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Abstract

Inconsistencies between performance data from laboratory-prepared and field
samples have been widely reported. These inconsistencies often result in inac-
curate condition prediction, which leads to inefficient maintenance planning.
Traditional pavement management systems (PMS) do not have the appropri-
ate means (e.g., mechanistic solutions, extensive data handling facilities, etc.)
to consider these data inconsistencies. With the growing demand for sustain-
able materials, there is a need for more self-learning systems that could quickly
transfer laboratory-based information to field-based information inside the PMS.
The article aims to present a future-ready machine learning-based framework
for analyzing the differences between laboratory and field-prepared samples.
Developed on the basis of data obtained from field and laboratory data, the
gradient-boosting decision trees-based framework was able to establish a good
relationship between laboratory performance and field performance (R? s > 80
for all models). At the same time, the framework could also show more complex
relationships that are often not considered in practice.

agencies, a primary challenge is to optimize investment
impacts on serviceability (Yao et al., 2024).

Pavement infrastructures are essential in facilitating eco-
nomic growth for any country (Yao et al., 2020). The
construction and maintenance of pavement infrastruc-
tures require substantial budget allocation and planning
(Peraka & Biligiri, 2020). For example, more than $400
billion is invested globally each year in pavement con-
struction and maintenance (Torres-Machi et al., 2015). In
developed countries, more focus is now on maintaining the
existing pavement infrastructures than constructing new
ones, as the road networks are often already saturated.
However, considering the limited budget available to road

Road agencies generally determine appropriate main-
tenance strategies and budget allocation by predicting
optimum pavement performance over time (Pan et al.,
2011). The traditional approach to performance predic-
tion is to appropriately choose the laboratory mix design
method based on its empirical relationship with in-field
experience (Polaczyk et al., 2021; Zaumanis et al., 2018;
Zhou et al., 2021). However, the performance variation in
laboratory mix design methods stems from differences in
the evaluation process and the distinct construction pro-
cess (e.g., compaction techniques; Gartner, 1989). Hence,
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laboratory samples should be prepared to closely match
field conditions (Iskender & Aksoy, 2012; Tia, 2005, 2005).
Furthermore, care should also be taken to maintain con-
sistency in compaction processes and other factors, such
as temperature in both environments (Airey & Collop,
2016).

Laboratory conditions offer a more controlled environ-
ment with smaller material quantities and stricter controls
over temperature (Airey & Collop, 2016). Therefore, the
relationship between independent variables (e.g., prop-
erties of asphalt mixture) and dependent variables (e.g.,
functional performance indicator) could be significantly
different in field conditions. Such a difference can be statis-
tically represented by examining the variability or discrep-
ancies between the independent and dependent variables,
which may be intricate and manifest nonlinearly. Further-
more, the rapid change in mixing compositions resulting
from the scarcity of raw materials, weather fluctuation,
changes in traffic characteristics, and other technological
advances are changing asphalt concrete beyond the narrow
margins for which traditional mix design criteria might not
hold true (Mousavi Rad et al., 2022; P. Pereira & Pais, 2017;
Zaumanis et al., 2018). The research studies concluded
that these aspects have not been well studied. In con-
trast, traditional pavement performance prediction models
(PPPMs), such as mechanistic-empirical models, assume
that the laboratory performance sufficiently reflects the
field performance. These models often require advanced
calibration methods due to the variations in materials, con-
struction methods, and environmental conditions that can
impact the performance of the pavement in the field (Dong
et al., 2020).

With advancements in computational power, machine
learning (ML) methods have been utilized intensively.
Their ability to handle vast amounts of data enabled
researchers to overcome some of the limitations inher-
ent in traditional approaches. However, even in ML-based
PPPMs, it is often presumed that laboratory performance
sufficiently reflects field performance. Furthermore, ML
models often struggle with the lack of enough inter-
pretability of the results, even the sophisticated methods
with improved predictive capabilities (Fan et al., 2023). The
lack of interpretability can be a significant drawback in the
practical application of ML-based pavement performance
prediction models. Without a clear understanding of the
model’s prediction process, practitioners may be hesitant
to trust the results and make decisions based on them.
Considering the limitations highlighted, the objective and
the scope of the research are presented in the following
subsection.
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Research objective and scope

1.1 |

The objective of the research is to develop a future-ready
ML-based pavement performance prediction framework to
study the reliability of lab-prepared samples on the actual
field performance. Before using the proposed framework
to study the importance of the parameters of asphalt mix-
ture on functional performance indicators, the validity
of the models is first checked against multilinear regres-
sion (MLR), support vector machine (SVM), and random
forest (RF). The proposed framework will provide bet-
ter insights into pavement behavior in the field by using
the information obtained in the laboratory with the end
goal of enabling better-informed decision-making, opti-
mizing maintenance strategies, and ultimately leading to
cost savings and enhanced road safety.

To achieve the objective of the research, the scope of the
research is identified as follows:

1. Comparing the performance of mixtures prepared in-
lab and in-field conditions.

2. Developing the gradient boosting decision tree (GBDT)
model for predicting functional performance indicators
such as stiffness, fatigue resistance, rutting, and water
sensitivity.

3. Validating the performance of the GBDT model with
the MLR, SVM, and RF.

4. Improving the interpretability of the GBDT model using
Shapley additive explanations (SHAP).

5. Evaluating hypotheses that are commonly deemed
correct in pavement construction practices.

1.2 | Research framework

In order to have an easier understanding, the methodology
of this research is divided into four stages (see Figure 1).
In the first stage, data from both the laboratory and the
field were collected. In Stage 2, the data from Stage 1 were
preprocessed for Stage 3. In Stage 3, ML models were devel-
oped. In Stage 4, the developed models are utilized to
evaluate the reliability of the lab-prepared samples on the
field performance. In the following subsections, each of the
stages is explained. It is noted that the research framework
is based on the following assumptions:

1. The selected features adequately represent the key
factors influencing pavement performance.

2. The collected data from the six construction projects are
representative of broader industry practices.
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FIGURE 1 Research framework. GBDT, gradient boosting
decision tree; MLR, multilinear regression; RF, random forest; SVM,
support vector machine.

1.3 | The novelty of the research
The novelty of the presented paper depends on the follow-
ing key points:

1. The scope of the problem: As discussed in the previous
sub-sections, none of the existing approaches provide
a framework for automatically identifying the differ-
ence between the functional performance of laboratory
and field-prepared samples with the usage of already
existing ML technologies.

2. The completeness of the solution: From the reviewed lit-
erature (see Section 2), it can be concluded that none
of the previous studies presents a full-fledged method-
ology encompassing processes from (field and labora-
tory) data collection strategy to providing interpretable
results.

3. The emulation of experts’knowledge: With the proposed
ML-based innovative framework, this research will
enable the emulation of experts’ knowledge into ML
modeling to solve complex issues in pavement engi-
neering. This can only be achieved by developing state-
of-the-art processes to build a framework combining
modern techniques and expertise built over decades.
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This paper paves the way for further research to solve
other relevant issues (apart from the ones highlighted
in this research)

4. Discovering hidden patterns in target parameters: The
proposed framework can discover hidden patterns in
the material’s behavior and provide deeper insights into
the material composition and mixture optimization
that were previously unknown.

1.4 | Paper organization

This paper is organized to showcase the novel approach
to studying the performance difference between samples
prepared in the laboratory and the field. It begins with an
overview of PPPM models, which sets the stage for the
methodological part of the study, where the development
process of GBDT models, including training and testing
based on the collected data, is meticulously detailed. Fol-
lowing this, the results and discussions section interprets
the findings and contextualizes them within the existing
body of knowledge. Last, conclusions and future research
sections are presented.

2 | LITERATURE REVIEW OF
PERFORMANCE PREDICTION METHODS

With the advancement in pavement asset management,
many road agencies utilize various PPPMs incorporated
within a dedicated pavement management system (PMS;
Uddin et al., 2013). Road agencies use PPPMs to plan their
budget allocation well in advance (Haas & Hudson, 2015).
PPPMs mainly evaluate the connection between pavement
performance indicators and pertinent influencing param-
eters in the PMS. These models are utilized to investigate
the degradation process and predict future pavement con-
ditions (Khattak et al., 2013; Marcelino et al., 2021; J. Yang
et al., 2003).

PPPMs can be divided into four categories: empiri-
cal, mechanistic, mechanistic-empirical, and probabilistic,
based on their underlying approach to modeling and pre-
dicting pavement performance (Yehia & Swei, 2020). Each
category represents a different methodology and assump-
tions for analyzing and predicting pavement behavior and
deterioration over time. In Table 1 a summary of the key
elements and limitations of these methods, which are
explained in the following paragraphs, are presented.

Empirical models such as the Highway Development
and Management Model (HDM-4; Kerali et al., 2000)
mainly rely on observed data to explore the relationship
between pavement performance and various influencing
parameters (Hu et al., 2022). The advantages of empirical
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TABLE 1 Summary of reviewed literature on PPPMs: Key elements, limitations.

Category

Empirical models

Mechanistic models

Mechanistic-empirical
models

Probabilistic models

Machine learning (ML)

References reviewed for key
elements and limitation

(Abu Al-Rub & Darabi, 2012;
Deng & Shi, 2023; Hu et al., 2022;
Kerali et al., 2000)

(Abu Al-Rub & Darabi, 2012;
Darabi et al., 2012; Deng & Shi,
2023; Haddad et al., 2022; B.
Huang et al., 2001; W. Huang

et al., 2020; Hunter et al., 2007;
Kettil et al., 2007; T. Ma et al.,
2018; W. Wang et al., 2017; Yao
etal., 2022; Y. Zhang et al., 2017)

(Dong et al., 2020; Guo et al.,
2022; Q. Li et al., 2011)

(Alimoradi et al., 2022; Basnet

et al., 2023; Ghahramani, 2015;
Hong & Prozzi, 2006, Jiménez &
Mrawira, 2012; Liu et al., 2022b;
Mizutani & Yuan, 2023; Saha

et al., 2017; Surendrakumar et al.,
2013)

(Adeli & Hung, 1994; Adeli &
Yeh, 1989; Arrieta et al., 2020;
Belle & Papantonis, 2021;
Bergstra et al., 2013; Deng et al.,
2024; Gong, Sun, Hu, et al., 2019;
Guo et al., 2022; Hou et al., 2021;
Justo-Silva et al., 2021;
Kargah-Ostadi et al., 2023; Liang
et al., 2022; Liu et al., 2022a;
Lundberg & Lee, 2017; Nghiem
et al., 2023; Pasupunuri et al.,
2024; Peraka & Biligiri, 2020; D.
R. Pereira et al., 2020; Rafiei &
Adeli, 2017; Ridley, 2022;
Sarkhani Benemaran et al., 2023;
Yang Song et al., 2022;
Tamagusko & Ferreira, 2023; C.
Wang et al., 2023, 2024; L. Yang &
Shami, 2020; Yao et al., 2019,
2022; M. Zhang et al., 2020)

Key elements

—Rely on observed data to
explore the relationship
between pavement
performance and various
influencing parameters
-Simple model development
process

—Predict distress by
integrating specific material
behaviors

-Consider different loading
conditions (pulse, moving,
equivalent loads)

-Use finite element and
discrete element approaches
—Offer reliable predictions
when adequately calibrated

—Combine mechanistic
approaches and empirical
methods

—Predict pavement condition
transitions with predefined
probability distributions
—Account for deterioration,
environmental conditions,
loading, and maintenance
histories

—Can be improved with more
data

-Model intricate
input-output relationships
—-Handle large volumes and
complex data effectively
-Good in decision-making by
providing clear information
on future trends and
challenges

-Interpretability of ML
models can be enhanced
using explainable artificial
intelligence (XAI) methods
-Incorporating
physics-guided ML (PIML)
can enhance the
generalizability and
interpretability of the models
—-PIML often requires less data

Limitation

-Exclude mechanistic
behaviors

-Limited understanding of
distress propagation

-Poor adaptability to changes
(traffic, materials, climate)
-Inaccurate long-term
predictions

—Cannot explore material
behavior under varied
conditions

—Overreliance on the
theoretical behavior of
materials

—Performance prediction can
be complex and
time-consuming

-Temporal and spatial
uncertainties in stress and
environmental conditions

-Require intensive calibration
and validation procedures
—Practicability can be limited

Require simplification when
data are limited

—Possible inaccuracies if the
chosen probability
distribution does not reflect
actual data

—-Often do not consider the
influence of initial state and
timely variations in condition
transitions

—Often lack the capability to
identify the most influential
factors in an explanatory way
—Prone to misinterpretation
and difficult to check the
validity

-Enhancing interpretability
using XAI methods often
comes at the cost of reduced
accuracy

-XAI techniques can be
computationally intensive
-Incorporating PIML is often
complex and requires deep
understating of both the
physical domain and
advanced ML techniques
-High-quality and
representative data are crucial
for training PGML models
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models lie in their simple model development process
and the established relationships between pavement
performance and various influencing parameters (Hu
et al., 2022). However, these models often exclude the fun-
damental mechanistic behaviors occurring within asphalt
mixture layers and their interactions (Liu et al., 2022b).
Such an exclusion can result in a limited understanding
of the diverse parameters involved in distress propagation
and restrict the model’s ability to account for complex
variations. As Deng and Shi (2023) reported empirical
models may encounter difficulties adapting to changes
such as traffic pattern shifts, material properties, or climate
variations. Besides, the lack of adaptability can lead to inac-
curacies when making predictions over extended periods.
Furthermore, while empirical models provide straightfor-
ward insights into pavement performance, they cannot
explore the mechanistic intricacies that define material
behavior under varying conditions. The gap sets the stage
for mechanistic models, which offer a more detailed
analysis by accounting for material-specific behaviors and
dynamic loading scenarios (Abu Al-Rub & Darabi, 2012).
Mechanistic models predict distress by integrating spe-
cific material behaviors as the models developed based on
viscoplastic (Hunter et al., 2007) and elastic-viscoplastic
behaviors (B. Huang et al., 2001). Hence, mechanistic mod-
els can consider different loading conditions, including
pulse loads (Hunter et al., 2007), moving loads (Saleeb
et al., 2005), and equivalent loads more effectively (Kettil
et al., 2007). Methods such as finite element (Haddad et al.,
2022) and discrete element approach (T. Ma et al., 2018)
are commonly adopted in mechanistic models. Mechanical
models for pavement analysis rely on lab-measured mate-
rial properties and calibrated model coefficients. Properly
calibrated models with generalized theories offer reliable
predictions for new experimental data (Abu Al-Rub &
Darabi, 2012; Y. Zhang et al., 2017). However, for pavement
materials that suffer from significant variations, overre-
liance on the materials’ expected theoretical behavior can
make the performance prediction process complex and
time-consuming (Yao et al., 2022). For example, the stress
state of the pavement and environmental conditions often
show temporal and spatial uncertainties, which can lead
to time-consuming dynamic analyses to alleviate these
uncertainties (Deng & Shi, 2023; W. Huang et al., 2020;
W. Wang et al., 2017). Therefore, implementing such a
time-consuming analysis would hinder the ability to make
prompt pavement maintenance and rehabilitation deci-
sions. This limitation underscores the need for another
approach that can benefit from the advantages of both
mechanistic and empirical models.
Mechanistic-empirical models adopt mechanistic
approaches to compute the critical pavement responses
(e.g., tensile strain) and empirical methods to pavement
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distress based on statistical relations between road struc-
tures and field observations (Q. Li et al., 2011). However,
despite their acceptable prediction performance, their
practicability could be limited. This limitation arises
because they require material input parameters from
local laboratory test results and often neglect complex
environmental and context-related variables (Guo et al.,
2022). Hence, like mechanistic models, developing a
reliable mechanistic-empirical model necessitates both a
calibration procedure to estimate the parameters of the
empirical model and a validation procedure to evaluate
the prediction accuracy of the calibrated model (Dong
et al., 2020). Intensive calibration can underscore the need
for probabilistic prediction models, which offer a dynamic
perspective on pavement conditions by incorporating
historical, environmental, and loading data (Ghahramani,
2015).

Probabilistic prediction models can predict the likeli-
hood of a pavement’s condition from a different state
to the current state by employing a predefined proba-
bility distribution (Liu et al., 2022b). These models can
include the dynamic characteristics of pavements concern-
ing deterioration, environmental and loading conditions,
and maintenance histories (Alimoradi et al., 2022). For
example, Markov chain Monte Carlo is a well-known prob-
abilistic simulation technique that different researchers
in pavement engineering have used (Jiménez & Mrawira,
2012; Saha et al., 2017; Surendrakumar et al., 2013). How-
ever, when data availability is limited, these models are
forced to simplify and choose a probability distribution,
which can lead to inaccuracies if the selected distribution
does not accurately reflect the actual data (Basnet et al.,
2023). Moreover, in probabilistic models like Markov chain
Monte Carlo, while the subsequent state depends solely on
the current state, the influence of the initial state (e.g., ini-
tial pavement material properties) and timely variations
in pavement condition transition trends is generally not
considered (Liu et al., 2022b; Mizutani & Yuan, 2023).

With the rapid development of computational tech-
niques, ML (Adeli & Hung, 1994) and deep learning have
been widely adopted in civil engineering. These advanced
methods have helped address some of the limitations of
previously discussed techniques (Tamagusko & Ferreira,
2023). Adeli and Yeh (1989) were among the researchers
who pioneered applying ML in the civil engineering
domain. The popularity of ML stems from its capacity
to model intricate input-output relationships (Justo-Silva
et al., 2021; Yao et al., 2022). Additionally, the capability of
ML to improve over time with mode data can make the
resulting models more adaptable, compared to traditional
approaches, which are dependent on a set of equations and
assumptions (Tamagusko & Ferreira, 2023). ML algorithms
can predict various functional performance indicators of
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asphalt mixture (Liu et al., 2022a). By training on extensive
pavement data, ML models discern patterns and relation-
ships that can enhance PPPMs and PMS (D. R. Pereira
et al., 2020; Rafiei & Adeli, 2017).

Among various ML models, artificial neural networks
(Adeli & Yeh, 1989) and SVM (Cortes & Vapnik, 1995) mod-
els have been extensively utilized in developing PPPMs
(Hou et al., 2021). However, despite the competence of
these models in accurately predicting pavement perfor-
mances, they often lack the capability to identify which
influencing factors have the most significant impact on the
final outcomes in an explanatory way. Researchers Guo
etal. (2022) and Yang Song et al. (2022) reported that the lit-
erature on the application of ML for PPPMs mainly focuses
on model accuracy or applies the primary methods for
parameter importance estimation (Yao et al., 2019). More-
over, ML-based PPPMs often interpret results by assessing
parameter importance or sensitivity, but they usually do
not explore deeply the effects of parameters (Gong, Sun,
Hu, et al., 2019; Yao et al., 2019).

Since today’s PMS handles growing data volume and
complexity, it is possible to consider diverse parameter for-
mulations (Peraka & Biligiri, 2020; Yao et al., 2022). How-
ever, without comprehensive explanatory modeling (Rosé
et al., 2019), these formulations might yield inaccurate or
misleading results, potentially leading to suboptimal main-
tenance decisions and inefficient resource allocation (Yao
et al., 2022). Therefore, explanatory modeling is essential
to understand specific parameter impacts on model out-
puts for practical applications. Otherwise, the reliability
of decisions based on ML model predictions cannot be
guaranteed (Belle & Papantonis, 2021)

In order to provide more reliable and explainable mod-
els, the GBDT framework has become a popular choice in
recent years (Liang et al., 2022). Gong, Sun, and Huang
(2019) developed a GBDT-based model to enhance the
predictive performance of fatigue cracking. Input param-
eters such as pavement thickness, resilient modulus of
subgrade, and climatic conditions were considered in this
model. It was highlighted that the predictive performance
of GBDT models significantly outperformed the transfer
functions presented in the mechanistic-empirical pave-
ment design guide (Hallin, 2004). In another study, M.
Zhang et al. (2020) developed a GBDT model to pre-
dict asphalt overlay performance, achieving satisfactory
predictive performance (R? s > 80%) for roughness, rut-
ting, transverse cracking, and non-wheel path longitudinal
cracking. Researchers Guo et al. (2022) and C. Wang et al.
(2023) proposed a GBDT-based model to predict the inter-
national roughness index and rut depth while considering
various influencing parameters such as temperature and
wind speed. The proposed GBDT models in these stud-
ies outperformed other models. Sarkhani Benemaran et al.

@ BERANGI ET AL.

(2023) used GBDT to predict the resilient modulus of
subgrade in flexible pavement foundations. The GBDT
model had a significant prediction accuracy (R? = 0.991),
compared to the other models.

The studies reviewed above indicate that although using
GBDT models can help identify the most influential
parameters, it is often difficult to comprehensively explain
the interactions or contributions of these parameters to
individual predictions. Therefore, to improve the explain-
ability of the ML-based models, pavement researchers
steered more toward explainable artificial intelligence
(XAI) methodologies (Ridley, 2022) by incorporating meth-
ods such as SHAP (Lundberg & Lee, 2017). For example,
Guo et al. (2022) and Yang Song et al. (2022) employed
a specialized version of GBDT to model the interna-
tional roughness index and determine parameter impor-
tance utilizing SHAP. While outcomes were noteworthy,
the model’s hyperparameter optimization relied on grid
search, which might lack computational and performance
efficiency, compared to Bayesian optimization (Bergstra
et al., 2013; L. Yang & Shami, 2020). Yao et al. (2022)
enhanced the clarity of the Bayesian neural network model
developed for predicting transverse cracks by implement-
ing SHAP. Although the obtained results are promising,
the scope of the study is limited to transverse cracks, and
the mechanistic properties of the asphalt mixture (e.g.,
phase angle) were less considered. Despite the promising
results obtained by incorporating XAI methodologies, the
number of research that has been carried out in developing
PPPMs using these methodologies is limited due to issues
such as prioritizing accuracy over interpretability (Yang
Song et al., 2022), the computationally intensive nature,
and the complexity of XAl implementation (Arrieta et al.,
2020).

In response to the issues mentioned in the previous
paragraph, researchers Deng et al. (2024), Kargah-Ostadi
et al. (2023), and Pasupunuri et al. (2024) tried to incor-
porate pavement-domain-specific physical knowledge into
the learning process of ML models through a framework
called physics-guided ML (PIML; Nghiem et al., 2023).
PIML aims to improve not only the explainability in the
ML models but also the data efficiency, the generalizabil-
ity, and the physical plausibility of predictions (G. Wang
et al., 2024). However, regardless of the lack of sufficient
studies about PIMLs in PPPMs, there are some challenges,
such as finding proper physical laws matching the avail-
able dataset, complexity of physical laws (Fuks & Tchelepi,
2020), data efficiency and quality (Meng et al., 2022) and
computational costs (Shukla et al., 2022).

In summary, field performance indicators are frequently
evaluated in controlled environments of laboratories. Con-
sequently, it is vital to identify the discrepancies between
the properties of mixtures prepared in the lab and those
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in the field. However, differentiating between laboratory
and field properties can introduce an additional layer of
complexity to PPPMs as it requires the consideration of
more parameters. Due to the recent advancement in com-
putational facilities, ML-based models have become more
powerful, which could help pavement researchers estab-
lish such connections (Marcelino et al., 2021; X. Yang et al.,
2021). However, to the best of the author’s knowledge,
such a framework is not yet available for the pavement
community.

3 | DEVELOPING GBDT MODELS

The following section presents the application of GBDT
models as adopted in this research. At first, a brief intro-
duction to GBDT is presented. Then, an overview of
the data collection and preprocessing stages is described.
Subsequently, a discussion of findings based on the prelim-
inary data analysis of the proposed models is presented.

3.1 | Briefoverview of GBDT

The GBDT models have become a popular choice in recent
years as they often outperform artificial neural network
models (Lundberg et al., 2020). This is because GBDT
draws insights and methods from both statistical and ML
methods (Barua et al., 2021; X. Ma et al., 2017). There
are other benefits to using GBDT, such as being effective
in handling datasets with high cardinality (Hancock &
Khoshgoftaar, 2020) and missing values (Barua et al., 2021;
Ding et al., 2018; Friedman, 2001).

Since the foreseen dataset of this research (see Sec-
tion 3.2) is expected to have many input parameters and
missing values, the GBDT framework was selected. Gradi-
ent boosting is a method that generates a powerful learning
model by combining multiple so-called “weak learners”
(Friedman, 2001). It is noted that since gradient boosting
utilizes regression decision trees (Breiman, 2017) to fit the
gradient descent algorithm (Hastie et al., 2009), it is also
known as a gradient-boosting decision tree. Detailed infor-
mation about the mathematical representation of GBDT
can be found in Friedman (2001). In the next section, a con-
cise overview of the process involved in developing GBDT
models tailored to the specific goals of this research is
presented.

3.2 | Overview of data collection and
preparation

In order to mitigate the bias in the models, data were col-
lected from different contractors and construction sites
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Phase 1 (Laboratory) mase 2 (Laboratory ‘h
b Field)

Compaction Mixing

Phase 3 (Field)

Compaction /

FIGURE 2 Test specimens are made with three different
combinations of laboratory and field mixing and compacting setups.

Compactio Mixing

with similar construction conditions to represent typi-
cal construction practices in the Netherlands. In total,
six different construction projects were selected for the
data collection. It is noted that these six projects are
not test sections or specifically built for this project;
instead, they are road sections that were constructed
for public usage. The data from the projects were col-
lected at distinct stages (so-called “phases”) throughout
each project as shown in Figure 2 and described in
Table 2.

As shown in Figure 2, in “Phase 1,” different asphalt
samples corresponding to the field mix design were mixed
and compacted in a controlled laboratory setup. In “Phase
2,” asphalt samples were collected directly from the asphalt
plant. Subsequently, the mixtures were compacted in the
laboratory. “Phase 3” is classified as a phase in which the
samples were obtained from the construction sites. This
means the obtained samples are mixed and compacted at
the site.

As one of the objectives of this research is to compare
the laboratory data with field observations, key labora-
tory tests were performed. Table 3 presents the performed
laboratory tests together with the functional performance
indicators that will be used in developing the models.
Additional tests were carried out after 6 and 12 months of
construction (categorized as “P3-Y0”) to measure the influ-
ence of bitumen aging following the procedures outlined
in EN 12607-1 (2014). Moreover, to reflect the interme-
diate and long-term effect of aging at the mixture scale,
the tests were repeated after 2, 3, and 6 years of con-
struction (“P3”Y6). It is noted that all the samples were
aged inside the laboratory in controlled conditions at
the constant temperature of 13 + 2°C. This implies that
there was an absence of UV exposure and moisture
conditioning.
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TABLE 2 Overview of the classification of mixture conditioning.

@ BERANGI ET AL.

Code: Description
Phase 1 At the time of
(P1-YO0) construction
Phase 2 At the time of
(P2-Y0) construction
Phase 3 At the time of
construction, from
the road
Phase 3 Six and 12 months
(P3-Y0) after construction
Phase 3 Two years after
(P3-Y2) construction
Phase 3 Three years after
(P3-Y3) construction
Phase 3 Six years after
(P3-Y6) construction

Mixing Mixing Compaction Compaction
Activity setup context setup context
Asphalt mixture and  Forced Lab -Gyrator comp Lab
bitumen analysis action mixer —Hand roller
-Mini roller
—-Segment comp
—Shear box
Planetary Lab —-Gyrator comp Lab
mixer -Mini roller
Asphalt mixture and  Asphalt Field —-Gyrator comp Lab
bitumen analysis plant _Hand roller
-Mini roller
-Segment comp
—Shear box
Asphalt mixture and  Asphalt Field -Field roller Field
bitumen analysis plant

Bitumen analysis

Asphalt mixture and

bitumen analysis

Asphalt mixture and

bitumen analysis

Asphalt mixture and

bitumen analysis

TABLE 3 Tests and standards for determining asphalt mixture functional performance indicator and bitumen functional properties.

Functional performance
indicator of asphalt
mixture/bitumen

Stiffness (E*[MPa])
Resistance to fatigue (g, [’%])

rutting (f, [c:;e. 10%)

Water sensitivity (unitless, the ration
ITSy e [MPaI)

ITS),, [MPa]
Bitumen penetration?

Softening temperature?

Phase angle®

2Parameters related to bitumen properties.

3.21 |

Laboratory test
Four-point bending
Four-point bending

cyclical triaxial test with signal

Indirect tensile strength (ITS)

Penetration test

Ring and ball test

Dynamic shear rheometer

Preprocessing of the collected dataset

Several studies (Alexandropoulos et al., 2019; Budach et al.,
2022; Garcia et al., 2015) have reported that proper data pre-
processing can significantly improve the robustness and
accuracy of ML models. Therefore, as a first step, the col-
lected data were preprocessed because the performance of

Standard

(EN 12697-26, 2012), method B

(EN 12697-24, 2018), method D

(EN 12697-25, 2016), method B

(EN 12697-12, 2018; EN 12697-25, 2016),
method A, and (EN 12697-23, 2017)
(NEN-EN 1426, 2015)

(NEN-EN 1427, 2015)

(NEN-EN 14770, 2022) (from —10 to 60°C)

GBDT models, like any other ML models, heavily relies on
the data quality (Zaki & Meira, 2014).

This research uses several preprocessing steps, such as
data integration, cleaning, and transformation. It is noted
that the dataset was split into training (80%) and testing
(20%) sets before data transformation in order to mitigate
the risks of information leakage (Cawley & Talbot, 2010;
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Kaufman et al., 2012). An overview of the dataset resulting
from the preprocessing step is presented at the end of this
subsection.

Data transformation
In order to facilitate the learning process of ML models,
data transformation techniques are commonly used to con-
vert a non-linear relationship between an input and target
parameter into a linear relation. Some of the ML models,
such as SVM, cannot handle categorical variables directly
(Jung & Kim, 2023; Lee & Kim, 2010). In this research, non-
linear relationships exist in the dataset, including those
introduced by categorical parameters (e.g., compaction
setups and friction reduction systems). Therefore, categor-
ical parameters were transformed into numerical formats
to get a linear relationship. Prokhorenkova et al. (2018)
reported that ordered target encoding is effective when
dealing with high cardinality categorical parameters (i.e.,
categorical parameters with many levels or categories).
Ordered target encoding can reduce the dimensionality of
the data while still preserving important information.
Since the dataset in this research contained numer-
ous categorical parameters with high cardinality, ordered
targeting encoding was applied to limit the categorical
parameters into more manageable forms. The ordered tar-
geting encoding method was chosen over other methods,
such as one-hot encoding (Okada et al., 2019) because one-
hot encoding can result in high-dimensional feature spaces
(Kunanbayev et al., 2021). This can increase computational
complexity and memory usage (Cerda & Varoquaux, 2022).
In the first step of the ordered target encoding method,
the mean target value is calculated for each instance in
the dataset using only the instances that precede it. In
the second step, numerous permutations are carried out
to mitigate the significant variation in the initial values
caused by the procedure in the first step. The final value
is calculated as the average of all permutations in Step 2.
Detailed information about ordered target encoding can
be found in research by Prokhorenkova et al. (2018). It is
noted that the original format of categorical parameters is
presented in Table 4 to facilitate a better understanding.

3.2.2 | Overview of preprocessed dataset

An overview of the dataset obtained after the preprocess-
ing steps is presented in Table 5. The total number of data
points for each output parameter and the maximum and
minimum values are presented. As can be seen, stiffness
and fatigue resistance parameters possess more data points
and a broader range (i.e., the difference between maxi-
mum and minimum values) in comparison to rutting and
indirect tensile strength (ITS).
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TABLE 4 Different categorical variables in the dataset with
their subcategories.

Compaction Friction reduction Mixing setup

setup (CS) system (FRS)* (MS)

Field roller (FR) Two-layer rubber Asphalt Plant (AP)
with silicon grease
(TRSG)

Gyrator compactor 2x Marshallpaper Forced Action

(GCOM) (2MP) Mixer (FAM)

Hand roller (HR) PTFE gecoat vlies Planetary Mixer
(PTFE) (PM)

Mini roller (MR) Acre system (AC)

Segment

compactor (SCOM)

Shear box (SB)

2FRS is designed to reduce frictional losses during the triaxial test to ensure
uniform and consistent test results.

TABLE 5 Overview of output parameters and the number of
data points.
Output (functional
performance
indicators of asphalt Minimum Maximum Total data
mixture) value value points
Stiffness 6144 17,866.47 425
Resistance to fatigue 37.142 177.47 407
Rutting 0.02 0.95 120
ITS 1.25 4.6 192

In Table 6, an overview of the input parameters, along
with their measurement unit and minimum and maxi-
mum values, is presented. The data in Table 6 show that
various input parameters, such as “age” and “target den-
sity,” were considered for the model development. Each
parameter represents a property of the asphalt mixture. For
example, parameters “Target density” and “compaction
degree” represent the density standards for the mixture
and the degree of compaction achieved. The composition
of the asphalt mixture is mainly represented by parame-
ters such as the “Target Mass Composition” of stone, sand,
filler, and bitumen. The physicochemical properties of
bitumen are presented with parameters such as “Bitumen
Penetration” and “Bitumen Phase Angle.”

3.3 | Preliminary analysis

A preliminary analysis was done to fine-tune the hyper-
parameters of the models and compare the GBDT models
with statistical and ML models. A description of the tasks
mentioned above is provided in the following subsections.

85UB017 SUOWIWOD SAIIER.D 3(gedldde ay) Aq pausenob afe sejoie YO ‘sn Jo 3|l 10} Ariq1T 8UIUO A8]IAA UO (SUDNIPUCD-pUE-SWS)W00 A8 | Afe.d1BulUoy/:Sdny) SUONIPUOD pue sWwie 1 8y} 88S *[#202/80/2z] Uo AkiqiTauliuo (1M ‘Nied AiseAlun eouyde | Aq Zze€T 80 IW/TTTT 0T/I0p/u0o A3 1M Aeiq 1 pul|uo//Sdiy Wwolj papeojumod ‘0 ‘2998/97T



* | WILEY

TABLE 6
their corresponding minimum and maximum values.

Overview of the input parameters in the dataset and

Minimum Maximum
Input parameter Unit value value
Age (Y) Year 0 6
Target density (TD)  kg/m?® 2360 2399
Compaction degree % 97.35 103.31
(CD)
Bitumen 0.1 mm 1 55
Penetration (BP)
Bitumen Phase Degree 39.96 66.57
Angle (6)
Target Stone Mass % 52.58 57.9
Percentage (TST)
Target Sand Mass % 32.12 36.81
Percentage (TSA)
Target Filler Mass % 5.72 7.64
Percentage (TF)
Target Bitumen % 4.25 5.4
Mass Percentage
(TB)
Reclaimed Asphalt % 50 65
Pavement (RAP)
Mixing setup (MS) n/a n/a n/a
Compaction setup n/a n/a n/a
(CS)
Friction Reduction  n/a n/a n/a
System (FRS)
Sample condition n/a Dry (0) Wet (1)
(SO
TABLE 7 Predictive performance of the gradient boosting
decision tree (GBDT) models without hyperparameter optimization.
Metric Stiffness €6 fclin ITS
R% oyt 0.94 0.72 0.77 0.75
3.3.1 | GBDT hyperparameters optimization

After the preprocessing step, the dataset was used to train
and test the GBDT models. In Table 7, the R? of the
models without any hyperparameter optimization is pre-
sented. As can be seen from the table, the performance of
the GBDT model is overall satisfactory for all functional
performance indicators. However, since GBDT contains
different hyperparameters (Chen et al., 2019) through-
out the learning process, hyperparameter optimization
is essential to improve the performance of the models.
Therefore, in this research, the hyperparameters such as
“learning rate” (Hastie et al., 2009), the “max depth”
(Friedman, 2001), “12 leaf reg” (Tian & Zhang, 2022), and
“minimum child samples” (Breiman, 2017; Yanyan Song &

@ BERANGI ET AL.

Lu, 2015) were considered to avoid overfitting and improve
the performance of the GBDT model.

In order to find the optimum values and combina-
tions for the hyperparameters, the Bayesian optimiza-
tion technique (L. Yang & Shami, 2020), in conjunction
with 10-fold cross-validation (CV; Anguita et al., 2012),
was used. Bayesian optimization is a highly effective
algorithm that aims to identify the global optimal solu-
tion within the parameter space (K. Li et al., 2024).
The possible range of values for hyperparameters (see
Table 8) was considered based on the literature review,
the scikit-learn library (Sklearn.ensemble, 2024), and the
need to balance model complexity with computational
efficiency.

As shown in Table 8, the value range for the “learn-
ing rate” hyperparameter was considered between 0.001
and 0.3, and different optimized values for stiffness (0.016),
fatigue resistance (0.01), rutting (0.02), and ITS (0.009)
models were obtained. The optimized learning rate values
for each model indicate the rate of weight updates needed
for the best performance. Furthermore, the impact of the
chosen hyperparameters on the GBDT models isillustrated
in Figure 3. As can be seen, the “min_child_samples”
is the most influential hyperparameter, which could sug-
gest its role in controlling overfitting. In second place
is the “learning_rate,” which was expected as its role in
controlling the magnitude of the update to the model’s
weights or parameters was emphasized in previous studies
(Friedman, 2001).

3.3.2 | Predictive performance

After tuning the GBDT models, R? and root mean squared
error (RMSE) are employed to represent their predic-
tive accuracy in Table 9. The comparison between the
results presented for the R?, in Tables 7 and 9 shows
that the hyperparameter optimization led to an average
improvement of approximately 7.6% across all models. This
improvement can highlight the significant positive impact
of hyperparameter optimization on the performance of the
models.

According to the results presented in Table 9, the differ-
ences between the mean R? values from CV and those from
the training dataset were found to be negligible. This obser-
vation suggests a consistent model performance across
different data distributions. Besides, the high R? values
obtained for the testing datasets imply that the models
maintain a significant predictive accuracy when applied
to new datasets. Furthermore, in order to provide a way
to compare the model’s error relative to the range of per-
formance indicators, the normalized RMSE (NRMSE) was
also utilized.
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TABLE 8
Hyperparameter Possible range
Learning rate (LR) [0.001-0.3]
Max depth (MD) [3-20]
12 leaf reg (L2) [0-10]
Min child sample (MCS) [1-100]

MCS e (1)

LR N

2 W

MD W5 o e s e e o e,
0 0.1 02 03 04 05 0.6 0.7 0.8

Importance for Objective value

MCS S e e e e )

L2 1
LR |
MD - | . | | |
0 0.2 0.4 0.6 0.8 1
Importance for Objective value
FIGURE 3

acronyms, refer to Table 8).

TABLE 9
functional performance indicators after hyperparameter
optimization.

Predictive performance on testing data for different

Metrics Stiffness £6 fc lin ITS
Root mean 518.89 9.13 0.063 0.23
squared

error

(RMSE)

Normalized 0.0443 0.0651 0.0677 0.0687
RMSE

(NRMSE)

R%in 0.954 0.829 0.895 0.900
R? o 0.951 0.802 0.812 0.842
Ry 0.919 0.762 0.794 0.823

As shown in Table 9, the GBDT model shows high
predictive accuracy for stiffness with an thest value of
0.951. Given the scale of stiffness values (see Table 5),
the model’s predictive deviation is relatively moderate
(NRMSE = 0.0443), which suggests the effectiveness of
the model in predicting stiffness. The model also shows
acceptable predictive capability for fatigue resistance with
an R7,, of 0.802. Considering the range of fatigue resis-
tance values, the error in the model’s predictions is seen as

reasonably small (NRMSE = 0.0651), which reflects a rea-
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Optimized hyperparameters of GBDT for different functional performance indicators.

Optimized value

Stiffness g6 fclin ITS
0.016 0.01 0.02 0.009
10 10 13 1

2.5 1 1 4

8 32 1 32

MCS I (b)
LR N
| |
MD |
0 0.1 02 03 04 05 06 0.7 0.8
Importance for Objective value

© Mcs NI (d)
MD -

EE
2
LR { . . . .
0 0.2 0.4 0.6 ,0.8
Importance for Objective value

Hyperparameter importance for: (a) stiffness, (b) fatigue resistance, (c) rutting, and (d) indirect tensile strength (ITS) (for

sonably accurate model. The predictive performance of the
model for rutting is also reasonable, with an Rfest of 0.812
and NRMSE of 0.0677. Last, the model for ITS shows an
R?,, of 0.842, and the NRMSE of 0.0687 signifies that it is

reliably accurate.

3.3.3 | Comparison with multiple linear
regression

In order to evaluate the optimized GBDT models, MLR
models were developed for each functional performance
indicator. The MLR was chosen as a baseline because it was
frequently used by previous researchers (Nyirandayisabye
et al., 2022; Tran et al., 2023; Zhao et al., 2022). Detailed
information about MLR can be found in (Box et al., 2005;
Eberly, 2007).

Figure 4 shows that both MLR and GBDT were able to
establish the correlation between input and output param-
eters. In general, it can be observed that R? values are very
similar to each other. As can be seen from Figure 4a,b,d,
the GBDT was found to have a slightly better R? value.
This could be because of GBDT'’s ability to recognize non-
linear relationships between input and output parameters.
It is noted that the observed step-like pattern in Figure 4b
is due to the nature of the fatigue dataset. As Figure 4c
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FIGURE 4 Performance comparison of gradient boosting decision tree (GBDT) and multilinear regression (MLR) models. (a) Predictive
versus actual measured stiffness; (b) predictive versus actual measured resistance to fatigue, (c) predictive versus actual measured rutting, and

(d) predictive versus actual measurements of ITS.
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TABLE 10 The optimized values for the support vector
machine (SVM) models’ hyperparameters.

Hyperparameter Stiffness €6 fclin ITS

Kernel Radial Radial Radial Radial
basis basis basis basis
function  function function function

C 1.5 1.5 1.5 10

Gamma 0.1 0.2 0.3 0.1

€ 0.1 0.1 0.2 0.1

TABLE 11 The optimized values for the random forest (RF)

model’s hyperparameters.

Stiffness £6 fclin ITS
Max depth 80 80 80 80
Max features 5 2 5 5
Min samples leaf 3 3 3 3
Min samples split 8 8 8 8
Number of estimators 1000 1000 200 1000

shows, GBDT did not improve the predictive performance
in the rutting model. From the author’s perspective, this
is because the creep rate is the linear part of the creep
curve, and an MLR model could fit the linear relationships
more accurately. Furthermore, the scarcity of data points
for creep rate and ITS might hinder the learning efficacy
of the GBDT model.

3.3.4 | Comparison with other ML methods
After evaluating the proposed GBDT models with the MLR
models, to evaluate the efficiency and effectiveness, the
models were compared with ML methods such as SVM
(Cortes & Vapnik, 1995) and RF (Breiman, 2001). The rea-
son behind selecting SVM and RF is that these models are
among the frequently used models by several researchers
in the pavement domain (see Section 2). The authors estab-
lished SVM and RF models with the hyperparameters
presented in Tables 10 and 11. These hyperparameters
were selected based on the standard practices in ML. All of
the hyperparameters were optimized by the Bayesian opti-
mization and 10-fold CV (as for the proposed model), and
the optimized values are listed in Tables 10 and 11. It is
noted that the description of the hyperparameters for SVM
and RF can be found in (Random Forest Regressor, 2024;
SVR- Sklearn, 2024).

The comparative evaluation of the prediction perfor-
mance for three ML methods is presented in Table 12.
Based on the R?.y, the GBDT models slightly out-
performed other algorithms. Furthermore, the proposed
GBDT framework consistently offers balanced results
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across different performance indicators by maintaining
the R? . values above 0.8. In contrast, the SVM model
exhibited a notably low R?.; value of 0.216 for predicting
rutting. Similarly, while the RF model performed reason-
ably well, it showed variability with R?. values across
different functional performance indicators. Furthermore,
the RMSE values further emphasize the efficiency of the
GBDT model. Although the RF model showed a slightly
better RMSE for stiffness (515.71), compared to GBDT’s
(518.89), the GBDT model maintained lower RMSE values
for other indicators, underscoring its overall accuracy and
stability.

4 | RESULTS AND DISCUSSION

In order to achieve a general overview of the influencing
input parameters in the developed GBDT models, SHAP
values were incorporated. SHAP is based on ideas from
game theory (Lundberg & Lee, 2017), which aims to dis-
tribute the contributions of each input parameter (see
input features X; to X, in Figure 5a as a symbolic rep-
resentation of such parameters) with equal consideration
and collectively use them to make a fair prediction (Z. Li,
2022). As shown in Equation (1), the quantification of the
contribution of each parameter is obtained by adding the
parameter “X;“ to different groups of parameters on the
prediction of the model.

k!'(p—k —1)!

Shapley (X;) = Z (f (SN {j})

sy P
~f () o)
where “k” is the number of parameters, "p” is the total
number of parameters, “Nx\{j}” is a set of all possible combi-
nations of parameters excluding “X;,” is a parameter set in
“N\{j}, f(S)”is the model prediction with parametersin “S,”
and “f(S u {j})” is the model prediction with parameters
in S plus parameter “X;.”
The following subsections present the results of the
SHAP analysis for each input parameter for stiffness,
fatigue resistance, rutting, and ITS.

4.1 | Stiffness

The SHAP summary plot (Lundberg et al., 2019), as shown
in Figure 5, provides a visualization toolkit to study the
impact of each input parameter (or feature) on predict-
ing stiffness values. Since the input features are arranged
in order based on their average SHAP value, the “com-
paction degree,” “bitumen phase angle,” and “mix setup”
are found to be of significant importance.
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TABLE 12 Performance comparison of the GBDT models with SVM and RF based on the R? and RMSE test.
Stiffness €6 fclin ITS
Models R? RMSE R? RMSE R? RMSE R? RMSE
SVM 0.938 545.17 0.800 8.82 0.216 0.194 0.816 0.27
RF 0.943 515.71 0.756 9.74 0.729 0.114 0.743 0.32
GBDT 0.951 518.89 0.802 9.13 0.812 0.063 0.842 0.23
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FIGURE 5 (a)Legend of the summary Shapley additive
explanations (SHAP) plot, (b) summary SHAP plot for stiffness. (For
acronyms, refer to Table 6). Note: Each point represents the
contribution of a feature to an observation, with the SHAP value
determining the position on the horizontal axis. Negative SHAP
values indicate negative contributions (left side), and positive SHAP
values indicate positive contributions (right side). Feature values are
color-coded: blue for low values and red for high values.

As seen in Figure 5b, the higher values of the “com-
paction degree,” highlighted within the rectangle marked
“X,” are located on the right side of the center line. This
implies that higher compaction degrees will increase stiff-

indicated by the rectangle marked “L,” appear on the left
side of the center line, indicating that lower compaction
degrees will decrease stiffness value. The observed rela-
tionship between compaction degree and stiffness aligns
with the findings of previous research (Brown, 1990).

For the data points corresponding to “phase angle,” the
highest values highlighted within the rectangle marked
“Z” are situated on the left side of the middle line.
This indicates that higher “phase angle” values have a
decreasing effect on stiffness value. On the contrary, lower
values of the “phase angle,” indicated by the rectangle
marked “U,” are found on the right side of the center line.
This implies that a lower “phase angle” correlates with
increased stiffness. This could be associated with the fact
that a higher phase angle denotes a material’s propensity
to become more viscous, which would reduce its elastic
behavior.

Asseen in Figure 5b, the third input feature in order, that
is, “mixing setup,” does not have important values. Hence,
such a feature in the plot does not provide meaningful
information. To solve this issue, further investigations are
necessary. Figure 6 shows a deeper understanding of the
various correlations. The central idea behind these plots
remains the same as the actual SHAP summary plot with
the difference in the y-axis, which does not represent the
importance of the categories. This plot is used to organize
the categories for visual clarity and display the dimension
of data related to the categorical variable.

As seen from Figure 6, the available data points for the
“planetary mixer” are less to draw any definitive conclu-
sion. However, considering that the available data lie on
the right side of the central line, it gives an indication that
using the “planetary mixer” can lead to more stiffness. The
results for the “forced action mixer” are inconclusive as its
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FIGURE 7 Summary SHAP plot for (a) fatigue resistance and
(b) for rutting (For acronyms, refer to Table 6).

data points are almost equally distributed on both sides of
the central line. In contrast, the data points associated with
“asphalt plants” are slightly leaning toward the left side of
the central line, which indicates that by using this mix-
ing setup, less stiffness can be observed. On the basis of
observation from Figure 6, the importance of the mixing
process in achieving the desired stiffness of asphalt can be
concluded.

4.2 | Fatigue resistance
Asshown in Figure 7a, the top three features that influence
fatigue resistance prediction are “target bitumen mass
percentage,” “target filler mass percentage,” and “target
density.”

It can be observed that data points with high “target
bitumen mass percentage” values are placed on the right
side of the center line. This indicates that higher “tar-
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get bitumen mass percentage” values have an increasing
effect on fatigue value. This is in line with findings from
previous research (Erkens & van Vliet, 2014), which indi-
cates that mixtures with a lower bitumen content tend to
be more susceptible to cracking, thereby reducing their
fatigue resistance.

A similar trend to “target bitumen mass percentage” is
observed for data points of “target filler mass percentage,”
where its lower values decrease fatigue resistance values.
However, for the data of this feature, the high values do not
lie at the rightmost side of the horizontal axis. In contrast,
purple values (i.e., lower than the red color in the feature
value bar), as marked by the rectangle “G,” lie at the end
of the horizontal axis. This shows that adding more filler
will not increase the fatigue resistance beyond the critical
limit, which is consistent with the findings of the previous
studies (B. Huang et al., 2007).

Data points of “target density” show behavior similar to
“target bitumen mass percentage.” The high values of “tar-
get density” are on the right side of the central line, which
implies that its higher values have an increasing effect
on fatigue resistance values. This observation is consistent
with the previous research by Mogawer et al. (2011), which
postulated that higher densities can influence the air void
content and elevate the initial stiffness of the mixture,
potentially extending its fatigue life.

4.3 | Rutting

Asillustrated in Figure 7b, the top three features that influ-
ence rutting prediction are “compaction setup,” “friction
reduction system,” and “target bitumen mass percentage.”
Given that “compaction setup” is a categorical variable,
Figure 8 was preferred to investigate the relative impact
of various compaction setups on rutting values. Since the
“gyratory compactor” data points are located on the left
side of the central line, it can indicate that using “gyratory
compactor” could result in a lower likelihood of rutting.
The available data points for the “segment compactor” are
less to draw any definitive conclusion. However, consider-
ing that the available data lie on the right side of the central
line, it gives an indication that by using the “segment
compactor,” more rutting can be observed.
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SHAP summary plot of friction reduction system

In contrast to the “gyratory compactor,” the data points
associated with the “field roller” are located on the right
side of the central line, which raises the possibility that
more rutting could be seen if this compaction setup was
used. This observation indicates that the samples prepared
in the laboratory using the “gyratory compactor” result in
lower rutting as compared with the field rollers. It is noted
that these observations are valid if the same condition is
maintained in this research.

As “friction reduction system” is a categorical variable,
Figure 9 was used to investigate the relative impact of dif-
ferent friction reduction setups on rutting values. It can
be seen from the figure that data points related to “ PTFE
gecoat vlies” and “ Acre system” are located on the left side
of the central line. This can suggest that using these fric-
tion reduction systems could lead to less rutting. The data
points related to “2 maal marshallpapier” cannot indicate
a conclusive result as they are distributed almost equally
on both sides of the central line. The observation of these
three setups does not align with the purpose of using “fric-
tion reduction systems” as they are designed to reduce
frictional losses during the triaxial test and are expected
to increase rutting measurements (Seleridis, 2017). How-
ever, as shown in Figure 9, such an expectation is only
observed in the case of “two-layer rubber treated with sil-
icon grease,” as its data points are clustered on the right
side of the central line.

Regarding the third influencing feature on rutting, the
high values of “target bitumen mass percentage” are
located on the right side of the central line (see Figure 7b).
This can indicate that a higher amount of bitumen con-
tent has an increasing effect on rutting values. This finding
is consistent with previous research (Erkens et al. 2014),
which has reported that increased bitumen content within
the mix elevates the propensity for rutting

As Figure 10 shows, the key features influencing ITS val-
ues are “sample condition,” “bitumen phase angle,” and
“compaction degree.” Observing the “sample condition”
in the first place was expected as it affects the binding
strength between bitumen and aggregates, consequently
influencing water sensitivity (O Abd & Ramanu, 2016).

Considering that “sample condition” is a categorical
variable, Figure 11 was used to investigate the relative
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impact of different conditions on ITS values. As can be
observed from the figure, data points related to “dry sam-
ples” are clustered on the right side of the central line,
which signifies that higher ITS values could be observed
by using dry samples. On the contrary, data points related
to the “wet samples” are clustered on the left side of the
central line, which indicates that lower ITS values could
be expected by using wet samples. Such an observation is
aligned with the previous studies (Sulejmani et al., 2019;
Tarefder & Ahmad, 2015, 2017). Dry samples typically have
higher ITS values due to the strength between bitumen and
aggregates, which can result in a better resistance to water
sensitivity. Conversely, wet samples tend to have lower ITS
values as moisture weakens the bond between bitumen
and aggregates and makes the mixture more susceptible to
damage.

Regarding data points related to the “bitumen phase
angle” (see Figure 10), although high values can be
observed on both sides of the central line, the highest val-
ues are more toward the left side. This indicates that higher
values of “bitumen phase angle” decrease the ITS values.
Similar to what was observed with stiffness, this can be
attributed to the fact that a higher phase angle indicates
the material’s tendency toward a more viscous state, thus
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resulting in diminished elastic behavior. In other words,
the material is less able to bounce back to its original shape
after being subjected to tensile stress, which can lead to a
lower ITS value.

For data points related to “compaction degree” (see
Figure 10), it can be observed that the highest and low-
est values are located on the right and left sides of the
central line, respectively. This can indicate that high val-
ues of the “compaction degree” have an increasing effect,
and its low values have a decreasing effect on the ITS
values. This observation is aligned with the previous find-
ing (Brown, 1990), as a lower compaction degree leads to
more void content and increases the risk of cracking and
water damage. Conversely, a higher compaction degree
can increase ITS values since it helps in enhancing mix
cohesion.

Sections 4.1 to 4.4 have provided insights into the impact
of individual features on the stiffness, fatigue resistance,
rutting, and ITS of asphalt mixtures through SHAP value
analysis, respectively. While these insights have high-
lighted the significant influence of specific features under
controlled conditions, further examination is necessary
to understand the interaction of these features with the
broader aspects of mixture conditioning, aging, and com-
paction processes. Section 4.5 will extend this analysis
by introducing the “Phase-Year” feature, which captures
the cumulative effects of mixture conditioning, aging, and
compaction processes. This additional layer of analysis
aims to discern between the effect of laboratory and field
conditions.

4.4 | Effect of mixture conditioning on
SHAP values

This section outlines the combined effect of mixture prepa-
ration, compaction process, and aging (see Table 2) as
an independent variable (“Phase-Year”) in the modeling
of four functional performance indicators. The rationale
for considering “Phase-Year” is to study the differences
between the effect of laboratory and field conditions.
Hence, in the following subsection, the effect of such a
feature on four functional performance indicators will be
studied.

4.4.1 | Mixture conditioning: Stiffness

As shown in Figure 12a, the “compaction degree” and
“bitumen phase angle” are the most influencing fea-
tures on stiffness. However, compared to Figure 5, the
“Phase-Year” emerges as the third influencing feature,
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FIGURE 12 Summary SHAP plot by incorporating
“Phases-Year” feature, (a) stiffness, (b) fatigue resistance (For
acronyms, refer to Table 6).

which can underscore the importance of considering
the combined impact of conditioning and aging on
stiffness.

As “Phase-Year” is a categorical variable, Figure 13
was used to investigate the relative impact of this fea-
ture on stiffness values. As can be seen from the figure,
most of the data points for “Phase 1-Year 0” and “Phase
3-Year 0” that are located on the left side of the cen-
tral line have a similar range (indicated by rectangle
“S”). The observed similarity seems to suggest that lab-
oratory outcomes are consistent with field observations.
Besides, since the values in “Phase 3-Year 0” to “Phase
3-Year 6” lie from the extreme left to the extreme right,
it might indicate a significant contribution of aging in
stiffness.
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FIGURE 13 SHAP plot for different “Phases-Year” in stiffness
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FIGURE 14 SHAP plot for different “Phases-Year” in fatigue
resistance model (For acronyms, refer to Table 2).

4.4.2 | Mixture conditioning: Fatigue
resistance

It is observed from Figure 12b that “Phase-Year” did not
appear among the top three influencing features on fatigue
resistance. However, like stiffness, a similar trend was
observed between “Phase 1-Year 0” and “Phase 3-Year 0”
(indicated by rectangle “F” in Figure 14), which can imply
that laboratory outcomes are consistent with field observa-
tions. However, in contrast to stiffness, the observed trend
from “Phase 3-Year 0” to “Phase 3-Year 6” can imply the
decreasing effects of aging on fatigue resistance. Moreover,
it can be observed that the data points across different
years in Phase 3 are clustered within similar ranges, which
can indicate a minor role of aging in influencing fatigue
resistance.

4.4.3 | Mixture conditioning: Rutting

As can be seen from Figure 15a, “Phase-Year” is the second
most influencing feature on the rutting value. Further eval-
uation of this feature in Figure 16 shows divergent patterns
from “Phase 1-Year 0” through “Phase 3-Year 0”, which
can imply that laboratory results do not mirror field obser-
vations. However, it can be observed that the data points
from “Phase 3-Year 0” to “Phase 3-Year 6” are clustered
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FIGURE 17 SHAP plot for ITS values, (a) dry samples, (b) wet
samples (For acronyms, refer to Table 2).

on the right side of the central line (see rectangle “R”).
Such an observation can imply that aging increases rut-
ting. However, previous research (Papagiannakis & Masad,
2008) shows that aging correlates with increased material
stiffness and reduced rutting. Moreover, it can be observed
that the data points across different years in “Phase 3”
are clustered within similar ranges, which can indicate a
minor role of aging in influencing rutting.

4.4.4 | Mixture conditioning: ITS

Figure 15b shows that “Phase-Year” is not among the top
three features impacting ITS value. A closer look at the
information provided in Figure 17 shows that the range of
data points from “Phase 1 - Year 0” to “Phase 3 - Year 0” is
similar (see rectangles “I” and “J” in Figure 17a,b). Akin to
stiffness and fatigue, such a similarity might suggest that
laboratory results are comparable with field observation
for ITS values. Besides, since no clear trend is observed
from “Phase 3-Year 0” to “Phase 3-Year 6,” the effects of
aging on ITS value become inconclusive, and thus fur-
ther data are required. Moreover, no clear difference in the
effect of sample condition (i.e., dry and wet) on ITS was
observed.

The section presents a connection between some key
performance indicators and the effect of conditions in
which the corresponding samples were prepared. How-
ever, in industry, slight deviations from the ideal recom-
mendations are realized, leading to various uncertainties.
The following section aims to explore some of the intrica-
cies by setting hypotheses.
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4.5 | Hypotheses testing

As well known within the pavement community, in
practice, several assumptions have to be made due to
the uncertainty in the actual condition of construction.
These assumptions are often made without proven scien-
tific support, which might cause slight deviations from
standard practices and result in decreased pavement per-
formance. Therefore, it is important for field experts to
constantly evaluate and improve their practices to ensure
the longevity and durability of the pavement. In this
research, since the data were collected from the field and
laboratory (under a controlled environment), the devel-
oped GBDT models were used to test some of these key
assumptions in the form of hypotheses (see Table 13).
These hypotheses were established using discussion with
field experts in the Netherlands to assess whether variation
in material/design characteristics leads to differences in
functional performance indicators. As mentioned above,
these hypotheses may not be deemed true since they are
not scientifically examined.

The first hypothesis was set to study the effect of
more and softer bitumen on the four functional per-
formance indicators. In order to statistically test this
hypothesis, three corresponding features, “bitumen con-
tent,” “bitumen penetration,” and “bitumen phase angle,”
are considered.

In the second hypothesis, the effect of aging on the
functional performance of the mixture is evaluated using
“year” as the corresponding feature. Although the second
hypothesis is not directly related to the construction prac-
tices, it is important for the maintenance activities during
the service life of the mixture. In the last hypothesis, the
effect of density on the function performance indicators is
investigated via “compaction degree” as the corresponding
feature.

451 |
effects

Hypothesis testing of stiffness-related

It is expected that exceeding the prescribed quantity of
bitumen in design or utilizing bitumen with higher pen-
etration and higher phase angle than the designated spec-
ification will reduce stiffness modulus. In order to show
the results of the analysis of the hypothesis regarding stiff-
ness, Figure 18 was created using the SHAP dependence
plot (Lundberg et al., 2019). In the SHAP dependence plot,
the horizontal axis displays the values of features, and the
vertical axis shows the impact of each data point on the
model (i.e., SHAP value). It is noted that the zero value on
the vertical axis represents the average SHAP value, and
deviations from the zero point indicate either a positive or
negative impact.
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TABLE 13 Tested hypotheses.

Functional performance

indicator Hypothesis

Stiffness modulus

H2-Aging
H3-Higher density

Resistance to fatigue

H5-Aging
Hé6-Higher density

Resistance to rutting

H8-Aging
H9-Higher density

ITS H10-More and Softer
bitumen

H11-Aging
H12-Higher density

The dashed curve “X” in Figure 18a indicates higher
bitumen penetration (softer bitumen) reduces stiffness
value, which is also aligned with the previous findings
(Papagiannakis & Masad, 2008). Similar patterns were also
observed for the phase angle since the higher phase angle
values (more viscosity) reduce stiffness (see the dashed
curve “Y” in Figure 18b). The behavior of bitumen content
was also aligned with the expectation. Except for anoma-
lies (indicated with rectangle “Z” in Figure 18c), the trend
indicates that higher bitumen content decreases stiffness.
Itis noted that these anomalies were found to be associated
with polymer-modified bitumen samples. Overall, the data
shown in the Figure 18a—c proves hypothesis “H1.”

From Figure 18d, it is observed that as the “Year” on
the horizontal axis increases, the stiffness also increases
(indicated by the dashed curve “T”). The data in the figure
confirms hypothesis “H2,” which also matches the previ-
ous findings that reported aging causes bitumen to become
stiffer (Aguiar-Moya et al., 2017), thereby increasing the
overall stiffness.

Regarding the effect of density on stiffness, as indicated
with dashed curve “B” in Figure 18e, a denser mixture
results in stiffer properties until a critical limit. Beyond
this critical limit (marked with a red dashed line “Q”), an
average decrease in stiffness can be observed. The trend of
compaction degree impact on stiffness remains consistent
when considering maximum density (indicated with the
dashed curve “A” in Figure 18f), which means that there

H1-More and softer bitumen

H4-More and Softer bitumen

H7-More and Softer bitumen
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Corresponding feature Expected to be
-%Bitumen Decreased
-Bitumen penetration,

-Bitumen phase angle

—Year Increased
—Compaction degree Increased
-%Bitumen Increased
-Bitumen penetration,

-Bitumen phase angle

—Year Decreased
—Compaction degree Increased
-%Bitumen Decreased
-Bitumen penetration,

-Bitumen phase angle

—Year Increased
Compaction degree Increased
-%Bitumen Increased
-Bitumen penetration,

-Bitumen phase angle

—Year Decreased
—Compaction degree Increased

is a possible maximum contribution from density to the
stiffness (Mogawer et al., 2011). The pattern observed in
the compaction degree plot proves the hypothesis “ H3.”
Moreover, the presented results in Figure 18e give a deeper
insight into the effect of compaction degree on stiffness
and might help to identify the optimal density for mix-
tures. Applying an appropriate trend line could pinpoint
the density level where further increases cease to augment
stiffness. However, additional experiments with denser
samples are required to fully comprehend the effects of
exceptionally high densities on asphalt mixtures’ stiffness.

452 |
effects

Hypothesis testing of fatigue-related

As shown by the dashed curve “O” in Figure 19a, increased
bitumen penetration (i.e., softer bitumen) reduces fatigue
resistance. This observation does not match the expec-
tation that using softer bitumen would positively affect
fatigue resistance. The data presented in the corresponding
figure disprove the expected effect of bitumen penetration
on fatigue resistance, which is also consistent with the
findings of previous researchers. (Papagiannakis & Masad,
2008). Similarly, the phase angle showed contradictory
results to the expectation, as a higher phase angle was
associated with reduced fatigue resistance (indicated with
dashed curve® L” in Figure 19b).
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FIGURE 18 The SHAP dependence plot presents the results of testing hypotheses for stiffness (For acronyms, refer to Table 6. It is
noted that max density CD is compaction degree considering maximum density.)

The pattern indicated with an arrow “A” in Figure 19¢
proves the expected effect of bitumen content on fatigue
resistance. The presented data in the corresponding figure
are also aligned with the previous studies (Erkens & van
Vliet, 2014). The higher bitumen content can make a
more durable and flexible pavement. As a result, asphalt
mixtures with higher bitumen content could have higher
fatigue resistance as they can withstand repeated loading.

From Figure 19d, it was seen that as the “Year” increases,
the fatigue resistance decreases (indicated with arrow “B”),
except for anomalies in the sixth year (indicated with
the rectangle “Y”). The overall observed trend proves the

hypothesis “H5,” which is also aligned with the previous
literature (Baek et al., 2012; Papagiannakis & Masad, 2008),
which reported that bitumen becomes stiffer with aging,
thereby decreasing fatigue resistance.

Figure 19-e,f show results related to the effect of den-
sity on fatigue resistance. As the dashed curves “C” and
“D” show in such figures, an increased compaction degree
leads to higher fatigue resistance. Similar to the finding
related to stiffness, fatigue resistance reaches its max-
imum at 101.5% compaction (marked with the dashed
line “X”). The observed trend in Figure 19-e,f proves the
hypothesis “H6.” Additionally, the results provide a deeper
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understanding of the impact of compaction degree on
fatigue resistance and may assist in determining the
optimal density for achieving maximum fatigue resistance.
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Hypothesis testing of rutting-related

Figure 20a—c shows results related to the effect of more and
softer bitumen on rutting. As there is no observable clear
pattern, data shown in the corresponding figures cannot
either prove or disprove the hypothesis “H7.” The results
of studying the hypothesis regarding the effect of aging on
rutting are shown in Figure 20d.

The data shown in the figure disprove the hypothe-
sis “H8,” which is also in accordance with the previous
research findings (Babadopulos et al., 2016). Aging is
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SHAP dependence plot for showing the results of testing hypotheses for fatigue resistance (For acronyms, refer to Table 6).

expected to stiffen the bitumen and improve its rutting
resistance. However, from the figure, it can be seen that
an increase in the “Year” feature has a positive correlation
with rutting (indicated with the dashed arrow “F”). The
findings of studying the impact of higher density on rut-
ting are presented in Figure 20e,f. Since no clear pattern
can be seen from the figures, the hypothesis “H9” can be
neither proved nor disproved. Therefore, further research
should be carried out.

4.5.4 | Hypothesis testing of ITS effects

The findings from the study on the impact of more and
softer bitumen on ITS values are illustrated in Figure 21a-c.
In contrast to the expectation, the higher penetration and
phase angle decrease the ITS values as marked with dashed
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cure “H” and “P” in Figure 21a,b, respectively. However,
the results for the effect of bitumen content were aligned
with the expectation. As indicated with the dashed arrow
“K” in Figure 2lc, higher bitumen content increases ITS
values. The findings regarding testing the hypothesis about
the impact of aging on ITS values can be observed in
Figure 21d. Since no clear pattern can be seen through
the years, the hypothesis “H11” cannot be proved or
disproved.

Figure 2le,f shows findings about the impact of den-
sity on ITS values, and the observed trend in the figures
proves the hypothesis “ H12.” Like stiffness and fatigue, the
increasing effect of compaction degree on ITS values is lim-
ited. The maximum ITS value can be reached at the 102%
compaction degree (indicated with the dashed line “U”)
with no further increment beyond this critical point. It is
noted that the variation in SHAP values among wet and dry
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conditions appears minimal, suggesting water sensitivity
in samples is low.

4.6 | Summary of the results
The ML-based models identify the relative importance of
features in studying the reliability of lab-prepared sam-
ples, which were consistent with the findings of previous
research studies. It was found that the results obtained for
stiffness, fatigue, and ITS show consistent results from the
samples obtained in the field and the samples prepared
in the laboratory. These indicate that the compaction and
mixing setups used in the laboratory simulate well in-field
compaction and mixing practices.

It is noted that the results regarding rutting were found
to be inconclusive, which means that the data did not
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function.

convincingly show whether the laboratory compaction
and mixing setup could simulate the field condition.
Therefore, further data and investigation are required.

Since, in practice, it is extremely difficult to control
various conditions compared to laboratory environments,
these variations may result in functional properties that
are different from expectations. To further study the dif-
ferences between field and laboratory setups, various
hypotheses were tested. The formulations of hypotheses
were done based on the notions of experts from their field
experiences. The key highlight of the hypothesis testing is
as follows:

1. Higher bitumen content or using softer bitumen type
leads to reduced stiffness;
2. Samples with higher density result in higher stiffness;
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SHAP dependence plot for illustrating the results of testing hypotheses for ITS (For acronyms, refer to Table) Radial basis

3. Using softer bitumen does not lead to higher fatigue
resistance and ITS values;

4. Aged samples result in lower fatigue resistance;

5. Denser samples show higher fatigue resistance;

6. The results of this research could neither prove nor dis-
prove the effect of aging on ITS values. Hence, further
research is required.

7. No clear indication is found if higher bitumen con-
tent or using softer bitumen results in improved rutting
resistance.

5 | CONCLUSION

The main ambition of the research was to propose an
ML-based future-ready toolkit to support better pavement
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maintenance strategies considering modern-day chal-
lenges. It was discussed that due to some of the modern-
day challenges, the current experience-based pavement
maintenance strategies may become unreliable. To solve
these issues, the pavement community is carrying out
research in multi-fold directions (sustainable materials,
green materials, improved design standards, etc.), which
mostly rely on laboratory-based information. Researchers
have identified that the gap between in-field performance
and laboratory measurements is one of the key hurdles.
Hence, the aim of this research is to better understand the
difference between the functional performance of samples
prepared in the laboratory and the field. Since a future-
ready toolkit is expected to utilize big data, in this research,
the ML-based GBDT approach was followed.

Datasets containing features such as material properties,
mixing and compaction setups, and so forth from six actual
construction projects were collected. Using the dataset as
input, GBDT toolkits were trained and optimized through
CV and Bayesian optimization. Since a limited dataset was
obtained, as the first step, the results of the GBDT model
were compared with the statistical model as a benchmark
and subsequently with other ML models to validate its per-
formance. The GBDT-based toolkit is expected to provide
a better interpretation of the results (particularly with big
data).

GBDT-based outcomes were summarized in this article.

The results demonstrated that the GBDT model
achieved high predictive performance with R? values
of 0.951 for stiffness, 0.802 for fatigue resistance, 0.812
for rutting, and 0.842 for ITS on the testing data. These
results indicate a strong correlation between predicted
and actual values, suggesting the effectiveness of the
GBDT approach in capturing the underlying patterns in
the data. Furthermore, the normalized RMSE values were
low, with 0.0443 for stiffness, 0.0651 for fatigue resistance,
0.0677 for rutting, and 0.0687 for ITS, indicating that
the predictions across different functional performance
indicators were fairly accurate. A few critical observations
showed that some of the commonly accepted notions
might be incorrect.

The overall framework proposed in this research is
expected to be an important pathway for different trans-
portation practitioners because the framework can be
adapted to solve further complex issues. The adaptabil-
ity of the framework is important because the particular
tests conducted on the samples may not be fully repli-
cable in different countries because of varying standard
requirements. A simple solution could be to tailor the
model parameters according to the needs of different agen-
cies. Another application of the proposed framework is
to improve pavement maintenance strategies via imple-
mentation inside the existing PMS of different agencies.
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Better managerial insights can obtained after such an
implementation using user-friendly software.

6 | FUTURE RESEARCH DIRECTION
AND RECOMMENDATIONS

With the contributions of this research, as explained in the
previous sections, there are opportunities to extend this
research. Exploring the impact of other features, such as
traffic and environmental conditions, can provide a more
comprehensive understanding of the effects on pavement
functional performance.

In future research, it is recommended that the stabil-
ity of the proposed framework is assessed under various
sets of input conditions. This could be achieved for
example by incorporation of dynamic ensemble learn-
ing techniques (Alam et al., 2020), which dynamically
allows for the parameters to be adjusted. Moreover, utiliz-
ing self-supervised learning methods (Rafiei et al., 2022)
can also provide better initialization for parameters like
weights, improving upon random initialization used in this
research. Incorporating such newly developed methods
may lead to more robust and adaptive GBDT architecture
models in non-stationary environments where the data
distribution continuously changes over time.
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