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Adaptive Real-Time Clustering Method for Dynamic Visual
Tracking of Very Flexible Wings
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Advancements in aircraft controller design, paired with increasingly flexible aircraft concepts, create the need for
the development of novel (smart) adaptive sensing methods suitable for aeroelastic state estimation. A potentially
universal and noninvasive approach is visual tracking. However, many tracking methods require manual selection of
initial marker locations at the start of a tracking sequence. This study aims to address the gap by investigating a robust
machine learning approach for unsupervised automatic labeling of visual markers. The method uses fast DBSCAN
and adaptive image segmentation pipeline with hue-saturation-value color filter to extract and label the marker
centers under the presence of marker failure. In a comparative study, the DBSCAN clustering performance is
assessed against an alternative clustering method, the disjoint-set data structure. The segmentation-clustering
pipeline with DBSCAN is capable of running real-time at 250 FPS on a single camera image sequence with a
resolution of 1088x600 pixels. To increase robustness against noise, a novel formulation (the inverse DBSCAN,
DBSCAN™!) is introduced. This approach is validated on an experimental dataset collected from camera
observations of a flexible wing undergoing gust excitations in a wind tunnel, demonstrating an excellent match
with the ground truth obtained with a laser vibrometer measurement system.

Nomenclature
A, B = subsets of dataset D
B(x',y") = kernel matrix
cp = centroid of cluster centers
Cep = centroid of points P
D = dataset
dist(p, @)eucia = Euclidean distance function
f(x,y)) = filtering (sequence) operation

.fdilale (I(X, y))
femde(l(xa y))

e
fmorph (I(x’ )’))

dilate operation

erode operation

gust vane frequency

morphological operations (combined)

fnorm = global normalization operation
Gs(x,y) = filtered image
I(x,y) = input image
1(z) = Gaussian noise probability density
J(x,y) = noise input image
MaxPts = DBSCAN~! max points dense region
MinPts = DBSCAN min points dense region
m; = cluster center size
N(x,y,1) = random seed initialized noise mask
N.(p) = e neighborhood of points p
n; = cluster population size

i = noise particle population size

= computational complexity

P(x,y) = density distribution of particles (2D)
P(x,y) = cloud of cluster centers
Pooan = convex radial hull
D, q = scatter points
Pus>qn = scatter noise particles
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Ry, (7) = autocorrelation function
Sy (@) = autopower spectral density
Ve = wind tunnel flow velocity

Wy, Wy = class variance weights (Otsu)

Z.(p,) = ¢ neighborhood of noise points p,,

Z = grayscale value

agy = gust vane angle

y = radius tolerance

€ = radius of neighboring points

0., vector angles from centroid to marker

u = mean of /(z) distribution

Hst = mean of the cluster population

Hy = mean of points in 2D image

c = standard deviation of /(z) distribution
Oyst = standard deviation of cluster population
or = standard deviation points in 2D image
62 (Ty) = intraclass variance (Otsu)

63,05 = class variances (Otsu)

Tih = threshold parameter

I. Introduction

I N THE context of aeroservoelastic control, monitoring the entire
wingspan can be crucial for proper delegation of control actions.
This objective may involve installing many conventional accelerom-
eters that are likely subject to noise and bias, must deal with certif-
ication requirements, or might face challenges associated with correct
geometric placement or limited mounting space. A smart sensing
approach is desired for those examples of wing structures that rely on
novel types of sensors for providing feedback to an intelligent con-
troller.

A solution that can significantly reduce the complexity associated
with hardware installation and provide the flexibility needed for
employing novel state estimation techniques is aeroelastic state
estimation by visual methods. A schematic of aeroelastic state esti-
mation using vision (consisting of an intelligent controller, the air-
craft model, and the visual model) is illustrated in Fig. 1. This study
aims to contribute to the aeroelastic state estimation block, such that
the control loop can be closed with the dotted line.

The use of visual information for observing deformations has been
successfully implemented on wind tunnel models in early studies [1],
and has also seen widespread application in robot manipulation [2].
However, in recent years, the capability in terms of onboard compu-
tation and camera quality has immensely increased, whereas the
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Fig. 1 State estimation setup using visual tracking.

hardware has become more compact [3,4]. These developments open
the door for numerous embedded applications using a camera as a
sensor for aircraft systems.

Various vision applications for areal systems have been investi-
gated for areal imagery in recent studies [5—7]. Vision-based infor-
mation can also be used for aerial navigation [8] and flight control
tasks, such as aerial refueling [9], landing [10], and estimation of
rigid-body aircraft states, such as altitude [11]. However, within the
scope of flexible and morphing aircraft systems (as these systems are
more prone to exhibiting higher responses to aerodynamic loads),
the challenge lies in estimating the impact of the flexibility on the
dynamics of the system, which cannot always be accounted for in the
early design stage. The study by Weisshaar [12] highlights the ability
to monitor and communicate structural state information as one of the
key aspects of the smart morphing structures development. Vision-
based feedback systems can play a crucial role in this task as one
camera system can observe multiple nodes of the system’s flexible
states in a sequence of images [13]. In particular, fuselage-mounted
camera systems can provide significant advantages for flexible air-
craft systems, save costs associated with installation and certification,
and have the potential of being noninvasive and universally appli-
cable. Vision-based information has been shown to be suitable for
direct real-time feedback of flexible states of an aircraft [14,15].

Image data are also a rich source of information: data collected
over an extended period of time unlocks the opportunity to approach
the state estimation from a new perspective using machine learning
methods. One of the key challenges is the need for robust, unsuper-
vised, and computationally efficient clustering methods. Several
studies investigated the performance of clustering methods by using
improved [16,17] and parallel DBSCAN methods [18]. However, a
gap remains for a streamlined approach to unsupervised clustering
with robustness against noise. In particular, although many suitable
tracking methods exist for marker detection, correctly labeling the
initial markers in the visual frame is still not a trivial task [19].

In this study, two machine learning methods were implemented
for unsupervised clustering of marker labels, meaning that they do
not require the number of clusters and initial guesses as input.
The sequence of images is filtered with two image segmentation
approaches to obtain a mask for clustering operations. A comparison
was made between the two machine learning methods, DBSCAN
[20] and disjoint-set data structure [21], and a segmentation-cluster-
ing pipeline was developed based on hue-saturation-value (HSV)
[22] and adaptive thresholding with Otsu’s method [23].

A novel approach to DBSCAN (the inverse DBSCAN, DBSCAN~!)
was introduced and implemented in the study. In this approach, the
clustering problem is reformulated into a noise filtering problem, and
an additional parameter, MaxPts, is introduced into the formulation.
The crux of DBSCAN™! lies in isolating the group of desired clusters
and classifying them as noise, i.e., points surrounded by foo many
other points (filtered by max MaxPts condition). Subsequently, the
desired clusters of points are rejected as noise, whereas the true noise
in the data is identified explicitly and removed from the dataset in a
follow-up step.

For the purpose of investigating the robustness of the method, the
input images were subjected to Gaussian noise, and both the nominal
DBSCAN as well as DBSCAN~! were assessed in performance with

33 Wing oscillations

3y

/ __— Markers
g ¥

Fig. 2 Experimental setup with the wing facing the wind tunnel,
equipped with visual markers.

less noise filtering. An image tracking pipeline was developed to test
this clustering method on an image sequence. It was observed that the
proposed method is capable of real-time tracking and achieving
speeds of 250+ frames per second (FPS), measured on an image
sequence of a single camera with a resolution of 1088 x 600 pixelsin
a laboratory environment on a standard Dell Optiplex 7400 and a
2.3 GHz Intel Core i5 16G MacBook. Hence, the method is suitable
for online control applications.

The approach was tested on an image sequence of a flexible wing
equipped with light-emitting diode (LED) markers, undergoing
oscillatory motion under gust excitation in the Open Jet Facility
(OJF) wind tunnel of the Delft University of Technology. Further-
more, the effect of the frequency content was studied to investigate a
potential implementation in the pipeline for adjusting the segmenta-
tion and clustering parameters. A schematic of the experimental setup
is shown in Fig. 2; in this experiment, the same gust generator was
used as the one developed for OJF in a previous study [24].

This paper is structured as follows. The methodology is presented
in Sec. II, where Sec. IL.B deals with the segmentation and filtering
approach. Two clustering methods, DBSCAN and disjoint-set data
structure, are discussed in Sec. II.C, with a detailed description of the
novel formulation of the DBSCAN, DBSCAN™!, in Sec. IL.D. The
experimental setup and the data acquisition process are explained in
Sec. I, with Secs. III.A-IIL.C covering the setup, hardware, and
experimental conditions. Furthermore, Sec. III.D expands on how the
validation dataset was created by the automatic labeling tool specifi-
cally designed for this study, and Sec. IILE covers the performance
test developed for a comparative assessment of the two earlier
presented clustering methods. The results of the clustering methods
and the full tracking pipeline deployed on the experimental data are
discussed in Sec. IV. Finally, the conclusions and recommendations
are presented in Sec. V.

II. Methodology

The method proposed in this study describes a computer vision and
machine learning approach composed of a robust segmentation-
clustering pipeline that is capable of automatically detecting and
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extracting marker locations and dealing with temporary marker loss.
An image filtering pipeline (segmentation) is implemented consist-
ing of HSV filter and the Otsu’s automatic thresholding method [23].
Two machine learning routines are then evaluated: (clustering)
DBSCAN [20] and disjoint-set data structure [21]. The segmentation
pipeline is used to extract the point data of the markers and the
clustering is used to correctly label the cluster centroids. The
approach was tested on an image sequence of a flexible wing under-
going motion, equipped with active LED markers.

A. Overview of the Full Tracking Pipeline

A high-level overview of the full tracking pipeline developed
for this study is shown in Fig. 3. The segmentation block refers
to the segmentation and HSV filtering processes, addressed in
Sec. ILB. The red block is the clustering algorithm (DBSCAN/
DBSCAN~!/disjoint) implemented in this study as detailed in
Secs. IL.C and IL.D. The green blocks represent an independent
tracking filter and Kalman filter duos (KCF-EKF) that run in parallel
to keep track of the markers through a sequence of images. The output
is the displacement of the marker in (x, y) pixel coordinates of the
frame. The cyan block is an additional sorting step needed for
consistent tracking of the markers, explained in Sec. ILE. The algo-
rithms presented in this study are mainly concerned with the dotted
part as shown in the schematics in Fig. 3 and aim to highlight the
methodology needed to arrive at the inverse DBSCAN (DBSCAN)
algorithm, the main contribution of this study.

B. Segmentation

Segmentation approaches are generally focused on finding a filter
or a sequence of filters f(I(x,y)) in order to shape an input image
I(x,y) to the desired output G,(x, y) by altering the pixel intensity
values:

Gf(X,y):f(I(X,y)) [(X,y) - 7 f

Gy(x,y)

For a sequence of images, the process is a function of the number of
frames and thus, implicitly, time [25]. When the desired segments of
the image contain color information, a commonly applied technique

This study

1
1
1
! Input image
1
1
1
1

is color filtering in the HSV space. The main benefit of processing in
this color space is that the image intensity and color can be distinctly
separated. The method also has wide use in video sequence process-
ing and image extraction [22,26].

1. HSV Filter

To separate the background from the markers, an HSV filtering
pipeline composed of multiple filters is used. First, the image is
segmented based on the color temperature of distinct LED markers,
based on distinct values of hue, saturation, and value. The filter is
tuned to find the near-optimal HSV values to minimize the noise in
the image. In Fig. 4, the result is shown of such an operation.

The figures, from left to right, show how the original image is
filtered based on its HSV values, obtaining a binary black-and-white
(BW) color-filtered image. Then, default thresholding is applied to
remove the scattered noise from the light diffusion from LEDs and the
remaining background. The result is a BW image, a binary mask with
distinct LEDs. Hereafter, contours of the shapes contained in the
binary mask are extracted and the clustering can be applied to identify
individual markers. The contours extraction filter is based on the
Topological Structural Analysis algorithm of binary images and
shapes [27], where a border-following technique is applied with the
aid of topological analysis of the contours of a border shape.

In Fig. 4, the HSV operation is shown when the images are tracked
in low lighting conditions. When lighting conditions change, HSV
filtering operation may produce a noisy mask, meaning that aside
from a distinct mask with LEDs, additional scattered background
pixels are present in the HSV (middle) image. Because this image is
close to bimodal by nature, it was investigated how the bimodal
Otsu’s thresholding can improve the segmentation with an additional
HSV filtering step based on the image histogram. In Fig. 5, a
simplified schematic is shown of the HSV segmentation and cluster-
ing pipeline.

2. Morphological Operations

The HSV filter alone may produce a noisy speckle masked image.
A typical way to deal with this is by means of morphological image
transformations [28]. Morphological operations are, in general, use-
ful, not only for removal of global noise (e.g., Gaussian noise),
but also for isolating and joining separate individual elements.

1
Segmentaion | ‘ N
KCF-EKF

Fig.4 Single HSV filtering operation: original (left), HSV (center), and black-and-white (BW) threshold (right) image.
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Fig. 5 Schematic of HSV filtering and thresholding resulting in BW image needed for the subsequent clustering process.

A commonly used cascaded operation is erode, followed by dilate,
where the former erodes away pixels and pixel groups captured by a
certain kernel size, and the latter dilates and enlarges bright pixel
groups. Both of these image transformations perform, in essence, a
convolution operation of image I(x, y) with kernel B(x’,y’). Erode
operator performs a local min operation with a kernel of desired size
(e.g., 3 X 3), anchored at the center. As the kernel slides over the
image, the pixel value under the anchor point is replaced by the min
value of the region covered by the kernel B(x’, y’). Dilate operator
works according to the same principle, but performs a local max
operation. The operations can be summarized as follows:

Seroae (I (x,)) = (x'I;’l).gB Ix+x"y+y)) (D
. ker

Saitae(I(x,y)) = (x,fpfg(B Ix+x",y+y) (2)
) ker

and combined operation:

fmorph (I(X, y)) = fdilate(ferode(l(xv y))) (3)

For an appropriate kernel size, this will remove away noisy speckles
surrounding and scattered around thresholded shapes. In this study
the kernel size was set to 2 X 2 pixels. The relevance and effect of
morphological operations will be further discussed in Sec. IV.

3. Thresholding

The thresholding strategy in image processing is essential for
obtaining a good mask for DBSCAN clustering. Variations of light
and motion activity of the object make the task of obtaining good
thresholding for live images challenging [29]. A robust approach has to
anticipate the variations in the pixel intensities to produce the best
possible mask. Several methods are possible; in this study, three
approaches are investigated: global unit normalization, baseline nor-
malization, and adaptive global thresholding using Otsu’s method [23].

a. Global Normalization Thresholding. The global normalization can
be applied by converting the three-channel RGB input image to
grayscale. Subsequently, the image can be scaled with the maximum
value of the grayscale, depending on how the grayscale is repre-
sented: (0, 1) or (0, 255). Then, a single threshold can be applied to
obtain a binary mask G(x, y). For an input image I(x, y), this process
can be represented as

G(x.y) = from(I(x,¥)) )
_ 1v I(xvy)norm 2Th
Gl = { 0. 15, Yoo <7 ®

where the I(x, ¥),om can be computed using a simple scaling, or
mean y; and standard deviation o; of the image:

I(x,y) —
](X, y)norm = %I”I (6)

The downside of this approach is that it does not take into account the
variations in pixel intensities throughout the image sequence that
may have been influenced by changing light conditions and/or move-
ment of the object being tracked. The threshold parameter 7y, is, in
this case, obtained and tailored for a single static image. The quality
of the thresholding then depends on the carefully chosen threshold
parameter and predictability of the light variations. When applied
correctly to a continuous image sequence, in this particular applica-
tion, an arbitrary thresholding routine should be able to segment the

foreground as moving object (high intensity) and detect background
as static (low intensity).

b. Baseline Thresholding. In this approach, the baseline pixel inten-
sities are taken into account of the kth image. The first image is a good
basis to obtain a suitable threshold parameter such that variations are
taken into account from these baseline values. This process can be
represented in a way similar to Eq. (§), but now the normalization of the
kth sequential image (inrange i = 1,2, ..., N) is done according to

I Y)izk =, 1
I(x, y)normlzk = ;[ = 16, Y) 10
i=k ’ 1=

)

The downside of this approach is that the sensitivity to the threshold
parameter increases, and the intensities lie closer together. However, an
offset is maintained concerning the baseline in each image sequence.

¢. Adaptive Otsu Thresholding. Otsu’s method is an automatic global
thresholding method that tries to categorize an image in two classes,
background and foreground pixels [23,30,31]. The method is well
suited for images that have a bimodal gray pixel intensity histogram;
in this case, the histogram will show two distinct peaks and sharp
separation between them, where one peak is assumed to correspond
to the bins of the background and the other to the foreground. The
threshold value is chosen such that the interclass variance is mini-
mized, which would suggest placing the threshold value in the middle
of the peaks. The minimization procedure for finding a threshold
value of 7,;, can be represented as

o5 (t) = W (7)) 07 (7n) + Wa(7)03 (2 (®)

where the parameters w,, w, and 63, 63 correspond to the probability
and the variance of the two classes and can be computed from the
histograms [23].

The limitation of this method is the bimodality assumption, which
may not hold for each image and its grayscale image pair [32]. When
the object is considerably smaller than the surrounding background,
the histogram may not show clear distinctions. Additionally, noise
may affect the histogram representation. Variations of Otsu’s algo-
rithm exist that are capable of dealing with noisy images [30];
however, in this regard HSV filtering is responsible for filtering out
most of the image noise, making the thresholding less complicated.

C. Clustering Approach

To tackle the problem of correctly detecting and clustering the
markers, a machine learning approach is used. This study implements
and compares two machine learning methods for clustering,
DBSCAN [20] and the disjoint-set data structure [21]. These algo-
rithms were particularly suitable due to their unsupervised nature,
namely, 1) minimum needed domain knowledge, 2) ability to find
clusters of varying size, and 3) ability to deal with noise (in case of
DBSCAN). DBSCAN differs from the disjoint-set data structure by
its ability to deal with noise in the dataset and achieves the goal at a
significantly lower computational cost (O(n log(rn))). The two unsu-
pervised clustering algorithms are implemented in the marker recog-
nition pipeline and are evaluated for performance in terms of speed
and robustness.

In this study, it was crucial to apply a robust unsupervised cluster-
ing method such that an arbitrary number of markers could be
accounted for automatically. The robustness assessment was imple-
mented in the experimental conditions, where, due to failure of the
LEDs (going on and off), the number of markers (and thus cluster
centers) varied over time and across experimental runs from a nomi-
nal (complete) marker set. Within a single experimental run, the
failure was mainly of periodic nature and manifested itself due to
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Fig. 6 The necessity of unsupervised clustering: incomplete (right, middle) versus full (left) set of markers.

high gust loads and wing oscillations. The clustering assessment of
an incomplete and complete set of markers is illustrated in Fig. 6.
Here, the red dots are contours of point groups found in the clustering
mask, and the blue dots are their respective centroids. The image on
the right shows the result of clustering.

1. DBSCAN

The main principle of DBSCAN is to identify and separate regions
of high-density from low-density regions. At any given point p,
density is measured within a circular radius €. A dense region of
radius e from point p is a region that contains at least a MinPts
number of points; MinPts and e are the main parameters of the
algorithm. Given a database D, the e neighborhood N, of point p
w.r.t. point ¢ has the following form [20]:

Nc(p) = {q € D|dist(p, q) < ¢} )

This definition alone, when used naively, will fail to distinguish core
points (points inside the cluster), border points (points at the border of
acluster), and noise (a point not belonging to any cluster). The reason
is that, generally, the € neighborhood of border points has much fewer
points than the e neighborhood of a core point. The problem arises
when the MinPts parameter is set to a low value to include the border
points, which can cause noise to be included in the cluster as well. To
overcome this DBSCAN introduces the concept of density reach-
ability. A point is said to be directly density reachable when the
following two conditions hold:

p €N:(9) (10
|N.(p)| > MinPts (core point condition) (11)

These conditions, thus, set a requirement for every point p in a cluster
to be in the € neighborhood of another point g in this cluster. Addi-
tionally, the € neighborhood of ¢, N.(g), must have a minimum of
MinPts, classifying it as a core point. The method further introduces
connectivity conditions for connecting N, of points and defines noise
as a point not belonging to any cluster in dataset D under the given
conditions (density-reachability and connectivity) [20]. The basis of
the clustering approach and the definitions are illustrated in Fig. 7. As
shown, point p can be reachable from point ¢ by density-reachability
or connectivity.

Core

Border<

MinPts =4,€ =&
DBSCAN clustering

Noise

Border

Density-connected by o

2. Disjoint-Set Data Structure

Disjoint-set data structure operates by organizing a set of elements
into a distinct number of disjoint sets, also referred to as equivalence
classes [21]. For a given data set D, obtained as aresult of filtering and
contour operations, equivalence classes are defined that are non-
overlapping. Subsets A and B are considered a disjoint-set when
the overlap U between them belongs to an empty set @&:

ANB=g (12)

The algorithm assigns all points of the dataset to an equivalence class,
hence no inherent mechanism is built-in to cope with noise, and a
noise particle may belong to a dedicated subset C. Consequently, and
as will become more evident in the following sections, a good filter-
ing approach is needed with this method to remove the noise.

To make the method comparable to DBSCAN, the threshold for
the disjoint sets can be defined with a distance metric, radius y, similar
to e. A setof points {p, ¢, . . . }; belongs to a disjoint-set A, when they
are packed within radius tolerance y, resulting in the following
conditions:

A={p,q, ...} (13)

dim([’? q)euclid < 14 (14)

Here, the latter condition is defined as the Euclidean norm of points p

and ¢:
diSt(p? q)euclid = V (p(x,y) - C](Xv y))Z (15)

An illustration of the presented definitions is provided in Fig. 8. In
Fig. 6¢, a comparison is shown of the clustering operations for
DBSCAN scan (purple) and disjoint-set data structure (yellow).

D. Inverse DBSCAN: DBSCAN™!, a Novel Clustering Approach for
Sparse Datasets

Although DBSCAN allows explicit definition for noise in the data
(points not meeting the core points condition), the success in rejecting
the noise is closely tied to the correct selection of parameters and the
quality of the thresholded input image. The clustering becomes
harder when high-density noise is introduced into the data. Noise
can have various sources, e.g., interference in hardware signal, poor
illumination, or, simply, poor prefiltering and thresholding of the
input image. There are also conditions where prefiltering, such as the

.

. ® .
° .

. .

o o °
° .
. ° o o.'o
® .

pP<q pP<<q

Directly density-reachable

Fig. 7 Illustration of the DBSCAN clustering method.
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Fig.8 Venn diagram and illustration of disjoint-set clustering method.

morphological operations, are not possible or have adverse effects
(further elaboration follows in Sec. IV). In particular for sparse
datasets, under such conditions, DBSCAN is known to fail to identify
the desired clusters [33]. This shortcoming arises from the fact that
for a high density of scattered noise, noise particles are more likely to
meet the core point criteria for a given DBSCAN parameter set.

To remedy this problem, a novel formulation of DBSCAN is
proposed, the inverse DBSCAN, denoted by DBSCAN™. In this
new model, a different perspective on the clustering problem is
needed: instead of trying to reject the noise, it is proposed to actively
look for noise. Hence, DBSCAN! tries to explicitly detect noise, and
clustering becomes an implicit task. The proposed approach would
be to use this formulation of DBSCAN as a noise removal filter, then
apply nominal DBSCAN again on the clean image domain. To enable
this approach, redefinition of DBSCAN is needed. For a given data-
base D, the e neighborhood of noise particles p, and g, is defined as

Z.(p,) = {q, € D|dist(p,, q,) < €} (16)

DBSCAN in its original form was intended for obtaining clusters for
large datasets and relatively low noise, and hence no limitation is set
on the maximum number of clusters. In the definition of DBSCAN~!
an additional parameter, denoted by MaxPts, is introduced, which
sets a cap on the allowable number of points in the e neighborhood of
noise p,,, denoted by Z,. The noise particle is directly reachable from
another cluster of noise particle(s) when the following holds:

Pn € Zc(qn) (17)

MaxPts > |Z.(p,)| = MinPts (corenoise particle condition)
(18)

Three conditions must be placed on the DBSCAN!: 1) MinPts must
be setto 1 to capture individual noise particles; 2) e must be at least the
standard deviation of the noise density, 6, (c,, and 6, ) in the spatial
domain in terms of (x, y) coordinates for zero mean distribution; and
3) MaxPts must count less points than e neighborhood of desired
cluster points, N.(g), a condition that is directly related to the
standard deviation, o¢jyger (04, and oy, ) of (x,y) coordinates
of a dense cluster, and can be chosen based on a priori analysis of the
input dataset. These conditions dictate that point noise particle p,
does not belong to the € neighborhood of true clusters N, but to Z,.:

MinPts = 1

pil E Z€
and MaxPts < (ﬂxclus[er + o-,Vclusler)
Pn ¢ Ne
€2 /o, +o,)
density reachability parameter constraints

A necessary condition for this is that, if a probability distribution of
points is defined on the 2D image plane in dataset D as P(x, y) = [[;,,
the density distribution of the desired particles, P(x, y) juster» 1S higher
than the density distribution of the noise, P, (x, y); otherwise the true
clusters will dissolve in the noise:

P(X, y)n < P(x’ y)clusler (19)

If the above condition is not met, the clustering will fail for the given
condition of dataset D. What this clustering model will do, in essence,
is detect the group of desired clusters as points surrounded by oo
many other points (filtered by the max MaxPts conditions) and reject
them as noise. The actual noise particles will meet the core noise
particle condition of DBSCAN™! as they lack a distinctive concen-
trated distribution.

A visual representation of this process and the relevance of the
DBSCAN-! (in particular in the absence of morphological opera-
tions) can be found in Sec. IV.

E. Radial Sorting

Obtaining the cluster center locations in the frame after the cluster-
ing routine provides only a static map of the markers, without a spatial
orientation with respect to the underlying geometry. To obtain a
geometrical representation behind the detected clusters, a radial
sorting algorithm is proposed in the processing routine. This algo-
rithm represents the cyan block in Fig. 3. The algorithm is initiated by
finding the centroid ¢, of the cluster centers (a cloud of points)
P(x,y), then obtaining a radially sorted distribution, a so-called
convex radial hull, Py, of n indices, such that the outline of the
hull has a continuous connectivity.

First, the algorithm takes as input an arbitrarily indexed cloud of
cluster centers, P(x,y) € R¥". The centroid of P, Cep(x, ) is calcu-
lated to obtain the vector pointing toward the centroid. If the inputis a
continuous shape, the centroid is sampled at the contours of the area;
otherwise for a collection of n points,

1 n
C. — — . and 20
Cop =~ ; pi an (20)

d,=P-¢, @1

Next, the angle defined by the direction of each vector is calculated
and the resulting vector of angles is radially sorted around ¢, in the
given orientation to obtain the convex radial hull Py,

0., = arctan2(d,,), where foreach point (22)

cp

arctan 2(p); = arctan 2 (&) (23)

X

where p, and p, indicate the pixel locations in x and y, respectively.
Then the sorted index of angles is obtained from sort(f,), and the
convex radial hull is obtained from sampling by this sorted index:

Pf)hull = SOI't(P, Sort(acp)) (24)

This is required to draw the outline of points in a continuously
connected area. The process of radial hull sorting is shown in Fig. 9.

Radial outline

Centroid c,

Cluster centers

Fig. 9 Radial sorting algorithm process. The cluster centers are green
dots, and the convex radial hull is the red outline.
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Fig. 10 Schematic of the stereo camera setup and the coordinate systems for 3D reconstruction.

Fig. 11 The Open Jet Facility, showing the gust generator mounted in front of the test section.

Algorithms such as Jarvis march [34] also use a form of radial
sorting to wrap a cloud of points in a convex hull. The main difference
with the Jarvis march is that the radial sorting algorithm is intended
for obtaining a continuous geometry by sorting all cluster centers
through a continuously connected outline. With a convex hull, some
cluster centers may fall inside the region of the convex hull and hence
be excluded from the outline. The other difference is that Jarvis march
is done at a complexity of O(nh) (n points and & hull corners),
whereas in the proposed approach the sorting can be done in one
pass at O(n) complexity.

F. Reconstruction

The reconstruction is the final step that relates the displacements of
corresponding markers in two frames and reconstructs the 3D dis-
placement. The reconstruction process can be inferred from the
schematic of the camera setup shown in Fig. 10. Further details
regarding the 3D reconstruction can be found in a previous study
by Mkhoyan et al. [15,35].

III. Experimental Setup and Data Collection

The experimental data were collected from camera observations of
a flexible wing undergoing gust excitations equipped with active
LED markers. This experiment was performed within the scope of a
larger study on smart sensing methods for control of flexible aircraft.

A. Apparatus

The experiment was conducted in the OJF at the Delft University
of Technology [36]. The OJF, as shown in Fig. 11, is a closed-circuit
low-speed wind tunnel, driven by a 500 KW electric engine, with an
octagonal test section of 285 X 285 c¢m?. The maximum flow veloc-
ity available in the wind tunnel is 35 m/s; however, the theoretical
performance limit is around 30 m/s.

A gust generator composed of two servo-controlled foam wings
was installed in the test section to facilitate various dynamic motion

conditions during the test. This particular gust generator allows gust
vane deflections of |a,| < 15°, or 10°, depending on the actuation
frequency (5—7 Hz or 10-15 Hz), and can produce harmonic signal,
as well as sweep signals of varying frequencies.

A Polytec Scanning Vibrometers (PSV)-500 laser vibrometer
system [37] with a resolution (RMS)¥ of 200 ym/s was used to
measure the dynamic response of the wing to the aerodynamic loads
introduced by the gust onsets. The PSV system was configured to
measure 8 (active) markers, as shown in Fig. 13a, from a total of 16
LED markers placed on the wing. The numbering of the marker IDs
in the image tracking algorithm is indicated with curly braces and the
laser tracking system in square brackets. Because the laser allowed
for measurement of only a single point for each run, each run would
be repeated eight times to reconstruct the displacement field of the
wing. The system was configured for a sampling rate of 400 Hz.

As shown in Fig. 11 and, schematically, in Fig. 2, a pair of cameras
were used to observe the motion of the wing. These cameras are
referred to as leading-edge camera (Cam 1) and trailing-edge camera
(Cam 2), respectively.

B. Wing Model and Motion Conditions

The wing used in the experiment, referred to as the Allegra wing, is
a forward-swept tapered wing built of glass-fibre-reinforced plastic.
The design of the wing allows for large tip displacements, up to 20%
for 10° of angle of attack and 50 m/s flow velocity [38]. The wing
was clamped on one side on a sturdy table under a fixed angle of
attack of 4°. Detailed information about the wing can be found in
Appendix A.

The wing was equipped with 16 LED markers. Each LED marker
consisted of three sub-LED units, providing three distinct bright light

$Noise-limited resolution is defined here as the signal amplitude root mean
square (RMS), measured on areflective tape, at which the signal-to-noise ratio
is 0 dB with 1 Hz spectral resolution.
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Table1 Flow and motion conditions for runs R1, R2 (discrete gusts),
and R3 (sweep)

Frequency  Vaneangle Flow velocity

Run ID [Hz] [°] [m/s] Nimages N gusts
R1 5 10 30 469 3
R2 5 5 30 469 3
R3 0.1-10 5 30 574 —_—

sources per marker. In the experiment, a 1-cos gust signal and a
frequency sweep signal were used.

The data were collected for three experimental conditions or runs
denoted R1, R2, and R3, as listed in Table 1. The experimental
variables are the flow velocity in the wind tunnel, V;, the gust vane
frequency f,, and gust vane angle a,.

For all runs, the images were first recorded in dark conditions
(night visibility), meaning that the lighting conditions were low for
good visibility of the LEDs. Additionally, bright images (daylight
visibility) were collected to study the effect of HSV filtering in high
visibility conditions.

The gust generator parameters were selected such that the disturb-
ance produced a high dynamic response from the wing, to ensure
sufficient pixel activity in the image. The gust vane frequency of 5 Hz
was close to the wing’s natural frequency at the given mass configu-
ration. Runs R1 and R2 each contained three consecutive gust inputs;
run R3 did not have a discrete gust, but a sweep signal. The purpose of
R2 run was to act as a control against the results of R1, whereas R3
was designed to show marker loss (LEDs on/off) under high dynamic
activity.

C. Dataset Collection
1.  Measured Wing Response

The time history signals in Fig. 12 correspond to the measurements
taken at the location of marker ID 1; Figure 12a shows the response of
the wing to a single gust input; Fig. 12b shows the response to a sweep
signal. The labeling of the marker IDs for the vibrometer measure-
ment system can be found in Fig. 13a. The blue curves in Fig. 12
correspond to the measurements taken by the laser vibrometer
sampled at 400 Hz; the red curves are spline models of this response
sampled at the capture intervals by the leading-edge camera. The
spline model is required to obtain synchronized measurement points
between the laser vibrometer data and the image sequences for
comparison. The camera images were collected at approximately
40 Hz, with the Nyquist frequency well above the expected resonance
frequency of the wing of ~5 Hz.
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—— 40Hz (img samples)

0.03 |- ‘
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é 0.01 - } ‘ \l
é ’ ‘ | (\
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|
o |
|
?

Time [s]
a) Gust signal (1-cos): ag= 10°,fg =5Hz,V=30m/s

2. Hardware Setup

An overview of the data acquisition hardware is shown in
Fig. 13b. The dataset was recorded with two GigE acA1300-75gc
Ethernet Basler cameras with 1300 CMOS 1.3 megapixel (1280 X
1024 pixels) sensor [39]. The cameras were equipped with Computar
12mm F1.42/3’" PIRIS lenses [40] and were positioned in a stereo
setup to observe the markers from two viewpoints. The resulting
image was cropped to 1088 x 600 pixels and streamed in three-
channel RGB format synchronously via real-time precision time
protocol (PTP) triggering protocol over the Ethernet. A power over
ethernet (PoE) smart switch GS110TP from NETGEAR provided
both the power, 3.5 W (per camera unit), as well as the GigE
capability to stream the images up to 140 FPS.

The processing power and image capture during the experiment
were delivered by an embedded computing system from NVIDIA,
the Jetson TX2, equipped with NVIDIA Pascal architecture with
256 NVIDIA CUDA cores and 1.3 TFLOPS (FP16), dual-core
Denver 2 64-bit CPU and quad-core ARM AS57 complex [41].
The Jetson TX2 is designed for embedded applications using Arti-
ficial Intelligence (AI) and Computer Vision (CV) and operates
on Ubuntu 16.04 LTS, allowing flexibility in code deployment.
The application developed for this study was programmed in C++
and deployed on the device. For the development the algorithms
Basler C++ Pylon API [39] and the OpenCV open-source computer
vision library [42] were implemented. To perform image segmen-
tation, image capturing, and compression, GPU hardware acceler-
ation [43] was used with Jetson TX2 dedicated GStreamer
pipelines [44].

Code development, algorithm testing, and assessment were done
using CPU processing, with a standard Dell Optiplex 7400, a2.3 GHz
Intel Core i5 16G MacBook and the Jetson TX2. The image and
tracking data were extracted and plotted using the OpenCV-MAT-
LAB parsing interface tmkhoyan/cvyamlParser [45]. The code,
dataset, and tools developed are available under tmkhoyan/adaptive-
ClusteringTracker [46].

D. Validation Dataset

An automatic labeling tool was developed and implemented to
create a reference dataset of the image sequence R1 from Table 1, in
order to perform a comparative assessment of the two clustering
methods, DBSCAN and disjoint-set data structure.

The tool allows automatic tracking and labeling of the pixelwise
(x, ¥) location of the markers through a sequence of dynamic images,
given an initial hand-labeled marker set in the first image. The
capability to track a sequence of images classifies it as a tracking
routine. However, each consequent frame is visually checked before

01
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Fig. 12 Laser vibrometer measurement (blue line), of the tip displacement of marker ID 1, sampled at capture intervals of Cam 1 at ~40 Hz (red line);

runs with discrete gust (left) and sweep signal (right).
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Fig.13 The experimental setup showing the active markers measured by the Polytec measurement system (in green) and the Jetson TX2 hardware setup.

the labeled data are saved in order to ensure the validity of the
reference dataset. The processing strategy of the tool can be summa-
rized in the following way:

1) Manually select initial marker locations of the first image in the
sequence. The marker locations are defined as a (x, y) pixel location
of the center LED of each three-LED marker cluster.

2) A submatrix is defined as a bounding square box enclosing the
three-LED cluster, at the (x, y) location of the center LED, with a
width of 40 pixels.

3) The submatrices corresponding to the number of markers (14 in
total for the R1 image sequence) serve as an input to the automatic
detection of the markers in the next image frame.

4) A detector is implemented to process each submatrix, defined at
the location of the submatrix from the previous image with an
uncertainty factor of 1.2 in width and height (i.e., the bounding square
is factor 1.2 larger than the initial submatrix).

5) Each automatic detection is visually approved before moving to
the next frame and saving the data. The uncertainty margin (1.2 factor
in width and height) is implemented such that the new, shifted marker
location can be found with respect to the previous image, and enough
margin is kept to account for the motion. This process is depicted
in Fig. 14.

The tool enables the implementation of a custom detector for
detection of the circular LED markers. In the current study, a
contour filter, often referred to as a blob detector, was used based
on the Topological Structural Analysis algorithm of binary images
and shapes [27]. Before the detection, the submatrix thresholding
is applied using Otsu’s adaptive thresholding method, such that
a binary mask of the marker outline is obtained. This tool was
developed in C++ programming language using the OpenCV
open-source computer vision library [42], and made available under
the BSD-3 license [47].

Previous marker location
Auto-detected sequence

Mouse cursor
(manual selection)

Zoom centroid

Fig. 14 The labeling process with the automatic labeling tool.

E. Clustering Performance Test

To compare DBSCAN to the disjoint-set data structure, a perfor-
mance test was designed. In this test a grid, /(x, y) g of 10,000 X
10,000 pixels was used, and clusters of particles were generated
randomly to perform the clustering. For each run, the grid was
initialized with a varying number of cluster centers, m; (e.g., 10,
50, 100), with a uniform distribution. The grid size is used as the
minimum and maximum bounds of this distribution, with a 0.9 shrink
factor to keep 10% free at the borders. The cluster center distribution
is defined as follows:

Xmin = 0.1
Pcemre € I(X’y)gridv and { ymlAn 0

Around these m; cluster centers, a fixed number of n; = 50 scatter
points was sampled with a normal distribution with the following
properties in both x and y locations:

Hecluster = Hcluster, = Hcluster, = 0
Pl £ Gl(x,y)‘-d and ) e B
cluster gner Ocluster — Ocluster, — Ocluster, — himg/loo

(26)

Here, the sampled normal distribution, P, is the offset from a
cluster center (x, y) pixel coordinate; yjysier AN Ogjygier are the mean
and standard deviation of the distribution. The resulting scatter model
is a cloud of points, with the majority falling inside a radius of 6jyger
(defined as a factor of image width, hjy,) from the cluster center.
Figure 15 shows a randomly sampled dataset with m; = 10 number
of cluster centers and cluster size of n; = 50. To assess the clustering
methods on their ability to cope with noise, for each run, uniformly
distributed noise was generated on top of the existing points. These
scattered noise points, #;,.isc, Were proportional to the number of
cluster centers with a factor 5 (i.e., njppie = M; X 5).

The performance test was used to generate the performance data-
set; the code was developed in C++ programming language using the
OpenCYV open-source computer vision library [42], and made avail-
able under the MIT license [48].

F. Noise Model

A common noise model was used for evaluating the real-life
performance of the clustering methods. The input images were
injected with an image-independent Gaussian noise, and the robust-
ness of the color filtering, thresholding, and clustering pipeline was
investigated against possible sensor noise, transmission, and hard-
ware-related issues and poor illumination. Subsequently, the tracking
quality of the pipeline was assessed on image sequences from
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Normal distribution

Center

Cluster centers

Fig. 15 Randomly sampled scatter data for 10 cluster centers and a
cluster size of 50.

R1 and R3, whereas R2 was used as a reference. The probability
density function of the Gaussian noise model is as follows:

1
I(Z) — e(z—”)z/zaz (27)
o /5

In this model, z represents the grayscale value. The parameters used
for the noise model are a mean of y = 0 and a standard deviation of
o = 0.5. The gray values produced from the probability distribution
are scaled to RGB range 0-255 and injected in the three channels of
the input image /(x, y), producing a new additive noise input image
J(x,y). The random seed is initialized with the CPU clock (time ¢) for
each image input, /(x, ), resulting in a dynamic noisy image input
sequence, I(X, Y)poise, » at €ach kth frame:

I()C, y)noise‘ = I(x7 y)k + N()C, Y, l) (28)

Here, N(x, y, t) is the random seed initialized noise mask.

IV. Results and Discussion

The experimental data were processed with two clustering pipe-
lines implementing DBSCAN and disjoint-set data structure cluster-
ing methods. Here, a distinction must be made between the randomly
generated performance dataset generated with the performance test
discussed in Sec. IILE and the experimental dataset, as provided in
Table 1.

The performance test was done with the purpose of extracting the
isolated clusters of points from scattered data. Here, the novel imple-
mentation of DBSCAN was used, with the additional MaxPts param-
eter set to 100, MinPts to 20, and € to 180 pix. The € parameter was
chosen to have a value approximately twice as large as the standard
deviation of the cluster population, 6., in order to capture the
majority of the randomly generated cluster points scattered around
the cluster centers. For the disjoint-set data structure, the distance
parameter y was chosen to be equal to €.

Furthermore, the tracking result with the full clustering pipeline on
the runs R1 and R3 were performed on a sequence of %469 images
from Cam 1 (leading edge). R2 was used as the control for R1 and
showed a similar result. R3 was mainly used to assess the ability of
the tracking pipeline to deal with marker loss. In the nominal runs,
€ = 20 pix and the reachability parameter MinPts = 2 were used.
This set of parameters provided the best cluster detection considering
preceding segmentation filters. Here, as in the previous case, the
distance parameter y for the disjoint-set data structure was chosen
equal to € of the DBSCAN.

Speeds of 250+ FPS were measured for the DBSCAN implemen-
tation, on an image sequence of a single camera with a resolution of
1088 x 600 pixels using a standard Dell Optiplex 7400, a 2.3 GHz
Intel Core i5 16G MacBook, and the Jetson TX2. The outcomes of
both methods were compared with the reference data collected by the
automatic labeling tool that was developed explicitly for this purpose,
as addressed in Sec. ILD.

A. Performance Test of DBSCAN and Disjoint-Set Data Structure
Clustering Methods

The performance test was executed with cluster center sizes
m; = 5,10, 50, 100, 200, 500 and cluster population sizes of n; =
50, 50, 50, 50, 50, 50. For cluster center sizes m; < 100, the uniform
distribution of the cluster centers was balanced to ensure a minimum
distance from each cluster center. This was done in order to prevent
cluster populations from merging. For larger cluster center sizes
(=200) merging was allowed.

The results of the clustering are shown, from left to right, for cluster
center sizes m; = 10, 100, 200 in Fig. 16. The purple and yellow radii
and their respective centers represent the detected clusters and cor-
respond to the € and y of the DBSCAN and disjoint-set data structure,
respectively. For all runs, the advantage of DBSCAN with regard to
noise is evident. Even in the presence of relatively low noise
(n;,,. = 50 for m; = 10), the disjoint-set data structure fails and,
aside from real clusters, also classifies these noise particles as clus-
ters. DBSCAN, on the other hand, can make this distinction and
extract the correct number of isolated clusters. As the population
density increases, the initial scatter distribution is not balanced, and
certain clusters merge; therefore, the number of detected clusters does
not have to correspond to the number of initial clusters. For the
remaining two runs, DBSCAN is consistent in performing the task
and is able to separate and correctly identify the isolated clusters.

The advantage of the novel DBSCAN formulation and the MaxPts
was also evaluated for this particular task. With the addition of the

Fig. 16 Results of the performance for (left to right) m; = 10, 100, 200 and r; = 50, 50, 50.
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MaxPts, DBSCAN is able to ignore widely scattered clusters and
focuses more on isolated islands of clusters.

B. Validation of DBSCAN and Disjoint-Set Data Structure Clustering
Pipeline

Two clustering methods were compared and validated against the
validation dataset created with the automatic labeling tool. The cluster-
ing methods were implemented in the full tracking pipeline, and the
image sequence from the experimental dataset R1 was processed. The
images were sampled at the sampling intervals (red line), as shown in
Fig. 12. Here the laser vibrometer measurement (in blue), showing the
motion of the wing, is later compared with the output of the validated
tracking pipeline. Sequence R2 showed a similar response to R1 and is
therefore not included in the following validation plots.

1. Spatial Marker Scatter Validation

Figure 17 shows an overview of the clustering results. Here, the
marker location (defined as the centroid of the three-LED contour) in
the first image is indicated with yellow, purple, and blue circles
corresponding to DBSCAN, disjoint-set data structure, and valida-
tion data, respectively. The scattered points reflect the marker posi-
tions detected in the complete sequence of R1, where the color is kept
consistent for the data. The motion of the wing, more specifically the
tip deflection, reflects in the spread of the scatter points observed. The
spread is the highest for the markers closer to the tip, as expected.

In the two boxes in Fig. 18, a zoom is shown for maker 9 with the
lowest error, and markers 2 and 7 with the highest errors with respect
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Fig. 17 Spread of tracked markers for run R1 with DBSCAN and
disjoint-set data structure.

to the validation data. In these figures, the marker location of the
initial image at rest is indicated by a purple cross and a yellow plus
sign for DBSCAN and disjoint-set data structure, respectively, to
distinguish the results of the two methods. The mean is indicated by
the diamond and the triangle shapes. Figure 18a shows a relatively
low error and the spread is closely packed. In Figs. 18b and 18c, both
methods show a larger spread in (x, y) with respect to the validation
data. However, disjoint-set data structure has a higher spread, mainly
in the x direction.

To quantify the error, a squared distance error metric is used close
to the formulation of the root mean square error (RMSE). The error is
defined as the squared average of the Euclidean distance throughout
the sequence i to n:

RMSE = [ dist(p, P)euciiq (29)
i=1

where the Euclidean norm of the reference point, p(x,y), and its
estimate, p(x, y), throughout the sequence i to n yields

dist(p. P)euciia, = \/ > (p(x.y)i = px.y))? (30
i=1

From the boxplot in Fig. 19, a better insight can be gained in the
average error of the Euclidean distance norm in x and y [Eq. (29)].
Here, the color codes are, again, consistent with the clustering
methods; furthermore, the diamonds indicate the mean of the data
and the red crosses the outliers. The outliers are defined as the points
that are factor 1.5 larger than the bounds of the interquartile range
(i.e., data between 25th and 75th percentiles). It is observed that the
average error through the complete R1 sequence lies below 1 pixel for
the majority of the markers with DBSCAN. Disjoint-set data struc-
ture shows a relatively higher spread and a larger mean error. This is
observed in particular for markers 1, 2, and 7. For the latter marker,
DBSCAN also shows significantly larger errors of up to 4.5 pixels;
however, in markers 1 and 2, disjoint-set data structure has a factor 2
and 3 larger error, respectively. These observations are consistent
with the results shown in Fig. 18. The large errors can be attributed to
the fact that the contours of the three-LED marker cluster merge
together due to the motion of the wing and a slight change in the LED-
reflection results in two distinct contour shapes. Therefore, the
centroid of these three-LED markers falls approximately 3—4 pixels
away from the true centroid. This is visible in the close-up box
in Fig. 17.
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a) Zoom of marker ID 9 (low error)

b) Zoom of marker 2 (high error)

¢) Zoom of marker ID 7 (high error)

Fig. 18 Zoom spread markers IDs 2 and 7 of run R1 with DBSCAN and disjoint-set data structure.
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2. Sequence Tracking Validation

By observing the tracking of the markers 2 and 7 across the R1
sequence, one can confirm the larger errors of the disjoint-set data
structure. Figure 20 shows the time traces of the displacement of the
markers 2 and 7 in x and y directions, respectively, with respect to the
steady-state position (initial image). In R1, exactly three gusts were
introduced, which can be observed by the three peaks followed by
decaying sinusoidal responses. Alongside the displacement, error
bars are shown, defined according to Eq. (29). Again, the color codes
are kept consistent, and the disjoint-set data structure shows a larger
error band (up to 3 pixels) compared with DBSCAN and the reference
data. In particular, the x direction exhibits a higher sensitivity to errors
as can be observed in the presented scatter plots. DBSCAN shows
better agreement with the validation data.

C. Experimental Data Analysis with DBSCAN and Disjoint-Set Data
Structure Clustering

The experimental data collected from the image sequences were
processed with both tracking pipelines and compared with the laser
vibrometer measured wing response, shown in Fig. 12a. The tracking
pipeline, depicted in Fig. 25, was found to be able to trace the motion
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Validation and comparison of DBSCAN and disjoint-set data structure results for run R1, marker IDs 7 and 2.



Downloaded by TU DELFT on February 9, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.1010860

70 MKHOYAN, DE VISSER, AND DE BREUKER

0.8
0.6
0.4
0.2

-0.2

Wing z-position [m]

-0.4
-0.6

-0.8 0.5

.05 Scaled A y-axis [m]
-1
Time [frame] 15 -1

a)Wing 3D view and scaled image y-displacement

20

A y-axis [pix]

300

Marker ID [-] 400

8 500 Time [s]

b) Image y-displacement relative to the baseline

Fig. 21 Time series of marker y displacement with DBSCAN across 469 image sequences of run R1.

of the wing by correctly clustering the markers. This was confirmed by
the DBSCAN tracking result in terms of pixel (x, y) locations in the
images, shown in Fig. 21. The plots show the time traces for the
detected markers and three occurrences of decaying sinusoidal
responses can be observed from the output. The image y-displacement
in pixels is arbitrarily scaled to show comparative response to wing
geometry. During the image sequence, exactly three gusts were intro-
duced to the wing that produced a measurement, as shown in Fig. 12 for
a single gust.

1. Time-Domain Analysis

To further quantify the measured wing response and the tracked
wing motion from the image sequence, comparisons were made in
terms of displacements and the frequency content. Figure 21 shows
the comparison of the sampled wing displacement response extracted
from the laser vibrometer (blue), the disjoint-set data structure
tracking pipeline (yellow), and the DBSCAN tracking pipeline
(purple). In this figure, markers with high motion amplitude and a
relatively high (marker ID 7), as well as low (marker ID 8), validation
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errors are compared. The response, shown here for both tracking
pipelines, is the displacement in y direction, where the highest
amplitudes were observed.

The laser vibrometer measured response (in meters), as well as the
visually tracked motion (in pixels y direction), were normalized to
allow effective comparison. The tracked responses in Fig. 22 show
good agreement with the laser measurements. Both tracking methods
are capable of capturing the inherent damping of the wing with the
correct amplitude decay and match the phase of the motion. The
tracking results for marker ID 8 are slightly better compared with
marker ID 7, in agreement with the higher validation error measured
for ID 7, as shown in Fig. 19. However, as the error was mainly
observed in x direction, differences in y are not significant. DBSCAN
shows better overall tracking performance. Furthermore, by observ-
ing the low-amplitude oscillations after the initial gust onset, it can be
seen that image tracking has a limit in terms of accuracy and reso-
lution. In Fig. 22a, it is observed that the tracking reduces in accuracy
after the fourth peak (at 1 s) at roughly 10% of the maximum
normalized amplitude, and the motion is overestimated by the
tracking (from 2 s) by roughly 3% in the worst case. Considering
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Fig. 22 Comparison of normalized response of the tip deflection for run R1 (laser vs image tracking).
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that the maximum tip deflection is £33 mm (Fig. 12a), the maximum
motion tracking resolution is in the order of ~0.1 mm. An obvious
way to increase this resolution would be to use higher-resolution
cameras (>1.3MP). However, this could directly increase the com-
putational cost of the pipeline and reduce the maximum processing
frame rate, with a subsequent penalty for the bandwidth of the image
tracking.

2. Frequency-Domain Analysis

Alternatively, a frequency domain analysis was performed, where
the measurements were compared in terms of the power spectral
densities (PSDs) of the measured output. The main objective of this
analysis was to understand whether the image tracking methods
could correctly identify the frequency content of the measured signal
compared with the reference measurement provided by the laser
vibrometer. In this context, the power spectrum of the same response
signal measured by three different methods provided sufficient
grounds for the comparative assessment. This eliminated the need
for a more elaborate frequency response analysis whereby the cross
power spectrum of the output to input signals is computed as well in
order to extract the system’s frequency response function.

The auto-PSD of the output signal, S,,, was calculated according
to the following definition:

yy?

S, (@) = / ¥ Ry (e)e i de 31)

where the integral in the expression is the Fourier transform of the
autocorrelation function Ry, of the output signal (marker displace-
ment). Figure 23 shows the frequency content of the image sequence
corresponding to the responses of marker IDs 8 and 7. As can be
observed from Fig. 23a, the image tracking methods are able to
estimate the first resonant frequency of the wing, as for both markers,
the peaks of the spectral densities align at 5.316 Hz. Furthermore, it is
observed that, despite higher errors in the tracked response of ID 7,
the resonance region is captured well in both tracking methods.
Here, the disjoint-set data structure method estimates a slightly
higher value for the power spectrum in the resonance region, which
may seem to match better the distribution obtained from the laser
measurement. This can be explained by observing the response in
Figs. 22a and 22b, showing that the oscillations tracked by the
disjoint-set data structure have the tendency to estimate a higher
power distribution around the resonance region compared with
DBSCAN (i.e., higher sensitivity gain toward motion). For some
markers, in particular, the ones that exhibit lower motion activity
(markers closer to the root), this can lead to overestimation of the

25
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a) Auto-PSD of the response signal of marker ID 7

response and (combined with a higher error) a shifted resonance
peak. This is visible in Fig. 24 for marker ID 3. Here, the disjoint-set
data structure overestimates the oscillations of the y displacement
(Fig. 24a) and the resulting resonance peak is shifted from 5.316 to
4.810 Hz (Fig. 24b). Although the RMSE of marker ID 3 is lower
compared with ID 7 (Fig. 19), the high RMSE of marker ID 7 is
largely contributed by the x displacement; hence for marker ID 3 a
higher error in the y displacement is probable. DBSCAN also has a
slightly higher error for marker ID 3 but estimates the peak more
accurately at 5.570 Hz.

Overall, the results are shown in Figs. 22 and 23 suggest that the
motion of an oscillating wing can be captured and analyzed with
relatively low-resolution cameras (1.3 megapixels). However, it is
preferred to use markers exhibiting high motion amplitude (closer to
the tip).

3. Clustering Image Sequence

The clustering results of sequence R3, containing the marker loss
due to LED failure, are shown in the lower row of Fig. 25. Here, the
dotted outline shows the initial contour at baseline deflected shape
before the gust hits the wing. The tracking pipeline schematic is
shown below the figure. Despite the marker loss, DBSCAN is able to
correctly deduce the number and the location of the markers, without
supervision in terms of the expected number of clusters.

D. Performance of DBSCAN~! and the Limitation of DBSCAN
Clustering
1. Assessment of DBSCAN Parameters

Figure 26 shows the sensitivity of the tracking results to the
MaxPts parameter. When the parameter is set to 3, dictating that
the direct density reachability of the core points needs to contain a
neighborhood of at least three core points, the markers 1 and 10 fail to
meet these criteria and are no longer considered to be core points. The
shapes (dataset D) in the extracted binary mask on which the cluster-
ing operation is done are influenced by the motion of the wing and the
result of morphological filters (erode, dilate) performed after HSV
filtering. As aresult, at a given time instance, the three-LED subunits
can be clotted together in one or two dots instead of three, never
meeting the core point condition. In Fig. 26, it is clearly illustrated
that the cluster is found again once the units become more distinct;
this is the case when the MaxPts parameter is chosen to be 2, as shown
in Fig. 25.

2. Evaluation of Robustness Against Noise
The runs R1 and R3 were injected with Gaussian noise (mean of

u = 0 and a standard deviation of ¢ = 0.5) and the performance of
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Fig. 23 Comparison of the frequency spectrum of the tip deflection response for run R1 (laser vs image tracking).
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Fig. 24 Comparison of the response and the frequency spectrum of the marker ID 3, run R1 (laser vs image tracking).
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Fig. 25 Tracking sequence on input images from run R1 (upper row) and R3 (lower row).
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Fig. 26 Sensitivity of DBSCAN parameters. Snapshot of two frames from sequence R1; the frames are ~0.025s apart. The parameters are

€ = 20, MinPts = 3.

the tracking was evaluated. In Fig. 27, a sequence is shown for
tracking of frames 0, 50, and 100. The schematic of the corresponding
tracking pipeline is provided at the bottom of the figure. The color
codes correspond to the operation steps performed in the pipeline
throughout the sequence. From top to bottom, the rows represent
input with noise image (gray), HSV filtering (green), threshold image
(blue), and clustering result (red). The dotted outline shows the initial
contour at baseline deflected shape before the gust hits the wing.
As can be seen, the HSV filter combined with the morphological
operations (erode and dilate) is able to cope well with the Gaussian
noise. The morphological operations together with the HSV filter are
in fact acting as a complex denoising filter that produces a clean

output, which is in turn passed through as an input to DBSCAN.
DBSCAN is then able to produce a robust result on the thresholded
binary image, despite the high level of noise injected into the input
image. For run R3, similar results were obtained, as presented in
Appendix B (Fig. B1).

3. Sensitivity of HSV Filtering and Morphological Operations

The benefit of the complex denoising filter (HSV morphological)
with regard to noise and better clustering of input data was evident.
There is, however, a condition where a combination of these filters
can have an adverse effect. This is, in particular, the case in the
presence of varying lighting conditions, such as the case for images
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Erode Extract
dilate contours

Fig. 27 Tracking sequence on input images (0, 50, 100) from run R1 with injected Gaussian noise (# = 0 and 6 = 0.5).

with a light source, i.e., bright images, as per the definition in of images, from left to right, correspond to 1) HSV filtering with

Sec. IILB. morphological operations and no additional noise in the input

InFig. 28, the effect of HSV filtering strategies is shown for images (default case); 2) same, but without morphological operations; and

with a light source recorded by the trailing edge camera. The columns 3) same as condition 1, but with added noise in the input. The pipeline
No-noise morph (default} || No-noise no-morph (cluttered) " Noise no-morph (cluttered}

Markers erased False markers

Extract
contours

Fig. 28 Sensitivity of HSV filtering and morphological operations to varying lighting conditions.
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shown on the right of Fig. 28 corresponds to the processing steps
along the rows. As was observed in case 1, the default complex filter
had a highly adverse effect and the marker contours required for
clustering were largely erased. This happens as the HSV filter
produces high-density scattered noise particles in the output image
(the color content in the lighter image is higher), and the subsequent
morphological erode filter, due to the local min-max operation, ends
up removing the relevant data from the output image alongside the
noise. This becomes clear when compared with case 2, where no
morphological operations were applied: the contours of the markers
are retained, although with much higher noise content compared with
the nominal R1 dataset (dark images). This results in false detection
of markers (center area of the wing) in the clustering step. When
additional noise is added (without morphological operations) in case
3 the result is similar, but noisier, as expected. This analysis indicates
that morphological operations are not always possible or beneficial,
and highlights the relevance and need for a novel clustering approach
with DBSCAN™.

4. DBSCAN-! in the Presence of Noise Without Morphological
Operations

In this analysis, the robustness of DBSCAN was investigated
without additional denoising filters. The same experiment was run
to see how well DBSCAN would fare when exposed to more noise
and less filtering steps, and in particular when morphological oper-
ations were removed. These operations proved to be highly capable
of filtering out the remnants of Gaussian noise after HSV operation,
marked as the blue filtering block in Fig. 27. It was therefore
interesting to examine what the effect of removing the morphological
filter block would be.

The result with the nominal DBSCAN using the same parameters
(e = 20 pix, MinPts = 2) is shown in Fig. 29. The schematic of the
clustering pipeline at the bottom shows that the most important
change is in disabling the morphological operations (erode and dilate,
in transparent gray). As a result, the thresholded binary image con-
tains noisy speckles that are detected as core points in DBSCAN. It
can be seen that in the third image (red color code) the clustering fails
to properly detect the markers. Instead, a large number of clusters are
detected. This is clearly illustrated in the rightmost image, where each
point is identified with a numeric label belonging to the cluster ID,
where magenta labels represent valid clusters and gray (—1) labels
represent outliers or noise. This can be partially remedied by further
tuning of the DBSCAN parameters. However, the additional noise in
the threshold image will continue to produce problems for the correct
detection of the remainder of the markers.

A better approach would be to use DBSCAN clustering differently.
In Sec. IL.D, a methodology was proposed to approach the DBSCAN
clustering from a novel viewpoint. DBSCAN is known for its ability
to discard points that are not part of a cluster as noise. Instead of
looking for cluster centers, it was proposed to use DBSCAN in an
inverse fashion for detection of noise (noncore points). In this
approach MinPts is set to 1, allowing to maximize the number of
points forming a cluster and, instead, to capture the desired clusters
by tuning the € and MaxPts parameters. The result of this analysis,

HSV-BW

with e = 20, MinPts = 1, and MaxPts = 8, is shown in Fig. 30. The
input to DBSCAN is the same as in the sequence of Fig. 29, except
that, as schematized at the bottom of the figure, the inverse DBSCAN
filter (cyan block) is applied instead. As a result, the desired clusters
(markers) are identified as noise (obtaining a gray —1 label), and the
rest of the points are identified as valid clusters, whereas the nominal
DBSCAN (Fig. 29) was not able to deal with this without the addi-
tional denoising filter. Thus, DBSCAN~! has an advantage over the
nominal DBSCAN in this particular scenario.

In essence, the DBSCAN™! approach is actively looking for noise,
discarding the actual clusters. Subsequently, the clusters can be
retrieved by an additional step where the nominal DBSCAN is
applied again. To this end, a new parameter, MaxPts, was introduced,
putting a cap on the number of reachable core points within a cluster.
Because noise will be randomly and densely cluttered together, the
probability is high (for most noise models) that noise particles will be
surrounded with a dense number of other noise particles within an
arbitrary e neighborhood. It is important to note that this condition
holds for MinPts = 1, such that the number of points forming a
cluster is maximized.

E. Effect of Image Thresholding

Variations of light and motion activity of the object make the task
of obtaining a good thresholding challenging. In this study, several
thresholding approaches were investigated: global normalization,
baseline normalization, and adaptive global thresholding using
Otsu’s method. The analysis is shown in Fig. 31. Here, the input
images from run R1 were converted to grayscale, and thresholding
strategy was applied as described in Sec. II.B.3. The corresponding
pixel intensity map obtained after thresholding is shown in 3D (left
column) and top (right column) view. The regions indicated with
dark peaks correspond to high occurrence pixel regions passing the
threshold and thus high pixel activity. The scatter points in red
correspond to the travel of the marker centers across the image
sequence and high wing motion activity. The collected range of
input images was arbitrarily chosen at intervals as a continuous
vector:

N,=[1 4 11 90 95 160 168 274 326 330 424 469]

1. Global Normalization Thresholding

The results of global normalization are shown in Fig. 31a. Here, the
full image sequence was converted to grayscale and normalized in the
0-255 range. Then, a threshold of 7y, = 9 - 10~ was applied. Sub-
sequently, the pixel intensities across time were summed over the
input vector N,,:

N N
DG =) From (X)) (32)
n=0 n=0

A 3D view of the accumulated pixel intensity sum is shown in
Fig. 31a. It can be observed that the so-called footprint of the

Extract
contours

Input %
img i img
Gaussian I

noise

Fig. 29 Tracking sequence on input images (0, 50, 100) from run R1 with injected Gaussian noise (u = 0 and ¢ = 0.5) and disabled morphological

operations (transparent block).
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Fig. 30 Tracking sequence on input images (0, 50, 100) from run R1 with injected Gaussian noise (u = 0 and ¢ = 0.5), and DBSCAN™!,

markers, indicated by the red line, corresponds to high pixel activity
in the spatial domain across the input sequence. This footprint
corresponds to the full sequence from Fig. 21a projected to the
spatial domain of the image. The pixel activity is indicated by high-
intensity values retained after thresholding (dark peaks). For a
continuous input sequence, correct thresholding should character-
ize the moving foreground as high intensity and filter out the static
background. This appears to be the case here; nonetheless, a dis-
balance in the height of the peaks was observed. The high peaks are
observed at the location of the bottom markers (below IDs 14-5 in
Fig. 13a), indicating that high-intensity values were captured
repeatedly at these locations. Observing the top view plot in
Fig. 31b, it can be deduced that the highest motion amplitudes
belong to the wingtip, meaning that the outline around the bottom
markers should have been more cleanly filtered by the threshold due
to the low motion activity.

2. Baseline Thresholding

The results of the baseline thresholding are shown in Figs. 31c
and 31d. The main observation of baseline thresholding is that the
balance between the peak heights is retained, and the static areas
around the bottom markers are correctly filtered. However, because
the differences in pixel intensities are now shifted closer together,
the background is noisier and distinct static patterns are picked up
due to a higher sensitivity to the threshold parameter, which is
undesirable. This can be partially remedied by adjusting the thresh-
old parameter.

3. Adaptive Otsu’s Thresholding

The results of Otsu’s thresholding are shown in Figs. 31e and 31f,
where a clear definition of a (moving) foreground can be observed.
The high pixel intensities are correctly assigned to the marker centers
alone, and the background is entirely absent. Figure 31d shows an
obvious agreement between the marker footprint and pixel intensity.
Also, the height of the peaks is more balanced, meaning that the static
areas are efficiently removed. The results indicated that Otsu’s
method is the cleanest approach for thresholding for this given
dataset.

F. Adaptive Thresholding Approach Using Time-Spatial Frequency
Content

The methodology explained previously along with the results on
the assessment of image thresholding (Figs. 31a, 31c, and 31le), as
well as the time traces (Fig. 21a), is indicative of an interconnection
between segmentation and clustering. However, the gap is to connect
these processes in time, that is, to find a relationship between seg-
mentation and clustering parameters to adaptively obtain an optimal
marker label detection through time, for a sequence of images.

To this end, a method implementing the sliding discrete Fourier
transform (SDFT) [49] is suggested. This approach is illustrated in
Fig. 32. Here an image sequence is shown with markers indicated in
red (not in true scale). A point P; corresponding to a marker label
with coordinates x; and y;, represents a displacement signal in x, y
pixel values in time domain. Consequently, its movement corre-
sponds to a footprint in the spatial domain. The gray threshold value
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Fig. 31 Three-dimensional (right column) and top (left column) view of the accumulated pixel intensity values after thresholding across the 469 frame

sequences of R1.

is adjusted to capture P; as it moves in the footprint. As gradually
more data reflecting the motion of P; are collected in the SDFT time
window, the amplitude of the peak starts to become more prominent
at a distinct value of the resonance frequency w,. This continuously

updated knowledge of the wing dynamics projected on the spatial
image domain in terms of high pixel activity regions can conse-
quently be used to adjust the parameters of the marker detection
pipeline.
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Fig. 32 Simplified spatial and time representation of the SDFT and thresholding adaptation for a sequence of images.

The nature of the SDFT allows for the method to be used in real-
time at low cost. Implementing this approach would effectively
enable the use of the pipeline as a robust tracking algorithm. In a
follow-up study, the role and the benefit of the SDFT are to be further
investigated.

V. Conclusions

In this study, an image tracking pipeline was developed using a
robust machine learning approach, with the aim to 1) automatically
label visual markers and 2) investigate a noninvasive state estimation
approach for online control applications of flexible aircraft wings.

The pipeline consisted of an image segmentation, where a mask for
clustering operations was obtained with an HSV color filter and a
threshold filter using morphological operations (erode and dilate).
Subsequently, the mask was clustered using unsupervised clustering
with DBSCAN [20]. DBSCAN was compared with another unsu-
pervised clustering method, the disjoint-set data structure [21], by
processing 1) a performance data obtained from a performance test
with a randomly generated cluster data and 2) experimental data
obtained from the measurements of the wing response undergoing
oscillatory motion under gust excitations in the OJF wind tunnel at
the Delft University of Technology.

The DBSCAN pipeline was found to be more reliable and robust in
terms of accuracy and resilience against nose in the input image,
which was confirmed with both performance data as well as the
experimental data. Next to showing an overall better tracking capabil-
ity compared with the disjoint-set data structure, an error of &1 pixel
was observed for the majority of the markers clustered with
DBSCAN with respect to the validation dataset.

An essential shortcoming of the denoising HSV morphological
segmentation filter was highlighted with regard to sensitivity to noise
and variations in image illumination. More specifically, 1) the clus-
tering performance degraded without morphological operations and
2) the mask for the clustering operations could be erased by mor-
phological operations under certain lighting conditions (high illumi-
nation). This suggested that morphological operations are not always
possible or beneficial, and highlighted the relevance and the need for
a novel clustering approach.

To tackle this problem, a novel formulation of DBSCAN, the
inverse DBSCAN (DBSCAN™!), was proposed, where the clustering
problem is reformulated into a noise filtering problem. Instead of
rejecting, this approach explicitly detects the noise, making the
clustering an implicit task. The experimental dataset was processed
using the DBSCAN~! pipeline, and it was shown that the actual
clusters were successfully identified and isolated from the noise
in the image. After isolation of the clusters, DBSCAN~! must be

followed by an additional nominal DBSCAN clustering to extract the
exact location of the markers. The final nominal DBSCAN can be
done at a significantly lower computational cost due to the removed
noise. Further studies are required to assess the performance gain of
DBSCAN~! compared with additional filtering steps in various light-
ing conditions.

In conclusion, the results of the time- and frequency-domain
analyses on the experimental data suggested that the motion of an
oscillating wing can be adequately captured with relatively low-
resolution cameras (1.3 megapixels) in the proposed tracking pipe-
line. It was suggested that the frequency content of the image
sequence could also be extracted by the SDFT and the image thresh-
olding step continuously adapted to produce a better tracking result.
The accuracy and motion resolution could be further improved by
increasing the resolution of the camera. However, a thorough tradeoff
is essential, as this would generally lead to an increase in the compu-
tational cost of the tracking pipeline and reduce the maximum
processing frame rate, subsequently, reducing the bandwidth of the
tracking.

Appendix A: Allegra Wing Specifications
Table Al shows the specifications of the Allegra wing [38]:

Table A1 Parameters of the Allegra wing

Definition Parameter Value  Unit
Span b 1.6 m
Top chord Croot 0.36 m
Root chord Ciip 0.12 m
Taper ration A 1/3 —_—
Aspect ratio A 6.67 m
Sweep (quarter line) A -17 deg
Wing area N 0384 m?
Mean chord C 0.24 m
Airfoil max. thickness —_— 13.028 %
Airfoil max. camber _ 24 m

Appendix B: Tracking Result for Run R3 with
Gaussian Noise
Figure B1 shows the results for the tracking sequence from run R3

with injected Gaussian noise (mean of 4 = 0 and standard deviation
of 6 = 0.5).
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Extract
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Fig. B1 Tracking sequence on input images (0, 60, 80) from run R3 with injected Gaussian noise (x = 0 and ¢ = 0.5).
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