniques, Padd is the average (calculated) ‘additional’ removal, Padv

is the average (calculated) ‘advanced’ removal. Weights determine how much removal in a treatment level (Table 1) contrib-
utes to EIs. By subtracting the weighted removal from 100, the purification effort is low in case a micropollutant is easily

removed and high in case it is difficult to remove. ‘Effort’ (see Table 1) is not defined very precisely. Techniques are classified

Table 1 | Overview of techniques for purification treatment, from top to bottom with increasing effort (‘level of purification treatment’)

Class of effort (‘level of
purification treatment’) Technique Remark

Low effort: Conventional Coagulation/Flocculation
(sedimentation) with rapid
filtration

For surface water, various flocculants can be added here. For
groundwater this is not necessary.

Medium effort: Additional
(one of these techniques)

Oxidation (Ozone) This follows conventional. After oxidation, often activated carbon is
applied.

Membrane filtration (ultra or nano) This follows conventional.
Activated carbon (powder or
granular)

This follows conventional. Micropollutants can be displaced over
time by other, better adsorbing micropollutants. With granular
carbon, the contact time is important for removal efficiency
(Snyder et al. 2007; Mailler et al. 2016). Furthermore, the time to
reactivation plays an important role. Dose is important for
powdered carbon (e.g. Snyder et al. 2007; Mailler et al. 2014).

High effort: Advanced (one
of these techniques)

Reverse osmosis (RO) This follows conventional instead of ‘additional’.
Advanced oxidation (AOP) (H2O2

and Ozone or UV)
This follows conventional instead of ‘additional’. After oxidation,
activated carbon or another filtration process is applied.

Water Quality Research Journal Vol 58 No 3, 186

Downloaded from http://iwaponline.com/wqrj/article-pdf/58/3/184/1280031/wqrjc0580184.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 19 September 2023



from ‘conventional’ to ‘advanced’ based on the required (expected) investment in implementation, maintenance, or expected

carbon footprint or energy consumption. Removal by treatment techniques representing the least effort, conventional, is
assigned the highest weight value ‘3’, removal by additional techniques will be assigned ‘2’, and removal by advanced tech-
niques is assigned the lowest weight ‘1’. The height of the weights, 1–3, were chosen to weigh up treatment techniques of low

effort. Now, if a micropollutant is easily removed by techniques of low effort, this gives a favorable EIs and the micropollutant
will be of lower priority. The fact that treatment techniques of all effort levels are represented in Equation (1) does not imply
that it is expected that water production sites implement all these techniques. Rather, the EI represents the theoretical remo-
vability of the micropollutant with a wide range of techniques.

Table 1 gives an overview of purification techniques commonly applied in Dutch water utilities and their classification in
levels of increasing required effort. To remove micropollutants from water, different purification treatment techniques are
most often applied in sequence.

To evaluate overall water quality for drinking water production, all values per micropollutant (EIs) from Equation (1) are
combined into a single measure. Water that contains micropollutants that have a low purification effort (easy removal) will
indicate a good quality for drinking water production. Equation (2) gives the calculation for the overall water quality score.

EIw ¼
P1

n
EIs

n
(2)

Here, EIw is the purification EI (water body), ‘n’ indicates micropollutants.

2.2. Derivation of the indicative removal rules

Figure 1 shows the steps in deriving indicative removal rules for predicting removal based on micropollutant properties. In

the first step, substance properties are collected for (organic) micropollutants with data available on removal efficiency (step
1, Figure 1).

The micropollutant properties are collected from a variety of sources. Some properties are predicted with the OPERA

models that can be collected very easily by downloading these from the online ‘Chemistry Dashboard’ or the OPERA user
interface (Mansouri et al. 2018). Other properties are added from Open Babel (O’Boyle et al. 2011), or calculated by Pub-
Chem. These properties can be downloaded via functions in the open-source statistical free software environment ‘R’ with

the ChemmineR package (Cao et al. 2008). Furthermore, properties predicted by models in EPIsuite (US EPA 2012) are
easy to collect by downloading the EPIsuite software and uploading a list of CAS numbers. In total, 79 (predicted) micropol-
lutant properties are collected for each organic micropollutant (Supplementary material, Supplement II). For each of these

properties, it is checked whether the logarithm of the property shows a better normal distribution than its original value. If
this is the case, the natural log of the property is taken as input value. If a property is already expressed as log10, this is
maintained.

The second step is to uncover properties associated with measured removal efficiencies using a ‘Random Forest’ regression

(Breiman 2001) (step 2, Figure 1). Most often, machine learning techniques use advanced statistical models to ‘learn’ and

Figure 1 | Steps to arrive at an indicative removal rule based on micropollutant (substance) properties.
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make a good prediction model. Random Forest models create random decision trees. The algorithm will select the best expla-

natory properties from all micropollutants by prioritizing decision trees with properties that best explain removal efficiency.
This results in scores for ‘importance’ of the property. The highest correlated properties (correlation. 0.97) are removed
beforehand. Properties that have a standard deviation of zero (they do not vary between the different micropollutants) are

also removed beforehand. Supplementary material, Tables S1–S6 show examples of properties that were found to be impor-
tant in relation to removal.

After determining the most important properties, the third step is to establish a relation between the most important prop-
erty and the removal efficiency (step 3, Figure 1). For an indicative removal rule, an S-shaped relation is a workable solution

to achieve a calculated removal between 0 and 100%. A best-fit S-curve through the data was established using nonlinear
regression modeling, using the ‘minpack.lm’ package (Elzhov et al. 2016) in the ‘R’ free software environment. Equation
(3) is the equation for an S-curve.

P ¼ C
1þ eA�(Property value�B)

(3)

Here, P is purification efficiency (or removal). C is the maximum in a range, B is the center of the S-curve, and A is a

measure of steepness. ‘Property value’ is the value of the selected (most important) associated micropollutant property
(see step 2).

The nonlinear model will generate statistics to evaluate if the S-curve itself could be established to a significant extent. To
examine whether the S-curve also associates with actual removal (step 4 in Figure 1) the fit between calculated values in the

indicative removal rule and the measured removal values is calculated, with the coefficient of determination R2 representing
the explained variance.

2.3. Data used for removal of substances

In our case study for deriving indicative removal rules, we use removal efficiency values that are generated by drinking water

utilities in the Netherlands, under different circumstances in treatment techniques over the course of 14 years. This makes this
suitable data to define generic rules that likely do not only apply to treatments under a single condition. The data are used in
recurring studies by the drinking water utilities on ‘robustness’ of treatment techniques in removing diverse, relevant micro-

pollutants. This means that the data are known and have been evaluated in these studies. In Table 2 an overview is presented
of the dataset in this study.

For conventional treatment with ferric chloride (FeCl3) as a coagulant, a large dataset (1,132 measurements) of one drink-

ing water company is available containing data from 2013 onwards. Most compounds were measured relatively frequently,
more than eight times. These compounds were selected because multiple measurements give a better average view of removal
efficiency related to a compound property. This resulted in a slightly smaller dataset of 988 measurements for 29 micropol-

lutants. The reported pH ranges between 7.9 and 8.4 and the reported coagulant dose ranges between 2.5 and 3.5 mg/L
(depending on season; personal communication). Occasionally a negative removal is measured, which may be caused by
experimental uncertainties, as concentrations come close to the detection limit, or because metabolites may be transformed
back to mother compounds. Micropollutants with occasional negative removal are kept in the dataset. All measurement

points that have negative removal are set to zero.

Table 2 | Dataset on removal efficiencies of micropollutants (MPs), measured in different purification treatment processes by drinking water
utilities

Utilities Conditions Tested MPs Measurements Measurements per MP

Conventional 1 1 29a 988 9–69

Oxidation 1 1 75 128 1–8

Activated carbon 3 8 76 323 1–16

Advanced oxidation 2 3 76 130 1–8

Reverse osmosis 1 2 83 137 1–8

aOnly compounds with more than eight individual measurements in the dataset, this selection was possible because of the size of the dataset (1,132 measurements).
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Data for activated carbon consists of treatments with both GAC and powdered activated carbon (PAC) and data are avail-

able from three companies. Varying conditions are exposure time, reactivated carbon, seasonal variations, and stand-alone or
after oxidation treatment. Again, several micropollutants have negative removal values. In activated carbon, micropollutants
that adhere less well are displaced at a certain point by other compounds that adhere better to activated carbon (both micro-

pollutants and natural organic matter). Initially, these displaced micropollutants will have been well adsorbed. This could
provide an additional challenge for determining a rule to reflect removal with activated carbon. Since PAC and GAC have
many similarities, it is expected that a single property in an indicative removal rule for activated carbon could apply to
both types of applications.

For oxidation (treatment with O3, ozone), data are available from one company and no varying conditions are specified.
The measurements were done over a period of several years.

Advanced oxidation processes (AOPs) are processes in which hydroxyl radicals are formed, which can react very effectively

with a wide range of compounds. Examples of AOP include UV in combination with O3 or H2O2, or the combination O3/
H2O2. Data for AOP are available in the dataset for two companies. The conditions that vary are combining O3, H2O2, and
UV or only UV and H2O2, and seasonal variations. In practice, AOP is not applied without additional filtration with activated

carbon or, for example, dune filtration, to remove the excess H2O2, transformation products, and formed AOC (assimilable
organic carbon). The latter is to maintain/improve the biological stability of the water.

For ‘advanced’ treatment, RO data are available from one company in different seasons, over several years.

3. RESULTS

3.1. Indicative removal rules

For all purification treatments in the dataset of the Dutch treatment facilities, conventional (coagulation, flocculation), oxi-

dation (with ozone), advanced oxidation (UV and H2O2 and/or ozone), activated carbon, and RO, steps 1–4 as given in
Figure 1 were executed. Per treatment, the most important micropollutant property was linked to removal efficiency via
S-shaped indicative removal rules. For all S-curves, parameters A, B, and C (see Equation (3)) could be significantly estab-
lished (see Supplementary material, Supplement I). This means the data fit well enough in an S-shaped curve.

Pconv ¼ 98
1þ e�1:2�(logKow�2:4)

(4)

Pac ¼ 73:4
1þ e�1:99�(logKoa�3:8)

(5)

Pox ¼ 83:5
1þ e�0:39�(abonds�2:71)

(6)

Padvox ¼
82:6

1þ e�4:4�(FeatureRingCount3D�0:26)
(7)

Pro ¼ 100
1þ e�2:95�(ln(Mass)�4:63)

(8)

Pconv is the purification efficiency (%) for conventional treatment. Pac for activated carbon treatment, Pox for oxidation,
Padvox for advanced oxidation, Pro for RO (see Table 1). Equations (4)–(8) can be used to calculate EIs and EIw in Equations

(1) and (2). Most important substance properties for Equations (4)–(8) were, respectively, logKow, the logarithm of the n-octa-
nol–water partition coefficient. LogKoa (the logarithm of the octanol–air partition coefficient, abonds (the number of aromatic
bonds of the micropollutant), FeatureRingCount3D (the number of rings), LnMass (the natural logarithm of the average mol-
ecule mass). In addition, HBA1 (number of H bond acceptors; determines the number of H-bridges) increased the

predictability for Padvox (see Supplementary material, Supplement I). To keep the rules as simple as possible, this substance
property was not included.

In Table 3, an overview is given of the accuracy of the derived S-shaped indicative removal rules for calculating removal of

organic micropollutants. The derivation of these rules is explained in more detail in Supplementary material, Supplement I.
The RF regression gives, in general, a good result with respect to the variation explained, generally better than the S-shaped

curves (Table 3). A disadvantage of RF machine learning models is that these are relatively complicated statistical models.
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Consequently, these models are more challenging to use or implement. Therefore, accuracy is sacrificed for using the simpler

S-shaped indicative removal rules as given in Equations (4)–(8).
The spread in actual treatment performance in the dataset is wide (see Supplementary material, Supplement I). The large

spread, even within single substances, is likely caused by difficulties in measuring near detection limits or exactly match influ-
ent to effluent concentrations in full scale drinking water treatment plants, in combination with variations in other

circumstances during water treatment. This doesn’t mean, however, that general treatment performance cannot be estimated.
Measurements likely vary around ‘realistic’ treatment performance values. In some cases, the indicative removal rule does not
explain the majority of the variation but the model itself is significant. This combination means that the predictor variable still

provides information about the response even though the data points fall further from the regression line. The predictions will
just not be very precise (in other words, will have a high prediction interval). The aptness of the indicative removal rules to
indicate the removability of substances is further validated in the following Sections 3.2 and 3.3.

The R2 for activated carbon is the lowest of all (Table 3). If the factor ‘condition’, which reflects the different conditions in
the different utilities, is included in the fit (PAC/GAC, contact time, freshness, season, applied after oxidation or not), the
explained variance increases to 0.56. This means in this dataset for activated carbon that the conditions determine the

removal to a larger extent than micropollutant properties. Therefore, the indicative removal rule for activated carbon can
best be rederived in the future in a new attempt with another dataset.

3.2. Accuracy of the indicative removal rules

Although the indicative removal rules represent significant relations between micropollutant properties and removal efficien-
cies in a treatment technique (see Supplementary material, Supplement I), the R2 indicates that they are not very accurate.
Therefore, these indicative removal rules can only give rough indications. As a verification, Table 4 provides an overview of

measured purification efficiencies for several micropollutants as assembled in van der Aa et al. (2017). We use broad cat-
egories of removal for the comparison because the indicative removal rules are not very precise. A selection was made of
micropollutants that were reported to exceed their target or signaling value in the Dutch Drinking Water Decree (2023) at

the water abstraction location Nieuwegein in the dataset of RIWA-Rijn. These are compared to the calculated removal effi-
ciencies from the indicative removal rules in Equations (4)–(8).

From Table 4, it can be tentatively concluded that individual indicative removal rules are in the correct range in 68% of the
calculations (38 out of 56), nearly correct in 28% of the calculations (16 out of 56), and wrong in 4% of the calculations (2 out

of 56). It needs to be emphasized that the literature data collected by van der Aa et al. (2017) are Dutch studies, and the
indicative removal rules were also trained on data from Dutch water utilities. This means for further generalization, verifica-
tion with data from other countries is needed.

Two predicted values do not match the literature data. The lack of aromatic rings in glyphosate caused a low predicted
removal by advanced oxidation (Table 4). For glyphosate, however, N-bonds are broken during oxidation (Espinoza-Montero
et al. 2020). Measured removal rates in (advanced) oxidation indeed indicated higher removal. This means the indicative

Table 3 | Overview of purification treatment techniques and S-shaped derived indicative removal rules

Treatment effort level Technique
Random Forest accuracy
(variance explained)

Most important
substance property

S-curve property vs. measured removal,
R2 (variance explained)

Low effort:
Conventional

Coagulation,
flocculation

0.78 logKow 0.56

Medium effort:
Additional

Activated carbon 0.12 (with conditions: 0.56) logKoa 0.17

Medium effort:
Additional

Oxidation 0.72 Aromatic bonds 0.41

High effort:
Advanced

Advanced oxidation 0.73 Ring count 3D 0.59

High effort:
Advanced

Reverse osmosis 0.57 lnavMass 0.48

See Table 1 for more explanation on the purification treatment techniques and effort.
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removal rule for oxidation misses a relevant property of glyphosate. Methyl-tert-butylether (MTBE) has a high measured
removal in RO but a low predicted removal according to the indicative removal rule for RO. This low removal fits such a

small, uncharged molecule. Some authors studied RO as a pretreatment for the removal of MTBE, before further oxidation
of the compound (Cooper et al. 2002; Li et al. 2008). This indicates that in practice it is difficult to remove MTBE by means of
RO and the indicative removal rule can be correct for MTBE.

As an example, a possible visualization of the calculated purification efficiency is given in Figure 2. The figure shows calculated
removal efficiencies for two micropollutants and per treatment based on the indicative removal rules (see also Table 4).

3.3. Accuracy of the EI value

The indicative removal rules are meant to be combined to quantify the EIs (Equation (1)) for micropollutants of interest with-

out (literature) data on removal efficiency. When the removal values as calculated by the indicative removal rules (Equations
(4)–(8)) are integrated, less accurate results of Equations (4)–(8) will expectedly be leveled out.

Table 4 | Purification efficiency ranges from the literature (L*) compared to calcu-
lated values with the indicative removal rules (IR, in %)

‘Conv’ is conventional treatment, ‘AC’ is activated carbon treatment, ‘Ox’ is oxidation treatment, ‘AdvOx’ is

advanced oxidation treatment, ‘RO’ is reverse osmosis treatment. Green, or medium grey, indicates good

concordance, yellow, or light grey, indicates one class difference, red, or dark grey, indicates more than one

class difference (within the class range* in the literature+ 1%). *Literature removal ranges are as follows:

– indicates removal 0–40%; 0 indicates removal 40–80%;þ indicates removal 80–100%; empty indicates no

data (van der Aa et al. 2017). ‘–/0’ was interpreted as removal between 20 and 60%, ‘0/þ’ was interpreted

as removal between 60 and 90%.

Figure 2 | Example visualizations of the indicative removal rules for calculating the purification efficiency per treatment technique, for two
micropollutants. The outer ring is 100% calculated removal, the center is 0% removal. ‘Conv’ is conventional treatment, ‘AC’ is activated
carbon treatment, ‘Ox’ is oxidation, ‘AdvOx’ is advanced oxidation, ‘RO’ is reverse osmosis (see Table 1).
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As a case study, 68 relevant micropollutants were selected from the RIWA-Rijn database, based on their exceedance of

target or signaling values in the Dutch Drinking water decree. Supplementary material, Supplement II contains the calculated
EI for these micropollutants. Of these 68 micropollutants, 6 are categorized as ‘easy to remove’ with an EI of 20 or less, while
46 are categorized as ‘medium to remove’ with an EI between 20 and 60. The 18 remaining micropollutants obtained a value

higher than 60 which means that expected removal efficiency is low (see Supplementary material, Supplement II for corre-
sponding removal percentages).

Micropollutants with high EIs are indicated as hard-to-remove substances and therefore are likely to end up in drinking
water ready for delivery. We use data from the Dutch water utilities between 2009 and 2018 (REWAB database, not

public, data available upon request) to check if micropollutants with a high EIs are indeed detected in water after purification
treatment more often than micropollutants with low EIs. REWAB contains yearly maximum concentrations of micropollu-
tants per treatment facility. If this value in REWAB data is recorded above the detection limit of the measurement

method, we labeled the micropollutant as ‘detected’.
Table 5 shows micropollutants with respectively the highest and lowest EIs (for all micropollutants, see Supplementary

material, Supplement II). Of the 18 micropollutants with high EIs, 14 (82%) were indeed detected in water after purification

treatment, one was not reported. In comparison, only six (35%) micropollutants with relatively low EIs were detected.
Overall, results in Table 5 indicate that micropollutants with high EIs are indeed found more often in water after purifi-

cation treatment than with low EIs. Nevertheless, there are exceptions where micropollutants with high EIs are not

detected in water after purification treatment. Also, micropollutants with low EIs are, in some cases, detected.
N-bonds are broken during oxidation and this also applies to oxamyl and butocarboxim. This is not incorporated in the

indicative removal rule for oxidation. That can be a reason why these micropollutants were not detected in water after puri-
fication treatment although their EIs were high (Table 5). Another example, Tetrachloromethane, was also not detected but

had high EIs. This compound is rather volatile and could have been removed from water during aeration processes.
For other substances where indicative removal rules do not match the expected detection in treated water, the EIs do cor-

respond to evidence from the literature. Ethyl-tert-butylether (ETBE) has high EIs but was nevertheless not detected in

drinking water after treatment. ETBE is a small, uncharged, compact (branched) molecule, which will be poorly removed
via coagulation/ flocculation/ sedimentation. Many C–C interactions are not possible, so the molecule will also not adsorb
very well on activated carbon. Because there are no double bonds, it will not absorb UV radiation. This is consistent with

data in the literature (Baus et al. 2007) although some removal is possible (Inal et al. 2009). Other micropollutants were
detected in treated water even if the calculated EIs was low. It is unclear why these were detected. Mecoprop, naphthalene,
paroxetine, tiamulin, and benzo(a)pyrene can be removed by coagulation/flocculation because of their high Kow value, oxi-
dized because of their ring structures, and removed by RO because of their sizes. It could be that starting concentrations

before purification treatment were high, these data were not available.

3.4. Water quality score

To showcase the application of the Effort Index for waterbodies (EIw), Equation (2) is applied to micropollutants exceed-
ing the target or signaling values in the Dutch Drinking Water Decree at locations along the river Rhine in the

Netherlands. This data is obtained from RIWA-Rijn (available upon request at RIWA-Rijn). Example programming
code to apply Equations (4)–(8) and Equations (1) and (2) to micropollutants in locations of the river Rhine is provided
in the data package that is available at https://doi.org/10.5281/zenodo.5982001. Figure 3 shows that for locations Nieu-

wegein, Andijk and Nieuwersluis the average EIw increased between 2000 and 2018. This is mainly caused by the
relative increase of micropollutants with a low logKow, which are relatively difficult to remove by conventional treat-
ment. For Lobith, the index is decreasing. This is in accordance with previous calculations by Pronk et al. 2021. In
that paper, a more simple (non-data-driven) index was used, based on biodegradation and logKow. With respect to the

calculations in Pronk et al. (2021) the range in the EIw value is larger, 13–75 vs. 26–69, which means a bigger distinction
can be made in water quality with the EIw.

The EIw ranges from 13 (at location Nieuwersluis in 2016) to 75 (Lobith, Andijk, several years). The EIw varies more from

year to year if only a few substances are included. This is mainly the case in location Andijk where only a few micropollutants
exceed their target or signaling value from the Dutch Drinking Water Decree. The low EIw in Nieuwersluis in 2016 is also due
to a single micropollutant (benzo(a)pyrene) that is easily removed according to its EIs.
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4. DISCUSSION

Micropollutants that are present in natural waterbodies are often considered with regard to their risks to aquatic ecology.
However, micropollutants also have the potential to affect the production of clean drinking water. In this paper, we suggest

Table 5 | Prioritization of micropollutants detected in the river Rhine, based on their Effort Index (Equation (1))

CAS number Name Effort Index Detected fraction %

1634-04-4 Methyl-tert-butylether (MTBE) 82 Yes 88/1627 5.4

76-05-1 Trifluoroacetic acid (TFA) 82 Yes 7/7 100

75-09-2 Dichloromethane 82 Yes 24/1668 1.4

107-06-2 1,2-Dichloroethane 78 Yes 10/1669 0.5

637-92-3 Ethyl-tert-butylether (ETBE) 76 No 0/823 0

111-96-6 Bis(2-methoxyethyl)ether (Diglyme) 75 Yes 64/491 13

67-66-3 Trichloromethane 72 Yes 147/1669 8.8

61-82-5 Amitrole 72 – – –

1066-51-9 Aminomethylphosphonic acid (AMPA) 70 Yes 87/755 11.5

75-27-4 Bromodichloromethane 69 Yes 55/1668 3,3

108-78-1 1,3,5-triazine-2,4,6-triamine (melamin) 69 Yes 21/24 87.5

1071-83-6 Glyphosate 68 Yes 12/755 1.6

657-24-9 Metformin 67 Yes 24/71 33.8

288-13-1 Pyrazole 66 Yes 24/29 82.8

23135-22-0 Oxamyl 66 No 0/921 0

76-03-9 Trichloroacetic acid (TCA) 63 Yes 4/70 5.7

56-23-5 Tetrachloromethane 62 Yes 1/1669 0

34681-10-2 Butocarboxim 61 No 0/930 0

626-43-7 3,5-Dichloroaniline 30 No 0/297 0

94-75-7 2,4-Dichlorophenoxyacetic acid (2,4-D) 30 No 0/1178 0

55297-95-5 Tiamulin 29 Yes 22/497 4.4

298-00-0 Parathion-methyl 29 Yes 1/1175 0

18691-97-9 Methabenzthiazuron 28 No 0/1102 0

5611-51-8 Triamcinolonehexacetonide 28 – –

93-65-2 Mecoprop (MCPP) 27 Yes 22/1178 1.9

51218-45-2 Metolachlor 27 No 0/1180 0

94-74-6 4-Chloro-2-methylphenoxyacetic acid (MCPA) 27 No 0/1178 0

110488-70-5 Dimethomorph 27 No 0/69 0

91-20-3 Naphthalene 26 Yes 31/1669 1.9

61869-08-7 Paroxetine 21 Yes 9/39 23.1

126833-17-8 Fenhexamid 20 No 0/47 0

126535-15-7 Triflusulfuron-methyl 19 No 0/62 0

84-74-2 Di-n-butylphthalate (DBPH) 19 No 0/85 0

87-86-5 Pentachlorophenol 18 No 0/242 0

117-81-7 Bis(2-ethylhexyl)phthalate (DEHP) 17 No 0/73 0

50-32-8 Benzo(a)pyrene 13 Yes 3/1667 0.2

See Supplementary material, Supplement II for more information. The column ‘Detected’ indicates when the micropollutant is detected in water after purification treatment between

2009 and 2018. Fraction is the number of detections in locations with yearly reports and the total number of locations with yearly reports. Detection is often possible at very low

(trace) concentrations well-below health-based guideline values (not shown).
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to take the level of required purification into account when assessing the effects of micropollutants. For this purpose, an effort
index (EIs) per micropollutant is proposed, based on ease of removal. The EIs can be used to assess which of the many micro-
pollutants may need more extensive monitoring or abatement because of their difficulty to be removed especially in low effort

level treatment techniques for drinking water. For this purpose, more weight is assigned to conventional treatment in the for-
mula to calculate EIs, with a lower weight for additional and lowest for advanced. These weights can be adjusted based on
differences in actual required (expected) investment in implementation, maintenance, energy consumptions or carbon foot-

print for ‘conventional’ compared to ‘additional’ and ‘advanced’ treatment techniques.
The EIs can be applied by the industry as a first-tier selection of difficult-to-remove micropollutants if these micropollutants

are expected to be emitted into water. The EIs can also assist water quality managers by addressing potential ‘problem’ micro-

pollutants that are hard to remove especially in low effort level treatment techniques for drinking water. The EIs per
micropollutant can be combined into a single water quality value, EIw. This value can be used to facilitate decisions to
decrease the level of purification treatment required. This helps to achieve the requirement of the WFD to manage surface
waters to reduce the level of effort in the production of drinking water.

The weights in the formula that emphasize the importance of removal in low effort level treatment techniques for drinking
water are at this moment set quite arbitrarily. This can be adjusted in the future, depending on the application. As an example,
costs can be used to assign weights. Costs per m3 treated water mentioned in DeWaal & Hofman-Caris (2021) would indicate

that a factor 4 would be appropriate to weigh between ‘additional’ and ‘advanced’. More research is needed to come to sup-
port integral weights for the efforts associated with the treatment techniques.

As with all effects of micropollutants, EIs only implies a risk in case of actual exposure. Hence, in case a micropollutant

with a high EIs is present in concentrations below the drinking water standard, removal will not be necessary. In that
case, the micropollutant will have little effect on the actual required purification treatment effort (Pronk et al. 2021). For a
final prioritization of micropollutants the EIs can be combined with water quality indices for drinking water production

Figure 3 | The EI for locations along the river Rhine, the Netherlands (data source: RIWA-Rijn). Per year, only micropollutants that exceed their
target or signaling value in the Dutch drinking water decree are considered. Their number is indicated above each year.
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that use measured concentration and ease of removability as a basis (Pronk et al. 2021; van den Doel et al. 2023). In addition,

for a final prioritization, health-based guideline values should be taken into account (Baken et al. 2018).
Calculation of the EIs relies on data of removal efficiencies of micropollutants by treatment techniques of different levels of

effort, from conventional to advanced. However, these data are not always available. Modeling is an alternative way to link

removability to individual micropollutants that lack measurement data. In this paper, a framework is proposed to derive
indicative removal rules to describe the relation between a micropollutant property and removal efficiency in a particular
purification treatment. We used removal data of micropollutants that were analyzed by different Dutch drinking water com-
panies under different conditions and over a timespan of several years. Because of the large timespan and conditions, there is

a large range in removal efficiencies for each specific micropollutant. This means that, by definition, the indicative removal
rules will show considerable noise. This proved especially true for purification treatment with activated carbon. The different
conditions used in this treatment technique explained most of the variance in this study, instead of a micropollutant property.

The advantage of linking a micropollutant property to a generic value for removal with the indicative removal rules is
that there is no need to consider (implicit) settings of treatment installations. The disadvantage is that verification of cal-
culated removal values is difficult. Actual removal data are variable because specific settings in treatment facilities can

change removal efficiency for a micropollutant. Verification showed that within a broad range, the calculated EIs fit
measured removal values correct (68%) or nearly correct (28%). Another verification with data on the detection of micro-
pollutants in treated water showed that the EIs, calculated with the indicative removal rules could prioritize hard-to-

remove substances. Of the highest prioritized, difficult-to-remove micropollutants, 82% were detected at some point in
water after purification treatment. Of the lowest prioritized micropollutants, only 32% were detected at some point.
This means that micropollutants that are prioritized with the EI are indeed often encountered in drinking water after
treatment.

Several substances, however, deviated from what was expected from their EIs. This is because the simplicity of the rules inher-
ently holds some caveats. The link between micropollutants and removal efficiency based on one property will not apply equally
well to every micropollutant. The deviating substances pointed to improvements in the indicative removal rules. In a future

refinement of the indicative removal rule for (advanced) oxidation, the presence of N-bonds should be added. This will be
valid for micropollutants that have N-bonds that can be oxidized (Espinoza-Montero et al. 2020). No rule was derived specifi-
cally for aeration processes, whereas this can be a cause for easy removal of substances. This could be an added rule in the

future. Also, PFAS (Per- and Polyfluorinated Substances) do not adhere to the indicative removal rule for conventional treat-
ment (Xiao et al. 2013) possibly because their Kow is hard to predict by models (Hodges et al. 2019). In general, when a
QSAR model is developed for a varied dataset, prediction accuracy can be improved by classifying the micropollutants in
this dataset into specific groups that contain similar micropollutants (de Ridder et al. 2010).

Other micropollutants were detected in treated water even if the calculated EIs was low and could not be disputed. It is
unclear why these were detected. This may simply indicate that the actual removal of micropollutants is a process that
can have a variable success. This is also shown by the high variability in measured removal within substances in the dataset

(see Figure S1 in Supplementary material, Supplement I).
If the relationship between a micropollutant property and its behavior in a purification treatment is known from the litera-

ture, there is more reason to have confidence in the indicative removal rule. A high Kow makes chemicals readily adsorb to

particles and is therefore indeed expected as a defining property in predictor efficiency for pretreatment by coagulation/ floc-
culation. Aromatic compounds are a known predictor of oxidation with ozone (Sonntag & von Gunten 2012). The number of
rings is a logical micropollutant property to indicate removal in advanced oxidation (e.g. Jenkin et al. 2020; Jin et al. 2020).
Mean mass is a well-known and logical micropollutant property to predict removal for RO (Verliefde et al. 2008; Yangali-
Quintanilla et al. 2009). For activated carbon, the substance property octanol–air partition coefficient (Koa) emerged and
this has not previously been associated with removal efficiencies. Its accuracy was also very low. A recent paper, however,
also found Koa as one of the properties explaining removability for treatment consisting of clarification, disinfection and GAC

filtration (van den Doel et al. 2023). This indicative removal rule will have to be further confirmed or rederived in the future.
It should be noted that indicative removal rules do not predict removal rates for any specific treatment installation. Each

individual drinking water treatment plant will have optimized treatment technology for the water matrix composition and

type of pollution they encounter. Hence, it can be argued that the removal of ‘known’ micropollutants in general in any
specific drinking water treatment plant is better than calculated by the indicative removal rule. The indicative removal
rule indicates an average removal in such techniques or under different circumstances, based on micropollutant properties.
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For a precise prediction of removability for specific treatment plants, more extensive models such as the tool ‘AquaPriori’

(Vries et al. 2013, 2017) can be used. This model also considers mutual interactions of micropollutants and interactions of
the purification treatment with natural organic matter, which is not explicit in the indicative removal rules. AquaPriori is cur-
rently being further developed for multiple techniques and many micropollutants.

Processes in wastewater treatment facilities differ from those in drinking water treatment facilities. Some water types will
even require very different treatment techniques than typical wastewater, like desalination brine treatment systems (Panago-
poulos & Giannika 2022). Currently, for wastewater, the model ‘SimpleTreat’ (Struijs 2014) can be used to predict removal.
Like with ‘AquaPriori’ (Vries et al. 2013, 2017) settings on the specifics of the treatment facility are required in this model.

The same techniques as presented in this study can be used to derive indicative removal rules based on substance properties
relevant to wastewater treatment systems. That could for instance be instrumental in a permit evaluation for industrial waste-
water emissions.

To conclude, the performance of the individual indicative removal rules matches for the larger part the measured removal
by treatment techniques in the Netherlands. Moreover, traces of micropollutants with a high EIs based on the indicative
removal rules are indeed found more often in drinking water. In total, 18 micropollutants that exceed their drinking water

target or signaling value in the Rhine are labeled as particularly difficult-to-remove chemicals. The prioritization of micropol-
lutants helps to direct policymakers to take measures to decrease emissions or otherwise remediate micropollutants to reduce
the level of purification treatment required for the production of drinking water. Further validation of the indicative removal

rules will set their shape more reliably and will make these rules applicable in a wider context. Indicative removal rules for
other treatment techniques can be added or developed for distinct types of micropollutants. Moreover, the weight of treat-
ment techniques from smaller to larger ‘effort’ can be established more objectively by adding a quantifiable measure for
an effort such as increased energy expenditure, carbon footprint, and costs and basing weights on that measure. Until

then, the EIs can be used as the best available first-tier prioritization for low effort-removal efficiency of micropollutants.
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