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Abstract. This overview paper highlights the successes of
the Ozone Monitoring Instrument (OMI) on board the Aura
satellite spanning a period of nearly 14 years. Data from OMI
has been used in a wide range of applications and research re-
sulting in many new findings. Due to its unprecedented spa-
tial resolution, in combination with daily global coverage,
OMI plays a unique role in measuring trace gases important
for the ozone layer, air quality, and climate change. With the
operational very fast delivery (VFD; direct readout) and near
real-time (NRT) availability of the data, OMI also plays an
important role in the development of operational services in
the atmospheric chemistry domain.

1 Introduction

On 15 July 2004, the Dutch–Finnish Ozone Monitoring In-
strument (OMI) was launched on board the US National
Aeronautics and Space Administration (NASA) Earth Ob-
serving System (EOS) Aura spacecraft. After nearly 14 years
of operations, OMI still continues to provide unique data for
atmospheric research and applications. In this overview pa-
per that is part of the ACP/AMT OMI special issue, we aim
to highlight OMI’s exceptional instrument design features,
as well as some of OMI’s accomplishments. Detailed results
can be found in other contributions in this special issue, and
in other publications. We note, given OMI’s broad, world-
wide user community, that it is impossible to provide a com-
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plete overview of all the achievements obtained using OMI
data.

In addition to being a successful instrument, the OMI
project has also brought together the research communities
from the United States with expertise from the Total Ozone
Mapping Spectrometer (TOMS; Heath et al., 1975; McPeters
et al., 1998) and the Solar Backscatter Ultraviolet (SBUV;
Cebula et al., 1988) instruments and European expertise
based on the Global Ozone Monitoring Experiment (GOME;
Burrows et al., 1999) and the SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY (SCIA-
MACHY; Bovensmann et al., 1999).

This paper is organized as follows. In the introduction we
present the OMI science questions, the data products, in-
flight performance, and the instrument design features. The
sections after the introduction cover the following themes:

– air quality monitoring, air quality forecasting, pollution
events, and trends;

– top-down emission estimates;

– monitoring of volcanoes;

– monitoring of the spectral solar irradiance;

– Montreal Protocol, total ozone, and UV radiation;

– tropospheric ozone;

– research data products;

– multi-platform products and analyses;

– aircraft and field campaigns.

1.1 OMI scientific objectives met and exceeded

At the start of the OMI project, the following four science
questions were defined:

1. Is the ozone layer recovering as expected?

2. What are the sources of aerosols and trace gases that
affect global air quality and how are they transported?

3. What are the roles of tropospheric ozone and aerosols
in climate change?

4. What are the causes of surface ultraviolet B (UVB)
change?

The first question was the main objective at the start of the
OMI project. The OMI instrument has turned out to be very
stable and provides a long-term data record for monitoring
the ozone layer, which is critical for the assessment of the
Montreal Protocol. As will be discussed in Sect. 6, the OMI
data record covers a period during which further ozone de-
pletion stopped and the probable onset of recovery is observ-
able.

The second science question deals with air quality where
OMI has clearly exceeded expectations. By its frequent ob-
servations of trace gases such as nitrogen dioxide (NO2),
sulfur dioxide (SO2), and formaldehyde (HCHO), OMI con-
tributed to research regarding the mapping of sources and
transport of pollution. Note that this question focuses pri-
marily on the sources and transport. It was not known pre-
launch how well OMI would perform quantitatively in terms
of estimating emissions and their trends. As we will show in
Sects. 2 through 4, OMI has exceeded expectations with re-
spect to estimating emissions and monitoring of trends. This
has lead to the ability to link trends in air quality with pol-
icy measures. The OMI data show a steady decline in con-
centrations of NO2 in the United States, Europe, and Japan,
whereas in China, first strong increases were observed, fol-
lowed by decreases after 2014. These improvements can all
be linked to the success of policy measures.

The third science objective considers the contribution of
OMI to climate research by observing tropospheric ozone
– a greenhouse gas – and aerosols, which mainly act as
cooling agents, although OMI is best at detecting absorb-
ing aerosol that can cause warming. Here again, OMI has
exceeded expectations in terms of its ability to detect trends
as part of longer multi-instrument data records. Tropospheric
ozone can be derived from the OMI data alone (Sect. 7) or in
combination with the Microwave Limb Sounder (MLS) and
Tropospheric Emission Spectrometer (TES) instruments also
on board the Aura platform as well as the Atmospheric In-
frared Sounder (AIRS) on the EOS Aqua satellite that flies
in formation with Aura. In both methods, it is important that
a long-term data record of tropospheric ozone has been estab-
lished. For aerosols, the focus has been on the absorption that
can be derived using the ultraviolet (UV) channel. In combi-
nation with the TOMS, GOME, and SCIAMACHY data, this
is one of the longest aerosol data records available. Observa-
tion of SO2 are also linked to aerosols as SO2 is an important
precursor for aerosol particles. The observations show that
in the many parts of the world SO2 is decreasing. However,
in India we still observe strong increases due to the growing
economy and the limited emissions control measures. Natu-
ral emissions of SO2 and aerosols from volcanoes have also
been monitored by OMI in great detail (Sect. 4).

The last science question on the surface UVB change is
strongly linked to the long-term total ozone record. Again,
OMI has been successful particularly within the context of
long-term records that span decades covered by a series of
UV sensors. Research has focused on cases of high UV doses
due to low total ozone (de Laat et al., 2010), showing a link
in springtime polar ozone loss with UVB in the following
summer in the extratropics (Karpechko et al., 2013), and on
explaining the differences between UV dose derived from
satellite and that measured on ground (Bernhard et al., 2015).

Although OMI was conceived as a research instrument,
it also contributes to several operational applications. These
applications make use of two data streams: the near real-
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time (NRT) data available within 3 h of sensing and very-
fast-delivery (VFD) data available within 20 min of sens-
ing via the direct readout capability. Although these data
streams were experimental, they turned out to be very suc-
cessful. Operational users include the European Centre for
Medium-range Weather Forecasts (ECMWF) and the US Na-
tional Oceanic and Atmospheric Administration (NOAA) for
ozone and air quality forecasts, and the Volcanic Ash Advi-
sory Centers (VAACs) for the rerouting of aircraft in case of a
volcanic eruption. The NRT data are provided on the Tropo-
spheric Emission Monitoring Internet Service (TEMIS) web-
site (www.temis.nl, last access: 5 April 2018) for the scien-
tific user community. The VFD images are distributed via the
Satellite Measurements from Polar Orbit (SAMPO) website
(sampo.fmi.fi, last access: 5 April 2018).

1.2 Design features

In this section we describe some of the important new de-
sign features of OMI. For a detailed description of the in-
strument and its in-flight performance, we refer to Levelt et
al. (2006a), Dobber et al. (2006), van den Oord et al. (2006),
and Schenkeveld et al. (2017) (this issue). OMI combines
the spectral capabilities of the previously launched Euro-
pean spectrometers GOME and SCIAMACHY with the daily
global mapping capability of NASA’s SBUV and TOMS.

OMI is a nadir-looking, push broom ultraviolet/visible
(UV/VIS) solar backscatter grating spectrometer that mea-
sures the Earth’s radiance spectrum from 270 to 500 nm with
a resolution of approximately 0.5 nm (Levelt et al., 2006a).
The 114◦ viewing angle of the telescope corresponds to a
2600 km wide swath on the Earth’s surface that enables mea-
surements with a daily global coverage. The light entering
the telescope is depolarized using a scrambler and then split
into two channels: the UV channel (wavelength range 270–
380 nm) and the VIS channel (350–500 nm). In the normal
global operation mode, the OMI pixel size is 13× 24 km2

at nadir (along x across track). In addition to observing
the Earth, OMI measures the solar irradiance once per day
through the solar port.

OMI uses 2-dimensional (2-D) detectors, where on one
axis of the detector the across-track ground pixels are imaged
and on the other axis the spectral information is recorded.
This sensing technique allows for the simultaneous mea-
surement of all the ground pixels in the swath; therefore,
OMI does not have a scan mirror. The 2-D detectors en-
able the combinations of a wide swath, a good spatial res-
olution, and a high signal-to-noise ratio. The fact that most
successor instruments, including the Ozone Mapping and
Profiler Suite (OMPS) nadir mapper launched in 2012 on
the NASA/NOAA National Polar-orbiting Partnership (NPP)
satellite (Flynn et al., 2014), the TROPOspheric Monitoring
Instrument (TROPOMI) launched in 2017 on the European
Space Agency (ESA) Sentinel-5 Precursor (S5P; Veefkind
et al., 2012), and the Environment Monitoring Instrument

(EMI) to be launched in 2018 on the Chinese GaoFen-5
satellite (China Daily, 2018) are using this 2-D imaging
technique demonstrates the success of OMI. This technique
is also used in the geostationary instruments that are cur-
rently in development, including the ESA Sentinel-4 Ultra-
violet Visible Near-infrared (UVN) sensor (Ingmann et al.,
2012), the Korean Geostationary Environmental Monitoring
Spectrometer (GEMS; Kim, 2012), and the NASA Tropo-
spheric Emissions: Monitoring of Pollution (TEMPO; Zoog-
man et al., 2016) mission. The high spatial resolution of
OMI (13× 24 km2 at nadir) was one of the key technical
achievements that enabled significant advances in air qual-
ity research and emission monitoring from space and what
motivates new air quality missions like TROPOMI to strive
for even higher spatial resolution.

In addition to the 2-D imaging technique, a new feature
of OMI compared to GOME and SCIAMACHY is that OMI
incorporated the use of a polarization scrambler in a grat-
ing spectrometer. The polarization scrambler is applied in
the OMI telescope before entering the polarization sensi-
tive spectrograph; this makes the instrument almost insensi-
tive to the polarization of the incoming light. In GOME and
SCIAMACHY, the polarization sensitivity is dealt with by
measuring the degree of polarization at several wavelengths
and applying complex correction algorithms. The OMI ap-
proach does not require such corrections, which simplifies
the retrieval algorithms. One drawback is that a polariza-
tion scrambler can produce small spectral features that af-
fect retrievals, potentially leading to errors in trace gas con-
centrations. In addition, the use of a polarization scrambler
causes uncertainties in the spatial registration of the ground
pixels. During the design phase, a careful trade-off between
the amount of polarization scrambling, the spectral features,
and the spatial registration was made. For the in-flight OMI
data, these aspects have never been an issue. In many of the
follow-on instruments polarization scramblers are also ap-
plied.

Another special feature of the OMI instrument is the type
of diffuser used to observe the Sun. Such diffusers are re-
quired to reduce the intensity of the solar radiance. In previ-
ous instruments, diffusers were made of aluminum or Spec-
tralon. These materials are optically stable but exhibit spec-
tral features that can interfere with trace gas absorptions and
thus affect the data quality. OMI has three diffusers that
are used separately. Two of them are made of aluminum,
whereas one is a new type quartz volume diffuser (QVD).
The new QVD had an unknown stability but was known
to have smaller spectral features as compared with the alu-
minum diffusers. Because of its superior spectral behavior,
the daily solar observations of OMI use the QVD diffuser
that has proven to be very stable. Therefore, the TROPOMI
instrument only uses QVD solar diffusers.

www.atmos-chem-phys.net/18/5699/2018/ Atmos. Chem. Phys., 18, 5699–5745, 2018
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1.3 In-flight performance

The in-flight performance is discussed in detail in
Schenkeveld et al. (2017). Key aspects of the in-flight per-
formance are the radiometric and spectral stability, the row
anomaly, and detector degradation. The radiometric degrada-
tion of OMI ranges from∼ 2 % in the UV channel to∼ 0.5 %
in the VIS channel, which is much lower than any other in-
strument of its kind. Although it is not possible to reconstruct
the causes of the low degradation, we believe that several
aspects are important: the cleanliness during the instrument
build and integration, the extensive outgassing period after
the launch, and the fact that the primary mirror is protected
in the instrument housing, instead of located outside the in-
strument housing which is needed in the case of a scanning
mirror.

The one major anomaly of OMI is the so-called row-
anomaly (Schenkeveld et al., 2017). A row anomaly is an
anomaly that affects the quality of the radiance data at all
wavelengths for a particular viewing direction of OMI. This
corresponds to a row on the 2-D detectors, and hence the term
“row anomaly”. The cause for the row anomaly is outside of
the instrument; it is most likely caused by damage to the inso-
lation blankets in which OMI is covered, blocking part of the
field of view. Although early signs were observed starting in
2007, the main row anomaly started in 2009. For TROPOMI,
the lesson learned was to put an additional aluminum plate
over the insolation blankets at the location where the field-
of-view is close to the housing of the instrument.

The OMI 2-D CCDs (charge coupled devices) show sev-
eral effects due to their exposure to the harsh space environ-
ment. First of all, the dark current has increased substantially.
Overall, this degradation is as expected and can be corrected
by subtracting daily measured dark current maps. However,
some of the detector pixels show erratic changes in dark cur-
rent over time, which is referred to as random telegraph sig-
nals (RTS). When the dark current of these pixels changes
significantly on timescales of less than 1 day, they cannot be
used in retrievals. This effect was known before the launch
of OMI from the Global Ozone Monitoring by Occultation
of Stars (GOMOS; Betraux et al., 2010) instrument on En-
visat. At a late stage of the OMI development the detector
temperatures were lowered to −8 ◦C and additional shield-
ing was applied. It is recommended to further reduce the de-
tector temperature to prevent significant effects of RTS. This
is especially important for trace gas retrievals with small ab-
sorption features such as, for example, formaldehyde.

1.4 OMI data products

In Table 1, a list is given of the standard, NRT, and VFD data
products. The standard products are available within 2 days
after measurement. OMI also provides global NRT data for
selected products that are available within 3 h after measure-

ment. The VFD products are available for a limited region1

covering most of Europe 20 min after measurement. The al-
gorithms used to generate the standard and NRT products are
all published in peer reviewed papers.

For some OMI level 2 (L2) data products, two standard al-
gorithms have been developed. For example, for ozone there
is a differential optical absorption spectroscopy (DOAS)
retrieval and a TOMS-type of retrieval. This was consid-
ered important to be able to extend the existing DOAS
data records from GOME and SCIAMACHY as well as the
TOMS data record. At the time OMI was launched, several
NO2 retrieval approaches were in development. For OMI,
we developed an off-line NO2 algorithm and an algorithm
that runs in NRT to support air quality forecasting appli-
cations. OMI does not have a separate cloud channel, like
the O2 A band, used by GOME and SCIAMACHY. There-
fore, parallel development was started to ensure that at least
one cloud data product would be ready. This resulted in two
cloud products, one based on the O2–O2 absorption band in
the VIS channel and the other on rotational-Raman scatter-
ing applied in the UV channel. Both turned out to be suc-
cessful and yield complementary information. As there is a
slight difference in alignment of the UV and VIS channels, it
also turned out to be beneficial to have cloud retrievals from
both channels. Although dual algorithm development might
appear counterproductive, or seem confusing because users
might not know which product to use, the experience within
the OMI community has been of great benefit. A huge ad-
vantage of the development of two algorithms, using differ-
ent physical approaches but the same OMI level 1B (L1B)
data set, is the added possibility of verification of the accu-
racy of the algorithm used and errors related solely to the re-
trieval technique and not the instrument errors. Additionally,
two algorithms can be viewed as a type of ensemble result,
a technique widely used in the modeling community to get
information on consistency between different modeling fore-
casts, and in turn the quality of the model forecast. This type
of comparison has led to considerable improvements of both
algorithms. In recent years, several OMI research data prod-
ucts have been developed, as well as some combined satel-
lite data products (see Sects. 7, 8, and 9). OMI research data
products are defined as being processed and applicable for
the entire global extent. There are additional regional OMI
data products including the European regional NO2 product
called EOMINO (Zhou et al., 2010) and the Chinese regional
NO2 product, POMINO (Lin et al., 2014). Thus, OMI data
products can be classified as standard products (Table 1), re-
search data products (Sect. 8), or as regional data products.

1VFD products cover roughly an area northwards from northern
Italy and Spain and from Greenland in the west to the Ural moun-
tains in the east.

Atmos. Chem. Phys., 18, 5699–5745, 2018 www.atmos-chem-phys.net/18/5699/2018/



P. F. Levelt et al.: The Ozone Monitoring Instrument 5703

Table 1. OMI standard products along with their type (L1B: radiances and irradiances, L2: orbital data, L3: gridded data) delivery method
(S: standard, NRT, or VFD), and principle investigator organization (the Royal Netherlands Meteorological Institute, KNMI; the Finnish
Meteorological Institute, FMI; National Aeronautics and Space Administration, NASA; and the Smithsonian Astrophysical Observatory,
SAO).

Product name Product Delivery Principal investigator References
type method institute

Radiances and solar irradiances L1B S, NRT KNMI, NASA Dobber et al. (2007a, b, c, d, e)
(OML1BRUG, OML1BRVG, OML1BRR)
Aerosol absorption optical thickness L2, L3 S KNMI Stein Zweers and Veefkind (2012a, b, c)
and type (VIS) (OMAERO)
Aerosol absorption optical depth, and single L2, L3 S NASA Torres (2006, 2008, 2015)
scattering albedo (UV) (OMAERUV)
BrO columns (OMBRO) L2 S SAO Chance (2007a)
OClO slant column (OMCLO) L2 S SAO Chance (2007b)
Cloud product O2–O2 absorption L2 S, NRT KNMI Veefkind (2006a, c, 2007, 2012)
(OMCLDO2)
Cloud product rotational L2 S, NRT NASA Joiner (2006, 2012)
Raman (OMCLDRR)
HCHO columns (OMHCHO) L2 S SAO Chance (2007c)
NO2 column (standard) L2, L3 S NASA, KNMI Krotkov (2012, 2013),
(OMNO2) Krotkov and Veefkind (2016)
NO2 columns L2, L3 NRT KNMI (http://www.temis.nl/airpollution/no2col,
(DOMINO) last access: 11 April 2018)
O3 total column, aerosol index∗ L2, L3 S, NRT NASA Bhartia (2005,2012a, b, c)
(TOMS) (OMTO3)
O3 total column (DOAS) L2, L3 S, NRT KNMI Veefkind (2006b, 2012b, c)
(OMDOAO3)
O3 profile L2 S KNMI de Haan and Veefkind (2009)
(OMO3PR)
Pixel corners L2 S NASA Kurosu and Celarier (2010a, b)
(OMPIXCOR)
SO2 columns L2, L3 S, NRT NASA Li et al. (2006),
(OMSO2) Krotkov et al. (2014, 2015)
OMI MODIS merged cloud L2 S NASA Joiner (2014)
(OMMYDCLD)
OMI indices collocated to MODIS L2 S NASA Joiner (2017)
aerosol products (OMMYDAGEO)
Surface reflectance L3 S KNMI Kleipool (2010)
climatology (OMLER)
Surface UVB (OMUVB) L2, L3 S FMI Hovila et al. (2007, 2013, 2014)
Total O3 L2 VFD FMI, KNMI, NASA (http://sampo.fmi.fi, last access: 5 April 2018)
Effective cloud fraction L2 VFD FMI, KNMI (http://sampo.fmi.fi, last access: 5 April 2018)
UV index, erythemal L2 VFD FMI (http://sampo.fmi.fi, last access: 5 April 2018)
daily UV dose
SO2 columns L2 VFD FMI, NASA (http://sampo.fmi.fi, last access: 5 April 2018)
Aerosol index L2 VFD FMI, KNMI, NASA (http://sampo.fmi.fi, last access: 5 April 2018)
∗ The aerosol index is currently part of the OMTO3 product, but will transition soon to the OMAERUV product.

2 Air quality monitoring, air quality forecasting,
pollution events, and trends

OMI collects information on several key pollutants includ-
ing NO2, aerosols, SO2, and HCHO (an air toxin), all of
which contribute to morbidity and mortality (WHO, 2014),
as shown in Fig. 1 where they are averaged over the en-
tire mission. Ozone (O3; discussed in Sect. 6) and surface
UVB amount are also shown in Fig. 1 for a single day (24
September 2006) when the Antarctic ozone hole reached a

record minimum concentration. The amount of O3 and UV
exposure are linked and tied to human health, specifically
to the risk of vitamin D deficiency and melanoma (Lucas,
2010). Air pollution causes 1 in 9 deaths globally (WHO,
2016), costing the global economy USD 225 billion in lost
labor income annually and more than USD 5 trillion in wel-
fare losses (World Bank, 2016). By 2060, 6 to 9 million an-
nual premature deaths are expected with annual global wel-
fare costs projected to rise to USD 18–25 trillion. Ecosystem
health is also degraded by air pollution, such as by acid rain,

www.atmos-chem-phys.net/18/5699/2018/ Atmos. Chem. Phys., 18, 5699–5745, 2018
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eutrophication of water bodies, and oxidation of plant tissue
by ozone. Reduced global crop yields are estimated at about
10 % annually (Van Dingenen et al., 2009; Fishman et al.,
2010; Avnery et al., 2011), with some heavily polluted areas,
like parts of India, experiencing a 50 % reduction (Burney
and Ramanathan, 2014).

OMI’s spatial coverage is far greater than can be pro-
vided by surface monitoring networks. This increases sta-
tistical power that strengthens inference of the relation be-
tween pollutants and health outcomes. For example, Clark et
al. (2014) use OMI NO2 data to estimate that reducing US
nonwhites’ exposure to NO2 concentrations to levels experi-
enced by whites would reduce coronary heart disease mortal-
ity by about 7000 deaths yr−1. They argue that their results
may aid policy-makers in identifying locations with high en-
vironmental injustice and inequality. The defining strength
of OMI is that it currently provides the finest spatial resolu-
tion as compared with previous and present instruments that
make measurements in the same spectral range. As an exam-
ple, Fig. 2 illustrates the comprehensive global coverage of
OMI NO2 data, but also the unprecedented detail in air pollu-
tion changes, down to sub-urban scales (Duncan et al., 2016).
Consequently, OMI data are being increasingly exploited for
a wide variety of air quality and health applications and in
decision making activities (e.g., Streets et al., 2013; Duncan
et al., 2014).

Continuing refinements to the OMI retrieval algorithms
have resulted in data products that are of sufficient matu-
rity to allow for the reliable and quantitative estimation of
concentrations, trends, and fluxes of surface pollutants. How-
ever, there are remaining challenges (Martin, 2008; Streets
et al., 2013; Duncan et al., 2014; and references therein)
that are being addressed. For instance, a fundamental chal-
lenge of using these data is the proper “translation” of the
observed quantities to more useful surface quantities (Lam-
sal et al., 2008), such as emissions and concentrations. From
the OMI spectra one infers a column density, which is typ-
ically reported in units of molecules cm−2. From a column
density, one may infer a surface concentration or emission
flux if the majority of the temporal variation within the col-
umn density is associated with near-surface sources. This is
the case for NO2, SO2, and HCHO as their chemical life-
times are short and their primary sources are located near the
Earth’s surface. As an example, Lamsal et al. (2015) show
that the long-term trends and short-term monthly variations
in OMI NO2 column densities from 2005 to 2013 compare
well (e.g., r = 0.68 for trends) with those from the major-
ity of surface concentration observations from the U.S. En-
vironmental Protection Agency’s (EPA) Air Quality System
(AQS). Lamsal et al. (2015) argue that the spatial coverage
afforded by the OMI satellite data in combination with the
maturity of the current retrieval algorithm allows for a more
representative estimation of NO2 trends within a city than ob-
servations from a sparse network of surface monitors. This is
the case for many major US cities with typically less than

five surface observation monitoring sites. Similar studies are
expected to continue in the future with TROPOMI that will
provide further improvements in the spatial resolution and
per pixel sensitivity.

2.1 Applications of OMI data for health and air quality
studies

The use of OMI data by the health and air quality com-
munities has grown dramatically within the last few years.
For instance, OMI total ozone column data have been used
in several studies to understand the impact of UV exposure
on human health (e.g., Beckett et al., 2016; Lucock et al.,
2016) similar to the earlier TOMS records (e.g., Boscoe and
Schymura, 2006; Chang et al., 2010). A consistent long-term
global satellite UV radiation time series is useful for sev-
eral health-related studies (Langston et al., 2017). For HCHO
and NO2, the use of the data for health studies has definitely
benefited from recent advances in data quality that are the
direct result of ongoing OMI retrieval algorithm improve-
ment (Boersma et al., 2011; Bucsela et al., 2013; González
Abad, 2015; van Geffen et al., 2015; Marchenko et al., 2015;
Krotkov et al., 2017).

2.1.1 NO2

OMI NO2 data have been used in a number of recent health
studies (e.g., Hystad et al., 2011, 2012; Novotny et al., 2011;
Prud’homme et al., 2013; Vienneau et al., 2013; Knibbs et
al., 2014; Hoek et al., 2015; Belche et al., 2015; Crouse et
al., 2015; de Hoogh et al., 2016; Young et al., 2016). For
example, Belche et al. (2013) found that annual OMI NO2
column density data correlate well (r = 0.93) with surface
data in southern California and provide a reliable measure
of spatial variability for NO2 exposure assessment. NO2 has
adverse health effects and is correlated with morbidity and
mortality (Brook et al., 2007; WHO, 2014), though this cor-
relation may occur because many short-lived air toxins are
co-emitted with NO2 and it is a key player in the formation of
unhealthy levels of surface ozone (Brook et al., 2007). In fact,
Brook et al. (2007) concluded that NO2 is a better indica-
tor than PM2.5 of a range of pollutants (e.g., volatile organic
compounds (VOCs), aldehydes, oxidized nitrogen species,
and particle-bound organics) from vehicle exhaust. The use
of OMI NO2 data for health studies is attractive given re-
cent advances in the quality of the data that has improved
agreement between the data and independent quantities, such
as surface NO2 levels and NOx emissions (e.g., Boersma et
al., 2009; Knepp et al., 2013; Lamsal et al., 2015; Duncan
et al., 2013, 2016), and improved techniques to infer surface
concentrations from satellite data (Lamsal et al., 2008). For
example, Ialongo et al. (2016) compared the weekly and sea-
sonal cycle in satellite-based NO2 data and surface concen-
trations from an air quality station at a high-latitude urban
site (i.e., Helsinki, Finland). Despite the challenging view-
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Figure 1. OMI mission averages (2004–2016) for NO2 (a), absorbing aerosol index (AAI; b), HCHO (c), and SO2 (d). Total ozone column
(O3; e) and surface UVB amount (f) are shown for 24 September 2006, the day with a record size ozone hole.

ing conditions and frequent cloud-contamination, OMI NO2
observations have also shown their capability to describe air
quality features at relatively high latitudes.

2.1.2 HCHO

HCHO is an important VOC, acts as an ozone precursor, is
associated with the formation of organic aerosols, and is an
important carcinogen in outdoor air. It is produced from ox-
idation of methane and isoprene, and is thus strongly linked
to natural emissions. There are also important anthropogenic
emissions associated with a range of industrial activities,
mostly in the oil- and gas-refining sectors (e.g., Zhu et al.,
2014). Trend studies with OMI formaldehyde retrievals indi-
cate increases in HCHO columns over India and China, and
a downward trend over the Amazonian forest, spatially cor-

related with areas affected by deforestation (De Smedt et al.,
2015).

OMI HCHO data have been used in a number of studies,
including to infer health outcomes and to provide top-down
constraints on the emissions of VOCs. For example, Zhu et
al. (2017) use OMI HCHO data to estimate that 6600–12 200
people in the US will develop cancer over their lifetimes
by exposure to outdoor HCHO derived from biogenic VOC
emissions. However, the HCHO yield from VOC oxidation is
proportional to NOx level, so Zhu et al. (2017) note that NOx
emission controls to reduce O3 have the co-benefit of reduc-
ing HCHO-related cancer risks. Marais et al. (2012) used
OMI HCHO data to infer isoprene emissions from Africa and
suggested that the MEGAN inventory may significantly over-
estimate emissions for the region. Millet et al. (2008) found a
similar positive bias in MEGAN for North America as com-
pared with OMI retrievals. Zhu et al. (2014) applied an over
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Figure 2. The world shows intriguing spatial heterogeneity and
changes in air pollution from 2005 to 2014 in OMI NO2 (Duncan
et al., 2016), a common pollutant from power plants and automo-
biles. (Top panel) emission controls were implemented before 2010
in Japan, Taiwan, Beijing, Shanghai and Hong Kong, which led to
decreasing trends in these regions and cities. Rapid growth until
about 2011 in China’s manufacturing heartland, the North China
Plain, led to increases. Since 2011, levels there have begun to de-
crease following the gradual introduction of emission controls. The
area outlined in red, the Seoul metropolitan area, is expanded in the
bottom panel. (Bottom panel) ongoing retrieval algorithm work al-
lows for unprecedented detail, including to sub-urban scales. The
Seoul metropolitan area illustrates complex changes in OMI NO2
from 2005 to 2014, which are likely associated with pollution emis-
sion controls in Seoul (decreases) and ambitious infrastructure de-
velopment (increases) of the Incheon Free Economic Zone, Incheon
International Airport, and the Daesan petrochemical complex.

sampling technique to OMI HCHO data, and suggested that
anthropogenic emissions of highly reactive VOCs from the
Houston area could be several times larger than the EPA esti-
mates. These efforts are currently limited by relatively large
uncertainties in satellite retrievals of HCHO, as demonstrated
by significant differences in top-down estimates using differ-
ent sensors (e.g., Barkley et al., 2013). More validation ef-
forts (e.g., Zhu et al., 2016) may help to improve the quality
of OMI HCHO data in the future.

2.1.3 HCHO and NO2 as O3 precursors

OMI NO2 and HCHO data serve as effective proxies for
NOx (NO+NO2) and VOCs, respectively, both necessary
ingredients for the formation of unhealthy levels of surface
ozone. Martin et al. (2004) demonstrated that the ratio of
HCHO to NO2 column densities can be an effective indica-
tor of ozone’s production sensitivity to NOx and VOC emis-
sion reductions. This information is important for the de-
velopment of effective ozone pollution mitigation strategies.
Duncan et al. (2010) used the ratio of OMI HCHO to NO2
columns to show that the chemical sensitivity of ozone for-
mation was becoming more sensitive to NOx levels in US
cities, even cities that were typically considered to be more
sensitive to VOCs (e.g., Los Angeles), as a result of substan-
tial reductions in NOx emissions. Over China, Jin and Hol-
loway (2015) found a complex result owing to significant
spatial heterogeneity of NOx and VOC emission changes
during the OMI record.

2.2 Improving models and air quality forecasting

OMI data are being used to improve air quality forecasting
in a number of ways. For instance, OMI NO2 data have been
used in several recent studies to identify likely inaccuracies
in the chemistry, dynamics, and emissions in air quality mod-
els. Travis et al. (2016) used a combination of OMI NO2
data, NASA SEAC4RS field campaign data, and an atmo-
spheric model to show that industrial and mobile source NOx
emissions in the US EPA National Emission Inventory (NEI)
are likely 30–60 % too high. This finding has broad impli-
cations for identifying (with air quality models) the most ef-
fective and cost-effective strategies to improve AQ. Based
on their evidence, Travis et al. (2016) adjusted the NEI NOx
emissions in their atmospheric model, which reduced part of
the high bias in simulated O3. A high bias in simulated O3
relative to observations has been a chronic problem of at-
mospheric models over the eastern United States. Canty et
al. (2015) also used OMI data to diagnose a likely high bias
in NEI NOx emissions, but also in the chemical representa-
tion of alky nitrates in a chemical mechanism of an air quality
model.

The European Copernicus Atmosphere Monitoring Ser-
vice (CAMS; https://atmosphere.copernicus.eu/, last access:
4 April 2018) is an operational service providing validated
(Eskes et al., 2015) analyses, reanalyses, and daily forecasts
of aerosols, reactive gases, and greenhouse gases on a global
scale, and air quality forecasts and reanalyses on a regional
scale (Marécal et al., 2015). In CAMS, data assimilation
techniques are applied to combine in situ and remote sens-
ing observations with global and European-scale models of
atmospheric reactive gases, aerosols, and greenhouse gases.
The global component is based on the Integrated Forecast
System of the ECMWF, and the regional component on an
ensemble of seven European air quality models. OMI, and
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in the near future TROPOMI (Veefkind et al., 2012), is pro-
viding crucial data for the CAMS assimilation system. OMI
data are extensively used in both the global and regional com-
ponents of CAMS. In the global component, OMI observa-
tions of the total ozone column have been assimilated from
September 2009 onwards using similar methods as described
in Inness et al. (2013), and OMI NO2 and SO2 are assim-
ilated since July 2012 (Inness et al., 2015). OMI measure-
ments have been used in the last reanalysis (2003–2012 pe-
riod) produced in the MACC project, the precursor of CAMS
(Inness et al., 2013). For the regional air quality service, all
seven models have developed data assimilation capabilities
for daily air pollution analyses and yearly reanalyses for Eu-
rope (Marécal et al., 2015). Here the prime focus is the as-
similation of surface observations from the European regula-
tory network, but several regional models have included OMI
NO2.

Figure 3 shows results of the assimilation of OMI NO2
data in the LOTOS-EUROS regional air quality model which
is one of the CAMS ensemble members. Within the CAMS
ensemble, LOTOS-EUROS is unique because it uses an en-
semble Kalman filter approach which adjusts model param-
eters including the NOx emissions, while the other mod-
els typically use 3D-Var type of approaches which adjust
the NO2 concentrations. Figure 3 shows that, despite quite
large error bars on the individual OMI NO2 observations,
the model is able to use the data to improve the tropospheric
columns. The adjustment of the NOx emissions significantly
influences the chemistry in the boundary layer, and for this
assimilation run it was shown that the ozone in the analysis
was slightly improved against surface observations in com-
parison to the run without OMI data. However, the quality
and success of such NOx emission inversions is very sen-
sitive to the quality of the model, the underlying meteoro-
logical analyses and to details in the setup of the ensem-
ble Kalman filter. The LOTOS-EUROS model has also been
used to study trends of NO2 over Europe (Curier et al., 2014).

A limited number of regional initiatives use OMI satellite
products in air quality forecast systems to provide timely in-
formation to citizens. Over the US Pacific Northwest, OMI
NO2 data have been mostly used to evaluate the air quality
forecasting system (Herron-Thorpe et al., 2010). In France,
a system was developed that assimilates OMI NO2 with an
optimal-interpolation method in an air quality model to im-
prove NO2 forecasts in Europe (Wang et al., 2011). The as-
similation results in an improved capacity of the system to
predict NO2 pollution. A similar system was developed by
Silver et al. (2013), who showed that the assimilation of OMI
tropospheric NO2 columns leads to an improved agreement
between predicted and observed surface NO2 concentrations
over Europe; they also noted that the effect of assimilation is
fairly small and local.

The spatial footprint of OMI aerosol optical depth (AOD)
data is broader as compared to data from other instruments,
though the OMI products include several important and

unique quantities that give important information on aerosol
absorption properties of species such as dust and smoke.
These OMI data products include near UV (OMAERUV)
aerosol record of AOD, single scattering albedo (SSA) and
aerosol index (AI; Torres et al., 2007). Retrieved AOD and
SSA products have been evaluated using ground-based ob-
servations (Ahn et al., 2014; Jethva et al., 2014a) as well as
other satellite-based products (Ahn et al., 2008; Gasso and
Torres, 2016). OMAERUV observations of aerosol UV ab-
sorption spectral dependence are being used to improve tro-
pospheric photochemistry modeling capabilities (X. Wang
et al., 2016). As shown by Hammer et al. (2016), when in-
cluding brown carbon aerosol absorption in the simulation of
OMI aerosol observations using an atmospheric model cou-
pled with radiative transfer calculations, the observed dis-
crepancies between simulated and observed hydroxyl radi-
cal (OH) concentrations are significantly reduced. The inclu-
sion of brown carbon aerosol decreases OH by up to 35 %
over South America in September, up to 25 % over south-
ern Africa in July, and up to 20 % over other biomass burn-
ing regions. Modeled global annual mean OH concentra-
tions decrease due to the presence of absorbing brown carbon
aerosol, thus reducing the bias against observed values.

2.3 Trends in pollutants and aerosol presence

This section highlights the use of the long OMI data record
for better understanding trends in pollutants including SO2
and NO2 particularly in China (e.g., Wang et al., 2012; Ling
et al., 2017; Liu et al., 2016a, 2017; Zhang et al., 2017) and
India (David and Nair, 2013; Ghosh et al., 2017), as well
as for aerosol presence using the OMI aerosol index. OMI’s
data have been used to infer substantial trends that have oc-
curred in SO2 and NO2 pollution around the world over the
last decade (e.g., Duncan et al., 2016; Krotkov et al., 2016).
These changes are largely consistent with the implementa-
tion of environmental regulations on emissions and changes
in economic output, including changes resulting from the
global economic recession of 2008–2009 (e.g., Castellanos
and Boersma, 2012; Russell et al., 2012; Boersma et al.,
2015; Duncan et al., 2016; Krotkov et al., 2016; de Foy
et al., 2016a). For example, Fioletov et al. (2011), Zhou et
al. (2012), and Duncan et al. (2013) used OMI SO2 and NO2
column density data to quantify the substantial reductions
in pollution over US and Spanish power plants, which pri-
marily resulted from the implementation of emission control
devices. They showed that the changes in the OMI column
densities agree well with changes in power plant emissions
reported to the US EPA Continuous Emissions Monitoring
System (CEMS). Over urban areas, de Foy et al. (2016a) used
OMI NO2 columns to show that there were regional differ-
ences in the impact of the recession as well as in the strength
of the weekend effect.

Over the eastern US, both NO2 and SO2 levels decreased
dramatically from 2005 to 2015, by more than 40 and 80 %,
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Figure 3. Example result of the assimilation of OMI NO2 tropospheric column amounts (DOMINO-2 product, b) on 26 March 2007 in
the LOTOS-EUROS regional air quality model (model simulation for OMI ground pixels is provided in a by spatial interpolation and by
applying the averaging kernels). LOTOS-EUROS makes use of the ensemble Kalman filter to optimize model processes by assimilating
observations. In this case, the surface NOx emissions are adjusted to optimize the match with the tropospheric NO2 columns observed. The
resulting analysis is shown in (c). OMI observations for cloud-covered scenes (cloud radiance fraction > 50 %) are removed.

respectively, as a result of both technological improvements
and stricter regulations of emissions. Similarly, OMI con-
firmed large reductions in SO2 over eastern Europe’s largest
coal-fired power plants after installation of flue gas desul-
furization devices. In stark contrast to decreasing surface
pollution in the US and Europe, the booming Chinese and
Indian economies and limited environmental regulation of
emissions led to large increases in NO2 and SO2 levels in-
dicated by OMI (e.g., Wang et al., 2012; Li et al., 2010; Lin
and McElroy, 2011; Lu and Streets, 2012; Verstraeten et al.,
2015). The North China Plain, China’s manufacturing heart-
land, has the world’s most severe SO2 pollution, but a de-
creasing trend has been observed since 2011 due to an eco-
nomic slowdown and government efforts to restrain emis-
sions from the power and industrial sectors thus leading to
improvements in air quality (e.g., Krotkov et al., 2015; van
der A et al., 2017; de Foy et al., 2016b; Wang et al., 2015). In
contrast, India’s SO2 and NO2 levels from coal power plants
and smelters are growing at a fast pace, increasing by more
than 100 and 50 %, respectively, from 2005 to 2015. In a re-
cent study, Li et al. (2017a) showed that India is surpassing
China as the world’s largest emitter of anthropogenic SO2.
Boersma et al. (2015) used OMI NO2 observations to derive
the changes in polluting emissions from European shipping.

OMI data can also be used in combination with other satel-
lite data sets to establish even longer data records useful for
trend analysis, as has been carried out using aerosol data
products (Popp et al., 2016; Dahutia et al., 2017) and total
ozone column (see Sect. 6.1). As can be seen in Fig. 4, the

aerosol index covers a period of nearly 40 years and brings
together data from both the European and American com-
munities (Nimbus-7 TOMS, GOME, SCIAMACHY, OMI,
GOME-2A, and GOME-2B). This data record can be used to
better understand regional and global trends in the presence
of UV-absorbing aerosols including desert dust and biomass
burning aerosols.

3 Top-down emissions estimates

OMI data have played a key role in the top-down estima-
tion of NOx , SO2, and VOC emissions. Particulate matter
(PM) emissions may be inferred via OMI AOD measure-
ments, but a direct relationship with PM emissions is still
elusive (e.g., Hoff and Christopher, 2009). Because statisti-
cal data needed by bottom-up inventories often take years
to collect, the short-term availability of satellite data is of-
ten used to show the latest trends in emissions and the effec-
tiveness of air quality regulations (e.g., de Foy et al., 2016a;
Duncan et al., 2016; Krotkov et al., 2016; Liu et al., 2018).
OMI observations allow the emission sources to be resolved
at a higher resolution than before, which is a distinct advan-
tage for point sources of short-lived gases, including NO2
and SO2, since their sources can be derived with relatively
simple methods based on mass balance (e.g., Duncan et al.,
2013; de Foy et al., 2015; Fioletov et al., 2015, 2016; Liu
et al., 2016a; McLinden et al., 2016a). Complete emission
maps from OMI observations have been derived using full
inversion methods that involves the use of chemical trans-
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Figure 4. Time series of regional mean absorbing aerosol index (AAI) for two aerosol regions. The time series consists of data from TOMS
(black), GOME (red), SCIAMACHY (brown), OMI (light green), and GOME-2 (blue). The latitude and longitude ranges that define the
regions are provided in the plot windows. The dashed green lines indicate linear fits to the yearly minima of the time series, and illustrate
the stability of the data records. The dashed blue lines represent linear fits to the yearly maxima of the time series. These describe trends in
aerosol presence for the regions over the entire time range covered by the time series.

port models (Qu et al., 2017). Streets et al. (2013) reviewed
the current capability to estimate emissions from space, and
in this section we highlight studies of emissions using OMI
data that have been published subsequently. We expect that
such efforts will be continued with the higher spatial reso-
lution afforded by the S5P TROPOMI that has the ability to
detect even smaller sources per pixel than is currently possi-
ble with OMI.

3.1 NOx emission estimates

The top-down estimation of NOx emission sources is espe-
cially successful because of the strength of the OMI signal
and therefore its potential to detect low-intensity sources.
Applications have included the detection of signal from
ship emissions (Vinken et al., 2014a), the Canadian oil
sands (McLinden et al., 2014), soil emissions (Vinken et al.,
2014b), biomass burning (Castellanos et al., 2014), and from
urban and industrial areas (Lin, 2012; Vienneau et al., 2013;
Ghude et al., 2013; Liu et al., 2018). Another recent devel-
opment has been the application of OMI NO2 data to stud-
ies of nitrogen deposition flux (Nowlan et al., 2014; Han et
al., 2017). Trend studies of NOx point sources were per-
formed by, for example, de Foy et al. (2015) who derived
NOx emissions from 29 isolated power plants in the US.
Lu et al. (2015) estimated summertime NO2 emissions from
35 US urban areas. A slightly different method was used by
Liu et al. (2016b) to estimate emissions and lifetimes for 17
power plants and 53 cities located in non-mountainous re-
gions across China and the USA.

Full inversion emission estimates for NOx from OMI ob-
servations using a chemical transport model (CTM) con-
tinue to be improved by various research groups. Stavrakou
et al. (2013) applied a 4DVAR inversion on OMI NO2 ob-

servation using a global CTM. Miyazaki et al. (2012) and
Miyazaki and Eskes (2013) applied an ensemble Kalman fil-
ter scheme on observations of multiple species retrieved with
OMI. Mijling and van der A (2012) further developed their
Daily Emission estimates Constrained by Satellite Observa-
tions (DECSO) algorithm for high-resolution regional emis-
sion estimates using an extended Kalman filter. DECSO has
been applied for Europe, eastern China, India, South Africa,
and the Middle East.

Figure 5 shows NOx emissions in the Middle East based
on the latest bottom-up inventory, the Emission Database
for Global Atmospheric Research (EDGAR) v4.3 and the
DECSO algorithm version 3b. Because of the fast availability
of satellite-derived emissions, the DECSO results show the
change of ship routes along the coast of Somalia as a result of
the increased number of piracy cases. Notably in the DECSO
emission map is the dispersion of ships east of Yemen and
the more realistic stronger economic activity in the Persian
Gulf region. With the improved DECSO algorithm version 5
even ship tracks hidden under the strong outflow of pollu-
tion along the Chinese coast became clearly visible (Ding et
al., 2017a). The possibilities of high-resolution emissions are
demonstrated by Ding et al. (2015) who showed the tempo-
ral effect of air quality regulations on city emissions during
the Youth Olympic Games in Nanjing. Trends in these NOx
emissions based on 12 years of OMI observations have been
analyzed by Mijling et al. (2013) for China, by van der A
et al. (2017) for China including the relation with air qual-
ity regulations, and by Miyazaki et al. (2017) on a global
scale. Emission inventories over China were validated by a
detailed intercomparison of five bottom-up inventories and
four satellite-derived emission inventories using GOME-2
and OMI (Ding et al., 2017b).
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Figure 5. NOx emissions in the Middle East in 2010 derived from (a) the bottom-up inventory EDGAR v4.3 and (b) the DECSO algorithm
v3b applied to OMI NO2 observations.

3.2 SO2 emission estimates

Though the SO2 signal from OMI is 2 to 3 orders of magni-
tude weaker than the NO2 signal, oversampling2 and other
data enhancement techniques have enabled valuable new
studies of SO2 emissions from refineries and volcanoes (de
Foy et al., 2009) and the Canadian oil sands (McLinden et al.,
2014). Also, using specific sampling techniques, OMI obser-
vations were used as the first satellite observation of SO2 ship
track emissions (Theys et al., 2015). Fioletov et al. (2013) re-
viewed the ability of OMI to detect large SO2 sources world-
wide, including power plants, oil fields, metal smelters, and
volcanoes. Work continues on the challenge of developing
reliable quantitative relationships between OMI observations
and emissions for large isolated sources. Previous work had
only moderate success in correlating observations with emis-
sions.

An alternative approach, well-suited for deriving emis-
sions from continuously emitting (near-) point sources that
does not require the use of atmospheric chemistry models,
is based on merging OMI measurements of tropospheric
columns with wind information and examining the down-
wind decay of the pollutants (Beirle et al., 2011). This ap-
proach spawned several studies on SO2 emissions (Fiole-
tov et al., 2011, 2015; de Foy et al., 2015; Lu et al., 2013,
2015; Wang et al., 2015) utilizing increasingly complex anal-
ysis methods in which an estimate of the total mass near the
source and its lifetime or, more accurately, decay time were
derived. Assuming a steady state, the emission strength can
be obtained from the ratio between mass and decay time. The
mass can be derived directly from satellite measurements,
while the lifetime can either be prescribed using known emis-
sions (Fioletov et al., 2013, 2016) or estimated from the mea-

2The fact that daily pixels do not match spatially can be used
to sample data to a grid that is smaller than the pixel size. This is
called oversampling. Oversampling was first applied to OMI data
by de Foy et al. (2009) and Russell et al. (2010).

surements based on the rate of decay of vertical column den-
sity (VCD) with distance downwind (Beirle et al., 2014; Carn
et al., 2013; de Foy et al., 2015).

OMI SO2 data, significantly improved with a principal
component analysis algorithm (Li et al., 2013), was com-
bined with a new emission-source detection algorithm (Fi-
oletov et al., 2015) to compile the first global, satellite-based
emissions inventory of point SO2 emission sources (Fiole-
tov et al., 2016). The inventory contains estimates of an-
nual emissions for 491 medium to large sources (volcanoes,
power plants, oil- and gas-related sources, and smelters) that
emit from 30 kt yr−1 and is completely independent of con-
ventional information sources. It was used for verification of
traditional “bottom-up” SO2 emission inventories and iden-
tification of missing sources. Nearly 40 of the sources iden-
tified by this new method were found to be missing from
leading emission inventories, representing about 12 % of the
global total (McLinden et al., 2016b). Regionally, emissions
can be off by factors of 2 or 3. Many of the missing SO2
sources were located in the Middle East and related to the
oil and gas sector (Fig. 6). OMI is also able to capture an-
nual variability of SO2 emissions for all detected sources of
magnitude 30–4000 kt yr−1 when averaged over 2005–2015
(Fioletov et al., 2016).

3.3 VOC emission estimates

OMI detects the small organic molecules formaldehyde and
glyoxal. OMI formaldehyde data have been used to infer nat-
ural emissions of isoprene, a key contributor to O3 produc-
tion in many parts of the world and the largest VOC source
globally (e.g., Millet et al., 2008; Duncan et al., 2009, 2010;
Curci et al., 2010; Marais et al., 2012, 2014; Barkley et al.,
2013; Zhu et al., 2014; Stavrakou et al., 2015; Bauwens et
al., 2016). More recently, Valin et al. (2016) investigated the
influence of the hydroxyl radical (OH) and VOC variabil-
ity on the OMI HCHO column, which is important when in-
ferring fluxes of VOCs using OMI HCHO columns. They
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Figure 6. Point sources of SO2 identified that were found to be
missing from three leading bottom-up inventories (from McLin-
den et al., 2016b). Each nation is color-coded according to its to-
tal fraction of SO2 emissions that are missing, relative to its total
national emissions (the sum of Hemispheric Transport of Air Pollu-
tion, HTAP, emissions and missing sources).

conclude that the column primarily depends on OH produc-
tion rates (POH) at low OH concentrations, on both POH
and VOC reactivity (VOCR) at moderate OH, and on VOCR
at high OH. OMI observations have also been used to esti-
mate anthropogenic emissions of highly reactive VOCs over
the southeast US (Zhu et al., 2014). VOC emissions derived
from OMI HCHO observations showed that crop burning in
the North China Plain was underestimated by a factor of 2 in
traditional emission inventories (Stavrakou et al., 2016). The
combination of OMI HCHO and OMI glyoxal measurements
(see Sect. 8.3) can provide useful information on VOC spe-
ciation (DiGangi et al., 2012; Chan Miller et al., 2016) and
can constrain VOC emissions (Stavrakou et al., 2009).

3.4 NO2 as indicator for anthropogenic CO2 emissions

OMI observations are being synergistically combined with
observations from other satellite instruments to provide in-
formation, such as the quantification of emissions, infer-
ence of co-emitted trace gases, and the identification of
source regions and types, that neither instrument could do
alone. These recent developments in the combined interpre-
tation of NO2 and carbon dioxide (CO2) satellite emissions
have gained much scientific attention. Duncan et al. (2016)
showed that OMI NO2 can differentiate individual power
plant sources even in complex source regions and pro-
posed that NO2 may be used to infer CO2 emissions assum-
ing a characteristic CO2 :NO2 emission ratio. Hakkarainen
et al. (2016) show that OMI NO2, an indicator of atmo-
spheric pollution, may be used to aid in the interpretation of
the NASA Orbiting Carbon Observatory-2 (OCO-2) carbon
dioxide data (see also Eldering et al., 2017). The spatial dis-
tribution of OMI tropospheric NO2 matched the features ob-
served in the maps of OCO-2 CO2 anomalies over the main

polluted regions. Furthermore, the results of a cluster analy-
sis between OMI NO2 and OCO-2 CO2 confirmed the spatial
correlation over areas with different amounts of pollution.
Konovalov et al. (2016) found that OMI NO2 data can pro-
vide a better constraint than IASI CO data for anthropogenic
CO2 emissions. This is important as inferring emissions with
current satellite CO2 data sets (e.g., OCO-2, GOSAT) is chal-
lenging for a variety of reasons.

4 Volcanic monitoring with OMI

OMI can lay claim to being the first satellite instrument to
be used for daily monitoring of volcanic emissions (e.g.,
Carn et al., 2008, 2013; McCormick et al., 2013; Flower
and Carn, 2015), heralding a new era where satellite mea-
surements have become an indispensable tool for volcanic
gas monitoring in many regions. While instruments such as
TOMS have been measuring SO2 and ash emissions by major
eruptions since 1978 (e.g., Krueger, 1983; Carn et al., 2016),
and GOME first demonstrated the potential for detection of
tropospheric volcanic SO2 from space by hyperspectral UV
sensors (Eisinger and Burrows, 1998), the “volcano-scale”
pixel size (13× 24 km2 at nadir) of OMI was a critical fac-
tor. OMI’s ability to detect volcanic SO2 at all levels from the
planetary boundary layer (PBL) to the stratosphere, derived
from volcanic activity of varying intensity from passive de-
gassing to major stratospheric eruptions, has required the de-
velopment of SO2 retrieval algorithms capable of spanning
several orders of magnitude of SO2 column amount (e.g.,
from 0.2–2000 Dobson units (DU); Krotkov et al., 2006;
Yang et al., 2007, 2009b, 2010; Li et al., 2013, 2017b; Theys
et al., 2014) and direct retrieval of SO2 altitude from UV ra-
diances (e.g., Yang et al., 2009a, 2010).

Unlike the 1978 to 2005 period of TOMS measurements,
which featured the major SO2-rich eruptions of El Chichón
(Mexico) in 1982 (Krueger, 1983) and Pinatubo (Philip-
pines) in 1991 (Bluth et al., 1992), the decade since the
OMI launch has seen no eruptions of comparable magnitude
(Carn et al., 2016). The largest tropical eruption occurred at
Nabro (Eritrea) in June 2011, but was an order of magnitude
smaller than Pinatubo (Goitom et al., 2015). Nevertheless,
the OMI era has been notable for a number of large, high-
latitude eruptions (e.g., 2008 Okmok, 2008 Kasatochi, 2009
Sarychev Peak, 2009 Redoubt, 2014 Holuhraun), with the
eruption of Kasatochi (Aleutian Islands, US) in August 2008
representing one of the largest stratospheric SO2 injections of
the last decade (e.g., Krotkov et al., 2010; Wang et al., 2013).
Although none of these eruptions were large enough to im-
pact climate (due to the high latitude and insufficient SO2
release), they have presented several opportunities for OMI
SO2 validation, owing to the limited latitudinal spread of the
volcanic clouds and the abundance of ground stations at mid-
to high-latitudes (e.g., Spinei et al., 2010; Carn and Lopez,
2011; Lopez et al., 2013; Ialongo et al., 2015). Operation
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of Aura in the A-train constellation has facilitated validation
by providing critical observations of volcanic cloud altitude
(e.g., from the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation, CALIPSO; Spinei et al., 2010; Carn
and Lopez, 2011).

Despite the lack of major, climate-forcing eruptions, the
OMI era has been far from volcanically quiescent (e.g., Prata
et al., 2010; Carn and Prata, 2010; Carn et al., 2016). The
absence of significant volcanic perturbations to stratospheric
AOD in the post-Pinatubo period to date has focused atten-
tion on the impacts of smaller, more frequent volcanic erup-
tions on “background” stratospheric AOD and related sub-
tle climate impacts (e.g., Solomon et al., 2011; Vernier et
al., 2011; Santer et al., 2014). Although the implication of
increased rates of volcanic activity in 2000–2010 in a puta-
tive “global warming hiatus” is now deemed unlikely, accu-
rate OMI and A-train observations of volcanic SO2 loading
and altitude for all significant volcanic eruptions (e.g., Carn,
2015; Carn et al., 2016) continue to play a crucial role in
unraveling the major natural sources of stratospheric AOD
variability. OMI observations of reactive halogens (e.g., BrO,
OClO) in volcanic eruption clouds (e.g., Theys et al., 2014)
also permit improved understanding of volcanic impacts on
stratospheric ozone.

Since the first demonstration of OMI’s ability to quantify
volcanic SO2 degassing (Carn et al., 2007b, 2008), an im-
portant indicator of impending eruptions, OMI observations
have been adopted by many volcano observatories worldwide
as an essential tool for volcano surveillance. OMI data have
subsequently been used to investigate or monitor volcanoes
in most volcanic regions of the globe, including east Africa
(e.g., Sawyer et al., 2008; Ferguson et al., 2010; Goitom et
al., 2015), Indonesia (Surono et al., 2012; Kushendratno et
al., 2012), Papua New Guinea (McCormick et al., 2012),
Vanuatu (Bani et al., 2009a, b, 2012), Central America (Cam-
pion et al., 2012), the West Indies (Carn and Prata, 2010;
Flower and Carn, 2015), Ecuador (Carn et al., 2008), Chile
(Theys et al., 2014), Russia (Telling et al., 2015), Alaska, US
(Lopez et al., 2013), and Iceland (Sigmarsson et al., 2013;
Schmidt et al., 2015). Satellite measurements of elevated
SO2 emissions (including from OMI) were decisive in pro-
viding advance warning of a major eruption at Merapi (In-
donesia) in 2010, permitting evacuation of the flanks of the
volcano and saving many lives (Surono et al., 2012).

Recent improvements in SO2 algorithm sensitivity (Li et
al., 2013, 2017b; Theys et al., 2015) have increased the sen-
sitivity of OMI measurements to weak volcanic SO2 de-
gassing. Coupled with new SO2 emission estimation tech-
niques (Fioletov et al., 2011), these data have permitted
the identification of ∼ 100 volcanic SO2 emission sources
(roughly two-thirds of the∼ 150 degassing volcanoes known
worldwide), including some sources in remote regions with
no prior measurements, which will comprise a new volcanic
SO2 emissions inventory (Fioletov et al., 2016; Carn et al.,
2017). This inventory will improve constraints on volcanic

emissions of other important gases, such as CO2, which are
difficult to measure directly.

A significant increase in demand for NRT satellite obser-
vations of volcanic clouds occurred following the Eyjafjal-
lajökull eruption in Iceland in April–May 2010, which dis-
rupted aviation operations on a global scale. UV measure-
ments have some unique advantages for volcanic ash detec-
tion, notably the ability to detect ash (and SO2) when located
above or mixed with clouds (e.g., Carn et al., 2009; Carn and
Krotkov, 2016). Timeliness of observations and data deliv-
ery is critical for aviation safety, and this has been optimized
by using satellite direct broadcast/readout (DR) capabilities.
The operational OMI VFD service (Hassinen et al., 2008)
for NRT detection of volcanic SO2 and ash emissions was
implemented at FMI in 2011. The existing SAMPO service
(http://sampo.fmi.fi/volcanic.html, last access: 5 April 2018)
utilizes the DR capability of the Aura/OMI and SNPP/OMPS
instruments and the ozone, cloud reflectivity, volcanic SO2
and aerosol index (AI) products are available to users, in-
cluding the Support to Aviation Control Service (SACS; http:
//sacs.aeronomie.be/nrt, last access: 5 April 2018; Brenot
et al., 2014) and Volcanic Ash Advisory Centers (VAACs),
within 20 min after the satellite overpass over a ground sta-
tion.

The two ground stations, one in Sodankylä (northern Fin-
land, used for both OMI and OMPS) and the second in Fair-
banks (Alaska, US, used for OMPS), ensure spatial cover-
age over busy airspace in the north Atlantic and north Pa-
cific with many active volcanoes. The ongoing NASA Ap-
plied Sciences Project will enhance the decision support sys-
tem services and tools used at VAACs by combining real-
time satellite DR observations with volcanic cloud dispersion
modeling to provide improved forecasts of the SO2 and ash
together with the observations.

The Sodankylä VFD system proved its usefulness during
two recent Icelandic eruptions: Grimsvötn in 2011 (Kermi-
nen et al., 2011) and Holouraun-Bárðarbunga in 2014–2015
(Ialongo et al., 2015) as shown in Fig. 7. These recent erup-
tions also demonstrated that, in addition to aviation hazard
mitigation, the OMI DR data could be used to anticipate and
monitor air quality impacts due to low-altitude volcanic SO2
and ash clouds.

5 Solar spectral irradiance monitoring

OMI collects solar spectral irradiance (SSI) data primarily to
provide long-term on-orbit calibration, in particular for char-
acterization of throughput degradation and wavelength cali-
bration. These goals have been met very well, as described
in detail by Schenkeveld et al. (2017). Most OMI level 2
products use a constant solar irradiance reference spectrum
to produce Earth reflectance data that are used in the actual
retrieval processing. This “fixed” irradiance spectrum comes
from either an external high-resolution composite data set
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Figure 7. (a) Detection of SO2 emissions from the Holuhraun (Iceland) eruption by the OMI very fast delivery (VFD) system on 10
September 2014. (b) Ground-based SO2 measurements and breathable aerosols (PM10) over Muonio measurement station (Finland; location
indicated by a cross on the VFD image) from 9 September up until and 13 September 2014.

(e.g., Dobber et al., 2008a) or from the early epoch (2004–
2005) OMI irradiance measurements. However, numerous
observations show substantial solar variability (up to ∼ 2 %
in strong spectral lines at the OMI spectral resolution, and
larger for higher-resolution measurements; see Fig. 8) for the
spectral region below 300 nm on both solar rotational (∼ 27-
day) and solar cycle (∼ 11-year) timescales (e.g., DeLand
and Cebula, 2008). Similar variations are also clearly seen
in the cores of selected Fraunhofer lines longward of 300 nm
(Fig. 8). More importantly, results from the SIM (Spectral
Irradiance Monitor) instrument on the SORCE (Solar Radi-
ation and Climate Experiment) satellite (Harder et al., 2009)
and their implications for climate response (Haigh et al.,
2010) have led to ongoing debate regarding the magnitude of
solar cycle variability across the entire OMI spectral region
(e.g., DeLand and Cebula, 2012; Lean and DeLand, 2012;
Ermolli et al., 2013; Morrill et al., 2014; Ball et al., 2016).
Thus, developing an independent SSI data set from OMI has
significant potential benefits for both solar physics and cli-
mate studies.

Creating a SSI data set from OMI measurements requires
a comprehensive correction for instrument response degrada-
tion, which can have a complex spectral and temporal depen-
dence (e.g., Floyd et al., 1998; DeLand and Cebula, 2008). A
first step in this process is to demonstrate that OMI fully cap-
tures solar activity variations by creating a proxy index that
is insensitive to most instrument degradation effects. This
can be done using core-to-wing ratios for absorption features
such as Mg II h and k (280 nm), Ca II K (393.4 nm), and
Ca II H (396.8 nm). DeLand and Marchenko (2013) describe
the creation of Mg II index and Ca II index products from
OMI irradiance data and show that these products agree very
well with concurrent solar activity data sets from GOME,
SORCE SOLSTICE (Solar–Stellar Irradiance Comparison
Experiment), and the US National Solar Observatory.

Since OMI does not carry an end-to-end onboard calibra-
tion system, some form of external information is necessary
to develop a long-term degradation correction. Marchenko

and DeLand (2014) and Marchenko et al. (2016) created ac-
curate (∼ 0.1–0.3 % per 0.5–1.0 nm spectral bin; available
on-line at https://sbuv2.gsfc.nasa.gov/solar/omi/, last access:
5 April 2018) degradation corrected daily OMI irradiance
data. These data serve as a valuable, independent source for
detailed comparisons with both SORCE measurements and
widely used solar spectral irradiance models, thus providing
important constraints on solar variability in the near-UV and
visible regions. Continuation of these solar irradiance mea-
surements by TROPOMI will be a valuable contribution in
the coming years.

6 The Montreal Protocol, total ozone, and UV
radiation

In 1987, the Montreal Protocol was established in an effort to
protect the ozone layer. Ozone measurements by satellite are
an important means to assess the Montreal Protocol’s effec-
tiveness to enable the ozone layer recovery from the effects
of ozone depleting substances. NASA’s contribution was a
series of ozone monitoring instruments, beginning with the
SBUV/TOMS instrument on Nimbus 7 in 1978. The Aura
instruments and a series of SBUV/2 instruments on NOAA
satellites have continued this critical monitoring function.
The Antarctic ozone hole has proven to be a very sensitive
indicator of the state of the ozone layer. The high spatial
resolution measurements, first by TOMS and continued by
OMI, have been particularly important in mapping the devel-
opment of the Antarctic ozone hole each year. These current
and recent results are a prominent aspect of the quadrennial
ozone depletion assessment that is written for the parties
to the Montreal Protocol. In Fig. 9, the most recent ozone
hole from 2017 is shown as measured by OMI, based on the
monthly average from October.
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Figure 8. Solar spectral irradiance (SSI) variability in cycle 24. The blue line shows the normalized long-term difference (2012–2014 vs.
2007–2009, i.e., the solar maximum vs. solar minimum) as observed by OMI with representative ±0.2 % errors. The red line follows the
properly normalized GOME-2 data derived from the rotational (∼ 27 days, the local maximum flux vs. the adjacent minimum) variability in
2012–2013. The GOME-2 data were adjusted to the OMI SSI by a multiplicative factor that matches the 27-day and solar cycle amplitudes in
the 325–335 nm range. Note that the ∼ 3 times higher GOME-2 spectral resolution leads to substantially higher SSI amplitudes at prominent
spectral lines and blends (e.g., CaII 393, 396 nm). For reference, the scaled solar spectrum is shown as a dotted line.

Figure 9. October 2017 monthly average OMI total ozone column
over Antarctica.

6.1 The OMI long-term ozone data record

The data record of total column ozone from OMI has proven
to be very stable over the 10 plus years of operation. This sta-

bility is shown three ways (McPeters et al., 2015): by direct
monitoring of instrument performance, by comparing OMI
ozone with that from ground-based measurements, and by
comparison with ozone from other satellite systems.

OMI instrument stability is monitored by tracking instru-
ment parameters such as onboard measured solar flux (see
Dobber et al., 2008b and Schenkeveld et al., 2017). Stability
is also monitored by tracking changes in geophysical param-
eters like average ice reflectivity in Greenland and Antarc-
tica. All these parameters show that OMI has been far more
stable than any of the previous TOMS instruments. Two dis-
tinct algorithms have been used to compute total column
ozone from OMI, a TOMS-type algorithm and a DOAS al-
gorithm (Veefkind et al., 2006). A variation of the version 8
TOMS algorithm (Bhartia, 2007) used to process data from
the series of TOMS instruments has been used for the OMI-
TOMS retrieval. Designated the v8.5 algorithm, the most sig-
nificant enhancement is that the longer wavelengths mea-
sured by OMI are used to infer cloud height on a scene-
by-scene basis. OMI-TOMS ozone results are shown here.
A comparison of OMI-TOMS and OMI-DOAS total ozone
products can be found in Kroon et al. (2008).
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Figure 10. Weekly mean percent difference of OMI ozone minus
ground-based averages from an ensemble of 76 Northern Hemi-
sphere Dobson–Brewer stations with linear fit (from McPeters et
al., 2015).

Comparisons with ground-based observations show that
OMI has been very stable (see Fig. 10). Such compar-
isons have been shown to be capable of detecting instru-
ment changes of a few tenths of a percent (Labow et al.,
2013). The linear fit in Fig. 10 shows that OMI has almost no
drift in ozone relative to the ground observations (0.05 % per
decade). The offset of about −1.5 % is mostly caused by the
use of the older Bass and Paur (1984) ozone cross sections
in the OMI retrievals rather than the newer Brion–Daumont–
Malicet ozone cross sections (Brion et al., 1993).

Figure 11 shows comparisons of OMI ozone with data
from a series of SBUV/2 instruments flying on NOAA space-
craft. The radiances from SBUV instruments on NOAA 16,
17, 18, and 19 were carefully analyzed and adjusted to cre-
ate a consistent ozone data series. Here global average ozone
from 60◦ S to 60◦ N is plotted as well as percent difference
for each instrument. The first thing to note is the high de-
gree of consistency of the four NOAA instruments. There is
a small trend of OMI relative to SBUV of about +0.4 % per
decade and an average bias of−0.9 %. While this trend might
be considered statistically significant, at the half percent per
decade level, it is not possible to say whether one trend is
more accurate than the other.

Similar comparisons with ozone from instruments on Eu-
ropean satellites can be used to see if the behavior of
OMI ozone displays similar patterns. The GTO (GOME-
type Total Ozone) merged ozone data record is based on
data from sensors on GOME/ERS-2 (1995–2011), SCIA-
MACHY/ENVISAT (2002–2012), and GOME- 2/METOP-
A (2007–present). The GTO analysis combines these mea-
surements into a continuous and homogeneous monthly
mean time series (Coldewey-Egbers et al., 2015). In Fig. 12,
OMI ozone averaged from 60◦ S to 60◦ N is compared with
the v8.6 merged ozone data (MOD) time series based on
a best effort merger of the NASA SBUV/2 data shown in
Fig. 11 (Frith et al., 2014) and with this GTO time series. The
OMI bias relative to GTO is a bit larger, −1.7 % vs. −1.0 %

Figure 11. Total column ozone from OMI and four NOAA SBUV
instruments (b) and differences in percent of OMI minus each
SBUV instrument (a; adapted from McPeters et al., 2015).

for MOD over the same time period, again mostly due to
cross section differences. OMI has a small positive trend rel-
ative to MOD over the 2004–2011 time period, and a small
negative trend relative to GTO of−0.85 % per decade. Given
the difficulty of maintaining long-term calibration of multi-
instrument data sets, differences of 1 % or so per decade are
probably the best one can do, and these differences should
be considered within the range of uncertainty. An accuracy
of 1 % is sufficient to detect decadal trends in stratospheric
ozone recovery, which are of the same order of magnitude,
and is more than sufficient to detect recovery of ozone in
the Antarctic ozone hole (Eyring et al., 2010; Chipperfield
et al., 2017). Note that for monitoring long-term changes
in stratospheric ozone, assimilated total ozone columns are
often used, which have the benefit that long-term drifts in
satellite measurements and inter-satellite differences are ac-
counted for (van der A et al., 2010, 2015).

With regard to the first OMI science question (is the ozone
layer recovering as expected?), OMI has contributed as ex-
pected. However, to fully address this question, data from
other instruments that are designed to provide high verti-
cal resolution ozone sounding and other constituents in the
stratosphere (such as the Aura MLS) are needed (e.g., Stra-
han and Douglass, 2017). In addition, future UV nadir map-
pers such as GOME-2, OMPS mapper and profiler, and
TROPOMI will be needed to continue the long-term total
ozone record later into this century as the ozone layer con-
tinues to recover.

OMI total ozone column measurements have also been
used as an integral part of the Multi Sensor Reanalysis
(MSR) data sets version 1 (MSR-1; van der A et al., 2010)
and version 2 (MSR-2; van der A et al., 2015). The MSR-2
data set is a 43-year total ozone column assimilation data set
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Figure 12. Total column ozone from OMI, the MOD (merged ozone
data) based on SBUV/2 instruments, and the GTO (GOME-type To-
tal Ozone) merged ozone based on GOME instruments and SCIA-
MACHY (b) and differences in percent of OMI minus each (a; from
McPeters et al., 2015).

for 1970–2012 based on a multitude of satellite instruments
measuring total ozone columns and provides global daily
fields of total ozone columns. In Fig. 13, a time series is given
with ozone hole images (for selected years) of the September
mean total ozone column over Antarctica based on the MSR-
2 assimilated total ozone column data (van der A et al., 2015)
for 1979–2012 in blue, and OMI assimilated total ozone
columns for 2013–2017 indicated in grey. The red colors de-
note the 6 years that are known to have been disturbed by
naturally occurring planetary wave activity, which lead to re-
duced seasonal Antarctic stratospheric ozone destruction (de
Laat et al., 2017). Images and daily total ozone column data
are obtained from the TEMIS website (http://www.temis.nl,
last access: 5 April 2018). The MSR data sets have been
used to monitor atmospheric processes affecting long-term
local total ozone column variability (Knibbe et al., 2014) as
well as long-term changes in Antarctic stratospheric ozone
(ozone hole) and recovery (Knibbe et al., 2014; de Laat et
al., 2015, 2017). Detection of recovery of Antarctic strato-
spheric ozone has turned out to be complicated due to ambi-
guities in Antarctic ozone hole metrics and analysis methods
(Knibbe et al., 2014; de Laat et al., 2015). However, de Laat
et al. (2017), using more robust Antarctic ozone hole met-
rics like the ozone mass deficit (OMD), show that after the
year 2000, Antarctic stratospheric ozone recovery appears to
be well under way. After reaching maximum ozone destruc-
tion around the year 2000, current levels of seasonal Antarc-
tic stratospheric ozone destruction appear to have returned to
early 1990s levels. In addition, the MSR data are also used
for the annual World Meteorological Organization (WMO)
Antarctic ozone bulletins that provide regular seasonal analy-

ses of the status of the Antarctic ozone hole of that particular
year (e.g., Braathen, 2015).

6.2 Global surface UV radiation

Surface UV estimates based on OMI satellite data continue
the long-term TOMS UV record. The OMI UV algorithm
(Tanskanen et al., 2006) was further developed from the
TOMS algorithm (Eck et al., 1995; Krotkov et al., 1998,
2001). It consists of a calculation for the clear-sky case with
corrections for clouds (or non-absorbing aerosols). Several
validation studies of both TOMS and OMI-UV data have
shown a positive bias in many locations affected significantly
by absorbing aerosols (e.g., Arola et al., 2005; Tanskanen et
al., 2007; Zempila et al., 2016). Correction for the absorb-
ing aerosols was suggested by Arola et al. (2009), which ex-
ploits monthly aerosol climatology of Kinne et al. (2013).
This correction is currently also implemented in the OMI
UV product. Figure 14 gives an example of the OMI UV
product, showing the long-term seasonal mean of the fall
season (September–November) UV index, calculated from
the 10-year OMI record (2005–2015). OMI UV data records
have also provided valuable information for UV chapters of
the WMO Scientific Assessment of Ozone Depletion both in
2006 and 2010 (Bais et al., 2007; Douglass et al., 2011). Note
that the MSR-1 data set has also been used to provide a global
daily UV-related information for the clear-surface clear-sky
UV index and the clear-sky UV daily dose (van Geffen et al.,
2017).

7 Tropospheric ozone from OMI: overview of different
methods

Tropospheric ozone is an important pollutant at ground level,
plays a critical role in oxidation and atmospheric chemistry,
and is a greenhouse gas in the upper troposphere. As the
retrieval of tropospheric ozone is a challenging (strongly
ill posed) task, several approaches have been developed to
overcome the challenges. OMI has fostered a large num-
ber of tropospheric ozone data products, both as ozone col-
umn amounts and ozone profiles. These products, as shown
in Fig. 15, have been developed using either OMI mea-
surements alone or in conjunction with other satellite mea-
surements to improve sensitivity to near-surface ozone (e.g.,
Bowman, 2013; Cuesta et al., 2013; Hache et al., 2014) as
summarized below. They have been used in tropospheric
research (e.g., Sauvage et al., 2007; Ziemke et al., 2010;
Cooper et al., 2014), for example to show evidence of
decadal increases or trends in global tropospheric ozone, El
Nino events during Aura (e.g., Chandra et al., 2009; Blunden
and Ardnt, 2016), the 1–2 month Madden–Julian oscillation
(Ziemke et al., 2015, and references therein), and urban pol-
lution (Kar et al., 2010). It will be possible to employ similar
approaches with other advanced sensors such as TROPOMI
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Figure 13. Annual September average daily ozone mass deficit (OMD) over Antarctic relative to the 220 DU total ozone column level, the
most common total ozone column threshold value for calculating the OMD (see Sect. 6.1 for an explanation of OMD).

(a) (b)

Figure 14. (a) Three-month mean UV index from OMUVB in the boreal fall season 2013 (September–November). (b) Global map of daily
UV index on 16 October 2013 showing exceptionally high UV index values in Patagonia due to the stretched ozone hole.

and the OMPS limb profiler as well as the future geosta-
tionary sensors. This will allow for continued monitoring of
global long-term trends in tropospheric ozone.

Regional biases in tropospheric ozone are up to 5–10 DU
between the three products and the Global Modeling Initia-
tive (GMI) model in Fig. 15. Ziemke et al. (2014) included
an extensive ozonesonde analysis to estimate both biases and
precision uncertainties. Figures 2–7 of Ziemke et al. (2014)
indicate biases and precisions (all in DU) of −4.0± 6.3 for
ASSIM, +1.7± 7.0 for PROF, −7.1± 7.0 for TRAJ, and
−0.2± 6.6 for GMI, as calculated from daily coincident
ozonesonde measurements. Biases between the three prod-
ucts and the GMI model in some regions, such as the tropical
Pacific (Fig. 15), may exceed both monthly and seasonal pre-
cisions (i.e., standard error of the means) of ∼ 1–2 DU from

the ozonesondes. Despite biases of up to 5 DU or greater in
Fig. 15, all three products and the GMI model correctly pre-
scribe the large zonal wave-1 pattern of ∼ 20 DU in the trop-
ics and very similar regional amplitudes and gradients in both
hemispheres.

7.1 Cloud slicing

The convective-cloud differential method (Ziemke et al.,
1998) uses the differences between OMI total column ozone
and OMI above-cloud column ozone under conditions of
high reflectivity (i.e., deep convective clouds) to estimate a
tropospheric column ozone residual. The convective-cloud
differential algorithm is simple to apply but not very effec-
tive for measuring tropospheric ozone outside the tropics.
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Figure 15. June–July–August (JJA) seasonal climatology of tropospheric column ozone (in Dobson units) for three OMI/MLS products
and the Global Modeling Initiative (GMI) chemical transport model. GMAO denotes assimilated OMI/MLS, TRAJ is trajectory-mapped
OMI/MLS, and PROF is derived from the OMI-only profile retrieval method of Liu et al. (2010a) and Huang et al. (2017). This figure is
from Ziemke et al. (2014) which includes references and detailed descriptions for these three products and the GMI model.

Measuring tropospheric ozone outside tropical latitudes is
possible to accomplish by using either an OMI-only profile
algorithm, or the neural network approach (Sellitto et al.,
2011), or by combining OMI with other satellite measure-
ments. Some of these are discussed in more detail below.

7.2 Profile retrieval algorithms

Strong spectral variation in both ozone absorption (decrease
by ∼ 4 orders of magnitude from the Hartley to Huggins
bands) and Rayleigh scattering (∼ λ−4) lead to wavelength-
dependent photon penetration, and therefore provide verti-
cal discrimination of ozone in the atmosphere (Bhartia et al.,
1996). Temperature-dependent ozone absorption in the Hug-
gins bands adds additional tropospheric ozone information
(Chance et al., 1991). Based on these principles, two ozone
profile algorithms were implemented: the operational algo-
rithm (OMO3PR) at KNMI (Kroon et al., 2011; Mielonen
et al., 2015) and the research algorithm (PROFOZ) at the
US Smithsonian Astrophysical Observatory (SAO; Liu et al.,
2010a, b; Kim et al., 2013). Both retrieve ozone profiles from
the spectral region 270–330 nm using the optimal estima-
tion method, but they differ significantly in implementation
details including radiometric calibration, radiative transfer
model simulation, a priori constraint, retrieval grids, and re-
trieval parameters. Typically, the retrievals have 5–7 degrees
of freedom (DOF) for signals of ozone with up to∼ 1.5 DOF

in the troposphere. It has been shown that tropospheric ozone
column can be directly and accurately retrieved in the few
Dobson units range from OMI data alone on the spatial pixel-
to-pixel basis, but successful retrievals of tropospheric ozone
and further capture of tropospheric ozone trends require ac-
curate forward model simulation, well-characterized prior in-
formation, and consistently accurate radiometric calibration
over the entire record (Liu et al., 2010a, b; Mielonen et al.,
2015).

Validation of the OMO3PR product by Kroon et al. (2011)
showed that the operational retrieval agrees well with high
vertical resolution limb viewing satellite observations, in-
cluding MLS, TES, GOMOS, the Stratospheric Aerosol and
Gas Experiment (SAGE-II), the Optical Spectrograph and
InfraRed Imaging System (OSIRIS), and ozone soundings
to within 20 % but with some biases. These biases can be
slightly reduced using a different a priori constraint and
surface albedo assumptions; most of the biases are likely
caused by systematic biases in radiative-transfer modeling
and radiometric calibrations (Mielonen et al., 2015). Tang
and Prather (2012) indicated that this product has some skill
in identifying stratosphere–troposphere folds. The methods
employed by the TROPOMI ozone profile algorithm will be
used to update the current OMI ozone profile algorithm (de
Haan, 2015).

For PROFOZ, early versions were partially evaluated
against ozonesonde, aircraft, MLS, surface measurements,
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model simulations, and tropospheric ozone derivations from
other methods (Pittman et al., 2009; Liu et al., 2010b, 2013a;
Zhang et al., 2010; Walker et al., 2010; Tarasick et al., 2010;
Sellitto et al., 2011; Wang et al., 2011, 2013; Bak et al.,
2013a, b, 2015; Flynn et al., 2014; Foret et al., 2014; Ziemke
et al., 2014). The analyses generally showed good agreement
with other correlative data but revealed limited sensitivity to
ozone in the lower troposphere and near the surface. In addi-
tion to these evaluations, the PROFOZ product has been used
to study dynamical and chemical features associated with
stratospheric–tropospheric exchange, to evaluate the trans-
port of anthropogenic pollution (Pittman et al., 2009; Liu
et al., 2010a, 2013b; Walker et al., 2010; Su et al., 2011),
to constrain tropospheric ozone sources (Zhang et al., 2010;
Kim et al., 2013), to initialize boundary conditions for air
quality modeling (Pour-Biazare et al., 2011), and to study
ozone enhancement in the lower troposphere over central and
eastern China (Hayashida et al., 2015, 2016).

7.3 Multi-instrument retrievals

The Aura MLS measures ozone profiles along an orbital
track from the top of the atmosphere down to the tropopause
or upper troposphere. Several schemes have been used to
derive tropospheric ozone by combining OMI and MLS.
Jing et al. (2006) and Ziemke et al. (2006) subtracted MLS
stratospheric column ozone from OMI total column ozone
to derive tropospheric column ozone residual. While Jing et
al. (2006) applied a criterion for near-coincidence between
OMI and MLS along orbital track, Ziemke et al. (2006)
used a 2-D interpolation technique to fill in missing MLS
measurements between orbital tracks and improve horizon-
tal coverage. Schoeberl et al. (2007) further used a wind
trajectory mapping technique of MLS ozone profiles and
Yang et al. (2007) used potential vorticity mapping to obtain
better signal-to-noise ratio and horizontal coverage for the
OMI/MLS tropospheric column ozone. Wargan et al. (2015)
discusses an OMI/MLS ozone profile product derived using
data assimilation; it is noted that current MERRA-2 (Gelaro
et al., 2017; Wargan et al., 2017) analyses include ozone
profiles determined similarly via data assimilation of Aura
MLS and OMI ozone. A comparison of several OMI/MLS
tropospheric column ozone products (data assimilation, tra-
jectory mapping, and profile retrieval methods) is described
by Ziemke et al. (2014). They concluded that the assimila-
tion was overall the best science product when considering
temporal and spatial coverage and ability to provide an en-
tire ozone profile for both troposphere and stratosphere.

Theoretical studies point towards the potential of combin-
ing UV Hartley–Huggins (270–330 nm) and thermal infrared
(TIR) O3 (9.6 µm) bands for retrieving ozone profiles (Land-
graf and Hasekamp, 2007; Worden et al., 2007). The phys-
ical basis for the improved resolution is that the reflected
sunlight radiances are sensitive to the tropospheric column,
whereas the TIR sounders are primarily sensitive to the free-

troposphere. The “subtraction” of the free tropospheric col-
umn from the total column results in an estimate of near-
surface concentrations. The theory has been demonstrated
by a suite of retrieval algorithms: GOME-2/IASI (Cuesta et
al., 2013) and OMI/TES (Fu et al., 2013) for ozone pro-
file retrievals. The MUlti-SpEctra, MUlti-SpEcies, MUlti-
SEnsorS (MUSES) tropospheric ozone retrieval algorithm is
implemented to extend the joint TES/OMI retrievals to the
AIRS/OMI combination (Fu et al., 2016, 2018; Miyazaki et
al., 2018).

8 Research data products

Several new products have been developed after launch that
were not part of the initial suite of standard products de-
scribed in Levelt et al. (2006b). Here we describe some of
these research and new standard products. Most of these are
available through the Aura Validation Data Center (AVDC),
https://avdc.gsfc.nasa.gov (last access: 5 April 2018). While
these products have been demonstrated with OMI, they
can be continued with instruments such as TROPOMI and
UV/VIS sensors on geostationary satellites.

8.1 Aerosol above cloud

Contrary to the known cooling effects of these aerosols in
cloud-free scenarios over dark surfaces, the overlapping sit-
uation of absorbing aerosols over cloud can potentially exert
a significant level of atmospheric absorption and produces a
positive radiative forcing (warming) at the top of the atmo-
sphere. The magnitude of direct radiative effects of aerosols
above cloud directly depends on the aerosol loading, micro-
physical and optical properties of the aerosol layer, and the
underlying cloud deck and geometric cloud fraction. The op-
tical depth of carbonaceous and desert dust aerosol layers lo-
cated above clouds (ACAOD) has been retrieved with OMI
(Torres et al., 2012) leading to a global daily product span-
ning the OMI ACAOD record (OMACA). OMACA can be
used to improve our understanding of aerosol–cloud inter-
action. OMACA provides both the above-cloud aerosol op-
tical depth as well as the optical depth of the underlying
clouds layer using OMI measurements at 354 and 388 nm
(Jethva et al., 2016). Evaluation of the product using high-
quality measurements from the first phase of the NASA Earth
Venture Suborbital (EV-S) ObseRvations of Aerosols above
CLouds and their intEractionS (ORACLES) field campaign
is in progress.

8.2 Water vapor column

Water vapor has a very important role in the atmosphere as
being the most important natural greenhouse gas and the
driver of the hydrological cycle. Water vapor has a set of
absorption bands in the visible region of the spectra mea-
sured by OMI. Despite being much weaker than other bands
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at longer wavelengths, they can be used to retrieve water va-
por, as demonstrated first by Wagner et al. (2013). A new
column water vapor product (OMH2O) has been developed,
evaluated, and implemented (Wang et al., 2014). Wang et
al. (2014, 2016) show global maps and comparisons with
other independent global data sets. The version 1.0 product,
retrieved using a fitting window of 430–480 nm, compared
reasonably well with GPS, AERONET, SSMIS and Glob-
Vapour data, but had a significant low bias over the ocean.
The version 2 OMI water vapor product was developed using
a fitting window of 427.7–465 nm and improved the agree-
ment with the reference data sets (Wang et al., 2016). The
evaluation results show that the OMI data track the seasonal
and interannual variability of the water vapor column for a
wide range of climate regimes. A new version of the OMI
water vapor product is expected in the near future that will
make use of updated spectroscopic data on water vapor and
liquid water absorption.

8.3 Glyoxal column

Glyoxal (CHO-CHO) is a short-lived product of non-
methane volatile organic compound (NMVOC) atmospheric
oxidation, a process that is important for both air quality and
climate. The combination of formaldehyde and glyoxal mea-
surements can provide useful information on NMVOC speci-
ation (DiGangi, 2012; Chan Miller et al., 2016) and can con-
strain NMVOC emissions (Stavrakou et al., 2009). Glyoxal
has been retrieved from OMI (Chan Miller et al., 2014, 2016)
using wavelengths 435–461 nm. The retrieval of glyoxal is
challenging due to its very weak absorption (optical depths
on the order of 10−4 to 10−3). The OMI glyoxal research
product is optimized to minimize interferences from stronger
absorbers. The retrieval consists of three steps, (1) slant col-
umn density (SCD) fitting in the visible spectral region (435–
461 nm), (2) air mass factor calculations to convert SCDs into
vertical column densities, and (3) de-striping using a refer-
ence sector over the Sahara (Chan Miller et al., 2014). Nearly
10 years of glyoxyl data (up to 2014) are available. Given the
challenging nature of glyoxal retrievals, detector degradation
affects the quality of the retrievals after 2013 (Chan Miller et
al., 2016).

8.4 NO2 cloud slicing

The use of cloud pressure information from OMI has led
to so-called cloud slicing approaches to retrieve profile in-
formation about trace gases. While this approach has most
commonly been applied to ozone (see Sect. 7), it has also
been applied to NO2 with OMI to derive information about
its concentration in the free troposphere (Choi et al., 2014;
Belmonte Rivas et al., 2015). In addition, other approaches
have been applied to isolate NO2 generated from lightning
(Bucsela et al., 2010; Pickering et al., 2016).

8.5 Specialized data sets

As the first generation of OMI trace gas products typi-
cally used static databases for profile information, special-
ized products emerged to meet various needs of the user com-
munity. Several examples apply to NO2 and SO2 and in some
cases these were enabled by information provided in the stan-
dard products (e.g., Lamsal et al., 2008, 2015; Yang et al.,
2010; Lee et al., 2011; Russell et al., 2011, 2012; McLinden
et al., 2014; Theys et al., 2014; De Smedt et al., 2015). At
the same time, this research has driven improvements in the
standard products.

8.6 Polar mesospheric clouds

Another valuable but unplanned data product is the detection
and characterization of polar mesospheric clouds (PMCs).
These clouds (also called noctilucent clouds) are observed
at 80–85 km altitude and high latitudes (> 50◦) during sum-
mer in each hemisphere and are potentially another indica-
tor of long-term climate change (Thomas, 1996). Backscat-
ter ultraviolet instruments such as OMI detect PMCs as an
enhanced signal at short wavelengths (DeLand et al., 2010).
The broad cross-track coverage of OMI makes it possible
to directly characterize local time variations in PMC occur-
rence frequency and intensity (DeLand et al., 2011). PMCs
can also affect derived values of profile ozone in the upper
stratosphere, so that a correction is required to obtain better
results (Bak et al., 2016).

9 Multi-platform product and analyses using several
instruments across platforms

The development of the so-called “A-train”, a constellation
of satellites in a common afternoon orbit all flying within
about 15 min of each other, has provided unique opportu-
nities to combine data from different instruments into new
products, to incorporate additional information to enhance
existing OMI products, and to cross validate other prod-
ucts with OMI. Among the satellites used in conjunction
with the OMI, the A-train includes the NASA Aqua satel-
lite, that hosts MODIS, AIRS, and the Clouds and the Earth’s
Radiant Energy System (CERES); the CALIPSO, a joint
US (NASA) and French (CNES) satellite mission that in-
cludes the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) instrument; the millimeter-wavelength cloud
radar aboard the NASA CloudSat; and the CNES Polariza-
tion & Anisotropy of Reflectances for Atmospheric Sciences
coupled with Observations from a Lidar (PARASOL) that
carried the Polarization and Directionality of the Earth’s Re-
flectances (POLDER) instrument that was operational from
2004–2013. Data from other satellites not in a common orbit
provide additional opportunities to enhance and eventually
extend OMI data. Similar approaches are possible with sen-
sors in other constellations such as the Suomi NPP platform
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that hosts the Visible Infrared Imaging Radiometer Suite
(VIIRS) and OMPS that will fly in tandem with the S5P
TROPOMI and multiple geostationary hosting UV/VIS spec-
trometers (TEMPO, GEMS, Sentinel-4 UVN) along with
higher spatial resolution visible imagers such as the Japan
Aerospace Exploration Agency (JAXA) Geostationary Me-
teorological Satellite (GMS) Himawari, the Geostationary
Operational Environmental Satellite (GOES) R Series Ad-
vanced Baseline Imager (ABI), and Meteosat Third Genera-
tion Flexible Combined Imager (FCI).

In addition to the examples provided below, there are nu-
merous works that employ cross-platform comparisons for
evaluation of OMI and other satellite data sets and algo-
rithms. For example, Veefkind et al. (2011) used spatial and
temporal correlations between concurrent satellite observa-
tions of aerosol optical thickness (AOT) from MODIS and
OMI tropospheric columns of NO2, SO2, and HCHO to infer
information on the global composition of aerosol particles.
Other studies that use cross-platform data sets together for
synergetic analyses for volcanic eruption and studies of air
pollution include Carn et al., 2007a; Witte et al., 2011; Hsu
et al., 2012; Wang et al., 2013. Studies specifically for aerosol
include Carboni et al. (2012), Chen et al. (2012), Lacagnina
et al. (2015), and Jethva et al. (2014b), and Zhu et al. (2016)
for HCHO. Examples of combining ozone information from
different platforms are given in Sect. 7.3.

9.1 OMI field of view for collocation

To aid in the interpretation of OMI data and use them in con-
junction with other instruments, it is important to have a pre-
cise estimate of its field of view (FOV). To this end, in depth
comparisons of collocated OMI and MODIS radiances have
been conducted (de Graaf et al., 2016; Sihler et al., 2017).
Results show that the OMPIXCOR product 75FoV corner
coordinates are accurate as the full width at half maximum
(FWHM) of a super-Gaussian FOV model when this func-
tion is assumed. These studies are anticipated to help expand
the work of de Graaf et al. (2012) by allowing for the use
of collocated OMI and MODIS data to compute the aerosol
direct effect over clouds among other applications.

9.2 A-train collocated products

The OMI team has developed collocated products that aid in
algorithm development and validation. These include a new
standard product that contains both OMI cloud products as
well as many Aqua MODIS statistical cloud parameters col-
located to OMI footprints known as OMMYDCLD. Over the
past 2 years, working closely with aerosol algorithm develop-
ers, the team also produced a new level 2 orbital track product
(OMMYDAGEO) that collocates OMI geo-coordinates (row
and scan number) onto the MODIS granule on 3 and 10 km
scales. This product assists users with the computationally
burdensome task of collocating data from these two instru-

ments, providing a direct link between the MODIS and OMI
aerosol data products at two different spatial resolutions.

9.3 Aerosol products

Aerosol products have benefitted from the A-train in several
ways. For example, in the OMAERUV aerosol product, data
from the CALIOP have been used to constrain the aerosol
layer heights, and carbon monoxide (CO) data from AIRS
have been used to help distinguish different types of ab-
sorbing aerosol, i.e., smoke from dust (Torres et al., 2013).
MODIS data (OMMYDCLD) have been used to evaluate
the effect of subpixel cloud contamination (Gassó and Tor-
res, 2016). AOTs from MODIS have also been combined
with OMI measurements to estimate aerosol layer height
(Satheesh et al., 2009; Chimot et al., 2017).

Another important science application of the OMI and
A-train aerosol products is the first global estimate of the
shortwave direct radiative effect of aerosols at the top of the
atmosphere (TOA-DREA) over land and ocean (Lacagnina
et al., 2016). This work was carried out using data based
on global satellite observations of SSA, phase function,
and AOD from PARASOL, in synergy with OMI SSA re-
trievals. Aerosol information from these two sensors is com-
bined with the land-surface bidirectional reflectance distri-
bution function (BRDF) and cloud properties from MODIS
to produce monthly mean TOA-DREA global monthly av-
erages in 2006. The estimated global mean TOA-DREA is
−4.6± 1.5 W m−2 for cloud-free and −2.1± 0.7 W m−2 for
all-sky conditions. All-sky TOA-DREA is less negative than
its cloud-free counterpart, because of enhanced planetary
albedo by clouds and cloud masking effects on aerosol ra-
diation interactions. These are the first DREA estimates con-
strained by satellite-based aerosol absorption observations.

The instantaneous TOA-DREA over clouds can be ob-
tained by combining level 1 radiance measurements in the
shortwave from OMI with radiance measurements from
MODIS on the A-train. The instantaneous TOA-DREA over
clouds can be estimated very accurately using hyper spectral
radiances of aerosol and clouds scenes (de Graaf et al., 2014),
which can be achieved by combining OMI and MODIS radi-
ances. The instantaneous TOA-DREA over clouds can reach
values up to 130±W m−2, which results in strong warming
of the atmosphere at the location of the aerosol layer.

9.4 Clouds and radiation

The two OMI cloud algorithms are based on oxygen dimer
absorption at 477 nm (Acarreta et al., 2004; Veefkind et al.,
2016) and rotational-Raman scattering at 350 nm (Joiner and
Vasilkov, 2006), both related to photon path lengths in the at-
mosphere (Stammes et al., 2008). The A-train has provided
unique opportunities to help interpret and evaluate these
measurements. Radiative transfer calculations using collo-
cated cloud extinction profiles from MODIS and CloudSat

www.atmos-chem-phys.net/18/5699/2018/ Atmos. Chem. Phys., 18, 5699–5745, 2018



5722 P. F. Levelt et al.: The Ozone Monitoring Instrument

have been used to evaluate the OMI retrievals (Vasilkov et
al., 2008). In addition, a third photon path length type mea-
surement (from PARASOL measurements of oxygen absorp-
tion in the O2 A band) provided additional measurements for
evaluation (Sneep et al., 2008).

These works demonstrated that the cloud pressures derived
from OMI and similar path length type measurements do not
measure the physical cloud top but rather an average pres-
sure reached by solar photons inside a cloud. This pressure
has been referred to as the optical centroid cloud pressure
(OCCP) where the centroid relates to the vertical distribution
of cloud reflectance. This led to the development of fast sim-
ulators that can be used to estimate OCCP based on vertical
extinction profiles from either models or measurements such
as those provided by CloudSat/MODIS (Joiner et al., 2012).

The OMI OCCPs were shown to be distinct from estimates
of the physical cloud top provided by infrared, radar, or li-
dar (e.g., Joiner et al., 2006; Ziemke et al., 2009; Avery et
al., 2010). This then led to the development of an approach
to detect multi-layer clouds using OMI OCCP in combina-
tion with cloud top pressures from Aqua MODIS (Joiner et
al., 2010). Vasilkov et al. (2010) showed that optically thick
clouds over snow and ice can be detected using the differ-
ence between retrieved OMI OCCP and the surface pressure.
Finally, it has been noted that the effective cloud fraction
(ECF), a standard parameter in the OMI cloud products, is
nearly linearly related to top of the atmosphere shortwave
radiative flux (TOA-SWF; Gupta et al., 2016). They used
nearly coincident estimates of TOA-SWF from the Aqua
CERES along with OMI and other ancillary parameters to
train an artificial neural network (ANN) to estimate TOA-
SWF. This relationship is also exploited by the surface solar
irradiance product from OMI (http://www.temis.nl/ssi, last
access: 5 April 2018), which is validated against the glob-
ally distributed Baseline Surface Radiation Network (BSRN)
measurements (Wang et al., 2014).

9.5 Trace gases

Besides the work on volcano monitoring (Sect. 4) and
estimated emissions using data from multiple platforms
(Sect. 3.4), deriving trace gas concentrations from polar-
orbiting satellite platforms that have different equator cross-
ing times can provide information about diurnal variability.
It is important that these types of cross-platform analyses use
a common algorithm. This has been accomplished for NO2
using OMI and SCIAMACHY (Boersma et al., 2008).

DeSmedt et al. (2015) have studied the diurnal variabil-
ity of formaldehyde (HCHO) by joint analysis of GOME-2
morning and OMI afternoon measurements using the same
retrieval algorithm for both instruments3. They find that in
the morning the formaldehyde observations are higher than

3Data are available at the TEMIS website (http://h2co.
aeronomie.be, last access: 5 April 2018).

in the afternoon over tropical rainforests in the Amazon
basin, Africa, and Indonesia. In urban areas at mid-latitudes
higher formaldehyde values are found in the afternoon; how-
ever, the authors point out that this is probably partly driven
by the better spatial resolution of the afternoon observations
by OMI.

Joint analysis of stratospheric NO2 measured by the
Odin/OSIRIS limb viewing instrument (Haley and Brohede,
2007) and OMI column NO2 to improve the tropospheric
NO2 column have been demonstrated by Adams et al. (2016)
by analyzing 1 year of data from OSIRIS along with a pho-
tochemical box model to account for diurnal variations of
stratospheric NO2 and the temporal mismatch in observa-
tions. The authors conclude that in order to fully exploit the
advantage of the methodology, further work is needed to un-
derstand all biases between the instruments. This work shows
the potential to combine information from polar and geosta-
tionary platforms.

Over eastern Asia, Verstraeten et al. (2015) showed that
strong increases between 2005 and 2010 in OMI NO2
columns can been used to quantify the contribution of pho-
tochemical ozone formation to the rapid increase in mid-
tropospheric ozone concentrations over and downwind of
that region. Their study demonstrated that the good vertical
sensitivity of OMI to ozone precursors down to the Earth’s
surface can be combined with the sensitivity of the TES in-
strument to mid-tropospheric ozone, to arrive at a more com-
prehensive understanding of spatio-temporal patterns in tro-
pospheric ozone.

9.6 Geometry-dependent Lambertian equivalent
reflectivity

For most OMI algorithms, it is important to have accurate
estimates of surface reflectance. Surface reflectance is com-
plex because it varies with the sun–satellite viewing geome-
try as well as with time and space. Vasilkov et al. (2017) con-
structed a global time-varying geometry-dependent Lambert-
equivalent reflectivity (GLER) product (i.e., for each OMI
pixel) based on MODIS data and ocean models. This allows
for integration into existing algorithms based on Lambert-
equivalent reflectivity models without any major modifica-
tions to the algorithms. The GLER was tested within OMI
NO2 and cloud retrievals and found to have a significant im-
pact (Vasilkov et al., 2017). The GLER approach can also be
applied to other UV/VIS instruments.

10 OMI validation using field campaign data

OMI data have been used to support flight planning for many
international field campaigns and conversely data from these
campaigns has helped to validate OMI retrievals. Success-
ful OMI validation field campaigns provide data to aid in
relating surface observations to retrieved OMI column in-

Atmos. Chem. Phys., 18, 5699–5745, 2018 www.atmos-chem-phys.net/18/5699/2018/

http://www.temis.nl/ssi
http://h2co.aeronomie.be
http://h2co.aeronomie.be


P. F. Levelt et al.: The Ozone Monitoring Instrument 5723

formation. Campaigns including a series of Aura Validation
Experiments (AVE; Schoeberl et al., 2008), DANDELIONS
(Brinksma et al., 2008), and INTEX-B (Singh et al., 2009)
have achieved this using vertically integrated aircraft and li-
dar data, and also by using measurements from a multi-axis
differential optical absorption spectroscopy (MAX-DOAS)
type instrumentation that produce OMI-comparable column
amounts of trace gases and aerosols. Some examples of OMI
retrieval improvements derived directly from using valida-
tion campaign data include Lee et al. (2009) for SO2 and
Hains et al. (2010) for NO2.

There are several challenges common to most field cam-
paign data when applied to satellite validation. One of the
biggest issues for an airborne campaign is measurement re-
peatability, that is, does the aircraft measure over the same
locations within an acceptable proximity to satellite overpass
time for multiple days? Often flight patterns are designed to
capture specific types of air pollution plumes and thus are
sporadic in both time and space. The recent Atmospheric
Tomagraphy Mission (ATom) is a notable exception to this
approach with a fixed global flight circuit covering multiple
seasons and years (Prather et al., 2018).

OMI validation is also heavily reliant upon well-
established ground networks of instruments measuring
columns of NO2, SO2, HCHO, O3, UV, and aerosols.
AERONET for aerosol optical depth (Torres et al., 2007; Ahn
et al., 2014), Brewer–Dobson network for total ozone col-
umn (Labow et al., 2013; McPeters et al., 2015), SHADOZ
for ozone profiles (Thompson et al., 2012), the Pandora spec-
trometer network (Tzortziou et al., 2013), the Pandonia net-
work (Müller et al., 2017), and many other networks have all
been used for measuring a wide range of OMI-relevant trace
gases and aerosols useful for OMI validation. It is essential
for these networks to have consistent standards in site setup,
retrieval method, and data processing.

Here, we discuss the Deriving Information on Surface
Conditions from Column and Vertically Resolved Observa-
tions Relevant to Air Quality (DISCOVER-AQ) campaign
relevant to OMI NO2 and O3 and the Cabauw Intercompari-
son campaign for Nitrogen Dioxide measuring Instruments
(CINDI and CINDI-2) campaigns in more depth. These
campaigns address these challenges by including consistent,
repeatable sampling (DISCOVER-AQ) and in the case of
CINDI-2, a rigorous instrument intercomparison protocol.

10.1 DISCOVER-AQ

The DISCOVER-AQ project was a 4-year NASA Earth Ven-
ture Suborbital mission to improve the use of satellites to
monitor air quality for public health and environmental ben-
efit. Through targeted airborne and ground-based observa-
tions, DISCOVER-AQ aimed at improving the interpreta-
tion of satellite observations to diagnose near-surface con-
ditions relating to air quality. Deployments took place over
the Washington, DC and Baltimore, MD metropolitan area

in July 2011, in the San Joaquin Valley of California in win-
ter 2013, and two warm season campaigns followed in Hous-
ton, Texas in September 2013 and in the Denver/Front Range
region of Colorado in July/August 2014. Two aircraft were
used: the NASA P-3B for in situ sampling typically from 0.3
to 3 km altitude in a spatially consistent pattern of spiral as-
cents and descents and the NASA UC-12 flying at ∼ 8 km
with remote sensing instruments for trace gases and aerosols.
Extensive ground observations were used to measure air pol-
lution at the surface using in situ observations, and aloft using
balloons and remote sensing instruments including a network
of Pandora spectrometers. They provided continuous (every
20 s) high-resolution measurements of total column NO2 and
O3 amounts at a minimum of 12 urban and rural locations.

The OMI standard product tropospheric NO2 retrieval ver-
sion 2.1 was compared with the vertical integration of the
Baltimore/Washington DISCOVER-AQ P-3B aircraft data
and the ground-based Pandora retrievals (Lamsal et al.,
2014). OMI agreed with the aircraft data to within ±20 % in
60 % of the cases at four of six sites, while there was a greater
difference at two sites near coastal areas that have complex
vertical and horizontal distributions of NO2. On average the
OMI columns were less than those from the aircraft by 6 to
22 % except at the two coastal sites, where the aircraft col-
umn was often a factor of 2 greater. OMI total column NO2
was less than Pandora by < 6 % at three sites and greater than
Pandora by 9–13 % at two sites.

Pandora total columns of O3 and NO2 were compared with
those from OMI at all 12 sites in the Baltimore/Washington
region by Tzortziou et al. (2013). Pandora total column
NO2 varied by an order of magnitude spatially and tempo-
rally with distinct diurnal and weekly patterns in polluted
areas. The NO2 column average difference between Pan-
dora and OMI ranged from −0.17 to +0.05 DU with OMI
mostly showing underestimates, particularly in urbanized ar-
eas where pollution sources were located close to measure-
ment sites. For total column O3 the average differences were
< 12 DU (or 3.9 %) with OMI greater than Pandora. Reed et
al. (2015) also compared Pandora with OMI during the Bal-
timore/Washington campaign and found that OMI pixel size,
clouds, and aerosols affected OMI retrievals causing differ-
ences between Pandora and OMI of up to 65 % for total col-
umn NO2 and 23 % for total column O3.

The Airborne Compact Atmospheric Mapper (ACAM)
flew on the NASA UC-12 aircraft during the Balti-
more/Washington DISCOVER-AQ campaign, yielding high-
resolution (1.5× 1.1 km2)DOAS NO2 retrievals for columns
below the aircraft. Slant columns are converted to vertical
columns (Lamsal et al., 2017) using NO2 profiles from a
high-resolution regional air quality model and bidirectional
reflectivity distribution function data from MODIS. ACAM
retrievals compared well with vertically integrated in situ
data (See Fig. 16). ACAM demonstrated intra-urban spatial
variability that cannot be captured with OMI, revealing a fac-
tor of 4 subpixel variability seen within some OMI pixels.
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Figure 16. Comparison of average tropospheric (orange bars) and
total (blue squares) NO2 columns determined from in situ aircraft
(black bars) measurements and total columns retrieved from Pan-
dora (filled blue circles) at the six locations in Maryland during
the DISCOVER-AQ field campaign (from Lamsal et al., 2014).
Open bars and squares represent the operational retrievals and filled
bars and squares represent the retrievals performed using collocated
aircraft-measured NO2 vertical profiles. The vertical lines represent
the standard deviation of the average.

Ozonesondes were launched typically twice a day dur-
ing DISCOVER-AQ flight days from two sites in the Bal-
timore/Washington area. Total column O3 from the sondes
averaged 3 % greater than OMI columns (Thompson et al.,
2014), which considering the 5 % sonde uncertainty is not
statistically significant. The sonde data were also compared
with trajectory-mapped OMI minus MLS tropospheric O3
residual (surface to 200 hPa; Schoeberl et al., 2008), yield-
ing a statistically significant average discrepancy of 10 %.

The KNMI patented NO2 sonde, known as the NO2-sonde,
(Sluis et al., 2010) was operated on a tethered balloon plat-
form and was used to fill a critical gap between the ground
level and the lowest extent of the NASA P3-B aircraft that
regularly made spiral flights over the NO2-sonde site. The
NO2-sonde data can be combined with the NO2 measure-
ment from the NCAR NOxyO3 instrument on board the P3-
B as both use chemiluminescence and have a sampling rate
of 1 Hz. The combined vertical profiles of NO2 in the near-
surface layer offer the opportunity to test the assumptions of
NO2 profile shape that are used in both models and the OMI
retrieval of NO2.

These data sets were used in two ways to examine OMI
NO2 retrievals. The combined aircraft–sonde data were first
used to create a pseudo-column for comparison with OMI
and Pandora located at the Huron, CA site in January 2013.
Second, a combined aircraft–sonde profile was created for
the afternoon profile taken on 22 January 2013 compared to
the a priori model profile shape to analyze the possible error
in assumed profile shape as compared to the “actual” profile
shape measured by the sonde and aircraft. The well-mixed
afternoon boundary layer in this case led to a small calculated
error in column amount of 8 % as shown in Fig. 17.

Figure 17. Comparison of NO2 vertical profile obtained from
KNMI NO2-sonde to in situ aircraft profile, TM4 model profile
and OMI (DOMINO) averaging kernel for OMI pixel covering the
DISCOVER-AQ site in Huron, California on 22 January 2013.

10.2 CINDI and CINDI-2

For the validation of space-borne observations of NO2 and
other trace gases from hyperspectral imagers like OMI,
ground-based instruments using the MAX-DOAS technique
(Hönniger et al., 2004; Wittrock et al., 2004) are an excellent
choice, since they rely on similar retrieval techniques em-
ployed for observations from orbit. In both cases, retrievals
take into account the light path of scattered sunlight though
the entire atmosphere. To ensure proper traceability of the
MAX-DOAS observations, a thorough intercomparison is
mandatory, which is one of the goals of both the Cabauw
Intercomparison campaign for Nitrogen Dioxide measuring
Instruments (CINDI) and CINDI-2 campaigns.

The Cabauw Experimental Site for Atmospheric Research
(CESAR; Apituley et al., 2008) site in the center of the
Netherlands was the stage for CINDI in June–July 2009
(Piters et al., 2012). The location is under the influence of
both clean and polluted air masses. Here, a wide range of ob-
servations were routinely carried out that fulfill the require-
ment to provide the background necessary to unravel the
differences between the observations from different MAX-
DOAS instruments that can be quite diverse in design and
data treatment. These observations include observations to
understand the light paths, i.e., in situ aerosol observations
of optical and microphysical properties, as well as vertical
profiles of aerosol optical properties by (Raman) lidar (Apit-
uley et al., 2009; Donovan and Apituley, 2013; de Haij et
al., 2007). In addition, vertical profiles of NO2 were mea-
sured during CINDI using the then newly developed NO2-
sonde (Sluis et al., 2010), and a NO2 lidar system (Volten et
al., 2009). This approach proved to be highly successful and
results were described in papers collected in a special issue
(Roscoe et al., 2010). Although no direct OMI validation was
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performed using data collected during CINDI, the campaign
was crucial in establishing the performance and requirements
of the ground-based instruments (e.g., Lamsal et al., 2014;
Irie et al., 2012).

With the Sentinel-5 Precursor TROPOMI and its nadir
pixel size of 7.0× 3.5 km2, together with recent develop-
ments in MAX-DOAS instruments (e.g., Ortega et al., 2015),
there was a need for a follow-up MAX-DOAS intercom-
parison campaign. Thus CINDI-2, which was completed in
September 2016, had the following goals: (1) to assess the
consistency of slant column measurements of key target
species (NO2, O3, O4, and HCHO) relevant for the valida-
tion of TROPOMI and the future ESA atmospheric Sentinels
using a large number of DOAS and MAX-DOAS instruments
from all over the world, (2) to study the relationship between
remote sensing column and profile measurements of those
species and reference measurements of the same species, and
(3) to investigate the horizontal representativeness of MAX-
DOAS measuring systems in view of their use for the vali-
dation of satellite tropospheric measurements on the scale of
25–50 km2. During CINDI-2, 36 MAX-DOAS instruments
participated. A feature of recent MAX-DOAS developments
is the ability to use azimuthal scanning, in addition to eleva-
tion scanning, such as in, for example, the Pandora type of
instruments (Herman et al., 2009).

To support the campaign goals, NO2 profiles were again
provided by NO2-sondes and lidar, as well as through in situ
observations and other ancillary observations situated in and
around the Cabauw meteorological tower as depicted in
Fig. 18. Extensive aerosol information was gathered using
Raman lidar as well as by in situ samplers. The rigorous
semi-blind comparison methods and strict data protocol for
all instruments that participated in CINDI-2 as described in
Kreher et al. (2017) ensure that this group of MAX-DOAS
type instruments will form a reliable global network for both
OMI and TROPOMI validation.

11 Conclusions

OMI was successfully launched on NASA’s EOS-Aura satel-
lite on 15 July 2004 and continues to deliver a huge amount
of satellite data for studying the ozone layer, air quality, and
climate change. In this paper, we have given an overview of
the instrument’s exceptional capabilities and we have high-
lighted the scientific and operational applications obtained
using OMI data. Detailed results can be found in the papers
in this OMI special issue and other publications. Due to the
broad user community and worldwide use of OMI data in
the scientific as well as the operational domain, the complete
set of results obtained with OMI data extend far beyond the
reach of this special issue.

OMI is the first instrument that is able to obtain daily
global coverage combined with unprecedented spatial reso-
lution, sensing a high-resolution spectrum per ground pixel.

Figure 18. Schematic layout of the CINDI-2 campaign superim-
posed on an aerial picture of the CESAR site. Main instrument
classes are indicated. The NO2-sondes were launched from close
to the tower. A long-path DOAS was placed at a distance of about
4 km from the tower that was able to scan several retroreflectors at
different altitude levels.

This technique, based on the use of a 2-dimensional detector
and a unique optical design, is now being used in follow-on
satellite instrumentation by European, American, and Asian
space programs. Furthermore, OMI is exceptionally stable,
more so than any previous UV/VIS satellite instrument.

In the unique trans-Atlantic collaboration between the
Netherlands, Finland, and the United States, we were able
to obtain a very successful international co-operation that
enabled us to learn and improve our different techniques of
analyses and interpret the satellite measurements. In this co-
operation, the instrument and retrieval knowledge built up
over the last 20 to 40 years, between the US and Europe, was
exchanged and lead to mutual improvement and understand-
ing of the measurements and their interpretation, with impor-
tant outcomes for research on the chemical composition of
the atmosphere. In particular, the development of retrievals
with different approaches and application to the same instru-
mental data led not only to improvements of the retrieval al-
gorithms but also to enormous advances in our understanding
of the data and its accuracy.

The scientific exploitation of OMI data led to new insights
and findings, especially in the air quality domain, mostly
related to the high-resolution NO2 and SO2 measurements
and their use for air quality forecasts, emission estimations,
source attribution, and trend monitoring. Due to the develop-
ment of the NRT and VFD data streams, the operational use
of OMI data was much greater than expected. Examples in-
clude the use of OMI NRT data in the EU Copernicus CAMS
project for ozone layer and air quality products, and the use
of the NRT and VFD data for the VAACs for aviation rerout-
ing in case of volcanic eruptions.

www.atmos-chem-phys.net/18/5699/2018/ Atmos. Chem. Phys., 18, 5699–5745, 2018



5726 P. F. Levelt et al.: The Ozone Monitoring Instrument

There were also many positive unanticipated results with
OMI data, such as the first ever observation of glyoxal from
space, the use of the extremely stable OMI solar irradiance
product by the solar irradiance community for monitoring the
sun in relation to climate change, the development of high-
resolution emission source monitoring, and the unexpected
strong correlation of OMI tropospheric NO2 column mea-
surements with in situ, near-surface monitoring instruments
in regional domains. In conclusion, as OMI extends far be-
yond its planned mission lifetime with more than 13 years
of data, the impact of this broad-reaching data set will only
continue to grow due to OMI’s stability and owing to its con-
nection with both past and future satellite missions.

Data availability. The data sets for all OMI standard products
are listed in Table 1 with corresponding DOIs or URLs. There
are several locations for accessing and downloading OMI data.
The majority of level 1b, level 2(g), and level 3 data products
can be obtained via NASA archives including the Goddard
Earth Sciences Data and Information Services Center (GES
DISC; https://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI;
NASA, 2018) and the accompanying MIRADOR data search
tool (https://mirador.gsfc.nasa.gov/; MIRADOR, 2018). OMI
data can also be found at TEMIS (www.temis.nl; TEMIS,
2018). Additional, detailed level 1b and instrument quality
information can be found on the KNMI OMI website (http:
//projects.knmi.nl/omi/research/calibration/instrument_status_v3/;
KNMI OMI, 2018). VFD products produced by FMI can be found
on the SAMPO site (http://sampo.fmi.fi/; SAMPO, 2018). The
OMI Data User’s Guide detailing all data products can be found
with the following link: https://docserver.gesdisc.eosdis.nasa.gov/
repository/Mission/OMI/3.3_ScienceDataProductDocumentation/
3.3.2_ProductRequirements_Designs/README.OMI_DUG.pdf
(last access: 18 April 2018).
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