
Improvement of Source Code Conversion for Code
Completion

Mika Turk
Supervisors: Maliheh Izadi, Arie van Deursen

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Improvement of Source Code Conversion for Code Completion

Mika Turk
Delft University of Technology

Delft, The Netherlands

Abstract—Code Completion is advancing constantly, with new
research coming out all the time. One such advancement is
CodeFill, which converts source files into token sequences for
type prediction. To train the CodeFill model, a lot of source files
are needed which take a long time to convert before training
can begin. Converting the file the end-user is working on for
completions is also essential for the total latency as longer files
can affect the experience of using the model. In this study we
aimed to improve the performance and success rate of this
conversion. Our results indicate that we increased both the
performance by 83 times or more depending on the input file
length and the success rate by up to 45%.

1. Introduction

Code Completion is the task of using the source code a
developer has already written and predicting what they will
write next. Having a computer predict what a developer will
write next instead of them having to type it themselves saves
them time if the suggestions are good and appear quickly.
CodeFill has introduced a conversion from python source
code to token sequences, this makes it possible for CodeFill
to predict types [1]. Converting the content of the file the
developer is working on is crucial as this influences the
total latency from the developer typing something to the
suggestion appearing on their screen. Having as little errors
as possible is also important as an error in conversion results
in no suggestions at all.

The main contributions of this paper are:
• An improved version of CodeFill’s python conver-

sion function, with support for multi-threading and
with a higher success rate for conversion.

• An improved codebase for every part of CodeFill’s
conversion process, with type annotations and doc-
umentation strings.

• Extending CodeFill’s conversion to a new language;
JavaScript.

We make our code for all parts of this work available. 1

2. Background and Related Work

In the past, there has been a lot of research on the topic
of providing automatic code suggestions, this section will

1. https://github.com/mikaturk/codefill-conversion-improvement

state some of the papers that have contributed to this topic
regarding generating the code and developer satisfaction
with the results.

Providing automatic code suggestions using machine
learning has been studied before [2], they studied a specific
subset of code suggestions, namely suggestions for firmware
development, more specifically SSD firmware. Their goal
was to build a model to auto-complete code for SSD
firmware and do so in a way that keeps the source code
secure, as the company developing this software cannot
afford to have the source code leaked. To achieve this they
set out to train a new model using GPT-2 by training it on
SSD firmware and tune the parameters specifically for this
purpose.

GPT-2 was also used to generate more specific files than
just generic source code by [3]. They used it to generate
Simulink models and find bugs in the Simulink toolchain,
improving upon the results achieved by their closest com-
petitor, DeepFuzzSL.

Another method to generate code was described by [4],
they tackled the problem of generating source code in a
strongly typed programming language given a label carrying
a small amount of information about the code that is desired.

Generating code using a small amount of extra informa-
tion in addition to the previous code as context was also
described in [5], where they use a code comment to suggest
an entire code block.

Generating code blocks is a topic that has had a lot of
research done, another paper on this topic is by [6].

Improving existing models has been a topic of many
papers because great models can often be improved to
perform even better, one such example of a model that was
improved was [7]. They studied many aspects of improving
existing models and creating new ones and presented them
as a toolbox for other model developers to use. Preparing
the data properly and evaluating the model automatically
were the two main contributions of the paper, but their work
on integrating models with an IDE such as VS Code also
contributed a lot to the research of this paper.

Most work in this field is dedicated to creating new
and better ways to suggest code that developers will like,
however, there has also been research dedicated to devel-
opers and their habits using these tools, [8]. They tested
whether software engineers use autocompletion features
differently than other developers, analyzing the acceptance

rates and targets of autocompletion in IDEs. Their results
were insignificant to show that this difference exists but their
research is still applicable.

3. Approach

To improve CodeFill, this paper focuses on the conver-
sion to token sequences described by CodeFill [1].

3.1. Python Conversion

To uncover slow parts of the data processing pipeline,
where most function calls are generic python or pandas
functions, we decided to use a program that outlines on
which lines the most time is being spent, a line profiler. By
looking at the function calls and their documentation, more
efficient versions can be used that utilize vectorization which
significantly speeds up operations on pandas DataFrames.
Another optimization step is not to use DataFrames at when
not strictly necessary, using a list of lists and converting this
into a DataFrame later can save a lot of time due to being
a simpler data structure.

When giving all global variables the type
GLOBAL_VARIABLE, the original conversion looked
at the line number and text content at the same time, then
selecting all rows which match both equations. This is
very inefficient because doing the text comparison on such
large pieces of text takes a lot of time and could be partly
avoided by only doing the text comparison for rows that
matched the line number we are looking for.

By looking at files that have unusual extensions like ones
that do not end in .py, but do contain it, we increase the
amount of files able to be used for training. Making tweaks
to the core functions ensures that less files crash during the
conversion process is another way to increase the amount
of files available for training.

3.2. Javascript Conversion

To convert JavaScript source files into token sequences,
we used js-tokens to tokenize the source files into lists
of tokens, these lists contained the type of token which
was used to determine the actions taken. To produce each
converted line we use a list of strings to keep track of the
current output line. The following list contains the actions
of the conversion by the token type they match on:

• Any whitespace or comment: Skip this token
• Line terminator: Check if the current output list is

empty, if it is, skip, else concatenate the list with
spaces in between the strings, add the result to the
end of the output file, empty the list.

• Any other token type: Add the token type as a string
to the current output line list.

4. Experiment Design

Our improvements will be tested on the CodeFill dataset,
which was collected from GHTorrent [9] where they only

Figure 1: File size distributions of the evaluation dataset

retreived code from repositories with more than 20 stars that
were not forked (58k repositories).

4.1. Dataset

The CodeFill dataset contains a small amount of large
files, 616 out of 1.8 million files are over 1 Megabyte in
size, we do not include them in our further research since
they are prohibitively expensive to convert and are largely
repetitive. The part of the dataset we will be using for
evaluation consists of four seperate datasets, in 4 different
orders of magnitude: 400-600, 4K-6K, 40K-60K, and 400K-
600K bytes. Figure 1. These four datasets were chosen
because they are not too small that the files would be
unrealistic for most developers and not too big for the same
reason. The reason we only chose to use a small range
each time is to keep the file sizes for each dataset close
enough that the resulting conversion times would be similar
enough that using the average of this would not paint a
skewed picture. After picking these datasets, we reduced
the datasets down to 1000 for the three smaller filesizes and
500 for 400K-600K. To reduce the datasets, we will use
random.choice with a fixed seed so we get the same
files across runs.

4.2. Configuration

We use the python package line_profiler to ex-
amine the performance of the conversion along with custom
timing scripts that track the execution time of each file. We
use python package joblib to use make use of all cores
while running the conversion. If not specified otherwise, we
use the configuration used in the CodeFill paper [1]. Our
experiments are conducted on a machine with two NVIDIA
GeForce RTX 2080Ti GPUs, an AMD Ryzen Threadripper
1920X 12-Core Processor, 64 Gigabytes of quad channel
DDR4-2400, and three Samsung 960 EVO 1TB NVMe
SSDs in RAID-0 (scratch disk). The CPU

4.3. Research Questions

Main Research Question: To what extend can we im-
prove CodeFill’s conversion technique in terms of speed and
coverage?

Sub Questions:

• How can we speed up the conversion from python
source files to token type sequences?

2

Original First Improvement
0

200

400

600
536,44

6,44

Code Version

Ti
m

e
(s

ec
on

ds
)

Figure 2: Original vs First Improvement

• How can we increase the amount of files that can be
successfully converted?

• Can we extend the conversion to other dynamically-
typed languages such as JavaScript?

4.4. Evaluation Metrics

The metrics we will be using to evaluate the improve-
ments to CodeFill will be execution time of the conversion
and the amount of files that were successfully converted.

5. Results

When talking about DataFrame, we are talking about
a pandas.DataFrame from the python library pandas

After running several files with line_profiler, it
became clear that the performance problems the origi-
nal conversion suffered from mainly came from running
pandas.DataFrame.append in a loop, this function
adds a row to a DataFrame but also copies every row
before it into a new DataFrame which results in a time
complexity of O(n2). This results in the function taking
529.69 seconds out of a total of 536.44 seconds for a
77 Kilobyte file, this is 98.74% of the time of the entire
function. By adding to a native python list and creating
the DataFrame afterwards, these operations take almost
no time at all compared to the rest of the function, as a
result, the conversion time drops to 6.44 seconds, a 98.80%
decrease, or 83x speedup.

After optimizing for single files, we removed the de-
pendency on the file system for intermediate results and
kept everything in memory until the end, this allowed us
to use a multithreading library like joblib and parallelize
the conversion on multiple threads, making the conversion
of large amounts of files much faster as the independent
conversion now run in parallel.

Secondary performance problems were due to inefficient
use of libraries like stringifying the token then using string

Figure 3: Conversion Speedup by Dataset

Figure 4: Conversion Time Boxplots by Dataset

methods to extract the type, this was replaced with accessing
the type directly. The DataFrame.apply function call
was replaced with a function that directly achieved the
task at hand, namely DataFrame.isin and assigning the
value in the text column to the output of this function.

After running the 4 datasets through the function after
the first improvement and the final conversion function, we
obtained the time it took each function to process each
dataset, they can be seen in Figure 4

We created a simple JavaScript conversion that converts
JavaScript into token sequences, example input and output
can be seen in Figure 5. It could be more advanced, we talk
about this more in section 9

Our new conversion algorithm is much faster than the
previous version, as we removed a critical, but our new
version makes this linear thus improving the time taken for
larger files the most.

6. Discussion

Our results contribute to the speed, reusability and read-
ability of the conversion process, we think this will make

3

1 import { join } from 'node:path'
2

3 /**
4 * Says hello
5 */
6 function sayHello() {
7 console.log(`Hello world! ${join} hi ${1+2}`);
8 // Uses built-in path.join
9 console.log(join('./hello', 'world'))

10 }
11

12 sayHello();

1 IdentifierName Punctuator IdentifierName
Punctuator IdentifierName StringLiteral

2 IdentifierName IdentifierName Punctuator
Punctuator Punctuator

3 IdentifierName Punctuator IdentifierName
Punctuator TemplateHead IdentifierName Punctuator
StringLiteral Punctuator StringLiteral Punctuator
TemplateMiddle NumericLiteral Punctuator
NumericLiteral TemplateTail Punctuator Punctuator

4 IdentifierName Punctuator IdentifierName
Punctuator IdentifierName Punctuator
StringLiteral Punctuator StringLiteral Punctuator
Punctuator

5 Punctuator
6 IdentifierName Punctuator Punctuator Punctuator

Figure 5: An example JavaScript code snippet and its con-
verted version

it easier for others to work with CodeFill and adapt the
conversion process to even more languages in the future.
The first improvement is a big help for all file sizes but
later changes have lesser impact on smaller files as the
optimizations are focused parts of the code that have greater
complexity than O(n). Speedup of the conversion is an
essential part of the progress towards using more data to
train the machine learning models of today and tomorrow.
This research contributes to more capable models trained on
bigger datasets than ever before. Finally, the increase in code
quality and readability will make for easier development of
conversion functions for other languages so CodeFill and
other Code Completion models can work with even more
languages. The JavaScript conversion was cons

7. Threats to validity

The benchmarks that determined the speedup of
removing DataFrame.append were ran using the
line_profiler tool which increases overhead, without
this overhead the function ran twice as fast.

The final conversion time benchmarks were ran with
the same amount of input files, but not the same amount
of output files, The amount of files that were successfully
converted by the two conversion functions can be seen in
Table 1

8. Conclusion

The new conversion functions speed up the process sig-
nificantly, this allows the use of even larger datasets which

TABLE 1: Conversion Success Rate

Dataset #Files Version #Successful

400-600

1000

First 798
Final 936

4K-6K First 752
Final 868

40K-60K First 505
Final 732

400K-600K 500 First 307
Final 446

can be used to achieve even greater accuracy. The changes
in the conversion also resulted in a higher proportion of
files being available to process, the 400K-600K dataset went
from 307 to 446 out of 500, a 45% increase.

9. Future Work

This paper has improved the performance of the conver-
sion but there’s always more performance to be gained, for
example:

• Rely even less on DataFrames and use specific
data structures to solve the problem at hand instead
of a one size fits all solution. Mainly the replacement
of global variables as this code is currently not
optimal.

• Remove unnecessary string copies
• Using the dis library properly by calling its

dis.Bytecode function instead of dis.dis,
this outputs the details we want from the disassem-
bler in a proper data structure instead of stringifying
it and printing it to stdout, then turning it into a string
and parsing it.

Converting Python 2 syntax into Python 3 syntax would
allow for even more files to be converted which should
get the amount of successfully processed files that do not
contain errors themselves even closer to 100%. Reducing the
error rate can also be achieved by fixing the ”None” bug. A
last resort to get the desired performance could be to port
the converts to a compiled language like C++ or Rust
and call the function from Python, this would require more
effort but would be particularly helpful when improving
the data structure and removing as many memory copies
as possible. JavaScript conversion is currently done using
only a tokenizer, to improve the conversion by outputting a
more detailed file, an AST library like acorn can be used,
this is more work than using a tokenizer because each AST
node type has a different structure and thus requires hand
tuning of the output syntax. Using the same approach as we
did when working with just tokens, a converter that has the
same or better detail in the converted form can be created,
with the trade-off that it takes more work to do this properly
for JavaScript using acorn

10. Responsible Research

The code for all our research has been made available
and we are using a public dataset from CodeFill [1]. Our

4

results can be reproduced by running the various scripts and
notebooks in the repository.

Acknowledgments

I would like to thank Georgios Gousios for advising me
and providing the server on which I did my research. I would
also like to thank Frank van der Heijden, Jorit de Weerdt,
Marc Otten, and Tim van Dam for their support during the
project, we completed our separate research together and
helped each other out during most steps of the process.

References

[1] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code
completion by jointly learning from structure and naming sequences,”
2022.

[2] J. Kim, K. Lee, and S. Choi, “Machine learning-based code auto-
completion implementation for firmware developers,” Applied Sci-
ences, vol. 10, no. 23, 2020.

[3] S. L. Shrestha and C. Csallner, “SLGPT: using transfer learning to
directly generate simulink model files and find bugs in the simulink
toolchain,” CoRR, vol. abs/2105.07465, 2021.

[4] V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine, “Neural sketch learn-
ing for conditional program generation,” in International Conference
on Learning Representations (ICLR), 2018, 2018.

[5] G. Heyman, R. Huysegems, P. Justen, and T. Van Cutsem, “Natural
language-guided programming,” 2021.

[6] M. Hammad, Ö. Babur, H. A. Basit, and M. v. d. Brand, “Deepclone:
Modeling clones to generate code predictions,” 2020.

[7] B. Barath, “Improving code completion with machine learning,” 2020.

[8] R. Amlekar, A. F. Rincón Gamboa, K. Gallaba, and S. McIntosh, “Do
software engineers use autocompletion features differently than other
developers?,” in 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR), pp. 86–89, 2018.

[9] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a fire-
hose,” in 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR), pp. 12–21, 2012.

5

