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Abstract: The reproducibility of computational hydrology is gaining attention among hydrologists. 
Reproducibility requires open and reusable code and data, allowing users to verify results and pro-
cess new datasets. The creation of input files for global hydrological models (GHMs) requires com-
plex high-resolution gridded dataset processing, limiting the model’s reproducibility to groups with 
advanced programming skills. GlobWat is one of these GHMs, which was developed by the Food 
and Agriculture Organization (FAO) to assess irrigation water use. Although the GlobWat code and 
sample input data are available, the methods for pre-processing model inputs are not available. 
Here, we present a set of open-source Python and YAML scripts within the Earth System Model 
Evaluation Tool (ESMValTool) that provide a formalized technique for developing and processing 
GlobWat model weather inputs. We demonstrate the use of these scripts with the ERA5 and ERA-
Interim datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF). To 
demonstrate the advantage of using these scripts, we ran the GlobWat model for 30 years for the 
entire world. The focus of the evaluation was on the Urmia Lake Basin in Iran. The validation of the 
model against the observed discharge in this basin showed that the combination of ERA5 and the 
De Bruin reference evaporation method yields the best GlobWat performance. Moreover, the scripts 
allowed us to examine the causes behind the differences in model outcomes. 

Keywords: global hydrological modelling; reproducibility; GlobWat; ESMValTool; ERA5;  
ERA-Interim; Urmia Lake Basin 
 

1. Introduction 
The reproducibility of computational hydrology is gaining attention among hydrol-

ogists [1–6]. Several definitions of reproducibility have been proposed. The concept of 
these definitions includes access to all data, models, code, and the research environment. 
Access must be such that a new user can precisely reproduce the results given by the main 
study and that a set of new data can also be processed [7,8]. Nevertheless, a recent study 
showed that, on average, only 1.1% of the publications in hydrology and water resources 
are fully reproducible [8]. This is because most researchers either do not share their code 
and data or, when they do, the details and dependencies are omitted [9]. Reproducibility 
is important to validate previous results and to advance earlier research [10]. 

Global hydrological models (GHMs) are rapidly evolving as a result of developments 
in computational capacity and data storage as well as developments in remote sensing, 
the availability of gridded observation datasets, and meteorological forcing data [11]. Cre-
ating input files for GHMs becomes exceedingly challenging as their resolution improves 
[12]. Each GHM reads input data in a specific format. As a result, raw gridded datasets 
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have to be pre-processed before being used by a GHM. These modifications require pro-
gramming and technical skills that are often not available among hydrologists. Recently, 
steps have been taken to address the lack of data sharing in hydrology, break the 
knowledge barrier for data processing, and reduce the time required for data processing. 
Journals now request that authors submit their model code and data [7]. However, the 
scripts or software used to process the input data are rarely published alongside the pa-
pers [1]. Several platforms have been developed to make hydrological models and data 
findable, accessible, interoperable, and reproducible (FAIR) [13]. Hydroshare [14] pro-
vides services for data sharing. The data are published without any scripts or tools for 
their processing, and researchers must process the data for their applications. HydroDS 
[15] offers a web service powered by a Python workflow that allows users to request and 
download data in a model-friendly format. eWaterCycle [5] offers a reproducible model 
software environment as well as input data processing for their supported models. De-
spite numerous efforts to provide data and input data processing for hydrological models, 
not all GHMs are supported by the current platforms. As a result, input data pre-pro-
cessing for these models is critical to providing FAIR hydrological models that researchers 
around the world can use in new case studies. 

None of the previous efforts provided input processing scripts for the FAO’s Glob-
Wat model [16]. GlobWat is a high-resolution GHM designed to estimate current and fu-
ture water consumption by agriculture, the world’s largest water consumer. The GlobWat 
model uses gridded precipitation and reference evaporation (Eref) in ASCII format as the 
weather input. The model code and sample input data can be found on the FAO’s Aq-
uaMaps website [17]. The methods for creating and processing model inputs, however, 
have not been established, limiting the model’s reproducibility and reusability. In this pa-
per, a new set of open-source Python and YAML scripts is created within the Earth System 
Model Evaluation Tool (ESMValTool) [18], which provides a formalized method for pre-
processing weather input datasets. Although these scripts are designed to generate read-
able GlobWat input data formats from ERA5 and ERA-Interim, they can be adapted and 
reused to generate readable GlobWat weather input data from other ESMValTool-sup-
ported datasets[19], such as the Climate Research Unit (CRU) dataset. Many of the time-
consuming and complex processes, such as downloading and standardizing raw data, 
calculating reference evaporation, unit conversion, re-gridding, and generating a readable 
GlobWat format, are automated by the developed scripts. 

GHMs’ climate inputs are commonly gridded climate datasets [20,21]. Gridded cli-
mate datasets known as atmospheric reanalysis data are commonly used. In a dynamical–
physical coupled numerical model, reanalysis data are produced by combining a variety 
of measured and remotely sensed data. Atmospheric reanalysis at various spatial and 
temporal scales is now available from several modeling centers [22,23]. The National Cen-
ter for Atmospheric Research (NCAR) recommends that reanalysis variables related to the 
hydrological cycle, such as precipitation and evaporation, should be used with extreme 
caution. The accuracy of reanalysis can differ considerably depending on the location, 
time period, and variable selected [24]. The European Centre for Medium-Range Weather 
Forecasts (ECMWF) is one of the modeling centers that produces reanalysis datasets. This 
center developed atmospheric datasets, including ERA-Interim and the latest released 
ERA5. ERA5 and ERA-Interim are increasingly used in hydrological modelling [22,25–27]. 
ERA5 outperforms ERA-Interim in several aspects, such as higher temporal and vertical 
resolution, and has replaced ERA-Interim [28,29]. However, it is not clear how these im-
provements will affect hydrological modeling. For instance, Tarek et al. [22] found that 
ERA5 and ERA-Interim performed similarly in the estimation of temperature in North 
America, and the improvement in hydrological modeling over North America using 
ERA5 was not related to the ERA5′s improved resolution. Thus, it is essential to assess 
ERA5 performance in hydrological modelling and document ERA5’s improvements over 
ERA-Interim. Accordingly, in this study, ERA5 and ERA-Interim datasets were selected 
as the climate datasets to be processed for the GlobWat model. 
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The main objectives of the current study are to (1) provide open-source Python and 
YAML scripts to process ERA5 and ERA-Interim data provided by the ECMWF for use in 
GlobWat; (2) run the GlobWat model using processed data for the 30 years from 1986 to 
2016; (3) assess GlobWat model performance in the Urmia Lake Basin, Iran, using ob-
served discharge; (4) an evaluation of the ERA5 and ERA-Interim datasets for hydrologi-
cal modeling with GlobWat; and (5) an evaluation of the De Bruin and Langbein method 
for calculating Eref and a comparison with ERA5 Eref. 

2. Materials and Methods 
2.1. The GlobWat Model 

The GlobWat model is a GHM that has been developed by the FAO to evaluate water 
consumption in irrigated agriculture. The GlobWat input layers are the monthly precipi-
tation, the number of wet days per month, the coefficient of variation of precipitation, the 
monthly Eref, the maximum soil moisture storage capacity, the maximum groundwater 
recharge flux, irrigated areas, land use, and areas of open water and wetlands. The input 
variables of the model are the monthly precipitation and Eref. The other layers are prede-
fined and provided by the model developers from various sources [30–35]. The GlobWat 
input layers and their sources are listed in the Table A1 of Appendix A. The water balance 
in GlobWat is calculated in two steps. The first step is a vertical water balance to calculate 
rain-fed evaporation, which has a daily time step. The second step is a horizontal water 
balance for surface water, which has a monthly time step [16]. GlobWat has a spatial res-
olution of approximately 10 km and reads layers in ASCII format. The grid specification 
for GlobWat is shown in Table 1. 

Table 1. Grid specification (data from GlobWat user manual [36]). 

File Type Columns (X) Rows (Y) Pixel Size 
(Degree) 

No Data 
Value 

Data Type Reference System Extent 

AAIGrid: 
Arc/Info ASCII 

Grid 
4320 2160 0.08333 −9999 Float32 GCS WGS84 

−180; −90: 
180; 90 

2.2. Eref Methods and Data Processing 
In this study, we provide a recipe (a YAML script) and a diagnostic (a Python script) 

for processing precipitation and Eref for use in the GlobWat hydrological model. The rec-
ipe is used to specify the input data required by the diagnostic as well as to set optional 
processing. The diagnostic is where calculations related to Eref are performed, and neces-
sary changes are made to the data in the format used in the model. 

The recipe and diagnostic were developed within the ESMValTool. The ESMValTool 
is a community-based open-source software package for the comprehensive analysis of 
Earth system models (ESMs) [18]. To assess the performance of a model, the ESMValTool 
uses both diagnostics and performance metrics. The ESMValTool has preprocessing func-
tions for adjusting the data before applying diagnostics or metrics. The ESMValTool’s 
most typical data adjustments are the calculation of non-directly available variables, ver-
tical interpolation, land–sea or ice masking, re-gridding, multi-model statistics, temporal 
and spatial manipulations, missing value masking, and unit conversion [37]. 

Sections 2.2.1 and 2.2.2 describe the Eref method used in this study as well as the 
token processing steps. 

2.2.1. Eref Methods 
Eref is an ERA5 parameter described in the ECMWF parameter details [38]. However, 

Eref is not included in ERA-Interim. In addition to Eref from ERA5, we calculated the Eref 
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for ERA5 and ERA-Interim. Eref at the global scale for use in GlobWat can be calculated 
based on the De Bruin and Langbein methods. 

De Bruin Method 

The De Bruin method is a straightforward algorithm that uses a thermodynamic tech-
nique to calculate the Eref of a well-watered grass field that closely resembles the FAO 
reference grass. This method calculates Eref as a function of the two-meter air tempera-
ture, mean sea level pressure, surface solar radiation downwards, and top of atmosphere 
(TOA) incident solar radiation. The results of the De Bruin method have been validated 
using Cabauw in situ observations in the Netherlands [39]. A python script has been pro-
vided for the calculation of Eref using the De Bruin method in the ESMValTool [40] and 
the eWaterCycle [41]. 

Langbein Method 

The Langbein method to calculate Eref is an empirical relationship between the av-
erage annual temperature and Eref, based on data from 20 catchments across the United 
States. These catchments vary from humid to arid and from cold to warm [42,43]. This 
equation has been used in Eref analyses in various regions, including arid, semi-arid, and 
humid regions [44–48]. The Langbein calculation is shown in Equation (1), where Eref is 
in mm and T is the average annual temperature in °C. 

Eref = 325 + 21 × T + 0.9 × T2 (1) 

The Langbein method has been added to the ESMValTool to address the interests of 
researchers who intend to use or have used this method and want to compare their results 
with ERA5 and ERA-Interim. The Langbein temperature-based Eref method is mainly 
useful in those basins where only the observed temperature is available. ERA5, ERA-In-
terim, and GlobWat operate at a global scale, allowing researchers to choose any location 
for further assessments. 

2.2.2. Processing Steps 
We provided a recipe [49] and a diagnostic [50] for processing the precipitation and 

Eref for use in the GlobWat model. The GlobWat recipe includes monthly and daily data 
processing of the ERA5 and ERA-Interim datasets. When the ESMValTool runs the Glob-
Wat recipe, it finds the data and runs the processing function. It also executes the diag-
nostic script that involves a GlobWat-specific analysis to extract Eref and the precipitation, 
and stores the provenance details to ensure transparency and reproducibility. The pro-
cessing flowchart is shown in Figure 1a. 

In this paper, we use monthly data. However, the recipe can be run using daily data 
as well. The download and CMORization (Climate Model Output Rewriter) of input data 
are the first steps of data processing. The script to download ERA-Interim data is available 
at the ESMValTool GitHub repository [51], and ERA5 can be downloaded using era5cli 
[52]. 

CMORization is the process of standardizing data to ensure that it is CF (climate and 
forecast) compliant and follows the CMOR tables (standard_name, units, long_name, etc) 
[5,34]. For example, the ERA-Interim CMORizer changes the precipitation units from me-
ters of water per day to kg of water per m2 per day, converts the ERA-Interim 6 hr fre-
quency to daily, and sets standard names for variables. The ERA-Interim and ERA5 
CMORizer Python scripts can be found in the ESMValTool GitHub repository [53,54]. 

CMORization is performed only once for each dataset. The CMORized data can then 
be used in any ESMValTool recipe. Our recipe uses the CMORized ERA5-daily/monthly 
and ERA-Interim-daily/-monthly data. Then, Eref is calculated based on the De Bruin or 
Langbein methods. 

Another variable required by GlobWat is precipitation, which is available in both 
datasets. However, the interpolation of cumulative precipitation fields often results in 
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negative values [55]. To prevent NaN values in the GlobWat outputs, these negative val-
ues are set to zero. Next, a unit conversion is applied to both the precipitation and Eref to 
convert units from kg m−2s−1 to mm per time step (month or day). 

Subsequently, to match the grid size of the datasets with that of the GlobWat model, 
re-gridding is performed. The re-gridding scheme is set to ‘area weighted’ to keep the 
volume of water consistent before and after re-gridding. In this method, the data for each 
target grid are generated as a weighted mean of all cells from the source grid. 

Finally, the data are saved in ASCII format and are ready for use as inputs in the 
GlobWat model. An example of processing ERA-Interim precipitation for the year 2004 
for January is presented in Figure 1b. 

We provide more details about the scripts on the ESMValTool documentation page 
[56]. 

 
Figure 1. (a) The processing flowchart; (b) Processing example for January precipitation from ERA-
Interim dataset; (b–1) Raw data; (b–2) CMORized data; (b–3) Data after application of diagnostic; 
(b–4) Data in the GlobWat input format. 
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2.3. Data 
2.3.1. ERA5 and ERA-Interim 

ERA5 and ERA-Interim are global atmospheric reanalysis datasets provided by the 
ECMWF [28,57]. ERA-Interim covers January 1979 to 31 August 2019, and ERA5 covers 
January 1950 to the present [29,58]. ERA5 and ERA-Interim have spatial resolutions of 30 
km and 79 km and temporal resolutions of 1 hour and 6 hours, respectively [29]. Details 
about the ERA5 and ERA-Interim datasets can be found on the ECMWF website [59,60]. 
ERA-Interim and ERA5 are often used for hydrological modeling [4,5]. Recently, the im-
pact of ERA5 over ERA-Interim for use in hydrological models has been studied 
[4,5,22,61]. We retrieved the precipitation, two-meter air temperature, mean sea level pres-
sure, surface solar radiation downwards, and top of atmosphere (TOA) incident solar ra-
diation from 1986 to 2016. 

2.3.2. Observed Hydro-Climatic Variables 
The observational data were obtained from D. Moshir Panahi et al. [62]. They gath-

ered data from synoptic meteorological stations for precipitation (P) and temperature as 
well as discharge (Q) data from hydrometric stations in the Urmia Lake Basin. The annual 
basin precipitation and temperature were estimated using Thiessen polygons, also using 
synoptic stations from neighboring basins to obtain precise estimations. The annual dis-
charge was calculated by dividing the measured discharge values by the corresponding 
basin area. Water storage changes (DS) were determined based on the groundwater stor-
age in the aquifer below the basin. There was no direct measurement of the actual evapo-
ration (Eact) at the basin scale. Therefore, they calculated Eact from the measured P, Q, 
and DS and a water balance equation: 

Eact = P − Q − DS (2) 

2.4. The Urmia Lake Basin, an Example Case Study 
The Urmia Lake Basin is located in northwestern Iran. The elevation of the Urmia 

Lake Basin varies between 1204 and 3804 m. It has been classified as a biosphere reserve 
by UNESCO [63,64]. Urmia Lake is the world’s second-largest hypersaline endorheic lake 
[65]. Rain-fed agriculture and manufacturing are the two main economic sectors in the 
Urmia Lake Basin, which is home to more than 6.5 million people [66]. Figure 2 depicts 
the locations of the Urmia Lake Basin. The area of the basin is 51,440 km2 [67]. The Urmia 
Lake Basin, with a mean annual temperature of 12 °C and precipitation of 303 mm/yr, has 
a cold and semi-arid climate [67,68]. 
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Figure 2. (a) Iran on the world map; (b) Urmia Lake Basin among Iran’s Main Basins; (c) Urmia Lake 
Basin. 

2.5. Evaluation Statistics 
Four statistics were used in the assessment to evaluate the ERA5/ERA-Interim pre-

cipitation and observed precipitation and the performance of the GlobWat model in esti-
mating the observed discharge over the Urmia Lake Basin during the modeling period. 
The statistics include the correlation coefficient (CC), standard deviation (SD), root-mean-
square error (RMSE), and Nash–Sutcliffe efficiency (NSE), which are defined as follows: 

2.5.1. Correlation Coefficient (CC) 
Equation (3) gives the correlation coefficient between the observed values and those 

estimated by GlobWat (Q and Eact) or datasets (ERA5/ERA-Interim P and T); it ranges 
from −1 to 1. 

CC = 
Cov (Yest − Yobs)ඥVar (Yest)ඥVar (Yobs)

 (3) 
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Here, Yୣୱ୲ is a variable estimated by GlobWat or a dataset variable, and Y୭ୠୱ is the ob-
served variable. The closer R is to one, the better the model reproduces the observed var-
iability. 

2.5.2. Standard Deviation (SD) 
The standard deviation is a measure of how far values deviate from the mean. The 

standard deviation is calculated as the square root of the sum of the squared differences 
from the mean divided by the size of the dataset (Equation (4)). 

SD = ඨ∑ (Yi −  Yഥ)2n
i = 1 n  (4) 

2.5.3. Root-Mean-Square Error (RMSE) 
The RMSE, which ranges from 0 to infinity and expresses how close the model’s es-

timation or dataset variable is to the observed variable, is calculated with Equation (5). 

RMSE = ඨ (Yobs,i −  Yest,i)
2

n

i = 1  (5) 

The closer the RMSE gets to 0, the more accurate the model’s estimate or dataset value 
is. 

2.5.4. Nash–Sutcliffe Efficiency (NSE) 
The NSE is described by Equation (6) and ranges from -infinity to 1. 

NSE = 1 −  
∑ (Qobs, i −  Qest,i)

2n
i = 1∑ (Qobs,i −  Qobs

തതതതതതത)2n
i = 1  (6) 

Here, Q୭ୠୱ,୧ is the observed discharge, and Qୣୱ୲,୧ is the estimated discharge by the model. 
NSE = 1 indicates that the estimated discharge is consistent with the observed discharge 
and a negative NSE states that the mean of the observed discharge is a better predictor 
than the model. 

3. Results 
We compared the precipitation and temperature estimates for our study period 

(1986–2016) from the ERA5 and ERA-Interim datasets to observations from the Urmia 
Lake Basin. Figure 3 shows a comparison of the ERA5 and ERA-Interim precipitation and 
temperature values with the observed values. ERA5 and ERA-Interim overestimated pre-
cipitation and temperature over the Urmia Lake Basin. ERA5 overestimated precipitation 
less than ERA-Interim. While both datasets had similar temperature estimates. The pat-
terns of the ERA5 and ERA-Interim datasets resembled that of the observation data, and 
in many cases, the observed precipitation and temperature increases and decreases were 
consistent with the ERA5 and ERA-Interim precipitation and temperature. However, the 
precipitation estimates from ERA5 and ERA-Interim from 2006 to 2016 deviated more sig-
nificantly from the observed data. As a result, we examined three periods in our analysis 
to better understand the impact of this deviation on GlobWat’s discharge estimations. 
These periods were 1986–2016, 1986–2006, and 2006–2016. 
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(a) (b) 

Figure 3. (a) Comparison of observed precipitation in the Urmia Lake Basin and ERA5 and ERA-
Interim precipitation; (b) Comparison of observed mean annual temperature in the Urmia Lake Ba-
sin and ERA5 and ERA-Interim mean annual temperature. 

The Taylor diagram, which is based on the CC, normalized SD (NSD), and RMSE, 
provides a graphical summary of the agreement between the observed and estimated data 
[69]. In order to display multiple periods in a single figure, the standard deviations of the 
reference datasets were normalized to 1.0 based on the observed standard deviations. The 
closer a dataset is to the black star marker, the more accurate the estimated data are. Figure 
4 shows that the ERA5 and ERA-Interim datasets performed relatively well in estimating 
the precipitation and temperature for the time periods of 1986–2006 and 1986–2016. How-
ever, ERA5 and ERA-Interim had the lowest agreement in representing precipitation from 
2006 to 2016. The datasets performed equally well for the estimation of temperature in all 
periods, while ERA5 performed better than ERA-Interim regarding precipitation. For the 
period of 1986–2006, the precipitation was slightly better represented in both ERA5 and 
ERA-Interim compared to 1986–2016 by having lower RMSEs, whereas in the period of 
2006–2016, ERA5 and ERA-Interim precipitation was not well presented and had the high-
est RMSEs. In general, the ERA5 and ERA-Interim temperatures had the same perfor-
mance in all periods by having almost equal RMSEs. Tables S1 and S2 in the Supplemen-
tary Materials show the CCs, SDs, NSDs, and RMSEs for the ERA5 and ERA-Interim pre-
cipitations and temperatures against the observed data. The statistics were calculated for 
the periods of 1986–2016, 1986–2006, and 2006–2016. 

  
(a) (b) 



Water 2022, 14, 1950 10 of 22 
 

 

Figure 4. Taylor diagram and RMSE comparing ERA5 and ERA-Interim with the observed data in 
the Urmia Lake Basin during three periods. (a) Mean annual precipitation; (b) Mean annual tem-
perature. 

We calculated Eref for use in the GlobWat model with the ERA5, ERA-Interim, and 
observed datasets using the De Bruin and Langbein methods. Since the ERA5 dataset con-
tains Eref, we also retrieved Eref from the ERA5 dataset. Figure 5 depicts the calculated 
Eref values and the Eref retrieved from ERA5. In comparison to the Eref calculated using 
the De Bruin and Langbein methods, the ERA5 Eref had the highest values of Eref for the 
Urmia Lake Basin. However, it resembled the Eref patterns calculated by the De Bruin 
and Langbein methods. 

In general, the method used to calculate the Eref appears to have a greater effect on 
the generated Eref values than the datasets used for the calculations. For example, the Eref 
values calculated using the De Bruin method with ERA5 and ERA-Interim were close to 
each other. Accordingly, the Eref estimates using the Langbein method were also close. 
Due to the lack of observed data, the Langbein method was used to compute Eref because 
it only requires observed temperature. 

 
Figure 5. Comparison of retrieved reference evaporation (Eref) from ERA5 with Eref values calcu-
lated by De Bruin and Langbein methods using ERA5, ERA-Interim, and observed data in the Urmia 
Lake Basin. 

The GlobWat model was used to estimate the discharge and Eact for each basin of 
the world for 30 years, from 1986 to 2016. GlobWat was run five times with various Eref 
methods and reanalysis products each time. The runs included ERA5 in combination with 
different Eref methods, including De Bruin, Langbein, and the Eref retrieved from the 
ERA5 dataset (ERA5 Eref). Additional runs included ERA-Interim with combinations of 
the De Bruin and Langbein Eref methods. The GlobWat-model-developed scripts for 
downloading and processing the ERA5 and ERA-Interim for use in GlobWat, as well as 
their documentation, are accessible online. Appendix B describes the steps and online re-
sources required to run the GlobWat model using the scripts developed in this study. 

GlobWat produces results for each of the world’s major basins. In this study, we an-
alyzed the results calculated for the Urmia Lake Basin. Figure 6 shows a comparison be-
tween the estimated discharges using the De Bruin and Langbein methods. For the whole 
study period, in many cases, the estimated discharge patterns closely resembled that of 
the observation data. The estimated discharge represents the same downward trend as 
the observed discharge. 
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Figure 6. Estimated discharge by the GlobWat model using different weather datasets and Eref 
methods against observed ones over Urmia Lake Basin, Iran. 

To compare the estimated and observed discharge at the Urmia Lake Basin over time, 
we used a Taylor diagram together with the RMSE and NSE to evaluate the GlobWat 
model performance. Figure 7 shows that the model had similar performances during 
1986–2016 and 1986–2006. However, the model’s performance in representing the dis-
charge was lower from 2006 to 2016. In all periods, the model’s performance using the 
ERA5 weather dataset and the De Bruin Eref method was the best, with the highest values 
of NSE and lowest values of RMSE. The statistical values between the observed and esti-
mated discharge by GlobWat are shown in Table S3 of the Supplementary Materials (e.g. 
CC, SD, NSDs, and RMSE). 

 
Figure 7. Taylor diagram, RMSE, and NSE comparing the estimated discharge by the GlobWat 
model using different weather datasets and Eref methods against the observed data in three periods 
over the Urmia Lake Basin. 

From 2006 to 2016, the model did not perform as well as it did from 1986 to 2006. This 
could be due to the model’s sensitivity to precipitation, as the differences between the 
precipitation datasets and the observed precipitation were larger from 2006 to 2016 than 
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from 1986 to 2006. Therefore, we plotted the discharge versus precipitation to determine 
the model’s sensitivity to estimating the discharge from input precipitation. Figure 8 il-
lustrates that the GlobWat model is extremely sensitive to precipitation. Generally, a 10% 
increase in precipitation results in a 38% increase in discharge. 

 
Figure 8. Scatter plot of precipitation versus discharge for the entire period in the Urmia Lake Basin. 

Human interventions may have contributed to the low observed discharge and thus 
the poor model performance between 2006 and 2016. Human interventions have generally 
increased since 2006. The regulated water volume of water projects in the Urmia Lake 
Basin, for example, was 1712 MCM in 2006 [70], increasing by 70% (1147.36 MCM) be-
tween 2005 and 2009 [71]. Irrigated areas increased 69% (87,919 km2) from 2006 to 2016 
(from 114,471 km2 in 2006 to 193,390 km2 in 2016) [72]. Additionally, from 2006 to 2016, 
the Urmia lake basin provided a yearly average of 206.6 MCM of water for drinking and 
industrial purposes [73]. Water transfer projects in the basin also reduced the amount of 
observed discharge in the basin. For example, there was a large transfer of 157 MCM per 
year of potable water from Zarrineh Rood to Tabriz City in the Urmia Lake Basin in 1999 
[67]. Table S4 in the Supplementary Materials provides an overview of the basin’s water 
and irrigation projects. 

The Urmia Lake Basin is endorheic. Thus, human interventions in the basin affect the 
water volume stored in Urmia Lake. One of the human interventions in the basin was the 
expansion of irrigated areas. As a result, we depicted the changes in the Urmia Lake area 
and irrigated areas between 1986 and 2016. In this way, we can see when human interfer-
ences occurred at a faster rate. Figure 9 shows the lake gradually shrinking from 1986 to 
2006, followed by rapid shrinking from 2006 to 2016. In comparison, the irrigated land 
area increased more slowly from 1986 to 2006 and more rapidly from 2006 to 2016. In 
general, increasing the amount of irrigated land correlates with a decrease in the lake area. 
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Figure 9. Agricultural development and Urmia Lake area changes in the Urmia Lake Basin from 
1986 to 2016 [72]. 

GlobWat estimates Eact by multiplying Eref by a crop or land use factor, which is 
assumed to be equal to the maximum evaporation of a land use or vegetation type [16]. 
We analyzed the Eact results for the Urmia Lake Basin, which were calculated by GlobWat 
for each basin around the world. Eact was estimated using the observed data and a water 
balance equation (Equation (1)) because it could not be measured directly in the Urmia 
Lake Basin [62]. Figure 10 shows the Eact for the Urmia Lake Basin, as estimated by Glob-
Wat and based on the observed data. In all experiments, GlobWat underestimated Eact. 

 
Figure 10. Estimated actual evaporation (Eact) calculated by the GlobWat model using different 
weather datasets and reference evaporation (Eref) methods against the observed data over Urmia 
Lake, Iran. 

Table 2 shows the CC and RMSE between the estimated and calculated Eact. Glob-
Wat Eact estimates had a low correlation with the observed Eact calculated using the wa-
ter balance equation (Equation (1)). When the De Bruin method was used to calculate Eact, 
the lowest RMSEs were obtained for all periods. D. Moshir Panahi et al. [62] estimated the 
mean Eact to be 275 (mm/yr) from 1986 to 2016, which is close to the mean Eact value 
estimated by GlobWat using a combination of the De Bruin_ERA-Interim (244 mm/yr) 
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and De Bruin_ERA5 (234 mm/yr). In general, GlobWat performed better when using the 
De Bruin method and ERA-Interim in estimating the Eact. We should consider that D. 
Moshir Panahi et al. [62] calculated Eact using a water balance equation. This means that 
all the errors accumulated in the estimate of Eact, which can partially explain the large 
variation in the Eact calculated by D. Moshir Panahi et al. [62]. 

Table 2. Comparisons between calculated actual evaporation (Eact) and water balance-based evap-
oration. 

Time Period Dataset Eref Method CC RMSE (mm/yr) Mean (mm/yr) 

1986–2016 

Observed  1 0 275 

ERA5 
De Bruin 0.3 67 234 

ERA5 Eref 0.4 74 222 
Langbein 0.5 93 197 

ERA-Interim De Bruin 0.4 60 244 
Langbein 0.5 83 208 

1986–2006 

Observed  1 0 257 

ERA5 
De Bruin 0.3 55 234 

ERA5 Eref 0.4 61 220 
Langbein 0.5 79 195 

ERA-Interim De Bruin 0.2 54 241 
Langbein 0.4 73 203 

2006–2016 

Observed  1 0 309 

ERA5 
De Bruin 0.4 85 233 

ERA5 Eref 0.4 93 224 
Langbein 0.5 115 200 

ERA-Interim 
De Bruin 0.5 71 249 
Langbein 0.4 100 217 

4. Discussion 
4.1. Development of Scripts for Processing Weather Input Data for GlobWat 

The need to automate the complex and time-consuming process of converting climate 
datasets into GlobWat input motivated the development of ESMValTool Python and 
YAML scripts for processing ERA5 and ERA-Interim data to the GlobWat input data for-
mat. An important aspect of this study is that the scripts, reviewed by the ESMValTool 
software development community, ensure that they are based on the best code practices. 
In addition to the technical review of the scripts, before publishing the scripts in the 
ESMValTool repository, ESMValTool scientific reviewers checked the science behind the 
scripts to ensure correct inputs are created for the use in the GlobWat model. The history 
of script development and reviews can be found in the ESMValTool pull requests [74]. As 
the scripts are published in the ESMValTool repository, there is the opportunity to obtain 
guidance from the developers of the ESMValTool community as well as future mainte-
nance of the scripts. The first goal of this article is to introduce the scientific community 
to these scripts. 

The scripts reduce the amount of time and effort required to prepare input data for 
the GlobWat model and ensure the creation of proper weather input data. Hydrologists 
can now allocate less time to data extraction and formatting. As a result, they can move 
from concept to experimentation with GlobWat much more quickly. Python and YAML 
scripting-based data processing improve the GlobWat model’s reproducibility and re-
peatability, as the same script can be reused. When used in a new study, the scripts only 
need a few user inputs (e.g., the study period, Eref method, study period, and dataset). 
The provenance of the data processing steps is recorded by the Python and YAML scripts. 
For example, the provenance stores information about which raw input files were used to 
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create which files. This ensures reproducibility because researchers will be able to repeat 
the experiment and obtain the same results [75]. Another important aspect of this study is 
that the development of the Python and YAML input data processing approaches can be 
transferred to other GHMs when writing scripts for other grid-based GHMs. 

4.2. Comparison of ERA5 and ERA-Interim Precipitation and Temperature with Observed Data 
in Urmia Lake Basin 

In comparison to ERA-Interim, ERA5 provided a better representation of precipita-
tion in the Urmia Lake Basin. Our findings are consistent with previous studies that 
showed that ERA5 precipitation correlates better with observed data than ERA-Interim 
[76–78]. ERA5 has several improvements over ERA-Interim, including higher spatial res-
olution, a larger number of observation datasets for the assimilation system, and the in-
clusion of satellite precipitation estimates [79]. These improvements could explain why 
ERA5 performs better in precipitation representation. When ERA5 and ERA-Interim tem-
peratures were compared to the observed temperatures in the Urmia Lake Basin, ERA5 
did not outperform ERA-Interim. Our findings are in agreement with those of A. Delhasse 
et al. [80] and L. Liu et al. [81]. 

Previous studies compared the accuracy of ERA5 to observed data from several ba-
sins in Iran, indicating that ERA5 can be used as a potential source of weather data in 
basins with low densities of meteorological stations [82,83]. We also recommend using 
ERA5 as a source of weather data in the Urmia Lake Basin, which is consistent with the 
findings of M. Habibi et al. [84]. 

4.3. GlobWat Discharge and Eact Estimates for the Urmia Lake Basin 
As weather input data, GlobWat requires precipitation and Eref. We used ERA5 and 

ERA-Interim precipitation. We calculated the reference evaporation using the ERA5 and 
ERA-interim meteorological variables using two Eref methods, De Bruin and Langbein. 
The De Bruin method is radiation-based, whereas the Langbein method is an empirical 
temperature-based method. Given the cold and semi-arid climate of the Urmia Lake Ba-
sin, De Bruin estimated a higher Eref for the Urmia Lake Basin in comparison to Langbein. 

Our results show that the model performed best in estimating the discharge when 
the ERA5 dataset and the De Bruin Eref method were used as model inputs. One reason 
is that GlobWat’s discharge is highly sensitive to precipitation. ERA5 has significantly 
better precipitation than ERA-Interim. According to some studies, the choice of Eref in 
hydrological modeling has little effect on the hydrological modeling and estimated dis-
charge [85,86]. However, in the case of the Urmia Lake Basin, the Eref method had a major 
impact on the discharge estimates. Part of the reason why discharge based on De Bruin 
was closer to the observed discharge than discharge based on Langbein is that ERA5 and 
ERA-Interim over-estimated precipitation, especially from 2006 onwards (see next sec-
tion). This means that the high Eref values that De Bruin produced may offset the overes-
timated precipitation. 

GlobWat’s discharge estimates did not match the observed discharge pattern from 
2006 to 2016. The main reason for this disparity was the low correlation between ERA5 
and ERA-Interim precipitation and the observed precipitation during this period. The 
GlobWat model is highly sensitive to precipitation, and the overestimation of precipita-
tion caused an overestimation of discharge. Another reason for the overestimation could 
be human intervention in the Urmia Lake Basin. Human interventions in the Urmia Lake 
Basin increased significantly since 2006, resulting in low discharge to the lake and a 
smaller lake area. As a global scale model, the GlobWat model is incapable of capturing 
these changes. For the lack of direct measurements, the actual evaporation was estimated 
using the water balance equation (water-balance Eact) [62]. The water-balance Eact varies 
greatly over time because all errors in the other terms accumulate in the estimated evap-
oration. 
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Our results showed that ERA5 can be used as an input for hydrological modeling in 
the Urmia Lake Basin but caution has to be taken with respect to recent precipitation. 

5. Practical Implications of This Study 
The ESMValTool scripts for processing input data for GlobWat can be used in global 

hydrological modeling with GlobWat to assess water use in agriculture, renewable water 
resources, and the amount of blue water (incremental evaporation) and green water 
(evaporation from in situ rainfall) [16]. The assessments can be global or local. Data ma-
nipulation for use in the GlobWat model was simplified with the help of the developed 
scripts, paving the way for future research. Examples are using the scripts for calculating 
Eref with other methods or using datasets with higher spatial and temporal resolutions. 
The assessment of the optimal resolution or Eref methods will be part of future research 
that will benefit from GlobWat’s automated and repeatable model input creation. The lack 
of data on model-estimated variables, such as Eact, was one of the study’s challenges. 

6. Conclusions 
Global hydrological models (GHMs) are increasingly using high-resolution datasets, 

which makes data processing complex and time-consuming, limiting GHM use to groups 
with the required programming and technical skills. GlobWat, a high-resolution GHM 
developed by the FAO to assess water use in agriculture, is one of these high-resolution 
GHMs. A set of Python and YAML scripts was created within the ESMValTool to convert 
ECMWF ERA5 and ERA-Interim weather data to the format required by GlobWat. This 
study develops and demonstrates the ability to support a streamlined, reproducible pro-
cess for creating input data for the GlobWat GHM. These scripts automate downloading 
and standardizing raw data, calculating reference evaporation, unit conversion, and re-
gridding to provide data input for GlobWat. Although these scripts are intended to create 
GlobWat input requirements from ERA5 and ERA-Interim, they could be adapted to pro-
cess other datasets for use in GlobWat or to create input data for other grid-based GHMs 
that use a similar input data format. The usefulness of the scripts was demonstrated 
through the application of 30 years of processed ERA5 and ERA-Interim data in GlobWat. 
As an example case study, the results of GlobWat were evaluated for the Urmia Lake Basin 
in Iran. Based on our overall evaluation and the results from the Urmia Lake Basin, the 
major findings are as follows: 
• Using developed scripts within the ESMValTool allowed the rapid analysis of the 

underlying causes of observed trends. 
• The provenance made reproducibility easier by storing information from previous 

analyses. For example, in our study, we were able to look back and see which raw 
input files were used to create which files and so on. 

• When compared to its previous version, ERA-Interim, the ERA5 representation of 
temperature has not improved significantly over the Urmia Lake Basin. However, 
the ERA5 precipitation representation has significantly improved over the Urmia 
Lake basin. 

• In basins with low densities of meteorological stations, such as the Urmia Lake Basin, 
ERA5 can be a good source of weather data. 

• In the Urmia Lake basin, the De Bruin radiation Eref method outperformed the Lang-
bein temperature-based method when evaluated in terms of the modeled and meas-
ured discharge. 

• The GlobWat discharge estimates are extremely sensitive to precipitation in (semi-) 
arid regions. Therefore, ERA5 would be preferable over ERA-Interim due to the bet-
ter representation of precipitation. 

• The GlobWat model does not capture human interactions in the basin. 
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In this light, we have demonstrated that, when using the provided framework, rapid 
and reproducible comparisons can be made. On the ESMValTool website [49,50], all cu-
rated code is freely available for use by interested researchers. Any researcher should be 
able to replicate the findings and conduct new research. 
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https://www.mdpi.com/article/10.3390/w14121950/s1, Table S1: The comparison of evaluation sta-
tistics for ERA5 and ERA-Interim precipitation in three time periods; Table S2: The comparison of 
evaluation statistics for ERA5 and ERA-Interim temperature in three time periods; Table S3: Calcu-
lated statistics between GlobWat estimated and observed discharge in three time periods; Table S4: 
Major Dams of Urmia Lake Basin. 
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Appendix A 

Table A1. GlobWat input layers and their sources. 

Input Layer Source 
Global maps of monthly precipitation ERA5 and ERA-Interim reanalysis products from ECMWF [28,57] 
Global maps of wet days per month Provided by model developers from New et al. [30] 

Global maps of coefficient of variation of precipi-
tation per month Provided by model developers from New et al. [30] 

Global maps of monthly reference evaporation 
Calculated according to Langbein and De Bruin methods with in-
put data from ERA5 and ERA-Interim reanalysis products from 

ECMWF [28,57] 

Maximum soil moisture storage capacity Provided by model developers from the Harmonised World Soil 
Database, FAO [34] 

Maximum groundwater recharge flux Provided by model developers from WHYMAP, BGR, and 
UNESCO [33] 

Land use or vegetation type coefficient Provided by model developers from FAO’s Global Agricultural 
Systems Map, FAO [32] 

Global map of irrigation areas Provided by model developers from Siebert et al. [35] 
Global map of lakes and wetlands Provided by model developers from Lehner and Döll [31] 
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Global map of river basins and sub-basins Provided by model developers from FAO [32] 

Appendix B 
Steps for running the GlobWat model with ERA5 and ERA-Interim data as inputs 

using processing scripts developed in this study. 
The GlobWat model’s instructions, input data, model code, and ERA5/ERA-Interim 

data processor scripts (GlobWat recipe and diagnostic) are all freely available online. To 
run the GlobWat model using the recipe and diagnostic developed in this study, follow 
the steps below. All relevant links are provided. 
1. Download the GlobWat model and its input data from the FAO’s AquaMaps website 

[17]. 
2. Follow the instructions on the ESMValTool Website [87] to install the ESMValTool 

on your system. 
3. Using the reference method, select the variables needed for processing data for use 

in the GlobWat model. More information can be found in the ESMValTool Documen-
tation [88]. 

4. Using download_era_interim.py [51], download the variables you require from ERA-
Interim for the time period you require. 

5. Using era5cli [52], download the variables you need for the desired time period. 
6. Use CMORizers [53] to CMORize ERA-Interim and ERA5. More information on us-

ing a CMORizer can be found at using-a-cmorizer-script [89]. 
7. At recipe recipe_globwat.yml [49], select the time period and reference method with 

which you would like to process the data. 
8. Use the Running [90] command to execute the recipe_globwat.yml [49]. 
9. Save the newly processed precipitation and reference evaporation to the GlobWat 

model input folder. 
10. Run the GlobWat model as described in How_to_use_GlobWatv1.0rev2.pdf [36]. 
11. Using any CSV or ASCII reader, extract the results for your desired location. 
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