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Abstract
Recently, while gaze estimation has gained a sub-
stantial improvement by using deep learning mod-
els, research had shown that neural networks are
weak against adversarial attacks. Despite re-
searchers has been done numerous on adversarial
training, there are little to no studies on adversarial
training in gaze estimation. Therefore, the objec-
tive of this project is to investigate how these ad-
versarial samples affect the gaze estimation’s per-
formance and how the adversarial training elevates
the effect of these adversarial attacks. For pro-
jected gradient descent adversarial attack, the re-
sult shows that the bound of the final noise, the
step size and the number of steps toward the gra-
dient, and the randomized noise initiation are all
able to worsen the baseline performance to vary-
ing degrees. Further, the performance reveals that
while projected gradient descent adversarial train-
ing can defend against certain adversarial attacks,
its performance is not converging to the baseline.
In general, the performance of adversarial training
on gaze estimation could be influenced by data aug-
mentation, loss function, model capacity, and the
type of adversarial training.

1 Introduction
In recent days, gaze estimation has achieved a significant im-
provement by using deep learning. However, considerable
deep learning-based methods suffer from vulnerability prop-
erties. Recent research had revealed that neural networks are
not very robust in terms of dealing with slightly different dis-
tributions [9]. The reality that such a slight perturbation can
force the existing neural networks to falter prevents the mod-
els from being used in security-critical areas [16]. As deep
neural networks are susceptible to adversarial examples, the
attackers can exploit their weakness to confuse the models by
perturbing the raw image using noise. For gaze estimation,
it means that the altered image might visually look similar to
the original image, but the deep learning models will output
the incorrect gaze direction [21].

1.1 Related Work
As some of the most recent results suggest that the presence
of adversarial attacks may be an intrinsic deficiency of deep
learning models, the work of [7] introduces the Fast Gradient
Sign Method (FGSM) a single-step method that relied on lin-
earizing the loss around the data points to maximize the loss
of an image. However, as it is relatively weak, the Iterative
Fast Gradient Sign Method was presented in the work of [12],
as a multiple-step attack method that is iterative to find the lo-
cal maximum loss point. Despite them, researchers had done
numerous works in unveiling the various ways the attackers
can attack the models, as the works from [2, 16, 18].

To defend against adversarial attacks, researchers have ex-
perimented with various adversarial training methods. In the
work from [7], although they have produced favorable out-
comes from adversarial training with FGSM, the models are

only robust against FGSM adversarial attacks, and are vul-
nerable to slightly more complicated adversaries, for exam-
ple, multiple-step attacks. Among the numerous work that
has been done [12, 13, 20], the most promising result had
been shown with Projected Gradient Descent (PGD) Attack
from the work of [15]. It not only achieves low angular er-
ror but also proves to be able against various types of at-
tacks. Nonetheless, the performance is still dependable for
each dataset.

1.2 My contribution
However, regardless of the progress made in image classifica-
tion tasks, there are little to no studies that have been done re-
garding adversarial training in gaze estimation let alone prove
effective. Therefore, this project will focus on adversarial at-
tacks and training on deep neural networks for gaze estima-
tion. Specifically, this project will focus on PGD attack, as
it is the most effective method for adversarial training on the
classifier yet.

1.3 Research Questions
To better understand the ways the attackers can make these
adversarial inputs that are nearly imperceptible from raw data
and yet lead to false classification by the network [15], how
they affect the performance of gaze estimation, and the effec-
tiveness of adversarial training against such inputs, the paper
will investigate the following subquestions:

• What are the different effects of PGD attacks with differ-
ent experimental settings in the gaze estimation model?

• How adversarial training elevates the adversarial attack
on gaze estimation?

2 Methodology
2.1 Overview
After modifying the original test samples by the PGD attacks
with different experimental settings, I will input the adversar-
ial samples into the baseline model and compare the angular
errors against the original samples to assess the effectiveness
and advantages of the PGD attacks. For adversarial training,
the objective is to have both the angular errors of the original
test sample and the adversarial sample decrease similar to the
baseline model.

2.2 Projected Gradient Descent Attack

Figure 1: An PGD Attack Example

The PGD attack is a white-box attack which means the at-
tacker has access to the model gradients [11]. The PGD attack
is a multiple-step method [15]. PGD attack is to frame finding
an adversarial example as a constrained optimization prob-
lem. The constraint is usually expressed as the L2 norm of



the perturbation. The perturbation will be added to the origi-
nal image so the content of the adversarial example looks the
same as the original image, which can see in Figure 1. There-
fore, its goal is to find the noise that maximizes the loss of
a model on a particular input while keeping the size of the
perturbation smaller than a specified amount referred to as
epsilon ϵ.

To find the maximum loss, PDG first start to pick a random
perturbation within the range of negative to positive epsilons
[−ϵ, ϵ], which can be viewed as the bounded circle around the
original sample. Second, PGD takes a gradient step toward
the direction of maximizing loss with a step size α. If the
perturbation exceeds the epsilon ϵ bound, PGD will project
it back onto the bound. Therefore, the constraints for the
amount of perturbation are satisfied. Finally, PGD repeats
taking the gradient steps until convergence, which finds the
local or global optimum.

Here the x is a data sample with label y, and N is the size of
the dataset. An adversarial data sample of x is x

′
. J(θ, xt, y)

represent the optimization loss (adversarial loss), where θ is
the model gradient. The projected gradient descent can be
represented in the following equation 1:

x
′

t+1 = Proj{x
′

t + α · sign[∇xJ(θ, xt, y)]} (1)

Therefore, after the images are modified by the PGD at-
tacks with different experimental settings, I can input the per-
turbed sample into the model and compare the angular errors
against the original sample for the untargeted attacks.

2.2.1 Adjustment for Gaze Estimation
Since PGD is usually for a classification problem, I change it
to L1Loss for gaze estimation. In addition, the default param-
eter is also changed accordingly based on the experiment.

2.3 Projected Gradient Descent Adversarial
Training

Common defense consists of introducing adversarial images
to train a more robust network, which is generated using the
target model [6]. For PGD adversarial training, I replace ev-
ery training sample with its PGD-perturbed counterpart. The
objective is to acquire a small adversarial loss after the re-
placement. If I can achieve a very small final loss against
adversarial samples, it will mean the model is robust to adver-
sarial inputs and no allowed attack can fool the network [15].

To improve adversarial training, I will first explore the ef-
fect of data augmentation on performance by experimenting
with the varying numbers of adversarial samples in the train-
ing set. Second, I will experiment with the effect of different
loss functions.

In addition to data augmentation and loss function, increas-
ing model capacity might also enhance the model robustness
against the perturbation [15]. The universal approximator
theorem (Hornik et al., 1989) assures that a neural network
with at least one hidden layer can represent any function to
an arbitrary degree of accuracy so long as its hidden layer is
permitted to have enough units [15]. Therefore, I will also
explore the effect of the model capacity for gaze estimation
in the following experiments by increasing the capacity of the

network or using a stronger method for the inner optimization
problem.

Furthermore, according to [15], a phenomenon they ob-
served is that for image classification if I train a network to
be robust against PGD adversaries, it becomes robust against
a wide range of other attacks as well. Therefore, if the re-
sult is promising against the PGD attack, I will explore the
robustness of the adversarial training by testing the trained
model with other adversarial attacks.

2.3.1 Adjustment for Gaze Estimation
As the Projected Gradient Descent Adversarial Training
method in [15] is for classification tasks originally, I modi-
fied the method for gaze estimation. Therefore, I change the
cross-entropy loss for classification tasks to L1 loss.

2.4 Other Adversarial Training methods on Gaze
Estimation

Hoping to improve the adversarial attack through the adver-
sarial algorithm, in addition to the PGD adversarial training,
I also explore other adversarial attack and training methods
that also exploit the gradients of a neural network to build
an adversarial image, which all of the other adversarial at-
tack and training methods are either a build on or top of
the PGD adversarial attack or a similar modification: GN,
FGSM, BIM, FFGSM, PGD, PGD2, EOTPGD, MIFPGD,
NIFPGD, SINIFGSM, VMIFGSM, VNIFGSM. A brief de-
scription of all the following adversarial attacks experimented
with is detailed in the appendix A.

For each of them, I will use the following three steps to
find whether the adversarial attack and training that are both
effective in attack and defense. First, implement its attack to
the baseline model to assess the effectiveness of each adver-
sarial attack. Second, implement its own adversarial train-
ing, meaning replacing all of the original images in the train-
ing set with the adversarial counterparts that produce by it,
against itself. For example, for FFGSM adversarial training,
all of the images in the training set will be replaced with their
FFGSM adversarial counterpart and the testing set will be
both the original samples and its FFGSM adversarial counter-
part. Third, to test the generalism of the adversarial training
that proved effective, test it with PGD adversarial attack to
ensure whether it is also able to defend against another type
of attack as well not only its own, meaning the testing set will
be including PGD adversarial samples.

3 Experiments
3.1 Experimental Setup
3.1.1 Dataset
The dataset is using the MPIIFaceGaze (normalized) [22],
where it contains 15 different subjects’ face images, and each
subject has 3000 images with the gaze direction labeled (
pitch and yaw). Each image is an RGB image with a height
of 448 and a width of 448.

3.1.2 Model Arichitecture
For the baseline model, I experiment with three different
models and compare their average angular error, and the aver-



age time is taken for a single epoch within a certain step size
to determine my baseline model.

AlexNet The first 14 subjects are my training set, and the
15th subject is my test set. Contains 6 convolutional layers,
each follows by batch Normalization.

LetNet The first 14 subjects are my training set, and the
15th subject is my test set. Compare to the first model the
layer, only contains two convolutional layers, each follows
by batch Normalization.

ResNet The first 14 subjects are my pre-training set, the
100 images of the 15th subject are used for fine-tuning, and
the rest of the 15th subject is my test set. The RestNet con-
tains four convolutional layers and the Residual block con-
tains two convolutional layers, each follows by batch Nor-
malization. For the calibration, I freeze all the batch normal-
ization layers.

3.1.3 Training Details
I have resized the image to 224 × 224. For the angular error,
I convert the pitch and yaw into 3-Dimensional vectors, and
compare the angular difference between two direction vec-
tors. 20 epochs are sufficient, as the angular error decrease
by 0.01 degree when increasing epochs to 40. therefore, the
default experimental setting is 20 epochs, a 0.0001 learning
rate, and an Adam optimizer.

3.1.4 Baseline Models Performance
The more complex the neural network, the better the perfor-
mance. I can see from the result that ResNet has an angular
error of around 2, while AlexNet is around 6.8 degrees. For
our experiments, a baseline of around 8 degrees is sufficient
to test the effectiveness of the adversarial attack and training.
Therefore, our baseline model is LetNet, where its angular er-
ror for training is 2.3 degrees and the angular error for testing
is 8.2 degrees.

3.2 Aversarial Attack Visibility Experiment
Despite current architectures of models usually leaning on vi-
sual features that humans can see but ignore [4], the impact
of the adversarial manipulation on choices made by human
participants is still statistically consequential from the exper-
iments of [5] and [8], and humans are sensitive to the exact
type of non-robust features that lead to adversarial attacks.

Therefore, before experimenting on the experimental set-
ting of adversarial attacks, I will address the issue of attack
visibility. Because of the disparity in acuity of human and
machine vision, humans might find some pictures entirely
uninterpreTable. Nevertheless, the dissimilarity between hu-
man and machine perception of adversarial images depends
on distinct types of attacks. Since while some types of ad-
versarial attacks assemble images that appear completely un-
decipherable to humans, others might not depend on subtle
visual features that are below the human perceptual thresh-
old. Consequently, the human perceptual threshold could be
a deciding aspect in aligning the experimental settings with
all the adversarial attacks, since different experimental set-
tings can have different levels of perturbation, as an example
in Figure 7 with PGD attack.

One way to represent the human perceptual threshold could
be from the difference of images, and it is calculated with the

mean squared error (MSE) in Equation 2, where x1, x2 rep-
resent the two comparing images, h,w are height and weight
of the image, (x1 − x2) is the sum of pixels different.

MSE(x1, x2) =
(x1 − x2)

2

h · w
(2)

From Figure 2, it can observe that the perturbation be-
comes more visible when the image difference increased.
When above 22, even though the changes in the images are
slight to human eyes, there are still small perturbations if one
looks closely, yet when below 20 there is no visible trace of
the attack can be found. Therefore, I set the image difference
to 22 as the human perceptual threshold.

3.2.1 Experiments and Result
One way to set the human perceptual threshold could be by
assessing the difference between the original image and the
modified image. Since when the image difference increase,
the perturbation is more visible and the human perceptual
level also increases.

Figure 2: Image Difference for Human Perceptual Threshold:
The top images are the modified images ( original image + the bot-
tom noise image), and the bottom images are the noises added to the
original images corresponding to each of the image differences.

3.3 Ablation Study of Project Gradient Descent
Attack on Gaze Estimation models

3.3.1 Default Settings
To not exceed the human perceptual threshold, while maxi-
mizing the loss, I set the default experimental setting as the
following: Initiated with Random Start, Epsilon ϵ = 5, Alpha
α = 0.6, Number of Steps = 10.

3.3.2 Influence of Amount of perturbation
Epsilon ϵ is the maximum amount of perturbation allowed on
the modified image. It can be understood as the size of the
ball or the bound of the size of the perturbation. Therefore,
it is the only experimental setting that affects the visibility of
the perturb on the images. Therefore, If ϵ is too small, the
perturbation is too small from visible to regular human eyes,
while loss is also small. However, If ϵ is too large, while the
loss is increased, it also increases the risk of being exposed.
From Figure 3, the result shows that as ϵ increases, the image
becomes less discerning.

Here, the possible range of ϵ is from 0 to 255, representing
the different amounts of noise allowed on the images. From



Figure 4, it can observe that while ϵ increase, the angular er-
ror also increase rapidly at first. As the noise bound increases,
PGD has more attacks to explore. However, after it reached
the angular error of 81.6 degrees, the noise bound continues
increasing, as there is not much attack left to explore so it
goes down gradually to converge around 30 degrees. There-
fore, the angular error is maximum when the ϵ is 30.6, with
an angular error of 81.6 degrees and a loss of 1.4. ϵ should
be selected within the range of 30.6. As it is difficult to de-
termine the visibility when the noise is too small, I compare
the difference between the original and altered images to find
an ϵ that maximizes the loss while keeping the stay in the hu-
man perceptual threshold within 22. Therefore, a safe range
of perturbation that can be added to the original image is be-
tween 0 to 5.

Figure 3: Images for Different ϵ: Default parameters: α = 0.6,
Steps = 10, and random start.

Figure 4: Angular Error of Different ϵ: Default parameters: Steps
= 10, α = 0.6, and random start.

3.3.3 Influence of Different Stop Criteria
Stop criteria decide when to stop. Therefore, its experimental
setting is important to determine whether PDG converges to
the global optimum, which is the point of perturbation with
the greatest loss. For this PGD attack, I set the stop crite-
ria as a fixed number of steps. In practice, the Maximum
Number of Steps is equal to 1000 or greater. Meaning if the
number of steps is too little, PGD might never reach the lo-
cal optimum, which leads to undesired performance. When

increasing the number of steps, it is possible to lead to bet-
ter performance. However, it will always have a tradeoff in
computational power.

From Figure 5, it can observe that ϵ keeps the image from
being too perturbs and visible to the human eyes. Even visu-
ally it is hard to detect the difference between these images,
but one can still see the difference in the image difference. As
the steps increased, the difference between the original image
and the altered image is increasing as well, which explained
the increasing loss in Figure 6. From Figure 6, it can ob-
serve that the bound set by ϵ, as when the number of steps
increased, the angular error is converging. As increase the
number of steps, PGD can explore more attacks within the
range. As the images are hard to see difference 5, to find a
number of steps that maximizes the loss while keeping the
stay in the human perceptual threshold within 22, the steps
that satisfied both is 10.

Figure 5: Image Examples for Different Steps: Default parame-
ters: ϵ = 5, α = 0.6, and random start.

Figure 6: Angular Error of Different Steps: Default parameters: ϵ
= 5, α = 0.6, and random start.

3.3.4 Influence of Step size
The step size α determines the length of the step, which can
also consider as the learning rate of the loss function. It is
important to determine whether PGD finds the maximum loss
point or not. If PGD takes a large step, it will be good if the
optimum is far away as PGD can explore more areas. If PGD
takes a small step, it could also be beneficial if the optimum
is close and can converge. However, in the worse case, if α is



too large, it can diverge, and it can be slow if α is too small.
As α also consider to be the learning rate, I set the range of α
between 0 and 1.

From Figure 7, it can observe that when α is 0, there is
still random noise generated by randomized initiation. Even
though ϵ keeps the image from being too perturbs and visible
to the human eyes, by seeing the difference in the image dif-
ference, it can observe that as the α increased, the difference
between the original image and the altered image is increas-
ing as well, which explained the increasing loss in Figure 8.
From Figure 8, the result also revealed the bound set by ϵ, as
when the α increased, the angular error is also converging.
As increase the size of the step toward the gradient direction,
PGD can explore more attacks within the range. Therefore,
the number of steps and α are both important in aiding each
other in finding the maximum loss within a certain range. As
the images are also hard to see difference 7, to stay within the
human perceptual threshold within 22, α is safe from 0 to 0.6.
As the exponential relationship between angular error and α,
the default α is 0.6.

Figure 7: Image Examples for Different α: Default parameters: ϵ
= 5, Steps = 10, and random start.

Figure 8: Angular Error of Different α: Default parameters: ϵ =
5, Steps = 10, and random start.

3.3.5 Influence of Random start
With a random start, I use random initialization of noise, start-
ing at a uniformly random point in the range of ϵ bound. If
there is no random start, the initial noise will be 0, and PGD
will be at the center of the ϵ bound. The random start point

is important since it can decide when and does PGD find the
point with the highest loss or trap in a local maximum point,
or whether PGD finds the global maximum or local maximum
point. To visualize the change in noise with a random start, it
can observe that there is more difference between the original
and altered with a random start than no randomized start in
Figure 9. When α = 0, there are no steps, only the initiation,
so it is easier to visualize the image difference. For Table
1, the result shows that in both of the cases of already taken
multiple steps in exploration and no step has been taken, the
angular error is higher in the case of randomized start. There-
fore, the random start at a different point each time which
could lead to a higher angular error while not exceeding the ϵ
bound.

Figure 9: Image Examples for Randomize start: For Default, ϵ=
5, α = 0.6, Number of steps = 10. For α = 0, ϵ= 5, Number of steps
= 10.

Angular Error for Random start
Random Average Angular error
Default:TRUE 78.709
Default:FALSE 73.051
α=0:TRUE 10.445962
α=0:FALSE 9.782

Table 1: Angular Error for Random Start: For Default, ϵ= 5, α =
0.6, Number of steps = 10. For α = 0, ϵ= 5, Number of steps = 10.

3.4 Projected Gradient Descent Adversarial
Training on Gaze Estimation

3.4.1 PGD Adversarial Training with Classifier
From Figure 10, it can observe that the effect of PGD adver-
sarial training on the baseline model against the PGD attack
for the classification task, in which both losses of the original
sample and adversarial sample decreased and approached the
training loss closely, even the original sample go below the
training loss.

3.4.2 PGD Adversarial Training on Gaze Estimation
For the experimental setting, I test the trained baseline model
against the PGD attack with the same parameter as in training.
The result of the experiments can be seen in Figure 11 and Ta-
ble 2 with 20 epochs: Full AdvTrain. From Figure 11, it can



Figure 10: PGD Adversarial Training on MINST dataset for Im-
age Classification: Valid means the original sample. Attack means
the modified sample. The y-axis is the angular error. The x-axis is
the number of epochs.

observe that the angular errors for the adversarial samples and
original samples are decremental as the number of epochs is
increasing. As the result from Table 2, the angular error for
the adversarial samples with no PGD adversarial training is
sufficiently decreased when applying PGD adversarial train-
ing with a 67.973 angular difference, from the original 78.709
to 10.736 angular error. Therefore, PGD adversarial training
has some defense against the same PGD adversarial attack.
However, it is not as effective as the classification task, as
the angular error of both the adversarial samples and original
samples did not go below or equal to the baseline.

From increasing the epochs to 60 in Table 2 with 60
epochs: Full AdvTrain, the neural network is not converg-
ing to the baseline compared to Figure 10. One possibility
might be because of the training time is not enough, since
for gaze estimation and adversarial training, it usually takes
more epochs to train. In addition to epochs, another reason
could be because of modeling. Therefore, in the following
sections, I will also experiment with different data argumen-
tation, model capacity, and loss functions to learn their conse-
quence on PGD’s adversarial training in the hopes to improve
the performance even further.

Angular Error for LetNet
Train Test:

Original
Test:
Altered

No Adversarial Train 2.098 8.838 78.709
20 epochs: Full AdvTrain 9.118 8.750 10.826
20 epochs: Half AdvTrain 7.314 9.263 12.372
30 epochs: Full AdvTrain 8.670 9.583 10.989
60 epochs: Full AdvTrain 8.164 9.163 11.162

Table 2: Angular Error for LetNet: Train means the angular error
of the sample being trained. Test: Original represents the angular
error of the original samples in testing. Test: Altered represents the
angular error of the adversarial (attacked) samples in testing. Full
AdvTrain represents the standard adversarial training with imple-
mentation detailed in Section 2.3. The experiment and implemen-
tation on Half AdvTrain are explained in Section 3.4.3.

3.4.3 Impact of Data Argumentation
To explore the impact of the number of adversarial samples
in the training set on the performance of adversarial training,

Figure 11: PGD Adversarial Training With PGD Attack: Valid
means the original samples. Attack means the adversarial samples.
The y-axis is the angular error. The x-axis is the number of epochs.

I will compare the experiments of replacing all the 42000 im-
ages on the training set with its adversarial counterpart by
only replacing half of the training set. For these two meth-
ods, I abbreviate them as full adversarial training and half
adversarial training. For the half adversarial training, half of
the training set is original samples, while the other half is
adversarial samples. The experiment result can be seen in
Table 2 as 20 epochs: Full AdvTrain and 20 epochs: Half
AdvTrain. From decreasing the adversarial samples and in-
creasing the number of original samples in the training set,
the result shows that the performance worsens as the angular
error increases for both the original samples and the adversar-
ial sample in the testing set.

In conclusion, First, including the original samples in the
training set does not improve the angular error for original
samples in the testing set and is not effective in the training
set. Second, the number of adversarial samples could affect
the PGD adversarial training performance. As the number of
adversarial samples increases, the angular error for both the
adversarial and original samples decreased.

3.4.4 Impact of Model Capacity
To explore the impact of the model capacity in the training set
on the performance of adversarial training, I will perform the
PGD adversarial training with AlexNet, which is a more com-
plex model than LetNet and have more layers. Comparing the
performance of the LetNet in Table 2 and the performance of
the AlexNet in Table 3, the result shows that the model has
more defense against the adversarial attack when without the
adversarial training is AlexNet, while the adversarial attack
is more successful with LetNet, as the Test: Altered in No
Adversarial Train is larger for LetNet. However, the PGD
adversarial training seems more successful with LetNet than
AlexNet. For PGD adversarial training on AlexNet, not only
does the improvement of the average angular error from no
adversarial training to adversarial training is smaller than Let-
Net, and the average angular error with adversarial training is



higher than LetNet, but also the angular error for the original
samples seem to perform worse with PGD adversarial train-
ing.

In conclusion, model capacity has an impact on robustness.
As the capacity increase, it becomes more resistant to the ad-
versarial attack. However, the performance of the adversar-
ial training is not necessarily becoming more effective as the
model capacity increase.

Angular Error for Other Experiment
No AdvTrain:
Altered

AdvTrain:
Original

AdvTrain:
Altered

AlexNet 34.949 13.907 13.525
L2Loss 79.759 9.586 11.625

Table 3: Angular Error for Other Experiment: No AdvTrain: Al-
tered Angular error of the adversarial samples when no adversarial
training. AdvTrain: Original Angular error of the non-altered sam-
ples with adversarial training. AdvTrain: Altered Angular error of
the adversarial samples with adversarial training

3.4.5 Impact of Loss Function
To improve the PGD adversarial training on Gaze estima-
tion, I explore two different loss functions, L1: Loss(x, y) =
|x − y|, and L2: Loss(x, y) = (x − y)2. L1 Loss Func-
tion as it is not affected by the outliers than L2 Loss. From
Table 3, the result shows that the adversarial attack is more
successful with L2 Loss by a little. For adversarial training,
the improved degree is roughly the same with both loss func-
tions. Thus, the table reveals that L2Loss is more susceptible
to adversarial samples than L1Loss as L2 is more sensitive
to outliners. In addition, PGD adversarial training has the
same effect with both loss functions. However, since L1Loss
is more robust against the adversarial samples and leads to
better results, L1Loss will be our default loss function.

3.4.6 Against Other Adversarial Attack
To explore the performance of PGD adversarial training
against other attacks, I have selected a few attacks that have
similarities to PGD mentioned in Section 2.4 and Appendix
A. From them, some are simpler than PGD (GN, FGSM,
BIM, FFGSM), while some are more complicated (EOTPGD,
MIFPGD, NIFPGD, SINIFGSM, VMIFGSM, VNIFGSM),
to evaluate whether PGD adversarial training is able to
against other attacks.

From Table 4, I notice that PGD adversarial training is an
even better defense against certain other attacks than PGD it-
self (VMIFPSM, VNIFPSM), and it is most effective against
VNIFPSM attack. Comparing the effect of the attack without
adversarial training in Figure 5, the result shows that PGD ad-
versarial training is not able to against the GN attack among
the attacks, while is least effective on EOTPGD attack. For
most attacks, even if they did not reach the baseline, PGD
adversarial training still improved their average angular er-
ror significantly. In conclusion, PGD adversarial training is
able to defend against other adversarial attacks as well and
possesses a certain level of attack generalism.

Angular Error for PGD Attack Generalism
AdvTrain:
Original

AdvTrain:
Altered

Improve
?

GN 13.513 13.513 No
FGSM 8.773 10.688 Yes
EOTPGD 10.439 12.234 Yes
MIFGSM 10.055 11.5818 Yes
NIFGSM 9.207 10.520 Yes
VMIFGSM 8.97 9.142 Yes
VNIFGSM 8.303 9.960 Yes

Table 4: Performance of PGD Adversarial Training with Other
Attacks: Improve ? Yes when angular error lower than NoAdv-
Train:Altered in Table 5.

3.5 Other Adversarial Training Methods on Gaze
Estimation

To explore other adversarial training methods possibility that
could lead to better performance than PGD adversarial train-
ing, I will explore the following methods mentioned in Sec-
tion 2.4 and Appendix A that also exploit the gradients of a
neural network, in the ranking from simple to complex: GN,
FGSM, BIM, FFGSM, PGD, PGD2, EOTPGD, MIFPGD,
NIFPGD, SINIFGSM, VMIFGSM, VNIFGSM.

3.5.1 Implementation Details
As different experimental parameters of each attack have a
different level of effect on the performance, in order to con-
struct a comparable experimental environment, I have also
imposed the human perceptual threshold for each adversar-
ial attack and training, meaning their adversarial sample can-
not exceed the human perceptual threshold set in Section 3.2.
Therefore, for each of the adversarial attacks, their experi-
mental settings can be seen in Table 7 in the appendix.

3.5.2 Performance result

Angular Error for Adversarial Attack and Training
No Adv
Train:
Altered

Attack
?

Adv
Train:
Original

Adv
Train:
Altered

Improve
?

GN 7.012 No 7.721 7.722 No
FGSM 39.654 Yes 9.447 11.522 Yes
BIM 10.763 Yes 9.527 9.527 Yes
FFGSM 9.818 Yes 10.924 10.963 No
PGD2 73.378 Yes 12.736 13.416 Yes
EOTPGD 81.324 Yes 7.331 9.440 Yes
MIFPGD 58.136 Yes 7.575 9.397 Yes
NIFPGD 71.876 Yes 10.444 12.559 Yes
SINIFGSM 52.818 Yes 7.970 9.867 Yes
VMIFGSM 46.357 Yes 9.010 10.904 Yes
VNIFGSM 61.688 Yes 8.433 10.417 Yes

Table 5: Performance for Adversarial Attack and Training: At-
tack ? Yes when the angular error is above the baseline model. Im-
proved ? Yes when the angular error below the No AdvTrain: Al-
tered.

First, for the adversarial attack, the results show that
merely adding random noise to the image is not enough to



change the output of the model and even might perform bet-
ter than before, which can see from GN. For the adversarial
attacks that used the gradient of the model, the performance
is varied, regardless of the complexity of the algorithm or the
iteration of steps taken. From Table 5, the result reveals that
EOTPGD is the most effective attack, while FFGSM is the
least effective.

Second, for adversarial training, the result reveals that
merely randomizing the noise does not affect attacking the
model or defense against any attacks, as GN even performs
worse than before. For the adversarial training that used the
gradient of the model, the performance is also varied, regard-
less of the complexity of the algorithm or the iteration of steps
taken, in which the improvement is varied from roughly 1.2
degrees to 78 degrees, and FFGSM even performs worse than
being attacked. Therefore, the results show that FFGSM is
not as effective in defense and attack, as it just merely in-
creases 1 angular error degree when attacking. From Table
5, the outcome unveils that for the adversarial attack that is
not that effective in attack, their adversarial training result is
also less than ideal, which can observe that BIM improved
the least. Among all the experimented attacks, EOTPGD im-
proved the most even more than PGD, which also has the least
average angular error.

3.5.3 Attacks Generalism against PGD Performance
result

Angular Error for Attacks Generalism
AdvTrain:
Original

AdvTrain:
Altered

Improve
?

GN 8.996 50.685 No
FGSM 10.432 12.805 Yes
PGD2 13.306 13.417 Yes
EOTPGD 10.093 11.652 Yes
MIFPGD 9.469 11.557 Yes
NIFPGD 12.539 9.663 Yes
SINIFGSM 7.549 10.475 Yes
VMIFGSM 9.123 11.308 Yes
VNIFGSM 8.840 11.008 Yes

Table 6: Performance of Adversarial Training with PGD At-
tacks: AdvTrain: Original Angular error of the non-altered samples
with adversarial training. AdvTrain: Altered Angular error of the
adversarial samples with adversarial training

Third, for testing the attack generalism of each adversarial
training, performing adversarial training against other adver-
sarial attacks, the result shows that depending on the different
adversarial attacks, the performance of the adversarial train-
ing changes in the Table 6, which SINIFGSM has the least
average angular error and PGD2 have the most when against
the PGD attack. An interesting observation is that some of the
simpler versions that PGD adversarial attacks build on (GN,
BIM, FFGSM) seem to fail within the three experiments, in
which FGSM is successful against FGSM but fails against
the PGD attack. Currently, I hypothesize that simple adver-
sarial training is not as able against more complex adversarial
attacks occasionally. However, we do need to verify it by

experimenting with other adversarial attacks in future experi-
ments.

4 Responsible Research
4.1 Scientific Integrity
There are two potential ethical aspects related to this project.
First, the MPIIFaceGaze dataset that we used with the extra
human facial landmark annotation and the face regions ac-
cessible for 37,667 face images [22] might consider contain-
ing sensitive information which might violate the ”universal-
ism” of Mertonian norms, which ”The evaluation of research
results should be based entirely on impersonal criteria and
be without any form of prejudice against nationality, gender,
race, personal characteristics, etc.” [17]. However, for pri-
vacy, the dataset had been preprocessed and only released the
face region and blocked the background in images [22], and
there is no potential in releasing any sensitive information re-
garding the subjects. Therefore, the dataset contains no infor-
mation that could violate one’s privacy and is only used for
gaze estimation.

Considering specific applications of gaze estimation, cur-
rently, gaze estimation has been considered to diagnose brain
trauma [1]. One of the consequences of adversarial attacks
on these applications could be misdiagnosed in the case of
false positives. Therefore, following the ”communism ” of
Mertonian norms [17], meaning the research result is pub-
lic property and is available to all, the study of adversarial
training could be used as precautionary for stakeholders like
hospitals.

4.2 Reproducibility
The experiment and result of this research project are totally
reproducible by following the section 2 and 3 of the project.

To reproduce the baseline performances, the dataset, the
neural network structures, and the default training details are
all included in the section 3.1. The standard PGD attack that
we used is from [10] and the modification that we made for
this research is detailed in section 2.2. For the PGD adver-
sarial training, we follow the method in [15] and follow with
modification detailed in section 2.3. For other adversarial at-
tacks and training, the detailed implementation and parameter
setup for each attack are described in section 3.5.

5 Conclusions and Future Work
5.1 Conclusion
Since the lack of research has been done in adversarial at-
tacks and training on gaze estimation, the goal of this project
is to explore how these adversarial samples affect the gaze es-
timation’s performance and whether the adversarial training
elevates the effect of these adversarial attacks. From experi-
menting with the different experimental settings of the PGD
attack, the effect of ϵ bound can be observed on both the at-
tack visibility and the increasing angular error. ϵ is the only
setting that decides the human perceptual level, and as ϵ in-
creases, the human perceptual level increase. However, as the
ϵ bound increased, we have more attacks to explore. After
PGD already reached a certain loss, there is not much attack



left to explore so it goes down gradually to converge. While
α and the number of steps do not impact the human percep-
tual level as much, they all converge within the bound set by
ϵ when they increase. Lastly, we also proved that the random
start usually gives out better results as mentioned in [15].

From experimenting with PGD adversarial training against
other attacks, the result shows that even though PGD ad-
versarial training can be against certain adversarial attacks
and possesses a certain level of attack generalism, the per-
formance is still not ideal as not converging to baseline.
One possibility might be because of the training time is not
enough, since for gaze estimation and adversarial training, it
usually takes more epochs to train, which could be a future
question to investigate. From experimenting with different
data augmentation, model capacity, and activation functions,
their performance reveals that increasing adversarial training
samples and using the L1 Loss function could lead to bet-
ter performance. However, more future experiments could be
done with different model capacities like ResNet, more loss
function, and increase the training dataset by injecting differ-
ent types of adversarial samples instead of one.

From experimenting with other adversarial training,
EOTPGD proves to be even more effective than PGD adver-
sarial training for PGD attacks, while GN is proven to be not
effective for attack and defense. However, depending on the
different adversarial attacks, the performance of the adversar-
ial training changes. In order to prove the full attack gener-
alism of some of the adversarial trainings that prove effective
and the intriguing observation that simple adversarial train-
ing seems weaker against stronger adversarial attacks, future
experiments are needed by including more types of attacks,
other than PGD. Lastly, another future work could be done
to assess the current MSE method that determines the human
perceptual threshold, by involving more testing involved with
more participants.

A Other Adversarial Attacks
• GN Gaussian Noise. A one-step method, which adds

random Gaussian noise.

• FGSM Fast Gradient Sign Method. A one-step method,
which only takes one step toward the gradient direction
[7].

• BIM Iterative-FGSM. A multiple-step method, which is
a simple improvement to FGSM. They suggest apply-
ing the same step as FGSM multiple times with a small
step size and clipping the pixel values of intermediate
results after each step to ensure that they are in an ϵ-
neighbourhood of the original image [12].

• PGD2 A multiple-step method, which PGD without ran-
dom start.

• EOTPGD Expectation Over Transformation PGD. A
multiple multiple-step method, which builds on top of
PGD, within each step, iterating with a number of mod-
els to estimate the mean gradient [23].

• FFGSM (Fast’s FGSM)An one-step method, which is
one step in PGD attack. Including random start, one step

toward the gradient direction, and the noise is projected
back to ϵ [20].

• MIFGSM Momentum Iterative FGSM. A multiple-step
method, which is a momentum-based Iterative Fast Gra-
dient Sign Method [3].

• NIFGSM Nesterov Iterative FGSM. A multiple-step
method, which adapts Nesterov accelerated gradient into
the Iterative Fast Gradient Sign Method [14].

• SINIFGSM Scale-Invariant attack Method. A multi-
ple multiple-step method, which Scale-Invariant Itera-
tive Fast Gradient Sign Method, calculates the sum of
the gradients over the scale copies of the input image
[14].

• VMIFGSM Variance Tuning MIFGSM. A multiple
multiple-step method, which uses variance tuning with
momentum-based Iterative Fast Gradient Sign Method.
At each iteration for the gradient calculation, we con-
sider the gradient variance of the previous iteration to
tune the current gradient [19].

• VNIFGSM Variance Tuning NIFGSM. A multiple
multiple-step method, which uses variance tuning with
Iterative Fast Gradient Sign Method using Nesterov ac-
celerated gradient [19].

Experimental Setting for Adversarial Attack
Alpha Epsilon Steps Random decay beta other

GN n/a 3 n/a n/a n/a n/a n/a
FGSM n/a 4 n/a n/a n/a n/a n/a
BIM 0.9 4 10 n/a n/a n/a n/a
FFGSM 0.9 3 n/a n/a n/a n/a n/a
PGD2 0.9 8 10 Yes n/a n/a n/a
EOTPGD 0.6 6 10 n/a n/a n/a 2
MIPGD 0.4 8 10 n/a 1 n/a n/a
NIPGD 0.4 8 10 n/a 1 n/a n/a
SINIFGSM 0.39 8 10 n/a 1 n/a 5
VMIFGSM 0.4 8 10 n/a 1 3/2 5
VNIFGSM 0.5 8 10 n/a 1 3/2 5

Table 7: Experimental Setting for Adversarial Attack
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