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Nomenclature

Latin letters

A,B ,C ,D Matrices in the state-space system
Aw Wing area, m2

ax , ay , az Linear body accelerations, ms−2

Blon Input matrix for the longitudinal state-space system
Bl at Input matrix for the lateral state-space system
b Wing span, m
bax , bay , baz Bias terms accelerometers
bṗ , bṙ , bv̇ , bφ̇ Bias terms
bp , bq , br Bias terms gyroscope
B(i ),COV ,Cov,R Covariance matrix
c̄ Mean chord length, m
C (τ) Autocorrelation matrix
f Flapping frequency, H z
f1, f2, f3 Natural frequencies, H z
fL , fR Flapping frequency of the left and right wing, H z
Fx ,Fy ,Fz Forces along the body axes. N
g Earth’s gravitational constant, ms−2

G Controller
H , Ĥ Aircraft dynamic system, Estimate of aircraft dynamic system
Ixx , Iy y , Izz Mass moment of inertias, kg m2

Ix y , Iy z , Ixz Products of inertias, kg m2

Ic Ixx · Izz − I 2
xz , kg 2m4

J (x, θ̄) Cost function
K Kalman gain
L, M , N Aerodynamic moments along the body axes, N m
lx , lz Fixed linear displacements of the COP with respect to the COM
ld Adjustable linear displacements of the COP with respect to the COM
Lext , Mext , Next External moments along the body axes, N m
Lp ,Lr ,Lv Dimensional stability derivatives of the moment L
Lδd

,Lδ f
,Lδw Control derivatives of the moment L

L+
p ,L+

r ,L+
v Non-dimensional stability derivatives of the moment L

L+
δd

,L+
δ f

,L+
δw

Non-dimensional control derivatives of the moment L

Mx , My , Mz Moments about the body axes. N
Mq , Mu , Mw Dimensional stability derivatives of the moment M
Mδd

, Mδ f
, Mδw Control derivatives of the moment M

Np , Nr , Nv Dimensional stability derivatives of the moment N
Nδd

, Nδ f
, Nδw Control derivatives of the moment N

N+
p , N+

r , N+
v Non-dimensional stability derivatives of the moment N

N+
δd

, N+
δ f

, N+
δw

Non-dimensional control derivatives of the moment N

N Total number of datapoints
m Mass. kg
P Number of parameters
p(x, θ̄) Polynomial function
p, q,r Angular rates, r ad s−1

ṗ, q̇ , ṙ Angular accelerations, r ad s−2

q0, q1, q2, q3 Attitude quaternions
r̂ Radius of the second moment of inertia, m
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xviii Nomenclature

R̂ Estimate of the covariance matrix
R2 Goodness of fit
Spp ,Sv v ,Sr r ,Sφφ Power spectral densities of the states
T Wing beat period, s
T HRF Throttle factor
t Time, s
u, v, w Body velocities, ms−1

ub , vb , wb Body velocities, ms−1

u∗
b , v∗

b , w∗
b Measured body velocities, ms−1

u0, v0, w0 Initial body velocities, ms−1

u̇, v̇ , ẇ Body accelerations, ms−1

U Average center of pressure velocity, ms−1

u(t ) Input vector
ulon Input vector for the longitudinal dynamics
ul at Input vector for the lateral dynamics
v, v̄ Residual, mean of all residual
V0 Initial forward velocity, ms−1

v(t ), w(t ) Sensor and process noise vector
W Weight matrix
W1,W2,W3,W 4 Wing bodies
xest , xpr ed Estimated and predicted state

x(t ),y(t ),z(t ) State, output and measurement vector
X ,Y , Z Aerodynamic forces along the body axes, N
Xext ,Yext , Zext External forces along the body axes, N
x, y, z Position in the inertial reference frame, m
xb , Xbod y , yb , zb , Zbod y Body axes
Xq , Xu , Xw Dimensional stability derivatives of the force X
Xδd

, Xδ f
, Xδw Control derivatives of the force X

Yp ,Yr ,Yv Dimensional stability derivatives of the force Y
Yδd

,Yδ f
,Yδw Control derivatives of the force Y

Y +
p ,Y +

r ,Y +
v Non-dimensional stability derivatives of the force Y

Y +
δd

,Y +
δ f

,Y +
δw

Non-dimensional control derivatives of the force Y

yi , ŷi measurement point, model predicted measurement
ȳ Mean of all measurements
Zq , Zu , Zw Dimensional stability derivatives of the force Z
Zδd

, Zδ f
, Zδw Control derivatives of the force Z

Y +
v Non-dimensional stability derivative

zmeas , zpr ed Measured and predicted measurement

Greek letters

α0 Initial angle of attack, r ad
α∗ Inclination angle, r ad
δd Dihedral deflection, r ad
δe Elevator deflection, r ad
δ f Difference in flapping frequency between the wings , H z
δr Rudder input, r ad
δw Wing root angle, r ad
ε Residual
ζ0 Dihedral angle, r ad
θ̂ Parameter estimate
θ̈ Pitch acceleration, r ad s−2

θ̄,Θ Parameter vector
θ0,θ1,θ2,θ3 Parameter terms
Θ0 Initial pitch angle



Nomenclature xix

ρ Air density, kg m−3

Σ Covariance matrix
τ Lag
υ(i ) Sensor noise vector
φm ,ζ,φ f Wing sweep angle, r ad
φsp Setpoint roll angle, r ad
φ,θ,ψ Attitude angles, r ad
Φ,Θ,Ψ Attitude angles, r ad
Φm ,Θm ,Ψm Measured attitude angles, r ad
φ̇, θ̇,ψ̇ Attitude angular rates, r ad s−1

Acronyms

COM Center of mass
COP Center of pressure
DARPA Defence Advanced Research Projects Agency
EKF Extended Kalman filter
FWMAV Flapping-wing micro air vehicle
GLS General least-squares
IEKF Iterated extended Kalman filter
IMU Inertial measurement unit
IV Instrument Variable
LEV Leading Edge Vortex
LPV Linear parameter-varying
LTI Linear time-invariant
MAV Micro air vehicle
OLS Ordinary least-squares
PD Proportional differential (controller)
RMSE Root mean-squared error
UAV Unmanned aerial vehicles
WLS Weighted least-squares





1
Introduction Thesis

Unmanned aerial vehicles (UAV’s), and their smaller counterpart micro air vehicles (MAV’s), have been found
to be useful for a large variety of civil and military applications [14, 15, 17, 19, 75, 84]. A subcategory of
UAV’s are flapping wing micro air vehicles (FWMAV’s). These FWMAV’s have favorable properties such as:
being able to fly at low velocities, having high agility and maneuverability and some even have the ability to
hover[3, 36]. In general, FWMAV’s are bio-inspired, either using the basic principles of the flapping motions
for the thrust generation or trying to mimic the flapping mechanism of the animal as closely as possible.
Inspirations for the design of the FWMAV’s have been birds, such as the Nano Hummingbird [37], insects, as
is the case for the Delfly family [17] and the KU Beetle [58], and bats, such as the Bat Bot B2 [59]. FWMAV’s
have also been used for the analysis of the control strategies of flying insects during various maneuvers, as was
done in the research of Karásek et al. using the Delfly Nimble [36], in which it was shown that fruitflies use yaw
and roll torque coupling during rapid bank turns. This was verified using an automated evasive roll maneuver.
This complex and quick maneuver was possible due to the tailless design of the Delfly Nimble, although this
did make the Delfly Nimble inherently unstable, as is the case for tailless FWMAV’s [36, 37, 45, 58].

The Delfly Nimble is a member of the Delfly Family, a group of FWMAV’s which has been developed at the
Delft University of Technology. The development of the first Delfly dates back to 2005 [17]. The first versions
of the Delfly have a tail, which passively stabilize the drone, as has been shown in research of Caetano et al.
[9] and Armanini et al. [5]. The first tailless member of this family is the Delfly Nimble, which has a wingspan
of 33 cm and a weight of approximately 27 g r ams. Due to the inherent instability of the Delfly Nimble,
a PD-controller is used for control of the attitude of the Delfly Nimble, ensuring that the FWMAV remains
airborne. The gains of the PD-controller were determined by trial and error, first analyzing the response
of the Delfly Nimble while holding it in the hand and then in a later stage analyzing the response during
flight. For the automated evasive roll maneuver used in the research of Karásak et al. [36] an open-loop
program was developed, also tuned by trial and error. The probability of the Delfly Nimble crashing during
such rapid maneuvers is high. Since this tailless FWMAV is fragile in nature, repairs would often be required
after such a crash. In order to develop more automated rapid movements with fewer crashes, a simulation of
the response of the Delfly Nimble could be used before implementing the maneuver or a new controller on
the actual FWMAV. However, this would require a mathematical model of the dynamics of the Delfly Nimble.
Several models have been identified for the longitudinal body dynamics using free-flight data [32, 33, 51, 52].
For the lateral body dynamics of the Delfly Nimble, such a model did not exist yet.

This thesis addresses the absence of a mathematical model of the lateral body dynamics of the Delfly Nimble.
The main deliverable of this research is a such a model which has sufficient accuracy to be used for stabil-
ity analysis and controller design. When only the body dynamics are considered, the identified dynamics
are time-averaged, i.e. neglecting the influence of the wings. This assumption is valid when the flapping
frequency is higher than the bandwidth of the system, i.e. the flapping frequency is larger than the highest
natural frequency of the body dynamics [34]. This model will be developed using free-flight data and sys-
tem identification approach, which consists of three phases: the experiment phase, the model identification
phase, and the model validation phase. A similar approach had been taken in previous research, where mod-
els had been identified for the Delfly II [5, 9], and for the longitudinal body dynamics of the Delfly Nimble.
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2 1. Introduction Thesis

Various maneuvers were used during the experiments, such as roll doublets, 112-maneuvers in the roll direc-
tion, coupled maneuvers where inputs are given to multiple mechanisms, and roll doublets while the Delfly
Nimble is flying sideways. Two types of model structures were used in this research: grey-box model struc-
tures, where the parameters are the stability and control derivatives, and black-box ones. The parameters
were estimated using linear regression techniques, specifically the ordinary least-squares and the weighted
least-squares. The accuracy of the identified models was analyzed using residual analysis and analysis of the
statistical properties of the estimated parameters.

This thesis consists of three parts. In Part I, the main results of this research are shown in a scientific paper.
This is followed by Part II, where the literature study is shown which consists of four chapters. In Chapter
2, the introduction of the literature study is given, in which the working principle of the Delfly Nimble and
other FWMAV’s is explained, the System Identification Cycle is elaborated on, and the research objective and
the research questions are formulated. There are three sub-questions, each covering a phase of the System
Identification Cycle. In Chapter 3, the development of the Equations of Motion is shown, and an overview
is given of the maneuvers considered for this research. Chapter 4 gives an overview of the various model
structures and parameter estimation techniques which were considered for this research. The final chapter
of Part II is Chapter 5, where background information is given about the validation techniques used in this
thesis. The final part of this Thesis is Part III, which also consists of four chapters. Chapter 6 is an introduction
to this part, showing the lay-out of it. In Chapter 7, an overview is given of the maneuvers used during the
experiments, the influence of the controller is analyzed, and the identifiability of the data is verified. This is
followed by Chapter 8, where the results of the state estimation, the parameter estimation, and the analysis of
the natural motions are shown. The final chapter of this part is Chapter 9, where the validation results of the
identified models are discussed. The conclusions of this research, along with recommendations for future
work are elaborated on in Chapter 10.
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Model Identification of the lateral body dynamics near hover of
a tailless four-winged flapping wing MAV using flight data
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Flapping wingmicro air vehicles (FWMAV’s) are a subcategory of unmanned aerial vehicle

which use flapping wings for thrust generation. The high agility and maneuverability of

FWMAV’s are very favorable attributes, making them more applicable in cluttered spaces.

A tailless FWMAV called the Delfly Nimble has been developed at the Delft University of

Technology. Due to the inherent instability of the tailless design an active controller is required

to ensure safe and stable flight of the drone. In previous research, models have been developed

for the longitudinal dynamics of the Delfly Nimble. In this paper, a grey-box state-space

model of the lateral body dynamics in hover conditions is identified using system identification

techniques. The parameterswhich needed to be estimatedwere stability and control derivatives,

and they were obtainedwith a least-squares approach. Free-flight experiments were performed

to generate the identification and validation data. A doublet train was used in the identification

experiments, with the gains of the controller adjusted in such a way that maximum excitation

was acquired. The identifiedmodel has been validatedwith variousmaneuvers. These included

doublets, 112-maneuvers, maneuvers using coupled inputs, andmaneuvers with sideways flight.

The resulting model is able to predict the state derivatives of most maneuver accurately,

reaching accuracies of over 90% for maneuvers close to hover. Moreover in closed-loop

configuration it is able to simulate the state response accurately, with accuracies of over 85 %

for maneuvers close to hover, and remains stable, making it applicable for controller design

and stability analysis. Finally, based on the model the inherent instability of the lateral body

dynamics was also confirmed, for there are eigenvalues with positive real parts.
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Nomenclature

�BB , �BB, �BB , �BB = Matrices in the state-space system

0G , 0H , 0I = Linear body accelerations, <B−2

5 = Flapping frequency, �I

5! , 5' = Flapping frequency of the left and right wing, �I

�G , �H , �I = Forces along the body axes. #

6 = Earth’s gravitational constant, <B−2

�GG , �HH , �II = Mass moment of inertias, :6<2

�GH , �HI , �GI = Products of inertias, :6<2

� (x, \̄) = Cost function

!, ", # = Aerodynamic moments along the body axes, #<

!? , !E = Stability derivatives of the moment !

! X 5 , ! XC = Control derivatives of the moment !

< = Mass. :6

?, @, A = Body angular rates, A03B−1

¤?, ¤@, ¤A = Body angular accelerations, A03B−2

@0, @1, @2, @3 = Attitude quaternions

R2 = Goodness of fit

rGH = Output Correlation

RMSE = Root mean-squared error

Â = Radius of the second moment of inertia, <

(?? , (EE , (qq = Power spectral densities of the states

C = Time, B

D, E, F = Body velocities, <B−1

D0, E0, F0 = Initial body velocities, <B−1

¤D, ¤E, ¤F = Body accelerations, <B−1

, = Weight matrix

x, xBB = State vector

-,., / = Aerodynamic forces along the body axes, #

G, H, I = Position in the inertial reference frame, <

G1 , -1>3H , H1 , I1 , /1>3H = Body axes

yBB = Output vector
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H8 = measurement point

.? , .E = Stability derivatives of the force .

.X 5 , .XC = Control derivatives of the force .

X3 = Dihedral deflection, A03

X 5 = Difference in flapping frequency between the wings , A03B−1

XF = Wing root angle, A03

Y = Residual

\̂, \̄ = Parameter estimate, parameter vector

�̂ = Estimated parameter

\0 = Initial pitch angle, A03

|f̂ | = Standard deviation of the parameter

q0 = Initial roll angle, A03

q 5 = Wing flapping amplitude, A03

q, \, k = Attitude angles, A03

¤q, ¤\, ¤k = Attitude angular rates, A03B−1

I. Introduction
Unmanned aerial vehicles (UAV’s), and their smaller counterpart micro air vehicles (MAV’s), have been found

to be useful for a large variety of civil and military applications [1–6]. A subcategory of UAV’s are flapping wing

micro air vehicles (FWMAV’s). These FWMAV’s have favorable properties such as: being able to fly at low velocities,

having high agility and maneuverability and some even have the ability to hover[7, 8]. In general, FWMAV’s are

bio-inspired, either using the basic principles of the flapping motions for the thrust generation or trying to mimic the

flapping mechanism of the animal as closely as possible. Inspirations for the design of the FWMAV’s have been birds,

such as the Nano Hummingbird [9], insects, as is the case for the Delfly family [6] and the KU Beetle [10], and bats,

such as the Bat Bot B2 [11]. FWMAV’s have also been used for the analysis of the control strategies of flying insects

during various maneuvers, as was done in the research of Karásek et al.[8] using the Delfly Nimble, in which it was

shown that fruitflies use yaw and roll torque coupling during rapid bank turns. This was verified using an automated

evasive roll maneuver. This complex and quick maneuver was possible due to the tailless design of the Delfly Nimble,

although this did make the Delfly Nimble inherently unstable, as is the case for tailless FWMAV’s [8–10, 12].

The Delfly Nimble is a member of the Delfly Family, a group of FWMAV’s which has been developed at the Delft

University of Technology. The development of the first Delfly dates back to 2005 [6]. The first versions of the Delfly

have a tail, which passively stabilize the drone, as has been shown in research of Caetano et al. [13] and Armanini et al.
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[14]. The first tailless member of this family is the Delfly Nimble, which has a wingspan of 33 2< and a weight of

approximately 27 6A0<B. Due to the inherent instability of the Delfly Nimble, a PD-controller is used for control of

the attitude of the Delfly Nimble, ensuring that the FWMAV remains airborne. The gains of the PD-controller were

determined experimentally, first analyzing the response of the Delfly Nimble while holding it in the hand and then in a

later stage analyzing the response during flight. For the automated evasive roll maneuver used in the research of Karásak

et al. [8] an open-loop program was developed, also tuned using trial and error. The probability of the Delfly Nimble

crashing during such rapid maneuvers is high. Since this tailless FWMAV is fragile in nature, repairs would often be

required after such a crash. In order to develop more automated rapid movements with fewer crashes, a simulation of

the response of the Delfly Nimble could be used before implementing the maneuver or a new controller on the actual

FWMAV. However, this would require a mathematical model of the dynamics of the Delfly Nimble. Several models

have been identified for the longitudinal body dynamics using free-flight data [15–18]. For the lateral body dynamics

of the Delfly Nimble, such a model did not exist yet.

The main contribution of this paper is a mathematical model of the lateral body dynamics of the Delfly Nimble.

The resulting model in this research is the first one which focuses on the lateral part of the body dynamics, instead of

the longitudinal part. When only the body dynamics are considered, the identified dynamics are time-averaged, i.e.

neglecting the high frequency components. This assumption is valid when the flapping frequency is higher than the

bandwidth of the system, i.e. the flapping frequency is larger than the highest natural frequency of the body dynamics

[19]. Due to the focus on only the body dynamics, the rigid body approximation can be used, as has been done in

previous research for the stability analysis of hovering insects and the modeling of flapping flight [14, 17, 19–26]. The

parameters of the mathematical model are determined using linear regression techniques.

The remainder of this paper consists of six more sections. In Section II, the experimental setup is outlined. Section

III shows the model structure which has been used for the development of the mathematical model. The paper continues

with Section IV, in which the parameter estimation is elaborated on. This is followed by Section V, which describes the

various maneuvers used during the experiments. The modeling results are clarified in Section VI. The conclusion and

recommendations for future work are written in Section VII.

II. Experimental Setup

A. The Delfly Nimble

The FWMAV used in this research, the Delfly Nimbe is inherently unstable due to its tailless design. Therefore, an

active controller is required for stable flight, and uses different control mechanisms compared to the tailed versions of

the Delfly, which had most of the control surfaces built in the tail. The control mechanisms used in the Delfly Nimble

are shown in Figure 1.
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Fig. 1 Explanation of the working principle of the Nimble. In A an overview of the various components. In B
to D, three different flights are shown, hover, forward and sideways. E to G show the working principle of the
servos and flapping mechanism. H to J explain the control of the yaw, pitch and roll attitude.[8]

It can be seen that the Delfly Nimble uses wing modulation techniques for the control of its attitude. Wing twist

modulation is used to control the yaw attitude. A servo is used in order to change the wing root angle angle, shown in H

of Figure 1. For the control of the pitch attitude, it changes the dihedral angle using a servo, shown in I of Figure 1.

For control of the roll attitude it does not use wing modulation. Instead, the roll attitude is controlled by generating a

difference in the flapping frequencies of both wings, shown in J of Figure 1. This difference in flapping frequency

generates a roll torque. The side with the lower frequency is the one where the Delfly Nimble rolls towards. The amount

of torque required for stable flight is determined by a controller. The controller for the pitch and roll attitude is shown

in A and B of Figure 2 [8]. A reference generator is used to determine the input to the proportional and derivative

controller. The controller for the yaw angle is show in C of Figure 2. This controller uses a proportional gain and also

an additional feed-forward loop. The gains have been determined by trial and error, first by observing the stability of the

Delfly Nimble while holding it in hand, and then by observing the stability in flight. For more complex maneuvers,

such as rapid bank turns and pitch and roll flips, an open-loop program can be switched to. The autopilot is then in the

open-loop configuration, switching back to the closed-loop one in order to recover the Delfly Nimble after the maneuver
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and preventing crashing [8].

Fig. 2 Schematics of the on-board controller [8]. The controller for the roll and pitch attitude is shown in A
and B. In A the reference generator is shown. In B the attitude controller is shown which has proportional and
derivative terms. The open-loop program is used for more rapid maneuvers. In C the yaw loop is shown, which
only uses a proportional controller and an additional feedforward term.

B. Sensors and processing of the data

The flight data experiments were done in the flight arena called the "Cyberzoo" in the faculty of Aerospace

Engineering at the Delft University of Technology. This arena has a size of 10 × 10 × 7 <, and uses 12 Prime 17W

OptiTrack Motion tracking cameras. Gathered data from the motion tracking system was complemented by the on-board

sensory output, for which a Lisa/MXS autopilot was used. An overview of the obtained measurements is shown in Table

1.

Table 1 Overview of the data obtained from the Optitrack Motion tracking system and the on-board systems.

Source Obtained measurements Sampling frequency (Hz)
OptiTrack Position (x,y,z) 200

Attitude Quaternions (@0, @1, @2, @3) 200
On-board Angular Velocities (?, @, A) 512

Linear Accelerations (0G , 0H , 0I) 512
Flapping frequency right ( 5') 100
Flapping frequency left ( 5!) 100

Dihedral servo deflection (X3) 100
Wing root servo deflection (XF ) 100

Throttle value (XC ) 5
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The OptiTrack (OT) data consisted of the position of the Delfly Nimble and the attitude quaternions, which were

converted to the attitude angle q, \, and k. In order to capture the data, four reflective markers with a diameter of

approximately 20 << were mounted on the Delfly Nimble. The marker setup is illustrated in Figure 3.

Fig. 3 Marker setup of the Delfy Nimble used for capturing the positions and attitude quaternions in the
OptiTrack Motion tracking system. Three markers are on the ’crown’, and one is just below the autopilot.

The mean error of the position of the markers was 0.85 <<. The on-board data consisted of measurements from

the MPU-6000 inertial measurement unit, which recorded the angular velocities and the linear accelerations, and also

of deflections of control mechanisms, such as the flapping frequencies of both wings, servo deflections, and throttle

values. The gyroscopes had an accuracy of 0.05 °/B, and the accelerometers had an accuracy of 0.05 6 in the - and .

direction, and 0.08 6 in the / direction. The two sources of data were synchronized by the same procedure developed by

Armanini et al.[27], and was used for the model identification of the Delfly II. Sensor fusion was applied to assure high

accuracy of the data, using an Extended Kalman Filter. For the data fusion, all the data was upsampled to 512 �I. The

fused data was then filtered using a zero-phase Butterworth filter in order to reduce the noise in the data.

III. Model Structure Definition
In many existing studies, the stability analysis of hovering insects and the modeling of flapping flight dynamics was

done using the rigid body approximation [14, 17, 19–26]. The following assumptions are made for the determination of

the nonlinear equations of motion (EOM’s) [28, 29]: the body of the vehicle is rigid, the mass of the vehicle is constant,

the Earth is flat and non-rotating, and -1/1 is a symmetry plane, so �GH and �HI are assumed to be zero. The rigid body

assumption can be made if only the body dynamics of the Delfly Nimble are analysed, i.e. if the flapping dynamics

and the body dynamics of the Delfly Nimble can be treated separately. This is the case when the flapping frequency is

higher than the bandwidth of the system [19]. For the Delfly Nimble the estimated natural frequencies for the lateral

body dynamics are around the 1 to 2 �I in the roll direction, while the mean flapping frequency is 17 �I. The natural

frequencies were estimated using analytic models of flapping flight. Based on the assumptions and the defined axis
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system of Figure 4, the nonlinear equations for the aerodynamic forces and moments, defined in Equation (1) to (6), and

the kinematic equations, shown in Equations (7) to (9) are determined.

Fig. 4 Axis system used on the Delfly Nimble.

�G = - − <6 · sin(\) =

BC0C4B︷                ︸︸                ︷
< · ( ¤D + @F − AE) (1)

�H = . + <6 · cos(\) · sin(q) = < · ( ¤E + AD − ?F) (2)

�I = / + <6 · cos(\) · cos(q)︸                          ︷︷                          ︸
5 >A24B

= < · ( ¤F + ?E − @D) (3)

"G = ! =

BC0C4B︷                                                ︸︸                                                ︷
�GG · ¤? + (�II − �HH) · @A − �GI · ( ¤A + ?@) (4)

"H = " = �HH · ¤@ + (�GG − �II) · A ? − �GI · (?2 + A2) (5)

"I = #︸︷︷︸
<><4=CB

= �II · ¤A + (�HH − �GG) · ?@ − �GI · ( ¤? − @A) (6)

¤q = ? + @ · sin(q) · tan(\) + A · cos(q) · tan(\) (7)

¤\ = @ · cos(q) − A · sin(q) (8)

¤k = @ · sin(q)
cos(\) + A ·

cos(q)
cos(\) (9)

Here �G , �H , �I are the forces, and "G , "H , "I are the external moments about the G, H, I axes. The < is the mass

of the Delfly Nimble and the 6 is the gravitational constant. Furthermore, D, E, F are the body velocities, ¤D, ¤E, ¤F are the

body accelerations, ?, @, A are the angular rates, ¤?, ¤@, ¤A are the angular accelerations, - , . , / are the aerodynamic
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forces, !, ", # are the aerodynamic moments, �GG etc. are the inertia terms, q, \, k are the attitude angles, and ¤q,
¤\, ¤k are the attitude angular rates. For the analysis of the dynamics, the linearized EOM’s will be used, as is done

often for aircraft systems [28, 30]. The linearization is done using two techniques, the Taylor series expansion and the

small perturbation theorem [28, 31]. The EOM’s are further simplified by use of the additional assumption that the

longitudinal and lateral dynamics are decoupled. For the lateral dynamics it is then assumed that only the aerodynamic

force . , the aerodynamic moments ! and # , and the states ?, A , E, and q are included. The EOM’s are further simplified

by assuming that the roll and yaw dynamics are decoupled, omitting # and A from the EOM’s of the lateral dynamics.

This assumption was made because there was little excitation seen in the yaw dynamics in the data gathered during the

identification experiments, explained in more detail in Appendix D. For the control inputs, only the inputs X 5 and XC are

included in the EOM’s, for only these inputs are actively given during the maneuvers. Leaving out the inputs X3 and XF

did not greatly influence the model accuracy. The resulting linearized EOM’s are defined in Equations (10) to (12).

!?Δ ? + !EΔE + ! X 5 ΔX 5 + ! XCΔXC = �GG · Δ ¤? (10)

.?Δ ? + .EΔE + .X 5 ΔX 5 + .XCΔXC + <6 · 2>B(\0) · 2>B(q0) · Δq = < · (Δ ¤E − F0 · Δ ?) (11)

Δ ¤q = Δ ? (12)

Where !? , !E , .? , and .E are the stability derivatives and ! X 5 , ! XC , .X 5 , and .XC are the control derivatives. The

stability and control derivatives are the parameters to be estimated. For given initial conditions F0, \0 and q0, these

EOM’s can then be formulated in a linear time-invariant state-space system, the general form of which consists of the

state equation shown in Equation (13), and the output equation shown in Equation (14).

¤xBB (C) =�BB · xBB (C) + �BB · uBB (C) (13)

yBB (C) =�BB · xBB (C) + �BB · uBB (C) (14)

Substituting the linearized EOM’s of Equations (10) to (12), into Equation (13) results in Equation (15).



¤?

¤E

¤q


=



�II
�2
· !? �II

�2
· !E 0

.?
< + F0

.E
< 6 · cos(\0) · cos(q0)

1 0 0


·



?

E

q


+



�II
�2
· ! X 5

�II
�2
· ! XC

.X 5

<
.XC
<

0 0


·

X 5

XC


(15)
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Where �2 is as defined by Equation (16).

�2 = �GG · �II − �2
GI (16)

In the output equation shown in Equation (14) the matrix �BB is set to an identity matrix, and the matrix �BB to a

zero matrix, resulting in Equation (17).

yBB (C) = xBB (C) (17)

IV. Parameter Estimation
The parameters to be estimated are the stability and control derivatives shown in the state-space system of Equation

(15). These were estimated using a least-squares approach, a variant of linear regression techniques. In this approach

the sum of squares of the residuals are minimized, which is done by optimizing the cost function shown in Equation (18)

[32].

� (x, \̄) =
#∑
8=1

Y2
8 =

#∑
8=1
(H8 − �(G8) · \̄)2 (18)

The main goal is to find a set of parameters \̄ which minimizes the cost function �. In the state-space system

shown in Equation (15) only the state derivatives ¤? and ¤E are calculated using the stability and control derivatives. The

least-squares approach is then applied to each of the equations of the state derivatives ¤? and ¤E. The output equations of
the state derivatives are defined in Equations (19) and (20).

�2
�II
·



¤?1

¤?2

:

¤?#



=



?1 E1 X 51 XC1

?2 E2 X 52 XC2

: : : :

?# E# X 5# XC#



·



!̂?

!̂E

!̂ X 5

!̂ XC


= �(x) · \̂!

(19)
< ·



¤E∗1
¤E∗2
:

¤E∗#



=



?1 E1 X 51 XC1

?2 E2 X 52 XC2

: : : :

?# E# X 5# XC#



·



.̂?

.̂E

.̂X 5

.̂XC


= �(x) · \̂.

(20)

Where N is the total number of data-points. In Equation (20) ¤E∗ is shown instead of ¤E since there are constant terms

in the equation for ¤E which need to be put to the left hand side of the equation. The ¤E∗ is defined in Equation (21).

¤E∗ = ¤E − F0 · ? − 6 · cos(\0) · cos(q0) · q (21)
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When the ordinary least-squares (OLS) approach is used, it is assumed that the residual Y resembles white noise

with a mean of zero. The stability and control derivatives can then be estimated using the OLS estimators shown in

Equations (22) and (23).

\̂! =
(
�(x)) · �(x)

)−1
· �(x)) · �2

�II
· ¤? (22)

\̂. =
(
�(x)) · �(x)

)−1
· �(x)) · < · ¤E∗ (23)

The main advantage is that the OLS estimator is a simple algorithm. However, this method is very sensitive to sensor

noise. Outliers in the data can greatly influence the identified parameters, leading to a very different mathematical

model. One of the ways this issue can be resolved is to add weights to the measurement points. When this is done the

weighted least-squares (WLS) approach is used. The weights are added using a weight matrix, defined in Equation (24).

, =



f2
1 0 . . . 0

0 f2
2

. . .
...

...
. . .

. . . 0

0 . . . 0 f2
#



(24)

Where f2
1 , f

2
2 , ...., f

2
# are the sensor noise variances of each data point. The weight matrix is determined using prior

knowledge about the system. This prior knowledge can be obtained by first using a OLS estimator, and determine the

covariance matrix of the residuals. The terms of the diagonal of the covariance are then the variances of the individual

data points, which are used to develop the weight matrix, as shown in Equations (25) and (26).

�$+Y = �
{
Y · Y) }

(25)

, = 3806 (�$+Y) (26)

The diagonal elements of �$+$!( are the variances of the data-points. The stability and control derivatives can

then be estimated using the WLS estimators shown in Equations (27) and (28).
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\̂! =
(
�(x)) ·,−1 · �(x)

)−1
· �(x)) ·,−1 · �2

�II
· ¤? (27)

\̂. =
(
�(x)) ·,−1 · �(x)

)−1
· �(x)) ·,−1 · < · ¤E∗ (28)

Additionally, the maximum likelihood estimator was also tested, but due to the unstable nature of the identified

state-space model convergence was not achieved.

V. Flight data experiments
One of the main difficulties in running the experiments was that they had to be done in closed-loop, for the Delfly

Nimble is inherently unstable. The natural dynamics could then be dampened by the controller, which leads to less

information contained in the flight data. There are three methods which have been proposed for the system identification

of closed-loop systems: the direct approach, the indirect approach, and the joint input-output approach [33, 34]. In this

research the direct approach is taken, where the controller is ignored in the model identification process. When using

this approach it is important that there is sufficient information contained in the measurement data. The identifiability of

the data, i.e. the information contained in the data, is maximized by exciting the natural motions as much as possible

[32]. The following measures can be been used to achieve maximum excitation [32, 34, 35]: reducing the controller

gains, giving larger commands, or giving direct commands to the control surfaces. In this research the first two measures

were applied in order to maximize the excitation of the natural motions. For the identification of a mathematical model

of the lateral body dynamics the roll control mechanisms were used primarily for the excitation of the lateral natural

motions. A PD-controller was used to control the roll attitude and for the experiments the gains of this controller were

adjusted. An overview of the gains is shown in Table 2.

Table 2 Overview of the gains of the roll controller which were used during the open-loop and closed-loop
experiments. The closed-loop gains are identical to those used in the research of Karásek et al. [8].

Gain Open-loop gains
(fast gains)

Closed-loop gains
(slow gains)

Proportional 1.406 0.625
Derivative 0.200 0.156

The proportional gain was increased in order to maximize excitation. When this gain would be increased too much it

induced oscillations in the roll direction during hover. In order to minimize the oscillations, the derivative gain was also

increased slightly. In the remainder of this research, the gains of the open-loop experiments are indicated as the ’fast’

gains, and the gains of the closed-loop experiments are indicated as ’slow’ gains. In total, there were four categories of

maneuvers used during the flight data experiments: identification maneuvers, validation maneuvers, coupled maneuvers

12



and nonlinear maneuvers. The following section will further explain the details of the experiments.

A. Identification maneuvers

The data captured during the identification maneuvers is used for the estimation of the parameters. Therefore, it is

important that sufficient information is contained in the data, which is ensured by maximizing the excitation during the

maneuver. To acquire the most excitation, the fast gains shown in Table 2 were used during these experiments. A train

of doublets was chosen as the maneuver for the identification experiments, with hovering as the initial condition. The

maneuver was carried out by giving roll angle and throttle commands to the Delfly Nimble. The increase in throttle was

necessary to prevent the Delfly Nimble from losing altitude, for the lift is decreased due to the rolling motion. The

required increase of throttle was determined by applying a throttle factor )�'� , calculated using Equation (29).

)�'� =
1

cos(qB?) (29)

Where qB? is the maximum set-point roll angle during the maneuver. The roll and throttle commands for the doublet

train are shown in Figure 5.
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a: Roll angle command for a doublet train
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b: Throttle command for a doublet train

Fig. 5 a) The roll command, and b) the throttle command for the doublet trains. The main frequencies of the
doublets are 7 and 4 �I.

The main frequencies excited during this doublet train are 7 and 4 �I. These values were chosen iteratively. Initially,

the widths of the doublet were determined by estimating the natural frequencies using analytic models of flapping flight,

such as the models in the research of Karásek et al. [8, 36], where the flapping flight dynamics of the drone fly was

analyzed. However, the main frequencies of the natural motions of the lateral body dynamics were estimated to be

around 1 and 2 �I. When using these frequencies, the Delfly Nimble moves away a lot from the hover condition, which

is not desirable when identifying a linear model. Therefore, doublets with a higher main frequencies, i.e. a smaller

width, in order to minimize the movement away from the initial condition, while maintaining maximum excitation.
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B. Validation maneuvers

Two types of validation experiments were conducted: open-loop data and closed-loop data. For generating the

open-loop data the fast gains were used, and for the closed-loop data the slow gains were used. For the validation

experiments, two maneuvers were used: doublets and the 112-maneuver. The doublets which were used for the validation

of the mathematical had different main frequencies from the doublets used in the identification data. The roll commands

given for the 112-maneuver are illustrated in Figure 6. This 112-maneuver used the fast gains. For the closed-loop

validation data the main frequencies were set lower, namely 4 and 2 �I, for there was very little excitation of the 7

�I pulse when using the slow gains. The initial condition of all the validation maneuvers was also the Delfly Nimble

hovering.
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a: Roll angle command for a 112-maneuver
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b: Throttle command for a 112-maneuver

Fig. 6 a) The roll command, and b) the throttle command for the 112-maneuvers. The main frequencies in the
maneuver shown are 7 and 3.5 �I.

C. Coupled maneuvers

One of the assumptions made for the derivation of the state-space system shown in Equation (15) is that the

longitudinal and lateral dynamics are decoupled. In order to verify the justifiability of this assumption, the accuracy

of the identified model was analyzed for coupled maneuvers. These maneuvers are coupled in the sense that inputs

are given to multiple control mechanisms. The coupled maneuver used during the experiments is the coupled doublet,

where first an input is given in pitch angle, making the Delfly Nimble fly forward, and then an input is given in roll

angle, making the Delfly do a doublet. The fast gains were used during this maneuver. The roll angle commands for the

coupled doublet is shown in Figure 7. The main frequency of this coupled doublet is 6 �I, and the initial condition

is the Delfly Nimble hovering. Similar to the previous maneuver, the throttle was increased during the maneuver to

prevent the Delfly Nimble from losing altitude.
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a: Roll angle command for a coupled doublet
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b: Pitch angle command for a coupled doublet
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c: Throttle command for a coupled doublet

Fig. 7 a) The roll command, b) the pitch command, and c) the throttle command for the coupled doublet
maneuver. The main frequency of this maneuver is 6 �I.

D. Nonlinear maneuvers

For the derivation of the state-space model the nonlinear equations for the aerodynamic forces, the aerodynamic

moments, and the kinematic equations were linearized using a Taylor series expansion and the small perturbation

theorem. It is then implicitly assumed that the lateral body dynamics of the Delfly Nimble can be modeled using a

linear model structure. In order to verify the justifiability of this assumption, experiments using nonlinear maneuvers

were also conducted. These maneuvers are nonlinear since they move away a lot from the initial condition, which was

hovering flight of the Delfly Nimble. The maneuvers used are the nonlinear doublets, where the Delfly Nimble is doing

a doublet in roll direction while flying sideways. The commands for the nonlinear doublet are illustrated in Figure 8.
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a: Roll angle command for a nonlinear doublet
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b: Throttle command for a nonlinear doublet

Fig. 8 a) The roll command, and b) the throttle command for the nonlinear doublet maneuver. The initial roll
command was 30° to make the Delfly Nimble move sideways, the deflection angle for the doublet was 15°, and
the main frequency of the doublet is 4 �I.
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The fast gains were used during these maneuvers. During the nonlinear doublet, a constant roll angle command of

30° is given to make the Delfly Nimble fly sideways, and then an additional roll angle command is given to enforce the

doublet. The deflection angle of the doublet is set to 15°. and the main frequency of the is 4 �I. In addition to this

nonlinear doublet, there were also maneuvers which used a constant roll angle of 20°.

E. Influence of the controller

The commands for the roll angle for the maneuvers show in the previous section does not directly go to the flapping

mechanisms of the Delfly Nimble, but goes through a reference generator and a PD-controller as shown in Figure 2.

The set-point roll angle first goes through the reference generator, which filters the set-point roll angle heavily, and the

output is the reference roll angle. The difference between the two angle is shown in Figure 9 for the doublet train used in

the identification experiments.
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Fig. 9 The set-point roll angle and the reference roll angle for the doublet train maneuver.

From Figure 9 it can be seen that the range of the reference roll angle is much smaller than the range of the set-point

roll angle. The reference roll angle goes through the PD-controller, which limits the movement of the Delfly Nimble

even more, further decreasing the dynamic excitation. In spite of the reference generator and the PD-controller, there

was still movement of the Delfly Nimble visible during the identification experiments. This is illustrated in Figure 10,

where the doublet maneuver is clearly visible. The Delfly Nimble follows the reference roll angle well, especially during

the first parts of the doublets, when a negative roll angle command is given. In the remainder of the doublet maneuver,

when a positive roll angle command is given, there is a substantial overshoot. This is due to the large P-gain which was

used during the identification maneuvers, as shown Table 2. There is also a delay visible between the reference roll

angle and the actual roll angle. This is caused by the inertia of the Delfly Nimble. When the roll angle command is

given, a deflection input is given to the control mechanism for the roll attitude, which in this case are the wings.

0 0.5 1 1.5 2 2.5 3

-40

-20

0

20

40

Fig. 10 The reference roll angle and the actual roll angle for the doublet train maneuver.
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VI. Results and discussion

A. Identification Results

The identifiability of the data was verified by analyzing the power spectral density (PSD) plots of the states during

the maneuver. Two power spectrums of the states are shown in Figure 11: during hover, and during the identification

maneuver. The PSD plots of the states during the maneuver have higher values around 1 to 4 �I compared to the PSD

plots of the states during hover. The eigenfrequencies which were estimated using analytic models were found to be in

the range of 1-2 �I. Since there are peaks visible around these frequencies it can be concluded that the natural body

dynamics are excited well during the identification maneuver.

10
0

10
1

10
2

0

1

2

10
0

10
1

10
2

0

0.05

0.1

10
0

10
1

10
2

0

0.05

0.1

Fig. 11 Power Spectral Density (PSD) plots of the states of the Delfly Nimble during hover and the identification
maneuver. The green square in the power spectrums of the states contains the frequency content up to 9 �I.
The components inside this square were filtered out using using a zero-phase Butterworth filter with order of
10.

The green square in the power spectrums of the states contains the frequency content up to 9 �I. The components

inside this square were used in the identification data, filtered out using using a zero-phase Butterworth filter with

order of 10. The estimation results of the state derivatives using the WLS approach and the state-space system of

Equation (15) are presented in Figure 12. The accuracy metrics of the WLS estimation can be found in Table 4, and the

estimated stability and control derivatives are presented in Table 3. From Figure 12 and Table 4 it can be seen that

the state derivatives are estimated well with the state-space system shown in Equation (15). The residuals also show

good whiteness, which can be seen in the autocorrelation plots in Figure C.1. Based on Table 3 it is clear that !?,

!E and ! XC have a very high sensitivity to noise, indicated by the high relative value of the standard deviation. This

indicates that the parameter estimation process can be improved. Using the estimated stability and control derivatives,

the geometric properties of the Delfly, and Equation (15) the state-space model of the lateral body dynamics can be

acquired. The resulting numerical state-space system is defined in Equation (B.2). The estimated stability derivatives

have been compared to the stability derivatives of the drone fly, discussed in Appendix A.
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Fig. 12 Results of the WLS estimation for each state derivative. ¤E∗ is as defined in Equation (21).

Table 3 Estimated parameters for the state-space sys-
tem shown in Equation (15) as a result of the WLS
estimator.

Estimated Parameters Reduced Grey-Box Model
Stability
Derivative �̂ |f̂| 100|f̂/�̂|

!? −2.43×10−4 1.69×10−4 6.96×101

!E −3.74×10−4 1.52×10−3 4.07×102

.? 2.75×10−3 3.31×10−6 1.20×10−1

.E −5.61×10−2 3.32×10−5 5.92×10−2

Control
Derivative �̂ |f̂| 100|f̂/�̂|

! X 5 1.06×10−4 8.47×10−6 8.02×100

! XC 4.19×10−5 5.48×10−5 1.31×102

.X 5 −8.63×10−4 1.22×10−7 1.41×10−2

.XC −4.05×10−4 4.55×10−7 1.12×10−1

Table 4 Accuracy metrics for the estimation results
shown in Figure 12.

Accuracy Metrics Three-State Grey-Box Model

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.945 0.907 9.99 A03

B2 (5.74)
¤E 0.982 0.967 0.38 <

B2 (2.84)

The eigenvalues of the estimated state-space system using four different data-sets are plotted in the complex plane,

shown in Figure 13, and the values of the eigenvalues are shown in Table 5. It can be observed that the Delfly Nimble

has a stable aperiodic mode and an unstable oscillatory mode in the roll direction. There are variations visible in the

eigenvalues between datasets, which is mainly caused by the different amount of excitation during the experiment, with

dataset #1 having the most excitation, while dataset #3 having the least. To analyze the physical meaning of the modes

the eigenvectors were determined. To account for the differences in numerical ranges of each state, the eigenvectors

were non-dimensionalized using Equations (30) to (32)[37].

?+ =
?

5
(30) E+ =

E

2 · q 5 · 5 · Â (31) q+ =
q

2 · c (32)
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Table 5 Eigenvalues of the state-space
system using four different identifica-
tion data-sets.

Eigenvalues identified models
ID Data ,1 ,2,3

#1 −5.18 0.32 ± 2.738
#2 −6.84 0.39 ± 3.748
#3 −7.19 0.97 ± 4.268
#4 −7.45 0.30 ± 3.658

-8 -7 -6 -5 -4 -3 -2 -1 0 1

Real

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
a

g
in

a
ry

Eigenvalues for the identified models

8 7 6 5 4 3 2 1

0.98

0.93

0.85
0.74 0.62 0.48 0.32 0.16

0.98

0.93

0.85
0.74 0.62 0.48 0.32 0.16

dataset #1

dataset #2

dataset #3

dataset #4

Fig. 13 Eigenvalues of the state-space system using four different
identification data-sets plotted on the complex plane.

Where the flapping frequency 5 was set to 106.8 A03/B (17 �I), the flapping amplitude q 5 to 1.536 A03 (88°),

and the Â to 7.45×10−2 meter. The terms of the eigenvector are shown in their polar form, and all the states will be

normalized with respect tot the roll angle q+.

Table 6 Eigenvectors of the estimated state-space mode using data-set #1 . The terms in the eigenvectors have
been non-dimensionalized and normalized with respect to q+.

Eigenvector Three-State Grey-Box Model
State Mode 1 Mode 2
? 0.30 (180°) 0.16 (83.4°)
E 0.86 (180°) 0.70 (-53.5°)
q 1.0 (0°) 1.0 (0°)

In the eigenvector of the first mode shown in Table 6 it can be noticed that the variables q+ and E+ have a phase shift

of 180°, meaning that when the Delfly is for example moving sideways to the left, it is rolled in the opposite direction to

the right, which has a stabilizing effect, explaining why the eigenvalue is located in the left half of the complex plane. In

the eigenvector of the second mode it can be seen that the main variables are the E+ and the q+. However, the phase shift

between the E+ and the q is -53.5°, which means that a large portion of the oscillation cycle of these two variables have

the same sign, i.e. when the Delfly is for example moving sideways to the left it is rotated in the same direction, which

has a destabilizing effect. This explains why the real part of the eigenvalue of this maneuver is in the right half of the

complex plane.
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B. Validation Results: Open-Loop

For the open-loop validation the state derivatives were determined with the identified state-space model of Equation

(B.2) and the measured states. The following maneuvers are for the open-loop validation: doublets and the 112-maneuver.

The estimation results of a doublet with a main frequency of 6 �I is shown in Figure 14, and the accuracy metrics of

this estimation are found in Table 7. The estimation results of a 112-maneuver with main frequencies of 3.5 and 7 �I

are illustrated in Figure 15, and the accuracy metrics of this estimation are indicated in Table 8.
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Fig. 14 Estimation results of the state derivatives for
a doublet with a main frequency of 6 �I using the
identified state-space model.
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Fig. 15 Estimation results of the state derivatives for
a 112-maneuver with main frequencies of 3.5 �I and
7 �I using the identified state-space model.

Table 7 Accuracy metrics of the estimation of the
state derivatives for a doublet with a main frequency
of 6 �I using the identified state-space model.

Accuracy Metrics OL Validation Data:
Doublet 6 �I

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.985 0.924 5.51 A03

B2 (5.99)
¤E 0.981 0.948 0.28 <

B2 (4.99)
¤q 0.996 0.890 0.38 A03

B2 (6.77)

Table 8 Accuracy metrics of the estimation of the
state derivatives for a 112-maneuver with main fre-
quencies of 3.5 and 7�I using the identified state-space
model.

Accuracy Metrics OL Validation Data:
112-maneuver

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.918 0.848 8.84 A03

B2 (7.20)
¤E 0.908 0.823 0.63 <

B2 (7.27)
¤q 0.998 0.980 0.16 A03

B2 (2.66)

From the presented Figures 14 and 15, and Tables 7 and 8, it can be argued that the state derivatives of both

maneuvers are estimated well with the identified state-space model, for the accuracy metrics are in the same range as the
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accuracy metrics of the estimation of the identification data. The residuals also resemble whiteness, as can be seen in

the autocorrelation plots in Figures C.2 and C.3.

C. Validation Results: Closed-Loop

For the closed-loop validation, the state response during a maneuver is simulated using a Simulink model, which

uses a one to one copy of the controller architecture and the identified state-space model. The measured input XC was

used in the simulation. Furthermore, the actuator dynamics of the flapping mechanism is simulated using a slightly

modified version of the model which was developed in the research of Kajak et al. [15, 16]. The only modification to

the model of the flapping mechanism was multiplying the output with a gain of 1
1.4 , in order to get the simulated input

X 5 as close as possible to the the actual input. The transfer function used to model the flapping dynamics is defined in

Equation (33).

� 5 ;0? (B) = 8.97
B + 12.56

(33)

The closed-loop validation was done using both the fast and slow gains of Table 2. For the closed-loop validation

using the fast gains, a doublet train was used, where the main frequencies are 7 �I and 4 �I. The results of the

simulation of the states of the doublet train are shown in Figure 16. Note that this not the same doublet train which was

used for the model identification.

The simulated state response seems more oscillatory compared to the measured state response. The main reason for

this deviation is that the input X 5 is simulated, which is not coherent with the actual input. The difference is illustrated

in Figure 17. It can be seen that the simulated input X 5 is more oscillatory than the actual input, which in turn also leads

to a more oscillatory simulated state response. The accuracy metrics of the states and the input are shown in Table 9.

The autocorrelation plots of the residuals of this simulation are presented in Figures C.4 and C.5, which show that the

residuals are more coloured.

Table 9 Accuracy metrics of the simulated state response of a doublet train. Here the main frequencies of the
doublets were 7�I and 4 �I, and the simulation was caried out using the fast gains.

Accuracy Metrics CL Validation Data:
Doublet Train with fast gains

Output
Variable rGH R2

RMSE
(% of meas.

range)
? 0.868 0.438 1.01 A03

B (12.51)
E 0.687 0.177 0.13 <

B (15.51)
q 0.809 0.429 0.09 A03 (12.32)
X 5 0.866 0.633 12.59 A03

B (10.95)
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Fig. 16 Measured and simulated state response of a doublet train. Here the main frequencies of the doublets
were 7�I and 4 �I, and the simulation was caried out using the fast gains.
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Fig. 17 Measured and simulated input X 5 for a doublet train maneuver. Here the main frequencies of the
doublets were 7�I and 4 �I, and the simulation was caried out using the fast gains.

For the closed-loop validation using the slow gains of the controller, two maneuvers were used: a doublet train

main frequencies of 6, 4 and 2 �I, and 112-maneuvers with main frequencies of 4 and 2 �I. The simulated states of

the doublet train are shown in Figures 18, the simulated input X 5 for this maneuver can be seen in Figure 20, and the

accuracy metrics are found in Table 10. The simulated states of the 112-maneuvers are illustrated in Figures 18, the

simulated input X 5 for this maneuver is presented in Figure 20, and the accuracy metrics are indicated in Table 10. The

state response of the doublet train is simulated accurately with the Simulink model. The same can be stated for the

112-maneuvers, although there is a noticeable reduction of the accuracy of the state E. The simulated states and the

inputs are less oscillatory than those of the simulation which uses the fast gains. The simulations of both the doublet

train and the 112-maneuvers are stable, because the Delfly Nimble returns to the hover between maneuvers. However,
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when the Delfly Nimble has returned to hover, there are still small oscillations occurring, which are not captured by the

identified model. These oscillations can also be seen in the input signal X 5 . This leads to less favorable values of the

accuracy metrics, and also to more coloured residuals, as can be see in the autocorrelation plots in Figures C.6, C.8, C.7,

and C.9. These oscillations could be caused due to time-varying dynamics, which were not included in this research.

Based on these results it can be concluded that the identified model can be used in a closed-loop configuration, making

it applicable for the stability analysis of the body dynamics, and for controller design.
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Fig. 18 Simulated state response of a doublet train
with three doublets. Here the main frequencies of the
doublets were 6, 4 and 2 �I, and the simulation was
carried out using the slow gains.
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Fig. 19 Simulated state response of multiple 112-
maneuvers. Here themain frequencies of the doublets
were 4 and 2 �I, and the simulation was carried out
using the slow gains.
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Fig. 20 Measured and simulated input X 5 of a dou-
blet train with three doublets. Here the main fre-
quencies of the doublets were 6, 4 and 2 �I, and the
simulation was carried out using the slow gains.
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Fig. 21 Measured and simulated input X 5 of mul-
tiple 112-maneuvers. Here the main frequencies of
the doublets were 4 and 2 �I, and the simulation was
carried out using the slow gains.
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Table 10 Accuracy metrics of the simulated state
response of a doublet train with three doublets. Here
the main frequencies of the doublets were 6, 4 and 2
�I, and the simulation was carried out using the slow
gains.

Accuracy Metrics CL Validation Data:
Doublet Train with slow gains

Output
Variable rGH R2

RMSE
(% of meas.

range)
? 0.900 0.542 0.92 A03

B (7.18)
E 0.905 0.657 0.13 <

B (6.49)
q 0.915 0.837 0.06 A03 (4.42)
X 5 0.792 0.575 9.85 A03

B (8.50)

Table 11 Accuracy metrics of the simulated state re-
sponse of multiple 112-maneuvers. Here the main fre-
quencies of the doublets were 4 and 2 �I, and the sim-
ulation was carried out using the slow gains.

Accuracy Metrics CL Validation Data:
112-maneuvers with slow gains

Output
Variable rGH R2

RMSE
(% of meas.

range)
? 0.865 0.467 0.99 A03

B (10.13)
E 0.650 0.171 0.14 <

B (19.46)
q 0.815 0.387 0.08 A03 (11.45)
X 5 0.856 0.492 12.77 A03

B (11.00)

D. Model accuracy coupled maneuvers

Coupled doublets were used to analyze the justifiability of the assumption of decoupled longitudinal and lateral

dynamics. The results of the estimation of the state derivatives of the coupled doublet are shown in Figure 22, and the

accuracy metrics of this estimation are indicated in Table 12.
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Fig. 22 Estimation results of the state derivatives for a coupled doublet with a main frequency of 6 �I using
the identified state-space model.
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Table 12 Accuracy metrics of the estimation shown Figure 22. The validation data was a coupled doublet with
a main frequency of 6 �I, and the estimation was done using the state-space model shown in Equation (15).

Accuracy Metrics Validation Data:
Coupled Doublet 6 �I

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.927 0.845 9.27 A03

B2 (7.27)
¤E 0.699 0.523 1.23 <

B2 (11.17)
¤q 0.964 0.923 0.34 A03

B (4.54)

It can be observed that the estimation accuracy of ¤E has decreased significantly. This also leads to more coloured

residuals, visible in the autocorrelation plots in Figure C.10. This could indicate that the absence of the dihedral input

X3 does have a significant influence on the model accuracy of coupled maneuvers. In order to verify this, models were

also identified which included the input X3 in the state-space model. However, when the inputs X 5 , X3 , and XC were

included in the model, the eigenvalues of the resulting model were very different from those seen in Table 5, which

would lead to a less accurate estimation of the state derivatives. This may be due to coupling effects when all three

inputs are included in the model structure used for the identification. Though this was not further investigated in this

research. Instead, two different combinations of inputs were used in the state-space model to analyze the influence of

dynamic coupling. In the first combination, only the input X 5 was included in the state-space model. The numeric

state-space model which only includes X 5 is shown in Equation (B.4). The estimation results for this model are shown

in Figure 23, and the accuracy metrics for this estimation are found in Table 13. In the second combination of inputs,

the inputs X 5 and X3 were incorperated in the state-space model. The numeric state-space model which includes X 5 and

X3 is shown in Equation (B.6). The estimation results when this model is used are shown in Figure 24, and the accuracy

metrics for this estimation are indicated in Table 14.

Table 13 The accuracy metrics for the estimation of
a coupled doublet with a main frequency of 6 �I using
an identified state-space model with only the X 5 as
input.

Accuracy Metrics Coupled Doublet:
X 5 only

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.912 0.832 9.62 A03

B2 (7.55)
¤E 0.695 0.509 1.25 <

B2 (11.33)
¤q 0.964 0.923 0.34 A03

B (4.54)

Table 14 The accuracy metrics for the estimation of
a a coupled doublet with a main frequency of 6 �I
using an identified state-space model with X 5 and X3
as inputs.

Accuracy Metrics Coupled Doublet:
X 5 and X3

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.915 0.840 9.41 A03

B2 (7.39)
¤E 0.689 0.506 1.25 <

B2 (11.36)
¤q 0.964 0.923 0.34 A03

B (4.54)
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Fig. 23 Estimation results of the state derivatives
for a coupled doublet with a main frequency of 6 �I
using an identified state-space model with only the X 5
as input.
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Fig. 24 Estimation results of the state derivatives
for a coupled doublet with a main frequency of 6 �I
using an identified state-space model with X 5 and X3
as inputs.

From Figures 23 and 23, it can be seen that when only the input X 5 is included in the state-space model, the accuracy

of the estimated state derivatives is very similar compared to the accuracies of the estimation shown in Figure 22 and

Table 12. Furthermore, the autocorrelation plots are similar when comparing Figure C.11 to Figure C.10. When the

input X3 is included in the state-space model, there is no improvement in the accuracy of the estimation of ¤E, as can
be seen in Figure 24 and Table 14. Furthermore, the autocorrelation plots are again very similar when comparing

Figure C.12 to Figure C.10. This indicates that the model accuracy is not influenced when coupled inputs are given,

suggesting that the assumption that the longitudinal and lateral dynamics are uncoupled can be made. The main cause

of the reduction in accuracy of the estimation of ¤E could instead be the forward motion during the maneuver. The

maximum value of the forward velocity D was 1.22<B , while a maximum of 0.40<B was reached in the identification data,

suggesting that the reduced accuracy may not mainly be due to the coupled inputs, but also because of the Delfly Nimble

moving away a lot from the initial condition of the identification maneuver, which was the Defly Nimble hovering.

The influence of forward flight on the lateral dynamics has been researched by Xu et al. [38]. In this research, the

lateral dynamics of a bumblebee were analyzed by determining the stability derivatives with different forward flight

velocities. From the results it could be seen that the unstable mode, which for the bumblebee was aperiodic, became

more stable as the forward flight velocity increases. The main cause of this is the influence of lateral inflow on the

leading edge vortex (LEV). For insects, it has been shown that such a vortex is present on the leading edge of their

wings [39]. When there is lateral inflow from the wingroot to the wingtip, the LEV is intensified and the amount of
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lift generated increases. In the opposite case, when the lateral inflow goes from the tip to the root, the LEV is less

concentrated and the amount of lift generated decreases [40, 41]. This leads to a difference in lift generated between the

wings, causing instability. In forward flight, the mean position of the wings is more backwards, due to which there is

less lateral inflow moving along the leading edge. Consequently, there is less effect on the LEV, thus little effect on the

lift generation. Then, the difference in generated lift between the wings is smaller, leading to a more stable motion in

forward flight. A similar influence can be the cause for the reduced accuracy of the coupled doublet maneuver of the

Delfly Nimble. Whether the Delfly Nimble is more stable in forward flight has not been investigated in this research.

E. Model accuracy nonlinear maneuvers

Nonlinear doublets were used to analyze the justifiability of the assumption that modeling the the lateral body

dynamics of the Delfly Nimble can be modeled using a linear model structure. The estimation results of a nonlinear

doublet with a constant roll angle of 30° shown in Figure 25, and the accuracy metrics for this estimation are found in

Table 15. The estimation results of a nonlinear doublet with a constant roll angle of 20° are shown in Figure 26, and the

accuracy metrics for this estimation are indicated in Table 16.
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Fig. 25 Estimation results of the state derivatives for
a nonlinear doublet with a main frequency of 4 �I,
constant roll angle of 30° and a roll deflection of 15°,
using the identified state-space model.
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Fig. 26 Estimation results of the state derivatives for
a nonlinear doublet with a main frequency of 4 �I,
constant roll angle of 20° and a roll deflection of 15°,
using the identified state-space model.

When a constant roll angle of 30° is used the estimation accuracy of ¤E has decreased significantly. This reduction in

accuracy is primarily due to the sideways motion of the Delfly Nimble during this maneuver. The maximum lateral

velocity E reached in this nonlinear doublet maneuver was 1.60<B , while in the identification maneuver the maximum
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Table 15 The accuracy metrics for the estimation of
a nonlinear doublet with a main frequency of 4 �I, a
constant roll angle of 30° and a roll deflection of 15°.

Accuracy Metrics Nonlinear Doublet:
30°, 4 Hz

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.952 0.900 7.91
¤E 0.783 0.618 16.16
¤q 0.985 0.965 4.45

Table 16 The accuracy metrics for the estimation of
a nonlinear doublet with a main frequency of 4 �I, a
constant roll angle of 20° and a roll deflection of 15°.

Accuracy Metrics Nonlinear Doublet:
20°, 4 Hz

Output
Variable rGH R2

RMSE
(% of meas.

range)
¤? 0.927 0.824 8.02
¤E 0.892 0.791 10.18
¤q 0.994 0.985 2.40

E was 1.00<B . When a constant roll angle of 20° is used, the estimation accuracy of ¤E is more in the range of those

in Section VI.A. The main reason for the improvement is the lower maximum of the later velocity in this maneuver,

which was 1.43<B . This demonstrates that the further the Delfly Nimble moves away from the initial condition of the

identification data, the hover condition, the lower the model accuracy. The reduction of model accuracy might be caused

by the influence of lateral inflow on the LEV, which can increase or decrease the lift generation [38, 39, 41], as was

described earlier in the validation results of the coupled maneuvers in Section V.C.

VII. Conclusion and recommendations
In this paper a mathematical model of the lateral body dynamics of a tailless four-winged flapping wing micro air

vehicle was determined. The flapping wing micro air vehicle analyzed here is the Delfly Nimble, a tailless member

of the Delfly Family, a group of flapping robots which have been developed at the Delft University of Technology.

The rigid body approximation was used in order to develop the model structure, which led to a linear time-invariant

state-space system for known initial conditions. The parameters of the state-space model were stability and control

derivatives, which were determined using the least-squares approach. Due to tailless design of the Delfly Nimble it

is inherently unstable. As a consequence, all flight experiments needed to be conducted in closed-loop. The direct

approach was taken for the system identification of this closed-loop system, where the controller is ignored in the model

identification. One of the main difficulties encountered here is that the controller can dampen the natural response,

reducing the information contained in the measurement data, leading to less accurate models. In order to cope with this,

the gains of the controller were altered such that the influence of the controller was minimized, and large commands

were given during the identification experiments. With these two measurements sufficient excitation was obtained for

the identification of a mathematical model of the lateral body dynamics. The identifiability was checked by analysis of

the power spectral density plots of the measures states, where peaks visible around the expected frequencies. For the

identification experiments a train of doublets were used, with hovering as the initial condition. Two natural modes

of the Delfly Nimble were identified using the state-space model, a stable aperiodic mode and an unstable oscillatory
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mode, confirming the inherent instability of the Delfly Nimble. During the validation experiments doublets and the

112-maneuver was used, conducted using both the altered gains and the original gains of the PD-controller on the Delfly

Nimble. The identified state-space model was able to estimate the state derivatives of the Delfly Nimble accurately,

reaching accuracies of over 90%. The identified model was also used in a closed-loop configuration using a Simulink

model, in which a one to one copy of the PD-controller was implemented. The simulated states were also close to the

actual states, with the accuracy exceeding 85%, and stable simulation. However, there was oscillatory motion visible

when the Delfly Nimble was hovering which was not captured by he identified model. This could be due to time-varying

dynamics, which were not considered in this research. The developed model can be used in a closed-loop configuration

for the stability analysis of the body dynamics, which are time-averaged, and for the controller design. The justifiability

of two assumptions which were used for the development of the state-space model: the longitudinal and lateral dynamics

are decoupled, and the body dynamics can be modeled using a linear model structure. For the assumption on decoupled

dynamics coupled maneuvers were performed, where inputs are given to more than one control mechanism. For the

coupled maneuver the coupled doublet was used, where the Delfly Nimble is flying forward and performs a doublet.

The model accuracy for the coupled maneuver decreased the most for the lateral body acceleration ¤E, most likely due to

the influence of incoming lateral airflow on the intensity of the leading edge vortex, rather than the inputs of multiple

control mechanism. This suggests that the assumption of uncoupled dynamics can be made. For the assumption on the

linear model structure nonlinear maneuvers were performed, where the Delfly Nimble moves away greatly from the

initial condition of the identification maneuvers, the hover condition. The nonlinear doublet was used as the nonlinear

maneuver, where the Delfly Nimble is flying sideways and performs a doublet. The model accuracy for the nonlinear

maneuver also reduced the most for ¤E, most likely also due to the influence of the lateral incoming airflow on the

intensity of the leading edge vortex. It was shown that for lower sideways velocities the model accuracy improved. This

indicates that the linearity assumption is not a valid one.

There are still improvements to apply for the development of a mathematical model of the lateral body dynamics of

the Delfly Nimble, and thus recommendations are given for future research. The first recommendation is to give direct

inputs to the control surfaces during the identification experiments. This can be done by giving a disturbance input to

the roll control mechanism. The advantage of doing this is that the influence of the controller is then further minimized,

leading to more excitation of the lateral body dynamics. The more excitation during the identification experiment, the

more information is contained in the data, which leads to better identified models. The second recommendation is to use

a different parameter estimation approach. This is mainly due to the high noise sensitivity of the stability derivatives

!?, !E , and the control derivative ! XC . The parameter estimation approach which could be used to reduce the noise

sensitivity is the maximum likelihood estimator. This estimation approach was also tried in this research, but due to

the unstable nature of the identified state-space model the maximum likelihood estimator did not converge. When the

maximum likelihood estimator is used, the controller must be included. The third recommendation is therefore is to
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use a different approach for the system identification of the closed-loop system, such as the indirect approach and the

joint input-output approach. Using either one of these may help to ensure convergence of the maximum likelihood

estimator. The fourth recommendation, is to use foam between the IMU and the mounting point to the fuselage. In

this research the IMU was mounted directly to the fuselage, which led to a lot of noise in the IMU data. This was

especially the case for the yaw rate data, which had a very high frequency content around the 11 �I. This peak was

most likely due to internal vibration. Next to the issue of the high frequency components in the yaw rate data, there was

also very little excitation seen in the PSD plot of the yaw rate. This was the main reason for the bad estimation of the

yaw dynamics. It is therefore recommended to use yaw inputs to increase the excitation of the yaw dynamics, improving

the model identification of them. One of the main disadvantages of using the foam between the IMU and the fuselage is

the robustness of the setup. The IMU is attached to the foam with double-sided tape, which is prone to detaching during

rapid maneuvers. The fifth recommendation it to include the time-varying dynamics in the model, for it was seen that

oscillations which occur during hover are not captured when using the identified model in closed-loop configuration.

This can be done by modeling each wing of the Delfly Nimble as a separate body, which leads to a multi-body dynamic

system with five bodies, or to model the time-varying components using a Fourier series. The last recommendation is to

use a nonlinear model structure in order to expand the range of the identified model. The lateral body dynamics are

very sensitive to incoming airflow. The range can be expanded using for example the linear parameter-varying model

structure, similar to what was done for the model identification of the Delfly II.

Appendices

A. Comparison between stability derivatives Delfly Nimble and Drone Fly
In order to compare the stability derivatives of the Delfly Nimble with those of the dron efly, they have been

non-dimensionalized using Equations (A.1) to (A.4).

!+? =
!? · 5

d ·*2 · �F · 2̄
(A.1) !+E =

!E
d ·* · �F · 2̄ (A.2) .+? =

.? · 5
d ·*2 · �F

(A.3) .+E =
.E

d ·* · �F (A.4)

Where the flapping frequency 5 = 17 �I, the air density d = 1.225 :6
<3 , the wing area �F = 1.043×10−2 <2, and the

mean chord length 2 = 7.611×10−2 <, and the center of pressure velocity* is defined in Equation (A.5).

* = 2 · q 5 · 5 · Â (A.5)

Where the flapping angle q 5 is 1.536 A03 (88°), and the radius of the second moment of inertia of the wing Â is

7.45×10−2 <. The non-dimensionalized stability derivatives of the Delfly Nimble and of the analytic model are shown

in Table A.1. The stability derivatives of the drone fly have been determined using various analytic models.
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Table A.1 The non-dimensionalized stability derivatives of the Delfly Nimble and the analytic model of flap-
ping flight. ’ASL’ indicates the eigenvalues determined by Karásek et al. [19] where ’tr’ indicates the wing
translational forces, ’rot’ indicates the wing rotational forces and ’add’ indicates the forces due to the inertia
of the added air mass. ’Zhang’ the ones determined by Zhang et al. [23] and ’Cheng’ the ones by Cheng et al.
[42]. All the analytic stability derivatives shown have been determined with the morphological data of the drone
fly. The values shown may differ from the values in the work, for some sources used different body axis systems.
The ones shown are for the axis system used for the Delfly Nimble, as shown in Figure 4.

Stability Derivatives: Delfly Nimble vs. Drone Fly
Stability
Derivative

Delfly
Nimble

Zhang [23]
(CFD)

ASL [19]
(tr+rot+add)

ASL [19]
(tr+rot)

ASL [19]
(tr) Cheng [42]

!+? −0.28 −1.2 −1.3 −1.27 −2.29 −1.25
!+E −0.10 0.806 0.97 0.601 −0.434 −0.381
.+? 0.24 −0.104 1.47 1.47 −0.055 0
.+E −1.13 −0.876 −0.705 −0.705 −0.705 −0.618

From Table A.1 it can be seen that all the values of !+? are and .+E are negative, while this is not the case for the

!+E and .+? . The sign of !E of the Delfly Nimble was negative in all the data sets used for estimation of the stability

derivatives, while positive and negative values have been seen for .?. The change in sign of !+E can be due to the

different wing configurations, for the Delfly Nimble has a four-wing configuration, while the drone fly only has two

wings. There is also a difference in magnitude seen when comparing the stability derivatives of the Delfly Nimble to

the analytic stability derivatives. The inequality in magnitude can be a result of the difference in morphological data

between the Delfly Nimble and the drone fly used to determine the stability derivatives.

B. Numerical state-space model used for validation
There were three different state-space models which were used as the model structure, the only difference between

them being the inputs which were included. The symbolic equation for the state-space model which includes the inputs

X 5 and XC is shown in Equation (B.1).
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(B.1)

The numeric state-space using the values of the stability and control derivatives of Table 3 is shown in (B.2).
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(B.2)

The symbolic equation for the state-space model which includes only the input X 5 is shown in Equation (B.3), and

the estimated stability and control derivatives are shown in Table B.1. This model structure was used only for the

validation of the coupled doublet maneuver. For the estimation of the parameters, only data-set 1 was used to estimate

the stability and control derivatives.
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Table B.1 Estimated parameters for the three-state state-space system shown in Equation (B.3) as a result of
the WLS estimator, using the first identification data-set.

Estimated Parameters Reduced Grey-Box Model: input X 5

L-parameters: !? !E ! X 5

−2.68×10−4 −6.69×10−4 1.06×10−4

Y-parameters: .? .E .X 5

2.96×10−3 −5.33×10−2 −8.66×10−4

The numeric state-space using the values of the stability and control derivatives of Table B.1 is shown in Equation

(B.4).
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The symbolic equation for the state-space model which includes only the input X 5 is shown in Equation (B.5), and

the estimated stability and control derivatives are shown in Table B.2. This model structure was used only for the

validation of the coupled doublet maneuver. For the estimation of the parameters, only data-set 1 was used to estimate
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the stability and control derivatives.
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Table B.2 Estimated parameters for the three-state state-space system shown in Equation (B.5) as a result of
the WLS estimator, using the first identification data-set.

Estimated Parameters Reduced Grey-Box Model: inputs X 5 and X3

L-parameters: !? !E ! X 5 ! X3
−2.57×10−4 −4.91×10−4 1.06×10−4 1.20×10−3

Y-parameters: .? .E .X 5 .X3
2.42×10−3 −6.00×10−2 −8.86×10−4 −5.41×10−2

The numeric state-space using the values of the stability and control derivatives of Table B.2 is shown in Equation

(B.6).
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The lateral state-space can be combined with the longitudinal state-space system which was developed in the research

of Nijboer et al.[17, 18]. The numeric state-space model using the paramters identified in this research are shown in

Equation (B.7).
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C. Autocorrelation plots
The autocorrelation plots of the identification data, for which a doublet train with main frequencies 4 and 7 �I was

used, is shown in Figure C.1. The autocorrelation plots of the open-loop validation data, in which a doublet with main

frequency of 6 �I was used and a 112-maneuver with main frequencies of 3.5 and 7 �I, are shown in Figures C.2 and

C.3.
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Fig. C.1 Autocorrelation plot of the residuals of the state derivatives for a doublet train with main frequencies
of 4 and 7 �I. The state derivatives were determined using the state-space system shown in Equation (B.2).
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Fig. C.2 Autocorrelation plot of the residuals of the
state derivatives for a doublet with a main frequency
of 6 �I. The state derivatives were determined using
the state-space system shown in Equation (B.2).
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Fig. C.3 Autocorrelation plot of the residuals of the
state derivatives for a 112-maneuver with main fre-
quencies of 3.5 and 7�I. The state derivativeswere de-
termined using the state-space system shown in Equa-
tion (B.2).
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Closed-loop validation was also done in this research, using a Simulink model which used a one to one copy of the

PD-controller used on the Delfly Nimble. Both the fast gains and the slow gains shown in Table 2 were used in the

closed-loop validation. The autocorrelation plots of the residuals of the simulation of a doublet train using the fast gains

are shown in Figures C.4 and C.5.
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Fig. C.4 Autocorrelation plot of the residuals of the states of a doublet train. The states are determined using
the the state-space model shown in Equation (B.2) in closed-loop configuration. For this simulation the fast
gains shown in Table 2 were used.
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Fig. C.5 Autocorrelation plot of the residuals of the input X 5 of a doublet train. The states are determined
using the the state-space model shown in Equation (B.2) in closed-loop configuration. For this simulation the
fast gains shown in Table 2 were used.

There were also maneuvers which were performed using the slow gains for the closed-loop validation, namely a

doublet train and 112-maneuvers. The main frequencies in the doublet train were 6, 4, and 2 �I. The main frequencies

of the 112-maneuvers were 2 and 4 �I. The autocorrelation plots of the doublet train are shown in Figures C.6 and C.8.

The autocorrelation plots of the 112 maneuvers are shown in Figures C.7 and C.9.
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Fig. C.6 Autocorrelation plot of the residuals of the
states of a doublet train. The states are determined
using the the state-space model shown in Equation
(B.2) in closed-loop configuration. For this simulation
the slow gains shown in Table 2 were used.
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Fig. C.7 Autocorrelation plot of the residuals of the
states of multiple 112-maneuvers. The states are de-
termined using the the state-space model shown in
Equation (B.2) in closed-loop configuration. For this
simulation the slow gains shown in Table 2 were used.
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Fig. C.8 Autocorrelation plot of the residuals of the
input X 5 of a doublet train. The states are determined
using the the state-space model shown in Equation
(B.2) in closed-loop configuration. For this simulation
the slow gains shown in Table 2 were used.
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Fig. C.9 Autocorrelation plot of the residuals of the
input X 5 of multiple 112-maneuvers. The states are
determined using the the state-space model shown in
Equation (B.2) in closed-loop configuration. For this
simulation the slow gains shown in Table 2 were used.

There were also coupled maneuvers which were performed during the experiments. To estimate the state derivatives

of the coupled maneuver, three different state-space models were used, the only difference being which inputs were

included. The first model included the inputs X 5 and XC , and the autocorrelation plots of the residuals are shown in

Figure C.10. The second model included only the input X 5 , and the autocorrelation plots of the residuals are shown in

Figure C.11. The third model included the inputs X 5 and X3 , and the autocorrelation plots of the residuals are shown in

Figure C.12.
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Fig. C.10 Autocorrelation plot of the residuals of the state derivatives of a coupled doublet with a main
frequency of 6 �I. The states derivatives are determined using the the state-space model shown in Equation
(B.2).
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Fig. C.11 Autocorrelation plot of the residuals of
the state derivatives of a coupled doublet. The states
derivatives are determined using the the state-space
model shown in Equation (B.4).
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Fig. C.12 Autocorrelation plot of the residuals of
the state derivatives of a coupled doublet. The states
derivatives are determined using the the state-space
model shown in Equation (B.6).
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The last type of maneuver used during the experiments were nonlinear doublets. Two types of nonlinear doublets

were performed. The autocorrelation of the residuals of the nonlinear doublet with a constant roll angle of 30°, a main

frequency of 4 �I and a roll deflection angle of 15° is shown in Figure C.13. The autocorrelation of the residuals of the

nonlinear doublet with a constant roll angle of 20°, a main frequency of 4 �I and a roll deflection angle of 15° is shown

in Figure C.14.
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Fig. C.13 Autocorrelation plot of the residuals of
the state derivatives of a nonlinear doublet with a
constant roll angle of 30°. The states derivatives are
determined using the the state-space model shown in
Equation (B.2).
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Fig. C.14 Autocorrelation plot of the residuals of
the state derivatives of a nonlinear doublet with a
constant roll angle of 20°. The states derivatives are
determined using the the state-space model shown in
Equation (B.2).

D. Power Spectrum Yaw Dynamics
During the identification experiments there was very little excitation seen in the yaw direction. This is confirmed

when analyzing the power spectrum of the yaw rate A, illustrated in Figure D.1.
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Fig. D.1 PSD plot of the yaw rate A of the Delfly Nimble during hover the identification maneuver. The green
square in the power spectrum contains the frequency content up to 12 �I. The components inside this square
were filtered out using using a zero-phase Butterworth filter with order of 10.
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The green square in the power spectrum of the states contains the frequency content up to 12 �I. The components

inside this square were filtered out using using a zero-phase Butterworth filter with order of 10. Very little excitation is

seen around the expected frequencies for the body dynamics, around 1-2 �I. There is a very small peak visible around

the 11 �I, which can be seen in the power sprectrums after the filter has been applied. This is presented in Figure D.2.
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Fig. D.2 PSD plot of the yaw rate A of the Delfly Nimble during hover the identification maneuver. The green
square in this power spectrum contains the frequency content up to 9 �I.

The green square in this power spectrum of contains the frequency content up to 9 �I. The peak around 11 �I in

the maneuver data is clearly visible. These high frequency components in the data for A resulted in very poor estimation

of the yaw rate, and is most likely due to internal vibration, rather than excitation of the dynamics. When the filter was

applied using a cut-off frequency of 9 �I, there is very little difference between the PSD plots of the maneuver and

the hover data, indicating that there is little excitation of the body dynamics. This was the main reason that the yaw

dynamics were omitted from the equations of motion.
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2
Introduction Literature Study

In this part of the thesis the literature study is shown. The literature study presented here and the follow-up
experimental work are for the MSc. thesis research in which a mathematical model will be identified for the
lateral body dynamics of a tailless flapping wing micro air vehicle (FWMAV) that has been developed at the
Delft University of Technology, known as the Delfly Nimble.

In this Chapter the research perspective is discussed in Section 2.1. The method which will be used for the
identification of the model, the System Identification Procedure, is elaborated on in Section 2.2. The research
questions are discussed in Section 2.3. The lay-out of the literature study is described in Section 2.4.

2.1. Research Perspective
Unmanned aerial vehicles (UAV’s), and their smaller counterpart micro air vehicles (MAV’s), have been found
to be useful for a large variety of civil and military applications [14, 15, 17, 19, 75, 84]. A subcategory of UAV’s
are flapping wing micro air vehicles (FWMAV’s). These FWMAV’s have favorable properties such as: being
able to fly at low velocities, having high agility and maneuvrability and some even have the ability to hover[3].
Most of the FWMAV’s are bio-inspired, either using the basic principles of the flapping motions for the thrust
generation or trying to mimic the flapping mechanism of the animal as closely as possible. Inspirations for
the design of the FWMAV’s have been birds, as is the case for the Nano Hummingbird [37], insects, as is the
case for the Delfly family [17] and the KU Beetle [58], and bats, such as the Bat Bot B2 [59]. Figure 2.1 shows
the Nano Hummingbird, the KU Beetle and the Bat Bot B2.

(a) Nano Hummingbird [37] (b) KU Beetle [58] (c) Bat Bot B2 [59]

Figure 2.1: Examples of FWMAV’s.

The main difficulty with FWMAV’s is the design of the control mechanisms. Tailed FWMAV’s have passive
stability, as is the case for the original Delfly [17]. Tailless ones require active control solutions in order to
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remain airborne, as is the case for the Nano Hummingbird, KU Beetle and the Delfly Nimble [36, 37, 58].

Nano Hummingbird
The Nano Hummingbird was developed by AeroVironment as part of the Nano Air Vehicle program of the
Defence Advanced Research Projects Agency (DARPA)[29]. It is a tailless FWMAV which has a wingspan of
16.5 cm and a mass of 19 grams, unveiled in 2011. This FWMAV was able to hover and reach forward velocities
up to 6.7 ms−1. It was also able to do a lateral flip maneuver. The main flight time was four minutes, had a
flapping frequency of 30 Hz and a wing stroke angle of 200°. The Nano Hummingbird was kept airborne using
a flight controller and the pilot would give rate control inputs to the FWMAV. Without the closed-loop control
the FWMAV was to unstable to fly.

For the control of the attitude the Tailless Control Approach was taken. In this approach only the wings are
used for the generation of the required torques. These torques are generated using wing deformation, also
called wing deformations. Two types of wing modulation was use for the Nano Hummingbird: wing rotation
modulation and wing twist modulation. In wing rotation modulation the wing is passively rotating about the
leading edge of the wing. If the angle of allowed rotation is smaller more lift is generated. The wing rotation
modulation was used for control of the yaw attitude. The wing rotation modulation is illustrated in Figure 2.2
[37].

(a) (b)

Figure 2.2: Illustration of the wing rotation modulation as used in the Nano Hummingbird [37]. In situation (a) the wing is allowed less
to rotate about the leading edge compared to (b). The wing in (a) will generate more lift. This technique was used to control the yaw

attitude.

The second technique used was the wing twist modulation. In wing twist modulation the root spar is moved.
This can reduce or increase the amount of lift produced per wing, due to the difference in how tight the
wing is. The wing twist modulation was used for controlling the pitch and roll attitude. This modulation is
illustrated in Figure 2.3 [37].

(a) (b) (c)

Figure 2.3: Illustration of the wing twist modulation as used in the Nano Hummingbird [37]. In this technique the wing root is moved in
order to change the tightness of the wings. The lift generated is the highest in (a) and the the lowest in (c).

To control the pitch attitude the root of the wing was moved to the front or back on both wings, while for the
control of the roll attitude it moved the wing roots either to the left or right.

There is not much information about the design of the controller of the Nano Hummingbird. However, the
design of the controller for a similar FWMAV, called the Robotic Hummingbird, is described in the PhD re-
search of Karásek et al. [35]. For the design of the controller, linearized analytic models of flapping flight are
used in order to predict the states of the Robotic Hummingbird.
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KU Beetle
The KU Beetle was developed at Konkuk University in 2016 and was also a tailless design. It has a weight of
21 grams and was based on the flight of Rhinoceros beetles. It is similar to the Nano Hummingbird in that
it could also maintain hover, that it had a 190° flapping amplitude and that it also used the wing modulation
technique similar to the one used for the Nano Hummingbird. The control mechanism for the KU Beetle is
shown in Figure 2.4 [58].

Figure 2.4: Control mechanism of the KU Beetle [58]. This FWMAV used wing twist modulation for the control of the pitch, roll and yaw
attitude. In (a) and (b), it is shown that the pitch attitude is controlled by moving the wing roots to the front or back. In (c) and (d) it is

shown that the roll attitude is controlled by moving the wing roots to the left or right. In (e) and (f) it can be seen that the yaw attitude is
controlled by twisting both wing roots around the z-axis of the KU Beetle.

For control of the pith attitude it moves the wing roots to the front or back. For control of the roll attitude it
moves the wing roots to the left or right. The main difference with the Nano Hummingbird is the control of the
yaw attitude, which is done by twisting the wing roots around the fuselage of the KU Beetle. A proportional
differential (PD) rate feedback controller was used in order to provide stability during flight, the block diagram
of which is shown in Figure 2.5 [58].

Figure 2.5: Block-diagram of the PD rate controller used on the KU Beetle [58].
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A linear model of the KU Beetle has been identified for near hover conditions which could be used for the
design and implementation of more complicated controllers [39]. The KU Beetle is the first FWMAV with two
wings which could make use of the clap-and-fling effect in order to increase the lift generation [58]. This is
possible due to the large flapping amplitude. The clap-and-fling effect is illustrated in Figure 2.6 [5, 64].

Figure 2.6: Illustration of the clap-and-fling-effect between two interacting wings [5, 64]. The thick arrows indicate the wing motion,
while the thin arrows indicate the air flow. In the ’clap’ phase, the two wings are moving towards each other, meeting initially at the

leading edge. Then, the trailing edges move closer to each other, closing the gap between the wings. As a consequence, the air which
was present in the gap is pushed downwards, increasing the thrust generation. In the ’fling’ phase, the wings separate, starting with the

leading edge. This creates a gap with a low pressure in which air will move, also creating additional lift.

In the ’clap’ phase, the two wings are moving towards each other, meeting initially at the leading edge. Then,
the trailing edges move closer to each other, closing the gap between the wings. As a consequence, the air
which was present in the gap is pushed downwards, increasing the thrust generation. In the ’fling’ phase, the
wings separate, starting with the leading edge. This creates a gap with a low pressure in which air will move,
also creating additional lift. Then, the leading edges also start to separate.

Bat Bot B2
The Bat Bot B2 is a tailed FWMAV which was developed in order to gain more knowledge about the flight of
bats. The basis of the morphological design of this FWMAV was based on the Rousettus Aegyptiacus bat. It
used a 5 ° of actuation system for the flapping mechanism. These degrees are: the forelimb flapping mo-
tion, the forelimb mediolateral folding motion, the forelimb mediolateral unfolding motion, the hindlimb
dorsoventral upward motion and the hindlimb dorsoventral downward motion. It is able to do a forward
flight with 4 ms−1, but it is not able to hover. A custom-made silicon membrane was used for the wing. The
attitude control is done using a tail mechanism with a PD-controller. This controller is designed by use of
a mathematical dynamic model which is developed using the Lagrange method and the following assump-
tions: the wings and tails are massless, the wings and tail are separate, no consideration for aeroelasticity,
both wings are flapping synchronously and both legs move at the same time with respect to the body.

The Delfly Family
The first development of the Delfly started in 2005 at the Delft University of Technology as an design synthesis
exercise for Bachelor students [17]. It had a wingspan of 50 cm and used a single motor for the flapping
mechanism and it had four wings instead of two. This design had passive stability due to the presence of the
tail. It had control surfaces on the tail similar to those of an aircraft, namely an elevator and a rudder. Because
there were two pairs of flapping wings, the Delfly could make use of the clap and fling effect, increasing the lift
generation [17]. A smaller version was developed with the financial support of the Netherlands Organisation
for applied scientific research TNO, called the Delfly II. This smaller version of the Delfly was presented in
2007 and had a wingspan of 28 cm, the ability to hover, fly forward with 7 ms−1 and fly backward with 1
ms−1. Multiple variations of the Delfly have been developed since, including a tailless version called the
Delfly Nimble. The Delfly II and the Delfly Nimble[36] are shown in Figure 2.7.
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(a) Delfly II [9] (b) Delfly Nimble

Figure 2.7: Two iterations in the Delfly family, the Delfly II and the Delfly Nimble.

The Delfly II used the same control strategies as the original Delfly. The Delfly Nimble uses very different
control mechanisms in order to maintain airborne. Since the Delfly Nimble was a tailless design, it was in-
herently unstable, as is the case for tailless FWMAV’s [37, 45, 58]. It therefore requires an active controller for
stable flight. The control mechanisms used in the Delfly Nimble are shown in Figure 2.8.

Figure 2.8: Explanation of the working principle of the Nimble [36]. In A an overview of the various components. In B to D, three
different flights are shown, hover, forward and sideways. E to G show the working principle of the servos and flapping mechanism. H to

J explain the control of the yaw, pitch and roll attitude.

From this Figure it can be seen that the Delfly Nimble also uses wing modulation techniques. For the yaw
attitude control, it uses the same wing twist modulation technique as is done in the KU Beetle. A servo is used
in order to change the wing root angle angle, shown in H of Figure 2.8. For the control of the pitch attitude,
it changes the dihedral angle using a servo, shown in I of Figure 2.8. This wing modulation technique is
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different form either the Nano Hummingbird or the KU Beetle. For control of the roll attitude it does not use
wing modulation. Instead, the roll attitude is controlled by generating a difference in the flapping frequencies
of both wings, shown in J of Figure 2.8. This difference in flapping frequency generates a roll torque. The side
with the lower frequency is the one where the Delfly Nimble rolls towards.

The amount of torque which is required for stable flight is determined by a controller. The schematics of
the controller is shown in Figure 2.9 [36]. The controller for the pitch and roll angle is shown in A and B of
Figure 2.9. A reference generator is used to determine the input to the proportional and derivative controller.
The controller for the yaw angle is show in C of Figure 2.9. This controller uses a proportional gain and also
an additional feed-forward loop. The gains have been determined by trial and error, first by observing the
stability of the Delfly Nimble while holding it in hand, and then by observing the stability in flight. For more
complex maneuvers, such as rapid bank turns and pitch and roll flips, an open-loop program can be switched
to. The autopilot is then in the open-loop configuration, switching back to the closed-loop one in order to
recover the Delfly Nimble after the maneuver and preventing crashing [36].

Figure 2.9: Overview of the on-board controller [36]. The Delfly Nimble is indicated as ’Robot’ in this figure. In A the reference generator
is shown. In B the attitude controller is shown which has proportional and derivative terms. For pitch and roll, the control structure is

identical. In the research of Karásek et al. an open-loop program was used for rapid bank turns. In C the yaw loop is shown, which only
uses a proportional controller and an additional feedforward term.

For the Delfly II, mathematical models have been identified for the body dynamics using free flight data [1, 3],
whereas for the Delfly Nimble only the longitudinal dynamics have been modeled [32, 51, 52]. Mathematical
models of the body dynamics can be applied for the development of control systems and can be used in
order to gain greater understanding of the physical system [30, 40]. The main goals of this project are the
identification of a mathematical model for the lateral body dynamics of the Delfly Nimble and to obtain
a better understanding of these dynamics. The mathematical model will be developed using the System
Identification Procedure [16], which is further elaborated on in Section 2.2.
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2.2. System Identification Procedure
Klein et al. [40] and Zadeh [83] define System Identification as follows:

"One of the oldest and most fundamental of all human scientific pursuits is developing mathematical models
for physical systems based on imperfect observations or measurements. This activity is known as system identi-
fication."[40, p. 1]

"System identification is the determination, on the basis of observation of input and output, of a system within
a specified class of systems to which the system under test is equivalent."[83, p. 857]

In other words, System Identification is a procedure used to develop mathematical models of physical sys-
tems using the input and output data. This is further clarified in Figure 2.10[30].

Figure 2.10: Clarification of System identification. The goal is the development of a mathematical which mimics the physical system
based on the input u and the output z [30].

For the model identification of aircraft systems, the input and output data is gathered during free flight-
tests. The developed models using System Identification can be used for the following applications in aircraft
systems [16, 30, 40]: the development of flight simulators with high fidelity requirements, the verification of
data obtained during wind-tunnel experiments, the development of control systems for inherently unstable
aircraft, the analysis of the flight envelope and the development of pilot-models.

The development of a mathematical model is done by applying the System Identification Cycle. This cycle
consists of three phases, each with its own aspects which have to be dealt with:

• Experiment Phase
– Analysis of the physical system
– Design and execution of the experiment
– Logging and pre-processing of the data

• Model Identification Phase
– Estimation of the states
– Choice of model structure
– Estimation of the parameters

• Model Validation Phase
– Validation of the model

The System Identification Cycle is an iterative process, which is illustrated in Figure 2.11[16].
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Figure 2.11: The System Identification Cycle. This cycle contains three phases: the experiment phase, the model identification phase
and the model validation phase.[16]

From Figure 2.11 it can be seen that System Identification is an iterative process. It is possible that additional
experiments have to be conducted or a different model structure needs to be used if the accuracy of the model
is not sufficient. The System Identification Cycle is the Research Framework in this thesis. This framework
will be used for the formulation of the research questions, which are shown in Section 2.3

2.3. Research Questions
The main goals of this research are to gain more knowledge about the lateral dynamics of the system and
to develop a mathematical model of these dynamics. This model could then also be used for the design of
control systems for the Nimble. Such a model can be determined using the System Identification Procedure
which was described in Section 2.2. Based on the goal the following research objective has been formulated
using the theory of Verschuren et al. [78]:

The research objective is to identify a mathematical model for the lateral body dynamics of the Delfly Nimble
by using the System Identification Procedure for the development of a linear grey-box state-space model.

In order to reach this objective, one central question has been formulated:

"Can the full envelope of the lateral body dynamics of the Delfly Nimble be modeled using a linear time-
invariant state-space model, and what is the influence of the dynamic coupling and the non-linearities on
the predictive power of this model?"

Three sub-questions with their respective subsub-questions have been formulated for answering the central
question. The formulation of these questions has been done using the Research Framework in this thesis,
which is the System Identification Cycle:

SQ1. What is the experimental procedure to be followed in order to gather the required data?
(a) Which assumptions and simplifications can be used for the analysis of the dynamic system?
(b) What are the difficulties for experiment design when doing open-loop identification on a closed-

loop system?
(c) Which maneuvers are available to gather the required Identification and Validation data, which

inputs are required to make these maneuvers, and which trim condition is used?
(d) Do these maneuvers excite the dynamics of the system sufficiently?
(e) Which maneuvers are available to gather the required data for the analysis of the influence of the

coupling of the dynamics, which inputs are required to make these maneuvers, and which trim
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condition is used?
(f) Which maneuvers are available to gather the required data for the analysis of the influence of the

non-linearities, which inputs are required to make these maneuvers, and which trim condition is
used?

(g) Which sensors will be used and how will the data be pre-processed?
SQ2. Which System Identification approach needs to be taken for:

(a) the estimation of the states?
(b) the choice of model structure?
(c) the estimation of the parameters?

SQ3. What is the quality of the identified model?
(a) Which metrics can be used for validating the model?
(b) Is the decoupling of the dynamics a justifiable assumption?
(c) Is the linearity of the aerodynamic forces a justifiable assumption?

Each sub-question covers a phase in the System Identification Cycle. The Experiment Phase is covered by
SQ1, while the Model Identification Phase is covered by SQ2 and the Model Validation Phase is covered by
SQ3. These questions were used to search for the relevant literature which is required to reach the research
objective. The lay-out of this literature study is based on the sub-questions, which is elaborated on in Section
2.4.

2.4. Lay-out of the Literature study
The literature study is structured around the sub-questions defined in Section 2.3. Chapter 3 will treat the
experiment phase and thus answer SQ1. Chapter 5 will treat the model identification phase and therefore
answer SQ2. Chapter 5 will treat the model validation phase hence answer SQ3. The lay-out of this part is
illustrated in Figure 2.12.

Figure 2.12: Lay-out of Part II of the thesis: the Literature Study.
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Experiment Phase

This Chapter will cover the experiment phase of the System Identification Cycle and thus answer Subquestion
SQ1, which was phrased as follows:

SQ1. What is the experimental procedure to be followed in order to gather the required data?
(a) Which assumptions and simplifications can be used for the analysis of the dynamic system?
(b) What are the difficulties for experiment design when doing open-loop identification on a closed-

loop system?
(c) Which maneuvers are available to gather the required Identification and Validation data, which

inputs are required to make these maneuvers, and which trim condition is used?
(d) Do these maneuvers excite the dynamics of the system sufficiently?
(e) Which maneuvers are available to gather the required data for the analysis of the influence of the

coupling of the dynamics, which inputs are required to make these maneuvers, and which trim
condition is used?

(f) Which maneuvers are available to gather the required data for the analysis of the influence of the
non-linearities, which inputs are required to make these maneuvers, and which trim condition is
used?

(g) Which sensors will be used and how will the data be pre-processed?

Section 3.1 will answer SQ1a. Question SQ1b will be answered in Section 3.2. Section 3.3 will answer ques-
tions SQ1c to SQ1d. This is followed by Section 3.4, which answers questions SQ1e and SQ1f. The chapter
ends with Section 3.5, which answers question SQ1g.

3.1. Plant Analysis
This section will answer SQ1a. In previous research, the stability analysis of hovering insects and the model-
ing of flapping flight dynamics was done using the rigid body approximation [5, 34, 51, 60, 69, 70, 72, 81, 85,
86]. In this research the same approach will be taken. With the rigid-body approximation the equations of
motion for a fixed-wing rigid-body aircraft can be used, shown in Equation 3.1 [67].

u̇ =− (qw − r v)+ X

m
− g · sin(θ) Ixx ṗ =(Iy y − Izz ) ·qr + Ixz · (ṙ +pq)+L

v̇ =− (r u −pw)+ Y

m
+ g ·cos(θ) · sin(φ) Iy y q̇ =(Izz − Ixx ) · r p + Ixz · (r 2 −p2)+M

ẇ =− (pv −qu)+ Z

m
+ g ·cos(θ) ·cos(φ) Izz ṙ =(Ixx − Iy y ) ·pq + Ixz · (ṗ − r q)+N

φ̇=p +q · sin(φ) · tan(θ)+ r ·cos(φ) · tan(θ)

θ̇ =q ·cos(φ)− r · sin(φ)

ψ̇=q · sin(φ)

cosθ
+ r · cos(φ)

cos(θ)

(3.1)
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Where u, v and w are the body velocities, u̇, v̇ and ẇ are the body accelerations, p, q and r are the angular
rates, ṗ, q̇ and ṙ are the angular accelerations, X , Y , Z are the aerodynamic forces, L, M and N are the
aerodynamic moments, Ixx are the inertia terms, φ, θ and ψ are the attitude angles and φ̇, θ̇ and ψ̇ are the
attitude angular rates. These equations have been obtained by use of the following assumptions [48, 66, 67]:

• The body of the vehicle is rigid.
• The mass of the vehicle is constant.
• The Earth is flat and non-rotating.
• Xb Zb is a symmetry plane, so Ix y and Iy z are assumed to be zero.

Are these assumptions also valid for the Delfly Nimble? The wings of the Nimble are not rigid, which would
violate the first assumption. However, for FWMAV’s one additional assumption that is frequently made is that
the wing dynamics and the body dynamics can be decoupled [1, 5]. This is the case when the frequency of
the flapping motion is higher than the system’s bandwidth [34]. For the lateral dynamics of the Delfly Nimble,
this is the case based on analytic calculations of the natural frequencies, which is shown in Section 3.3.1. The
remaining parts of the Nimble are rigid, so for the modeling of the body dynamics this assumption is valid.
The other assumptions are also valid for this research. The axis system of the Delfly Nimble used for the
equations of motion is shown in Figure 3.1.

Figure 3.1: Axis system used on the Delfly Nimble.

The equations of motion shown in Equation 3.1 can be simplified by use of two additional assumptions.
The first additional assumption is that there is no coupling between the longitudinal and lateral dynamics.
This is an often made assumption for FWMAV’s [1, 33, 34]. With this assumption, two dynamic systems are
developed, one for the longitudinal dynamics and one for the lateral dynamics. The second additional as-
sumption is that the aerodynamic forces and moments are quasi-steady, because of which these forces and
moments can be modeled using a linear model structure. The linear modeling of the aerodynamic forces and
moments can be done because the influence of the flapping motion on the body dynamics is considered to
be negligible. Consequently, the cycle-averaged values of the forces and moments can be used. Then, small
perturbation theory and a Taylor series expansion can be used for the linearization of the aerodynamic forces
and moments. Using these two additional assumptions and by linearizing the equations of motion shown
in Equation 3.1, two state space systems can be developed. The full derivation of the state space systems is
shown in Appendix B. The longitudinal state space system is shown in Equation 3.2.
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ẇ
θ̇

=


Mq

Iy y

Mu
Iy y

Mw
Iy y

0
Xq

m −w0
Xu
m

Xw
m −g ·cos(θ0)

Zq

m +u0
Zu
m

Zw
m −g · sin(θ0) ·cos(φ0)

cos(φ0) 0 0 0

 ·


q
u
w
θ

+


Mδd
Iy y

Mδ f

Iy y

Mδw
Iy y

Mδt
Iy y

Xδd
m

Xδ f

m
Xδw

m
Xδt
m

Zδd
m

Zδ f

m
Zδw

m
Zδw

m
0 0 0 0

 ·


δd

δ f

δw

δt

 (3.2)

In previous research [5, 51, 52] the dimensional stability derivatives Mq , Mu , Mw , Xq , Xu , Xw , Zq , Zu and Zw

were determined using free-flight data, i.e. the dimensional stability derivatives were the estimated model
parameters. Furthermore, Mδd

, Mδ f
, Mδw , Mδt , Xδd

, Xδ f
, Xδw , Xδt , Zδd

, Zδ f
, Zδw and Zδt are the dimen-

sional control derivatives, where δd , δ f , δw and δt are the dihedral, the difference in flapping frequency
between the left and right wing, the wingroot angle and the throttle input. These are the control inputs which
are used in the Delfly Nimble. In the research of Nijboer et al. [51, 52] where the mathematical model for the
longitudinal dynamics was developed only the dihedral angle input was used, thus only the Mδd

, Xδd
and

Zδd
were parameters which were determined using free-flight data. The trim velocities are u0 and w0 and the

trim angles are the initial pitch angle θ0 and the initial roll angle φ0. The lateral state space system, which
will be used in this thesis for the determination of the mathematical mode of the lateral dynamics, is shown
in Equation 3.3.
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Where Ic = Ixx · Izz − I 2
xz . What’s more Lp , Lr , Lv , Np , Nr , Nv , Yp , Yr and Yv are the dimensional stability

derivatives, which are parameters that will be estimated in this research. The dimensional control derivatives
are the Lδd

, Lδ f
, Lδw , Lδt , Nδd

, Nδ f
, Nδw , Nδt , Yδd

, Yδ f
, Yδw and Yδt . Which dimensional control derivatives

will be determined using the free-flight data gathered during the experiments will depend on which control
inputs are used in the model structure. For example, if only the dihedral angle and the wingroot angle are
considered only the Lδd

, Nδd
, Yδd

, Lδw , Nδw and Yδw are estimated.

If it is assumed that the dimensional stability and control derivatives shown in the longitudinal and lateral
state space systems shown in Equations 3.2 and 3.3 are constant, these systems are linear time-invariant
(LTI) state-space system for given initial conditions.

3.2. Experiment Design for Closed-loop Systems
This section will answer question SQ1b. As has been explained in Section 2.2 and visualized in Figure 2.10,
the procedure of System Identification is used to determined a mathematical model which is able to predict
the output y using the input u. For an open-loop system it is less difficult to excite the system dynamics
compared to a closed-loop system due to the absence of an active controller. This makes it generally easier
to design experiments in which the measurements z due to an input u will contain sufficient information
of the dynamics of the system in order to develop a valid mathematical model. For a closed-loop system,
an active controller is present which dampens the natural response of the system, which in turn reduces the
information contained in the measurements z [40], making experiment design more difficult. The reduced
information content in the measurements will then lead to a mathematical model which is only valid for a
certain set of gains of the controller. However, such a model will not be useful for the design of controllers and
to increase the knowledge of the system. Figure 3.2 [30] shows an example of a closed-loop system, which in
this case is an aircraft.
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Figure 3.2: Example of a dynamic system, in this case an aircraft, in closed-loop configuration [30].

The controller G does not change the dynamics of the system H , it only changes the input u, which in turn
gives a difference in the output y[40]. The goal is to get a good estimation of the system H , indicated by
Ĥ in Figure 3.2. The Delfly Nimble is a tailless FWMAV, which have been shown to be inherently unstable
[34]. Such vehicles require active stabilization to remain airborne, which for the Delfly Nimble is done by
the controller described in Section 2.1. This controller makes the FWMAV in flight a closed-loop system. All
the experiments will have to be conducted in closed-loop, for the Nimble will not stay airborne for very long
without it.

For the identification of closed-loop systems, three methods have been proposed[38, 43]:

• Direct Approach
The input u and out y are used in order to determine the model Ĥ , ignoring the command δp and the
controller. This is the Open-loop identification shown in Figure 3.2.

• Indirect Approach
δp is seen as the input and y is seen as the output. This is the closed-loop identification shown in Figure
3.2. The open-loop model is then retrieved with the knowledge of the controller G .

• Joint Input-Output Approach
u and y are both considered outputs of δp and the noise v . The knowledge of the system and the
controller is then retrieved from the joint model.

The first approach has been used for the identification of the longitudinal dynamics model of the Nimble
[32, 33, 51, 51]. The same approach will also be used in this research. During these researches, a command
δp was given and the input u and the output y were measured. The disadvantage of this approach is that
the input is not given directly to the system, but through a controller, which decreases the excitation and the
information contained in the data. In spite of this, the identified longitudinal models the Nimble were able
to predict the response well.

In order to identify such models, it is important that the data contains sufficient information. Klein et al. [40]
states the following about the experiments for closed-loop aircraft systems:

"When conducting flight tests for aircraft dynamic modeling, the objective is to excite the natural aircraft
motion as much as possible, within the practical constraints of the flight test." [40, p. 327]

The controller dampens the natural response of the system. The following measures have been used to excite
the natural motions as much as possible [30, 40, 43]:

• Reducing the gains of the controller
This decreases the damping of the natural motions.

• Giving larger command
Most of the time in closed-loop systems, a command δp is given, and the input to the system is given
by the controller. Larger commands generally lead to larger inputs to the dynamic system, which leads
to more excitation of the natural motions.

• Giving direct inputs to the control surfaces
In this way the u is given directly by the pilot. The input is then not disturbed by the feedback loop.
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However, the last part of the statement of Klein et al. should be considered when using any of these ap-
proaches. Too much excitation of the natural motions can lead to an uncontrollable system which as a con-
sequence will crash.

For the longitudinal dynamics model identification of the Nimble the first two approaches were used. The
third one has the most risk, since acceleration control is then used for the Delfly Nimble. Controlling acceler-
ation dynamics is very difficult for aircraft pilots [2]. An additional option is the use of open-loop maneuvers,
which has been done in the research of Karásek et al. [36]. However, the maneuvers are very short, which leads
to short datasets, containing less information. The use of longer open-loop maneuvers has a high probability
of leading to damage to the Delfly Nimble, which is also unfavorable. Therefore, closed-loop maneuvers will
be used with reduced controller gains and using larger commands. Several closed-loop maneuvers which
have been used for the model identification of FWMAV’s will be discussed in Section 3.3.

3.3. Maneuver Selection and input design
This section answers questions SQ1c to SQ1d. The available maneuvers which will be used for the generation
of the identification and validation data are discussed. Susection 3.3.1 will explain how the natural frequen-
cies of the lateral dynamics of the Delfly Nimble are determined. Subsection 3.3.2 elaborates the available
maneuvers for gathering of the identification data, while Subsection 3.3.3 discusses the available maneu-
vers for the generation of the validation data. Subsection 3.3.4 answers question SQ1d, whether the selected
maneuvers excite dynamics sufficiently.

3.3.1. Determining the natural frequencies of the Delfly Nimble
In Section 3.2 it was described that exciting the natural motions of a dynamic system is the main objective
of the experiment. For the lateral dynamics of insects, three main frequency modes have been identified
[12, 34, 86]. The pole maps of the eigenvalues is show in Figure 3.3.

Figure 3.3: The analytic non-dimensionalized eigenvalues for the lateral dynamics of FWMAV’s [34]. ’ASL’ indicates the eigenvalues
determined by Karásek et al. [34] where ’tr’ indicates the wing translational forces, ’rot’ indicates the wing rotational forces and ’add’

indicates the forces due to the inertia of the added air mass. ’Zhang’ the ones determined by Zhang et al. [86] and ’Cheng’ the ones by
Cheng et al. [12]. All the eigenvalues shown have been determined with the morphological data of the drone fly. The eigenvalues

determined by Cheng et al. were recalculated, since the eigenvalues in this work were determined for four different insects: the fruit fly,
hawkmoth, stalk-eyed fly and the bumblebee.
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The eigenvalues shown in Figure 3.3 are non-dimensionalized in order to better compare the various models
for insect dynamics. As can be seen from this figure, there are three main frequency modes for the lateral
dynamics of FWMAV’s. One aperiodic and two periodic. One of these three is unstable. Due to different
assumptions, either the periodic mode is unstable [34, 86] or an aperiodic one [12]. As is the case for the
natural modes of aircraft, each eigenvalue shown in Figure 3.3 represents a physical movement, which have
been described in the research of Zhang et al. [86], the eigenvalues of which are shown in the top plot of
Figure 3.3.

The first mode is known as the unstable slow divergence mode, indicated by the eigenvalue in the right-
half plane. In this mode the insect is moving sideways, while it is rolled towards the same direction as the
movement. For example, the insect is moving sideways to the right while being rolled towards the right.
The second mode is known as the stable slow oscillatory mode, indicated by the two eigenvalues with an
imaginary component. In this mode the the insect is moving sideways, while it is rolled in the opposite
direction of the movement. For example, the insect is moving sideways to the right while being rolled towards
the left. The third and final mode is known as the stable fast subsidence mode, indicated by the eigenvalue in
left-half plane. In this mode the insect is rotating about the long axis of its body, i.e. a small yaw movement
occurs. On the bottom plot of Figure 3.3, the modes are different. The unstable divergence mode is now
stable and convergent, while the oscillatory mode is unstable. The fast subsidience mode remains the same.

The eigenvalues shown in Figure 3.3 are determined using the non-dimensionalized stability derivatives.
When the non-dimensional stability derivatives are used, the eigenvalues are also non-dimensional. In or-
der to determine the natural frequencies of the Delfly Nimble, the dimensional eigenvalues are required,
which are determined using the dimensional stability derivatives. The natural frequencies can then be used
for the design of the experiments. The non-dimensionalizing of the stability derivatives in the research of
Karásek et al. [34] was done using several reference values. These are the reference velocity U , which is the
average center of pressure velocity of the wing, the reference length c̄, which is the mean chord length, and
the reference time T , which is the wing beat period. Equations for these variables are shown in Equation 3.4.

U = 2φm f r̂ , c̄ = Aw

b
, T = 1

f
(3.4)

Where φm is the flapping angle amplitude, f is the flapping frequency, r̂ is the radius of the second moment
of inertia of the wing, Aw is the wing area and b is the width of one wing. The latter three values are properties
of the wing, which for the Delfly Nimble are determined using Figure 3.4 [1].

Figure 3.4: Schematics of the wings of the Delfly Nimble [1].

From this Figure the required characteristics for non-dimensionalizing the stability derivatives can be deter-
mined. The full calculation of the characteristics are shown in Appendix A.2. The b is set to 137 mm, the
Aw was calculated to be 0.0104 m2, the r̂ was computed to be 74.5 mm, the f was set at 17 H z and φm was
set at 0.768 r ad , or 44°. The non-dimensional stability derivatives can be found in the research of Karásek et
al. [34]. With these values, the analytical values for the dimensional stability derivatives can be determined
using Equation 3.5.
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Where L+
p , L+

r , L+
v , N+

p , N+
r , N+

v , Y +
p , Y +

r and Y +
v are the non-dimensional stability derivatives, and Aw is the

area of one wing. Using the state space representation used in the research of Karásek et al. [34], the estimated
natural frequencies of the Delfly Nimble can be determined, which are shown in Table 3.1.

Model ω1

(
r ad

s

)
ω2

(
r ad

s

)
ω3

(
r ad

s

)
(periodic)

Zhang (CFD) 4.38 6.09 14.01
ASL (tr+rot+add) 4.86 6.32 16.17

ASL (tr+rot) 4.00 5.49 16.03
ASL (tr) 7.10 3.48 16.23
Cheng 5.54 3.70 11.87

Table 3.1: Analytic eigenfrequencies of the lateral dynamics of the Delfly Nimble, based on the models developed by Karásek et al.,
Zhang et al. and Cheng et al. [12, 34, 86]. The models of Karásek et al. are indicated by ’ASL’. Here, ’tr’ indicates the wing translational

forces, ’rot’ indicates the wing rotational forces and ’add’ indicates the forces due to the inertia of the added air mass.

From this table it can be seen that all eigenvalues are in same order of magnitude, however, there are differ-
ences, especially for the ω1 and the ω2. To verify that the estimated analytic eigenfrequencies can be used,
the eigenvalues for the longitudinal dynamics in hover have also been computed, and compared to the ex-
perimental results of Nijboer et al. [51, 52]. The results are shown in Table 3.2.

Model ω1

(
r ad

s

)
ω2

(
r ad

s

)
ω3

(
r ad

s

)
(periodic)

Wu (CFD) 8.42 7.63 0.11
ASL (tr+rot+add) 10.46 7.13 0.26

ASL (tr+rot) 9.97 6.84 0.26
ASL (tr) 7.53 6.14 0.26
Cheng 7.16 5.94 0.20

Nijboer (experimental) 8.89 5.36 0.13

Table 3.2: Analytic eigenfrequencies of the longitudinal dynamics of the Delfly Nimble, based on the models developed by Karásek et
al., Wu et al. and Cheng et al. [12, 34, 80], and the experimental eigenfrequencies of Nijboer et al. [51]. The models of Karásek et al. are

indicated by ’ASL’. Here, ’tr’ indicates the wing translational forces, ’rot’ indicates the wing rotational forces and ’add’ indicates the
forces due to the inertia of the added air mass.

From this table it can be seen that the analytic eigenfrequencies are close to the experimental ones. Therefore,
the analytic eigenfrequencies can thus be used as an initial estimate for the natural frequencies of the Delfly
Nimble. What is more, all the estimated natural frequencies are lower then the average flapping frequency
of the Delfly Nimble, which was 17 Hz. Because of this the assumption that the flapping and body dynamics
can be decoupled, which was described in Section 3.1, can be made. The analytic estimates of the natural
frequencies can be used for the developments of the maneuvers which will be used for the generation of the
data, discussed in Sections 3.3.2 and 3.3.3.

3.3.2. Maneuvers for the identification data
This section answers the first part of question SQ1c, which maneuvers are available for the generation of the
identification data. Since this research focused on the lateral dynamics, the maneuvers will be done using
inputs to the roll actuators in order to excite these dynamics. On the Nimble the roll torque is generated by
creating a difference in flapping frequency between the left and right wing δ f [36], as shown in Figure 2.8. The
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roll actuator input might not be the only input during the maneuver however, since the controller might add
inputs to the dihedral angle δd and the wing root angle δw for stabilization. For example, in the third natural
mode for insects, known as the stable fast subsidence mode, the insect is making a small yaw movement, as
was described in Subsection 3.3.1. The controller might give a command to the wing root angle actuator. Also
the throttle δt could be increased in order to maintain altitude during a maneuver. If an input does not have
a significant influence on the model accuracy, the input can be omitted in the state space system shown in
Equation 3.3, reducing the number of parameters which have to be estimated.

Various maneuvers have been used for the excitation of dynamics, such as: the pulse, the doublet [5, 40, 51],
the triplet[1], the 3211 maneuver[30, 40, 68] and the frequency sine sweep[53]. Such maneuvers have been
used for the identification of aircraft models [30, 40, 43], where the maneuver was performed by a pilot. The
disadvantage is that this decreases the repeatibility of the research, since it is difficult to perform the exact
same maneuver by the pilot. This issue can be resolved using automated maneuvers, performed using an
autopilot, which improves the repeatibility of the research and the quality of the identification data [21, 41].

The input required for a pulse is shown in Figure 3.5, while the input for a doublet is shown in Figure 3.6.
When the command for a pulse is given, the Delfly Nimble will move to on side, in the case of the command
shown to the right. When the command for the doublet is given to the Nimble, it moves first to the right, and
then to the left. The amplitude in this figure is either the roll angle φ or the δ f if direct inputs are given to the
roll actuators. If the roll angleφ is given as the input, the actual command will be different due to the filtering
of the controller shown in Figure 2.9.
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Figure 3.5: Command for a single pulse.
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Figure 3.6: Command for a single doublet.

The main frequency which is excited is equal to 1/T , where T is the time of the whole maneuver. For a linear
system system, the output frequency is equal to the input frequency [54]. In order to achieve the best excita-
tion, the T must be chosen such that the main frequency of the doublet is close to the natural frequencies of
the Delfly Nimble. There are three natural frequencies which have been estimated for the Delfly Nimble, as
was shown in Subsection 3.3.1. A doublet only excites one main frequency. In order to excite all frequencies, a
train of roll doublets can be used with different main frequencies [40], the input for which is shown in Figure
3.7. Instead of doublets, pulses can also be used. In this case, the Delfly Nimble will only move to one side.
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Figure 3.7: Command for a doublet train.
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Multiple frequencies can also be excited using more complicated maneuvers, such as the triplet and the 3211.
The input for these maneuvers are shown in Figure 3.8. With the triplet, two frequencies are excited, while
three are excited with the 3211.
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Figure 3.8: Command for the triplet, shown in a, and the 3211-maneuver, shown in b.

While these can excite multiple frequencies in a single maneuver, the main disadvantages are that these ma-
neuvers are longer and have a larger drift from the initial condition, especially at the longer pulse. These can
both lead to the Nimble ending up in the nets of the Cyberzoo, ending the experiment abruptly. There are
ways to reduce the drift by using variations of these maneuvers. Examples of variations of the 3211 are shown
in Figure 3.9.
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Figure 3.9: Commands for variations of the 3211-maneuver: a the reverse of the 3211. the 1123. b using a lower amplitude for the
longest pulse.

Two variations are shown. A 1123-maneuver can be used instead, the advantage with this maneuver is that
the largest drift from the initial condition is at the end of the maneuver. The influence of drifting from the
initial condition is then minimized. What is also done is to reduce the amplitude of the command during
the longest pulse. This also reduces the drift from the initial condition. If excitation of more frequencies is
required or when little is known about the dynamics of the system, another option is to use a frequency sweep
maneuver. An example of the command is shown in Figure 3.10. This approach has the same disadvantages
as the triplet and the 3211-maneuver. This maneuver is even longer than these two, making it even more
difficult to execute in practice.

Figure 3.10: Command for the sine sweep maneuver[40].
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3.3.3. Maneuvers for the validation data
This section answers the second part of question SQ1c, which maneuvers are selected for the generation of
the validation data. As has been described in Section 3.2, the experiments have to be conducted in closed-
loop. The effects of the controller can be minimized using the methods described in Section 3.2, which en-
sures that the identified model will be as similar as possible to the open-loop model. The initial condition
chosen for the identification experiments is the hover condition. If the identified open-loop model is valid,
then it should be able to be used for a different set of gains for the controller. The validation of this model
can then be done using different gains for the controller and doing a maneuver, such as doublets, while us-
ing the hover as the initial condition. This approach has been used for the identification of the longitudinal
dynamics of the Delfly Nimble [32, 51]. What is also an option is to use the doublet-train as the identification
maneuver, and using a 1123-maneuver as the validation maneuver.

3.3.4. Analysis of the excitation of the dynamics
This section answers question SQ1d. The main goal during experiments is to excite the natural frequencies of
the Delfly Nimble, as has been described in Section 3.2. This can be achieved using the maneuvers described
in Subsection 3.3.2. Even if all this has been applied during the experiments, the excitation must still be
verified. This can be done by analysing the data in the frequency domain. The frequency-domain data can
be displayed in bode plots. In the magnitude plot there will then be peaks at the natural frequencies, for
resonance can occur here for the plot of a closed-loop system [54]. If such peaks are visible, then the dynamics
have been excited sufficiently. An example of such a plot is shown in Figure 3.11 [76].

Figure 3.11: Example of a magnitude plot of a bode diagram with multiple resonance peaks [76].

In Figure 3.11 it can be seen that there are two frequency peaks in the magnitude plot. For the experiments for
generation of the identification data done with the Delfly Nimble, at least three of those peaks are expected,
one for each of the three natural modes which have been estimated in Subsection 3.3.1. More peaks can be
visible, such as at the flapping frequency or harmonic frequencies. The transformation of the data from the
time-domain to the frequency-domain can be achieved by estimating the power spectral densities of the data,
which can be done using the Fast-Fourier transform [49].

3.4. Justifiability of decoupled dynamics and linearity assumptions
This section will answer questions SQ1e and SQ1f. In Section 3.1, it was described that two additional as-
sumptions were made for the simplifications of the equations of motion, the decoupling of the longitudinal
and lateral dynamics, and that the aerodynamic forces can be modeled using a linear model structure. In
order to analyse the validity of these assumptions, coupled maneuvers will be used for the former and non-
linear maneuvers will be used for the latter. The coupled maneuvers are described in Subsection 3.4.1, while
the non-linear maneuvers are described in Subsection 3.4.2.



3.5. Sensors and processing of the data 69

3.4.1. Maneuvers for the analysis of the influence of the coupling of the dynamics
This subsection answers question SQ1e. An often made assumption for FWMAV’s is that the longitudinal
and lateral dynamics are decoupled [1, 10, 31, 33]. This assumptions can be investigated by using coupled
maneuvers, for example the evasive roll maneuver which was used in the research of Karásek et al. [36]. In
this maneuver, there are three input signals, in pitch, roll and yaw. Another maneuver which can be used is
performing a roll doublet while the Nimble is flying forward. Here, there are two inputs, in pitch and in roll. If
the model is able to match the actual output well, the decoupling of the dynamics is a justifiable assumption.

3.4.2. Maneuvers for the analysis of the influence of the non-linearities
This section answers question SQ1f. The state space shown in Equation 3.3 is a linear time invariant sys-
tem, which means that the parameters are constant. It is then implicitly assumed that the lateral dynamics
of the Delfly Nimble can be modeled using such a linear system. This assumption can be verified by using
maneuvers with a different initial condition. The trim condition can be accounted for by the initial velocities
u0, w0 and the initial attitude angles θ0 and φ0 shown in the state space system in Equation 3.3. In a linear
system, the dynamics can be modeled accurately using such a model structure regardless of the initial con-
dition. The linearity assumption can be validated by using maneuvers with different initial conditions. One
of the available maneuvers is that the Delfly Nimble is doing a doublet, while it has a non-zero value for the
lateral velocity v0. The sideways movement should then be accounted for by changing the value of the initial
roll angle φ0 in the state space system. If the model is able to match the actual output well, the assumption
that a linear model of the lateral dynamics can be used is a justifiable one.

3.5. Sensors and processing of the data
This section answers question SQ1g. For the model identification of the Delfly II and the Delfly Nimble [1,
5, 32, 51] there were two main sources of gathering the data: from the Inertial Measurement Unit (IMU) and
from the OptiTrack Motion tracking system. For the former source ring laser gyros and accelerometers are
used to determine the rates and the accelerations. What is also logged are the flapping frequencies of both
wings and the positions of the pitch and yaw servos, which can be used to determine the pitch and yaw
angles. The data is logged onto an SD-card which is connected to an autopilot. For the latter source markers
are required to register the position of the Delfly Nimble. The marker setup used in the research of Karásek et
al.[36], Kajak et al [33] and Nijboer et al. [51] is shown in Figure 3.12.

Figure 3.12: Locations of the markers on the Delfly Nimble, as used by Karasek and Nijboer [36, 51]. In A, the four markers define the
body of the Nimble. In B, a top view is shown which displays two additional markers, 5 and 6, which were used in order to determine
the dihedral angle of the system. However, in this research these markers won’t be used. C shows a close up of the attachment of the

fourth marker.
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With this set-up the maneuvers will be performed in the flight arena "Cyberzoo". All the maneuvers were
programmed using Paparazzi Autopilot [8] and are automatic in order to improve the repeatability of the
research. The Delfly Nimble will be piloted using a DEVO 10 RC Transmitter. An overview of all the variables
logged by both sources is shown in Table 3.3.

Source Obtained measurements
OptiTrack Position (x,y,z)

Attitude Quaternions (q0, q1, q2, q3)
On-board Angular Velocities (p, q , r )

Linear Accelerations (ax , ay , az )
Flapping frequency right ( fR )

Flapping frequency left ( fL)
Dihedral servo deflection (δd )

Wing root servo deflection (δw )
Throttle value (δt )

Table 3.3: Overview of the measurement obtained from the various data sources.

The data from both sources will have to be pre-processed before it can be used for the model identification.
Firstly, sensor fusion will have to be applied to the data of both sources, which is done by a procedure devel-
oped by Armanini et al. [4]. Secondly the data will have to be filtered, especially the on-board data. This is due
to the vibrations caused by the flapping motion of the wings. This generates noise in the logged data. Another
solution is to use numerical differentiation on the OptiTrack data in order to attain the angular velocities (p,
q , r ) and the linear accelerations (ax , ay , az ). This leaves only the flapping frequencies to be acquired from
the On-board sensors. A flow diagram of this procedure is shown in figure 3.13 [5].

Figure 3.13: Flow diagram illustrating the fusion of the data of the sources: OptiTrack Motion system and the On-board sensors [5].
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Model Identification Phase

This Chapter covers the model identification of the System Identification Cycle, thus answering Subquestion
SQ2, which was phrased as follows:

SQ2. Which System Identification approach needs to be taken for:
(a) the estimation of the states?
(b) the choice of model structure?
(c) the estimation of the parameters?

Firstly, Section 4.1 answers SQ2a. Secondly, Question SQ2b is answered in Section 4.2. Finally, Section 4.3
answers Question SQ2c.

4.1. State Estimation
This section answers Question SQ2a. Getting accurate estimates of the states is vital for the identification
of a mathematical model which represents a dynamic system. Measurements are often subjected to sensor
noise, sensor bias and process noise. Low-quality state estimates lead to low-quality identified mathematical
models.

For the identification of aircraft models, the states have been estimated using Kalman Filters [30, 40]. These
filters calculate a weighted average of the measured state and the predicted state. It uses the weighted error
to correct the predicted state. This principle is shown in Equation 4.1.

xest = xpr ed +K · (zmeas − zpr ed ) (4.1)

Where xest and xpr ed are the estimated and the predicted state vector, zmeas and zpr ed are the measured and
the predicted measurement vector, and K is the Kalman gain. This gain determines the uncertainty in the
measurement. The higher the gain, the lower the uncertainty. The calculation of the Kalman gain has been
explained in various sources [16, 22, 30].

How the Kalman gain is determined depends on the type of Kalman Filter which is used. Which type of
Kalman Filter is used depends on the dynamic system. The Conventional Kalman Filter can be used for the
state estimation of linear systems. When a non-linear dynamic system is considered, the Extended Kalman
Filter (EKF) is used instead. However, this filter does not guarantee convergence. This problem can be solved
using a more advanced algorithm for the Kalman Filter, such as the Iterated Extended Kalman Filter (IEKF).
Various other types of Kalman Filters exist. Kalman Filters can be used to filter out the noise and determine
the sensor bias [5, 11]. It is also used for data fusion [5, 61], where the measurements of multiple sources
are combined. For the development of dynamics models of the Delfly II, the EKF was also used in order to
estimate sensor biases [4, 5]. Since the EKF has been used for the model identification of the Delfly II, it will
also be used in the research of this thesis. If, however, this does not converge, the IEKF will be considered.

71
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4.2. Model Structure Definition
This section answers Question SQ2b. There are several things one must take into consideration when choos-
ing a model structure. Firstly, which model structure type is suitable? One will have to decide whether to
use a white-box, black-box or grey box model structure. The definitions of these are explained in Subsection
4.2.1. Secondly, which model structures have been used in the past which lead to good identified mathemat-
ical models? Several examples of model structures for the identification of FWMAV’s are shown in Subsection
4.2.2. Finally, how many parameters are required to get an accurate model. While it is the case that more
parameters often lead to more accurate input-output mapping, this also comes at a higher computational
cost [5]. What’s more, for the grey-box model structure it is also important to consider which parameters are
physically meaningful in order to better understand the dynamics [5]. The minimization of the number of
parameters is elaborated in Subsection 4.2.3.

4.2.1. Model structure types
Three types of model structures have been classified in the field of System Identification [30, 38, 42]: white-
box, black-box and grey-box models. The classification of the identified model depends on how much prior
knowledge used for the development of the model. An illustration of the various model structure types is
shown in figure 4.1 [46].

Figure 4.1: Explanation of the various model types [46]. Where a model structure fits on the spectrum depends on the amount of prior
knowledge used for the identification. The more prior knowledge used, the ’whiter’ the model structure. For the opposite case, the

model structure is ’blacker’.

White-box model structures are developed using underlying physical knowledge, deterministic equations
and detailed submodels. They require full understanding of the dynamic system. The advantage is that such
models give good input-output mapping, while also giving good insight to the physics of a dynamic system.
The disadvantage is that they are computationally expensive. Examples of white-box models are Kepler mod-
els [50], used in orbital mechanics and Maxwell’s Equations [74], used in electrodynamics.

On the other end of the spectrum are black-box model structures. These models models only focus on getting
the correct input-output relationships based on experimental data. The advantage of such systems is that
they can accurately map complex and non-linear systems without prior knowledge of the dynamic system.
However, these models give little to no insight into the physics of the system and they are more difficult to
validate. A very common type of black-box model structure are neural networks [25, 26, 42].

In the middle of the spectrum are grey-box model structures, which are a combination of the two former
types. These models use prior knowledge of the system, while also using experimental data on order to esti-
mate certain parameters. Such models give good input-output mapping, while also giving more insight into
the physics of the dynamic system then black-box models. They are also computationally less expensive than
white-box models[16]. An example of a grey-box model is the state-space representation of aircraft dynamics
shown in Equations 3.2 and 3.3. They are developed using the equations of motion shown in Equation 3.1,
but the aerodynamic forces are estimated using experimental flight-data.

4.2.2. Examples of model structures used for FWMAV’s
In this Subsection various model structures are elaborated on which have been used for the modeling of
flapping flight dynamics. The following model structures are discussed: analytic models as used by Karásek
et al. [34, 35], the grey-box model used for the modeling of the KU Beetle [39], black-box, local grey-box and
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global grey-box modeling of the Delfly II as done in the research of Armanini et al. [3–6], multi-body dynamic
modeling of the Delfly II as was done by Caetano et al. [9], and the modeling of the longitudinal dynamics as
done by Kajak et al. and Nijboer et al. [32, 33, 51, 52].

Analytic Models of flapping flight
In Section 3.3 the natural frequencies were determined using analytic models of insect body dynamics. The
various analytic models have been described and compared in the research of Karásek et al. [34]. These
model structures are the most white of those described in this subsection. The free body diagram shown in
Figure 4.2 was used to identify the mathematical models.

Figure 4.2: Axis system as used by Karásek et al. [34]. The insect depicted is the drone fly.

Using this axis system the state-space systems for the longitudinal and lateral dynamics have been deter-
mined, shown in Equations 4.2 and 4.3.
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Where the definition of the inertia terms I1m I2 and I3 are shown in Equation 4.4.

I1 =
Ixx · Izz − I 2

xz

Izz
, I2 =

Ixx · Izz − I 2
xz

Ixz
, I3 =

Ixx · Izz − I 2
xz

Ixx
(4.4)

The wing kinematics were added to the model using two degree of freedoms, the inclination angleα∗ and the
wing sweep angle φ shown in Figure 4.3.
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Figure 4.3: Wing kinematics as defined by Karásek et al. [34]. The insect depicted is the drone fly.

The aerodynamic forces X , Y and Z are determined using thin airfoil theory in combination with experi-
mentally obtained force coefficients which include some unsteady effects [34, 62]. The full mathematical
equations can be found in the research of Karásek et al. [34]. The same techniques were used for the devel-
opment of a mathematical model for the Robotic Hummingbird [35]. For the analysis of the stability in hover
condition four reduced models were used. One for the pitch dynamics, shown in Equation 4.5, one for the
vertical dynamics. shown in Equation 4.6, one for the roll dynamics. shown in Equation 4.7 and one for the
yaw dynamics, shown in Equation 4.8.

u̇
q̇
θ̇

=


Xu
m

Xq

m g
Mu
Iy y

Mq

Iy y
0

0 1 0

 ·
u

q
θ

+
1 0

0 1
0 0

 ·
[

Xext
m

Mext
m

]
(4.5)
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ṙ = Nr
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(4.8)

Where Xext , Yext , Zext are the external forces, Lext , Mext and Next are the external moments. The axis system
shown in Figure 4.2 was used with these reduced models.

Modeling of the KU Beetle
For the KU Beetle a linear model has been designed which could be used for the design of the controller [39].
The axis sytem used for the model identication is shown in Figure 4.4.
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Figure 4.4: Axis system as used by Khan et al.[39]. The red axis system indicated the body frame and the white one indicates the inertial
frame.

The reconstruction of the states was done using the equations shown in Equation 4.9 [39].

ẋ(ti+1) =ẋ(ti )+ F (ti )

m
∆t

x(ti+1) =x(ti )+
(

ẋ(ti )+ F (ti )

m
∆t

)
∆t

(4.9)

Where ẋ(ti+1) is velocity state vector and x(ti+1) is the position state vector at time ti+1, F (ti ) is the aerody-
namic force vector at time ti and∆t is the time step. The angular positions and rates can be determined using
the moments at time ti , indicated by M(ti ) and the inertia I instead of the forces and mass. For the calcula-
tion of the inertia terms the following assumptions were made: the wings are rectangles and have negligible
thickness, the wings have no mass and the body is assumed to be a cylinder with the mass of the cylinder
concentrated in the center of gravity, and the body is rigid and the products of inertia are neglected.

For the modeling of the aerodynamic forces and moments a linear model structure was used, similar to the
one shown in Section 3.1. The linear model fort the forces and moments is shown in Equation 4.10.

X =X0 +Xu∆u +Xu̇∆u̇ +Xθ∆θ+X θ̇∆θ̇+Xφ∆φ+Xφ̇∆φ̇+Xψ f l ap∆ψ f l ap

Y =Y0 +Yv∆v +Yv̇∆v̇ +Yθ̇∆θ̇+Yφ∆φ+Yφ̇∆φ̇+Yψ∆ψ+Yψ̇∆ψ̇+Yψ f l ap∆ψ f l ap

Z =Z0 +Zw∆w +Zẇ∆ẇ +Zθ∆θ+Zθ̇∆θ̇+Zφ∆φ+Zφ̇∆φ̇+Zψ f l ap∆ψ f l ap

L =L0 +Lu∆u +Lu̇∆u̇ +Lθ∆θ+Lθ̇∆θ̇+Lφ∆φ+Lφ̇∆φ̇+Lψ f l ap∆ψ f l ap

M =M0 +Mu∆u +Mu̇∆u̇ +Mθ∆θ+Mθ̇∆θ̇

N =N0 +Nv∆v +Nv̇∆v̇ +Nθ̇∆θ̇+Nφ∆φ+Nφ̇∆φ̇+Nψ∆ψ+Nψ̇∆ψ̇+Nψ f l ap∆ψ f l ap

(4.10)

The aerodynamic forces (X ,Y , Z ), moments (L, M , N ), and the states were measured during the experiments
for 0.04 seconds. The stability derivatives were determined using the ordinary least-squares approach, which
is explained in Subsection 4.3.1.

Delfly II: Black-box model
In the work of Armanini et al. [6], a LTI-state space model structure was used. No assumptions were made on
the terms inside the A and B matrices.
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Where δe is the elevator deflection and δr is the rudder deflection. The body-fixed coordinate system shown
in Figure 4.5. The parameters of this model, which are all the entries of the A and B matrix in Equations
4.11 and 3.3, were determined using the input and output data, and the output-error approach was used to
determine these. The output-error approach is explained later in Subsection 4.3.2.

Figure 4.5: Axis system as used by Armanini et al. for the model identification of the Delfly II [5].

Delfly II: Local Grey-box model
A grey-box model structure has also been used for the model identification of he Delfly II [3, 5]. An LTI state-
space system was used, shown in Equations 3.2 and 3.3, the only difference being the input matrices. The
Delfly II had all its control surfaces in the tail. The inputs which were used for the excitation of the dynamics.
The input vectors used for the longitudinal and lateral dynamics are shown in Equation 4.13.
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Where bq̇ , bu̇ , bẇ bθ̇, bṗ , bṙ , bv̇ and bφ̇ are bias terms, which include all the dynamics which were not captured
by the model structure. Lower values of the biases are favourable. This LTI state-space system was used for
the determination of time-invariant body dynamics of the Delfly II. The time-varying component have been
determined using a Fourier Series [3]. The parameters were determined using the output-error approach,
explained in Subsection 4.3.2.

Delfly II: Global Grey-box model
For a non-linear dynamic system, the LTI state-space model will only be accurate if the operating conditions
are around the trim condition. The equations of motions have been linearized in this condition, making the
identified model only accurate locally. In order to identify a more global model, a linear parameter-varying
(LPV) model was identified. This approach is closely related to the gain scheduling approach [7, 23, 57]. In the
LPV modeling approach, multiple trim conditions are chosen, which leads to multiple local models. Then, a
global model is identified by finding a function which can interpolate between the local models. An arbitrary
scheduling variable is used for this function. In the research of Armanini et al. the trim velocity and the angle
of attack were used as the scheduling variable [5]. Figure 4.6 shows the various trim conditions, a total of 46,
used for the identification of the global LPV model [5].
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Figure 4.6: The various trim conditions, 46 in total, used in the research of Armanini et al. for the identification of a global LPV
state-space model [5].

The parameters, in this case the stability derivatives in the state-space model, are assumed to be a function of
the trim velocity V0 and the trim angle of attackα0. A bivariate polynomial structure was used as the function
for the stability derivative, shown in equation 4.14.
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The number of parameters was minimized using a stepwise regression approach, which is explained in Sub-
section 4.2.3. The model structure for all the stability derivatives of the pitching moment M are shown in
Equation 4.15 as an example [5].
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(4.15)

The parameters in this equation, indicated by θMi
n,m , are then determined using an Ordinary Least-squares

approach, which is explained in Section 4.3.1. For the research in this thesis, the trim sideways velocity v0

and the trim roll angle φ0 will be used the scheduling variables if the LPV state-space system is used as the
model structure.

Multi-body dynamic model
Previous research has shown that the influence of the wing dynamics on the body dynamics is greater when
the flapping frequency is closer to the natural frequency of the system [73, 85]. In order to account for this,
each wing of the FWMAV can be considered a separate body [1, 31, 56].

For the model identification of the Delfly II, this approach has been used by Caetano et al., for which the
free-body diagram is shown on Figure 4.7 [1].
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Figure 4.7: The free-body diagram used in the research of Caetano et al. [1]. The bodies which represent the wings are W1, W2, W3 and
W4.

The bodies which represent the wings are indicated by W1, W2, W3 and W4 in Figure 4.7. There are two degrees
of freedom, active rotation around xb with a wing sweep angle ζ and passive rotation about yb .

Delfly Nimble: Karl Kajak
Kajak et al. used a model with the center of pressure (COP) and the center of mass (COM). The free-body
diagram of the model is shown in Figure 4.8[32, 33]. The equations of motions used for the identification are
shown in Equation 4.16.

Figure 4.8: Free body diagram of the Delfly Nimble as used by Kajak et al. [32, 33].
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The cycle-averaged aerodynamic forces X and Z and the aerodynamic moment M were calculated using the
equations shown in Equation 4.17.

uCOP =u − lz θ̇− l̇d X =−2bx uCOP

wCOP =w + (ld + lx )θ̇ Z =−2T −2bz wCOP

M =−X lz +Z (ld + lx )

(4.17)

Where uCOP and wCOP are the longitudinal and vertical velocities of the center of pressure, lx and lz are fixed
linear offsets between the COM and COP along the Xbod y and the Zbod y axes, ld is the adjustable linear dis-
placement of the COP with respect to the COM used for the control of the pitch attitude, and T is the thrust
force vector of one wing. The parameters which need to be estimated are the constants bx and the bz , which
were determined using a least-squares estimation. This parameter estimation technique is explained in Sec-
tion 4.3.1. The thrust force was modeled as a linear function of the flapping frequency, shown in Equation
4.18.

T =2 · (0.0114 f −0.0449
)

(4.18)

Kajak et al. also modeled the actuator dynamics in order to account for the actuator delay. This was done for
the flapping and the dihedral mechanisms, using the transfer functions shown in Equation 4.19.

H f l ap (s) = 12.56

s +12.56
, Hdi hedr al (s) = 554.2

s2 +30.25s +554.2
(4.19)

The flapping mechanism was modeled as a first order system which had a non-dimensional time constant
equal to 0.08. The dihedral mechanism was modeled as a second order system which had a natural frequency
of 0.04s and a damping ratio of 0.634.

Delfly Nimble: Jorgen Nijboer
Nijboer et al. used the same coordinate system shown in Figure 3.1. A LTI state-space system was used for
the identification of the model, shown in Equation 3.2. The input vector used for the identification is shown
in Equation 4.20 [51].
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Where δD is the deflection of the dihedral mechanism of the Delfly Nimble. The parameters which needed
to be estimated are the same as the ones shown in Equations 3.3 and 4.20. These were determined using the
least-squares approach, which is explained in subsection 4.3.1.

For this thesis the LTI state-space model shown in Equation 3.3 will be used. Initially, all the inputs will
be considered in the input vector. However, if an input does not have a significant influence on the model
accuracy, that input can be omitted, reducing the size of the input matrix. If the bias terms are included and
all the inputs are considered, the input matrix is as shown in Equation 4.21.
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4.2.3. Minimization of model structure
When choosing a model structure, it is important to consider the accuracy of the identified model. In general,
more parameters will lead to a more accurate model. However, the model may start fitting noise, which is not
part of the system dynamics. Another issue with using too many parameters is that the model becomes more
computationally expensive, while not leading to a more accurate mapping of the system output. Therefore
it is advantageous that as few parameters are used, while the accuracy is as high as required. The optimum
model which has the desired accuracy with the lowest number of parameters is known as the parsimonious
model [77].

The black-box model structure used by Armanini et al. [6] had the most parameters out of all the model
structures discussed in Subsection 4.2.2. The number of parameters can be reduced by applying the stepwise
regression method [5, 63]. With this method the parameter that has the least effect on the model accuracy is
removed.

4.3. Parameter Estimation
This section answers Question SQ2c. The main goal of system identification is the development of a mathe-
matical model which is able to accurately simulate the system dynamics. It is then desirable that the output
of the model matches the output of the real dynamic system. Quantifying how well the model achieves this
can be done using a loss-function, also known as cost function, shown in Equation 4.22 [43, 44, 65].

VN = 1

N

N∑
t=1

l (t ,θ,ε(t ,θ)) (4.22)

Where l is a quantifying norm which is a function of the parameters, t and the residual ε. This method is
generally known as the the prediction error approach, which is a collection of wide family of system identifi-
cation methods [44]. The variations are in the choice of cost function. If the cost function is the square of the
residuals, the equation-error approach is used, discussed in subsection 4.3.1. Another possibility is that the
cost function is the maximum likelihood equation, then the output-error or the filter-error approach is often
used, explained in Subsections 4.3.2 and 4.3.3. In aircraft system identification, the most used methods are
the equation-error and the output-error approach [30, 40].

4.3.1. Equation-error approach
The equation-error approach is one of the most used parameter estimation procedures in aircraft system
identification [30, 40]. The flow-diagram of the equation-error approach is shown in Figure 4.9 [40].

Figure 4.9: Flow diagram of the equation-error approach for the parameter estimation [40].

In this approach the input u, the aircraft states x and the measurements z are used for the parameter esti-
mation. Linear regression techniques are a very well known equation-error approach. This technique will be
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explained using the model structure shown in Equation 4.23, which is a model with a univariate polynomial
structure.

p(x, θ̄) =θ0 +θ1x+θ2x2 +θ3x3 = A(x) · θ̄ (4.23)

The model p(x,θ) can be written in a state space form shown in Equation 4.24.
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Where N is the total number of data-points. The main goal is to find to find a set of parameters θ̄ which
minimize the error between the actual output and the output of the mathematical model. The error can be
determined using Equation 4.25.

ε̄= y− A(x) · θ̄ (4.25)

Where y is the actual system output. The linear regression estimator uses a cost function J to determine the
best set of parameters, which are those which minimize the model error ε. This is shown in Equation 4.26.

θ̂ = argmin J (y− A(x) · θ̄) (4.26)

An often used cost function is the one shown in Equation 4.27. In this function, the squares of the errors
are minimized. When this cost function is used, the approach is also called the least squares parameter
estimation [16].

J (x, θ̄) =
N∑

i=1
ε2

i =
N∑

i=1
(yi − A(xi ) · θ̂)2 (4.27)

There are different types of least-squares estimators, such as the Ordinary Least-Squares (OLS) parameter
estimator, the Weighted Least-Squares (WLS) parameter estimator and the General Least-Squares (GLS) pa-
rameter estimator. A variation of the linear regression method is also used for system identificatio, known as
the Instrument Variable method.

Ordinary Least-Squares
When using this estimator it is assumed that the model error ε is Gaussion White noise and that the sensor
noise has a mean of zero and the variance is constant [5, 16]. The best set of parameters are then determined
using the OLS estimator shown in Equation 4.28.

θ̂OLS = (
AT (x) · A (x)

)−1 · AT (x) ·y (4.28)

The main advantage is that the OLS estimator is a simple algorithm. However, this method is very sensitive to
sensor noise. Outliers in the data can greatly influence the identified parameters, leading to a very different
mathematical model. There are various ways how this can be improved, such as using the WLS estimator or
the GLS estimator.
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Weighted Least-Squares
The main disadvantage of the OLS estimator was that it is every sensitive to sensor noise. In real measure-
ments, it is often the case that not every data-point has the same variance. This can be accounted for by as-
signing weights to the individual data-points. A data-point with a higher variance is assigned a lower weight.
The weights are applied using a weight matrix W , shown in Equation 4.29 [16].

W =


σ2

1 0 . . . 0

0 σ2
2

. . .
...

...
. . .

. . . 0
0 . . . 0 σ2

N

 (4.29)

Whereσ2
1,σ2

2, ....,σ2
N are the sensor noise variances of each data point. The weight matrix is determined using

prior knowledge about the system. What is a possibility, is to first use a OLS estimator, and determine the
covariance matrix of the residuals. The terms of the diagonal of the covariance are then the variances of the
individual data points, which are used to develop the weight matrix. This is shown in Equation 4.30.

COVε = E
{
ε ·εT }

W = di ag (COVε)
(4.30)

The diagonal elements of COVOLS are the variances of the data-points. The parameters can then be deter-
mined using the WLS estimator, shown in Equation 4.31.

θ̂W LS = (
AT (x) ·W −1 · A (x)

)−1 · AT (x) ·W −1 ·y (4.31)

This estimator has a better performance then the OLS estimator, since it is more robust to sensor noise. It is
assumed that the residuals are uncorrelated [16]. However, if this is not the case more complicated estimators
can be used, such as the GLS estimator.

General Least-Squares
The GLS estimator is a more general form of the WLS estimator. Instead of a W matrix, it uses the residual
covariance matrix Σ, which can be calculated using Equation 4.30. While the weight matrix W uses only the
diagonal terms of COVε, Σ is set equal to COVε. When the Σ has been determined, the GLS estimator can be
used shown in Equation 4.32.

θ̂GLS = (
AT (x) ·Σ−1 · A (x)

)−1 · AT (x) ·Σ−1 ·y (4.32)

Instrument-variable approach
A modification of the equation-error approach is the instrument-variable approach. The difference is in the
estimator for the parameters, shown in Equation 4.33 [30, 43, 65].

θ̂IV = (
ζT · A (x)

)−1 · AT (x) ·y (4.33)

Where ζ is a correlation vector, which is comprised of signals which are uncorrelated with the equation-
error ε̄, but are strongly correlated with the independent variables. The elements of this vector are called
’instrument variables, hence the name of the method. There are several ways to determine such a vector ζ
[47, 79].
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Equation-error approach for a state-space-system
For a state-space system, the equation-error approach can also be applied by rewriting it. Consider the state-
space system shown in Equation 4.34 [43].

ẋ(t ) =A ·x(t )+B ·u(t )+w(t )

y(t ) =C ·x(t )+D ·u(t )+ v(t )
(4.34)

The elements in the state-space systems can be arranged in larger matrices shown in Equation 4.35 [43].

Y (t ) =
[

ẋ(t )
y(t )

]
, Θ=

[
A B
C D

]
Φ(t ) =

[
x(t )
u(t )

]
, E(t ) =

[
w(t )
v(t )

] (4.35)

Using the matrices defined in Equation 4.35, the state-space system can be rewritten into Equation 4.36.

Y (t ) =Θ ·Φ(t )+E(t ) (4.36)

This is very similar to the polynomial model shown in Equation 4.23. The full derivation of the regression
matrices for the grey-box and black-box model structures used for the parameter estimation are shown in
Chapter C.

4.3.2. Output-error approach
Next to the equation-error approach, the output-error approach is one of the two most used approached
for the system identification of aircraft systems [30, 40]. In the equation-error approach is assumed that the
residuals are uncorrelated white noise [16, 40]. If this is not the case, the output-error approach is a more
suitable method, since this approach is able to cope with non-white noise in the residuals. A flow-diagram of
the output-error approach is shown in Figure 4.10.

Figure 4.10: Flow diagram of the output-error approach for the parameter estimation [40].

The working principle of the output-error approach is explained using a LTI state-space system, shown in
Equation 4.37 [40].
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ẋ(t ) =A ·x(t )+B ·u(t ) x(0) = x0

y(t ) =C ·x(t )+D ·u(t )

z(i ) =y(i )+υ(i ) i = 1,2, ..., N

Cov[v(i )] =E [υ(i ) ·υT (i )] = Rδi j

(4.37)

Where x(t ) is the state vector, y(t ) is the model output vector, z(i ) are the measurement points, υ(i ) are the
residuals and R is the covariance matrix. In this approach it is assumed that every measurement point in
z(i ) is an independent sample of a normal distribution probability density function [16, 40]. The goal is to
have a maximum probability of observing a measurement for a given parameter vector θ0. This is done by
minimizing the negative log-likelihood function, shown in Equation 4.38 [5, 40].

J (Θ,R) =− ln p(z|Θ) = 1

2

N∑
i=1

[
υT (i )R−1υ(i )+ N

2
ln |R|

]
+ N n0

2
ln(2π) (4.38)

Where n0 is the number of output variables measured during the experiments. The covariance matrix R can
be approximated by R̂, which can be computed using Equation 4.39.

R̂ = 1

N

N∑
i=1

υT (i )υ(i ) (4.39)

Often only the diagonal terms of R̂ are used only in order to reduce the computational complexity. Using the
full matrix will lead to better parameter estimates, but it also increases the computational cost drastically, due
to which it is not practical to do so [40].

With the use of R̂ Equation 4.38 can be simplified using relaxation techniques [5, 40]. With this technique
the R̂ is determined at each iteration, making it a constant term at the given iteration. Because the R̂ is now
constant and not a function ofΘ, the two latter terms of Equation 4.38 can be omitted. This leads to a simpler
cost equation, shown in Equation 4.40.

J (Θ) =1

2

N∑
i=1

υT (i )R̂
−1
υ(i )

=1

2

N∑
i=1

[z(i )−y(i )]T R̂
−1

[z(i )−y(i )]

(4.40)

In the research of Armanini et al. updated cost value was determined using a second order Taylor series
expansion, shown in Equation 4.41 [5].

(
∂J

∂Θ

)
i+1

≈
(
∂J

∂Θ

)
i
+

(
∂2 J

∂Θ2

)
i
∆Θ (4.41)

The left hand side is then equated to zero, which leads to an equation for the parameter estimation update,
shown in Equation 4.42.

∆Θ=−
(
∂2 J

∂Θ2

)−1 (
∂J

∂Θ

)
(4.42)

In order to use Equation 4.42, the first and second derivatives of the cost function J (Θ) need to be determined.
This can be done using the Newton-Raphson technique, shown in Equations 4.43 and 4.44[40].

∂J

∂Θ
=−

N∑
i=1

∂yT (i )

∂Θ
R̂
−1
υ(i ) (4.43)
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∂2 J

∂θ jθk
=

N∑
i=1

∂yT (i )

∂θ j
R̂
−1 ∂y(i )

∂θk
− ∂y2(i )

∂θ jθk
R̂
−1
υ(i ) (4.44)

This algorithm can be simplified by omitting the last term in Equation 4.44. If this is done, the algorithm is
called the Gauss-Newton one.

With the parameter update determined using Equations 4.42 to 4.44, the parameters can be updated. When
this is done, the residuals can be determined with the updated parameters, which will be used to determine
the R̂ for the next iteration. Then, the next parameter update is determined using the updated R̂, making it an
iterative process. The iterative process will stop when certain convergence criteria are met. In the research of
Armanini et al., the convergence criteria were the value of the cost function J (Θ) and the change in the cost
function after an iteration, which both needed to be lower than specified values [5].

In order to start the iterative process, an initial estimate of the parameters is required. In the research of
Armanini et al. the initial estimate can be determined using the OLS estimator which was explained in Sub-
section 4.3.1. A flow diagram of the parameter estimation algorithm used in the research of Armanini et al. is
shown in 4.11.

Figure 4.11: Parameter estimation algorithm as used in the research of Armanini et al. [5]. The output error approach was used in
combination with a maximum likelihood estimator.

The dynamic simulation was done using a fourth-order Runge-Kutta Integrator. For the research of this The-
sis, the output-error approach will be used for the estimation of the parameters, since it has been done suc-
cessfully in the research of Armanini et al. [4, 5] and because it leads to more robust estimates than the
equation-error approach. However, one important difference between the Delfly II and the Delfly Nimble is
that the Delfly II was open-loop stable. According to Klein et al. there is no proof that the estimation using the
output-error approach will converge, however it has been shown that in practive this method can converge
[40].

A disadvantage of the output-error approach assumes that there is no process noise, when this is not the case,
more general approach is needed, such as the filter-error approach.
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4.3.3. Filter-error approach
When there is sensor and process noise present in the system, neither the equation-error nor the output-error
approach can guarantee the identification of a good mathematical model. When this is the case, a different
approach is required, namely the filter-error approach. Since this approach allows for sensor noise as well as
process noise, the filter-error approach has been called the most general method for parameter estimation in
aircraft system identification[40]. A flow-diagram of this approach is shown in Figure 4.12[40].

When compared to the output-error flow-diagram shown in Figure 4.10, the only difference is that the states
are now estimated using a Kalman filter instead of a model. The cost function which needs to be optimized is
also different, shown in Equation 4.45.

J (Θ) = 1

2

N∑
i=1

[
υT (i )B−1(i )υ(i )+ N

2
ln |B(i )|

]
(4.45)

Where B(i ) is covariance matrix of the innovations υ(i ). In the output-error approach, the last two terms
were omitted since they were constant. In the filter-error approach, only the last term is considered to be
constant. The optimization can be done using similar techniques as the ones shown in Subsection 4.3.2.

Figure 4.12: Flow diagram of the output-error approach for the parameter estimation [40].



5
Model Validation Techniques

This Chapter covers the model validation phase of the System Identification Cycle, thus answering Subques-
tion SQ3, which was phrased as follows:

SQ3. What is the quality of the identified model?
(a) Which metrics can be used for validating the model?
(b) Is the decoupling of the dynamics a justifiable assumption?
(c) Is the linearity of the aerodynamic forces a justifiable assumption?

This phase is a crucial one, since it is determined here whether the performance of the model is adequate
enough for it to be used for getting more insight into the dynamic system or the development of controllers[30].
If from the validation phase it turns out that the model does not generate the same output for the same input
accurately, one should go back to the previous phases and implement improvements, making the identifica-
tion of model an iterative process. The validation phase can also be used in order to check for the possibility
of model reduction [38], where fewer parameters are used. Section 5.1 answers Question SQ3a and Section
5.3 answers Questions SQ3b and SQ3c.

5.1. Validation metrics
This section answers Question SQ3a. Various metrics are available for the validation of the identified model.
These can be put into two categories [30], the analysis of the statistical properties of the parameter estimates,
described in Subsection 5.1.1 and the residuals, described in Subsection 5.1.2. The validation of the model
identified for the Delfly II was done using these metrics [5].

5.1.1. Statistical properties of parameters
The statistical properties of the parameters can be determined by analysis of the covariance matrix [5, 30].
The diagonal elements indicate the variance of the parameters. All the other entities indicate the covariances.
It is desirable that all these values are as low as possible. Large values for the variance would suggest that the
estimation of the parameters is sensitive to the noise in the data sets. High covariance values could mean that
certain parameters are correlated with each other.

5.1.2. Residual analysis
Before the residuals can be analyzed they have to be determined. These are determined using Equation 5.1.

ε= yi − ŷi (5.1)

Where yi is a measurement point ŷi is the predicted value from the model. The predicted value can be de-
termined using a Simulink model in MATLAB, while using the same input as in the experiment. There are
several metrics which can be used for the analysis of the residuals. The accuracy of the fit can be quantified
by the goodness of fit R2 or the root mean-squared error RMSE. A high value for R2 is desired, while a low
value for the RMSE is preferred. These values are calculated using Equations 5.2 and 5.3.
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R2 = 1−
∑N

i=1(yi − ŷi )2∑N
i=1(yi − y)2

· N −1

N −P
(5.2)

RMSE =
√√√√ 1

N
·

N∑
i=1

(yi − ŷi )2 (5.3)

Where y is the mean of all measurements, N is the total number of measurements, and P is the total number
of parameters. While it is true that using more parameters will decrease the RMSE, this does not mean that
the model is more accurate. The model may start fitting noise, which is not part of the system dynamics.
The second fraction in Equation 5.2 punishes the use of too many parameters. Using more parameters will
decrease the R2.

Another metric for the analysis of the residuals is the whiteness of the residuals. For certain estimation meth-
ods, such as the equation error approach, it is assumed that all the noise in the data set is white. The residuals
would then resemble white noise. This can be checked by determining the auto-correlation spectrum of the
residuals, and then then be compared to the spectrum of white noise. It is desirable that these two spectra
are as similar as possible[38]. The autocorrelation matrix is determined using Equation 5.4 [30].

C (τ) = 1

N

N∑
k=τ

[v(k)− v][v(k −τ)− v]T (5.4)

Where v is the residual, v is the mean of the residuals and τ is the lag. If the residuals resemble white noise,
the correlation coefficients are zero for every value of τ [30]. However, this is can only be accomplished when
there is an infinite data set. while there are only a finite amount of datapoints N . In order to cope with
this practical limitation, a confidence interval is used. A confidence level of 95% is often used, but this is an
arbitrary value. In the case of this interval, 95% of the values of τ should lie in the band ±1.96/

p
N [30].

5.1.3. Output Correlation
The output correlation coefficient can show how similar the estimated output and the measures output are.
This can be quantified using the Pearson’s Correlation coefficient, the Equation for which is shown in Equa-
tion 5.5 [20].

rx y =
∑N

i=1

∑N
i=1(xi −x) ·∑N

i=1(yi − y)√∑N
i=1(xi −x)2 ·∑N

i=1(yi − y)2
(5.5)

Where x and y are both vectors of length N . A value close to 1 indicates a positive correlation, while a value
close to -1 indicates a negative correlation. A value of 0 indicates no correlation between the two variables. It
is desired that the values of rx y is as close to 1 as possible.

5.2. Physical plausibility of parameter
Another metric that can be used for the validation of the identified model is to check whether the estimated
parameter is logical. The parameters in this research are the stability and control derivatives when using the
grey-box model structure. The plausibility of the estimated stability or control derivative can be checked by
analyzing the sign and the magnitude of it. This technique has been used in previous research, such as in the
work of Karásek et al. [34, 35].

For example, the expectation is that the sign of the control derivative Lδ f
is positive, for a positive δ f will

create a positive moment L. Using multiple identification data-sets can be used to verify the consistency of
the sign and magnitude of the stability and control derivatives.

The signs and magnitudes can also be analyzed by comparing them to those of other FWMAV’s, such as the
Delfly II, for which the stability and control derivatives were determined by Armanini et al. [4, 5]. When
comparing to the Delfly II, only the stability derivatives can be compared, and not the control derivatives can’t
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be compared, since the Delfly II uses very different control mechanisms compared to the Delfly Nimble. The
magnitude of the estimated stability derivatives can also be compared to those of the Delfly II. Apart from the
Delfly II, the sign and magnitude of the stability derivatives can also be compared to the analytic parameter
values that were estimated using the model structure used by Karásek et al. [34, 35]. For the determination of
these parameters the morphological data of the drone-fly was used. Therefore, only the stability derivatives
can be compared, since the drone-fly has two wings and uses very different control strategies compared to
the Delfly Nimble.

5.3. Analysis of decoupled dynamics and linearity
This section describes the procedure which will be used for answering Questions SQ3b and SQ3c. The as-
sumption of decoupled dynamics and the linearity of the system can be verified using the experiments de-
scribed in Section 3.4. By analysis of the residual and the statistical parameters, these assumptions can be
validated.
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Modeling Results
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6
Introduction Modeling Results

In this part of the thesis the modeling results are shown. There are three main chapters in this part, each
covering the results of one of the phases in the System Identification Cycle. Each chapter will also provide
answers to the research questions which were not answered completely in the literature study. The results
of the experiments are shown in Chapter 7. This is followed by Chapter 8, where the results of the model
identification are discussed. The final chapter, Chapter 9, elaborates on the validation results. The lay-out of
this part is illustrated in Figure 6.1.

Figure 6.1: Lay-out of Part II of the thesis: Modeling Results.
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7
Experimental Results

In this Chapter the results of the experiment phase are shown. First, the gain-tuning of the controller is
discussed in Section 7.1. Second, an overview of all the maneuvers used during the experiments is shown
in Section 7.2, thus answering Questions SQ1c, SQ1e and SQ1f. Third, the influence of the controller on the
experiments is explained in Section 7.3. At last, the identifiability of the data is elaborated in Section 7.4,
answering Question SQ1d.

7.1. Gain-tuning the controller
The first obstacle during the experiments was the gain-tuning of the controller. The Delfly Nimble requires
an active controller in order to ensure safe flight, as was explained in Section 2.1. The original gains on the
Delfly are those which were used in the research of Karásek et al. [36]. However, when using these gains there
was little to no excitation of the dynamics. The excitation was initially analysed by looking at the reaction of
the Delfly Nimble when a command for a doublet was given. It could be seen that for a doublet with a main
frequency higher than approximately 8 H z, there was no visible movement of the Delfly Nimble. Based on
these observations, the proportional (P) gain and the derivative (D) gain of the PD-controller were changed
to ensure that there was visible movement of the Delfly Nimble during a doublet with a main frequency of 14
H z. An overview of the gains is shown in Table 7.1. One should note that only the gains for the roll control
were adjusted, since this research focuses on the lateral body dynamics of the Delfly Nimble. The gains of the
pitch and yaw controller were left unchanged.

Gain
Open-loop gains

(fast gains)
Closed-loop gains

(slow gains)
Proportional 1.406 0.625

Derivative 0.200 0.156

Table 7.1: Overview of the gains of the roll controller which were used during the open-loop and closed-loop experiments. The
closed-loop gains are the same as those used in the research of Karásek et al. [36]. The open-loop gains are indicated as the ’fast’ gains,

while the closed-loop gains are indicated as the ’slow’ gains.

The open-loop gains will be indicated as the ’fast’ gains, while the closed-loop gains will be indicated as the
’slow’ gains. The fast P-gain was set higher than the slow P-gain. This was done to have a more aggressive
response of the Delfly Nimble to the doublet input, which was one of the possible ways to acquire more
excitation explained in Section 3.2. The fast D-gain was initially set lower than the slow D-gains in order to
reduce the damping of the natural response of the Delfly Nimble. However, in combination with the higher P-
gain this led to oscillations while the Delfly Nimble was hovering. In order to reduce these oscillations, the fast
D-gain was set higher, being even a bit larger than the slow D-gain. This made sure that there were minimal
oscillations during hover, while also ensuring excitation of the dynamics of the lateral body dynamics.
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7.2. Maneuvers used in experiments
This section explains which maneuvers were used to generate the data for the development of the mathemat-
ical model of the lateral body dynamics of the Delfly Nimble. There were four categories of maneuvers which
were used during the experiments: identification maneuvers, validation maneuvers, coupled maneuvers and
nonlinear maneuvers. The identification maneuvers are discussed in Subsection 7.2.1, while the validation
maneuvers are explained in Subsection 7.2.2. This is followed by elaborating on the coupled maneuvers in
Subsection 7.2.3 and clarifying the nonlinear maneuvers in Subsection 7.2.4.

7.2.1. Identification maneuvers
In this subsection the first category of maneuvers, the identification maneuvers, are discussed and thus part
of Question SQ1c is answered. The main goal of these maneuvers was to excite the natural motion of the
Delfly Nimble as much as possible, as has been discussed in Section 3.2. In order to achieve this goal the
natural frequencies of the lateral body dynamics of the Delfly Nimble were estimated using analytic models
of flapping flight, as shown in Section 3.3.1. With this information the maneuvers for the identification data
were chosen. A train of doublets was chosen as the maneuver for the identification data, with hovering as
the initial condition. The maneuver was done by giving roll angle commands to the Delfly Nimble. If the
thrust was kept constant during the doublet maneuver, the Delfly would lose altitude because it loses lift due
to the rolling motion. Therefore, in addition to roll angle commands, throttle commands were also given.
This prevented the Delfly Nimble losing altitude when doing the doing the doublet maneuver. The increase
in throttle was done by applying a throttle factor T HRF , which was calculated using Equation 7.1.

T HRF = 1

cos(φsp )
(7.1)

Where φsp is the maximum set-point roll angle. The roll angle and throttle commands for the doublet train
are shown in Figure 7.1.
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b: Throttle command for a doublet train

Figure 7.1: The roll angle command, shown in a, and throttle command, shown in b as used for the doublet trains. The throttle was
increased during the doublet maneuvers in order to prevent the Delfly Nimble from losing altitude. The main frequencies of the

doublets are 11, 7 and 4 H z.

The main frequencies which were excited using the doublet train shown in Figure 7.1 are 11, 7 and 4 H z.
These values were chosen iteratively. Initially, the estimated values of Section 3.3.1 were used for the doublet
train, which were around the 1 and 2 H z. However, using these frequencies in the maneuver made the Delfly
Nimble move a lot form the initial condition, which is the Delfly Nimble hovering. Therefore, higher main
frequencies were chosen iteratively in order to reduce this. Then, the main frequencies were updated by
inspecting the Power Spectral Density plots of the states. Based on this the frequencies were updated to those
shown in Figure 7.1. During the identification maneuvers, the fast gains shown in Table 7.1 were used.

7.2.2. Validation maneuvers
In this subsection the second category of maneuvers, the validation ones, are explained and thus the remain-
der of Question SQ1c is answered. With this data the models which were developed using the identification
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were validated. Two types of validation data were generated: OL data and CL data. The difference between
the datasets are the gains which were implemented to the controller. The gains are shown in Table 7.1. Two
maneuvers were used for the validation experiments: doublets and the 112-maneuver. The main frequencies
for the CL doublets were 6, 4 and 2 H z. The roll commands given for the 112-maneuver are shown in Figure
7.2.
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Figure 7.2: The roll angle command, shown in a, and throttle command, shown in b for the 112-maneuvers. The main frequencies in
the maneuver shown are 7 and 3.5 H z.

The 112-maneuver shown in Figure 7.2 is the one used for the OL validation data. For the CL validation data
the main frequencies were 4 and 2 H z, for there was very little excitation of the 7 H z pulse when using the
slow gains. The initial condition of all the validation maneuvers was the Delfly Nimble hovering.

7.2.3. Coupled maneuvers
In this subsection the third category of maneuvers, the coupled maneuvers, are elaborated on and thus Ques-
tion SQ1e is answered. These maneuvers are coupled since inputs are given to more than one control mech-
anism, whereas for the doublets and 112-maneuvers inputs are given only to the roll control mechanism.
The coupled maneuver which was used during the experiments is the coupled doublet, where first an input is
given in pitch angle, making the Delfly Nimble fly forward, and then an input is given in roll angle, making the
Delfly do a doublet. The fast gains were used during this maneuver. The roll angle, pitch angle and throttle
commands for the coupled doublet is shown in Figure 7.3.
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Figure 7.3: The roll angle command, shown in a, pitch angle command, shown in b, , and throttle command, shown in c, as used for the
coupled doublet maneuver. The main frequency of the doublet maneuver shown is 6 H z.
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The main frequency of the coupled doublet shown in Figure 7.3 is 6 H z, and the initial condition of the
coupled maneuvers was the Delfly Nimble hovering.

7.2.4. Nonlinear maneuvers
In this subsection the fourth and last category of maneuvers, the nonlinear ones, are clarified and thus Ques-
tion SQ1f is answered. These maneuvers are nonlinear since they move away a lot from the initial condition.
The initial condition of the nonlinear maneuvers was the Delfly Nimble hovering. The maneuvers used are
the nonlinear doublets. First, a constant roll angle input is given, making the Delfly move sideways, and then
a roll angle input is which makes the Delfly do a doublet. The fast gains were used for these maneuvers. The
roll angle and throttle commands given for the nonlinear doublet is shown in Figure 7.4.
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Figure 7.4: Roll angle commands, shown in a, and throttle commands, shown in b, as used for the nonlinear doublet maneuver. In the
maneuver shown, the constant angle was 30°, the deflection was 15°, and the main frequency shown was 4 H z.

The main frequency of the maneuver shown in Figure 7.4 is 4 H z. There were also variations in the constant
roll angle. In Figure 7.4, the constant roll angle is 30°, but there was also data captured where the constant
angle was 20°. The deflection remained 15°.

7.3. Influence of the controller
The figures in Section 7.2 show the set-point roll and pitch commands used to perform the maneuvers. How-
ever, these commands do not go directly to the actuators of the Delfly Nimble. This is because of the active
controller of the Delfly Nimble, which is required to remain airborne. The controller for the roll attitude is
shown in Figure 7.5, which is a snip of the controller shown in Figure 2.9 [36].

Figure 7.5: Overview of the on-board controller for the roll and pitch attitude [36]. The Delfly Nimble is indicated as ’Robot’ in this
figure. This figure only shows the controller for the pitch and roll attitude. In A the reference generator is shown. In B the attitude

controller is shown which has proportional and derivative terms. There is also an open-loop program which was used for the rapid
bank turns used in the research of Karásek et al.[36].
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From Figure 7.5 it can be seen that the set-point roll command first goes through a reference generator, which
filters the set-point heavily. The reference roll command then goes into a PD-controller, which uses the gains
specified in Table 7.1. The output of the PD-controller then goes to the Delfly Nimble, which is indicated as
’Robot’ in Figure 7.5. The influence of the reference generator is shown in Figure 7.6. The influence is shown
by using the doublet train maneuver shown in Figure 7.1.
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Figure 7.6: Set-point and Reference roll angle for the doublet train maneuver which is used for gathering identification data, as was
explained in Section 7.2.1.

From Figure 7.6 it can be seen that there is a large influence of the reference generator on the commanded
roll angle, which in this figure is these set-point roll angle. The Reference roll angle has a range which is
significantly smaller than the range of the set-point roll angle. The reference roll angle still has to go through
the PD-controller shown in Figure 7.5, which will limit the movement of the Delfly Nimble more, which can
decrease the dynamic excitation even more. In spite of the reference generator and the PD-controller, there
was still movement of the Delfly Nimble visible during the identification experiments. This is illustrated in
Figure 7.7.
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Figure 7.7: Actual roll angle of the Delfly Nimble and the Reference roll angle during the doublet train which was used as the
identification maneuver. The actual roll angle is determined by using the Extended Kalman Filter which was developed by Armanini et

al. [5].

From Figure 7.7 it can be seen that the doublet maneuver is visible, i.e. that the Delfly Nimble follows the
reference roll angle well, especially during the first parts of the doublets, where a negative roll angle command
is given. During the second part of the doublet, where a positive roll angle command is given, there is a large
overshoot. This is due to the large P-gain which was used during the identification maneuvers, as shown
Table 7.1. There is also a delay visible between the Reference roll angle and the Actual roll angle. This is due
to the inertia of the Delfly Nimble. When the roll angle command is given, a deflection input is given to the
control mechanism for the roll attitude, which in this case are the wings. The roll attitude is controller by
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having a difference in flapping frequency between the left and right wings, δ f . A positive δ f will make the
Delfly Nimble roll in the positive direction. Figure 7.8 shows the δ f during the doublet train maneuver.
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Figure 7.8: Set-point roll angle and the flapping frequency input δ f for the doublet train which was used as the identification maneuver.
A positive δ f will make the Delfly Nimble roll in the positive direction. From this figure it van be seen that the appropriate δ f is given

for the doublet maneuver directly the start of the maneuver.

From Figure 7.8 it can be seen that the appropriate δ f is given for the doublet maneuver directly the start of
the maneuver. Thus the delay which was visible in figure 7.7 is due the inertia of the Delfly Nimble.

7.4. Identifiability of identification data
This section will answer Question SQ1d, the identifiability of the data. Even though there was movement
visible on the Delfly Nimble when the identification maneuver, which was the doublet train, the identifiabil-
ity still needs more verification. This can be done using the magnitude plot of a bode diagram, which was
discussed in Section 3.3.4. Instead of the bode diagram, the Power Spectral Density (PSD) plots of the states
are used for verifying the identifiability. The power spectrums of the raw data is shown in Figure 7.9.
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Figure 7.9: The Power Spectral Density (PSD) plots of the states of the Delfly Nimble while hovering and while doing the identification
maneuver, which was discussed in Section 7.2.1. The PSD plots are of the raw data. Both the maneuver and hover data are from the
same dataset. The green square in the power spectrums of the states contains the frequency content up to 12 H z. The components

inside this square were filtered out using using a zero-phase Butterworth filter with order 10.

In Figure 7.9 it can be seen that there are peaks around the 16 H z in the PSD Hover data, which is the flapping
frequency in hover. There also peak visible at the upper harmonics of the flapping frequency, which are
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32 and 48 H z. When looking at the PSD Maneuver data it can be seen that the peaks around the flapping
frequencies are lower. This is because of the change in flapping frequencies which are applied during the
doublet maneuver, which leads to multiple flapping frequencies during the maneuver. This also explains
why there are more than one peak around the flapping frequency. What is more, the flapping frequencies
peaks are shifted to the right. This is due to the increase in throttle, which as a consequence increases the
flapping frequency of the Delfly Nimble. Furthermore, at the lower frequencies there is more power in the
maneuver data. This can be better illustrated by filtering out the flapping frequencies from the signal. For the
identification data, only the frequency components inside the red square in Figure 7.9 was used. Everything
outside the square was filtered out. This was done using a Butterworth filter with an order of 10 and a cut-off
frequency of 12 H z. The filtered PSD plots are shown in Figure 7.10.
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Figure 7.10: The Power Spectral Density (PSD) plots of the states of the Delfly Nimble while hovering and while doing the identification
maneuver, which was discussed in Section 7.2.1. The PSD plots are of the filtered data, with a cutoff frequency of 12 Hz. A Butterworth

filter was used with an order of 10. Both the maneuver and hover data are from the same dataset.

In Figure 7.10 it can be seen that there is more power in the signal at the lower frequencies. There are visible
peaks around the 2 to 4 H z for the p, v and φ, and there is a peak visible at 11 H z in the PSD plot of r . These
peaks are in line with the expectations of Section 3.3.1. Based on Figures 7.9 and 7.10 the identifiability of the
data is verified, since there is a visible difference between the PSD plots of the hover and maneuver data, and
there are peaks visible at the frequencies of the doublets used for the identification maneuver.





8
Model Identification Results

In this Chapter the results of model identification are discussed. Firstly, the results of the State Estimation
using an Extended Kalman Filter are discussed in Section 8.1, further answering Question SQ2a. Secondly,
the four model structures which have been used for the estimation are elaborated on in Section 8.2, thus
answering Question SQ2b. Thirdly, the parameter estimation results are clarified in Section 8.3, answering
SQ2c. Lastly, Section 8.4 explains what the natural motions of the Delfly Nimble are based on the identified
model.

8.1. State Estimation Results
This section discusses the results state estimation, further answering Question SQ2a. For logging the data
during the experiments described in Section 7.2, two sources of data were used: the OptiTrack Motion (OT)
tracking system and On-board measurements. An overview of what was measured is shown in Table 8.1.

Source Obtained measurements
OptiTrack Position (x,y,z)

Attitude Quaternions (q0, q1, q2, q3)
On-board Angular Velocities (p, q , r )

Linear Accelerations (ax , ay , az )
Flapping frequency right ( fR )

Flapping frequency left ( fL)
Dihedral servo deflection (δd )

Wing root servo deflection (δw )
Throttle value (δt )

Table 8.1: Overview of the measurement obtained from the Optitrack Motion (OT) tracking system and the On-board data. The
on-board data consisted of IMU data, which logged the angular velocities and linear accelerations, and it also consisted of logging of

the deflections of the control mechanisms, such as the flapping frequencies of both wings, servo deflections, and throttle values.

The Attitude Quaternions obtained from the OT system were converted to the attitude angles φ, θ and ψ.
The on-board data consisted of IMU data, which logged the angular velocities and linear accelerations, and
it also consisted of logging of the deflections of the control mechanisms, such as the flapping frequencies of
both wings, servo deflections, and throttle values. In order to improve the accuracy of the data, sensor fusion
applied, using both sources of data. This was done using the same process as in the research of Armanini et
al. [5]. The process for the sensor fusion is shown in Figure 3.13. An Extended Kalman Filter (EKF) was used
for the sensor fusion. The complete working principle of the EKF can be found in the literature of Klein et al.
[40] and Grewal et al. [22]. In the EKF which was developed by Armanini et al. [4, 5], the vectors shown in
Equation 8.1 were used for the states x , input u , output z, the measurement noise v and the process noise
w .

103
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x =[
Φ Θ Ψ ub vb wb bp bq br bax bay baz

]T

u =[
p q r ax ay az

]T

z =[
Φm Θm Ψm u∗

b v∗
b w∗

b

]T

v =[
vΦ vΘ vΨ vub vvb vwb

]T

w =[
wp wq wr wax way waz

]T

(8.1)

Here Φ, Θ and Ψ are the attitude angles, ub , vb and wb are the body velocities, bp , bq and br are the bias
terms for the gyroscopes , and bax , bay and baz are the bias terms for the accelerometers in the state vector x.
In the input vector u, the p, q and r are the angular rates measured from the gyroscopes, and the ax , ay and
az are the accelerations measured by the accelerometers. In the output vector z, theΦm ,Θm andΨm are the
measured attitude angles from the OT system, and the u∗

b , v∗
b and w∗

b are the measured body velocities from
the OT system. The attitude angles were determined by transforming the attitude quaternions to angles, and
the body velocities were determined by derivation of the position data. The terms in the vector v denote the
measurement noise of the measured attitude angles and body velocities. The terms in the vector w denote
the process noise in the angular rates and linear accelerations. The process and measurement Equations can
be found in the work of Armanini et al. [4, 5]. The covariance matrix for the states Q and the covariance matrix
for the measurements R are shown in Equation 8.2.

Q =di ag
(
7.60, 2.60, 12.07, 26.99, 36.66, 56.12

)
R =di ag

(
0.125×10−3, 0.057×10−3, 0.037×10−3, 0.113×10−3, 0.216×10−3, 0.135×10−3 ) (8.2)

The matrices were determined in such a way in order to make sure that the bounds were as small as possible,
while containing the data-point within these bounds. The results of the EKF for the attitude angles is shown
in Figure 8.1, while the results of the EKF for the body velocities are shown in Figure 8.2. These are the results
for the doublet train maneuver shown in Figure 7.7.
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Figure 8.1: Residuals of the attitude angles φ, θ and ψ after the EKF was applied to the measurement data of the doublet train maneuver
shown in Figure 7.7. The standard deviation σ of the residual of φr es is 0.5°, the σ of θr es is 0.3°, and the σ of ψr es is 0.6°.
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Figure 8.2: Residuals of the body velocities u, v and w after the EKF was applied to the measurement data of the doublet train
maneuver shown in Figure 7.7. The standard deviation σ of the residual of ur es , vr es and wr es is 0.01ms−1.

8.2. Model Structures
This section elaborates on the model structures used for the estimation, thus answering Question SQ2b. Two
types of model structures were used for the identification of a mathematical mode of the lateral body dynam-
ics of the Delfly Nimble: a grey-box state-space model and a black-box state-space model, both of which are
linear time-invariant. The grey-box state-space model was developed by deriving the equations of motion
(EOM’s), the full derivation of which is shown in Appendix A. The grey-box model is shown in Equation 8.3.
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 (8.3)

The grey-box model shown in Equation 8.3 uses four states, the roll rate p, the yaw rate r , the lateral body
velocity v and the roll angle φ. A reduced version of the grey-box model was also used, which used three
states. Here the yaw dynamics are not considered, which omits all the the terms with the yaw rate r and also
omits the N-parameters. This leads to the reduced state-space model shown in Equation 8.4.
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(8.4)
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Next to the grey-box models, black-box models were also used. Similar to the grey-box models, two variations
of the black-box model were used. One of which uses the four states p, r , v and φ, shown in Equation8.5,
while the other uses three states, omitting the state r from the state-space, shown in Equation 8.6.
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 (8.6)

The model structures shown in Equations 8.3 and 8.5 will be indicated as ’four-state’ models, while the model
structures shown in Equations 8.4 and 8.6 will be indicated as ’three-state’ models in the following sections.

8.3. Parameter Estimation Results
This section clarifies the parameter estimation results, answering Question SQ2c. The parameters, which are
the stability and control derivatives of the models shown in Section 8.2, were determined using the Equation-
error approach, which was described in Section 4.3.1. Two types of the Equation-error approach were used,
the Ordinary Least-Squares (OLS) and the Weighted Least-Squares (WLS) . First an OLS estimation was done
and the weight matrix was determined by using the covariance matrix of the residuals, calculated using Equa-
tion 4.30. Then the WLS estimation was done by applying the calculated weight matrix. Subsection 8.3.1 will
discuss the parameter estimation results when the four-state models are used, while Subsection 8.3.2 will
elaborate on the estimation results when the three-state models are used.

8.3.1. Estimation Results Four-State State-Space Models
When Equation-error approach was used in combination with the full grey-box state-space model shown
in Equation 8.3, an additional assumption needed to be made, namely that the L- and N -parameters are
decoupled. This assumption needed to be made in order to cope with the coupled terms in the first two rows
of the A-matrix. This leads to the full grey-box state-space model shown in Equation 8.7.
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 (8.7)

The set-up of the regression matrices for the modified full grey-box model structure shown in Equation 8.7
and for the other three model structures shown in Section 8.2 are shown in Appendix C. Figure 8.3 shows the
results of the WLS estimation when the modified grey-box state-space of Equation 8.7 is used as the model
structure. The measurement of the doublet train shown in Figure 7.7 was used as the identification data.
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Figure 8.3: Results of the WLS estimation for each state derivative using the maneuver shown in Figure 7.7 as the identification data and
the full grey-box state-space system shown in Equation 8.7 as the model structure. A low-pass Butterworth filter with order 10 and
cutoff frequency of 12 H z was used to filter the measured data. The third plot shows v̇∗ instead of v̇ , since there are some constant

terms in the Equation for v̇ which needed to be put to the left-hand side. This is further elaborated in Appendix C.

From Figure 8.3 it can be seen that the state derivative ṙ is very badly estimated with the chosen model struc-
ture. The bad estimation of ṙ is also visible in the autocorrelation plot shown in Figure 8.4.
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Figure 8.4: Autocorrelation plot of the residuals of the estimation shown in Figure 8.3. For the estimation the maneuver shown in Figure
7.7 as the identification data and the full grey-box state-space system shown in Equation 8.7 as the model structure.

From Figure 8.4, it can be seen that the residuals of ṙ do not resemble white noise very well. This indicates
that the ṙ is badly estimated. The bad estimation is further confirmed by determining the following accuracy
metrics for which the calculation is described in Chapter 5: the output correlation, the goodness of fit R2, and
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the absolute and relative root-mean-square error RMSE. These are shown in Table 8.2.

Accuracy Metrics Four-State Grey-Box Model

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.923 0.860 11.11 r ad

s2 6.55

ṙ 0.118 0.192 23.01 r ad
s2 11.69

v̇ 0.941 0.900 0.59 m
s2 3.69

Table 8.2: Accuracy metrics for the estimation results shown in Figure 8.3. For the estimation the maneuver shown in Figure 7.7 as the
identification data and the full grey-box state-space system shown in Equation 8.7 as the model structure.

From Table 8.2 it can be seen that the accuracy metrics also indicate a bad estimation of ṙ . The estimation
has a low output correlation value, a low value for R2 and also a very high absolute and relative value for the
RMSE. The estimated stability and control derivatives are shown in Table 8.3, which also shows the absolute
and relative parameter standard deviation.

Estimated Parameters Full Grey-Box Model

Stability
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂|

Lp −3.80×10−4 1.00×10−4 2.64×101

Lr −2.81×10−4 3.25×10−4 1.16×102

Lv −2.72×10−3 1.01×10−3 3.70×101

Np 5.55×10−5 7.58×10−4 1.36×103

Nr 1.01×10−4 1.16×10−3 1.15×103

Nv 1.34×10−4 5.51×10−3 4.10×103

Yp −1.24×10−3 9.55×10−6 7.72×10−1

Yr 8.37×10−3 1.66×10−5 1.98×10−1

Yv −2.38×10−2 8.41×10−5 3.53×10−1

Control
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂|

Lδd
1.41×10−3 6.96×10−3 4.93×102

Lδ f
1.11×10−4 7.46×10−6 6.72×100

Lδw 7.28×10−3 2.29×10−3 3.14×101

Lδt −3.09×10−5 2.64×10−5 8.56×101

Nδd
1.89×10−3 4.23×10−2 2.24×103

Nδ f
−1.44×10−7 3.83×10−5 2.67×104

Nδw −7.09×10−4 1.21×10−2 1.70×103

Nδt 8.19×10−6 9.08×10−5 1.11×103

Yδd
−6.06×10−2 8.43×10−4 1.39×100

Yδ f
−9.25×10−4 5.44×10−7 5.88×10−2

Yδw −9.16×10−2 1.74×10−4 1.90×10−1

Yδt 6.44×10−4 1.01×10−6 1.57×10−1

Table 8.3: Estimated parameters for the four-state state-space system shown in Equation 8.7 as a result of the WLS estimator, using the
maneuver data shown in Figure 7.7. Θ̂ indicates the estimated parameter, while |σ̂| indicates the parameter standard deviation. The

fourth column shows the relative parameter standard deviation in percent.

From Table 8.3 it can be seen that the estimated stability and control derivatives which contain N and r also
have a higher parameter standard deviation |σ̂|, which would indicate the parameters are very sensitive to
noise in the data. There was high correlation visible between the parameters, especially for the ones with the
state v and the input δd , further discussed in Appendix H.1. The estimation results of ṙ also did not improve
when the black-box state-space system shown in Equation 8.5, as can be seen in the estimation results shown
in Figure 8.5, in the autocorrelation plots in Figure 8.6, and in the accuracy metrics shown in Table 8.4.
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Figure 8.5: Results of the WLS estimation for each state derivative using the maneuver shown in Figure 7.7 as the identification data and
using the full black-box state-space system shown in Equation 8.5 as the model structure. A low-pass Butterworth filter with order 10

and cutoff frequency of 12 H z was used to filter the measured data.
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Figure 8.6: Autocorrelation plot of the residuals of the estimation shown in Figure 8.5. For the estimation the maneuver shown in Figure
7.7 as the identification data and the full black-box state-space system shown in Equation 8.5 as the model structure.
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Accuracy Metrics Four-State Black-Box Model

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.923 0.860 11.11 r ad

s2 6.55

ṙ 0.118 0.192 23.01 r ad
s2 11.69

v̇ 0.941 0.900 0.59 m
s2 3.67

φ̇ 0.997 0.995 0.12 r ad
s 0.95

Table 8.4: Accuracy metrics for the estimation results shown in Figure 8.5. The estimation was done using the maneuver shown in
Figure 7.7 as the identification data and using the full black-box state-space system shown in Equation 8.5 as the model structure.

The bad estimation of the ṙ was visible for all the identification datasets which were used for the WLS param-
eter estimation. Using fewer inputs decreased the model accuracy of the estimation even more. The main
reason for the bad estimation were the high frequency components in the yaw rate. These high frequency
components of the yaw dynamics as shown in Figure 7.10 could be vibrations of the fuselage. The IMU is
mounted directly to the body of the fuselage, which would mean that these vibrations would be sensed by the
gyroscope. When looking at the PSD plot when using only the data of one doublet, the peak was still visible
and consistently at around 11 H z. This could indicate that it is indeed a vibration of the fuselage which can
be seen in the PSD plot of the yaw rate. This might be resolved by using foam between the IMU and the fuse-
lage of the Delfly Nimble, which would prevent the vibrations of the fuselage being sensed by the IMU. The
foam has been used earlier on the Delfly Nimble, however it was replaced by an autopilot mount for practical
reasons. The mount when using the foam was very fragile, which led to having to do a lot of repairs. Whether
the peak seen around 11 H z has to be confirmed by doing the same maneuvers using a Delfly Nimble which
has foam between the IMU and the fuselage.

In order to improve the estimation of ṙ a lower cut-off frequency was used for the Butterworth filter, however
this would leave very little identifiable dynamics in the yaw rate, for there was then little difference between
the PSD of the hover and the maneuver data, which is illustrated in Figure 8.7. The data used to generate this
PSD plot was filtered using a Butterworth filter a cut-off frequency of 8 H z and order 10.
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Figure 8.7: The Power Spectral Density (PSD) plots of the state r of the Delfly Nimble while hovering and while doing the identification
maneuver, which was discussed in Section 7.2.1. The PSD plots are of the filtered data, with a cutoff frequency of 8 H z. A Butterworth

filter was used with an order of 10. Both the maneuver and hover data are from the same dataset.

The WLS estimation results using a lower cut-off frequency of 8 H z did lead to a more accurate estimation
of ṙ , however the highest value for the output correlation for the estimated yaw rate did not exceed 0.35, the
value of R2 did not exceed 0.30, and the relative RMSE remained around 10 percent when using either the
grey-box or the black-box model. Using an even lower cut-off would remove the information contained in
the data of the other states too.

Due to the bad estimation of ṙ in spite of all the measures taken, it was concluded that the yaw rate can’t be
modeled properly when using a LTI state-space system. As a consequence it was decided to use the three-
state state-space system shown in Equations 8.4 and 8.6, omitting the yaw dynamics completely. The assump-
tion is then made that the yaw and roll dynamics are also decoupled. Since there is little overlap between the
dominant frequency components of the r dynamics and the dynamics of the other states when analyzing Fig-
ure 7.10, the removal of the r measurement does not influence the estimation of the other state derivatives
by much. The results of the identification of mathematical model for the lateral body dynamics of the Delfly
Nimble using the three-state models is elaborated on in Subsection 8.3.2.
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8.3.2. Estimation Results Three-State State-Space Models
When only a three-state state-space system as shown in Equations 8.4 and 8.6 is used as the model structure,
the cut-off frequency was decreased from 12 H z to 9 H z in order to filter out more noise, while keeping
as much information as possible in the identification data. A cut-off frequency of 9 H z was chosen since
there are no dominant frequency components of the body dynamics at frequencies higher than 9 H z in the
measurements of the states p, v and φ. This is verified by the PSD plot shown in Figure 8.8.
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Figure 8.8: Power Spectral Density (PSD) plots of the states of the Delfly Nimble during hover and the identification maneuver. The
green square in the power spectrums of the states contains the frequency content up to 9 H z. The components inside this square were

filtered out using using a zero-phase Butterworth filter with order 10.

Also, only the latter two doublets of 4 H z and 7 H z were used for the estimation, since the lack of dominant
frequency components above 9 H z in the dynamics of the measured states and because of the very little
excitation seen for this doublet in most datasets used for the model identification. What is more, the number
of inputs was reduced in order to simplify the model as much as possible. For the identification results shown
in this section, only the inputs δ f and δt were used, since the only actual commands given during the doublet
train maneuver are commands to the roll angle and the throttle. Omitting the inputs δd and δw did not
influence the model accuracy significantly. The estimation results of the state derivatives using the WLS
approach and the model structure shown in Equation 8.4 is shown in Figure 8.9.
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Figure 8.9: Results of the WLS estimation for each state derivative. Two of the three doublets shown in Figure 7.7 were used as the
identification data and the reduced grey-box state-space system shown in Equation 8.4 as the model structure. Only the inputs δ f and

δt were used in the model structure, setting the inputs δd and δw to zero. A low-pass Butterworth filter with order 10 and cutoff
frequency of 9 H z was used to filter the measurement data. The second plot shows v̇∗ instead of v̇ , since there are some constant terms

in the Equation for v̇ which needed to be put to the left-hand side. This is further elaborated in Appendix C.

From Figure 8.9 it can be seen that the state derivatives ṗ and v̇ are estimated with the chosen model struc-
ture. This can also be seen in the autocorrelation plot of the residuals shown in Figure 8.10.
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Figure 8.10: Autocorrelation plot of the residuals of the estimation shown in Figure 8.9. For the estimation two doublets of the
maneuver shown in Figure 7.7 as the identification data and the reduced grey-box state-space system shown in Equation 8.4 as the

model structure.

From Figure 8.10 it can be seen that the residuals of v̇ when using the reduced grey-box model resemble white
noise more than the residuals of v̇ when using the full grey-box model, as was shown in Figure 8.4. This is due
to the removal of the yaw dynamics, which are present in the equation for v̇∗ and because of the lower cut-off
frequency used for the Butterworth filter. The accuracy metrics of this estimation are shown in Table 8.5.

Accuracy Metrics Three-State Grey-Box Model

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.945 0.907 9.99 r ad

s2 5.74
v̇ 0.982 0.967 0.38 m

s2 2.84

Table 8.5: Accuracy metrics for the estimation results shown in Figure 8.9. The estimation was done using two doublets of the maneuver
shown in Figure 7.7 as the identification data and using the reduced grey-box state-space system shown in Equation 8.4 as the model

structure, with the inputs δd and δw set to zero.

From Table 8.5 it can be seen that the state derivatives ṗ and v̇ are estimated well with the chosen model
structure. The values of the accuracy metrics are also more favorable. The output correlation and the R2 are
higher compared to the full grey-box model, while the absolute and relative values for the RMSE are both
lower. The estimated parameters are shown in Table 8.6.

Estimated Parameters Reduced Grey-Box Model

Stability
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂|

Lp −2.43×10−4 1.69×10−4 6.96×101

Lv −3.74×10−4 1.52×10−3 4.07×102

Yp 2.75×10−3 3.31×10−6 1.20×10−1

Yv −5.61×10−2 3.32×10−5 5.92×10−2

Control
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂|

Lδ f
1.06×10−4 8.47×10−6 8.02×100

Lδt 4.19×10−5 5.48×10−5 1.31×102

Yδ f
−8.63×10−4 1.22×10−7 1.41×10−2

Yδt −4.05×10−4 4.55×10−7 1.12×10−1

Table 8.6: Estimated parameters for the three-state state-space system shown in Equation 8.4 as a result of the WLS estimator, using two
doublets of the maneuver data shown in Figure 7.7, and setting the inputs δd and δw to zero. Θ̂ indicates the estimated parameter,

while |σ̂| indicates the parameter standard deviation. The fourth column shows the relative parameter standard deviation in percent.
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From Table 8.6 it can be seen that the L-parameters are more sensitive to noise in the data compared to
the Y-parameters. What is also noteworthy is that the signs of the stability derivative Yp and of the control
derivatives Lδt and Yδt are flipped when compared to the full grey-box model. There was no high correlation
between the parameters, as can be seen in Appendix H.2. The aerodynamic moment L and force Y were
determined using the estimated stability and control derivatives, and the results are shown in Appendix F.
The estimation was also done using the reduced black-box state-space system shown in Equation 8.6, the
results of which are shown in Figure 8.11, the accuracy metrics of this estimation are shown in Table 8.7, and
the autocorrelation plots of the residuals are shown in Figure 8.12.
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Figure 8.11: Results of the WLS estimation for each state derivative. Two of the three doublets shown in Figure 7.7 were used, and the
model structure shown in Equation 8.6 was chosen. Only the inputs δ f and δt were used in the model structure, setting the inputs δd

and δw to zero. A low-pass Butterworth filter with order 10 and cutoff frequency of 9 H z was used to filter the measured data.
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Figure 8.12: Autocorrelation plot of the residuals of the estimation shown in Figure 8.11. For the estimation two doublets of the
maneuver shown in Figure 7.7 as the identification data and the reduced black-box state-space system shown in Equation 8.6 as the

model structure.
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Accuracy Metrics Three-State Black-Box Model

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.947 0.909 9.88 r ad

s2 5.67
v̇ 0.986 0.976 0.33 m

s2 2.46
φ̇ 0.995 0.988 0.21 r ad

s 1.72

Table 8.7: Accuracy metrics for the estimation results shown in Figure 8.11. The estimation was done using two doublets of the
maneuver shown in Figure 7.7 as the identification data and using the reduced black-box state-space system shown in Equation 8.6 as

the model structure, with the inputs δd and δw set to zero.

From Figures 8.11 and 8.12 and Table 8.7 it can be seen that there is little improvement of the estimation of
the states ṗ and v̇ compared to when using the reduced grey-box state-space system as the model structure.

8.4. Natural Lateral Dynamic Motions of the Delfly Nimble
In this section the natural motions of the Delfly Nimble are explained. These motions are determined by anal-
ysis of the eigenvectors of the identified models. When the four-state state-space system is used as the model
structure, the eigenvector has four components which indicate the states p, r , v and φ, while the eigenvector
will have three components when the three-state state-space system is used as the model structure, namely
the states p, v and φ. The states in the eigenvector will be non-dimensionalized using Equation 8.8 [13]. This
is done in order to account for the difference in the range of the states.

p+ = p

f
, v+ = v

2 ·φ f · f · r̂

r+ = r

f
, φ+ =φ

(8.8)

Where the flapping frequency f was set to 106.8 r ad/s (17 H z), the flapping amplitude φ f was set to 1.536
r ad (88°), and the r̂ was set to 7.45×10−2 meter. The terms of the eigenvector are shown in their polar form,
and all the states will be normalized with respect tot the roll angle φ+. In Subsection 8.4.1 the natural modes
of the four-state state-space systems are explained, while the natural modes of the three-state state-space
systems are clarified.

8.4.1. Natural Modes Four-State State-Space Models
In this Section the natural modes of the estimated models which use the four-state state-space systems shown
in Equations 8.7 and 8.5 as the model structure. The eigenvalues of the identified full grey-box model are
shown in Table 8.8.

Eigenvalues Four-State Grey-Box Model

λ1 (Mode 1) λ2,3 (Mode 2) λ4 (Mode 3)
Eigenvalue −8.44 1.99±5.54i 2.70

Table 8.8: Eigenvalues for the estimated four-state grey-box state-space model shown in Equation 8.7.

From the eigenvalues shown in Table 8.8 it can be seen that there is one stable aperiodic mode, one unstable
oscillatory mode, and one unstable aperiodic mode. Using the eigenvectors it can be determined which
movements the Delfly Nimble is making for each eigenvalue. The eigenvectors for the full grey-box system
are shown in Table 8.9.
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Eigenvectors Four-State Grey-Box Model

State Mode 1 Mode 2 Mode 3
p+ 0.49 (180°) 0.34 (69.7°) 0.05 (180°)
r+ 0.10 (0°) 0.07 (-70.4°) 2.08 (180°)
v+ 0.37 (180°) 0.39 (-67.6°) 0.94 (0°)
φ+ 1.0 (0°) 1.0 (0°) 1.0 (0°)

Table 8.9: Eigenvectors for the estimated four-state grey-box model shown in Equation 8.7. The terms in the eigenvectors have been
non-dimensionalized and normalized with respect to φ+.

In the eigenvector of the first mode shown in Table 8.9 it can be seen that the main variables for this motion
are the p+, v+ and the φ+. It can be seen that the variables φ+ and v+ have a phase shift of 180 degrees,
meaning that when the Delfly is for example moving sideways to the left, it is rolled in the opposite direction
to the right, which has a stabilizing effect, explaining why the eigenvalue is located in the left half of the
complex plane. In the eigenvector of the second mode it can be seen that the main variables are again the p+,
v+ and the φ+. However, the phase shift between the v+ and the φ is only -66.4 degrees, which means that
a large portion of the maneuver these two variables have the same sign, i.e. when the Delfly is for example
moving sideways to the left it is rotated in the same direction, which has a destabilizing effect. This explains
why the real part of the eigenvalue of this maneuver is in the right half of the complex plane. For the thrid
mode the most important variables are the r+. In combination with the positive real part of the eigenvalue,
this indicates a yaw motion which is unstable. However, this was not visible during the experiments. This
could be due to the controller stabilizing the Delfly Nimble, or the calculated eigenvalue is not reliable, for
the yaw dynamics were poorly estimated with the chosen model structure. Similar results were found when
the full black-box state-space system was used as the model structure. The eigenvalues for the estimated
black-box model is shown in Table 8.10 and the eigenvectors are shown in Table 8.11.

Eigenvalues Four-State Black-Box Model

λ1 (Mode 1) λ2,3 (Mode 2) λ4 (Mode 3)
Eigenvalue −7.19 1.92±5.32i 2.66

Table 8.10: Eigenvalues for the estimated four-state black-box state-space model shown in Equation 8.5.

Eigenvectors Four-State Grey-Box Model

State Mode 1 Mode 2 Mode 3
p 0.43 (180°) 0.33 (72.9°) 0.01 (0°)
r 0.11 (0°) 0.06 (-66.2°) 2.41 (180°)
v 0.34 (180°) 0.38 (-70.6°) 1.01 (0°)
φ 1.0 (0°) 1.0 (0°) 1.0 (0°)

Table 8.11: Eigenvectors for the estimated four-state black-box model shown in Equation 8.5. The terms in the eigenvectors have been
non-dimensionalized and normalized with respect to φ+.

8.4.2. Natural Modes Three-State State-Space Models
In this Section the natural modes of the estimated models which use the three-state state-space systems
shown in Equations 8.4 and 8.6 as the model structure. The eigenvalues of the identified full grey-box model
are shown in Table 8.12.

Eigenvalues Three-State Grey-Box Model

λ1 (Mode 1) λ2,3 (Mode 2)
Eigenvalue −5.18 0.32±2.73i

Table 8.12: Eigenvalues for the estimated three-state grey-box state-space model shown in Equation 8.4, where the inputs δd and δw
have been put to zero.
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From the eigenvalues shown in Table 8.12 it can be seen that there is one stable aperiodic mode and one
unstable oscillatory mode. Using the eigenvectors it can be determined which movements the Delfly Nimble
is making for each eigenvalue. The eigenvectors for the reduced grey-box system are shown in Table 8.13.

Eigenvector Three-State Grey-Box Model

State Mode 1 Mode 2
p 0.30 (180°) 0.16 (83.4°)
v 0.86 (180°) 0.70 (-53.5°)
φ 1.0 (0°) 1.0 (0°)

Table 8.13: Eigenvectors for the estimated three-state grey-box model shown in Equation 8.4, where the inputs δd and δw have been
put to zero. The terms in the eigenvectors have been non-dimensionalized and normalized with respect to φ+.

In the eigenvector of the first mode shown in Table 8.13 it can be seen that all variables for this mode are
important. It can be seen that the variables φ+ and v+ have a phase shift of 180 degrees, meaning that when
the Delfly is for example moving sideways to the left, it is rolled in the opposite direction to the right, which
has a stabilizing effect, explaining why the eigenvalue is located in the left half of the complex plane. In the
eigenvector of the second mode it can be seen that the main variables are the v+ and the φ+. However, the
phase shift between the v+ and theφ is only -52.4 degrees, which means that a large portion of the oscillation
cycle these two variables have the same sign, i.e. when the Delfly is for example moving sideways to the left
it is rotated in the same direction, which has a destabilizing effect. This explains why the real part of the
eigenvalue of this maneuver is in the right half of the complex plane. These motions are similar to those of
Mode 1 and Mode 2 of the four-state state-space models. Similar results were also found when the reduced
black-box state-space system was used as the model structure. The eigenvalues for the estimated black-box
model is shown in Table 8.14 and the eigenvectors are shown in Table 8.15.

Eigenvalues Three-State Black-Box Model

λ1 (Mode 1) λ2,3 (Mode 2)
Eigenvalue −6.97 2.04±2.12i

Table 8.14: Eigenvalues for the estimated three-state black-box state-space model shown in Equation 8.6, where the inputs δd and δw
have been put to zero.

Eigenvector Three-State Black-Box Model

State Mode 1 Mode 2
p 0.56 (180°) 0.13 (59.6°)
v 0.34 (180°) 0.49 (-36.7°)
φ 1.0 (0°) 1.0 (0°)

Table 8.15: Eigenvectors for the estimated three-state black-box model shown in Equation 8.6, where the inputs δd and δw have been
put to zero. The terms in the eigenvectors have been non-dimensionalized and normalized with respect to φ+.



9
Validation Results

In this chapter the reduced models which have been identified in Chapter 8 are validated. The grey-box state-
space systems which have been used as the model structure is shown in Equation 9.1.

ṗ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lv 0
Yp

m +w0
Yv
m g ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+


Izz
Ic

·Lδ f
Izz
Ic

·Lδt
Yδ f

m
Yδt
m

0 0

 ·
[
δ f

δt

]
(9.1)

Using the estimated parameters which are shown in Table 9.1 and the geometric properties of the Delfly
Nimble, which are shown in Appendix A.1, the state-space model can be set up. The numeric state-space
model which have been used in this chapter are shown in Appendix E.

Estimated Parameters Reduced Grey-Box Model

Stability
Derivative

Θ̂
Control

Derivative
Θ̂

Lp −2.43×10−4 Lδ f
1.06×10−4

Lv −3.74×10−4 Lδt 4.19×10−5

Yp 2.75×10−3 Yδ f
−8.63×10−4

Yv −5.61×10−2 Yδt −4.05×10−4

Table 9.1: Stability and control derivatives which are used to set up the reduced grey-box state-space model shown in Equation 9.1.
These are the same parameters as the ones shown in Table 8.6. Θ̂ indicates the value of the estimated parameter.

In Section 9.1 the estimated stability and control derivatives are analyzed. Next, in Section 9.2 the open-loop
validation is discussed using a doublet and a 112-maneuver. This is followed by Section 9.3, which elaborates
on the closed-loop validation, also using doublet trains and 112-maneuvers. The chapter continues with Sec-
tion 9.4, where it is clarified how justifiable the assumption on uncoupled longitudinal and lateral dynamics
is. This is done by analyzing how accurate the state-space system shown in Equation 9.1 can model a coupled
doublet, a maneuver which is done using the commands shown in Figure 7.3. This section will thus answer
Question SQ3b. The final Section is 9.5, where it is explained how justifiable the linearity assumption is. This
is done by analyzing how accurate the state-space system shown in Equation 9.1 can model a nonlinear dou-
blet, a maneuver which is done using the commands shown in Figure 7.4. This section will therefore answer
Question SQ3c.

9.1. Analysis stability and control derivatives
In this section the stability and control derivatives are analyzed. First, the consistency of the estimated pa-
rameters is discussed in Subsection 9.1.1. Second, the estimated stability derivatives are compared to the
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stability derivatives of analytic models of insect flight in Subsection 9.1.2. At last, the identified stability
derivatives are compared to the stability derivatives of the Delfly II in Subsection 9.1.3.

9.1.1. Estimated parameters using different identification data sets
In this section the estimated stability and control derivatives using different data sets are compared. In total
there were five data sets, each having two doublets with main frequencies of 4 H z and 7 H z. The estimated
stability and control derivatives are shown in Table 9.2

Estimated Parameters Reduced Grey-Box Model

Stability
Derivative

Θ̂1 Θ̂2 Θ̂3 Θ̂4 Θ̂5

Lp −2.43×10−4 −3.16×10−4 −4.23×10−4 −5.23×10−4 −2.89×10−4

Lv −3.74×10−4 −9.34×10−4 −1.38×10−3 −3.42×10−3 −1.01×10−3

Yp 2.75×10−3 −2.64×10−3 7.01×10−3 −1.82×10−3 −2.31×10−3

Yv −5.61×10−2 −7.74×10−2 −2.15×10−2 −4.43×10−2 −1.08×10−1

Control
Derivative

Θ̂1 Θ̂2 Θ̂3 Θ̂4 Θ̂5

Lδ f
1.06×10−4 9.79×10−5 1.01×10−4 8.85×10−5 9.58×10−5

Lδt 4.19×10−5 5.40×10−5 7.68×10−6 4.66×10−5 4.54×10−5

Yδ f
−8.63×10−4 −8.46×10−4 −8.33×10−4 −7.98×10−4 −9.87×10−4

Yδt −4.05×10−4 −7.60×10−4 1.85×10−4 −3.88×10−4 −1.22×10−3

Table 9.2: Estimated parameters for the three-state state-space system shown in Equation 8.4 as a result of the WLS estimator, using
various datasets, and setting the inputs δd and δw to zero. Θ̂ indicates the value of the estimated parameter. The subscript indicates

the number of the dataset. Θ̂1 are the same parameter values as shown in Table 9.1.

From Table 9.2 it can be seen that all the identified L-parameters have the same sign for each data set. For the
Y-parameters this is the case for the majority of them, with the exception being the stability derivative Yp and
the control derivative Yδt . The change in sign for Yp can be explained by differences for the initial vertical
velocity w0, which is different for each data set. The values for the initial velocities for each data set is shown
in Table 9.3.

Initial vertical velocities identification data

id data #1 id data #2 id data #3 id data #4 id data #5
w0

( m
s

)
-0.30 0.06 -0.12 0.05 -0.17

Table 9.3: Initial vertical velocities w0 for each of the identification data sets.

From Tables 9.2 and 9.3 the main trend is that if Yp is the opposite sign of w0, though this is not the case for
data set #5. The difference can also be because every data set has a different amount of excitation during
the maneuver. This difference in excitation can also explain the different values for all the parameters. The
highest excitation was seen in data set #1, while the lowest excitation was seen in data set #3. Which data set
has the most excitation is determined by calculating at the ranges of the states. These ranges are shown in
Table 9.4. The higher the ranges of the states, the more excitation during the identification maneuver.

Ranges of states in identification data

State id data #1 id data #2 id data #3 id data #4 id data #5
p (r ad/s) 12.06 7.93 7.21 8.97 8.06

v (m/s) 1.17 0.82 0.58 0.87 0.81
φ (r ad) 0.89 0.67 0.60 0.73 0.70

Table 9.4: Ranges of the states p, v and φ in each of the identification data sets.

The differences in the amount of excitation also had influence on the eigenvalues of the identified models.
The eigenvalues are shown in Table 9.5, and they are plotted in a complex plane which is shown in Figure 9.1.
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Eigenvalues identified models

Eigenvalue id data #1 id data #2 id data #3 id data #4 id data #5
λ1 −5.18 −6.84 −7.19 −9.85 −7.45
λ2,3 0.32±2.73i 0.39±3.74i 0.97±4.26i 1.36±5.75i 0.30±3.65i

Table 9.5: Eigenvalues for each identified model.
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Figure 9.1: Eigenvalues for the estimated grey-box three-state state-space systems for five different data sets.

From Table 9.5 and Figure 9.1 it can be seen that for all the identified models there was a real eigenvalue in
the left-half plan and a complex eigenvalue in the right-half plane, meaning that the natural modes of the
Delfly Nimble, which have been described in Section 8.4, for each identified model are the same. The overall
trend in Figure 9.1 seems to be that the complex eigenvalue has a lower positive real value for a data set which
has more excitation. This could indicate that the oscillatory is more stable when the Delfly Nimble is flying
sideways, however this needs to be confirmed with additional identification experiments.

9.1.2. Stability Derivatives: Identified vs. Analytic
In this subsection the identified stability derivatives of the Delfly Nimble are compared to the analytic stability
derivatives of flapping flight models. In order to compare the stability derivatives to each other, they have
been non-dimensionalized, which has been done using Equation 9.2.

L+
p = Lp · f

ρ ·U 2 · Aw · c̄
, Y +

p = Yp · f

ρ ·U 2 · Aw

L+
v = Lv

ρ ·U · Aw · c̄
, Y +

v = Yv

ρ ·U · Aw

(9.2)

Where the flapping frequency f is 17 H z, the air density ρ is 1.225 kg
m3 , the wing area Aw is 1.043×10−2 m2,

and the mean chord length c is 7.611×10−2 m, and the center of pressure velocity U is defined in Equation
9.3.

U = 2 ·φ f · f · r̂ (9.3)

Where the flapping angle φ f is 1.536 radians (88°), and the radius of the second moment of inertia of the
wing r̂ is 7.45×10−2 m. The non-dimensionalized stability derivatives of the Delfly Nimble and of the analytic
model are shown in Table 9.6.
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Stability Derivatives: Delfly Nimble vs. Analytic Models

Stability
Derivative

Delfly
Nimble

Zhang [86]
(CFD)

ASL [34]
(tr+rot+add)

ASL [34]
(tr+rot)

ASL [34] (tr) Cheng [12]

L+
p −0.28 −1.2 −1.3 −1.27 −2.29 −1.25

L+
v −0.10 0.806 0.97 0.601 −0.434 −0.381

Y +
p 0.24 −0.104 1.47 1.47 −0.055 0

Y +
v −1.13 −0.876 −0.705 −0.705 −0.705 −0.618

Table 9.6: The non-dimensionalized stability derivatives of the Delfly Nimble and the analytic model of flapping flight. ’ASL’ indicates
the eigenvalues determined by Karásek et al. [34] where ’tr’ indicates the wing translational forces, ’rot’ indicates the wing rotational

forces and ’add’ indicates the forces due to the inertia of the added air mass. ’Zhang’ the ones determined by Zhang et al. [86] and
’Cheng’ the ones by Cheng et al. [12]. All the analytic stability derivatives shown have been determined with the morphological data of

the drone fly. The values shown may differ from the values in the work, for some sources used different body axis systems. The ones
shown are for the axis system used for the Delfly Nimble, as shown in Figure 3.1.

From Table 9.6 it can be seen that all the values of L+
p are and Y +

v are negative, while this is not the case for
the L+

v and Y +
p . The sign of Lv of the Delfly Nimble was negative in all the data sets used for estimation of

the stability derivatives, while positive and negative values have been seen for Yp . The change in sign of L+
v

can be due to the different wing configurations, for the Delfly Nimble has a four-wing configuration, while
the drone fly only has two wings. There is also a difference in magnitude seen when comparing the stability
derivatives of the Delfly Nimble to the analytic stability derivatives. The inequality in magnitude can be a
result of the difference in morphological data used to determine the stability, which were those of the drone
fly. The analytic stability derivatives which are the most comparable to the stability derivatives of the Delfly
Nimble are those of the model of Cheng et al. [12].

9.1.3. Stability Derivatives: Delfly Nimble vs. Delfly II
In this subsection the identified stability derivatives of the Delfly Nimble are compared to the stability deriva-
tives of the Delfly II which were determined in the work of Armanini et al. [5]. In contrast to the previous
subsection, the dimensional stability derivatives were used, for both FWMAV’s use the same wings and had
similar mean flapping frequencies. The stability derivatives of the Delfly Nimble and the Delfly II are shown
in Table 9.7.

Stability Derivatives: Delfly Nimble vs. Delfly II

FWMAV Lp Lv Yp Yv

Delfly Nimble −2.43×10−4 −3.74×10−4 2.75×10−3 −5.61×10−2

Delfly II −4.79×10−4 −1.45×10−3 −2.59×10−3 −9.92×10−2

Table 9.7: Identified Stability Derivatives of the Defly Nimble and the Delfly II [5]. The stability derivatives of the Delfly II have different
values than indicated in the work of Armanini et al. [5], which is because the Delfly II used a different body axis system. The values

shown are for the axis system used for the Delfly Nimble, as shown in Figure 3.1.

From Table 9.7 it can be seen that with the exception of Yp , all the stability derivatives have the same sign.
There is a difference seen in the magnitude of the stability derivatives. Both the Lp and the Yv are larger for the
Delfly II, both of which have a stabilizing effect. This is because of the presence of a tail in the Delfly II, which
adds passive stability to the FWMAV. What’s more, the initial condition of the identification experiments of
the Delfly II was slow forward flight, which also influences the value of the stability derivatives. The influence
of the tail was also seen in the eigenvalues of the Delfly II. All of them were in the left-half of the complex
plane, while this was not the case for the Delfly Nimble. This indicates that the Delfly II can be characterized
as a stable system, which is not the case for the Delfly Nimble.

9.2. Open-loop validation
In this Section the open-loop validation of the state-space model shown in Equation 9.1 is elaborated on.
The open-loop validation of the model is done using two maneuvers: the doublet and the 112-maneuver.The
open-loop validation using the doublet is discussed in Subsection 9.2.1, while the open-loop validation is
discussed in Subsection 9.2.2. During the maneuvers used for the open-loop validation the fast gains of the
PD-controller shown in Table 7.1 were used.
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9.2.1. Validation Doublet maneuver
The first maneuver used for the validation data was a doublet from a different experiment. The doublet
chosen also had a different main frequency compared to the doublets in the doublet train of the identification
data. The main frequency of the doublet of the validation data was 6 H z, while the main frequencies of the
doublets in the identification data were 4 H z and 7 H z. The state derivatives were determined using the state-
space model shown in Equation 9.1. The results of the estimation of the state derivatives of the validation
doublet are shown in Figure 9.2.
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Figure 9.2: Estimation results of the state derivatives for a doublet with a main frequency of 6 H z. For the estimation the state-space
model shown in Equation 9.1 was used.

From Figure 9.2 it can be seen that the state derivatives are estimated well with the state-space model shown
in Equation 9.1. The accuracy metrics of the estimation are shown in Table 9.8.

Accuracy Metrics Validation Data: doublet 6H z

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.985 0.924 5.51 r ad

s2 5.99
v̇ 0.981 0.948 0.28 m

s2 4.99
φ̇ 0.996 0.890 0.38 r ad

s2 6.77

Table 9.8: Accuracy metrics of the estimation shown Figure 9.2. The validation data was a doublet with a main frequency of 6 H z, and
the estimation was done using the state-space model shown in Equation 9.1.

The values of the accuracy metrics shown in Table 9.8 are in the same range as the accuracy metrics of the
identification data shown in Table 8.5. Next to the doublet with main frequency of 6 H z, a second maneuver
used for the open-loop validation, which is the 112-maneuver. The result are shown in Subsection 9.2.2. The
autocorrelation plots of the residuals are shown in Figure 9.3. The autocorrelation plot shown in Figure 9.3 is
similar to the autocorrelation plot shown in Figure 8.10, which means that the residuals of the validation data
have the same degree of whiteness compared to the residuals of the identification data.
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Figure 9.3: Autocorrelation plots for the residuals of the estimation shown Figure 9.2. The validation maneuver was a doublet with a
main frequency of 6 H z, and the estimation was done using the state-space model shown in Equation 9.1.

9.2.2. Validation 112-maneuver
The second maneuver used for the validation of the identified state-space model shown in Equation 9.1 was
the 112-maneuver. The main frequencies of the 112-maneuver used for the open-loop validation are 3.5 H z
and 7 H z. The results of the estimation of the state derivatives of the 112-maneuver are shown in Figure 9.4.
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Figure 9.4: Estimation results of the state derivatives for a 112-maneuver with main frequencies of 3.5 H z and 7 H z. For the estimation
the state-space model shown in Equation 9.1 was used.

From Figure 9.4 it can be seen that the estimation of the state derivatives ṗ and v̇ are less accurate compared
to the estimation of the state derivatives of the doublet. This is also visible in the accuracy metrics, which are
shown in Table 9.9.
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Accuracy Metrics Validation Data 112-maneuver

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.918 0.848 8.84 r ad

s2 7.20
v̇ 0.908 0.823 0.63 m

s2 7.27
φ̇ 0.998 0.980 0.16 r ad

s2 2.66

Table 9.9: Accuracy metrics of the estimation shown Figure 9.4. The validation data was a 112-maneuver with main frequencies of 3.5
H z and 7 H z, and the estimation was done using the state-space model shown in Equation 9.1.

Compared to the estimation of the validation doublet, the R2 is slightly lower, while the rx y for all state deriva-
tives are in the same range. The residuals of the state derivatives are slightly more coloured for the state
derivatives ṗ and v̇ , which can be seen in the autocorrelation plots shown in Figure 9.5.
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Figure 9.5: Autocorrelation plots for the residuals of the estimation shown Figure 9.4. The validation data was a 112-maneuver with a
main frequency of 3.5 H z and 7 H z, and the estimation was done using the state-space model shown in Equation 9.1.

9.3. Closed-loop validation
In this section the closed-loop validation of the identified state-space model is shown. For the validation in
closed-loop, the state response during a maneuver is simulated using a Simulink model, which uses a one to
one copy of the controller architecture. The measured δt was used for the simulation. The actuator dynamics
of the flapping mechanism is simulated using a slightly modified version of model which was developed in
the research of Kajak et al. [32, 33], which is shown in Equation 4.19. The only modification is that the the
model is multiplied with a proportional gain of 1

1.4 , which was done to get the simulated input δ f as close as
possible to the actual input, resulting in Equation 9.4.

H f l ap (s) = 8.97

s +12.56
(9.4)

The state derivatives were simulated using the state-space model shown in Equation 9.1. The closed-loop
validation was done using both the fast and slow gains which were shown in Table 7.1. The validation us-
ing the fast gains is discussed in subsection 9.3.1, followed by the validation using the slow gains shown in
Subsection 9.3.2.
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9.3.1. Simulated state response with fast gains
For the closed-loop validation using the fast gains the state response to the doublet train maneuver is deter-
mined using the Simulink model. The doublet train consists of two doublets, with main frequencies of 4 H z
and 7 H z. It should be noted that this is not the same maneuver which was used for the identification of the
three state state-space model in Section 8.3.2. The simulation results of the doublet train are shown in 9.6.
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Figure 9.6: Measured and simulated state response of a doublet train. The main frequencies of the doublets were 7H z and 4 H z. This
simulation was done using the fast gains.

From Figure 9.6 it can be seen that the simulated state response seems more oscillatory compared to the
measured state response. The main reason for this difference is that the input δ f is simulated, which is not
one to one to the actual input. The difference is illustrated in Figure 9.7.
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Figure 9.7: Measured and simulated input δ f for a doublet train maneuver. The main frequencies of the doublets were 7H z and 4 H z.
This simulation was done using the fast gains.

From Figure 9.7 it can be seen that the simulated input δ f is more oscillatory than the actual input. Conse-
quently, the simulated state response also becomes more oscillatory than the measured state response. The
accuracy metrics of the simulated state response and the the input δ f are shown in Table 9.10, and the auto-
correlation plots of the residuals are shown in Figures G.1 and G.2. It can be seen that the residuals are more
coloured compared to the residuals of the identification data, which were shown in Figure 8.10.
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Accuracy Metrics CL Validation Data: Doublet Train fast gains

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
p 0.868 0.438 1.01 r ad

s 12.51
v 0.687 0.177 0.13 m

s 15.51
φ 0.809 0.429 0.09 r ad 12.32
δ f 0.866 0.633 12.59 r ad

s 10.95

Table 9.10: Accuracy metrics of the simulated state response of a doublet train. The main frequencies of the doublets were 7H z and 4
H z. This simulation was done using the fast gains.

9.3.2. Simulated state response with slow gains
For the closed-loop validation using the slow gains of the controller, two maneuvers were used: a doublet
train and 112-maneuvers. This doublet train consisted of three doublets, with main frequencies of 6 H z, 4
H z and 2 H z. The main frequencies of the 112-maneuver were 2 H z and 4 H z. The main frequencies were
chosen to be lower when using the slow gains, in order to acquire more movement of the Delfly Nimble during
the experiments. First, the simulation results of the doublet train are elaborated on. The simulation results of
the doublet train are shown in Figure 9.8, and the simulated and measured input δ f is shown in Figure 9.9.
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Figure 9.8: Simulated state response of a doublet train with three doublets. The doublets had main frequencies of 6 H z, 4 H z and 2 H z.
This simulation was done using the slow gains.
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Figure 9.9: Measured and simulated input δ f of a doublet train with three doublets. The doublets had main frequencies of 6 H z, 4 H z
and 2 H z. This simulation was done using the slow gains.



126 9. Validation Results

From Figure 9.8 it can be seen that the state response of the doublet train is simulated well with the Simulink
model. It can also be seen that the identified model is stable in closed-loop configuration, for the simulated
states of the Delfly Nimble return to the hover condition after a doublet maneuver is done. However, when
the Delfly Nimble has returned to hover, there are still small oscillations occurring, which are not captured by
the identified model. These oscillations can also be seen in the input δ f during the time in between doublets
the doublet train, as shown in Figure 9.9. It can be seen in Figure 9.9 that the simulated input δ f is less
oscillatory when using the slow gains in the simulation. This is also visible in the accuracy metrics of this
simulation, which are shown in Table 9.11. The autocorrelation plots of the residuals are shown in Figure G.3
and G.4 in Appendix G. It can be seen that the residuals are more coloured compared to the residuals of the
identification data, which were shown in Figure 8.10.

Accuracy Metrics CL Validation Data: Doublet Train slow gains

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
p 0.900 0.542 0.92 r ad

s 7.18
v 0.905 0.657 0.13 m

s 6.49
φ 0.915 0.837 0.06 r ad 4.42
δ f 0.792 0.575 9.85 r ad

s 8.50

Table 9.11: Accuracy metrics of the simulated state response of a doublet train with three doublets. The doublets had main frequencies
of 6 H z, 4 H z and 2 H z. This simulation was done using the slow gains.

Next to the doublet train maneuver, the closed-loop validation using the slow gains was also done with 112-
maneuvers, which had main frequencies of 2 H z and 4 H z. The simulation results of the states are shown in
Figure 9.10, and the simulation results of δ f are shown in Figure 9.11. In the simulated stated response of the
112-maneuvers shown in Figure 9.10 it can be seen that there is a reduction of the model accuracy of v , while
the accuracy of the states p and φ remains similar compared to the accuracy of the simulated state response
of the doublet trains shown in Figure 9.8. This is also visible in the accuracy metrics shown in Table 9.12. In
Figure 9.11 it can be seen that the simulated input δ f is also less oscillatory when using the slow gains. The
autocorrelation plots of the residuals are shown in Figure G.5 and G.6. It can be seen that the residuals are
slightly more coloured compared to the residuals of the doublet train which used slow gains.
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Figure 9.10: Simulated state response of multiple 112-maneuvers. The main frequencies of these maneuvers were 2 H z and 4 H z. This
simulation was done using the slow gains.
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Figure 9.11: Measured and simulated input δ f of multiple 112-maneuvers. The main frequencies of these maneuvers were 2 H z and 4
H z. This simulation was done using the CL-gains.

Similar to what was seen in the simulated state response of the doublet train in Figure 9.8, there are oscilla-
tions visible in during the time in between the 112-maneuvers, when the Delfly Nimble is hovering, in both
the states and the input δ f . This could be also due to time varying dynamics which are not captured with the
current identified model. The simulations for both the doublet and the 112-maneuvers are stable, for during
the time between doublets or 112-maneuvers the Defly Nimble returns to the hover position. Based on these
results it can be concluded that the identified model can be used in a closed-loop configuration, making it
applicable for the stability analysis of the body dynamics, and for controller design.

Accuracy Metrics CL Validation Data: 112-maneuvers slow gains

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
p 0.865 0.467 0.99 r ad

s 10.13
v 0.650 0.171 0.14 m

s 19.46
φ 0.815 0.387 0.08 r ad 11.45
δ f 0.856 0.492 12.77 r ad

s 11.00

Table 9.12: Accuracy metrics of the simulated state response of multiple 112-maneuvers. The main frequencies of these maneuvers
were 2 H z and 4 H z. This simulation was done using the slow gains.

9.4. Model accuracy coupled maneuvers
In this section Question SQ3b is answered. This question is answered by analyzing how well the state-space
model shown in Equation 9.1 can predict the state derivatives for a coupled doublet. The main frequency for
this maneuver was set to 6 H z, the roll deflection to 30°, and the pitch angle deflection was set to 20°. During
these maneuvers the fast gains were used. The estimation results for the state derivatives are shown in Figure
9.12, and the accuracy metrics of this estimation are shown in Table 9.13. From Figure 9.12 and Table 9.13
it can be seen that the estimation accuracy of v̇ has decreased significantly. From the autocorrelation plots
of the residuals shown in Figure G.7, it can be seen that the residuals are more coloured compared to the
residuals of the identification data shown in Figure 8.10. Initially, it was thought that the absence of the
input δd was the main cause of the reduced model accuracy of v̇ . To verify this, the state derivatives were
determined using an identified state-space model which would include the inputs δ f , δd , and δt . However,
the resulting identified model had very different eigenvalues. This may be due to coupling effects when all
three inputs are included in the model identification process, but this was not further investigated in this
research. Instead, two different combinations of inputs were used in the state-space model.

Accuracy Metrics Validation Data Coupled Doublet

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.927 0.845 9.27 r ad

s2 7.27
v̇ 0.699 0.523 1.23 m

s2 11.17
φ̇ 0.964 0.923 0.34 r ad

s 4.54

Table 9.13: Accuracy metrics of the estimation shown Figure 9.12. The validation data was a coupled doublet with a main frequency of 6
H z, and the estimation was done using the state-space model shown in Equation 9.1.
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Figure 9.12: Estimation results of the state derivatives for a coupled doublet with a main frequency of 6 H z. For the estimation the
state-space model shown in Equation 9.1 was used.

In the first combination, only the input δ f was included. The parameters and the numeric state-space system
of this model are shown in Appendix E.2. The estimation results for the state derivatives when using these
models are shown in 9.13, and the accuracy metrics are shown in Table 9.14. The estimation results in Figure
9.13 and the accuracy metrics in Table 9.14 are very similar to those shown in Figure 9.12 and Table 9.13. This
indicates that the model accuracy does not change much when the input δt is omitted. The autocorrelation
plots of the residuals, shown in Figure G.8, also do not change significantly when only using the input δ f , as
can be confirmed by comparing Figures G.7 and G.8.
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Figure 9.13: Estimation results of the state derivatives for a coupled doublet with a main frequency of 6 H z. For the estimation the
state-space model shown in Equation 9.1 was used.
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Accuracy Metrics Validation Data Coupled Doublet: δ f only

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.912 0.832 9.62 r ad

s2 7.55
v̇ 0.695 0.509 1.25 m

s2 11.33
φ̇ 0.964 0.923 0.34 r ad

s 4.54

Table 9.14: Accuracy metrics of the estimation shown Figure 9.13. The validation data was a coupled doublet with a main frequency of 6
H z, and the estimation was done using a modified version the state-space model shown in Equation 9.1, where only the input δ f was

included in the estimation.

In the second combination of inputs the δ f and δd are included in the state-space model. The parameters
and the numeric state-space system of this model are shown in Section E.3. The estimation results for state
derivatives using a model with this input combination is shown in Figure 9.14, and the accuracy metrics of
this estimation are shown in Table 9.15. As can be seen form Figure 9.14 and Table 9.15 the estimation of v̇
does not improve when the input δd is added to the model. The autocorrelation plots of the residuals, shown
in Figure G.9 also does not change significantly. This would suggest that the estimation accuracy is not greatly
affected by the coupled input.
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Figure 9.14: Estimation results of the state derivatives for a coupled doublet with a main frequency of 6 H z. For the estimation the
state-space model shown in Equation 9.1 was used.

Accuracy Metrics Validation Data Coupled Doublet: δ f and δd

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.915 0.840 9.41 r ad

s2 7.39
v̇ 0.689 0.506 1.25 m

s2 11.36
φ̇ 0.964 0.923 0.34 r ad

s 4.54

Table 9.15: Accuracy metrics of the estimation shown Figure 9.14. The validation data was a coupled doublet with a main frequency of 6
H z, and the estimation was done using a modified version the state-space model shown in Equation 9.1, where only the inputs δ f and

δd were included in the estimation.

What could be the cause of the reduced accuracy of v̇ is the forward motion during the coupled doublet
maneuver. The maximum value of the longitudinal velocity u was 1.22 m

s , while the maximum u in the identi-
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fication maneuver was 0.40 m
s . The reduced accuracy may therefore not only be due to the coupled inputs, but

also because the Delfly Nimble is moving away a lot from the initial condition of the identification maneuver.
The influence of forward flight on the lateral dynamics has been researched by Xu et al. [82]. In this research,
the lateral dynamics of a bumblebee were analyzed by determining the stability derivatives with different for-
ward flight velocities. From the results it could be seen that the unstable mode, which for the bumblebee was
aperiodic, became more stable as the forward flight velocity increases. The main cause of this is the influence
of lateral inflow on the leading edge vortex (LEV). For insects, it has been shown that such a vortex is present
on the leading edge of their wings [18]. When there is lateral inflow from the wingroot to the wingtip, the
LEV is intensified and the amount of lift generated increases. In the opposite case, when the lateral inflow
goes from the tip to the root, the LEV is less concentrated and the amount of lift generated decreases [24, 71].
This leads to a difference in lift generated between the wings, causing instability. In forward flight, the mean
position of the wings is more backwards, due to which there is less lateral inflow moving along the leading
edge. Consequently, there is less effect on the LEV, thus little effect on the lift generation. Then, the difference
in generated lift between the wings is smaller, leading to a more stable motion in forward flight. A similar
influence can be the cause for the reduced accuracy of the coupled doublet maneuver of the Delfly Nimble.
Whether the Delfly Nimble is more stable in forward flight has not been investigated in this research.

9.5. Model accuracy nonlinear maneuvers
In this section Question SQ3c is answered, i.e. whether the linearity of the aerodynamic forces is a justifiable
assumption. This question is answered by analyzing the model accuracy when a nonlinear doublet is used.
This maneuver is nonlinear in the sense that it moves away very far away from the initial condition. During
these maneuvers the fast gains were used. The estimation results of the state derivatives for a nonlinear
doublet with a main frequency of 4 H z, a constant roll angle of 30° and a roll deflection of 15° for the doublet
maneuver is shown in Figure 9.15, and the accuracy metrics of the nonlinear doublet are shown in Table 9.16.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-200

-100

0

100

200

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-10

-5

0

5

10

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-10

-5

0

5

10

Figure 9.15: Estimation results of the state derivatives for a nonlinear doublet with a main frequency of 4 H z, constant roll angle of 30°
and a roll deflection of 15°. For the estimation the state-space model shown in Equation 9.1 was used.

From Figure 9.15 it can be seen that the estimation for v̇ is less accurate compared to the accuracy of v̇ in
the validation doublet and the 112-maneuver. This is also visible in the accuracy metrics of the estimation
shown in Table 9.16. The metrics for ṗ and φ̇ are in the same range as accuracy metrics for the validation
doublet and 112-maneuver shown in Section 9.2, and the residuals are also more coloured, as can be seen
from the autocorrelation plots shown in Figure G.10. The main reason for the reduced estimation accuracy
is that the Delfly Nimble is moving away a lot from the initial condition for the identification, which was
hover. The maximum lateral velocity v reached in this nonlinear doublet maneuver was 1.60 m

s , while in the
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identification data used to identify the state-space model shown in Equation 9.1 the maximum v was 1.00 m
s .

Accuracy Metrics Validation Data Nonlinear Doublet: 30°, 4 H z

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.952 0.900 12.08 r ad

s2 7.91
v̇ 0.783 0.618 2.04 m

s2 16.16
φ̇ 0.985 0.965 0.46 r ad

s 4.45

Table 9.16: Accuracy metrics of the estimation shown Figure 9.15. The validation data was a nonlinear doublet with a main frequency of
4 H z, a constant roll angle of 30° and a roll deflection of 15°. The estimation of the state derivatives was done using the state-space

model shown in Equation 9.1.

The estimation of the state derivatives increases when a lower constant roll angle is used. This has been
confirmed by analyzing a second nonlinear doublet maneuver. This nonlinear doublet had a main frequency
of 4 H z, a constant roll angle of 20°, and roll deflection of 15°. The estimation results are shown in Figure 9.16,
and the accuracy metrics are shown in Table 9.17.
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Figure 9.16: Estimation results of the state derivatives for a nonlinear doublet with a main frequency of 4 H z, constant roll angle of 20°
and a roll deflection of 15°. For the estimation the state-space model shown in Equation 9.1 was used.

Accuracy Metrics Validation Data Nonlinear Doublet: 20°, 4 H z

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
ṗ 0.927 0.824 13.75 r ad

s2 8.02
v̇ 0.892 0.791 1.05 m

s2 10.18
φ̇ 0.994 0.985 0.21 r ad

s 2.40

Table 9.17: Accuracy metrics of the estimation shown Figure 9.16. The validation data was a nonlinear doublet with a main frequency of
4 H z, a constant roll angle of 30° and a roll deflection of 15°. The estimation of the state derivatives was done using the state-space

model shown in Equation 9.1.

From Figure 9.16 it can be seen that the estimation of v̇ improves with a lower constant roll angle. This is
also visible in the accuracy metrics shown in Table 9.17, and also in the autocorrelation plots of the residuals,
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which are shown in Figure G.11, where it can be seen that the residuals are less coloured then the residuals of
the nonlinear doublet with a higher constant roll angle. The main reason for the improved estimation results
is that the maximum lateral velocity v in this nonlinear doublet was 1.43 m

s , which is lower than the maximum
v in the first nonlinear doublet. This indicates that the mathematical model is less accurate when a higher v
is reached during the maneuver. This is in line with expectation, for when a higher v is reached during the
maneuver, the Delfly moves away further from the initial condition of the identification data, which is the
hover condition. The lower model accuracy can be due to the influence of lateral inflow, which can increase
or decrease the lift generation due to the influence of the inflow on the LEV [18, 24, 82], as was described
earlier in the validation results of the coupled maneuvers in Section 9.4.
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Conclusion and recommendations

Flapping Wing Micro Air Vehicles (FWMAV) are a subcategory of Unmanned Air Vehicles which have favor-
able properties, such as being able to fly at low velocity, having high agility and maneuverability, and some of
them are even capable to maintain hovering flight. A tailless FWMAV has been developed at the Delft Univer-
sity of Technology, the Delfly Nimble, a tailless member of the Delfly Family, a group of flapping robots. The
Delfly Nimble requires an active controller to remain airborne. It controls the pitch attitude by changing the
dihedral angle, the roll attitude by creating a difference in flapping frequency between both wings and the
yaw attitude by changing the wing root angle. Mathematical models have been identified for the Delfly II, a
tailed predecessor of the Delfly Nimble, while only models for the longitudinal dynamics of the Delfly Nimble
have been identified.

The main goal of this thesis is to address the absence of a model for the lateral dynamics of the Delfly Nim-
ble. Such a model could be used for stability analysis, the design of control systems, as well as to increase
the knowledge about the lateral dynamics of the FWMAV. The mathematical model has been developed us-
ing the System Identification approach, which consists of three phases: the experiment phase, the model
identification phase and the model validation phase. Identifying a mathematical model using this approach
is an iterative process, for when it turns out that the model is not sufficiently accurate in the model valida-
tion phase, changes will have to be applied in either the experiment phase or the model identification phase.
Based on the aim of this research and the system identification approach the following research objective has
been formulated:The research objective is to identify a mathematical model for the lateral body dynamics of the
Delfly Nimble by using the System Identification Procedure for the development of a linear grey-box state-space
model.

One central question has been formulated in order to reach this objective: "Can the full envelope of the lateral
body dynamics of the Delfly Nimble be modeled using a linear time-invariant state-space model, and what
is the influence of the dynamic coupling and the non-linearities on the predictive power of this model?".
This main question has been answered by identifying a mathematical model using the Systems Identification
approach. Three subquestions were formulated to aid in answering the main central question, each covering
a phase in the System Identification Cycle.

In the experiment phase measurement data was gathered by the use of various automated maneuvers. The
flight experiments needed to be conducted in closed-loop, for the Delfly Nimble is inherently unstable due
to its tailless design. For the system identification of this closed-loop system the direct approach was taken,
where the controller is ignored in the model identification. One of the main difficulties encountered when
using the direct approach is that the controller can dampen the natural response, reducing the information
contained in the measurement data, leading to less accurate models. In order to cope with this, the gains
of the controller were altered such that the influence of the controller was minimized, and large commands
were given during the identification experiments. With these two measurements sufficient excitation was
obtained. The identifiability was checked by analysis of the power spectral density plots of the measured
states, which showed peaks around the expected frequencies. There were four categories of maneuvers used
during the experiments: identification maneuvers, for which a train of doublets was used with hover as the
initial condition, validation maneuvers, for which doublets and a 112-maneuver were used with hover as the
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initial condition using both the adjusted and the original gains of the PD-controller, coupled maneuvers,
for which a coupled doublet was used using the adjusted gains, and nonlinear maneuvers, for which the
nonlinear doublets were used using the adjusted gains. During the coupled doublet the Delfly Nimble moves
forward, and then does a doublet in the roll direction. When doing the nonlinear doublet, the Delfly is does a
roll doublet while it is flying sideways. This maneuver is nonlinear in the sense that the Delfly Nimble moves
away greatly from the hover condition. There were two sources of data used: the OptiTrack Motion tracking
system and on-board measurements, which consisted of data logged on an inertial measurement unit and
readings of the control mechanisms.

In the model identification phase, the first step is the state estimation, which in this research was done by use
of an Extended Kalman Filter. The second step is the defining the model structure. Two types of model struc-
tures were used in this research, grey-box and black-box systems. For the development of the grey-box system
the rigid-body approximation was used. Due to the focus on only the body dynamics, this approximation can
be used, as has been done in previous research for the stability analysis of hovering insects and the modeling
of flapping flight. The resulting equations of the aerodynamic forces, the aerodynamics moments, and the
kinematic equations are nonlinear, and linearized using two techniques, the Taylor series expansion and the
small perturbation theorem. This resulted in linear time-invariant state-space system with four states. Also,
a reduced state-space system was used, omitting the yaw dynamics, which meant that this system only had
three states. The black-box system was developed by using every element of the A and B matrices of the state-
space, also using one system with four states and one with three states. This means that in total there were
four different model structures used, a grey-box state-space system with four states, a a grey-box state-space
system with three states, a black-box state-space system with four states, and a black-box state-space system
with three states. The third step is the parameter estimation. The parameters of the grey-box models are
the stability and control derivatives, while for the black-box model the parameters are all the elements of A
and B matrix of the state-space system. The parameters were determined using the weighted least-squares
approach. The final model structure chosen was the grey-box state-space system with three states. The yaw
dynamics were omitted due to high frequency components in the measurement data, which was likely due
to internal vibrations, and because of the little information contained in the measurement data. Two natural
modes of the Delfly Nimble were identified using this three-state state-space model, a stable aperiodic mode
and an unstable oscillatory mode.

In the model validation phase the accuracy of the identified model is analyzed. The identified state-space
model was able to predict the state derivatives of the Delfly Nimble well for doublets and 112-maneuvers,
having low values for the residuals and high values for the goodness of fit and the output correlation. The
accuracy of the predicted state derivatives was over 90%. The identified model was also used in a closed-loop
configuration using a Simulink model was used, in which a one to one copy of the PD-controller was imple-
mented. The simulated states were close to the actual states and the simulation was stable, indicating that the
developed model can be used in a closed-loop configuration. The accuracy of simulated state response ex-
ceeded 85%. However, there was oscillatory motion visible in the states when the Delfly Nimble was hovering
which were not captured by he identified model. This could be due to time-varying dynamics, which were not
considered in this research. The developed model can be used in a closed-loop configuration for the stability
analysis of the body dynamics, which are time-averaged, and for the controller design. The justifiability of
two assumptions which were used for the development of the state-space model: the longitudinal and lateral
dynamics are decoupled, and that the body dynamics can be modeled using a linear model structure. The
justifiability of the former was analyzed by conducting experiments using coupled maneuvers. The maneu-
ver used in these experiments was the coupled doublet, where inputs are given to the roll control mechanism
as well as the pitch control mechanism. The Delfly Nimble is then doing a roll doublet while flying forward.
The justifiability of the latter was analyzed by conducting nonlinear maneuvers. The maneuver used in these
experiments is the nonlinear doublet, where the Delfly Nimble is doing a roll doublet when flying sideways.
This maneuver is nonlinear in the sense that the Delfly Nimble moves away greatly from the initial condition
of the identification maneuvers, which was the Delfly Nimble hovering. The model accuracy for the coupled
maneuver decreased the most for the lateral body acceleration v̇ , mainly due to the incoming airflow from the
front, rather than the inputs of multiple control mechanism. This suggests that the assumption of uncoupled
dynamics can be made. The model accuracy for the nonlinear maneuver also reduced the most for v̇ , now
due to the incoming airflow from the side. It was shown that for lower sideways velocities the model accuracy
significantly improved. This indicates that the linearity assumption is not a valid one.

There are still improvements possible for the development of a mathematical model of the lateral body dy-
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namics of the Delfly Nimble, and thus recommendations are given for future research. The first recommen-
dation is to give direct inputs to the control surfaces during the identification experiments. This can be done
by giving a disturbance input to the roll control mechanism. The advantage of doing this is that the influ-
ence of the controller is then further minimized, leading to more excitation of the lateral body dynamics. The
more excitation during the identification experiment, the more information is contained in the data, which
leads to better identified models. The second recommendation is to use a different parameter estimation
approach. This is mainly due to the high noise sensitivity of the stability derivatives Lp , Lv , and the control
derivative Lδt . The parameter estimation approach which could be used to reduce the noise sensitivity is the
maximum likelihood estimator. This estimation approach was also tried in this research, but due to the un-
stable nature of the identified state-space model the maximum likelihood estimator did not converge. When
the maximum likelihood estimator is used, the controller must be included. The third recommendation is
therefore is to use a different approach for the system identification of the closed-loop system, such as the
indirect approach and the joint input-output approach. Using either one of these may help to ensure con-
vergence of the maximum likelihood estimator. The fourth recommendation is to use foam between the IMU
and the mounting point to the fuselage. In this research the IMU was mounted directly to the fuselage, which
led to a lot of noise in the IMU data. This was especially the case for the yaw rate data, which had a very high
frequency content around the 11 H z. This peak was most likely due to internal vibration. Next to the issue of
the high frequency components in the yaw rate data, there was also very little excitation seen in the PSD plot
of the yaw rate. This was the main reason for the bad estimation of the yaw dynamics. The recommendation
would then be to also use yaw inputs to increase the excitation of the yaw dynamics, improving the model
identification of these dynamics. The fifth recommendation it to include the time-varying dynamics in the
model, for it was seen that oscillations which occur during hover are not captured when using the identi-
fied model in closed-loop configuration. This can be done by modeling each wing of the Delfly Nimble as a
separate body, which leads to a multi-body dynamic system with five bodies, or to model the time-varying
components using a Fourier series. The last recommendation is to use a nonlinear model structure in order
to expand the range of the identified model. The lateral body dynamics are very sensitive to incoming airflow.
The range can be expanded using for example the linear parameter-varying model structure, similar to what
was done for the model identification of the Delfly II, during which experiments were done with multiple
trim conditions. For experiments with the Delfly Nimble, the Cyberzoo is too small to trim the Delfly Nimble
properly when there is an initial velocity. For proper trimming, a larger area is required, or experiments have
to be conducted in a wind tunnel.
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[35] Matěj Karásek. Robotic hummingbird: Design of a control mechanism for a hovering flapping wing micro
air vehicle. PhD thesis, 2014.
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A
Geometric properties of the Delfly Nimble

In this appendix an overview is given of the geometric properties of the Delfly Nimble. In Section A.1 the prop-
erties of the full vehicle, which were used for the set up of the grey-box state-space systems, are shown. In
Section A.2 the properties of the wing, which were used for the non-dimensionalizing of the stability deriva-
tives, are calculated.

A.1. Full vehicle properties
In this section an overview is given of the geometric properties of the full vehicle are shown. The axis system
which was used to determine the location of the center of gravity of the Delfly Nimble is shown in Figure A.1.

Figure A.1: Axis system used to determine the location of the center of gravity of the Delfly Nimble. The z-axis is pointed downward
alongside the fuselage, the y-axis is pointed towards the right wing alongside the leading edge, and the x-axis is pointed towards the

front, in the direction of the motors.

Where the z-axis is pointed downward alongside the fuselage, the y-axis is pointed towards the right wing
alongside the leading edge, and the x-axis is pointed towards the front, in the direction of the motors. The
properties of the full vehicle, which consist of the mass, the location of the center of gravity, and the inertia
terms are shown in Table A.1.
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Geometric properties of the Delfly Nimble

Property With Wifi-Module Without Wifi-Module
Total mass [g ] 29.47 28.76

Center of Gravity (xcg ) [mm] 0.43 0.44
Center of Gravity (ycg ) [mm] −0.02 −0.02
Center of Gravity (zcg ) [mm] 51.93 52.74

Inertia Ixx [kg ·m2] (w.r.t c.g.) 9.76×10−5 9.60×10−5

Inertia Iy y [kg ·m2] (w.r.t c.g.) 7.35×10−5 7.20×10−5

Inertia Izz [kg ·m2] (w.r.t c.g.) 3.34×10−5 3.32×10−5

Inertia Ix y [kg ·m2] (w.r.t c.g.) 2.66×10−8 2.64×10−8

Inertia Iy z [kg ·m2] (w.r.t c.g.) 7.51×10−9 7.98×10−9

Inertia Ixz [kg ·m2] (w.r.t c.g.) −8.85×10−6 −8.81×10−6

Table A.1: Geometric properties of the Delfly Nimble. The inertia terms are given with respect to the center of gravity. Two
configurations were used during the experiments: with and without the Wifi-Module.

A.2. Wing properties
In this section the calculations of the required wing properties for the non-dimensionalizing of the stability
derivatives are shown. These calculations were done by use of the wing schematics of the Delfly Nimble,
which uses the same wings as the Delfly II. The wing schematics are displayed in Figure A.2 [1].

Figure A.2: Schematics of the wings of the Delfly Nimble [1]. The root axis is illustrated with the red dashed line.

In order to calculate the total area of the wing, it was divided into three subareas. These three areas are
determined, as defined in Figure A.2. The calculated values are shown in Equation A.1.

A1 =53 ·84 = 4505 mm2

A2 =1

2
·84 ·85 = 3570 mm2

A3 =1

2
·84 ·56 = 2352 mm2

(A.1)

The total area is determined by summing all the areas, as shown in Equation A.2.
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Aw = A1 + A2 + A3 = 10427 mm2 (A.2)

The distances of the centroids of the three areas with respect to the root axis are determined, which is shown
in Equation A.3.

r1 = 1

2
·53 = 26.5 mm

r2 = 1

2
·84+53 = 81 mm

r3 = 137− 1

3
·84 = 109 mm

(A.3)

The centroid of the wing can be then determined using the areas A1, A2, A3 and the distances r1, r2, r3, as
shown in Equation A.4.

ĉ =
∑3

i=1 Ai · ri∑3
i=1 Ai

= A1 · r1 + A2 · r2 + A3 · r3

Aw
= 63.77 mm (A.4)

In order to determine the radius of the second moment of inertia r̂ , the moment of inertia of the wing with
respect to the root axis has to be computed. This is calculated using the parallel axis theorem, where the total
moment of inertia is determined by determining the moment of inertia about an axis through the centroid
and adding the Steiner term [28]. The moment of inertias of the areas A1, A2, A3 about their centroids are
determined in Equation A.5.

I1c =
533 ·84

12
= 1054545 mm4

I2c =
843 ·85

36
= 1399440 mm4

I3c =
843 ·56

36
= 921984 mm4

(A.5)

The Steiner terms are determined in Equation A.6.

I1s = A1 · r1 = 3163636 mm4

I2s = A2 · r2 = 23422770 mm4

I3s = A3 · r3 = 24822210 mm4

(A.6)

The total moment of inertia of the wing with respect to the root axis is shown in Equation A.7.

Itot = I1c + I2c + I3c + I1s + I2s + I3s = 57906487 mm4 (A.7)

With the total moment of inertia Itot and the total wing area Aw the radius r̂ can be determined using A.8.

r̂ =
√

Itot

Aw
= 74.52 mm (A.8)

The mean chord length c̄ of the wing is determined using the wingspan b and the total wing area Aw , as
shown in Equation A.9.

c̄ = Aw

b
= 10427

137
= 76.11mm (A.9)





B
Derivation of EOM’s

In this appendix the equations of motion are derived, which are used for the development of the mathemat-
ical model of the lateral dynamics of the Delfly Nimble. The axis system used on the Delfly Nimble is shown
in Figure B.1.

Figure B.1: Axis system used on the Delfly Nimble, where xb , yb and zb are the body axes. The aerodynamic forces are indicated by X , Y
and Z , while the aerodynamic moments are indicated by L, M and N . The body velocities are u, v and w . The angular rates are p, q and

r and the attitude angles are φ, θ and ψ.

The following assumptions are used to determine the nonlinear equations of motion [48, 66, 67]:

• The body of the vehicle is rigid.
• The mass of the vehicle is constant.
• The Earth is flat and non-rotating.
• Xb Zb is a symmetry plane, so Ix y and Iy z are assumed to be zero.

The rigid body assumption can be made if only the body dynamics of the Delfly Nimble are analysed, i.e. if
the flapping dynamics and the body dynamics of the Delfly Nimble can be treated separately. Using these
assumptions the nonlinear equations for the aerodynamic forces, moments, and the kinematic equations
can be developed, resulting in Equations B.1, B.2 and B.3.
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Fx = X −mg · sin(θ) =
st ates︷ ︸︸ ︷

m · (u̇ +qw − r v)

Fy = Y +mg ·cos(θ) · sin(φ) = m · (v̇ + r u −pw)

Fz = Z +mg ·cos(θ) ·cos(φ)︸ ︷︷ ︸
f or ces

= m · (ẇ +pv −qu)

(B.1)

Mx = L =
st ates︷ ︸︸ ︷

Ixx · ṗ + (Izz − Iy y ) ·qr − Ixz · (ṙ +pq)

My = M = Iy y · q̇ + (Ixx − Izz ) · r p − Ixz · (p2 + r 2)

Mz = N︸︷︷︸
moment s

= Izz · ṙ + (Iy y − Ixx ) ·pq − Ixz · (ṗ −qr )

(B.2)

φ̇= p +q · sin(φ) · tan(θ)+ r ·cos(φ) · tan(θ)

θ̇ = q ·cos(φ)− r · sin(φ)

ψ̇= q · sin(φ)

cos(θ)
+ r · cos(φ)

cos(θ)

(B.3)

Here Fx , Fy , Fz are the forces, and Mx , My , Mz are the moment about the x, y , z axes. The m is the mass of
the Delfly Nimble and the g is the gravitational constant. Furthermore, u, v , w are the body velocities, u̇, v̇ ,
ẇ are the body accelerations, p, q , r are the angular rates, ṗ, q̇ , ṙ are the angular accelerations, X , Y , Z are
the aerodynamic forces, L, M , N are the aerodynamic moments, Ixx etc. are the inertia terms, φ, θ, ψ are the
attitude angles and φ̇, θ̇, ψ̇ are the attitude angular rates.

The Force equations in Equation B.1 have two representations, one with the forces and one with the states.
These equations are essentially an application of Newton’s second law of motion [27]. Similar to the force
equations, the moment equations shown in Equation B.2 also has two representations, the moments and the
states. These equations are essentially an application of the Euler equations with non-zero products of inertia
[27, 48, 66].

The nonlinear equations can be further simplified by linearization. Linearized equations of motion are often
used for the analysis of the dynamic system[48, 66]. The linearization is done using two techniques, the Taylor
series expansion and the small perturbation theorem[55, 66]. The Taylor series expansion is an approxima-
tion of a function using an initial value and its derivatives. An example of a Taylor series expansion is shown
in Equation B.4.

g (a) ≈ g (a0)+ g ′(a0) · (a −a0)+ g "(a0)

2
· (a −a0)2 +h.o.t .

≈ g (a0)+ g ′(a0) · (∆a)+ g "(a0)

2
· (∆a)2 +h.o.t .

(B.4)

Where g is a function of the variable a, a0 is the initial value and h.o.t . indicates the higher order terms. If
only the terms up to the first derivative are used the expansion which approximates the actual function is
linear. If a function is dependent on more than one variable, the Taylor series expansion will be as shown in
Equation B.5.

g (a) ≈ g (a0)+ ∂g

∂a1
·∆a1 + ∂g

∂a2
·∆a2 + ∂g

∂a3
·∆a3

a =
a1

a2

a3

 (B.5)

The Taylor series expansion can be used to linearize the equations of motion and the kinematic equations of
Equations B.1 to B.3. The variables used for the linearization are the body velocities u, v, w , the body accel-
erations u̇, v̇ , ẇ , the angular rates p, q,r , the angular accelerations ṗ, q̇ , ṙ , the attitude angles φ,θ,ψ and the
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attitude angular rates φ̇, θ̇,ψ̇. However, the aerodynamic forces X ,Y , Z and moments L, M , N are still present
in the equations. Since these are not constant terms they can’t be omitted. In order to incorporate the forces
and moments properly in the linearization an additional assumption is made, namely that the aerodynamic
forces and moments can be modeled using a linear approximation. This can be done by applying the small
perturbation theorem. In this theorem it is assumed that a variable can be rewritten by use of a nominal value
and a perturbation term [66], as shown in Equation B.6.

b(t ), b0(t )+∆b(t ) (B.6)

Where b(t ) is a variable, b0(t ) is the nominal value and ∆b(t ) is the perturbation term. When the aerody-
namic forces and moments are modeled using this theorem, is essentially means that the forces and moments
change due to a change in the states. Control inputs also have an influence on the aerodynamic forces and
moments. For the Delfly Nimble there are three control inputs which have been defined, the dihedral angle
δd , the difference in flapping frequency δ f , the wing root angle δw , and the throttle input δt . This means
that the aerodynamic forces and moments are a function of the states and the control inputs, presented in
Equation B.7.

X = f (p, q,r,u, v, w,δd ,δ f ,δw ,δt )

Y = f (p, q,r,u, v, w,δd ,δ f ,δw ,δt )

Z = f (p, q,r,u, v, w,δd ,δ f ,δw ,δt )

L = f (p, q,r,u, v, w,δd ,δ f ,δw ,δt )

M = f (p, q,r,u, v, w,δd ,δ f ,δw ,δt )

N = f (p, q,r,u, v, w,δd ,δ f ,δw ,δt )

(B.7)

The states chosen in Equation B.7 are not fixed. The number of states on which the aerodynamic forces and
moments are dependent can be increased or decreased. The number of states can be decreased by use of
another assumption, namely that there is no coupling between the longitudinal and lateral dynamics. This
leads to the development of two dynamic subsystems, one for the longitudinal dynamics and one for the
lateral dynamics. The state and input vectors for the longitudinal and lateral dynamic systems are defined in
Equation B.8.

xl on =


q
u
w
θ

 , x l at =


p
r
v
φ

 , ulon = ul at =


δd

δ f

δw

δt

 (B.8)

It is then assumed that for the longitudinal dynamics the aerodynamic forces X , Z and the aerodynamic mo-
ment M is relevant, while for the lateral dynamics the aerodynamic force Y and the aerodynamic moments L,
N are relevant, as done for the analysis of aircraft dynamics and flapping flight dynamics [34, 48, 66]. There-
fore the equations for the aerodynamic forces can be reduced to Equation B.9.

X = f (q,u, w,δd ,δ f ,δw ,δt )

Y = f (p,r, v,δd ,δ f ,δw ,δt )

Z = f (q,u, w,δd ,δ f ,δw ,δt )

L = f (p,r, v,δd ,δ f ,δw ,δt )

M = f (q,u, w,δd ,δ f ,δw ,δt )

N = f (p,r, v,δd ,δ f ,δw ,δt )

(B.9)

These equations can then be linearized using a Taylor series expansion, which leads to linear equations for
the aerodynamic forces and moments shown in Equation B.10.
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Xl i n =X0 +Xq∆q +Xu∆u +Xw∆w +Xδd
∆δd +Xδ f

∆δ f +Xδw∆δw +Xδt∆δt

Yl i n =Y0 +Yp∆p +Yr∆r +Yv∆v +Yδd
∆δd +Yδ f

∆δ f +Yδw∆δw +Yδt∆δt

Zl i n =Z0 +Zq∆q +Zu∆u +Zw∆w +Zδd
∆δd +Zδ f

∆δ f +Zδw∆δw +Zδt∆δt

Ll i n =L0 +Lp∆p +Lr∆r +Lv∆v +Lδd
∆δd +Lδ f

∆δ f +Lδw∆δw +Lδt∆δt

Ml i n =M0 +Mq∆q +Mu∆u +Mw∆w +Mδd
∆δd +Mδ f

∆δ f +Mδw∆δw +Mδt∆δt

Nl i n =N0 +Np∆p +Nr∆r +Nv∆v +Nδd
∆δd +Nδ f

∆δ f +Nδw∆δw +Nδt∆δt

(B.10)

Where X0, Y0, Z0, L0, M0, N0 are the nominal forces and moment, and Xu is the partial derivative of X with
respect to u, i.e. ∂X

∂u . The partial derivative of an aerodynamic force or moment is known as a dimensional
stability derivative. A partial derivative of a force or moment with respect to a control input, as is the case for
Xδd

, is known as a dimensional control derivative. With the aerodynamic forces now linearised, the nonlin-
ear equations of motion and kinematic equations, shown in Equations B.1 to B.3, can be linearized. Further
simplifications can be applied to the linearized equations of motion by assumptions on the nominal values
for the states and forces, also called the initial conditions. The initial conditions are determined for the spe-
cific maneuvers which will be used during the experiments described in Chapter 3. The initial conditions are
defined in Equation B.11.

u0 6= 0 p0 = 0 φ0 6= 0 X0 6= 0 L0 = 0

v0 6= 0 q0 = 0 θ0 6= 0 Y0 6= 0 M0 = 0

w0 6= 0 r0 = 0 ψ0 = 0 Z0 6= 0 N0 = 0

u̇0 = 0 ṗ0 = 0 φ̇0 = 0 Ẋ0 = 0 L̇0 = 0

v̇0 = 0 q̇0 = 0 θ̇0 = 0 Ẏ0 = 0 Ṁ0 = 0

ẇ0 = 0 ṙ0 = 0 ψ̇0 = 0 Ż0 = 0 Ṅ0 = 0

(B.11)

When the Delfly Nimble is in hover or moving with a constant velocity, the resultant force is zero according
to Newton’s second law of motion [27, 28]. This means that the forces X0, Y0 and Z0 are canceled out by the
weight, further simplifying the equations of motion. The application of the Taylor series expansion, the small
perturbation theorem and the initial conditions lead to the linearized force equations in Equation B.12, the
linearized moment equations in Equation B.13 and the linearized kinematic equations in Equation B.14.

Xq∆q +Xu∆u +Xw∆w +Xδd
∆δd +Xδ f

∆δ f

+Xδw∆δw +Xδt∆δt −mg ·cos(θ) ·∆θ
= m · (∆u̇ +w0 ·∆q − v0 ·∆r )

Yp∆p +Yr∆r +Yv∆v +Yδd
∆δd +Yδ f

∆δ f

+Yδw∆δw +Yδt∆δt +mg · cos(θ0) · cos(φ0) ·∆φ
= m · (∆v̇ +u0 ·∆r −w0 ·∆p)

Zq∆q + zu∆u +Zw∆w +Zδd
∆δd +Zδ f

∆δ f

+Zδw∆δw +Zδt∆δt −mg · sin(θ0) · cos(φ0) ·∆θ
= m · (∆ẇ + v0 ·∆p −u0 ·∆q)

(B.12)

Lp∆p +Lr∆r +Lv∆v +Lδd
∆δd +Lδ f

∆δ f +Lδw∆δw +Lδt∆δt = Ixx ·∆ṗ − Ixz ·∆ṙ

Mq∆q +Mu∆u +Mw∆w +Mδd
∆δd +Mδ f

∆δ f +Mδw∆δw +Mδt∆δt = Iy y ·∆q̇

Np∆p +Nr∆r +Nv∆v +Nδd
∆δd +Nδ f

∆δ f +Nδw∆δw +Nδt∆δt = Izz ·∆ṙ − Ixz ·∆ṗ

(B.13)

∆φ̇=∆p +∆q · sin(φ0) · tan(θ0)+∆r ·cos(φ0) · tan(θ0)

∆θ̇ =∆q ·cos(φ0)−∆r · sin(φ0)

∆ψ̇=∆q · sin(φ0)

cos(θ0)
+∆r · cos(φ0)

cos(θ0)

(B.14)



151

For the analysis of the stability of the flight the equation for the yaw angle ψ can be omitted [34], removing
the third kinematic equation in Equation B.14. With the state and input vector defined in Equation B.8 the
linearized equations of motion in Equations B.12 to B.14 can be written in two linear time-invariant state
space systems, one for the longitudinal dynamics, defined in Equation B.15, and one for the lateral dynamics,
presented in Equation B.16. For the longitudinal dynamics the additional assumption that v0 is equal to zero
was made. Furthermore, the ∆ terms were removed in order to simplify the notations in the final equations
of motion.


q̇
u̇
ẇ
θ̇

=


Mq

Iy y

Mu
Iy y

Mw
Iy y

0
Xq

m −w0
Xu
m

Xw
m −g ·cos(θ0)

Zq

m +u0
Zu
m

Zw
m −g · sin(θ0) ·cos(φ0)

cos(φ0) 0 0 0

 ·


q
u
w
θ

+


Mδd
Iy y

Mδ f

Iy y

Mδw
Iy y

Mδt
Iy y

Xδd
m

Xδ f

m
Xδw

m
Xδt
m

Zδd
m

Zδ f

m
Zδw

m
Zδw

m
0 0 0 0

 ·


δd

δ f

δw

δt

 (B.15)

In Equation B.15 the Mq , Mu , Mw , Xq , Xu , Xw , Zq , Zu and Zw are the stability derivatives, while the Mδd
,

Mδ f
, Mδw , Mδt , Xδd

, Xδ f
, Xδw , Xδt , Zδd

, Zδ f
, Zδw and Zδt are the control derivatives.


ṗ
ṙ
v̇
φ̇

=


Izz
Ic

·Lp + Ixz
Ic

·Np
Izz
Ic

·Lr + Ixz
Ic

·Nr
Izz
Ic

·Lv + Ixz
Ic

·Nv 0
Ixz
Ic

·Lp + Ixx
Ic

·Np
Ixz
Ic

·Lr + Ixx
Ic

·Nr
Ixz
Ic

·Lv + Ixx
Ic

·Nv 0
Yp

m +w0
Yr
m −u0

Yv
m g ·cos(θ0) ·cos(φ0)

1 tan(θ0) ·cos(φ0) 0 0

 ·


p
r
v
φ

+


Izz
Ic

·Lδd
+ Ixz

Ic
·Nδd

Izz
Ic

·Lδ f
+ Ixz

Ic
·Nδ f

Izz
Ic

·Lδw + Ixz
Ic

·Nδw
Izz
Ic

·Lδt + Ixz
Ic

·Nδt
Ixz
Ic

·Lδd
+ Ixx

Ic
·Nδd

Ixz
Ic

·Lδ f
+ Ixx

Ic
·Nδ f

Ixz
Ic

·Lδw + Ixx
Ic

·Nδw
Ixz
Ic

·Lδt + Ixx
Ic

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0

 ·


δd

δ f

δw

δt

 (B.16)

In Equation B.16 the Lp , Lr , Lv , Np , Nr , Nv , Yp , Yr and Yv are the stability derivatives, while the Lδd
, Lδ f

, Lδw ,

Lδt , Nδd
, Nδ f

, Nδw , Nδt , Yδd
, Yδ f

, Yδw and Yδt are the control derivatives. What’s more, Ic = Ixx · Izz − I 2
xz . In

this research the linear time-invariant state space for the lateral dynamics, shown in Equation B.16, is used.
This state space can be reduced by decoupling the roll and yaw dynamics. This leads to two systems, one for
the roll dynamics, which is shown in Equation B.17, and one for the yaw dynamics, shown in Equation B.18.

ṗ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lv 0
Yp

m +w0
Yv
m g ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+


Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0

 ·


δd

δ f

δw

δt


(B.17)

ṙ = Ixz

Ic
·Nr · r +

[
Ixz
Ic

·Nδd
Ixz
Ic

·Nδ f
Ixz
Ic

·Nδw
Ixz
Ic

·Nδt

]
·


δd

δ f

δw

δt

 (B.18)





C
Setup regression matrices

In this appendix the setup for the regression matrix is explained which are used for the ordinary least squares
estimation. As was elaborated on in Section 4.3.2, for a state-space system Equations C.1 and C.2 are used in
order to apply the equation-error approach.

Y (t ) =Θ ·Φ(t )+E(t ) (C.1)

Y (t ) =
[

ẋ(t )
y(t )

]
, Θ=

[
A B
C D

]
Φ(t ) =

[
x(t )
u(t )

]
, E(t ) =

[
w(t )
v(t )

] (C.2)

Two different sets of state-space systems are used, a grey-box system which uses the state-space which was
derived in Appendix B, and a black-box system which was shown in Section 4.2.2. The regression matrix for
the former is shown in Section C.1, and for the latter in Section C.2.

C.1. Grey-box model regression matrix
For the grey-box model identification the state-space system defined in Equation C.3 is used.


ṗ
ṙ
v̇
φ̇

=


Izz
Ic

·Lp + Ixz
Ic

·Np
Izz
Ic

·Lr + Ixz
Ic

·Nr
Izz
Ic

·Lv + Ixz
Ic

·Nv 0
Ixz
Ic

·Lp + Ixx
Ic

·Np
Ixz
Ic

·Lr + Ixx
Ic

·Nr
Ixz
Ic

·Lv + Ixx
Ic

·Nv 0
Yp

m +w0
Yr
m −u0

Yv
m g ·cos(θ0) ·cos(φ0)

1 tan(θ0) ·cos(φ0) 0 0

 ·


p
r
v
φ

+


Izz
Ic

·Lδd
+ Ixz

Ic
·Nδd

Izz
Ic

·Lδ f
+ Ixz

Ic
·Nδ f

Izz
Ic

·Lδw + Ixz
Ic

·Nδw
Izz
Ic

·Lδt + Ixz
Ic

·Nδt
Ixz
Ic

·Lδd
+ Ixx

Ic
·Nδd

Ixz
Ic

·Lδ f
+ Ixx

Ic
·Nδ f

Ixz
Ic

·Lδw + Ixx
Ic

·Nδw
Ixz
Ic

·Lδt + Ixx
Ic

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0

 ·


δd

δ f

δw

δt

 (C.3)

The output of the systems y(t ) are states themselves, as in Equation C.4.

y(t ) =


p
r
v
φ

 (C.4)
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This means that the C matrix is an identity matrix which does not contain any parameters ans that the D
matrix is a matrix full of zeros. This simplifies the terms in Equation C.2, resulting in Equation C.5.

Y (t ) = [
ẋ(t )

]
, Θ= [

A B
]

Φ(t ) =
[

x(t )
u(t )

]
, E(t ) = [

w(t )
] (C.5)

Before the A and B matrices can be used in order to form theΘmatrix, one issue needs to be resolved. Namely,
that there are coupled parameters in the A matrix, i.e. there are two parameters which are present in a single
entry of the matrix, for example Lp and Np . There are two approaches for resolving this issue. The first one
is to assume that the L and N parameters are decoupled, i.e. that the N parameters do not influence the roll
acceleration ṗ and that the L parameters do not influence the yaw acceleration ṙ . With this assumption the
state-space system can be simplified, as presented in Equation C.6 [13].


ṗ
ṙ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lr
Izz
Ic

·Lv 0
Ixx
Ic

·Np
Ixx
Ic

·Nr
Ixx
Ic

·Nv 0
Yp

m +w0
Yr
m −u0

Yv
m g ·cos(θ0) ·cos(φ0)

1 tan(θ0) ·cos(φ0) 0 0

 ·


p
r
v
φ

+


Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt
Ixx
Ic

·Nδd
Ixx
Ic

·Nδ f
Ixx
Ic

·Nδw
Ixx
Ic

·Nδt

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0

 ·


δd

δ f

δw

δt

 (C.6)

The state-space system shown in C.6 can then be used in order to get to the form shown in Equation C.1,
resulting in Equation C.7.


ṗ
ṙ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lr
Izz
Ic

·Lv 0 Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt
Ixx
Ic

·Np
Ixx
Ic

·Nr
Ixx
Ic

·Nv 0 Ixx
Ic

·Nδd
Ixx
Ic

·Nδ f
Ixx
Ic

·Nδw
Ixx
Ic

·Nδt

Yp

m +w0
Yr
m −u0

Yv
m g ·cos(θ0) ·cos(φ0)

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

1 tan(θ0) ·cos(φ0) 0 0 0 0 0 0

·



p
r
v
φ

δd

δ f

δw

δt


(C.7)

The constant terms should be removed form the regression matrix, which can be done by moving them to the
left hand side of Equation C.7, resulting in Equation C.8.


ṗ
ṙ

v̇ −w0 ·p +u0 · r − g ·cos(θ0) ·cos(φ0) ·φ
φ̇−p − tan(θ0) ·cos(φ0) · r

=


Izz
Ic

·Lp
Izz
Ic

·Lr
Izz
Ic

·Lv 0 Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt
Ixx
Ic

·Np
Ixx
Ic

·Nr
Ixx
Ic

·Nv 0 Ixx
Ic

·Nδd
Ixx
Ic

·Nδ f
Ixx
Ic

·Nδw
Ixx
Ic

·Nδt

Yp

m
Yr
m

Yv
m 0

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0 0 0 0 0

 ·



p
r
v
φ

δd

δ f

δw

δt


(C.8)
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It can be seen that there is a column and row full of zeroes in the matrix at the right hand side of Equation
C.8. These can be omitted in order to reduce the size of the matrix, taking the form of Equation C.9.

 ṗ
ṙ

v̇ −w0 ·p +u0 · r − g ·cos(θ0) ·cos(φ0) ·φ

=


Izz
Ic

·Lp
Izz
Ic

·Lr
Izz
Ic

·Lv
Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt
Ixx
Ic

·Np
Ixx
Ic

·Nr
Ixx
Ic

·Nv
Ixx
Ic

·Nδd
Ixx
Ic

·Nδ f
Ixx
Ic

·Nδw
Ixx
Ic

·Nδt

Yp

m
Yr
m

Yv
m

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

 ·



p
r
v
δd

δ f

δw

δt


(C.9)

The third terms in the vector in the left-hand side of Equation C.9 can be simplified by substituting Equation
C.10.

v̇∗
f ul l = v̇ −w0 ·p +u0 · r − g ·cos(θ0) ·cos(φ0) ·φ (C.10)

There are still constant terms which are multiplied with the parameters. These can be omitted by moving
them to the left hand side as well, resulting in Equation C.11.


Ic

Izz
· ṗ

Ic
Ixx

· ṙ
m · v̇∗

f ul l

=

Lp Lr Lv Lδd
Lδ f

Lδw Lδt

Np Nr Nv Nδd
Nδ f

Nδw Nδt

Yp Yr Yv Yδd
Yδ f

Yδw Yδt

 ·



p
r
v
δd

δ f

δw

δt


(C.11)

Using Equation C.11 an OLS estimator can be setup for each output on the left hand side of the equation. The
three output equations are shown in Equations C.12 to C.14

Ic

Izz
· ṗ = [

p r v δd δ f δw δt
] ·



Lp

Lr

Lv

Lδd

Lδ f

Lδw

Lδt


= Ag r e y ·θL

(C.12)

Ic

Ixx
· ṙ = [

p r v δd δ f δw δt
] ·



Np

Nr

Nv

Nδd

Nδ f

Nδw

Nδt


= Ag r e y ·θN

(C.13)
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m · v̇∗
f ul l =

[
p r v δd δ f δw δt

] ·


Yp

Yr

Yv

Yδd

Yδ f

Yδw

Yδt


= Ag r e y ·θY

(C.14)

Where Ag r e y is the regression matrix and θL , θN , θY are the parameter vectors for the L−, N− and Y −parameters.
The parameters can the be determined using the OLS estimator, resulting in Equation C.20.

θ̂L =
(

AT
g r e y · Ag r e y

)−1 · AT
g r e y ·

Ic

Izz
· ṗ

θ̂N =
(

AT
g r e y · Ag r e y

)−1 · AT
g r e y ·

Ic

Ixx
· ṙ

θ̂Y =
(

AT
g r e y · Ag r e y

)−1 · AT
g r e y ·m · v̇∗

f ul l

(C.15)

The second approach to solve the coupling of the L and N parameters is to use the aerodynamics forces and
moments. As was explained in Appendix B, a linear model structure was used for the forces and moments,
shown in Equation C.16.

Y =Y0 +Yp∆p +Yr∆r +Yv∆v +Yδd
∆δd +Yδ f

∆δ f +Yδw∆δw +Yδt∆δt

L =L0 +Lp∆p +Lr∆r +Lv∆v +Lδd
∆δd +Lδ f

∆δ f +Lδw∆δw +Lδt∆δt

N =N0 +Np∆p +Nr∆r +Nv∆v +Nδd
∆δd +Nδ f

∆δ f +Nδw∆δw +Nδt∆δt

(C.16)

Equation C.16 can be written in vector from, which results in Equations C.17 to C.19.

Y = [
1 p r v δd δ f δw δt

] ·



Y0

Yp

Yr

Yv

Yδd

Yδ f

Yδw

Yδt


= Aaer o ·θY

(C.17)

L = [
1 p r v δd δ f δw δt

] ·



L0

Lp

Lr

Lv

Lδd

Lδ f

Lδw

Lδt


= Aaer o ·θL

(C.18)
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N = [
1 p r v δd δ f δw δt

] ·



N0

Np

Nr

Nv

Nδd

Nδ f

Nδw

Nδt


= Aaer o ·θN

(C.19)

Where Aaer o is the regression matrix and θL , θN , θY are the parameter vectors for the L−, N− and Y −parameters.
The parameters can then be determined using the OLS estimator, which results in Equation C.20.

θ̂Y = (
AT

aer o · Aaer o
)−1 · AT

aer o ·
Ic

Izz
·Y

θ̂L = (
AT

aer o · Aaer o
)−1 · AT

aer o ·
Ic

Ixx
·L

θ̂N = (
AT

aer o · Aaer o
)−1 · AT

aer o ·
Ic

Ixx
·N

(C.20)

If the reduced state-space system derived in Appendix B is used, the regression matrices can be determined
in a similar way as was done when using the first approach to decouple the L and N parameters. The reduced
state-pace system will take the form of Equation C.21.

ṗ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lv 0
Yp

m +wo
Yv
m g ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+


Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0

 ·


δd

δ f

δw

δt


(C.21)

Equation C.21 can be rewritten to Equation C.22.

ṗ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lv 0 Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt

Yp

m +w0
Yv
m g ·cos(θ0) ·cos(φ0)

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

1 0 0 0 0 0 0

 ·



p
v
φ

δd

δ f

δw

δt


(C.22)

The constants in Equation C.22 can then be brought to the left hand side of the equation, which results in
Equation C.23

 ṗ
v̇ −w0 ·p − g ·cos(θ0) ·cos(φ0) ·φ

φ̇−p

=


Izz
Ic

·Lp
Izz
Ic

·Lv 0 Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt

Yp

m
Yv
m 0

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

0 0 0 0 0 0 0

 ·



p
v
φ

δd

δ f

δw

δt


(C.23)
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The column and row with only zeros in the matrix on the right hand side of Equation C.23 can be omitted,
resulting in Equation C.24.

[
ṗ

v̇ −w0 ·p − g ·cos(θ0) ·cos(φ0) ·φ
]
=

[ Izz
Ic

·Lp
Izz
Ic

·Lv
Izz
Ic

·Lδd
Izz
Ic

·Lδ f
Izz
Ic

·Lδw
Izz
Ic

·Lδt

Yp

m
Yv
m

Yδd
m

Yδ f

m
Yδw

m
Yδt
m

]
·



p
v
δd

δ f

δw

δt


(C.24)

Similar to as it was done for the full grey-box model, the second term in the vector in the left-hand side of
Equation C.24 can be simplified by substitution of Equation C.25.

v̇∗
r ed = v̇ −w0 ·p − g ·cos(θ0) ·cos(φ0) ·φ (C.25)

The constant terms which are multiplied with the parameters in Equation C.24 can be brought to the left
hand side, which results in Equation C.26.

[
Ic

Izz
ṗ

m · v̇∗
r ed

]
=

[
Lp Lv Lδd

Lδ f
Lδw Lδt

Yp Yv Yδd
Yδ f

Yδw Yδt

]
·



p
v
δd

δ f

δw

δt

 (C.26)

Two output equations are then formulated using Equation C.26, which are shown in Equation C.27 and C.28.

Ic

Izz
· ṗ = [

p v δd δ f δw δt
] ·



Lp

Lv

Lδd

Lδ f

Lδw

Lδt


= Ar ed ·θL

(C.27)

m · v̇∗
r ed = [

p v δd δ f δw δt
] ·



Yp

Yv

Yδd

Yδ f

Yδw

Yδt


= Ar ed ·θY

(C.28)

Where Ar ed is the regression matrix and θL and θY are the parameter vectors for the L and Y parameters. The
parameters can then be estimated using Equation C.29.

θ̂L = (
AT

r ed · Ar ed
)−1 · AT

r ed · Ic

Izz
· ṗ

θ̂Y = (
AT

r ed · Ar ed
)−1 · AT

r ed ·m · v̇∗
r ed

(C.29)
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C.2. Black-box model regression matrix
The OLS estimation for the black-box state-space system is done in a similar way as was done for the grey-box
state-space system in Section C.1. The black-box state-space system is shown in Equation C.30.


ṗ
ṙ
v̇
φ̇

=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ·


p
r
v
φ

+


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

 ·


δd

δ f

δw

δt

 (C.30)

Equation C.30 can be written in the form of Equation C.5, which results in Equation C.31.


ṗ
ṙ
v̇
φ̇

=


a11 a12 a13 a14 b11 b12 b13 b14

a21 a22 a23 a24 b21 b22 b23 b24

a31 a32 a33 a34 b31 b32 b33 b34

a41 a42 a43 a44 b41 b42 b43 b44

 ·



p
r
v
φ

δd

δ f

δw

δt


(C.31)

With Equation C.31 four output equations can be formulated, defined in Equations C.32 to C.35.

ṗ = [
p r v φ δd δ f δw δt

] ·



a11

a12

a13

a14

b11

b12

b13

b14


= Abl ack ·θp

(C.32)

ṙ = [
p r v φ δd δ f δw δt

] ·



a21

a22

a23

a24

b21

b22

b23

b24


= Abl ack ·θr

(C.33)

ṙ = [
p r v φ δd δ f δw δt

] ·



a31

a32

a33

a34

b31

b32

b33

b34


= Abl ack ·θv

(C.34)
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φ̇= [
p r v φ δd δ f δw δt

] ·



a41

a42

a43

a44

b41

b42

b43

b44


= Abl ack ·θφ

(C.35)

Where Abl ack is the regression matrix and θp , θr , θv , θφ are the parameter vectors. The parameter vectors can
be determined using Equation C.36.

θ̂p = (
AT

bl ack · Abl ack
)−1 · AT

bl ack · ṗ

θ̂r =
(

AT
bl ack · Abl ack

)−1 · AT
bl ack · ṙ

θ̂v = (
AT

bl ack · Abl ack
)−1 · AT

bl ack · v̇

θ̂φ = (
AT

bl ack · Abl ack
)−1 · AT

bl ack · φ̇

(C.36)

The black-box state-space system can also be reduced in a similar way as the grey-box one. The reduced
black-box state-space system is shown in Equation C.37.

ṗ
v̇
φ̇

=
a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·
p

v
φ

+
b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

 ·


δd

δ f

δw

δt

 (C.37)

Then, following the same approach as was done for the full black-box system, output equations can be for-
mulated, shown in Equations C.38 to C.40.

ṗ = [
p v φ δd δ f δw δt

] ·


a11

a12

a13

b11

b12

b13

b14


= Abl ackr ed

·θp

(C.38)

ṙ = [
p v φ δd δ f δw δt

] ·


a21

a22

a23

b21

b22

b23

b24


= Abl ackr ed

·θv

(C.39)
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φ̇= [
p v φ δd δ f δw δt

] ·


a31

a32

a33

b31

b32

b33

b34


= Abl ackr ed

·θφ

(C.40)

Where Abl ackr ed
is the regression matrix and θp , θv , θφ are the parameter vectors. The parameter vectors can

be determined using Equation C.41.

θ̂p =
(

AT
bl ackr ed

· Abl ackr ed

)−1 · AT
bl ackr ed

· ṗ

θ̂v =
(

AT
bl ackr ed

· Abl ackr ed

)−1 · AT
bl ackr ed

· v̇

θ̂φ =
(

AT
bl ackr ed

· Abl ackr ed

)−1 · AT
bl ackr ed

· φ̇

(C.41)





D
Comparison parameter estimation methods

In this Appendix comparisons are made between different parameter estimation methods. The results of the
OLS and WLS results are shown in Section D.1, while the results of the grey-box and black-box models are
compared in Section D.2.

D.1. OLS vs. WLS
In this section the parameter estimation results of the OLS estimation are compared to the WLS estimation of
the full grey-box models. The OLS and WLS estimation results are shown in Table D.1.

OLS Estimation Results WLS Estimation Results

Stability
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂| Θ̂ |σ̂| 100|σ̂/Θ̂|

Lp −3.79×10−4 2.08×10−5 5.49×100 −3.80×10−4 1.00×10−4 2.64×101

Lr −2.79×10−4 4.23×10−5 1.52×101 −2.81×10−4 3.25×10−4 1.16×102

Lv −2.72×10−3 1.76×10−4 6.46×100 −2.72×10−3 1.01×10−3 3.70×101

Np 5.42×10−5 1.56×10−5 2.88×101 5.55×10−5 7.58×10−4 1.36×103

Nr 9.93×10−5 3.17×10−5 3.20×101 1.01×10−4 1.16×10−3 1.15×103

Nv 1.17×10−4 1.32×10−4 1.13×102 1.34×10−4 5.51×10−3 4.10×103

Yp −1.29×10−3 3.50×10−4 2.72×101 −1.23×10−3 9.55×10−6 7.72×10−1

Yr 8.54×10−3 7.11×10−4 8.33×100 8.37×10−3 1.66×10−5 1.98×10−1

Yv −2.42×10−2 2.95×10−3 1.22×101 −2.38×10−2 8.41×10−5 3.53×10−1

Control
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂| Θ̂ |σ̂| 100|σ̂/Θ̂|

Lδd
1.44×10−3 1.47×10−3 1.02×102 1.41×10−3 6.96×10−3 4.93×102

Lδ f
1.11×10−4 1.14×10−6 1.02×100 1.11×10−4 7.46×10−6 6.72×100

Lδw 7.26×10−3 5.19×10−4 7.15×100 7.28×10−3 2.29×10−3 3.14×101

Lδt −3.09×10−5 5.34×10−6 1.73×101 −3.09×10−5 2.64×10−5 8.56×101

Nδd
1.83×10−3 1.11×10−3 6.06×101 1.89×10−3 4.23×10−2 2.24×103

Nδ f
−5.53×10−8 8.52×10−7 1.54×103 −1.44×10−7 3.83×10−5 2.67×104

Nδw −7.18×10−4 3.90×10−4 5.43×101 −7.09×10−4 1.21×10−2 1.70×103

Nδt 8.04×10−6 4.01×10−6 4.98×101 8.19×10−6 9.08×10−5 1.11×103

Yδd
−6.69×10−2 2.48×10−2 3.70×101 −6.06×10−2 8.43×10−4 1.39×100

Yδ f
−9.26×10−4 1.91×10−5 2.06×100 −9.25×10−4 5.44×10−7 5.88×10−2

Yδw −9.14×10−2 8.73×10−3 9.56×100 −9.16×10−2 1.74×10−4 1.90×10−1

Yδt 6.38×10−4 8.99×10−5 1.41×101 6.44×10−4 1.01×10−6 1.57×10−1

Table D.1: Estimated parameters for the four-state state-space system shown in Equation 8.7 as a result of the OLS and WLS estimator,
using the maneuver data shown in Figure 7.7. Θ̂ indicates the estimated parameter, while |σ̂| indicates the parameter standard

deviation. The fourth column shows the relative parameter standard deviation in percent.
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From Table D.1 it can be seen that the values Θ̂ are very similar. The main difference is seen in the standard
deviation |σ̂|. For both estimators, it can be seen that the |σ̂| is the largest for the N-parameters. When using
the WLS estimator, the |σ̂| of the L- and N-parameters is larger, with some values increasing with two orders
of magnitude. In contrast, the |σ̂| of the Y-parameters is lower when using the WLS estimator, with some
values decreasing with two orders of magnitude. Similar results were found when using the reduced grey-box
model, as is shown in Table D.2.

OLS Estimation Results WLS Estimation Results

Stability
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂| Θ̂ |σ̂| 100|σ̂/Θ̂|

Lp −2.45×10−4 1.93×10−5 7.87×100 −2.43×10−4 1.69×10−4 6.96×101

Lv −4.01×10−4 1.72×10−4 4.30×101 −3.74×10−4 1.52×10−3 4.07×102

Yp 2.76×10−3 2.27×10−4 8.23×100 2.75×10−3 3.31×10−6 1.20×10−1

Yv −5.57×10−2 2.03×10−3 3.65×100 −5.61×10−2 3.32×10−5 5.92×10−2

Control
Derivative

Θ̂ |σ̂| 100|σ̂/Θ̂| Θ̂ |σ̂| 100|σ̂/Θ̂|

Lδ f
1.05×10−4 9.32×10−7 8.84×10−1 1.06×10−4 8.47×10−6 8.02×100

Lδt −4.19×10−5 4.86×10−6 1.16×101 4.19×10−5 5.48×10−5 1.31×102

Yδ f
−8.62×10−4 1.10×10−5 1.27×100 −8.63×10−4 1.22×10−7 1.41×10−2

Yδt −4.05×10−4 5.72×10−5 1.41×101 −4.05×10−4 4.55×10−7 1.12×10−1

Table D.2: Estimated parameters for the four-state state-space system shown in Equation 8.4 as a result of the OLS and WLS estimator,
using two doublets of the maneuver data shown in Figure 7.7, and setting the inputs δd and δw to zero.. Θ̂ indicates the estimated

parameter, while |σ̂| indicates the parameter standard deviation. The fourth column shows the relative parameter standard deviation in
percent.

D.2. Grey-Box vs. Black-Box modeling
In this section the identified grey-box and black-box models are compared. The main difference between the
two model structures is the prior knowledge which have been used. The grey-box model has been developed
by deriving the equations of motion using the rigid-body approach, while the black-box model is a blind
fit, the only assumption being about which states are included. The comparison between the grey-box and
black-box model for the four-state state-space system is shown in Subsection D.2.1, and for the three-state
state-space system is shown in Subsection D.2.2.

D.2.1. Four-State State-Space Models
For the comparison of the the identified grey-box and black-box four-state state-space systems, the A and
B-matrices are compared. The matrices Ag r e y and Abl ack are shown in Equation D.1.

Ag r e y =


−4.058 −3.004 −29.102 0

1.713 3.122 4.140 0
−0.156 −0.090 −0.823 9.743

1 −0.079 0 0

 , Abl ack =


−3.771 −2.865 −26.445 −5.044

1.740 3.121 4.384 −0.632
−0.097 −0.074 −0.272 8.658

1.002 −0.023 0.064 0.238

 (D.1)

The main difference between the two A-matrices can be seen in the fourth column. In Ag r e y most of the
elements have been set to zero, while this is not the case for Abl ack . However such differences are expected
since the black-box model is a blind fit of the data. The matrices Bg r e y and Bbl ack are shown in Equation D.2.

Bg r e y =


15.091 1.185 77.761 −0.330
58.230 −0.004 −21.858 0.252
−2.106 −0.032 −3.186 0.022

0 0 0 0

 , Bbl ack =


25.616 1.170 79.393 −0.333
59.311 −0.006 −21.695 0.251
−0.125 −0.036 −2.768 0.022

1.315 0.008 0.320 0.006

 (D.2)

The major differences between the two matrices are seen in the first column, which correspond to the values
multiplied with the input δd . There are no direct commands given to the dihedral servo, the controller is fully
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responsible for the commands to these servos during the identification maneuver. The parameter variance
for the elements in these columns was also very high compared tot the variances of the other parameters in
Bbl ack , which could explain the variations compared to Bg r e y .

D.2.2. Three-State State-Space Models
For the comparison of the the identified grey-box and black-box three-state state-space systems, the A and
B-matrices are compared. The matrices Ag r e y and Abl ack are shown in Equation D.3.

Ag r e y =
−2.592 −4.000 0
−0.201 −1.951 9.744

1 0 0

 , Abl ack =
−3.411 −11.149 19.013
−0.088 −0.959 7.063

0.937 −0.310 1.468

 (D.3)

The largest differences between the two matrices can be seen in the first row. This corresponds to the equa-
tion for ṗ. What is noteworthy is that the second element of this row is lower value in Abl ack , while the third
element is has a higher value in Abl ack . This could indicate that these two values are compensating for one
another. This is possible in a black-box model structure, since there is a blind fit of the data. The third element
in the first row does not have a physical meaning, therefore it has been set to zero in Ag r e y . The variances of
the second and third elements in the first row of Abl ack also had very large values, which could explain why
these values are very different compared to Ag r e y . The matrices Bg r e y and Bbl ack are shown in Equation D.4.

Bg r e y =
 1.128 0.447
−0.030 −0.014

0 0

 , Bbl ack =
 1.212 0.486
−0.042 −0.019

0.013 0.035

 (D.4)

Very little differences are shown in both columns. The first column is multiplied with δ f , while the second
column is multiplied with δd . Also in the four-state state-space systems it was seen that there is little differ-
ence between the values of the B-matrices of the grey-box and black-box model which are multiplied with
these two inputs.





E
Numeric State-Space Models

In this appendix, the numeric versions of the state-space models are included which have been used in the
model validation presented in Chapter 9. All models are three-state state-space grey box models. The nu-
meric version of the state-space models have been set up by using the estimated stability and control deriva-
tives and the geometric properties of the Delfly Nimble without the Wifi-module of Table A.1. The models
which includes the inputs δ f and δt are defined in Section E.1, the model which includes only the input δ f is
shown in Section E.2, and the model which includes the inputs δ f and δd is presented in Section E.3. The nu-
merical state-space system for the longitudinal model, as determined in the research of Jorgen et al. [51, 52],
is shown in Section E.4.

E.1. Models including inputs δ f and δt
The symbolic equation for the state-space model which includes the inputs δ f and δt is shown in Equation
E.1, and the estimated stability and control derivatives using five different data-sets are indicated in Table E.1.

ṗ
v̇
φ̇

=


Izz
Ic

·Lp
Izz
Ic

·Lv 0
Yp

m +w0
Yv
m g ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+


Izz
Ic

·Lδ f
Izz
Ic

·Lδt
Yδ f

m
Yδt
m

0 0

 ·
[
δ f

δt

]
(E.1)

Estimated Parameters Reduced Grey-Box Model: inputs δ f and δt

Stability
Derivative

Θ̂1 Θ̂2 Θ̂3 Θ̂4 Θ̂5

Lp −2.43×10−4 −3.16×10−4 −4.23×10−4 −5.23×10−4 −2.89×10−4

Lv −3.74×10−4 −9.34×10−4 −1.38×10−3 −3.42×10−3 −1.01×10−3

Yp 2.75×10−3 −2.64×10−3 7.01×10−3 −1.82×10−3 −2.31×10−3

Yv −5.61×10−2 −7.74×10−2 −2.15×10−2 −4.43×10−2 −1.08×10−1

Control
Derivative

Θ̂1 Θ̂2 Θ̂3 Θ̂4 Θ̂5

Lδ f
1.06×10−4 9.79×10−5 1.01×10−4 8.85×10−5 9.58×10−5

Lδt 4.19×10−5 5.40×10−5 7.68×10−6 4.66×10−5 4.54×10−5

Yδ f
−8.63×10−4 −8.46×10−4 −8.33×10−4 −7.98×10−4 −9.87×10−4

Yδt −4.05×10−4 −7.60×10−4 1.85×10−4 −3.88×10−4 −1.22×10−3

Table E.1: Estimated parameters for the three-state state-space system shown in Equation E.1 as a result of the WLS estimator, using
various datasets. Θ̂ indicates the value of the estimated parameter. The subscript indicates the number of the dataset.
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The numeric state-space using the values of the stability and control derivatives Θ̂1 is shown in Equation E.2.

ṗ
v̇
φ̇

=
 −2.59 −4.00 0

0.10+w0 −1.95 9.81 ·cos(θ0) ·cos(φ0)
1 0 0

 ·
p

v
φ

+
 1.13 0.45
−0.03 −0.01

0 0

 ·
[
δ f

δt

]
(E.2)

The numeric state-space using the values of the stability and control derivatives Θ̂2 is shown in Equation E.3.

ṗ
v̇
φ̇

=
 −3.37 −9.97 0
−0.09+w0 −2.69 9.81 ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+
 1.05 0.58
−0.03 −0.01

0 0

 ·
[
δ f

δt

]
(E.3)

The numeric state-space using the values of the stability and control derivatives Θ̂3 is shown in Equation E.4.

ṗ
v̇
φ̇

=
 −4.52 −14.69 0

0.24+w0 −0.75 9.81 ·cos(θ0) ·cos(φ0)
1 0 0

 ·
p

v
φ

+
 1.08 0.08
−0.03 −0.01

0 0

 ·
[
δ f

δt

]
(E.4)

The numeric state-space using the values of the stability and control derivatives Θ̂4 is shown in Equation E.5.

ṗ
v̇
φ̇

=
 −5.59 −36.56 0
−0.06+w0 −1.54 9.81 ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+
 0.94 0.50
−0.03 −0.01

0 0

 ·
[
δ f

δt

]
(E.5)

The numeric state-space using the values of the stability and control derivatives Θ̂5 is shown in Equation E.6.

ṗ
v̇
φ̇

=
 −3.09 −10.81 0
−0.08+w0 −3.77 9.81 ·cos(θ0) ·cos(φ0)

1 0 0

 ·
p

v
φ

+
 1.02 0.48
−0.03 −0.04

0 0

 ·
[
δ f

δt

]
(E.6)

E.2. Model including input δ f only
The symbolic equation for the state-space model which includes only the input δ f is shown in Equation E.7,
and the estimated stability and control derivatives are shown in Table E.2. For this model, only the first data-
set, which is the doublet train maneuver used in Section 8.3.2, was used to was used to estimate the stability
and control derivatives.

ṗ
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φ̇
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·Lp
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·Lv 0
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·Lδ f
Yδ f

m
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 · [δ f
]

(E.7)

Estimated Parameters Reduced Grey-Box Model: input δ f

L-parameters:
Lp Lv Lδ f

−2.68×10−4 −6.69×10−4 1.06×10−4

Y-parameters:
Yp Yv Yδ f

2.96×10−3 −5.33×10−2 −8.66×10−4

Table E.2: Estimated parameters for the three-state state-space system shown in Equation E.7 as a result of the WLS estimator, using the
first identification data-set.
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The numeric state-space using the values of the stability and control derivatives of Table E.2 is shown in
Equation E.8.
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1 0 0

 ·
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v
φ
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 ·
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δ f

δt

]
(E.8)

E.3. Model including inputs δ f and δd
The symbolic equation for the state-space model which includes only the input δ f is shown in Equation E.9,
and the estimated stability and control derivatives are presented in Table E.3. For this model, only the first
data-set, which is the doublet train maneuver used in Section 8.3.2, was used to was used to estimate the
stability and control derivatives.
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(E.9)

Estimated Parameters Reduced Grey-Box Model: inputs δ f and δd

L-parameters:
Lp Lv Lδ f

Lδd

−2.57×10−4 −4.91×10−4 1.06×10−4 1.20×10−3

Y-parameters:
Yp Yv Yδ f

Yδd

2.42×10−3 −6.00×10−2 −8.86×10−4 −5.41×10−2

Table E.3: Estimated parameters for the three-state state-space system shown in Equation E.9 as a result of the WLS estimator, using the
first identification data-set (TableX).

The numeric state-space using the values of the stability and control derivatives from Table E.3 is shown in
Equation E.10.
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(E.10)

E.4. Model for the longitudinal dynamics
The lateral state-space model can be combined with the longitudinal state-space system which was devel-
oped in the research of Nijboer et al.[51, 52]. The symbolic state-space system is shown in Equation (E.11).
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ẇ
θ̇

=


Mq

Iy y

Mu
Iy y

Mw
Iy y

0
Xq

m −w0
Xu
m

Xw
m −g ·cos(θ0)

Zq

m +u0
Zu
m

Zw
m −g · sin(θ0)

1 0 0 0

 ·


q
u
w
θ

+


Mδd
Iy y
Xδd
m

Zδd
m
0

 · [δd
]

(E.11)

The estimated stability and control derivatives for this state-space system are shown in Table E.4, and the
resuting numeric state-space system using these values of the stability and control derivatives is shown in
Equation (E.11).
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q̇
u̇
ẇ
θ̇
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(E.12)

Estimated Parameters Reduced Grey-Box Model: inputs δ f and δd

M-parameters:
Mq Mu Mw Mδd

−1.90×10−3 1.94×10−2 −1.90×10−3 2.78×10−1

X-parameters:
Xq Xu Xw Xδd

4.10×10−3 −1.01×10−1 8.90×10−3 7.22×10−1

Z-parameters:
Zq Zu Zw Zδd

−5.60×10−3 1.96×10−2 −5.90×10−3 2.98×10−2

Table E.4: Estimated parameters for a grey-box state-space system for the longitudinal dynamics, determined in the work of Nijboer et
al. [52].



F
Estimated Aerodynamic Forces and Moments

In this appendix the estimation of the aerodynamic forces and moments is discussed . The reduced grey-box
stat-space system is defined in Equation F.1.
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(F.1)

The stability and control derivatives in this state-space system are used to estimate the moment L and the
force Y . The equations are shown in Equation F.2.

Y =Yp∆p +Yr∆r +Yv∆v +Yδ f
∆δ f +Yδt∆δt

L =Lp∆p +Lr∆r +Lv∆v +Lδ f
∆δ f +Lδt∆δt

(F.2)

The estimated forced and moments for the identification data, which consisted of a doublet train with two
doublets, which had main frequencies of 7 and 4 H z, is illustrated in Figure F.1, and the accuracy metrics are
indicated in Table F.1.
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Figure F.1: Estimation of the aerodynamic moment L and the aerodynamics force Y during the doublet train, which had main
frequencies of 7 and 4 H z
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Accuracy Metrics Aerodynamic Forces and Moments: ID Data

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
L 0.079 -0.217 0.013 N m 22.12
Y 0.744 0.490 0.027 N 6.03

Table F.1: Accuracy metrics for the estimated aerodynamics forces and moments during the doublet train maneuver, which had main
frequencies of 7 and 4 H z.

It can be seen that the moment L is poorly estimated with the stability and control derivatives. What is note-
worthy, is that the estimation is worse during the doublet with the higher main frequency, as can be seen in
Figure F.2.
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Figure F.2: Aerodynamic moment L and the roll angle φ during the doublet train, which had main frequencies of 7 and 4 H z.

The measured forces and moments were determine using OptiTrack. What could be the cause of the poor
estimation of L are vibrations of the markers during flight. The marker setup used in the experiments is
presented in Figure F.3.

Figure F.3: Marker setup of the Delfly Nimble used during the experiments.

The markers on the ’crown’ of the Delfly Nimble, which are indicated by the numbers ’1’, ’2’ and ’3’ are con-
nected using a flat carbon rod. In flight, these rods can bend due to the vibrations, leading to displacement
of the markers which can influence the accuracy of the OptiTrack data. For more rapid maneuvers, such as
the 112-maneuver, the accuracy reduces even more. For slower maneuvers, the accuracy of the of L does im-
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prove, as can be seen in the estimation for a doublet with a main frequency of 4 H z, as can be seen in Figure
F.4 and Table F.2.
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Figure F.4: Aerodynamic moment L, force Y and the roll angle φ during the doublet train, which had main frequencies of 7 and 4 H z.

Accuracy Metrics Aerodynamic Forces and Moments: Doublet 4 H z

Output
Variable

rx y R2 RMSE
RMSE

(% of meas. range)
L 0.670 0.484 0.003 N m 14.80
Y 0.889 0.766 0.014 N 6.92

Table F.2: Accuracy metrics for the estimated aerodynamics forces and moments during a doublet which had a main frequency 4 H z.

During slower maneuvers there would be less vibrations, which would increase the accuracy of the measured
L. The improved accuracy of the estimated L suggests that indeed there might be some issue with the method
that the moment L is measured in OptiTrack. In both Figures F.1 and F.4 the range of the model estimated L
are similar, while the ranges of the measured L differ greatly. To fully verify that the accuracy of the measured
moment L form OptiTrack is decreased due to vibrations of the markers on the crown, stiffer rods can be
used. If the rods are more stiff, there would be less displacement of the markers due to vibrations.





G
Autocorrelation plots

In this Appendix autocorrelation plots of the residuals of the simulated state response, the coupled maneu-
vers and the nonlinear maneuvers are shown. Section G.1 shows the plots of the residuals of states and the
difference in flapping frequency input δ f . Section G.2 presents the plots of the residuals of the coupled ma-
neuvers. In section G.3 the plots of the residuals of the nonlinear maneuvers are illustrated.

G.1. Closed-loop Validation Autocorrelation Plots
This section presents the plots of the residuals of states and the difference in flapping frequency input δ f .The
states are determined using the the state-space model shown in Equation E.2, and a Simulink model in which
a one to one copy of the PD-controller is implemented. The dynamics of the flapping mechanism is models
using Equation 9.4. The autocorrelation plots of the states of the doublet train, which used the fast gains
shown in Table 7.1 during the maneuver, are presented in Figure G.1. The autocorrelation plots of the input
δ f during this maneuver are shown in Figure G.2.
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Figure G.1: Autocorrelation plot of the residuals of the states of a doublet train. The states are determined using the the state-space
model shown in Equation E.2, and a Simulink model in which a one to one copy of the PD-controller is implemented. The dynamics of
the flapping mechanism is models using Equation 9.4. For this simulation the fast gains shown in Table 7.1 were used. Additionally, the

95% confidence bounds are shown.
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Figure G.2: Autocorrelation plot of the residuals of the input δ f of a doublet train. The states are determined using the the state-space
model shown in Equation E.2, and a Simulink model in which a one to one copy of the PD-controller is implemented. The dynamics of
the flapping mechanism is models using Equation 9.4. For this simulation the fast gains shown in Table 7.1 were used. Additionally, the

95% confidence bounds are shown.

The residuals in Figures G.1 and G.2 are more coloured when compared to the residuals of the identification
data, as can be seen in Figure 8.10. The autocorrelation plots of the states of the doublet train, which used
the CL gains shown in Table 7.1 during the maneuver, is shown in Figure G.3. The autocorrelation plots of the
input δ f during this maneuver are illustrated in Figure G.4.
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Figure G.3: Autocorrelation plot of the residuals of the states of a doublet train. The states are determined using the the state-space
model shown in Equation E.2, and a Simulink model in which a one to one copy of the PD-controller is implemented. The dynamics of
the flapping mechanism is models using Equation 9.4. For this simulation the slow gains shown in Table 7.1 were used. Additionally, the

95% confidence bounds are shown.
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Figure G.4: Autocorrelation plot of the residuals of the input δ f of a doublet train. The states are determined using the the state-space
model shown in Equation E.2, and a Simulink model in which a one to one copy of the PD-controller is implemented. The dynamics of
the flapping mechanism is models using Equation 9.4. For this simulation the slow gains shown in Table 7.1 were used. Additionally, the

95% confidence bounds are shown.
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The residuals in Figures G.3 and G.4 are more coloured when compared to the residuals of the identification
data, as can be seen in Figure 8.10. The autocorrelation plots of the states of the 112-manauvers, which used
the slow gains shown in Table 7.1 during the maneuver, are shown in Figure G.5. The autocorrelation plots of
the input δ f during this maneuver are presented in Figure G.6.
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Figure G.5: Autocorrelation plot of the residuals of the states of multiple 112-maneuvers. The states are determined using the the
state-space model shown in Equation E.2, and a Simulink model in which a one to one copy of the PD-controller is implemented. The

dynamics of the flapping mechanism is models using Equation 9.4. For this simulation the slow gains shown in Table 7.1 were used.
Additionally, the 95% confidence bounds are shown.
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Figure G.6: Autocorrelation plot of the residuals of the input δ f of multiple 112-maneuvers. The states are determined using the the
state-space model shown in Equation E.2, and a Simulink model in which a one to one copy of the PD-controller is implemented. The

dynamics of the flapping mechanism is models using Equation 9.4. For this simulation the slow gains shown in Table 7.1 were used.
Additionally, the 95% confidence bounds are shown.

The residuals in Figures G.5 and G.6 are more coloured when compared to the residuals of the identification
data, as can be seen in Figure 8.10.

G.2. Coupled Maneuvers Autocorrelation Plots
In this section the autocorrelation plots of the residuals of the state derivatives of a coupled doublet with
a main frequency of 6 H z are shown. During the coupled doublet, the Delfly Nimble is doing a doublet in
the roll direction when it is flying forward. For the coupled doublet, the state derivatives were determined
using three different state-space models, each with a different combination of inputs. The first combination
includes the inputs δ f and δt , resulting in the state-space of Equation E.2. The autocorrelation plots of the
residuals of the state derivatives when using this state-space are shown in Figure G.7. The second combina-
tion only includes the input δ f , resulting in the state-space of Equation E.8. The autocorrelation plots of the
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residuals of the state derivatives when using this state-space are presented in Figure G.8. The third combina-
tion includes the inputs δ f and δd , resulting in the state-space shown in Equation E.10. The autocorrelation
plots of the residuals of the state derivatives when using this state-space are illustrated in Figure G.9.

All autocorrelation plots in Figures G.7, G.8, and G.9 are very similar to one another. The residuals are more
coloured compared to the residuals of the state derivatives of the identification data, as can be seen in Figure
8.10.

-800 -600 -400 -200 0 200 400 600 800

-0.5

0

0.5

1

-800 -600 -400 -200 0 200 400 600 800

0

0.5

1

-800 -600 -400 -200 0 200 400 600 800

-0.5

0

0.5

1

Figure G.7: Autocorrelation plot of the residuals of the state derivatives of a coupled doublet with a main frequency of 6 H z. The states
derivatives are determined using the the state-space model shown in Equation E.2. Additionally, the 95% confidence bounds are shown.
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Figure G.8: Autocorrelation plot of the residuals of the state derivatives of a coupled doublet with a main frequency of 6 H z. The states
derivatives are determined using the the state-space model shown in Equation E.8. Additionally, the 95% confidence bounds are shown.
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Figure G.9: Autocorrelation plot of the residuals of the state derivatives of a coupled doublet with a main frequency of 6 H z. The states
derivatives are determined using the the state-space model shown in Equation E.10. Additionally, the 95% confidence bounds are

shown.

G.3. Nonlinear Maneuvers Autocorrelation Plots
This section shows the autocorrelation plots of the residuals of the state derivatives during the nonlinear
doublet maneuver, where the Delfly Nimble is doing a doublet in the roll direction while flying sideways. Two
different nonlinear doublets were used. The autocorrelation plots of the first one, which had a roll angle of
30°, a main frequency of 4 H z, and a roll deflection angle of 15°, are presented in Figure G.10.
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Figure G.10: Autocorrelation plot of the residuals of the state derivatives of a nonlinear doublet with a main frequency of 4 H z, a
constant roll angle of 30° and a roll deflection angle of 15°. The states derivatives are determined using the the state-space model shown

in Equation E.2. Additionally, the 95% confidence bounds are shown.
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The state derivatives were deteremined using the state-space model of Equation E.2. The second nonlinear
doublet had a constant roll angle of 20°, a main frequency of 4 H z, and a roll deflection angle of 15°. The
autocorrelation plots of this maneuver are illustrated in Figure G.11.
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Figure G.11: Autocorrelation plot of the residuals of the state derivatives of a nonlinear doublet with a main frequency of 4 H z, a
constant roll angle of 20° and a roll deflection angle of 15°. The states derivatives are determined using the the state-space model shown

in Equation E.2. Additionally, the 95% confidence bounds are shown.

The residuals of both maneuvers are more coloured compared to the residuals of the identification data,
shown in Figure 8.10. The residuals of the nonlinear doublet which uses a constant roll angle of 20° are more
white compared to when using a constant roll angle of 30°.



H
Parameter Correlations

In this appendix the correlation between parameters is analyzed. This is done by determining the correlation
coefficients between parameters, which should not exceed the critical value of 0.9 [40]. This analysis is only
done for the grey-box systems. In Section H.1, the correlation of the parameters of the four-state grey-box
state-space system are discussed. Section H.2 elaborates on the correlation of the parameters of the three-
state grey-box state-space system.

H.1. Correlations Four-state Grey-box State-space system
The correlation matrix for the L-parameters is shown in Table H.1. All the correlation coefficients are below
the critical value of 0.9. The highest correlation is found between the parameters Lv and Lδd

.

Lp Lr Lv Lδ f
Lδw Lδd

Lδt

Lp 1.0000 0.5140 0.6387 0.0253 0.0855 0.5387 0.2950
Lr - 1.0000 0.1234 0.3535 0.1187 0.2179 0.1614
Lv - - 1.0000 0.5831 0.3493 0.8534 0.6002
Lδ f

- - - 1.0000 0.0647 0.5762 0.6608
Lδw - - - - 1.0000 0.2377 0.0092
Lδd

- - - - - 1.0000 0.4633
Lδt - - - - - - 1.0000

Table H.1: Correlation matrix for the L-parameters of the four-state grey-box state-space system. The identification data was a doublet
train with main frequencies of 7 and 4 H z.

The correlation matrix for the N -parameters is shown in Table H.2. The highest correlation coefficient is just
under 0.9, which indicates the correlation between the parameters Nv and Nδd

.

Np Nr Nv Nδ f
Nδw Nδd

Nδt

Np 1.0000 0.4061 0.8541 0.0135 0.5296 0.7321 0.7283
Nr - 1.0000 0.5562 0.6065 0.2152 0.5749 0.3681
Nv - - 1.0000 0.0272 0.2459 0.8946 0.5587
Nδ f

- - - 1.0000 0.0988 0.2356 0.1459
Nδw - - - - 1.0000 0.1176 0.5953
Nδd

- - - - - 1.0000 0.5660
Nδt - - - - - 1.0000

Table H.2: Correlation matrix for the N -parameters of the four-state grey-box state-space system. The identification data was a doublet
train with main frequencies of 7 and 4 H z.

The correlation matrix for the Y -parameters is shown in Table H.3. Here the critical value of 0.9 is exceeded.
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This is the case for the correlation between the parameters Yv and Yδd
.

Yp Yr Yv Yδ f
Yδw Yδd

Yδt

Yp 1.0000 0.4427 0.7705 0.6439 0.4167 0.7958 0.6022
Yr - 1.0000 0.4588 0.0888 0.0776 0.5722 0.5999
Yv - - 1.0000 0.3596 0.8013 0.9026 0.4946
Yδ f

- - - 1.0000 0.1250 0.4696 0.0604
Yδw - - - - 1.0000 0.4997 0.0841
Yδd

- - - - - 1.0000 0.6687
Yδt - - - - - - 1.0000

Table H.3: Correlation matrix for the Y -parameters of the four-state grey-box state-space system. The identification data was a doublet
train with main frequencies of 7 and 4 H z.

H.2. Correlations Three-state Grey-box State-space system
The correlation matrix for the L-parameters is shown in Table H.4. All the correlation coefficients are below
the critical value of 0.9. The highest correlation is found between the parameters Lp and Lδ f

.

Lp Lv Lδ f
Lδt

Lp 1.0000 0.6516 0.8047 0.3521
Lv - 1.0000 0.1803 0.0965
Lδ f

- - 1.0000 0.1657
Lδt - - - 1.0000

Table H.4: Correlation matrix for the L-parameters of the three-state grey-box state-space system. The identification data was a doublet
train with main frequencies of 7 and 4 H z.

The correlation matrix for the Y -parameters is shown in Table H.5. All the correlation coefficients are below
the critical value of 0.9. The highest correlation is found between the parameters Yp and Yv .

Yp Yv Yδ f
Yδt

Yp 1.0000 0.5877 0.0892 0.4318
Yv - 1.0000 0.2379 0.0197
Yδ f

- - 1.0000 0.1244
Yδt - - - 1.0000

Table H.5: Correlation matrix for the Y -parameters of the three-state grey-box state-space system. The identification data was a doublet
train with main frequencies of 7 and 4 H z.
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