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Summary

Erasmus MC is conducting a study on the increased risk of cardiovascular disease in women
who have migraine. For this purpose, 50 healthy women and 50 women with migraine in
age category of 40-60 years were compared using measurements of their dermal blood flow.
These measurements are done using two different imaging devices: Laser Speckle Imaging
and Laser Doppler Imaging. The result is a recording of the fluctuations in the dermal blood
flow over a time period influenced by circumstances and various mechanisms and consists of
signal like curves. Erasmus MC have processed these measurements and obtained results.
However, they are interested in whether applying Fourier Transform could offer additional
insights or new (perhaps faster) methods to process the measurements.
The signal like curves can possibly be decomposed into sine and cosine waves using Fourier
Transform. The result of the Fourier Transform consists of a visualisation of the intensity
of the various components of such a waveform/curve. Based on that, it is possible to
estimate the contribution of the mechanisms to blood perfusion. Existing literature and
previous studies provide frequency intervals related to several mechanisms that influence
the dermal blood flow.
This thesis will research to what extent the mechanisms contribute to the dermal blood flow
across the different phases and how their behaviour differs when the circumstances for the
measurement are adjusted. Perhaps there are behaviours that are instantly recognizable
across all patients. An interesting question to answer would be whether it is possible to
directly visualise the risk groups.
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Chapter 1

Introduction

There are several methods to visualize superficial layers of human dermal skin. This
movement can be influenced by several mechanisms. Blood vessels are known to constrict
(contract) or dilate (relax), which varies depending on several factors. For example, blood
vessels dilate during exercise to allow for more blood to flow.

Migraine is a condition that is possibly linked to micro vascular dysfunction, which is
when the small blood vessels get damaged to some extent. Measuring such micro vas-
cular dysfunction is more difficult compared to conventional methods used in general for
vascular research. However, one method to measure the micro vascular dysfunction is by
doing measurements of the dermal blood flow using Local Thermal Heating (LTH). In this
method, areas of human skin are sectioned off using small reservoirs which are filled with
water and then heated to increase the dermal flow. Doing this allows certain substances
in the blood to break free and therefore, blocking such a substance on one of the sectioned
off areas of human skin and comparing it to an area without such blockage can help in
understanding the influence of that substance on the passage of blood.

For people with migraine it is believed that the increased risk of cardiovascular disease
does not depend on calcification of the larger blood vessels of the large arteries. [1] [2]
Instead, the cause seems to be micro vascular dysfunction.[3] The mechanisms that are
seemingly linked to micro vascular dysfunction are the Endothelium-Derived Hyperpolar-
izing Factor (EDHF), nitric oxide (NO) and certain neuropeptides.
In the VASCULAR-study conducted by Erasmus Medical Centre (Erasmus MC) two mech-
anisms are isolated for further research: nitric oxide and neuropeptides. The way the
influence of these mechanisms can be studied is by measuring the dermal blood flow as
a response to LTH using the Laser Speckle Imaging (LSI) machine or the Laser Doppler
Imaging (LDI) machine. Occasionally, the names Laser Doppler Flowmetry (LDF) and
Laser Doppler Perfusion Imaging (LDPI) are used to refer to the method to measure the
blood flow using LDI.

These imaging machines return a curve containing the varying amounts of blood flowing
through the micro vessels. Currently, the method used for further analysis of the results
calculates the area under the curve and the maximum height of the curve. However, there
are also other methods for analyzing the curve, such as decomposing it using the Fourier
Transform (FT) and the Wavelet Transform. (Qi, 2016) [4] These distributions decompose
the original signal for further analysis of the components that make up one such signal.
In this way, it might be possible to isolate mechanisms and find the magnitude of their
contribution to the signal.
The focus of this project will be to analyse the signal using the Fourier Transform. From
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previous analyses of measurements by LDI machines certain lower frequency bands have
been isolated from the skin blood flux signals that are thought to represent some mech-
anisms, including the nitric oxide that is being researched for the VASCULAR-study. [4] [5]

Some variation is expected in the results depending on, amongst other factors, the chosen
machine and the physiological tests that are done. Especially the physiological tests cause
oscillations of varying frequencies in blood vessels. The idea is that various frequencies
correspond to different mechanisms. [6] (Mizeva et al, 2021)
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Chapter 2

Background

2.1 Introduction

The LSI and LDI machines are important components of the study. This chapter discusses
how these machines are used in practice and what results they produce. Next, the basis
of Fourier Analysis will be discussed and the relationship between the two machines and
Fourier Analysis.

2.2 LSI in practice

As mentioned previously, the influence of certain physiological mechanisms on the blood
flow beneath the skin can be visualised using LSI. By using multiple light scattering, LSI
quantifies the fluctuations in the intensity of the scatterings in a large variety of materials.
The speckle pattern is caused by differences in the length of the path that the photons
have traveled through a material. [7] (Buijs et al, 2019).
The speckle contrast is calculated by the spatial or temporal variance in specific set of
speckles. This process is known as LASCA, which stands for Laser Speckle Contrast Ana-
lysis, connected to LSCI (Laser Speckle Contrast Imaging). However, the variance in
processes that happen at different frequencies is more difficult to quantify since the meas-
urements are done in real-time and the quantification would take some time. To obtain
quantitative information, multiple speckle images with several exposure times are required.
This happens at the cost of the measurements being real-time. (Buijs et al, 2019).
Another method to calculate the speckle contrast is known as quantitative LSI. This is more
commonly used in materials science and measures the differences in processes happening
at different frequencies. This method uses the auto-correlation function of the intensity
of the speckles as a function of time. The quantitative property does come at the cost of
being computationally expensive. (Buijs et al, 2019)

So, two important requirements for the ideal method to calculate speckle contrast fol-
low. It should be fast and quantitative.
Buijs et al. (2019) discuss a new method that uses Fourier transforms to do the required
quantification. Related to Fourier transforms is the Fast Fourier transform that makes the
processing much faster. [7] According to the Wiener-Khinchin theorem [8] [9] (Wiener, 1930
and Lu and Vaswani, 2009), this method contains the same information as quantitative
LSI. [7]
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2.3 LDI in practice

For LDI, it was initially believed that the resulting data is highly variable and not repro-
ducible. However, according to Lancaster (2016), if the variations are handled properly
then it is possible to derive relevant information from LDI data about the frequencies of
the oscillations in the signal by using Fourier Transform.[10] When using Fourier Trans-
form for time-varying data, it is advised to take smaller segments (windows) in time and
apply the transform on the segments separately. This can be avoided by using the Wavelet
Transform. [5] Applying the Wavelet decomposition leads to information about both the
time and frequency domains. (Lancaster, 2016) [10]
The identification of 6 frequency intervals was eventually possible together with the cor-
responding oscillatory process of the tested mechanisms with the previously described ap-
proach. It was concluded that this approach is both reliable and reproducible. (Lancaster,
2016) [10]

2.4 Fourier Analysis

At the basis of Fourier Analysis are the Fourier series. The Fourier series of a function
f , which is piece-wise smooth on an interval [−L,L] with L > 0 ∈ R, converges to the
periodic extension of f on the domain on which it is continuous.
Hence, it does not matter whether f is periodic on the interval or not since on an extended
domain it is considered to be periodic. The Fourier series representation of a function f
can be written as follows:

f(t) ∼ a0 +Σ∞
n=1an cos

(
nπt

L

)
+Σ∞

n=1bn sin

(
nπt

L

)
(2.1)

For doing mathematical computations and programming however, it is necessary to dis-
cretize the time domain. In other words, the interval for which t is defined will be divided
over some N number of steps. This is known as the Discrete Fourier Transform (DTF)
and there are two variants of this. For periodic signals it is simply known as the Discrete
Fourier Transform (DFT) and for aperiodic signals, which is then assumed to be periodic
on an extended domain, there is the Discrete Time Fourier Transform (DTFT). [11]

Applying either one of these transforms on the input signal results in a discrete signal
that is given in the frequency domain. In other words, the signal that was originally rep-
resented in the time domain, is now represented in the frequency domain. This process is
also known as analysis. This can enable the discovery of the most prominent frequencies in
a signal, as mentioned earlier. Going back to the time domain from the frequency domain
is known as synthesis. [11]

2.4.1 Frequency

The frequency of something is measured in hertz (Hz), where 1Hz corresponds to one
rotation in a second. This kind of frequency will be denoted by f , which is different to the
f used previously to refer to a function. Hence, the f used from now onward will refer to
the frequency, unless stated otherwise.
Related to this is the angular frequency, which is denoted by ω and expressed in radians.
The relation between the two can be described as follows: ω = 2πf
As mentioned previously, for programming it is necessary to discretize the time domain.
Hence, the time interval is divided over N steps. However, this N cannot be decided
randomly. It is important to take a certain number of samples to avoid some type of
distortion of the signal, when trying to reconstruct it. If not enough samples have been
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taken, then it is possible that some important frequencies are missed which results in the
distortion of the signal. To determine the number of samples, the sampling frequency is
required. According to the Nyquist-Shannon sampling theorem we have: fs ≥ 2 · fmax,
where fs represents the sampling frequency and fmax represents the maximum frequency
or the fundamental frequency (in the case the signal consists of several components).
To this end, the digital frequency at index m (from the N samples) is expressed as

f̂ = m
fs
N

Additionally, the digital angular frequency at index m (on an interval ranging from 0 to
2π radians) is expressed as

ω̂ = m
2π

N

[11]

2.4.2 Spectral analysis

After applying the Fourier Transform to the signal, the visualisation of the frequency
components can be found through the amplitude spectrum. Where previously the signal
was represented as a curve on a specific time interval, the amplitude spectrum shows the
various frequency bands that the signal is composed of and the extent of their presence in
the signal. So, the y-axis represents the amplitude of the frequencies given on the x-axis.
Moreover, generally it is assumed that a sinusoidal wave does not have an angular shift.
In other words, the wave starts at the origin and has not been shifted prior to starting the
measurement. However, this is not always the case. It is possible that the wave is shifted
by some angle at the start of the time interval of the measurement. The extent to which
a frequency has been shifted already, is represented by the phase plot.

2.4.3 Fast Fourier Transform

There are two ways to apply the the Fourier Transform. The first method would be to,
of course, implement it by yourself. The other method would be to use a Fast Fourier
Transform function (reffered to as fft) included in a library in Python, such as SciPy or
Numpy.
Both ways result in the same solution however, the advantage of using fft becomes clear
when used on large data sets. Usually, an implementation has a complexity ofN2 compared
to N logN , which is the complexity of fft. Usually, an implementation has a runtime of N2

compared to N logN , which is the runtime of fft. Implementations of the fft are usually
based on the method published in 1965 by James Cooley and John Tukey.

2.5 To summarize

Fourier Analysis is an excellent tool to decompose period data into frequency bands for
further study. This method can be extended to aperiodic data as well. In order to do
computations, the time domain of the data has to be discretized. Literature suggests that
the results using quantitative LSI correspond to results generated using FFT. LDI has
previously been used to identify processes in the blood flow, which were initially believed
to be highly variable. However, handling the variability properly ensures that relevant
information can still be obtained.
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Chapter 3

Methods

3.1 Introduction

This chapter discusses the methods employed in the VASCULAR-study and introduces
what is expected to be achieved by using Fourier Analysis on the data.

3.2 Methodology of the VASCULAR-study

In addition to the information gathered from the papers on the different processes that
use Laser Speckle Imaging (LSI) and Laser Doppler Imaging (LDI), here follows a short
account of the process used for the measurements in the VASCULAR-study at Erasmus
MC.
The VASCULAR-study was conducted on 100 women in total in age category of 40-60
years who are otherwise healthy with requirements such as no prior history of cardiovas-
cular disease, non smoker, etc. Of the 100 women, 50 suffer from migraine and the other
50 do not. The initial goal of the study is to compare these two groups for an increased
risk of cardiovascular disease.
The measurements were conducted on the lower arm of the patients, where three areas on
each arm were isolated using small reservoirs and the areas were named Region of Interest
1/2/3 (ROI 1/2/3). For the study, the neuropeptides are blocked on ROI 2, nitric oxide
on ROI 1 and the third section (ROI 3) is used to compare the results afterwards. The
focus is mainly on the effect of blocking a certain mechanism on the blood flow, which
ensures a better understanding of the contribution of that mechanism. The reservoirs are
filled with water, which is then heated to ensure an increase in the blood flow, a process
known as LTH, as mentioned previously. The five minutes prior to LTH are known as the
baseline phase. Roughly 10 minutes later, a first peak is reached, which is appropriately
called the peak phase. Roughly 30-35 minutes after the start of the heating process, the
plateau phase is reached. In this phase, the absence of the mechanisms is expected to show
an influence on the dilation of the blood vessels and the blood flow.
Currently, after obtaining the measurements the processing of the results is done after cal-
culating the area under curve (AUC) and taking the maximum height. The goal now is to
research whether the processing of those results can also be done accurately and efficiently
by using the Fourier Transform.

For one of the two arms the LSI machine is used. The machine does measurements in
real time and maps the blood flow of a blood vessel at any moment. The blood flow can
also be influenced due to movement of the patient and similar external factors, hence it is
important to note that this method is slightly susceptible to some noise. However, the LSI
machine allows for measurements to be done in real-time and is considered to be a reliable
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method.

LDI measurements are not done real time. Instead, the machine does measurements in
intervals of a few seconds and maps an average value for each interval. Therefore the
information given by method is not as accurate as the information given by LSI. Never-
theless, it is a good method to compare/confirm the results of LSI with and therefore its
inclusion is necessary. Moreover, this method is less susceptible to noise due to movement
of the patients.

3.3 Fourier Analysis how it will be used.

The data sets generated by the LSI and LDI machines are generated by the fluctuations
in the amount of blood flowing through the blood vessels over a given period in time. As
described previously, these fluctuations can depend on various factors. In the VASCULAR-
study, the emphasis lies on the effect of nitric oxide (NO) and certain neuropeptides. How-
ever, here the effect of neuropeptides will not be considered. Due to the nature of the
neuropeptides, it is recommended to leave them out. Instead, the focus will be on NO
and the Endothelium-Derived Hyperpolarizing Factor (EDHF). The fluctuations caused
by these mechanisms can possibly be decomposed into sine and cosine waves using Fourier
Transform, which enables the visualisation of the intensity of these components. In other
words, it is possible to see the contribution of these mechanisms to blood perfusion.

Previous studies ([4] and [10]) have been able to isolate frequency intervals corresponding
to the aforementioned mechanisms. According to these studies, the interval 0.005-0.0095Hz
could be attributed to EDHF. [4] [10]
Moreover, for the interval 0.0095-0.021Hz is the one where nitric oxide plays an important
role in the fluctuations. As phrased by Lancaster, "Interval V, from 0.0095 to 0.021 Hz,
was first found to contain oscillations due to endothelial activity through the use of the
endothelial dependent vasodilator acetylcholine (ACh) and the endothelial independent
vasodilator sodium nitroprusside (SNP) [123]. This endothelial activity was found to be
partly mediated by nitric oxide (NO) [102] " [10] Based on this, ACh and SNP also play a
role in the blood perfusion caused by NO.

3.4 Conclusion

The Erasmus MC conducted a study, called the VASCULAR-study, on 100 women to find
out the role two mechanisms (nitric oxide and neuropeptides) play in the increased risk
of cardiovascular disease in women suffering from migraine. To this end, they used two
imaging machines (Laser Speckle and Laser Doppler) on each patient to map the blood
perfusion. They ran their calculations and obtained results.
The goal now is to use Fourier Transform on their measurements in order to research
whether accurate results can be generated efficiently using this method. Due to the nature
of the mechanism, neuropeptides are replaced by EDHF. Previous studies have found
corresponding frequency bands for both NO (0.0095-0.021Hz) and EDHF (0.0005-0.0095).
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Chapter 4

Analyses of the data sets

4.1 Introduction

Initial analysis was done on self-generated data, to gain an intuitive understanding of the
method. Several ways exist to generate your own data, depending on the requirements.
In this chapter, two such ways will be discussed, followed by an introduction to the actual
data set.
As the first step of analysing any type of data, Fourier Transform will be applied.

4.2 Generated data set 1

As mentioned before, the data that will be used here in the future consists of mappings of
blood flow through blood vessels over a certain time interval. This type of biological data
is rather difficult to imitate. Several processes take place simultaneously and influence
the measurements. Moreover, the measurements can also be influenced by factors from
outside, making the data susceptible to noise.
Therefore, in order to generate data the simplest way is to generate 30 uniformly distributed
random points in the range from 0 to 100. Using uniformly distributed random points is
an attempt to obtain points without an underlying pattern in order to avoid the over-
or under-representation of certain points. This is to ensure that the data is not periodic,
since the final data will not have a strongly periodic appearance. The idea is to "imitate"
a measurement of 30 seconds and the range from 0 to 100 seemed reasonable enough.
Moreover, the value is in arbitrary units since that holds for the actual data set too. Figure
4.1 contains the data set and figure 4.2 contains the corresponding amplitude spectrum
plot. This plot shows the level of presence of the frequencies in the data set. Since the
data consists of uniformly distributed random points, there is a huge peak in figure 4.2 for
frequency 0.

Figure 4.1: Self-generated Figure 4.2: Amplitude spectrum
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4.2.1 The DC offset

Such a peak is caused by the component wave of the signal that is simply a horizontal line,
thus having frequency 0. It describes the amount with which the signal has been shifted
from the x-axis. This component is known as the Direct Current (DC) offset. [11] To
remedy this, it is possible to subtract the mean value of the data from every data point.
This can be seen in figure 4.3

Figure 4.3: Amplitude spectrum after DC offset removal

In this case, the data being randomly generated is causing all the frequencies to have a
somewhat equal contribution to the signal. No uniquely significant frequencies seem to be
present there, even after the DC offset removal.

4.3 Self-generated data set 2

Another way to generate a data set on which Fourier Transform can be applied is by
defining functions to create sine waves. Using 4 such functions, to which some randomly
generated noise has been added, figure 4.4 is obtained. In figure 4.5 the corresponding
amplitude spectrum can be seen, where the DC offset (see section 4.2.1) has been removed
and the frequency axis has been halved (see section2.4.1). From this plot, it is clear that
the 4 sine functions, and therefore this signal, consists of the following frequencies: 19 Hz,
37 Hz, 53 Hz and 67 Hz.

Figure 4.4: Self-generated Figure 4.5: Amplitude spectrum

4.4 To summarize

As mentioned previously in section 2.4.3, the libraries SciPy and NumPy contain an imple-
mentation of the Fast Fourier Transform which can be used immediately. The emphasis,
however, lies on how useful information can be obtained after the transformation has been
done. More on that follows in the next chapter.
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Chapter 5

Results for the first patient

5.1 Introduction

In total 13 of the 200 measurements have been analysed. In this chapter, the very first one
of the 13 will be discussed. For this set, both the Laser Doppler Imaging (LDI) and Laser
Speckle Imaging (LSI) measurements will be included.
First, some observations will be described, followed by a deeper analysis of both data sets.

5.2 Description of the sets

Region of interest (ROI) 3 for both LDI and LSI can be seen in figures 5.1 and 5.2. The LSI
measurement was done over a time period of 42 minutes and 48 seconds, which is converted
to seconds entirely for the visualisation. Similarly, the LDI measurement was done over
a period of 42 minutes and 24 seconds. On the x-axis, these have been converted into
seconds. The y-axis contains the changes in dermal blood flow. This does not correspond
to any units.

Figure 5.1: LSI measurement Figure 5.2: LDI measurement

5.3 Initial observations

Some observations can be made from these images. First of all, the LSI measurement,
despite its many new advantages for mapping blood flow, is very susceptible to noise and
outliers since the measurements are being done in real-time. The outliers can, for example,
be caused by a sudden movement of the patient. To a great extent, the outliers have
been taken care of for the VASCULAR-study, by taking averages of measurements in the
neighbourhood of the outlier, for example. The remaining processing of this data set will
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be described in the upcoming sections. Moreover, this measurement is done in real time.
There are 2544 data points over a period of 2568 seconds, which comes down to a sampling
frequency of 1 Hz. As described in section 2.4.1, the Nyquist frequency becomes 0.5 Hz,
meaning that only mechanisms with a frequency below that can be obtained.
Similarly, for LDI there are 111 samples over a period of 2544 seconds. This implies a
sampling frequency of rougly 0.04 Hz, therefore recognizing only those mechanisms that
have a frequency of at most 0.02 Hz. One important distinction between this measurement
and the LSI measurement is that the LDI measurement is less susceptible to noise despite
not doing measurements in real time. For example, sudden movements will be averaged
out during the measurement interval.

5.4 Smoothing

As observed previously, the LSI measurement contains lots of noise. This can cause irrel-
evant frequency bands to be over represented and in general give an incorrect idea of what
the data is composed of.

To remedy this, one can implement a moving average filter. This filter takes a predefined
number x and for every data point, it calculates the average of that point alongside x− 1
of its neighbouring points. The filter used here, takes the next x − 1 points to calculate
the average for every point. It is important to not take x to be too large or too small. If
taken too large, the risk is that the curve will be smoothed too much to the extent that it
might look like linear curve. For example, in the most extreme case x is equal to the size of
the data set. Then, for every data point the filter changes the value into the average of all
the points. Repeatedly doing that, will cause the value of each data point to grow linearly
due to summing of the average of the points to its right. Figures 5.3 and 5.4 confirm that
behaviour by taking values 500 and 2500 for the LSI measurement.
On the other hand, the problem with taking a small value for x is of course that the noise
is barely reduced. This can be seen in figure 5.5.
After considering several values between 10 and 60, the final value for x is set to 40, as
can be seen in figure 5.7.

Figure 5.3: Smoothed LSI Figure 5.4: Smoothed LSI
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Figure 5.5: Smoothed LSI Figure 5.6: Smoothed LSI

Figure 5.7: Final smoothed version

5.5 Initial analysis LSI patient 1

This section continues discussing ROI 3 for patient 1. As discussed in chapter 3.2, there
are three significant phases in every measurement: the baseline, the peak phase and the
plateau phase. These phases will be considered separately using the smoothed LSI data
set. Each of these phases is different in length. The baseline phase is 5 minutes long and
starts 5 minutes before the local thermal heating is started. So, this phase consists of 300
points. The peak phase is 10 minutes long and therefore contains 600 points. Finally,
the plateau phase is also 5 minutes long (300 points). This explains the differences in the
amount of lines that are present in the plots of each phase. To ensure a coherent com-
parison between the intervals, the boundaries for the x-axes will be kept consistent among
the intervals being compared. For each of the phases, the DC offset (see section 4.2.1) was
present initially. However, that has also already been taken care of here.

In figure 5.8, the complete amplitude plot of the baseline can be seen. As described
in section 2.4.1, this plot at first sight is symmetric due to the periodicity. Hence, it is
alright to remove the second half, as shown in figure 5.9. From here on, only the first half
of the plot will be shown as the amplitude spectrum. In the same plot, the frequencies
with the greatest amplitude for baseline can be identified. Focusing specifically on the first
30 data points, as visible in 5.10, enables a better recognition of these frequencies. It is
the range from 0.003 till roughly 0.01Hz that contains the largest amplitudes. Based on
literature, frequencies that appear in the range between 0.003 and 0.005Hz are too small
to be linked to a specific mechanism. As mentioned in 3.3, literature suggests that the
mechanism Endothelium-Derived Hyperpolarizing Factor (EDHF) can be attributed to the
frequency interval from 0.005Hz till 0.0095Hz. ([5], [10]).
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Figure 5.8: Baseline full Figure 5.9: 1st half Figure 5.10: 1st 30 points

The amplitude spectra for the peak phase can be seen in figures 5.11 and 5.12. The
dominating frequency is between roughly 0.0017 Hz and 0.003 Hz.
As mentioned before, these frequencies are too small to be linked to a specific mechanism.
This phase is better suited for comparison with the peak phase of other regions of interest
and/or for comparison with other phases from the same region of interest.

Figure 5.11: Peak phase Figure 5.12: Peak phase, zoomed in

For the plateau phase, which can be seen in figures 5.13 and 5.14, the largest contribution
seems to be from the frequency of 0.003 Hz. Overall, the dominating frequencies seem to
lie in the interval between 0.003 Hz and 0.0167 Hz.
For the frequencies that go up and till 0.0095Hz, the behaviour can be explained as de-
scribed in the previous phase. For frequencies that fall in the range between 0.0095 and
0.021Hz, the related mechanism is suggested to be nitric oxide mediated endothelial activ-
ity based on ACh and SP ([5] [10] and see section 3.3 for more details). In this particular
phase, the frequencies between 0.01 and 0.0167 Hz could be related to the previously
described activity.

Figure 5.13: Plateau phase Figure 5.14: Plateau phase, zoomed in
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5.6 Analysis LSI patient 1 (continued)

Firstly, it is important to organise some of the information discussed previously by defining
the intervals for the upcoming plots. The previous sections in this chapter focussed on ROI
3 only. From this section on, all regions will be discussed and it will be clearly highlighted
whenever that is not the case.
Here follows a quick refresher of the difference between the three (more details can be
found in section 3.2): Nitric oxide is blocked in ROI 1, neuropeptides are blocked in ROI
2 and ROI 3 is the control region. As mentioned in section 3.3, neuropeptides will not be
focused upon. Instead, the frequency interval found in literature for EDHF will be used to
research whether any conclusions on its effects can be made.

Mechanism Interval Colour Blocked in ROI
EDHF 0.005-0.0095Hz Red Nowhere
NO 0.0095-0.021Hz Cyan 1

Table 5.1: Definition of mechanisms

Before discussing the images, the average values for NO and EDHF in each region of
interest for the first 3 phases will be presented.

Baseline Peak Plateau SPEP EPEP
EDHF 78.80 248.00 33.54 561.45 433.55
NO 45.83 98.46 36.29 229.93 211.21

Baseline Peak Plateau SPEP EPEP
EDHF 88.35 102.38 36.73 318.10 241.19
NO 44.55 54.01 31.51 115.12 102.97

Baseline Peak Plateau SPEP EPEP
EDHF 146.93 342.06 52.96 832.00 702.60
NO 64.58 174.46 38.07 332.21 249.60

Table 5.2: Values for ROI 1/2/3

In figure 5.15, the baseline phase for the three regions of interest can be seen. This phase
is vital for comparison with the behaviour in other phases. Based on the images, the three
regions do not differ significantly in the baseline phase. Table 5.2 shows that in ROI 3, the
values for both mechanisms are higher compared to the other regions.

Figure 5.15: Patient 1 baseline phase

The peak phase is essentially the period in which the skin is gradually being heated to
40 degrees. Heating causes several mechanisms to start activating. At first sight, this
behaviour might not be visible in figure 5.16. However, putting the baseline next to it and
using the same scale shows this behaviour much better (see figure 5.20).
There are still some observations that can be made in figure 5.16. For example, the values
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for EDHF and NO are smaller in ROI 1 and ROI 2 compared to ROI 3 (see also table 5.2).
Moreover, the first two blue lines (that do not necessarily represent any mechanism) are
significantly smaller.

Figure 5.16: Patient 1 peak phase

In figure 5.17, the plateau phase across the three regions can be seen. The plateau phase
is where the release of nitric oxide would be the most. Taking a look at the plots shows
that there is no significant difference in the values of NO across the three regions. The
averages given in table 5.2 are also between 31 and 36.
The peaks in ROI 1 (where NO has been blocked) and ROI 3 even appear to be indentical
to some extent and according to table 5.2 the values for NO in both regions are very close
to each other. Moreover, again the initial blue lines are significantly smaller in ROI 1 and
2 compared to ROI 3.

Figure 5.17: Patient 1 plateau phase

Since the plateau phase does not provide any conclusive information, the time interval is
expanded to include the peak phase and the range between the peak and plateau phase (so
from the start of the peak till the end of the plateau, shortened as SPEP). This can be seen
in figure 5.18. It is important to first note that in literature, the effect of or increase in the
release of NO after local thermal heating is expected to appear after at least 30 minutes
after the heating was started. Hence, from that point of the view, figure 5.17 would be the
most important.
There are some differences among each individual plot, the most notable one being ROI 2
(where the neuropeptides were blocked) which appears to have smaller amplitudes in every
section. Also, the blue lines at the beginning do not have an outlier compared to ROI 1
and ROI 3. EDHF seems to be a lot less too. However, the difference between ROI 1 and
ROI 3 for NO is not noteworthy here either.
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Figure 5.18: Patient 1 from start of peak till end of plateau

In figure 5.19, a smaller interval is considered. The peak phase is left out, as that is the
part where the skin is still being heated (so from the end of the peak till the end of the
plateau, shortened as EPEP). It can be argued that this region is still too big, however it
still might contain some interesting observations.
Firstly, the overall behaviour of the three regions appears to mimic the behaviour seen in
figure 5.18. ROI 2 again exhibits the most different behaviour and EDHF is significantly
reduced compared to both ROI 1 and ROI 3. The initial blue lines again do not contain
outliers.
Overall, by table 5.2, it can be confirmed that ROI 1 on average has smaller amplitudes
for EDHF in all the different phases compared to ROI 3. The shape of the blue lines in
ROI 1 does show some similarity with the blue lines in ROI 3. Moreover, after 0.015Hz
the NO amplitudes in ROI 1 seem to be smaller than the ones in ROI 3.

Figure 5.19: Patient 1 from end of peak to end of plateau

Figure 5.20 shows the most interesting plots from ROI 3 side by side. The peak phase shows
increased amplitudes for all the sections. The plateau phase would be where increased
release of NO is expected. However, that is not visible here. Table 5.4 shows that the
value for NO in the plateau phase of ROI 1 is 36.29, whereas in ROI 3 it is 38.07. So,
very slightly higher in ROI 3 compared to ROI 1 (in which NO was blocked). Again based
on table 5.4, both EDHF and NO have a much smaller amplitude in the plateau phase
compared to the baseline.

Figure 5.20: Patient 1. Base Peak Plateau
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5.7 Analysis LDI patient 1

Similar to the decomposition of LSI, the LDI measurement can be split into the three
phases of interest (baseline, peak and plateau).
No smoothing was done for this measurement, just the DC offset was removed. Smoothing
after the removal would be redundant. The amplitudes in the peak phase are much higher,
as visible in 5.21, behaviour that is similar to the LSI measurement. However, overall
behaviour of ROI 1 and ROI 3 is quite similar here as well.

Figure 5.21: Patient 1. LDI. Base Peak Plateau

As mentioned previously, these visualisations show much more variation in the frequency
amplitudes due to the smaller size of the set. Figure 5.22 shows the variations (after
zooming in on the baseline and plateau). However, the LDI measurement will not be used
from hereon since it does not offer much more useful information. Moreover, due to the
Nyquist rate, the only mechanisms that can be reliably considered are the ones that are
below 0.02Hz (which is half of the sampling frequency of the LDI measurement). Therefore,
the LDI measurements will not be considered for future patients.

Figure 5.22: Zoomed in baseline and plateau.

5.8 To summarize

Given a data set, some processing is required before obtaining useful results. This includes,
but is not limited to, smoothing of the data set and DC offset removal.
For every phase of the LSI measurement, dominating frequencies and/or frequency intervals
can be obtained based on literature. This can then be used to analyse the behaviour of
the mechanisms in every part of the measurement.
The first measurement appears to show quite varying and counter-intuitive behaviour. The
next chapter includes the decomposition of the LSI measurements of two more patients.
The idea to consider larger intervals (SPEP and EPEP) did not offer additional insights
and therefore shall not be considered from here on, just like the LDI measurements.
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Chapter 6

Results patients 2 and 3

6.1 Introduction

For patients 2 and 3, only the peak and plateau phases will be discussed as the additional
phases from the last chapter were not a significant addition. Finally, there will be a scaled
comparison between the baseline phase and the peak and plateau phases in ROI 3.

6.2 LSI patient 2

Before discussing the plots, the average values for EDHF and NO in the three phases of
all regions of interest will be shown.

Baseline Peak Plateau
EDHF 123.97 159.50 85.66
NO 42.63 41.78 39.20

Baseline Peak Plateau
EDHF 140.39 65.56 170.84
NO 51.86 38.43 25.08

Baseline Peak Plateau
EDHF 150.39 272.55 144.04
NO 58.09 102.92 37.08

Table 6.1: Values for ROI 1/2/3

Starting with the peak phases, as seen in figure 6.1, the blue lines in the beginning appear to
retain their behaviour despite decreasing in amplitudes in both ROI 1 and ROI 2 (compared
to ROI 3). ROI 2 (where the neuropeptides were blocked) overall shows smaller amplitudes
for both mechanisms. For ROI 1 (where NO was blocked), this holds largely too.
In the plateau phase of ROI 1, where NO is being blocked, EDHF decreases significantly
compared to NO.

Figure 6.1: Patient 2 peak phase
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The plateau phases shown in figure 6.2 across the three regions all show 3 larger peaks
at the beginning, which is a new behaviour compared to patient 1. Again, the difference
between NO in ROI 1 and ROI 3 does not appear to be significant and in ROI 2 the
amplitude values for it are much lower. EDHF is lower in ROI 1, whereas in ROI 2 it is
much higher. This behaviour is again confirmed by table 6.1.

Figure 6.2: Patient 2, plateau phase

In 6.3, a comparison between the three phases in ROI 3 results in similar conclusions as
patient 1. EDHF retains similar amplitudes in the baseline and plateau phases (see table
6.1) and NO decreases in the plateau phase compared to the baseline.

Figure 6.3: Patient 2. Base Peak Plateau

6.3 LSI patient 3

Two patients might not be enough to properly draw conclusions. Therefore, another meas-
urement will be discussed broadly.
Again, before discussing the plots, there will be an overview of the average values first.

Baseline Peak Plateau
EDHF 151.82 197.90 35.91
NO 65.86 150.27 32.70

Baseline Peak Plateau
EDHF 103.99 171.42 56.61
NO 62.12 73.27 34.24

Baseline Peak Plateau
EDHF 197.44 630.34 25.85
NO 74.27 269.42 50.57

Table 6.2: Values for ROI 1/2/3

For patient 3 in figure 6.4, in ROI 2 the blue outliers that are visible in ROI 1 and 3
are immediately much lower in the peak phase already. This is different compared to the
previous two patients, where the amplitudes for the blue lines in the peak phase were
proportionally smaller for both ROI 1 and 2.
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Figure 6.4: Patient 3 peak phase

In the plateau phase shown in figure 6.5, the amplitudes of the different intervals in ROI
1 and ROI 3 are quite similar. The NO related amplitudes, however, are lower in ROI 1
(32.70) compared to ROI 3 (50.57). In the same way as the previous patient, the value of
EDHF is much higher in ROI 2 compared to the other two phases.

Figure 6.5: Patient 3, plateau phase

Finally, figure 6.6 again confirms that in the peak phase, all the mechanisms start being
active and have larger amplitudes. Contrary to what the literature suggests, the plateau
phase again contains decreased values of the amplitudes of all mechanisms.

Figure 6.6: Patient 3. Base Peak Plateau

6.4 Conclusion

Overall, the behaviour of the patients seems to be a bit unexpected. The three patients
together provide a large amount of material for interesting comparisons.
The next chapter contains an overview of 10 new patients.
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Chapter 7

Global observations 3rd set of
patients.

7.1 Introduction

This chapter broadly discusses a totally new different set of 10 patients, which will be
referred to as the 3rd set of patients (as it was the 3rd set to be received). The corresponding
images can be found in appendix A. It is important to note that the y-axes have the same
scale per phase (which was also the case for the three previous patients). For example, the
y scale for the baseline phase for all regions of interest for patient 1 is 200. This is different
from the y scale used for the plots of the peak phases for patient 1.

7.2 Observations

Overall, the baseline plots are quite useful for comparisons with the other phases which is
similar to the method used for the first 3 patients. Another point worth noting is that the
y limits for the peak phases are mostly higher, which is consistent with the activation of
several mechanisms after local thermal heating.
For patients 2 and 7, EDHF seems to be present much more strongly in the baseline
compared to NO. For the remaining patients, EDHF and NO do not seem to differ as
significantly as in patients 2 and 7.

In the peak phase, the behaviour of all mechanisms seems to go into several directions
in all regions of interest. For most patients, the values for both mechanisms in ROI 3
are the highest, which aligns with the expectation since ROI 3 is being measured under
standard circumstances. It is difficult to say more than this, as there is a strong variation
amongst the results for the peak phase all over.
One remark can be made about the behaviour of the blue outlying lines. For many pa-
tients, these lines seem to behave in a more restricted way in ROI 2 compared to ROI 1
and 3.

NO should have a stronger amplitude in the plateau phase of ROI 3 compared to ROI
1 (where this mechanism is being blocked). Looking at the average values in appendix
C, this seems to be the case for all patients except for patient 10. In patient 6, NO is
significantly stronger in ROI 3 than ROI 1.
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7.3 Conclusion

All in all, the behaviour of the mechanisms throughout the different phases and different
regions of interest does show rather large variations. It is difficult to find some significant
pattern or points of agreement throughout all of the patients. Certain behaviours are
confirmed, such as the increased values for all mechanisms in the peak phase and the
slightly higher values for NO in the plateau phase of ROI 3 compared to ROI 1.
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Chapter 8

Conclusion and discussion

8.1 To what extent do the mechanisms differ across the phases
and regions

The values for NO seem to stay in similar ranges for both the baseline and plateau phases
in ROI 3. It would be reasonable to not see much activity for NO in the baseline phase as
the local thermal heating has not yet started. However, the release of NO is expected in
the plateau phase. For that reason, the values for NO in ROI 1 (where NO is blocked) can
be compared to ROI 3. Again, for most of the 13 patients the values stay in similar ranges.
However, it is interesting to note that for patient 1 (chapter 5) and patient 2 (chapter 6)
the values for NO in the plateau phase in ROI 3 seem to be the lowest.

For EDHF, there seems to be some interesting behaviour too. The baseline phase con-
tains more EDHF in ROI 3 than in the plateau phase of ROI 3 for the largest part of all 13
patients. Looking at a comparison of the baseline amongst the regions of interest in 5.15
(note: the scale of the baseline plots in section 5.5 is different than the scale used for the
plots in figure 5.15), the value for EDHF seems to be quite stable. EDHF could simply be
a mechanism that is more present than other mechanisms during standard circumstances.

Both mechanisms do have stronger amplitudes in the peak phases across the different
regions, which aligns with the expectation of the peak phase. This is the phase in which
the local thermal heating of the skin is started and therefore the mechanisms all start
activating.
For some patients, in the peak phases there is difference visible between ROI 1 and 2 com-
pared to ROI 3. These patients show overall smaller values in peak phases of ROI 1 and
2 compared to the peak phases of ROI 3, which aligns with the fact that in ROI 1 and 2
certain mechanisms have been blocked.

ROI 2 was the region in which several neuropeptides are blocked, which also contrib-
ute to the dilation of the vessels. Generally ROI 2 seems to show lower values in the
peak phase. There are even a few patients for which the blue lines and overall peaks for
the two mechanisms in the peak phase are much smaller compared to the other two regions.

Generally, it appears that all patients that have been analysed so far show largely varying
results in the important sections of the measurements. Moreover, the differences between
NO do not appear to be as strong as expected and sometimes even smaller amounts of NO
appear in regions where they would not be expected to be smaller (such as in ROI 3).
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8.2 CGRP

Calcitonin gene-related peptide (CGRP) is one of the neuropeptides that was blocked in
ROI 2. Due to its relation to cardiovascular disease and migraine, this is an especially
interesting neuropeptide to research using Fourier Transform. However, it appears that so
far there are no LSI or LDI generated measurements available that can be used for further
analysis. The existing data consists of EEG measurements (for example), which is outside
the scope of this thesis. There are also other methods that have been used to research the
relationship with migraine, however those methods are entirely different as well.

8.3 Relation of the sampling frequency with the maximum
attainable frequency bands

The sampling frequency of the LSI data sets is roughly around 1Hz for every set. Which
means that, due to the Nyquist-Shannon sampling theorem, the largest accurate frequency
that we can obtain reliably from the data sets is 0.5Hz. This in turn means that we
can reliably research the mechanisms that have their range below that number. For LDF
measurements, the Nyquist rate is even lower (namely 0.02 Hz). For the mechanisms that
are being studied in this thesis, this number is near the border. Moreover, due to the
results shown for the first patient, the LDI measurements for the other patients were left
out.

8.4 Other methods to filter the data

There are several methods to filter the data and to make sure reliable results can be
obtained. To this end, some window functions were tried on ROI 3 of patient 1. In appendix
B, these window functions and the corresponding results are discussed in more detail. The
main conclusion here is that for these measurements, the use of window functions does not
appear to add anything to the existing analysis.

8.5 Recommendations

For the future, it would be interesting to firstly finish processing all the measurements
using Fourier Transform. Moreover, there are still some ideas that can be explored in the
direction of window functions.
Alternatively, Wavelet Decomposition would be a strong method to analyse these measure-
ments with (as was proposed in the project description). Several studies (such as [5]) use
Wavelet Decomposition to obtain the frequency intervals that relate to the mechanisms.
Perhaps even the LDI measurements could be processed using the Wavelet Decomposition.
Another possibility would be to try to obtain frequency bands related to CGRP using
Wavelet Decomposition.
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Appendix A

Plots related to the 3rd data set

A.1 Baseline

Figure A.1: Patient 1, baseline phase

Figure A.2: Patient 2, baseline phase

Figure A.3: Patient 3, baseline phase
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Figure A.4: Patient 4, baseline phase

Figure A.5: Patient 5, baseline phase

Figure A.6: Patient 6, baseline phase

Figure A.7: Patient 7, baseline phase

Figure A.8: Patient 8, baseline phase
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Figure A.9: Patient 9, baseline phase

Figure A.10: Patient 10, baseline phase

A.2 Peak

Figure A.11: Patient 1, peak phase
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Figure A.12: Patient 2, peak phase

Figure A.13: Patient 3, peak phase

Figure A.14: Patient 4, peak phase

Figure A.15: Patient 5, peak phase

Figure A.16: Patient 6, peak phase
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Figure A.17: Patient 7, peak phase

Figure A.18: Patient 8, peak phase

Figure A.19: Patient 9, peak phase

Figure A.20: Patient 10, peak phase
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A.3 Plateau

Figure A.21: Patient 1, plateau phase

Figure A.22: Patient 2, plateau phase

Figure A.23: Patient 3, plateau phase
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Figure A.24: Patient 4, plateau phase

Figure A.25: Patient 5, plateau phase

Figure A.26: Patient 6, plateau phase

Figure A.27: Patient 7, plateau phase

Figure A.28: Patient 8, plateau phase
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Figure A.29: Patient 9, plateau phase

Figure A.30: Patient 10, plateau phase
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Appendix B

Window functions

As it has been established that the frequency intervals of interest range between 0.005 and
0.021 Hz, one could consider using certain window functions in order to more specifically
filter out these frequencies or to zero out certain parts of the signal.
Window functions attenuate a specific part of the frequencies whereas some other pre-
defined interval of frequencies is let through. This can be defined by the user as their
needs might require. If the user requires a filter that allows the lower frequencies and
attenuates the higher frequencies, they could use a low-pass filter. Similarily, there are
high pass filters. Finally, there are also band-pass filters, which allow frequencies from a
pre-defined interval and attenuate the rest. It is possible to apply filters before applying the
Fourier Transform, but there are also some filters that are used in the frequency domain.
[11]
Since the LSI and LDI measurements do not start measuring from 0, it is possible to use
a window function to make the measurement behave like it starts and ends at 0.

B.1 Hanning

The first window function to be tried is the Hanning function. [12] The Hann window is
defined as:

w[n] = 0.5− 0.5 cos
2πn

N
, 0 ≤ n ≤ N (B.1)

where N is the length of the signal. The application of this function is shown in figure B.1
where the original ROI 3 signal for patient 1 is also visible for comparison.
In figure B.2, the plateau phase of the Hanning signal can be seen. Here, neither the DC
offset has been removed nor has the Hanning signal been smoothed.
Figure B.3 shows the plateau phase of the Hanning signal where only the DC offset has
been removed and figure B.4 shows the phase when it has only been smoothed with the
same factor as was used for the regular ROI 3 of patient 1.
Figure B.5 shows the phase after DC offset removal and smoothing, and next to it in figure
B.6 the original ROI 3 is shown (after smoothing and DC offset removal) for comparison.
There does not seem to be a huge difference between variations of the plateau phase. It
would be alright to continue without the use of any window function.
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Figure B.1: Original and Hanning Figure B.2: Plateau phase Hanning, basic

Figure B.3: Hanning DC removed Figure B.4: Hanning smooth

Figure B.5: Hanning smooth and DC
removed

Figure B.6: Original smooth and DC
removed
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B.2 Hamming

Related to the Hanning window function is the Hamming window function. This filter uses
the value 0.54 for the first coefficient in equation B.1 and 0.46 in the second coefficient.
[11]
Judging by figure B.7, it is clear that there is no significant difference in the application of
Hanning and Hamming windows.

Figure B.7: Hanning and Hamming

B.3 Butterworth

Finally, the Butterworth filter was also tried. The implementation used for the LSI meas-
urement is a low-pass filter. [13] [14] This filter does not require any smoothing, however
the DC offset was still removed. Moreover, several number of orders and cutoff frequencies
were tried. For complex data sets, higher orders are required. For the LSI measurement
order 5 was finalized. Moreover, the cut off frequency (so the frequencies below this num-
ber are attenuated) was set to 0.005. The results can be seen in the next figures. In figure
B.8, the Butterworth curve follows the actual measurement almost exactly and the curve
itself is smooth. However, for the plateau phase again it does not create a huge difference.

Figure B.8: Butterworth compared to
original

Figure B.9: Butterworth plateau DC
removed
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Appendix C

Average values NO and EDHF in
baseline, peak and plateau 3rd set of
patients

C.1 Patient 1

Baseline Peak Plateau
EDHF 144.68 473.88 203.16
NO 70.38 120.46 80.40

Baseline Peak Plateau
EDHF 155.13 297.82 292.36
NO 87.84 114.96 73.03

Baseline Peak Plateau
EDHF 128.77 603.61 173.51
NO 95.33 268.86 90.88

Table C.1: Values for ROI 1/2/3

C.2 Patient 2

Baseline Peak Plateau
EDHF 177.88 149.12 178.74
NO 44.31 82.83 106.05

Baseline Peak Plateau
EDHF 179.49 139.96 153.27
NO 48.07 49.64 93.30

Baseline Peak Plateau
EDHF 212.05 393.45 167.544
NO 51.26 80.26 124.49

Table C.2: Values for ROI 1/2/3
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C.3 Patient 3

Baseline Peak Plateau
EDHF 108.35 121.74 28.94
NO 78.83 56.65 20.48

Baseline Peak Plateau
EDHF 93.96 226.49 34.77
NO 87.76 32.23 44.91

Baseline Peak Plateau
EDHF 123.32 162.50 35.97
NO 96.22 58.71 30.26

Table C.3: Values for ROI 1/2/3

C.4 Patient 4

Baseline Peak Plateau
EDHF 121.57 230.17 116.27
NO 87.20 87.15 123.46

Baseline Peak Plateau
EDHF 176.99 477.32 44.57
NO 89.88 190.09 77.81

Baseline Peak Plateau
EDHF 187.25 770.63 96.33
NO 110.71 217.71 131.20

Table C.4: Values for ROI 1/2/3

C.5 Patient 5

Baseline Peak Plateau
EDHF 270.00 276.22 72.31
NO 132.25 101.12 110.65

Baseline Peak Plateau
EDHF 118.06 102.90 356.91
NO 82.99 75.38 210.07

Baseline Peak Plateau
EDHF 488.73 475.46 110.10
NO 193.52 169.63 120.84

Table C.5: Values for ROI 1/2/3

C.6 Patient 6

Baseline Peak Plateau
EDHF 178.61 377.06 126.02
NO 58.72 169.91 40.16
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Baseline Peak Plateau
EDHF 163.32 133.18 173.32
NO 62.69 78.64 50.72

Baseline Peak Plateau
EDHF 200.40 448.83 328.96
NO 81.49 180.67 85.15

Table C.6: Values for ROI 1/2/3

C.7 Patient 7

Baseline Peak Plateau
EDHF 735.85 407.48 278.82
NO 220.98 147.58 197.98

Baseline Peak Plateau
EDHF 793.66 549.45 419.20
NO 285.14 195.91 279.29

Baseline Peak Plateau
EDHF 793.76 783.67 229.21
NO 268.11 219.07 208.08

Table C.7: Values for ROI 1/2/3

C.8 Patient 8

Baseline Peak Plateau
EDHF 78.41 829.78 49.88
NO 64.23 308.01 39.67

Baseline Peak Plateau
EDHF 138.06 1424.42 85.89
NO 47.27 533.78 60.90

Baseline Peak Plateau
EDHF 202.73 1558.23 109.93
NO 67.31 592.58 61.75

Table C.8: Values for ROI 1/2/3

C.9 Patient 9

Baseline Peak Plateau
EDHF 117.85 198.56 122.40
NO 56.15 133.24 66.69

Baseline Peak Plateau
EDHF 122.22 351.85 33.49
NO 99.27 229.29 88.42

Baseline Peak Plateau
EDHF 111.90 528.71 152.27
NO 114.26 304.67 79.74

Table C.9: Values for ROI 1/2/3
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C.10 Patient 10

Baseline Peak Plateau
EDHF 209.67 566.73 22.18
NO 103.95 244.41 108.54

Baseline Peak Plateau
EDHF 223.47 375.84 183.89
NO 191.27 197.05 77.15

Baseline Peak Plateau
EDHF 253.00 748.76 115.32
NO 149.06 353.23 92.80

Table C.10: Values for ROI 1/2/3
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Appendix D

Miscellaneous information

D.1 Values for smoothing

Patient 1 Patient 2 Patient 3
x 50 50 25

1 2 3 4 5 6 7 8 9 10
x 20 30 40 15 30 20 30 30 30 30
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Appendix E

Code

E.1 Patient 1, set 1

Codes for patient 2 and 3 are similar.
#%%
import numpy as np
from matp lo t l i b import pyplot as p l t
from s c ipy . f f t import f f t , f f t f r e q
import pandas as pd
from math import c e i l
import s c ipy . s i g n a l
import openpyxl
#import random

#%%
def movavg( s ig , va l ) :

i n i t = np . z e r o s ( len ( s i g ) )
for i in range ( va l ) :

i n i t [ i ] = np . array ( [ 1 / ( va l +1)])
outp = np . convolve ( s ig , i n i t ) [ : len ( s i g ) ]
return outp

#%%
df = pd . read_excel ( r "C: \ Users \Nisha\Documents\BEP\LSCImeting . x l sx " ,

sheet_name = 1 , header = 29 , u s e c o l s="A:F" , nrows = 2544)

#%% To f i nd the row numbers where o f the ba s e l i n e , peak and p l a t eau
wb = openpyxl . load_workbook ( r ’C: \ Users \Nisha\Documents\BEP\LSCImeting . x l sx ’ ,

data_only=True )

# ge t the worksheet
ws = wb . worksheets [ 1 ]

# check f i r s t column in a l l columns f o r a d i f f e r e n t co lour
rows = [ ]
c o l ou r s = [ ]
for row in range (31 , len ( df )+31):

c e l l = ws . c e l l ( column=1, row=row )
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f gCo lor = c e l l . f i l l . f gCo lor . index
i f f gCo lor != ’ 00000000 ’ :

rows . append ( row )
co l ou r s . append ( fgCo lor )

print ( rows )
print ( c o l ou r s )

#%% In e x c e l f i l e the data s t a r t s from row 31 and here from 0.
#Hence the acqu i red row numbers are " co r r e c t ed " by 31
rown = [ k−31 for k in rows ]
print ( rown )

#%% Find en t r i e s a t which we expec t the i n t e r v a l s o f mechanisms to s t a r t
va l s = [ 0 . 0 0 5 , 0 .0095 , 0 . 0 2 1 ]
p3 = [ ]
for v in va l s :

p3 . append ( c e i l ( v ∗300))
print ( p3 )

p6 = [ ]
for v in va l s :

p6 . append ( c e i l ( v ∗600))
print ( p6 )

p21 = [ ]
for v in va l s :

p21 . append ( c e i l ( v ∗2100))
print ( p21 )

p14 = [ ]
for v in va l s :

p14 . append ( c e i l ( v ∗1400))
print ( p14 )

#%% Di f f e r e n t r e g i ons o f i n t e r e s t
ROI1 = np . array ( df [ ’ 1 . ␣ROI ’ ] )
ROI2 = np . array ( df [ ’ 2 . ␣ROI ’ ] )
ROI3 = np . array ( df [ ’ 3 . ␣ROI ’ ] )
#%% Proper t i e s
N = len ( df )
H = N//2
n = np . arange (N)

#%% To determine a smoothing f a c t o r
# f1 = [10 ,20 ,30 ,40 ,50 ,60 ,70 ]
# fo r e l t s in f1 :
# ROI3s = movavg ( d f [ ’ 3 . ROI ’ ] , e l t s )
# p l t . p l o t (ROI3s)
# p l t . t i t l e ("ROI 3 pa t i e n t 1 smooth wi th x = "+ s t r ( e l t s ) )
# p l t . x l a b e l ("Time in seconds ")
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# p l t . y l a b e l ("Change in dermal b lood f l ow ")
# p l t . show ()

#%% Smoothing wi th a f a c t o r o f 50
f = 50
ROI3s = movavg (ROI3 , f )
ROI1s = movavg (ROI1 , f )
ROI2s = movavg (ROI2 , f )

#%% ROI3 a f t e r smoothing
# p l t . p l o t (ROI3s )
# p l t . t i t l e ("ROI 3 pa t i e n t 1 smooth wi th x = "+s t r ( f ) )
# #p l t . t i t l e ("ROI3 pa t i e n t 1 smoothed wi th x =" + s t r ( f ) )
# p l t . x l a b e l ("Time in seconds ")
# p l t . y l a b e l ("Change in dermal b lood f l ow ")
# p l t . show ()

#%% Amplitude spectrum ROI3 e n t i r e l y a f t e r smoothing and DC o f f s e t removal
# p l t . stem ( f f t f r e q (N) [ : 1 2 5 0 ] , np . abs ( f f t (ROI3s − np .mean(ROI3s ) ) ) [ : 1 2 5 0 ] )
# p l t . t i t l e (" Amplitude ROI 3 pa t i e n t 1")
# p l t . x l a b e l (" D i g i t a l f r equency in h e r t z ")
# p l t . y l a b e l (" Amplitude ")
# p l t . show ()

#%% l im i t s f o r the y−s c a l e per phase
y1 = 2000 #400
y2 = 500 #4000
y3 = 500 #350
y4 = 2000#8000
y5 = 2000#4000

#%% Images i n i t i a l smoothing 50 ROI 3
# p l t . stem ( f f t f r e q ( 3 0 0 ) [ : 3 0 ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
# −np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : 3 0 ] )
# p l t . t i t l e (" Amplitude spectrum ROI 3 Plateau ")
# p l t . x l a b e l (" Frequency in Hz")
# p l t . y l a b e l (" Amplitude ")

#%% Base l ine ROI 1 , 300 po in t s
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣ ba s e l i n e ␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y1 )

47



p l t . show ( )

#%% Base l ine ROI 2 , 300 po in t s
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣ ba s e l i n e ␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y1 )
p l t . show ( )

#%% Base l ine ROI 3 , 300 po in t s
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ ba s e l i n e ␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y1 )
p l t . show ( )

#%% Peak phase ROI1 from index 411 t i l l 1011
p l t . stem ( f f t f r e q ( 6 0 0 ) [ : ( p6 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ : ( p6 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣peak␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y2 )
# p l t . x t i c k s (np . arange (0 .004 ,0 . 01 , 0 .001) )
p l t . show ( )

#%% Peak phase ROI2 from index 411 t i l l 1011
p l t . stem ( f f t f r e q ( 6 0 0 ) [ : ( p6 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ : ( p6 [ 0 ]+1 ) ] , l i n e fmt = "b" )
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p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , l i n e fmt = " r " )

p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , l i n e fmt = "c" )

p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , l i n e fmt = "b" )

p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣peak␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y2 )
p l t . show ( )

#%% Peak phase ROI3 from index 411 t i l l 1011
p l t . stem ( f f t f r e q ( 6 0 0 ) [ : ( p6 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ : ( p6 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣peak␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y2 )
p l t . show ( )

#pr in t ( f f t f r e q ( 6 0 0 ) [ : 1 0 ] )

#%% Plateau ROI1 from index 2211 t i l l 2511
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣ p lateau ␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y3 )
p l t . show ( )

#%% Plateau ROI2 from index 2211 t i l l 2511
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
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p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )

p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣ p lateau ␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y3 )
p l t . show ( )

#%% Plateau ROI3 from index 2211 t i l l 2511
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ p lateau ␣ pa t i en t ␣1" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y3 )
p l t . show ( )

#pr in t ( f f t f r e q ( 3 0 0 ) [ : 1 0 ] )

#%% From s t a r t peak u n t i l end o f p l a t eau ROI1
p l t . stem ( f f t f r e q ( 2 1 0 0 ) [ : ( p21 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ : ( p21 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 0 ] : ( p21 [ 1 ]+2 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 0 ] : ( p21 [ 1 ]+2 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 1 ]+1 : ( p21 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 1 ]+1 : ( p21 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 2 ] : ( p21 [ 2 ]+5 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 2 ] : ( p21 [ 2 ]+5 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣ s t a r t ␣peak␣ t i l l ␣end␣ p lateau ␣ (P1) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y4 )
#p l t . x t i c k s (np . arange (0 . 021 ,0 . 023 , 0 . 002 ) )
p l t . show ( )

#%% From s t a r t peak u n t i l end o f p l a t eau ROI2
p l t . stem ( f f t f r e q ( 2 1 0 0 ) [ : ( p21 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ : ( p21 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 0 ] : ( p21 [ 1 ]+2 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 0 ] : ( p21 [ 1 ]+2 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 1 ]+1 : ( p21 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 1 ]+1 : ( p21 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 2 ] : ( p21 [ 2 ]+5 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 2 ] : ( p21 [ 2 ]+5 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣ s t a r t ␣peak␣ t i l l ␣end␣ p lateau ␣ (P1) " )
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p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y4 )
p l t . show ( )

#%% From s t a r t peak u n t i l end o f p l a t eau ROI3
p l t . stem ( f f t f r e q ( 2 1 0 0 ) [ : ( p21 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ : ( p21 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 0 ] : ( p21 [ 1 ]+2 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 0 ] : ( p21 [ 1 ]+2 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 1 ]+1 : ( p21 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 1 ]+1 : ( p21 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 2100 ) [ p21 [ 2 ] : ( p21 [ 2 ]+5 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ p21 [ 2 ] : ( p21 [ 2 ]+5 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ s t a r t ␣peak␣ t i l l ␣end␣ p lateau ␣ (P1) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y4 )
p l t . show ( )

#%% From end o f peak u n t i l end o f p l a t eau ROI1
p l t . stem ( f f t f r e q ( 1 4 0 0 ) [ : ( p14 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ : ( p14 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 0 ] : ( p14 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 0 ] : ( p14 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 1 ] : ( p14 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 1 ] : ( p14 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 2 ] : ( p14 [ 2 ]+10 ) ] , np . abs ( f f t (ROI1s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 2 ] : ( p14 [ 2 ]+10 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣end␣peak␣ t i l l ␣end␣ plateau ␣ (P1) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
#p l t . x t i c k s (np . arange (0 . 015 ,0 . 022 , 0 . 002 ) )
p l t . yl im (0 , y5 )
p l t . show ( )

#%% From end o f peak u n t i l end o f p l a t eau ROI2
p l t . stem ( f f t f r e q ( 1 4 0 0 ) [ : ( p14 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ : ( p14 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 0 ] : ( p14 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 0 ] : ( p14 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 1 ] : ( p14 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 1 ] : ( p14 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 2 ] : ( p14 [ 2 ]+10 ) ] , np . abs ( f f t (ROI2s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 2 ] : ( p14 [ 2 ]+10 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣end␣peak␣ t i l l ␣end␣ plateau ␣ (P1) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y5 )
p l t . show ( )
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#%% From end o f peak u n t i l end o f p l a t eau ROI3
p l t . stem ( f f t f r e q ( 1 4 0 0 ) [ : ( p14 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ : ( p14 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 0 ] : ( p14 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 0 ] : ( p14 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 1 ] : ( p14 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 1 ] : ( p14 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 1400 ) [ p14 [ 2 ] : ( p14 [ 2 ]+10 ) ] , np . abs ( f f t (ROI3s [ rown [ 2 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ p14 [ 2 ] : ( p14 [ 2 ]+10 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣end␣peak␣ t i l l ␣end␣ plateau ␣ (P1) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y5 )
p l t . show ( )

#%% Average va l u e s
print ( " Pat ient ␣ 1 , ␣1 s t ␣data␣ s e t " )

print ( "Average␣ va lues ␣ f o r ␣ ba s e l i n e : ␣ROI␣ 1 , ␣2␣and␣3" )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 2 ] ) ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 2 ] ) ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 2 ] ) ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) )

print ( "Average␣ va lues ␣ f o r ␣peak : ␣ROI␣ 1 , ␣2␣and␣3" )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 3 : 6 ] ) / 3 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 6 : 1 3 ] ) / 7 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 3 : 6 ] ) / 3 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 6 : 1 3 ] ) / 7 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 3 : 6 ] ) / 3 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]
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−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 6 : 1 3 ] ) / 7 ) )

print ( "Average␣ va lues ␣ f o r ␣ p lateau : ␣ROI␣ 1 , ␣2␣and␣3" )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 2 ] ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 2 ] ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 2 ] ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) ) )

#%%
print ( "Average␣ va lues ␣ f o r ␣SPEP: ␣ROI␣ 1 , ␣2␣and␣3" )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ 1 1 : 2 1 ] ) / 1 0 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ 2 1 : 4 6 ] ) / 2 5 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ 1 1 : 2 1 ] ) / 1 0 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ 2 1 : 4 6 ] ) / 2 5 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ 1 1 : 2 1 ] ) / 1 0 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 1 ] : rown [ 4 ] ] ) ) ) [ 2 1 : 4 6 ] ) / 2 5 ) ) )

#%%
print ( "Average␣ va lues ␣ f o r ␣EPEP: ␣ROI␣ 1 , ␣2␣and␣3" )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 2 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ 7 : 1 4 ] ) / 7 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI1s [ rown [ 2 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ 1 4 : 3 0 ] ) / 1 6 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 2 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ 7 : 1 4 ] ) / 7 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI2s [ rown [ 2 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ 1 4 : 3 0 ] ) / 1 6 ) ) )
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print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 2 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ 7 : 1 4 ] ) / 7 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI3s [ rown [ 2 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 2 ] : rown [ 4 ] ] ) ) ) [ 1 4 : 3 0 ] ) / 1 6 ) ) )

E.2 3rd set of patients

#%%
import numpy as np
from matp lo t l i b import pyplot as p l t
from s c ipy . f f t import f f t , f f t f r e q
import pandas as pd
from math import c e i l
import s c ipy . s i g n a l
import openpyxl
#import random

#%%
def movavg( s ig , va l ) :

i n i t = np . z e r o s ( len ( s i g ) )
for i in range ( va l ) :

i n i t [ i ] = np . array ( [ 1 / ( va l +1)])
outp = np . convolve ( s ig , i n i t ) [ : len ( s i g ) ]
return outp

#%%
i = 9
df = pd . read_excel ( r "C: \ Users \Nisha\Documents\BEP\Deel2LSCI . x l sx " ,

sheet_name = i , header = 29 , u s e c o l s="A:F" )

df = df . dropna ( )

time = c e i l ( df [ "Time␣min" ] . i l o c [ −1]∗60)
N = len ( df ) #N + 30 g i v e s the f i n a l row o f the data
f s = N/time
H = N//2
n = np . arange (N)
#ROIN3 = np . array ( d f1 [ ’ 3 . ROI ’ ] )

#%% Or ig ina l s i g n a l f u l l
# p l t . p l o t (n , d f [ " 3 . ROI" ] )
# p l t . t i t l e ("ROI 3 pa t i e n t "+s t r ( i+1)+" (3 rd s e t )")
# p l t . x l a b e l ("Time in seconds ")
# p l t . y l a b e l ("Change in dermal b lood f l ow ")
# p l t . show ()

#%% Smoothing
# f1 = [10 , 20 , 30 , 40 , 50 , 60 ]
# fo r e l t s in f1 :
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# smooth3 = movavg ( d f [ " 3 . ROI" ] , e l t s )
# p l t . p l o t (n , smooth3 )
# p l t . t i t l e ("ROI 3 pa t i e n t "+s t r ( i+1)+" (3 rd s e t ) smooth wi th x
# = "+s t r ( e l t s ) )
# p l t . x l a b e l ("Time in seconds ")
# p l t . y l a b e l ("Change in dermal b lood f l ow ")
# p l t . show ()

#%%
f 2 = [20 , 30 , 40 , 15 , 30 , 20 , 30 , 30 , 30 , 30 ]
f = f2 [ i ]
ROI1s = movavg ( df [ " 1 . ␣ROI" ] , f )
ROI2s = movavg ( df [ " 2 . ␣ROI" ] , f )
ROI3s = movavg ( df [ " 3 . ␣ROI" ] , f )

#%%
wb = openpyxl . load_workbook ( r ’C: \ Users \Nisha\Documents\BEP\Deel2LSCI . x l sx ’ ,

data_only=True )

ws = wb . worksheets [ i ]

rows = [ ]
c o l ou r s = [ ]
for row in range (31 , len ( df )+31):

c e l l = ws . c e l l ( column=1, row=row )
fgCo lor = c e l l . f i l l . f gCo lor . index
i f f gCo lor != ’ 00000000 ’ :

rows . append ( row )
co l ou r s . append ( fgCo lor )

print ( rows )
print ( c o l ou r s )

#%%
rown = [ k−31 for k in rows ]

#%%
va l s = [ 0 . 0 0 5 , 0 .0095 , 0 . 0 2 1 ]
p3 = [ ]
for v in va l s :

p3 . append ( c e i l ( v ∗300))
print ( p3 )

p6 = [ ]
for v in va l s :

p6 . append ( c e i l ( v ∗600))
print ( p6 )

p21 = [ ]
for v in va l s :
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p21 . append ( c e i l ( v ∗2100))
print ( p21 )

p14 = [ ]
for v in va l s :

p14 . append ( c e i l ( v ∗1400))
print ( p14 )

#%%
y11 = [200 ,300 ,400 ,200 ,1100 ,300 ,1000 ,300 ,300 ,400 ] #Base l ine s
y22 = [4000 ,2500 ,600 ,2500 ,2500 ,4500 ,3500 ,3000 ,4500 ,5000 ] #Peak
y33 = [400 ,350 ,100 ,500 ,700 ,400 ,500 ,400 ,350 ,400 ] #Plateau
y44 = [10000 ]∗10
y55 = [5000 ]∗10
y1 = y11 [ i ]
y2 = y22 [ i ]
y3 = y33 [ i ]
y4 = y44 [ i ]
y5 = y55 [ i ]

#%% Base l ine s
# Base l ine , 300 po in t s
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣ ba s e l i n e ␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y1 )
p l t . show ( )

# Base l ine , 300 po in t s
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣ ba s e l i n e ␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y1 )
p l t . show ( )
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# Base l ine ROI 3
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]

−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ ba s e l i n e ␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y1 )
p l t . show ( )

#pr in t ( f f t f r e q ( 3 0 0 ) [ : 1 0 ] )

#%% Peak phases
# Peak phase ROI1
p l t . stem ( f f t f r e q ( 6 0 0 ) [ : ( p6 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ : ( p6 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣peak␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y2 )
# p l t . x t i c k s (np . arange (0 .004 ,0 . 01 , 0 .001) )
p l t . show ( )

# Peak phase ROI2
p l t . stem ( f f t f r e q ( 6 0 0 ) [ : ( p6 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ : ( p6 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣peak␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y2 )
p l t . show ( )

# Peak phase ROI3
p l t . stem ( f f t f r e q ( 6 0 0 ) [ : ( p6 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]
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−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ : ( p6 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 0 ] : ( p6 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 1 ] : ( p6 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 6 0 0 ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]

−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ p6 [ 2 ] : ( p6 [ 2 ]+17 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣peak␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y2 )
p l t . show ( )

#pr in t ( f f t f r e q ( 6 0 0 ) [ : 1 0 ] )

#%% Plateaus
#Plateau ROI1
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣1␣ p lateau ␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y3 )
p l t . show ( )

# Plateau ROI2
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣2␣ p lateau ␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y3 )
p l t . show ( )

# Plateau ROI3
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : ( p3 [ 0 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ : ( p3 [ 0 ]+1 ) ] , l i n e fmt = "b" )
p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]

−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 0 ] : ( p3 [ 1 ]+1 ) ] , l i n e fmt = " r " )
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p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 1 ] : ( p3 [ 2 ]+1 ) ] , l i n e fmt = "c" )

p l t . stem ( f f t f r e q ( 3 0 0 ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ p3 [ 2 ] : ( p3 [ 2 ]+8 ) ] , l i n e fmt = "b" )

p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ p lateau ␣ pa t i en t ␣"+str ( i+1)+"␣ (3 rd␣ s e t ) " )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . yl im (0 , y3 )
p l t . show ( )

#pr in t ( f f t f r e q ( 3 0 0 ) [ : 1 0 ] )

#%% Average va l u e s
print ( " Pat ient ␣"+str ( i +1))

print ( "Average␣ va lues ␣ f o r ␣ ba s e l i n e " )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 2 ] ) ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI1s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 2 ] ) ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI2s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 2 ] ) ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 0 ] : rown [ 1 ] ]
−np .mean(ROI3s [ rown [ 0 ] : rown [ 1 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) )

print ( "Average␣ va lues ␣ f o r ␣peaks " )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 3 : 6 ] ) / 3 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI1s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI1s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 6 : 1 3 ] ) / 7 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 3 : 6 ] ) / 3 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI2s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI2s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 6 : 1 3 ] ) / 7 ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 3 : 6 ] ) / 3 ) )

print ( "Avg␣ va l ␣NO␣=␣"+str (np .sum(np . abs ( f f t (ROI3s [ rown [ 1 ] : rown [ 2 ] ]
−np .mean(ROI3s [ rown [ 1 ] : rown [ 2 ] ] ) ) ) [ 6 : 1 3 ] ) / 7 ) )
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print ( "Average␣ va lues ␣ f o r ␣ p lateau " )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 2 ] ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI1s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI1s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 2 ] ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI2s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI2s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) ) )

print ( "Avg␣ va l ␣EDHF␣=␣"+str (np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 2 ] ) )

print ( "Avg␣ va l ␣NO␣=␣"+str ( ( np .sum(np . abs ( f f t (ROI3s [ rown [ 3 ] : rown [ 4 ] ]
−np .mean(ROI3s [ rown [ 3 ] : rown [ 4 ] ] ) ) ) [ 3 : 7 ] ) / 4 ) ) )

E.3 Windows

#%%
import numpy as np
from matp lo t l i b import pyplot as p l t
from s c ipy . f f t import f f t , f f t f r e q
import pandas as pd
from math import c e i l
import s c ipy . s i g n a l
#import random

#%%
df = pd . read_excel ( r "C: \ Users \Nisha\Documents\BEP\LSCImeting . x l sx " ,

sheet_name = 1 , header = 29 , u s e c o l s="A:F" , nrows = 2544)

#%%
ROI3 = np . array ( df [ ’ 3 . ␣ROI ’ ] )
ROITHREE = f f t (ROI3)

#%% Proper t i e s
time = 42∗60+48
N = len ( df )
H = N//2

n = np . arange (N)

#%%
def movavg( s ig , va l ) :

i n i t = np . z e r o s ( len ( s i g ) )
for i in range ( va l ) :

i n i t [ i ] = np . array ( [ 1 / ( va l +1)])
print ( i n i t )
outp = np . convolve ( s ig , i n i t ) [ : len ( s i g ) ]
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return outp

#%%
ROI3smooth = movavg(ROI3 , 50)
ROI3smooth1 = ROI3smooth − np .mean(ROI3smooth )

#%%
a1 = ROI3 ∗ np . hanning (N)
a2 = movavg ( a1 , 5 0 )

#noth ing new fo r a3 4 and 5
a3 = (ROI3−np .mean(ROI3 ) ) ∗ np . hanning (N)
a4 = movavg ( a3 , 5 0 )

a5 = ROI3 ∗ np . hamming(N)

#%%
#p l t . p l o t (n , ROI3 , l a b e l = ’ROI3 ’)
#p l t . p l o t (n , a1 , l a b e l = ’Hanning window ’)
#p l t . p l o t (n , ROI3smooth , l a b e l = ’ Smooth ’ )
p l t . p l o t (n , a2 , l a b e l = ’Smooth␣Hann␣window ’ )
p l t . p l o t (n , a3 , l a b e l = "Mean␣removed␣and␣Hann␣window" )
p l t . x l ab e l ( "Time␣ in ␣ seconds " )
p l t . y l ab e l ( "Change␣ in ␣dermal␣blood␣ f low " )
p l t . show ( )

#%%
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : 1 5 0 ] , np . abs ( f f t ( a4 [ 2 2 1 1 : 2 5 1 1 ] ) ) [ : 1 5 0 ] )

#−np .mean( a2 [ 2 2 1 1 : 2 5 1 1 ] ) ) ) [ : 1 5 0 ] )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ p lateau ␣phase" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . show ( )

E.4 Butterworth filter

#%%
import numpy as np
from matp lo t l i b import pyplot as p l t
from s c ipy . f f t import f f t , f f t f r e q
import pandas as pd
from math import c e i l
import s c ipy . s i g n a l
#import random

#%%
def movavg( s ig , va l ) :

i n i t = np . z e r o s ( len ( s i g ) )
for i in range ( va l ) :

i n i t [ i ] = np . array ( [ 1 / ( va l +1)])
print ( i n i t )
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outp = np . convolve ( s ig , i n i t ) [ : len ( s i g ) ]
return outp

#%%
df = pd . read_excel ( r "C: \ Users \Nisha\Documents\BEP\LSCImeting . x l sx " ,

sheet_name = 1 , header = 29 , u s e c o l s="A:F" , nrows = 2544)

ROI3 = np . array ( df [ ’ 3 . ␣ROI ’ ] )

#%% Proper t i e s
time = 42∗60+48
N = len ( df )
H = N//2
f s = N/time

n = np . arange (N)

#%%
ROI3smooth = movavg(ROI3 , 50)
#60 i s enough?
ROI3smooth1 = ROI3smooth − np .mean(ROI3smooth )

#%%
order = 5
cu t o f f = 0.005
analog = False
b , a = sc ipy . s i g n a l . butte r ( order , cu to f f , " low" , analog , "ba" , f s )
c = sc ipy . s i g n a l . f i l t f i l t (b , a , ROI3)

#%%
p l t . p l o t (n , ROI3 , l a b e l = ’ROI3 ’ )
p l t . p l o t (n , c , l a b e l = "Butterworth␣high ␣ pass " )
p l t . x l ab e l ( "Time␣ in ␣ seconds " )
p l t . y l ab e l ( "Change␣ in ␣dermal␣blood␣ f low " )
p l t . show ( )

#%%
p l t . stem ( f f t f r e q ( 3 0 0 ) [ : 3 0 ] , np . abs ( f f t ( c [ 2 2 11 : 2 5 11 ]

−np .mean( c [ 2 2 1 1 : 2 5 1 1 ] ) ) ) [ : 3 0 ] )
p l t . t i t l e ( "Amplitude␣ spectrum␣ROI␣3␣ p lateau ␣phase" )
p l t . x l ab e l ( "Frequency␣ in ␣Hz" )
p l t . y l ab e l ( "Amplitude" )
p l t . show ( )
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