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Summary
The goal of Heineken, as the second biggest beer label in the world, is to grow in the competitive beer
market. The growth can partly be established by improving production processes to increase produc-
tivity in its breweries. Production processes suffer under unplanned downtime occasions caused by
unexpected errors. The improvement of production processes benefits from the introduction of Industry
4.0 and all its tools. Therefore, the focus of this research is to improve operational productivity by using
intelligence-driven intervention proposals in case of unplanned downtime occasions. The research is
conducted within Alken-Maes brewery, which is one of the breweries of Heineken. The research is
conducted on the Filler, one of the machines of the Alken-Maes packaging line.

The Systems Engineering methodology is applied in this research for the realization of a successful
system. The user requirement is to reduce unplanned operational downtime by supporting operators to
resolve errors faster to increase machine utilization. Unplanned downtime can be reduced by reducing
the number of errors or by reducing the time to resolve errors. The focus of this research is on the latter.

It is necessary to have real-time access to the data of the Filler to reduce unplanned downtime in
production processes. Real-time access to industrial equipment is described in theory about a digital
twin. A digital twin consists of five elements from which a physical asset, a service model, the digital
twin data, and the connections between these components are required in the context of this research.
Together with the requirements of the service, these are defined as the systems requirements. The ser-
vice requires to process input variables from the packaging line into a proposal for a countermeasure
to resolve the error. Since the countermeasures are predefined, this is considered to be a multi-class
classification problem in the field of operational production processes.

The service required an intelligent decision algorithm that can decide which countermeasures an op-
erator has to execute. A neural network was chosen as this multi-class classifier. A neural network is
suitable to solve these problems and showed good results on the specified problem. A training dataset
is compiled to train the model, and the model is finally verified on a similar but smaller test dataset. After
tuning the hyperparameters of the neural network, the neural network reached a prediction accuracy
of 98,98%.

Then, the model is applied to data from the packaging line of Alken-Maes, specifically on the Filler.
First, the data is prepared before it is fed into the model. Then, countermeasures for every occurred
error are predicted by the model. These predictions are taken into account for the validation of the
model. This is done by comparing the current situation with the proposed situation. In the current situ-
ation, it takes on average 6 minutes to resolve an error where it only takes 4,5 minutes in the proposed
situation. Both situations are simulated on a period of 6 days where 1071 errors occurred and which
led to 32 minor stops. The proposed situation achieves a reduction of 16 minutes of unplanned down-
time compared to the current situation weekly. This indicates an improved production of 624.000 cans
yearly. This corresponds to 22,2% reduction of unplanned downtime for downtime occasions where
the operator has to resolve the problem. Implementing the service on each machine of the packaging
line and considering every error of the machines further reduces the unplanned downtime.

The results of the service on the Filler are verified on a secondmachine of the packaging line, the Shrink
Packer. A new dataset is created with 57 possible combinations, and the model is trained on this more
extensive dataset. The results of the model on the Shrink Packer show comparable results. However,
the absolute improvement is smaller due to the distribution of errors over the countermeasures.

The reduction of unplanned downtime can be increased when other machines of the packaging line
are considered as well. Machine errors propagate to other machines of the packaging line. Error prop-
agation leads to new errors on other machines caused by one machine. A modular neural network is
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proposed to address each machine as a subproblem. An expert neural network solves all these sub-
problems, and the outputs are combined in a general neural network. This neural network proposes a
sequence of countermeasures to the operator to solve the whole problem of the packaging line.

The proposed system, including the decision algorithm, improves operational productivity in case of
unplanned downtime by proposing correct countermeasures. However, the research can be extended
by applying the service on multiple machines which further improves operational productivity.
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1
Introduction

1.1. Heineken global
Heineken is founded in 1864 by Gerard Adriaan Heineken, and now, almost 160 years later, it is the
second biggest beer label in the world (Heineken, 2020c). Heineken brews over 300 international,
regional, local, and speciality beers and ciders available in 190 countries (Heineken, 2019b). Approx-
imately 85.000 employees are working for the Heineken brand in 165 different breweries around the
world. The company-wide focus of Heineken is on growth to ensure their position in the beer market.
Part of this growth is established by entering new beer markets all around the world. Examples of new
breweries in entered beer markets are Mozambique in 2019 (Heineken, 2019a) and Mexico in 2018
(Heineken, 2018).

Heineken Global Supply Chain (GSC) enables, equips and empowers Operating Companies (OpCos)
to beat the competition from grain to glass. GSC is responsible for supporting the production and
distribution of beer by local breweries to fulfil beer demand around the world. Within Heineken GSC,
Heineken Global Projects and Engineering (GP&E) designs, builds, extends, and revamps breweries
to enable the Heineken N.V. to realize the company ambition. Part of this department is the Opera-
tional Set-Up (OSU) team. They are responsible for the non-technical set-up of breweries while the
engineering team is responsible for the technical set-up of breweries. This research is conducted within
the OSU team in collaboration with Alken-Maes brewery in Belgium.

Greenfield projects
The expansion of breweries involves designing and building new breweries in countries where Heineken
did not have any market share or the market share is very small. Building new breweries from scratch
is called ”greenfield projects”. The characteristics of greenfield projects are simple, there is no replace-
ment or expansion of an existing brewery, but an entirely new brewery is designed and build at a new
location.

In former greenfield projects, the responsibility of project managers stopped after the Operation and
Maintenance Handover (OMH) which is the moment of the handover of the brewery from the supplier to
the OpCo. Until that moment, experienced operators from the supplier are on-site to support the local
operators in starting-up the equipment. During OMH, line performance is measured and if the perfor-
mance is according to predefined targets the supplier’s operators leave the site and the responsibility
of the brewery is transferred to the OpCo.

Heineken experiences a significant drop in performance after the OMH, which is illustrated in Figure
1.1. The responsibility of the project managers is extended to the first year of operation to address this
drop in performance. On top of that, the OSU team is established to support OpCo’s in their set-up of
the brewery.

1
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Figure 1.1: Illustrated graph of line performance of breweries (Heineken, 2020a)

The experience of Heineken is a disconnection between theory and reality. After installation, the theory
about operating and controlling a line is available in the form of manuals, training, and instructions.
However, it takes on average 6-9 months before an operator has gained enough experience to operate
the brewery at the sustained performance (Heineken, 2020a).

1.2. Physical environment
The physical environment of a packaging line is different for every brewery, but there are many simi-
larities. There is chosen to use the physical environment of the packaging line of Heineken’s brewery
in Belgium: Alken-Maes. Alken-Maes offers data and support and is the brewery that is investigated
in this research. At this brewery, an Internet of Things (IoT) platform is installed, which makes it a
suitable use case for this research. This research is conducted in the context of a stopped machine
due to unplanned minor stops and speed losses. In the following section, the layout of the packaging
line is globally described.

1.2.1. Canning line Alken-Maes
The packaging line of Alken-Maes is a so-called canning line. A canning line fills cans with different
types of beer according to the demand. The canning line consists of multiple machines connected by
conveyors, see Figure 1.2. A technical drawing of the layout of the packaging line of Alken-Maes is
attached in Attachment B.

The packaging line in Figure 1.2 is an example packaging line but contains the same machines as the
packaging line of Alken-Maes. The different machines in Figure 1.2 are described below according to
the corresponding number:

1. Depalletiser: Unpacks the cans from the pallets and puts them on a conveyor.
2. Filler: Washes the cans, fills the cans with beer, and applies the lid.
3. Tunnel Pasteurizer: Heats the cans to 62,5 degrees Celsius to pasteurize the beer.
4. Drying: Dries the cans to prevent rusting and enables coding
5. Shrink Packer and Tray Packer: The Shrink Packer puts a shrink around cans and the Tray

Packer places the cans in 6/8/12/24 cartons.
6. Palletiser: Places the secondary package on pallets and wraps the pallets.
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Figure 1.2: Example of canning line Sidel (Sidel, 2020)

The conveyors between the different machines have both a transportation function and a buffer function.
They convey cans from one machine to another, and they store cans between the machines so a
given machine can keep running for a short period, even if the upstream or downstream machine is
temporarily down. Each machine has a nominal production speed but can run faster or slower to
compensate for breakdowns.

1.2.2. Filling machine
Figure 1.3 shows a typical filling machine. The Filler first rinses the cans quickly after which they are
loaded on a circular star-wheel, which fills the cans volumetrically. Subsequently, the Seamer places
a lid on the can and closes the seam of the lid. Finally, the Fill Height Inspector measures the filling
height of the can and removes faulty cans from the line. Before the cans go into the Tunnel Pasteurizer,
the cans are turned upside down to check for possible leakages.

Minor stops and speed losses
In 24 days in May 2020, the Filler reported 6718 errors corresponding to approximately 280 errors each
day. Not every error leads to a minor stop or speed loss, immediately. It depends on the error and the
cause of the error.

Numerous causes, including errors, can cause minor stops and speed losses. During operation, an op-
erator is responsible for operating the machine, which includes resolving errors. When an error occurs,
the operator determines the cause of the error. The cause determines the countermeasure, which is
executed by the operator. In several cases, the operator can choose up to five different countermea-
sures for one error.

In the first place, problem-solving is relying on standards and protocols. However, the experience and
knowledge of the operator do influence the problem-solving. Especially in experienced OpCo’s, the
operator has many years of experience, which improves solving problems. However, in new OpCo’s
or greenfield breweries, there is a lack of experience and knowledge. Therefore, the time to resolve
errors is much higher and consequently cost more money for the company.

1.2.3. Error propagation
Production lines, as the packaging line of Alken-Maes, are designed to be balanced along the line (Patti
et al., 2008). Line balancing is reached when all the machines have a similar cycle time. However,
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Figure 1.3: Starcan filling machine of Sidel (Sidel, 2019)

the high variability of the environment requires buffers to deal with any imbalance caused by machine
errors or failures. In the time the buffers are used, it is possible to solve an error or failure which re-
duces any starvation and blockages of other machines (Battini et al., 2009). Starvation is an empty
inlet buffer of a machine, and blockage is a full outlet buffer of a machine. Both situations require a
machine to stop producing because the supply has stopped, or there is no place to store the produced
goods, respectively.

Machine stops or unplanned downtime occasions require a machine to stop producing, which will lead
to an increase or a decrease of the buffer upstream or downstream of the affected machine. If any
downtime occasion consumes more time than the buffer upstream or downstream of the machine can
compensate for, then the machine upstream or downstream will be affected and has to stop producing
as well. An error that leads to a machine stop can propagate through the production line and affects
the performance of other machines as well.

1.2.4. User requirements
Every time the equipment in a brewery experiences downtime, it is not able to produce any goods.
Downtime which occurs unexpectedly or as a result of a failure is called unplanned downtime (Immer-
man, 2018). Therefore, the reduction of unplanned downtime is one of the main goals in a production
environment. The reduction of unplanned downtime can be split into two focus areas, the first one is
to reduce the number of errors and the second one is to reduce the time to resolve an error.

The first focus area is described in zero-defect production. Zero-defect producing means zero failures
during operation, but not necessarily zero imperfections on the produced goods (Wang, 2013). The
focus of this research is on the second focus area to reduce the time to resolve an error.

The user requirement is to reduce the unplanned operational downtime by supporting operators to
resolve errors faster to increase machine utilization. Ideally, this requirement leads to zero-defect pro-
duction. However, the focus in this research is on reducing the unplanned downtime from the moment
the machine experiences speed loss or comes to a standstill.

When an error or failure occurs, an operator can choose which countermeasure has to be executed
based on the state of the machine. In literature, this type of problem is described as multi-class classifi-
cation problems (Terry-Jack, 2019). Multi-class classification problems predict something into one of n
classes (e.g. ”yellow”, ”blue” or ”red”, etc.). More information about multi-class classification problems
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is discussed in Section 2.6.1.

1.3. Research motivation
The combination of different machines and interaction with humans suits the field of Multi-Machine
Engineering. Multi-Machine Engineering addresses the challenges to meet demands on efficiency,
sustainability, and safety in complex environments (Delft University of Technology, 2019). It combines
mechanical systems with real-time operation and distributed multi-machine interaction.

Different lean manufacturing methods such as zero-defect production (Wang, 2013) and Total Produc-
tive Maintenance (Nakajima, 1984; Pascal et al., 2019) describe the reduction of downtime in their
methods. It is necessary to be able to take rapid decisions regarding resolving problems to reduce the
unplanned downtime from a practical point of view and aim for the ultimate goal of zero-defect produc-
tion (Miškuf and Zolotová, 2016). Reduction of unplanned downtime can be established by dealing with
real-time and historical data from the packaging line, combined with introducing intelligent analyzing
algorithms. Such an algorithm decides which countermeasure an operator has to perform based on
several variables from the packaging line.

The physical environment of a packaging line is complex and consists of many variables. Decision-
making algorithms in complex environments are part of artificial intelligence. Artificial intelligence is the
broadest way to think about advanced computer intelligence (Garbade, 2018). Every machine which
completes tasks based on specific rules that solve problems is called artificial intelligence. Machine
learning (ML) is a subset of artificial intelligence (AI) and can be interpreted as the ability of computer
systems to learn. ML enables machines to learn by themselves using available data and solve (pre-
diction) problems. The decision algorithm needed in this research should be able to predict specific
outputs based on the inputs. Due to the complex environment, it is necessary that algorithms can learn
about the environment instead of using algorithms that are explicitly programmed.

Furthermore, the characteristic of a packaging line where conveyors connect multiple machines is
typically a problem addressed in the field of Multi-Machine Engineering. The connection between the
machines affects the performance of the entire packaging line and needs to be addressed as a complete
system.

1.4. Research questions
This research studies how the operational productivity of an asset in a brewery can be improved by the
design of a digital twin using artificial intelligence-driven intervention proposals. Therefore, the research
question that will be answered in this research is:

How to improve the operational productivity by using artificial intelligence-driven intervention
proposals in case of unplanned downtime occasions?

To answer the main research question, the following sub-questions are defined:

1. What are the requirements to enable real-time monitoring of a production line and what service
is required to address the user requirement?

2. What are the design requirements of intelligent decision-making algorithms?
3. How can real-time decision making be applied to an industrial asset?
4. How can real-time decision making be applied in a production environment?

1.5. Research methodology
The problem of this research will be addressed according to the Systems Engineering methodology.
Systems Engineering is an interdisciplinary approach for the realization of successful systems (Elm
et al., 2008). This methodology is applied in this research to have a structured approach. Elm et al.
(2008) define System Engineering as ”... a robust approach to the design, creation, and operation of
systems that consist of the identification and quantification of system goals and requirements, creation
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of alternative system design concepts, performance of design trades, selection and implementation of
the best design, verification that the design is properly built and integrated, and post implementation
assessment of how well the system achieved its goals”.

Systems Engineering is applied sequentially through all stages of system development and is focussed
on technology components that can be engineered. Figure 1.4 shows the simplified V-model presented
by Forsberg and Mooz (1994), which illustrates the sequence of events necessary for systems devel-
opment according to the Systems Engineering methodology.

Figure 1.4: Overview of V-model of systems engineering (Sauser et al., 2010)

Time proceeds through the model from left to right, where the left side represents the decomposition
of requirements and specifications. The right side represents the integration of parts, the verification,
and the validation (Department of Defense, 2001). On the left side, the first step is to gather practical
requirements from a user perspective. Then, these practical requirements are converted into system
requirements. Thirdly, the different components are designed according to the system requirements.
Finally, the components are built according to the component design. The first step on the right is to
test and verify the components according to the design of the components. Secondly, the system is
integrated into the real environment and verified according to the system requirements. Finally, the
system is demonstrated and validated according to the user requirements defined in the first step of
the process.

1.6. Research outline
The outline of this research is based on the Systems Engineering methodology described in the previ-
ous section. This structure enhances the quality of the research. In this chapter, the physical environ-
ment, the user requirements, and the concept of operation is described, which is the input for Chapter 2.

Chapter 2 describes the system requirements from a literature perspective. The combination of lean
manufacturing methods and Industry 4.0 is discussed, which results in requirements of the infrastruc-
ture. The introduction of Industry 4.0 characterizes the infrastructure. Then, the service is discussed,
which is part of this shift to a digital production environment. Finally, this chapter discusses the require-
ments of the service of decision-making algorithms.

Chapter 3 is about the design of such a decision making algorithm. Based on a model design frame-
work introduced in Section 3.2, seven steps of developing a ML algorithm are discussed. These seven
steps are the basis for the design of a decision-making algorithm, which is discussed in Chapter 4.

According to the Systems Engineering methodology, Chapter 4 discusses the development of the sys-
tem components. The first step is to define and prepare the data. Then, a basic model is introduced,
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which is the basis for improving the model. A large part of this chapter is the tuning of the different
hyperparameters. When the model is completely optimized, the model is verified according to the eval-
uation methods described in Chapter 3.

Chapter 5 discusses the integration of the model into the physical environment. Data from the pack-
aging line of Alken-Maes is extracted and used as input of the model. The predicted outputs based
on these inputs are used to simulate the service in the environment of Alken-Maes. Furthermore, the
model is applied on a second machine, the Shrink Packer, to verify the results of service.

Chapter 6 discusses both the system integration and verification as well as the system demonstration
and validation. These two final steps of the Systems Engineering methodology are combined because
the physical integration is not done due to the limits of this research.

Finally, Chapter 7 presents the conclusion of this research. Moreover, several recommendations are
made for further research and Heineken.

Systems Engineering Methodology Sub-question
Chapter 1 User requirements -
Chapter 2 System requirements 1
Chapter 3 Component design 2
Chapter 4 Development of the model -
Chapter 5 Component integration 3
Chapter 6 System integration and validation 4
Chapter 7 Conclusion and recommendations

Table 1.1: Overview research structure





2
Requirements of the service

The second step of the Systems Engineering methodology is to determine the system requirements
and architecture. The user requirement is to reduce the unplanned operational downtime by supporting
operators in resolving errors faster to increase machine utilization. The user requirement is taken into
account to define the system requirements in this chapter. The system requirements are divided into
two parts. First, the requirements of the digital infrastructure are discussed. The digital infrastructure
is required to enable real-time monitoring of a physical asset. When data is accessible in real-time, the
requirements are discussed for the support of operators in resolving errors faster.

In this chapter, the first sub-question is answered: What are the requirements to enable real-time mon-
itoring of a production line and what service is required to address the user requirement? The first
section describes different production optimization methods. The second section discusses the intro-
duction of Industry 4.0 and the effects on production optimization. Section 2.3 discusses the require-
ments of a Digital Twin (DT) to offer production optimization. The fourth section discusses specifically
the service a DT can offer in the form of ML algorithms. Section 2.5 discusses how ML algorithms are
applied in the supply chain. Then, Section 2.6 describes different ML techniques and applications of
multi-class classification problems in the literature. Finally, in Section 2.7 a conclusion is made which
answers the sub-question addressed in this chapter.

2.1. Lean Manufacturing and Total Productive Maintenance

The focus of lean manufacturing and Total Productive Maintenance (TPM) is to reduce waste and
downtime in any (production) process (van Ede, 2008). Heineken applies the technique of TPM in there
breweries to reach this goal of perfect production. TPM is introduced by Seiichi Nakajima in 1971 to
solve the maintenance problems of systems by giving operators more responsibility (Nakajima, 1984;
Pascal et al., 2019). It can be defined as a ”... production-driven improvement methodology that is
designed to optimize equipment reliability and ensure efficient management of plant assets” (Ginder
et al., 1995).

9
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TPM is described by the Japan Institute of Plant Mainte-
nance based on eight pillars, see Figure 2.1 (Ahuja and
Khamba, 2008). The first four pillars focus on mainte-
nance, also in favour of reducing downtime. The eighth
pillar ”Development management” focusses partially on
the start-up of new assets. One of the focus points is
to use minimum time for deployment of new equipment
(Nakajima, 1984; Sivaram et al., 2013). As the start-up
of new assets is an issue for Heineken, the problem in
this research is partly addressed in this pillar. Further-
more, the pillar ”Education & Training” is addressed by
supporting operators in making the right decision.

Figure 2.1: Eight pillars of TPM (Ahuja and
Khamba, 2008)

Lean manufacturing and Industry 4.0
Besides lean manufacturing, Industry 4.0 is a relatively new research field that enables the handling
of complex manufacturing systems. Industry 4.0 has found its origin in Germany in 2011, where the
German government created a new vision for its industries (Roblek et al., 2016). It aims to increase the
digitalization of production systems to improve the transparency of such systems (Mayr et al., 2018).
Both lean manufacturing and Industry 4.0 are promising production paradigms to solve future manu-
facturing problems. Mayr et al. did research about these two developments and how they can support
each other (Mayr et al., 2018).

Figure 2.2 shows a matrix of different lean manufacturing methods and Industry 4.0 tools. From this
table, it can be concluded that digitalization contributes to different lean manufacturing methods. The
described pillars of TPM are mainly supported by real-time computing in combination with a DT. How-
ever, the combination of real-time computing and a DT offers other lean manufacturing methods to
become more intelligent as well.

Furthermore, lean manufacturing methods where the operator is centralized are also suitable to be
improved by digitalization. In addition to Table 2.2, Goienetxea Uriartea et al. (2018) stated that also
Andon can be reinforced by the implementation of DT and real-time computing methods.

Figure 2.2: Combining Lean Manufacturing methods and Industry 4.0 tools (Mayr et al., 2018)

The user requirement is to improve unplanned operational downtime, which is also the focus of lean
manufacturing methods. In combination with Industry 4.0, this offers opportunities for improvement of
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manufacturing environments. The next section discusses the characteristics of Industry 4.0 and the
required infrastructure.

2.2. Industry 4.0
The basis of digitalization in production environments is the introduction of Industry 4.0. Internet of
Things (IoT) is the technological basis of Industry 4.0 (Ashton, 2009), which is discussed for the first
time in 1982 with a modified coke vending machine at Carnegie Mellon University (Foote, 2016).

Industry 4.0 (also known as Industrial Internet of Things) is initially founded in 2011 by the German
government who created a new vision for their industries (Roblek et al., 2016). Currently, it is attributed
as the fourth industrial revolution. It is characterized by IoT, Cyber-Physical Systems and Internet of
Services (Roblek et al., 2016), based on the developed communication technologies that allow com-
munication between machines themselves.

The goals of Industry 4.0 are to achieve a higher level of automation, operational efficiency, and produc-
tivity (Thames and Schaefer, 2016). Besides, the five major features according to Roblek et al. (2016)
are: ”digitization, optimization and customization of production; automation and adaptation; human-
machine interaction (HMI); value-added services, and automatic data exchange and communication.”

Internet of Things
The phrase ”Internet of Things” was first used in 1999 by Kevin Ashton working for the MIT Auto-ID
Center. However, the first machine was already connected to a network in 1982 (Ashton, 2009). IoT is
part of the future internet and aims to collect information from- and offer services to a broad spectrum
of physical things. IoT creates a virtual representation on the internet of everyday objects connected to
the internet used in daily life. Every object has a unique identity and virtual address and communicates
with other ”Things” without human intervention (Bessis and Dobre, 2014).

IoT was first discussed in the context of supply chain management. Nowadays, the definition is cov-
ering a wide range of applications like healthcare, utilities, transport, etc. (Sundmaeker et al., 2010).
The definition of ”Things” has changed over the years as technology has improved, but the main char-
acteristic of making a computer sense information without any human intervention remains the same.
The development of the current internet is now based on interconnected objects which not only collect
information from the environment and interacts with the physical world but also uses the already ex-
isting internet standards to provide services (Gubbi et al., 2013). Open wireless technology such as
RFID, Wi-Fi, Bluetooth, actuator nodes, embedded sensors, and telephonic data services accelerated
the development of IoT (Manogna and Dakannagari, 2016).

Recently, the brewery of Alken-Maes is equipped with an IoT system that connects different sensors of
the packaging line with the internet. The system retrieves new data every second only when the state
or value of the machine/sensor has changed. However, the number of sensors per machine which are
available is limited and requires an expansion to create a complete overview of the packaging line.

2.3. Digital Twins
The development of IoT resulted in many more sensors and devices connected to the internet, data ac-
quisition systems, and computer networks. Managing these interconnected systems between physical
assets and computational capabilities is called Cyber-Physical Systems (Lee et al., 2015). The con-
trolling software part of Cyber-Physical System is called a DT. The physical devices of Cyber-Physical
Systems communicate with each other with the use of a software replica of the physical devices.

2.3.1. Characteristics of a Digital Twin
NASA was the first which presented the definition of a DT as ”an integrated multi-physics, multi-scale,
probabilistic simulation of a vehicle or system that uses the best available physical models, sensor
updates, fleet history, etc., to mirror the life of its flying twin. It is ultra-realistic and may consider one or
more important and interdependent vehicle systems” (Shafto et al., 2010). In general, a DT is the virtual
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representation of a physical object created in a digital way to simulate the behaviour of the physical
object in a real-world environment.

A DT consists of two necessary aspects: data modelling and data analytics. First, it is essential to
define a model with the information and data of the physical system. However, it is impossible to have
an excellent virtual representation without real-time data of sensors insight into the physical object. A
DT can be integrated into the whole manufacturing process, which creates a closed-loop from product
design to smart maintenance, repair, and overhaul (MRO).

Opportunities for Digital Twins
The translation of the DT-concept from the aerospace field to other fields such as the robotics environ-
ment or manufacturing created many more functionalities. Many of them are already reported in the
literature, amongst them (Macchi et al., 2018):

1. Improved maintenance decision making (damage/cracks prediction, material geometric/plastic
deformation, and reliability modelling of physical systems).

2. System life cycle mirroring, supporting decision-making in different ways: i) predicting the sys-
tem’s performances/behaviour in the long term ii) granting digital data continuity along life cycle
phases of the system iii) optimizing the control software of the system iv) simulating the organi-
zation of IoT devices.

3. Statistically based decision making and optimization, such as optimizing the system’s behaviour
by simulating it during the design phase or during life cycle phases.

In the context of supporting operators in deciding which countermeasure to perform, the latter two func-
tionalities offer opportunities. In both functionalities, decision making is mentioned in several different
ways. For this research, real-time decision making is necessary to offer support to operators when
unplanned downtime occurs.

2.3.2. level of integration of a Digital Twin

The definitions DT, Digital Shadow, and Digital Model are
often used in similar situations. However, these definitions
differ in the level of integration. The differences are mainly
in the connection of the model with the physical counterpart
(Kritzinger et al., 2018).

Digital Model
The data exchange in a Digital Model is not done automatically
but wholly manually, see Figure 2.3. A Digital Model might in-
clude simulations or any other models of the physical counter-
part, which does not include automatic data exchange. Digital
data can still be used to develop these models, but there is no
real-time representation of the object.

Digital Shadow
When an autonomous one-way data flow exist from the phys-
ical object to the digital object, it is called a Digital Shadow,
see Figure 2.4. A change of state of the physical object re-
sults in a change of the state of the Digital Shadow but not the
other way around.

Figure 2.3: Representation of a Digital
Model (Kritzinger et al., 2018)

Figure 2.4: Representation of a Digital
Shadow (Kritzinger et al., 2018)
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Digital Twin
When the data flow between the physical object and the dig-
ital object is fully autonomous in both directions, it is called a
DT. Figure 2.5 shows this characteristic of a DT. A DT is a
controlling instance of the physical object. State changes of
both the physical object and the DT lead to a change of state
of the counterpart.

Figure 2.5: Representation of a DT
(Kritzinger et al., 2018)

In the context of this research, a Digital Model is the minimum that is required. This research focusses
on the development of a proof of concept instead of an entire implementation. Therefore, a Digital
Shadow and a DT are not required. However, if the proposed service will be integrated, a DT is required
because automatic data flow between the physical asset and the model, and between the model and
the operator is necessary.

2.3.3. Five-dimension Digital Twin model
The three-dimensional DT model of Grieves (2016) is currently applied in most researches. However,
new trends and demands are developed as the possibilities expand. Therefore, Tao et al. (2019a)
presented a five-dimensional DT model based on the original three-dimensional model of Grieves to
enable the use of a DT in more fields. Figure 2.6 shows the five-dimensional DT model.

Figure 2.6: Five-dimensional DT model (Qi et al., 2019)

Physical entities in Digital Twin
The physical entities are the foundation of DT and are the starting point to work from. The behaviour of
physical entities is simulated by the virtual models created by the DT (Tao et al., 2018). The physical
entities may consist of industrial machines, products, devices, or even operators working with the enti-
ties. Physical laws are the basis of these entities and uncertain environments are considered as well.

In the physical environment of this research, the physical entity is a combination of the Filler of the
packaging line in Alken-Maes and the operators operating the packaging line. The communication be-
tween the physical entity is two-sided because real-time data is collected from the Filler, and decisions
are communicated back to the operator.

Virtual models in Digital Twin
The virtual models of a DT are faithful replicas of the represented physical entity, with corresponding
physical geometries, properties, behaviours, and rules (Tao and Zhang, 2017). First, the 3D geometric
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models describe the size, shape, tolerance, and structural relations. The physics models describe the
physical phenomena of the entities. Thirdly, the behaviour model describes the behaviour of the entities
against changes in the external environment, such as performance degradation and state transition.
Finally, the DT is equipped by the rule model with logical reasoning based on historical data or expert
knowledge.

Virtual models are an important asset of a DT. However, this research does not focus on the develop-
ment of virtual models. The packaging line of Alken-Maes is equipped with a dashboard where only
real-time values are displayed, but this dashboard does not contain any 3D models. Virtual models will
not contribute to the user requirement of this research as the focus is on providing a service to support
operators in resolving problems faster.

Digital Twin data
Data completely drives the DT (Qi et al., 2018). Data can be obtained from different sources, such as
physical entities or virtual models, reflecting the simulation results. Other data sources can be services
or expert knowledge. Data from different sources can also be combined to generate new usable data.

The data layer is the connection between the cyber layer and the physical layer. It receives all data
from the physical assets and process and convert the data into a machine-readable form and makes
readable data accessible for the cyber layer. According to Zheng and Sivabalan (2020) the following
aspects require attention:

• The data needs to be encrypted.

• The collected data must be transformed into a standard, machine-readable format to process the
data efficiently.

• Communication protocols follow the OSI model.

• The identified data packets are presented in a machine-readable data format such as .txt and
.csv file, which is accessible from the cloud.

The data from the packaging line of Alken-Maes is collected by connecting the computers to an IoT-kit.
This IoT-kit transforms the local data into globally accessible data. Part of the IoT-kit is encrypting the
data, and the data is transformed in .csv files.

Services in Digital Twin
The importance of service in all aspects of modern society is more and more considered by enterprises
(Tao and Qi, 2019a). First, application services concerning, optimization, simulation, diagnoses and
prognosis, monitoring, verification, etc., are provided to users by a DT. Furthermore, several third-party
services are needed in the process of building a functioning DT, like knowledge services, data services,
algorithms services, etc. Thirdly, various platform services are required for the operation of a DT.

Connections in Digital Twin
Connections between the physical entities, virtual models, services, and data are crucial in the oper-
ation of a DT. Connections enable required information and data exchange for real-time simulations,
operations, and analysis. According to Figure 2.6, there are six connections (Qi et al., 2019):

1. Connection between physical entities and virtual models (CN_PV)

2. Connection between physical entities and data (CN_PD)

3. Connection between physical entities and services (CN_PS)

4. Connection between virtual models and data (CN_VD)

5. Connection between virtual models and services (CN_VS)

6. Connection between services and data (CN_SD)
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Infrastructure requirements
From the five-dimensional DT model, four requirements are defined. These four requirements are:

• Access to sensors of physical asset

• An online database with data from the physical asset and models

• Connections between the components

• Service model that can make intelligent decisions

The fifth component of the five-dimensional model is a virtual model that is not required for the imple-
mentation of intelligent services. The first three requirements are focussed on the infrastructure of the
different components. These are assumed to be available in the coming three chapters and will be dis-
cussed once more in Chapter 6. The focus of the remainder of this research is on the last requirement,
a service that provides intelligent decisions to operators in case of unplanned downtime.

2.3.4. Digital Twin and services
From the previous sections can be concluded that the development of real-time services is part of im-
plementing a DT. The physical environment of the packaging line in Alken-Maes is already equipped
with data extraction hardware which is essential in the five-dimensional DT model. This data enables
the development of other models, such as service models.

The objective of this research is to provide a digital service in a production environment based on real-
time data. As mentioned in the previous section, this is typically provided in the service domain of a DT.
Service plays an increasingly more critical role in manufacturing as manufacturing evolves toward so-
cialization and servitization (Lightfoot et al., 2013). The potential of a DT can be fully released through
services in the concept of everything as a service.

Past research has proven that a wide variety of high-quality products and low manufacturing and dis-
tribution costs characterizes successful enterprises (Esposito et al., 2016; Ferreira et al., 2017). The
implementation of a DT-based framework enables enterprises to reduce the cost of inefficient produc-
tion (Min et al., 2019).

Service-Oriented Smart Manufacturing
As described in Section 2.3.3, virtual space consists of virtual models and services, both based on the
physical entity and the corresponding data. After data mining and analysis is it possible to generate
knowledge and rules. This knowledge and rules can be used to make autonomous decisions and con-
trol and execute the physical space (Tao and Qi, 2019b).

In the situation of complex environments, ML algorithms are commonly used in mathematical models
(Tao et al., 2019b). ML algorithms are not programmed explicitly but are trained by providing a large
dataset so they can learn how to make decisions based on this provided dataset. In this way, the
model can learn from the changing environment. As mentioned, ML is a subset of AI, and AI is applied
in many different fields, also in workflow management and manufacturing environments. The following
section discusses different researches where AI is implemented in the field of workflow management
and manufacturing environments.

2.4. Business process management
The problem considered in this research is about proposing intervention measures to operators, which
is in the field of workflow management and business process management (BPM). BPM is studied
for many years and is defined as: ”all efforts in an organization to analyze and continually improve
fundamental activities such as manufacturing, marketing communications and other major elements of
company’s operations” (Trkman, 2010). The Task-Technology-Fit theory can best describe the technol-
ogy in BPM. Task-Technology-Fit describes that the implementation of digital services in a process is
more likely to work out positively if the proposed service matches the tasks of the user (in this case, the
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operator) (Goodhue and Thompson, 1995). The automation of tasks in a business process improves
the performance of business activities by faster execution with a better result (Nikolaidou et al., 2008).

Traditional approaches to BPM and workflow management use predefined logical procedures of ac-
tivities to model and manage the process (Wang and Wang, 2005). A complete list of activities and
paths is available, and the particular path to follow is specified. This works well for simple and stables
processes. However, it does not fulfil the requirements for complex processes due to a lack of flexibility
(Van der Aalst and Kumar, 2003).

2.4.1. Knowledge-based approaches
Knowledge-based approaches and adaptive workflow techniques are considered in multiple types of
research in a way to provide flexibility and adaptability (Kammer et al., 2000; Narendra, 2004). These
techniques improve the conventional workflow models by proposing alternative paths as a solution for
solving problems. These techniques offer limited flexibility and adaptability compared to conventional
methods.

Another applied technique in BPM is the Event-Condition-Action approach in which rules are used to
enforce additional operational control of processes (Wang and Wang, 2005). Event-Condition-Action
uses rule/knowledge-based workflow systems where the rules make databases react to certain events.
The traditional workflow process is extended with rules which may support run-time processes when
certain events trigger the model. The application of rules in BPM offers more flexibility and adaptability
than conventional models. However, when dealing with complex situations where more uncertainty
and interactions are involved, this approach is not sufficient.

2.4.2. Cognitive approach
Simon et al. addressed the challenge of a changing and complex environment and stated that it requires
adaptive mechanisms to handle unstructured problems (Simon and Mintzberg, 1977). Unstructured
systems do not contain routine procedures for dealing with problems. Cognitive science has provided
a way to encounter these problems from a human thinking perspective. During the interaction between
the environment and the asset, information is combined and used as input for a cognitive algorithm or
heuristic method (Newell, 1990).

Wang and Wang (2005) presented a cognitive approach that monitors the environment and makes
real-time decisions for an unstructured system. This cognitive approach manages activities by knowl-
edge and rules based on the real-time environment. Underlying process logic enables the model to
make real-time decisions about tasks based on the state of the environment. The research of Wang et
al. also compared the cognitive approach against conventional workflow approaches, see Table 2.1.
Traditional workflow technologies are good at task routing without many operational constraints. How-
ever, workflow approaches with Event-Condition-Action rules are also successful in reacting to certain
events. Both methods are not able to consider more dynamic and complex processes as these pro-
cesses can not be encountered with routine procedures. The cognitive approach shows better results
in real-time decision-based control of the process. It applies to complex and dynamic domains, such
as e-commerce, Manufacturing Resource Planning, Supply Chain Management, etc.

Features
Workflow approach
based on predefined
process schema

Workflow approach based
on predefine process
schema with ECA rules

Cognitive
approach

Task routing ++ ++ +
Operational constraints + ++ ++
Reaction to certain events - + ++
Continuous perception of environment - - +
Decision-based control of process - - +
Manipulation of business strategies - + ++
Support of interactive tasks - - +

Table 2.1: Comparison of cognitive approach with workflow approach (Wang and Wang, 2005)
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2.5. Artificial intelligence in supply chain
AI is studied for a long time, and the potential of AI in many domains is proven. Also, supply chain
management is studied in combination with AI. Different AI applications are discussed by Min, such as
transportation network design, purchasing and supply management, demand planning, and forecast-
ing, order-picking problems and customer relationship management (Min, 2010).

Also, Patel et al. (2018) studied the implementation of AI techniques together with IoT platforms in
supply chain environments. Patel et al. mention the importance of integrating IoT platforms in manu-
facturing assets to develop intelligent and smart services to reach smart manufacturing. One of the use
cases of the research of Patel et al. is about the integration of such a system to interlink sensor mea-
surements, manufacturing execution systems, business processes, workflow, etc. IT systems already
capture most of these data, but it is not accessible without significant manual effort. The objective of
this use case is to support real-time decision-making by using all available data. An example scenario
is a technician who must quickly troubleshoot a physical asset that encounters a problem. This techni-
cian will be helped if a system would support him with a summary of the problem, suggested manuals
and necessary tools and parts to resolve the problem.

AI is also applied in real-time control of assets in the manufacturing industry. The research of Rossit
et al. (2019) proposes a data-driven approach for scheduling in the manufacturing industry based on
real-time data from the system. The goal of the research of Rossit et al. is to make scheduling deci-
sions earlier in time to encounter problems earlier. The research is proposing a Cyber-Physical System
approach, combined with a data-driven engine which uses big data techniques to make decisions. The
research also mentions the importance of real-time access to data from a machine to adapt to the de-
cisions rapidly. Traditionally, scheduling problems are solved by using data parameters as processing
times, delivery dates, preparation times, etc. combined with negative impacts like downtime or qual-
ity losses. Then, schedules are adapted when situations in the physical environment change (Kis and
Pesch, 2005). This approach is event-driven since the schedules changes when an event has occurred
or afterwards to restate the scheduling program (Ouelhadj and Petrovic, 2009). The research of Rossit
et al. proposes an architecture in which real-time data of a machine is available to all control systems of
the machine. Now, this information is available in real-time, smart algorithms can predict future states
of the machine and adapt the schedules according to these predictions. Decisions can be made before
the event has occurred, which is typically the moment of decisions in event-driven systems.

The discussed researches show the potential of AI in the supply chain and manufacturing industry. The
combination of the cognitive approach in BPM and the study of Patel et al. is interesting because this
combination addresses the user requirement of this research. However, this research goes beyond
the research of Patel et al. because it not only uses real-time information to decide where the problem
occurs but will also propose countermeasures to resolve the problem. A decision-making algorithm is
required for this service to support operators in resolving problems faster.

2.6. Machine learning as a service
Many theoretical and empirical pieces of research have proven that ML including big data-based ap-
proaches as data mining, artificial neural networks (ANN) and pattern recognition are promising in
the manufacturing industry (Carbonell et al., 1983; Kateris et al., 2014; Köksal et al., 2011; Wen et al.,
2012). The type of ML algorithm needed is mainly based on the type of problem. This section discusses
different ML algorithms in combination with different studies on these algorithms.

2.6.1. Machine learning styles
ML models can be divided into three different groups: supervised, unsupervised, and semi-supervised
ML algorithms (Brownlee, 2016b). This division is based on the type of dataset available.
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Supervised machine learning

Supervised ML algorithms are the most occurring models, see Figure
2.7. Supervised learning is where input variables and output variables
(labels) are combined to learn the model how to get the right labels
based on the input variables (Brownlee, 2016b). It is called supervised
learning because the learning process can be seen as a teacher su-
pervising the learning process. The correct output label is known cor-
responding to the input variables, and the algorithm iteratively makes
predictions on this data while the ’teacher’ corrects the model. Super-
vised models can be further divided into two groups, regression and
classification problems (Soni, 2018):

• Classification: When the labels are a category, like ”red” or ”blue”,
the problem is defined as a classification problem.

• Regression: When the output variable is a real value, the problem
is defined as a regression problem.

Figure 2.7: Supervised learning
example (Qian et al., 2019)

Unsupervised machine learning

When the problem has input variables but no output labels, it is called
unsupervised learning, see Figure 2.8. Unsupervised ML algorithms try
to find the underlying structure of the data to learn more about the data
(Brownlee, 2016b). It is called unsupervised learning because the de-
sired output is not known, and the model searches and presents inter-
esting structures in the data itself. Also, unsupervised learning problems
can be further divided into two groups, clustering, and association:

• Clustering: If groupings of data need to be discovered, it is called
clustering.

• Association: If the goal is to discover rules that describe large
portions of data, it is called association.

Figure 2.8: Unsupervised learn-
ing example (Qian et al., 2019)

Semi-supervised machine learning

The third ML category is the semi-supervised ML category, where a large amount of input variables is
available, but only some of the data is labelled (Brownlee, 2016b). Many real-world ML problems are
semi-supervised ML problems because the workload is too high to label all data. Unsupervised learn-
ing algorithms can be applied to the dataset to discover and learn the structure in the input variables.
It is also possible to use supervised learning techniques to predict the label of the unlabelled data and
use that in the supervised learning algorithm train the model on this data.

The conclusion from this section is that the problem in this research is a supervised machine learning
problem. Furthermore, it is a classification problem as a training dataset is composed of inputs with
the required labels of countermeasures. The requirement for a classification problem is a supervised
training/learning process to enable the algorithm to learn to predict the right label based on the input.
Moreover, the classification problem is a multi-class classification problem. The characteristics and
applications of multi-class classification problems are discussed in the following section.
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2.6.2. Multi-class classification problems
Classification problems can be divided into binary and
multi-class classification problems. Binary classification
involves predicting whether something is of one of two
classes (e.g. ”on” or ”off”, ”black” or ”white”, etc.) (Terry-Jack,
2019). Multi-class classification problems predict something
into one of n classes (e.g. ”yellow”, ”blue” or ”red”, etc.).
Figure 2.9 shows the difference between the two, where the
number of classes n in a multi-class classification problem
can be of an infinite amount. The problem in this research
considers multiple inputs and output classes. Therefore,
this problem is defined as a multi-class classification problem.

Figure 2.9: Binary classification and Multi-class
classification (Terry-Jack, 2019)

2.6.3. Multi-class classification algorithms
Multi-class classification algorithms can be divided into different classes. Algorithms are often grouped
by similarity in their function or by their learning style (Brownlee, 2019). The different learning styles
are already discussed in Section 2.6.1, in this section, the different multi-class classification algorithms
are grouped by their function and are discussed briefly.

Instance-Based Algorithms

Instance-Based Algorithms are decision algorithms with examples of
training data that are important or required to the model (Brownlee,
2019). These methods are built on a database of example data, and
new data is compared to the database to determine the best match to
make a prediction. Frequently used Instance-Based Algorithms are
k-Nearest Neighbor (kNN) and SVMs.

kNN is one of the oldest non-parametric classification algorithms (Aly,
2005). This means it makes no assumptions on the underlying data
(MissingLink, 2019). The strengths of kNNs are the simple imple-
mentation and understanding of the model and the effectiveness of
low dimensionality problems. However, kNNs are not suitable for
high dimensionality problems and are computationally intensive. An
example of kNNs is shown in Figure 2.10.

Basic SVMs supports only binary classification problems but extensions
of SVMs supports also multi-class classification problems (Aly, 2005).
SVM are among the most robust and successful classification algo-
rithms. However, SVMs in multi-class classification problems can result
in large optimization problems, which may be impractical. An example
of SVMs is shown in Figure 2.11.

Figure 2.10: k-Nearest Neigh-
bor algorithms (Navlani, 2018)

Figure 2.11: Support Vector
Machine algorithms (Carrasco,
2017)
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Decision Tree Algorithms
Decision Trees are powerful classification algorithms and can handle
multi-class classification problems naturally (Aly, 2005). Decision Tree
methods construct a model where decisions are made based on the ac-
tual values of the input variables (Brownlee, 2019). The model is similar
to a tree where a variable is processed trough all nodes until a predic-
tions decision is made. Decision Trees are often fast and accurate and
are trained in classification and regression data. The strengths of Deci-
sion Trees are the ability to model complex decision processes and the
intuitive interpretation of the results (MissingLink, 2019). The weakness
of Decision Trees is relatively easy overfitting of data. Overfitting of data
appears when a model is not able to generalize well from training data
to unseen data.

Figure 2.12: Decision Tree Al-
gorithms (Brownlee, 2019)

Artificial Neural Network Algorithms

ANN are naturally suitable for solving multi-class classification problems
(Aly, 2005). ANNs are models based on biological NNs like our brain
(Brownlee, 2019). ANNs are commonly used for classification and re-
gression problems and contains hundreds of algorithms and variations.
Frequently used ANNs are (multilayer) Perceptrons and Feed Forward
NNs. To address a multi-class classification problem, the network has
multiple neurons in the output layer according to the number of classes,
see Figure 2.13. NNs are very effective for high dimensionality prob-
lems and are able to deal with complex relations (MissingLink, 2019).
The disadvantages of NN are the theoretical complexity and difficult im-
plementation.

Figure 2.13: Artificial Neural
Network Algorithms (Williams,
2018)

Deep Learning Algorithms

Deep Learning algorithms are an update of ANNs, see Figure 2.14.
They are able to build much larger and more complex NNs and are
able to work with very large datasets of labelled analog data (Brownlee,
2019). Frequently used Deep Learning algorithms are Convolution NNs,
Recurrent Neural Networks and Long Short-Term Memory Networks.

Figure 2.14: Deep Learning Al-
gorithms (Williams, 2018)

In the end, several algorithms suit the goal of solving a multi-class classification problem. Some al-
gorithms naturally suit the requirements of a multi-class classification problem, and others have to be
modified to suit these requirements. The following section discusses the application of these different
algorithms.

2.6.4. Application of multi-class classification algorithms
Many research is done about multi-class classification problems. However, the amount of researches
considering multi-class classification problems in the field of real-time operations is little. Research of
multi-class classification problems is more focussed on text and speech recognition. Multi-class clas-
sification algorithms are used in many real-world problems like speech recognition, face recognition,
medical diagnosis, fraud detection, and fault detection (Bhardwaj et al., 2016). Most of the work on
multi-class classification is related to text categorization (Paolanti et al., 2018).

Research is done on different strategies among which direct multi-class classifiers such as NNs and
Decision Trees, an ensemble of binary classifiers, and an ensemble of one-class classifiers are repre-
sented dominantly. The two ensemble methods use a decomposition of the original multi-class problem
into several smaller subproblems (Kang et al., 2015). The two conventional approaches of the second
strategy are the one-versus-one and one-versus-rest approach (Lorena et al., 2008; Rokach, 2010).
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On the other hand, the third strategy is a combination of classifiers each trained on a single class (Hao
et al., 2009; Juszczak and Duin, 2004; Lee and Lee, 2005; Tax and Duin, 2008).

Quatrini et al. (2020) and Scime and Beuth (2018) investigated the use of ML for anomaly detection
and classification in manufacturing processes. Quatrini et al. considered a Decision Tree and Random
Forest algorithm as classifier algorithms to solve the problem. The Decision Tree is used to identify the
process phase and the Random Forest algorithm implements the anomaly detection. Farid et al. (2014)
presented a multi-class classification problem solved by a Hybrid Decision Tree and Naïve Bayes clas-
sifier. The Naïve Bayes classifier removed the noise from the training set before the Decision Tree
was inducted. Support Vector Machines (SVMs) are also used in classification problems many times.
SVMs are primarily designed for binary classification problems. However, a combination of multiple
SVMs can be used to solve multi-class classification problems (Mayoraz and Alpaydm, 1999). May-
oraz et al. investigated the problem of scaling in such combinations of SVMs. Various normalization
methods are proposed to cope with the scaling problem.

ANNs are also a very popular ML technique (Bhardwaj et al., 2016). It offers excellent opportunities
for solving multi-class classification problems and is applied in many different fields, from image recog-
nition to inventory management. Most related research is done in the field of image recognition. For
instance, Singh et al. (2012) presented a Haar wavelet transform and backpropagation NNs approach
for texture image recognition.

Ding and Dubchak (2001) researched a multi-class protein fold recognition using SVMs and NNs. The
research shows the difference between the two algorithms and shows higher accuracy achieved by the
SVMs. However, the accuracy of the NN is improved significantly by implementing noise reduction.

ANNs are also used to perform fault diagnosis because of several advantages compared to other ML
algorithms (Grezmak et al., 2020). One of these advantages is the overall classification accuracy. In
the research of Grezmak et al., fault diagnosis is executed on a motor, operating in multiple operating
conditions. Bhardwaj et al. (2016) researched Genetically Optimized NN in multi-class classification
problems and presented better results compared to other ML algorithms. Price et al. (1995) presented
research where a multi-class classification problem is addressed with a divide and conquer strategy.
This strategy divides the problem into multiple two-class problems, and for each pair of classes, a
(small) NN with a single output unit is trained.

Ou and Murphey (2007) researched the differences between different approaches of NNs. From this
research can be concluded that individual NNs per class pair are more straightforward than a single NN
for all classes. The different individual NNs can be modelled individually, which enables fast learning.
However, a single NN is trained on all information available which can result in an optimal classification.
The research showed a good result when the training dataset is not too large, and there are not too
many classes.

Another research is done by Miškuf and Zolotová (2016), comparing different multi-class classifiers
with a focus on Industry 4.0. In this research, the Letter Recognition dataset from UCI is used. The
research mentioned the comparison of this dataset with an industrial environment. Values from various
sensors can replace all numerical columns, and the classes can contain measures or actions. The
research compared six different multi-class classifiers:

• Multi-class NN

• Multi-class Decision Jungle

• Multi-class Logistic Regression

• Multi-class Decision Forest

• Ensemble of two-class SVM

• Deep Learning
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The different models were trained on a dataset contain-
ing 16.000 samples. The results of the models on the
test dataset (4.000 samples) are shown in Figure 2.15.
The results show a better accuracy for the Deep Learn-
ing algorithm (96,48%) compared to the Decision Forest
(92,50%), NN (92,43%), Decision Jungle ( 80,10%),
Logistic Regression ( 73,93%) and SVM (66,20%).

All these different studies addressed a variety of algo-
rithms. However, only a few algorithms show good po-
tential for this research. The next section discusses the
characteristics of these algorithms and in Section 3.2.3,
the most suitable algorithm is chosen for the develop-
ment of a ML model. Figure 2.15: Multi-class classifiers and Deep Learn-

ing (Miškuf and Zolotová, 2016)

2.6.5. Challenges multi-class classification problems
A problem of multi-class classification problems is to gather the labels of the recorded data samples.
Labelling is time-consuming, which requires a high workload for experts because they have to look
into al all the data samples and label these according to their observations (Lughofer, 2012). Labelling
means a high investment in time andmoney for the company where the expert/operators are employed.
For example, the classification of image recognition in surface inspection requires an expert to look into
all images and determine to which class they belong (e.g. showing no faulty occasions or showing faulty
occasions).

2.7. Conclusion
This chapter discusses the requirements of a system to fulfil the user requirement. The user require-
ment is to reduce the unplanned operational downtime by supporting operators to resolve errors faster
to increase machine utilization. The system requirements are split into requirements for the infrastruc-
ture and requirements for the service to support operators in resolving errors faster. The sub-question
which is answered in this chapter is: What are the requirements to enable real-time monitoring of a
production line and what service is required to address the user requirement?

First, the infrastructure requires the extraction of data from the physical environment via an IoT system.
The historical data is stored in a database, and the real-time data is accessible in real-time. When real-
time data is accessible, it is possible to develop different services and models based on this data. The
five-dimensional model (see Figure 2.6) of Tao et al. (2019a) describes this as the five requirements of
a DT. The data of the packaging line in Alken-Maes is already accessible in real-time, which enables
the development of a service model to address the user requirement. However, the amount of sensors
available is low and has to be extended to offer a complete overview of the packaging line.

The user requirement is addressed in this five-dimensional model as a service. This service requires a
decision algorithm that can predict output classes based on several input parameters. Such a decision
algorithm is a multi-class classification algorithm. These types of algorithms are studied extensively in
the past in multiple different areas. However, there is a gap in the literature about multi-class classi-
fication problems in real-time production environments. The research of Miškuf and Zolotová (2016)
addresses this topic in his research by relating the used dataset to industrial sensors and desired
outputs. However, his dataset is still a Letter Recognition dataset instead of a dataset consisting of
industrial instances.

The research gap will be addressed in this research in the following chapters. First, the requirements
for designing a multi-class decision algorithm are discussed. Then, a multi-class decision algorithm is
built based on data from the physical environment. Finally, the integration of the decision algorithm in
the physical environment is tested and discussed.
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Design of service model

In Chapter 2, the system requirements are determined. The next step of the Systems Engineering
methodology is to design the different components; in this case, the service of the DT. The service of the
DT is an algorithm to solve a multi-class classification problem. The algorithm will predict certain output
measures performed by an operator when an error occurs. The sub-question which will be answered
in this chapter is: What are the design requirements of intelligent decision-making algorithms? First, in
Section 3.1, an overview of the entire process is given. In Section 3.2, a design framework is discussed,
which is the main part of the remainder of this research. Finally, the output of the brewery is discussed.

3.1. Overview
An overview of the entire process is shown in Figure 3.1.
First, the physical equipment in the brewery needs to be
equipped with sensors. Secondly, this data is captured by a
central system that connects the physical object to a server.
Next, the data is uploaded to the cloud from where it is
possible to access the data. From there, the data needs to
be processed in a model to make the data useful to make
decisions based on the data. Finally, the output of the model
(decisions) is communicated back towards the brewery, in
this case to the operator.

The previous section already described the requirements
for the data extraction and communication between the
production environment and the digital environment. When
the data is accessible in a digital environment, and a model
is developed to analyze the data, it is possible to make
decisions based on real-time data.

The decisions consist of countermeasures dependent on the
input variables from the packaging line. This service enables
operators to execute the right countermeasure to resolve er-
rors faster and to reduce the unplanned downtime. There-
fore, a model is developed, which can predict countermea-
sures based on the variables of the packaging line. Figure 3.1: Overview model

3.2. Model design framework
The development of ML algorithms has been studied extensively over the last decades. These studies
all use a seven-step framework for designing ML algorithms (Brownlee, 2013; Guo, 2017; Mayo, 2018;
van Rijmenam, 2019). The seven steps are:

23
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1. Data collection

2. Data preparation

3. Choose a model

4. Train the model

5. Evaluate the model

6. Hyperparameter Tuning

7. Prediction

The remainder of this chapter describes the content of this framework and discusses the relevant design
requirements and parameters.

3.2.1. Data collection
Data collection consists of defining and obtaining data. This first step is immediately crucial because
the quality and quantity of the data determine how good the prediction of the model is (Guo, 2017).
This step is dependent on the type of problem and the desired output of the model. The outcome of
this step is generally a representation of data (in the form of a table) which will be used for training the
model (step four). From the packaging line of Alken-Maes, different variables are available to use as
input. These variables are described below, as well as the output labels.

Active program
The active program is dependent on the brewed beer and type of packaging. Every combination has
a unique program that includes different speeds, dimensions, and secondary packaging. The program
does not often change, on average once every two days, and is set by an operator. Despite the inactive
character of this variable, it is included in the dataset to enable variations in future tests. As the program
does not change over the day, this variable is set to one for every data sample.

Errors
The three most occurring errors are included in the dataset. These three errors are:

• Error 1: Can lack at inlet 1

• Error 2: Low speed inlet conveyor

• Error 3: Outlet can too full

Speed of machine
The nominal speed of the machine is dependent on the program. However, the speed variates regu-
larly because of varying variables and states of components in the entire packaging line. The nominal
speed is set between 740-760 [cans/min].

Furthermore, the speed of the Filler’s inlet conveyor is considered as it does influence the machine,
and it indicates any problems in the stage before the Filler. However, the inlet speed is not accessible
and is generated based on the assumption that the nominal speed of the inlet conveyor is similar to the
speed of the Filler and can never be higher than the speed of the Filler.

State
The state of the Filler is an integer value as there are multiple operating states. The Filler’s state is not
considered in the training dataset because the state is already reflected in the speed of the Filler.

However, the state of the machine before the Filler is considered as it might influence the performance
of the Filler. The machine before the Filler is the Depalletiser, which takes the empty cans of the pallet
and feeds them into the packaging line. For simplicity, the state of the Depalletiser can either be zero
or one, which represents a non-operating state and operating state, respectively.
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Output classes
Themodel output is a countermeasure that has to be performed by the operator to solve an error. These
measures are labelled classes and are used to train the model. The countermeasures considered in
the model are:

• Countermeasure 1: Unknown cause: investigate cause
• Countermeasure 2: Stop Filler
• Countermeasure 3: Solve a problem with Depalletiser
• Countermeasure 4: Solve can block at Filler
• Countermeasure 5: Slow down Filler
• Countermeasure 6: Solve can block at outlet Filler

During operation, it sometimes appears that the cause of the error is unknown. The first countermea-
sure addresses this problem and, therefore, requires additional investigation to the cause of the error
by the operator to solve the problem. The second countermeasure is a countermeasure where the
Filler automatically stops due to the cause of the problem. The third countermeasure solves a problem
at the Depalletiser indicated by one of the input variables. The fourth countermeasure solves a can
block at the entrance of the Filler. The fifth countermeasure is similar to the second countermeasure,
but now the Filler slows down automatically. Finally, the sixth countermeasure is again a can block,
now at the outlet of the Filler.

An overview of all the input variables and the output classes is provided in Table 3.1. The values of the
different variables can be found in the second column of the table.

Variabele Value
Active program 1
Error 1, 2, 3
Speed of Filler 0-760
Inlet speed of Filler 0-760
State Depalletiser 0, 1
Output classes 1, 2, 3, 4, 5, 6

Table 3.1: Overview variables dataset

3.2.2. Data preparation
The second step is data preparation. The data is loaded into a suitable format and prepared for use in
the ML algorithm (Guo, 2017). Data preparation is important because it will affect the result positively
or negatively depending on the taken steps.

The important steps in data preparation are (Brownlee, 2013; Guo, 2017; Mayo, 2018):

• Formatting: The selected data might not be available in the right format and has to be trans-
formed into a machine-readable format.

• Cleaning: Especially data from production environments is not always complete. Therefore, it
is possible that data instances are incomplete or do not carry the correct data. These instances
might be removed from the dataset as well as variables that are not needed in the dataset.

• Sampling: The available data might exceed the necessary data in terms of the amount for train-
ing and testing the algorithm. Too much data can result in large computational and memory
requirements and will lead to long-running times of the algorithm. Therefore, it might be better
to sample the data to use a smaller dataset and achieve faster running times. Before taking a
sample, randomization of the dataset can be necessary to make sure the output is not dependent
on the order of the dataset.

• Scaling: The available data contains different variables with various scales or quantities. Many
ML algorithms require variables with the same scale, such as between 0 and 1. Therefore, the
data can be normalized, standardized, or scaled by any other data scaling technique.
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• Decomposition: It might be possible that input variables represent a complex concept and are
more useful when split into constituent parts. An example is the date, which can be split into the
day, month, year, and even in time components.

• Aggregation: Some variables might be more useful when aggregated into a single feature.

Furthermore, it might be useful to visualize the data to see if there are relevant relationships in the data
and if there are any outliers or imbalances in the model (Guo, 2017).

When the data is prepared, the dataset has to be split into a training and test dataset (Guo, 2017).
The majority of the dataset will be used for training purposes, while the test dataset will be used for
evaluating the performance of the model.

3.2.3. Choose a model
The third step consists of selecting the right model (van Rijmenam, 2019). Many different ML models
can be used for many different purposes. As discussed in Section 3.2.1, the available data, and desired
output define the type of ML model. The problem in this research is a multi-class classification problem
with a supervised learning process. Based on these characteristics, different algorithms are suitable
to solve this problem.

The algorithms suitable for solving this problem are already discussed in Section 2.6.3 and can be
divided into two groups (Aly, 2005). The first category algorithms are naturally suitable for multi-class
classification problems and include Decision Trees (Gordon et al., 1984; Salzberg, 1993), NNs includ-
ing Deep Learning algorithms (Bishop, 1995) and kNN (Bay, 1998). The second category includes
approaches for breaking down the problem in multiple binary problems which are solvable by algo-
rithms suitable for solving binary classifiers such as Support Vector Machines (Burges, 1998; Cortes
and Vapnik, 1995).

The goal of this research is not to compare the performance of different algorithms. Therefore, a NN is
chosen as multi-class classifier because of the natural suitability for this kind of problems. Moreover,
a NN is useful for high dimensional data, and as the problem in real-life can expand to a high dimen-
sionality problem, this algorithm is very suitable for this research.

A NN consists of an input layer, one or more hidden layers of neurons, and an output layer. The input
variables are already defined in Section 3.2.1 and consist of five different variables. To each input
variable, a neuron is assigned in the input layer. Similarly, there are six output classes, and each
output class is assigned to a neuron in the output layer. The number of hidden layers and neurons in
each hidden layer will be tuned in Chapter 4. As a starting point, a NN with one hidden layer consisting
of four neurons is chosen, see Figure 3.2.

Figure 3.2: Initial NN
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Neural Network Optimization
The optimization of NNs is a non-convex optimization (Stewart, 2019). Non-convex optimization con-
tains multiple different local optima and one global optimum. A NN is optimized on its loss function. It
can be challenging to find the global optimum because it is dependent on the loss surface. In earlier re-
search, finding the global optimum was considered to be a significant problem in NN training. However,
recent studies have proven that most local optima already reaches low minima close to the global min-
imum, which is sufficient in terms of optimization (Choromanska et al., 2015). Hyperparameter tuning
is vital to reach the global minimum or an acceptable good local minimum.

Keras
Due to the increased interest in ML and Deep Learning, several different software packages can be
used to build a user-friendly NN. Keras is such a user-friendly package (Nain, 2017). Keras is entirely
modular, so users can easily combine different modules to build extensive or straightforward NNs.
Therefore, Keras is used to build the NN of this research.

3.2.4. Training the model
Training the developed model is the bulk of ML (Guo, 2017; van Rijmenam, 2019). The goal of training
the model is to incrementally improve the prediction of the model based on the training data. At the
very start of training, the prediction based on the input variables is wrong according to the correspond-
ing output. By iteratively comparing the predicted output with the corresponding output, the model can
adjust its prediction. After training the model extensively, it can predict the right output corresponding
to the input variables.

The training of a NN considers the training dataset and the loss function. The goal is to increase the
loss function iteratively by comparing the estimated outputs to the real values of the label. The loss
function is a combination of all weights of the model. The weights are denoted by W, and B denotes
the biases. The minimum of the loss function 𝐶(𝑊) (see Figure 3.3a) is found by taking the derivative
of the loss function. The learning rate determines how fast the model reaches the minimum, see Figure
3.3c. However, if the learning rate is too high, the loss function may overshoot the minimum, see Figure
3.3b.

(a) Loss function example (b) Overshoot of loss function (c) Minimum of loss function

Figure 3.3: Example of training a NN (Heineken, 2020b)

3.2.5. Evaluate the model
After training, the next step is to evaluate the model. The test dataset, which we set aside at the data
preparation step, is now considered and fed into the model (Guo, 2017). The test dataset is new data
which has not been seen by the model and is, therefore, used to determine the skill of the model on
new data (Brownlee, 2017c).

Classification accuracy
Classification accuracy is a common used evaluation method. It can be described by the following
equation (Mishra, 2018):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (3.1)
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Accuracy works well as an evaluation method when the number of samples is equally divided over the
classes. If the samples are not equally divided over the classes, for example, 98% belongs to class
A, and 2% belongs to class B, our model can easily predict 98% accurate by predicting all samples to
class A.

The training dataset in this problem is well divided over the different classes. Therefore, classification
accuracy can be used to evaluate the performance of the model.

Logarithmic loss
The logarithmic loss penalizes the false classifications of a model and is very suitable for evaluating
multi-class classification problems (Mishra, 2018). The classifier assigns probabilities to each class
for all samples and penalizes the false classifications. A perfect classifier would have a logarithmic
loss of zero. Logarithmic loss heavily penalizes classifiers that assign high probabilities to incorrect
classifications.

Confusion matrix
Performance of classification models can be evaluated by precision and recall. It can be best described
with the so-called ”confusion matrix” (Shmueli, 2019). Depending on the number of classes n, it has n
rows and columns. The matrix shows how many samples of one class were predicted correct or wrong.
Figure 3.4 shows an example of such a confusion matrix with three classes.

Figure 3.4: Example of confusion matrix (Shmueli, 2019)

It shows the number of times a cat picture is predicted as a cat and how many times it is predicted as a
fish or hen. If a picture contains a cat and a cat is predicted, it is called a True Positive (TP), and if a fish
or hen is predicted it is called a False Negative (FN). The opposite yields if a picture does not contain
a cat, but a cat is predicted. That is called a False Positive (FP), but if a fish or a hen is predicted, it is
called a True Negative (TN).

Precision and Recall
From the confusion matrix, the precision and recall can be calculated. Precision answers the ques-
tion: ”What proportion of predicted positives is truly positive?” (Shmueli, 2019). Precision can thus be
calculated according to the following equation:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑፥።዆ኻ 𝑇𝑃።

∑፥።዆ኻ (𝑇𝑃። + 𝐹𝑃።)
(3.2)

In case of the example, the precision of predicting the cat is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 4
4 + 6 + 3 = 30, 8% (3.3)

Recall answers the question: ”What proportion of actual positives is correctly classified?” (Shmueli,
2019). Recall can thus be calculated according to the following equation:

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑፥።዆ኻ 𝑇𝑃።

∑፥።዆ኻ (𝑇𝑃። + 𝐹𝑁።)
(3.4)
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In case of the example, the recall of predicting the cat is:

𝑅𝑒𝑐𝑎𝑙𝑙 = 4
4 + 1 + 1 = 66, 67% (3.5)

Similarly, the precision and recall for the other classes can be calculated.

The service of the model is to support operators in resolving errors faster by proposing the correct
countermeasure when an error occurs. It is essential to predict the correct countermeasure because
this will reduce downtime. In the current situation, it happens that operators execute the wrong coun-
termeasure, or it takes a long time to decide which countermeasure is the right one. Therefore, the
goal is to reduce the overall loss to an absolute minimum because this indicates a high accuracy.

In this application of the model, it is more important to achieve a high recall than a high precision. A
high recall indicates that the actual class is recognized correctly, which is vital in predicting the right
countermeasure.

3.2.6. Hyperparameter Tuning
The sixth step is more an ”art form” rather than science (Mayo, 2018). This step refers to hyperpa-
rameter tuning intending to improve the training of the model further (Guo, 2017). Hyperparameters
are different compared to variables (Brownlee, 2017d). Variables are configuration variables that are
inserted in a model. The model learns from these variables to predict certain outputs. Hyperparame-
ters are configurations that are external to the model and whose value cannot be estimated from data.
The tuning of the hyperparameters is done experientially and heavily depends on the specifics of the
dataset, model and training process. The hyperparameters of a NN that can be tuned are:

• Number of training epochs

• Batch size

• Optimization algorithm

• Learning rate of the optimization algorithm

• Activation function

• Dropout regularization

• Number of hidden layers

• Number of neurons in each layer

The architecture of a NN is determined by two primary hyperparameters: the number of hidden layers
and the number of nodes in each hidden layer. The most reliable way to configure these hyperparam-
eters is via systematic experimentation. Much research is done to determine the number of hidden
layers and the number of nodes scientifically. Lippmann (1987) shows that a two-layer NN is sufficient
for solving any non-linear problem. In contradiction, another theoretical finding stated that a NN with
one hidden layer can approximate any function required (Goodfellow et al., 2016). Furthermore, Reed
and Marks (1999) shows that a large one-hidden-layer NN can be less efficient in solving specific prob-
lems that NNs with two (or more) hidden layers.

These different studies contradict each other, but it shows that the configuration of the number of layers
in a NN is highly dependent on the specific application. Therefore, experimentation is the key to find
optimal hyperparameters.

3.2.7. Prediction
Finally, when the model satisfies the needs, it is possible to predict based on the dataset and the model.
It is possible to use further data which have never been used in the training of the model. It is also
possible to predict on data that has no output values or classes.
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3.3. Output layer
The output layer consists of the number of output classes addressed in the problem. The predicted
output exists of the probabilities of classes, which is achieved by using the Softmax activation function
in the output layer (Radecic, 2018). The Softmax activation function reports the confidence score for
each class, and the class with the highest confidence score is the predicted class. The mathematical
representation of the Softmax function is:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧።) =
𝑒፳ᑚ

∑ፊ፣዆ኻ 𝑒፳ᑛ
(3.6)

The equation states that to each output an exponential function is applied and these values are nor-
malized by dividing by the sum of all the exponentials. This ensures the sum of all exponential values
adds up to one.

When the output class is predicted, this is communicated back to the brewery. The operator is notified
about this countermeasure. Finally, the operator has to execute the countermeasure.

3.4. Conclusion
This chapter discusses the design requirements of the decision algorithm, which delivers the service
required to support operators in resolving errors faster. The sub-question answered in this chapter
is: What are the design requirements of intelligent decision-making algorithms?. The requirements
are discussed by the seven-step framework consisting of data collection, data preparation, choose a
model, train the model, evaluate the model, tune the hyperparameters, and predict.

First, the collected data consists of input variables with corresponding (output) labels, which is required
to train the model. A NN is chosen as the decision algorithm in this research. A NN is effective for
high dimensional data, so the problem in this research can be easily extended. The NN requires train-
ing according to the training dataset to achieve excellent performance. The performance of the NN is
evaluated with several evaluation methods. The most important evaluation method for this research is
the logarithmic loss. A small logarithmic loss indicates a high prediction accuracy. Furthermore, high
recall is required because this indicates that the actual output class is recognized correctly, which is
essential to predict the right countermeasure. It is required to improve the performance of the NN by
tuning the hyperparameters experimentally. Once the model is trained, it is possible to predict the right
countermeasures according to the input variables.

The output layer of the NN consists of output classes which can be predicted by the NN. The output
classes are different countermeasures. These countermeasures are proposed to operators working in
the physical environment. Every time an error or fault occurs, a countermeasure is predicted by the
NN, and the operator performs this countermeasure to resolve the error. The next chapter describes
the development of the model, including training the model and hyperparameter tuning according to
the required design.



4
Developed service Model

The previous chapter describes the requirements of designing a decision algorithm in a DT environ-
ment. These requirements are used in this chapter to build a NN which can predict a certain output
class based on the specified inputs. This is the fourth step of the Systems Engineering methodology.
In Section 4.1, the setup of the model is discussed. In Section 4.2, the data is defined and prepared
before a basic NN is built in the following section. Then, the hyperparameters of the NN are tuned
to achieve good prediction accuracy. The final model is described in Section 4.5. Then, the model is
verified in Section 4.6 to verify the predictions compared to the desired outputs.

4.1. Setup of the model
To be able to design an appropriate model, the capability of the model needs to be determined. As
discussed in Chapter 3, the goal is to design a model that can predict a certain countermeasure based
on a combination of different variables. Because it is important to predict the right outputs, the accu-
racy of the model is important. Furthermore, the computation time for predicting an output is important
because the model is designed for real-time operations. Therefore, the time to predict an output must
be short.

As already discussed in Section 3.2.1, the problem considered in this research is a multi-class classifi-
cation problem. The output is in a set of classes. These classes represent the countermeasures to be
taken by the operator in the brewery. The model always predicts one output class, together with the
certainty of the decision.

4.2. Define and prepare data
The considered variables of the packaging line are discussed in Section 3.2.1. There are five input
variables considered: the program, the state of the Depalletiser, the speed of the Filler, the inlet speed
of the Filler, and the three most occurring errors. The output consists of six possible countermeasures.
In this Section, the preparation and visualization of data are discussed.

4.2.1. Overview training data
The dataset for training and testing is composed based on the specified input variables and output
classes. Each sample of the dataset consists of multiple variables that occur during a shift. Each data
sample is complete and does not have any missing data. In real-life, this is not the case, and the data
has to be cleaned before it can be used in the model.

In Table 4.1, an overview of the generated data is given. This data is a realistic representation of data
from the packaging line of Alken-Maes. However, this data is simulated and used to train the NN. The
value or outer bounds of the five considered input variables, the corresponding output class, and the
number of samples are shown in the table.
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Variables 1 2 3 4 5 6 7 8 9 10 11 12
Program 1 1 1 1 1 1 1 1 1 1 1 1
State
Depalletiser 1 1 2 2 1 2 1 2 1 2 1 1

Speed Filler
[cans/min]

740-
760

740-
760

740-
760

740-
760

740-
760

0-
750

0-
750

740-
760

0-
750

0-
750

0-
750

740-
760

Inlet speed
[cans/min]

740-
760

600-
750

0-
750

740-
760

740-
760

0-
750

0-
600

0-
600

0-
600

0-
600

0-
750

740-
760

Error 1 1 1 1 1 1 2 2 2 2 3 3
Measure/
Class 1 2 3 3 4 3 2 2 4 3 5 6

Number of
samples 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 4.1: Overview of trainings dataset

4.2.2. Data preparation
According to step two of the design framework described in Section 3.2, the data is prepared before
the data is used for training the model. The dataset is generated in .csv format and every sample
contain all the information, so formatting and cleaning are not necessary. The order of samples of the
generated dataset is shuffled randomly. From Table 4.1 can be seen that the different input variables
have different scales. These scales need to be the same to penalize all different variables with the
same magnitude. Therefore, the data is normalized to realize the same scale between zero and one
for every variable.

Algorithm 1: Preparation of dataset
Result: Normalize dataset
for i in length(dataset) do

normalize dataset ;
end
Result: Split dataset
Input training dataset = 90% input samples;
Output training dataset = 90% output samples;
Input test dataset = 10% input samples;
Output test dataset = 10% output samples;

4.2.3. Visualization of data
In Section 3.2.2 it is suggested to visualize the dataset to check for relationships in the dataset and
find any outliers. The data presented in Section 4.2.1 has five dimensions, excluding the output class.
A dimensionality reduction technique is used to reduce the dimension from five to two dimensions,
which enables visualizing the dataset in a two-dimensional graph. The dimensionality reduction al-
gorithm used is the t-Distributed Stochastic Neighbor Embedding algorithm (t-SNE). This technique
produces better visualizations by reducing the inclination to crowded points together in the center of
the graph. T-SNE is a variation on the Stochastic Neighbor Embedding technique (Van Der Maaten
and Hinton, 2008). The result is presented in Figure 4.1. The x- and y-axis both have no units as it is a
combination of five variables. The colours indicate the different output classes defined in Section 3.2.1.

The most significant advantage of visualizing the dataset is to find any overlap between samples in
the dataset. If an overlap between samples occurs, the model will not be able to predict the correct
output class for that sample based on the input. The reason is that the input variables are the same
for different samples despite different output classes. In Figure 4.1, all the data samples which are
labelled as output class one can be located in red in the lower right corner. All data samples, which
are labelled as output class two, can be located in different yellow clusters divided over the graph. The
other output classes can be located similarly, according to the colours in the diagram legend.
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Figure 4.1: Visualization of input data after dimensionality reduction

From this figure, the relationship between the inputs and outputs is visible. This relationship is non-
linear because non-linear lines can separate the data points. Furthermore, it can be seen that some
output classes show overlap with other output classes. Especially output classes one and two, two and
three, and two and four show some overlap in the data points.

4.3. Model built-up
A model is built as a basis from where the hyperparameters are tuned. The number of nodes of the
input and output layer are already defined and are five and six, respectively. For the basic model is
chosen for regularly used hyperparameters to be able to experiment on these hyperparameters.

Activation function
The activation function (or transfer function) determines the
output of any node. It maps the output into a value between
0 and 1 or -1 and 1. The function used in this basis NN is the
ReLU activation function. The ReLU function is half rectified
which will cause the output to be 0 when z is less than 0 and
f(z) is equal to z when z is above or equal to 0, see Figure 4.2.
The ReLU function is a frequently used activation function in
almost all NNs or Deep Learning (Sharma, 2017).

Other activation functions are also considered during experi-
mentation such as the Sigmoid activation function, the Tanh
activation function, the Leaky ReLU activation function, etc.,
see Section 4.4.

Figure 4.2: ReLU activation function
(Sharma, 2017)

Furthermore, the output layer contains a Softmax activation function. The Softmax activation function
turns the numeric output from the last hidden layer into probabilities by taking the exponents of each
output and normalize each number by the sum of those exponents. The output vector contains all
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probabilities, and the sum of the output vector is one.

Optimizer
The right optimization function achieves good results in minutes while a wrong optimization leads to
good results in hours. The Adam optimization algorithm is used in the basic model, which is a combina-
tion of two stochastic gradient descent procedures: Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp) (Brownlee, 2017a). The hyperparameter of the optimization
function, which can be tuned, is the learning rate. The default learning rate for each optimization func-
tion is 0,001. Also, during experimentation, other optimization algorithms are used, such as Stochastic
Gradient Descent (SGD), Nadam, AdaGrad, RMSProp, etc.

Loss function
The most commonly used loss function for multi-class classification problems is the cross-entropy func-
tion. Cross-entropy calculates a score that is the difference between the predicted and desired output
for all classes. In Keras, the cross-entropy loss function can be specified as ’categorical_crossentropy’.
It requires n nodes (one for each class) and a Softmax activation function in the output layer.

K-fold cross validation
A NN is stochastic by nature, which means that randomness is used to determine the initial weights,
and when the dataset is shuffled during each training epoch. The model is fit on the training dataset
and evaluated on the test dataset. However, due to the randomness, the skill of the model can vary
every time the model is fit on different data. Applying k-fold cross validation gives more accurate results
because it splits the data into k-folds (Brownlee, 2017b). Then, it fits the model on k-1 folds, evaluates
this on the last fold, and repeats this for each fold. This results in k different models and in turn, k
different skill scores. In the end, the average of all folds is taken, which provides a more realistic
performance of the model. The number of folds for every experiment is set to ten in this research.

Initial model
The initial model is shown in Figure 4.3. The model consists of one hidden layer with four nodes. This
model is used as a base reference during experimentation. The goal is to improve the performance of
the initial model by tuning the hyperparameters in the next section.

Figure 4.3: Initial NN

Algorithm 2: Initialization of model
Result: Setup of model
Number of hidden layers: 1;
Number of neurons: 4;
Activation function: ReLU;
Optimizer: Adam;
Learning rate: 0,001;
Loss function: Cross entropy;
Number of k-folds: 10;

All the default hyperparameters discussed in this section are used, which results in a logarithmic loss of
0,38 and an average accuracy of 85,25%. Figure 4.4 shows the logarithmic loss and accuracy curves
of the basic model. These curves are checked after each experiment to check whether the model is
not over-fitted or under-fitted. If the model has too much computational capacity, it learns the training
data very well but is not able to generalize the knowledge to the test data. This is called overfitting and
can be spotted as a continuous decrease in the training loss, while the test loss decreases and starts
increasing again. Another symptom of overfitting is when the validation curves are noisy. Underfitting
refers to a model that cannot learn from the training dataset. Under fit models may show a flat line or
noisy values of relatively high loss or a continuous decrease of the training loss until the end of the
training.
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Figure 4.4 shows an underfit model because the training loss is still decreasing at the end of the training.
The training and test loss also shows a small gap between the curves, which indicates a relatively easy
test dataset compared to the training dataset. This causes the model to predict better on the test
dataset.

Figure 4.4: Logarithmic loss and classification accuracy for one fold of base model

4.4. Hyperparameter tuning
The ultimate goal of hyperparameter tuning is to reduce the logarithmic loss to zero, which indicates a
perfect trained model and consequently, perfect prediction. The tuning of the hyperparameters is done
by structured experimentation. For every hyperparameter, multiple values or options are considered
to check whether the performance improves.

As mentioned before, the strength of a NN is the stochastic behaviour of the model. Despite this
strength, is it necessary for hyperparameter tuning to fix the randomness to compare the performance
of different hyperparameters.

Number of training epochs and batch size
The number of training epochs, and the batch size are dependent on each other and together influence
the performance of the model. The number of training epochs is the number of times the entire training
dataset is shown to the NN during training. The batch size is the number of patterns shown to the net-
work before weights are updated. From Figure 4.4, it can be concluded that the model is underfitting
because the loss function is still decreasing at the final training epoch. The number of training epochs
in this initial model is set to 150, and the batch size is 512.

Algorithm 3: Find the optimal training epoch and batch size
Result: Optimal training epoch and batch size
Training epochs: [150, 250, 350];
Batch size: [512, 256, 128, 64];
for epochs in Training epochs do

for batch in Batch size do
Train model(epochs,batch);

end
end
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Table 4.2 shows the results of iterating over the number of training epochs and the batch size. The
table shows the logarithmic loss, the average accuracy over 10 folds, the standard deviation (std) of
the accuracy over the 10 fold, and the time it took to train the model 10 times (10 folds). Multiple
combinations of epochs and batch sizes show similar results. However, the standard deviation and
time of these combinations vary a lot. The best result is achieved with 350 training epochs and a batch
size of 64. Figure 4.5 shows the logarithmic loss and accuracy curves of one fold of this best result. This
figure shows a noisy validation accuracy which indicates an overfitted curve. Overfitting often occurs if
the model has more capacity than is required for the problem. This also yields for the achieved result
with 350 epochs and a batch size of 128. Therefore, the best usable result is achieved with 350 epochs
and a batch size of 256. Figure 4.6 shows the logarithmic loss and accuracy curves of one fold for 350
epochs and a batch size of 256.

Nr. of epochs Batch size Loss Accuracy [%] Std accuracy Time [s]
150 512 0,3170 88,46 5,86 60
250 512 0,1930 94,11 3,43 79
350 512 0,1644 95,82 2,12 105
150 256 0,2348 91,43 5,87 64
250 256 0,1518 95,32 2,81 89
350 256 0,1251 96,80 1,63 225
150 128 0,1835 93,97 4,50 148
250 128 0,1252 96,13 2,59 245
350 128 0,1014 97,31 1,42 342
150 64 0,1523 95,34 4,34 306
250 64 0,1058 96,83 2,25 515
350 64 0,0951 97,76 0,63 749

Table 4.2: Result of iterating number of training epochs and batch size

Figure 4.5: Logarithmic loss and classification accuracy for one fold with 350 training epochs and batch size of 64

During the remaining hyperparameter tuning, the number of training epochs and batch size is not tuned
anymore, but the result of this section is used. However, during the tuning of other hyperparameters,
the logarithmic loss and accuracy curves are always checked to make sure the model is converging to
a stable loss and is not over fitted or under fitted.

Optimization algorithm
There are several optimization functions available to optimize the model. An overview of these algo-
rithms is shown in Table 4.3. Besides tuning the hyperparameters of an optimization algorithm, also
the type of algorithm can vary. Therefore, different optimization algorithms are compared. The results
can be found in Table 4.3. From the table, it can be concluded that Adadelta and Nadam achieved the
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Figure 4.6: Logarithmic loss and classification accuracy for one fold with 350 training epochs and batch size of 256

best results. However, both show over fitted logarithmic loss and accuracy curves. Therefore, Adam
is used as the optimization algorithm during the remaining hyperparameter tuning. Finally, when the
configuration of the model is completed, Nadam and Adadelta are both considered once more.

Algorithm 4: Find the best performing optimizer
Result: Best performing optimizer
Optimizers: [Adam, SGD, RMSprop, Adagrad, Adadelta, Adamax, Nadam];
for optimizer in Optimizers do

Train model(optimizer);
end

Optimizer Loss Accuracy [%] Std accuracy Time [s]
Adam 0,1251 96,80 1,63 225
SGD 0,3589 88,65 9,02 255
RMSprop 0,1449 96,47 1,76 293
Adagrad 0,4230 87,97 5,29 289
Adadelta 0,1215 97,08 0,81 307
Adamax 0,1526 95,74 2,20 332
Nadam 0,0910 97,52 1,18 368

Table 4.3: Results of applying different optimization functions

Learning rate of optimization algorithm

The learning rate controls how much the weights are updated at the end of each batch. Different small
variations are taken around the default learning rate to experiment on the learning rate. Furthermore,
it is necessary to take the batch size and number of training epochs into account because there is a
dependency between the learning rate, batch size, and the number of training epochs. Table 4.4 shows
the result of the used learning rate. The two experimentations with a learning rate of 0,005 and 0,01
show the highest accuracy. However, the loss and accuracy curves show both an overfitted model for
a learning rate of 0,005, see Figure 4.7. Therefore, the optimal learning rate in this model is determined
to be 0,001, but a minor optimization will be done when the number of layers and neurons is specified.
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Algorithm 5: Find optimal learning rate
Result: Optimal learning rate
Learning rate: [0.0001, 0.0005, 0.001, 0.005, 0.1, 0.15];
for rate in Learning rate do

Train model(rate);
end

Learning rate Loss Accuracy [%] Std accuracy Time [s]
0,0001 0,4591 84,30 4,93 418
0,0005 0,1781 94,54 3,59 351
0,001 0,1251 96,80 1,63 225
0,005 0,0900 97,35 1,68 285
0,01 0,0814 97,33 2,10 395
0,015 0,1288 94,97 8,59 405

Table 4.4: Results of different learning rates

Figure 4.7: Logarithmic loss and classification accuracy for one fold with learning rate 0,005

Activation function
In the same way, the activation function in the hidden layer is evaluated. The activation function in the
output layer has to be the Softmax function for a multi-class classification model and is not changed in
this evaluation. Table 4.5 shows the result of the different activation functions. From this table can be
concluded that the best result is achieved with the Tanh activation function. The Tanh activation func-
tion is shown in Figure 4.8. The Tanh activation functions map the output between -1 and 1 depending
on the input. Both logarithmic loss and accuracy curves are shown in Figure 4.9. Both curves show a
good fit and converging result.

Algorithm 6: Find the best performing activation function
Result: Best performing activation function
Activation function: [ReLU, Tanh, Sigmoid, Linear, Softmax];
for function in Activation function do

Train model(function);
end
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Activation function Loss Accuracy [%] Std accuracy Time [s]
ReLU 0,1251 96,8 1,63 225
Tanh 0,0929 97,6 0,18 123
Sigmoid 0,1758 95,3 3,07 129
Linear 0,1054 97,46 0,14 140
Softmax 0,2163 92,14 1,3 165

Table 4.5: Results for different activation functions Figure 4.8: Tanh activation func-
tion (Nwankpa et al., 2018)

Figure 4.9: Logarithmic loss and classification accuracy for one fold with Tanh activation function

Dropout regularization
Dropout regularization tuning is a way to limit overfitting and improve the model’s ability to generalize.
In Table 4.6, the considered dropout rates are displayed with the corresponding results. It can be con-
cluded that adding dropout regularization to the model is not improving the performance.

Algorithm 7: Find the best performing dropout regularization
Result: Best performing dropout regularization
Dropout regularization: [0.0, 0.1, 0.2, 0.3, 0.4];
for dropout in Dropout regularization do

Train model(dropout);
end

Dropout rates Loss Accuracy [%] Std accuracy Time [s]
0,0 0,1251 96,80 1,63 225
0,1 0,1388 96,56 1,53 144
0,2 0,1592 93,90 2,50 242
0,3 0,1881 92,39 2,55 259
0,4 0,2386 90,87 1,80 369

Table 4.6: Results of tuning dropout regularization

Number of hidden layers and neurons
The number of hidden layers and neurons in each layer controls the representational capacity of the
network. A larger network also requires more training and the batch size and number of training epochs
needs to be optimized. Table 4.7 and Table 4.8 show the considered number of layers and neurons with
a ReLU and Tanh activation function, respectively. Both activation functions are considered because
the Tanh function showed the best results and the ReLU function is part of our base model.
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Algorithm 8: Find the optimal number of hidden layers and neurons
Result: Optimal number of hidden layers and neurons
Activation function: [ReLU, Tanh];
Hidden layers: [1,2,3];
Neurons: [4,8,16,32,64];
for function in Activation function do

for layer in Hidden layers do
for neuron in Neurons do

Train model(function, layer, neuron);
end

end
end

Neurons Layers Loss Accuracy [%] Std accuracy Time [s]
4 1 0,1251 96,80 1,63 225
8 1 0,1000 97,37 1,14 141
16 1 0,0691 98,02 0,15 155
32 1 0,0598 98,35 0,17 189
64 1 0,0533 98,49 0,08 198
4 2 0,1188 95,69 4,98 195
8 2 0,0546 98,35 0,24 142
16 2 0,0452 98,61 0,11 169
32 2 0,0418 98,73 0,15 262
64 2 0,0406 98,77 0,17 225
64 3 0,0404 98,80 0,18 340

Table 4.7: Experimentation with number of neurons and hidden layers with ReLU activation function

Neurons Layers Loss Accuracy [%] Std accuracy Time [s]
4 1 0,0929 97,60 0,18 123
8 1 0,0703 98,03 0,13 122
16 1 0,0602 98,35 0,13 147
32 1 0,0538 98,48 0,11 163
64 1 0,0498 98,59 0,09 178
4 2 0,1601 98,33 0,16 209
8 2 0,0438 98,60 0,24 135
16 2 0,0380 98,86 0,12 153
32 2 0,0385 98,87 0,20 245
64 2 0,0390 98,88 0,21 226
64 3 0,0392 98,90 0,12 321

Table 4.8: Experimentation with number of neurons and hidden layers with Tanh activation function

The result improves with the number of neurons and hidden layers for both activation functions. How-
ever, the results for the Tanh activation number are slightly better. The result with two hidden layers and
16 neurons for each layer is 0,26% better than the previous result, and from there on, the improvement
is minimal. Therefore, the final model is equipped with two hidden layers of 16 neurons each.

4.5. Final model
Now the final lay-out of the model is found, the results of tuning the different hyperparameters can
be used to determine the optimal NN configuration. First, the Tanh activation function shows the best
result of the different activation functions. Secondly, there is no dropout regularization applied in the
model. There are three different optimization algorithms which showed good results, Adam, Nadam,
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and Adadelta. All three are evaluated ones more in the new model lay-out. Finally, Nadam shows the
best results with a learning rate of 0,0015, see Table 4.9. The logarithmic loss and accuracy curves are
shown in Figure 4.10. The final logarithmic loss, accuracy and standard deviation are 0,0368, 98,98%
and 0,12, respectively. Both show a stable converging curve with only small noise which indicates a
good fit model.

Learning rate Loss Accuracy [%] Std accuracy
0,0009 0,0375 98,88 0,09
0,00095 0,0373 98,90 0,09
0,001 0,0372 98,95 0,24
0,0015 0,0368 98,98 0,12
0,002 0,0368 98,97 0,12
0,0025 0,0370 98,93 0,22

Table 4.9: Results of tuning learning rate of Nadam activation
function

Hyperparameters Value or option
Nr. of training epochs 350
Batch size 256
Optimization algorithm Nadam
Learning rate of
optimization algorithm 0.0015

Activation function Tanh
Dropout regularization 0
Nr. of hidden layers 2
Nr. of neurons in
each layer 16

Table 4.10: Overview of optimal hyperparameters

Figure 4.10: Logarithmic loss and classification accuracy for one fold of the final model with two hidden layers and 16 neurons

The test loss and accuracy both show a little gap with the training loss and accuracy. The fold of these
curves has created a relatively easier test dataset compared to the training dataset. Because of this
test dataset, it is easier for the model to predict the correct output, and this creates this small gap be-
tween test and training curves.

An overview of the NN’s lay-out is showed in Figure 4.11, and an overview of the optimal hyperpa-
rameters is showed in Table 4.10. As discussed in Section 3.2.6, much research is done to determine
the number of hidden layers and neurons scientifically. So far, it is still not possible to determine the
number of hidden layers and neurons scientifically, and the experiments in this research showed com-
parable results for NNs with one and two hidden layers. However, the training took less time for the
NN with two hidden layers and 16 neurons than the NN with one hidden layer and 64 neurons.
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Figure 4.11: Final NN

4.6. Verification
During the entire process of training and hyperparameter tuning, the model is checked and verified
according to the test dataset. However, the correctness of a classification model can be evaluated in
several other ways. Several performance measures can be done to gain more insight into the model.
These tests will be discussed in this section.

Hand verification
First, manual verification is done to check if the predicted values are indeed similar to the labelled
classes. This is done on the first 100 entries (approximately 10%) of the test dataset. The first 100
entries can be found in Appendix C. The accuracy of the prediction of these first 100 entries is 98%. Two
predictions are wrong where the predicted class is 2 instead of 4. This is explained by the resemblance
of the dataset, where there is some overlap in data. This can also be seen in Figure 4.1. 98% is
corresponding to the accuracy of the model predictions of the previous section.

Performance measures classification
As discussed in Section 3.2.5, precision, and recall are two important measures of a classification
model. The Skikit-learn library has two convenient functions which automatically calculates the con-
fusion matrix and precision and recall of the model. Table 4.11 and Table 4.12 shows the confusion
matrix and precision and recall for the six different classes, respectively. The last column of Table 4.12
(”support”) shows the total number of samples which are classified in that class.

Predicted
Class 1 2 3 4 5 6

Actual

1 95 0 0 0 0 0
2 5 304 0 0 0 0
3 0 2 409 0 0 0
4 1 3 0 180 0 0
5 0 0 0 0 112 0
6 0 0 0 0 0 89

Table 4.11: Confusion matrix

Class Precision Recall Support
1 0,94 1,00 95
2 0,98 0,98 309
3 1,00 1,00 411
4 1,00 0,98 184
5 1,00 1,00 112
6 1,00 1,00 89

Table 4.12: Precision and recall of the NN
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Figure 4.1 in Section 4.2 already shows a resemblance between classes 1 and 2, classes 1 and 4, and
between class 2 and 4. This already indicates that the prediction of these classes might experience
problems because the classes are not unique based on their inputs. Table 4.11 and Table 4.12 shows
this problem as well. Here it can be seen that the prediction of classes 1 and 2 is not perfect.

Since the accuracy is almost 100%, the precision and recall show both high percentages as well.
However, from Table 4.12 can be concluded that recall is slightly better than precision. The recall
percentages can be verified with Table 4.11, where it can be seen that the model made some mistakes
in predicting the right output classes for class 2 and 4.

Random verification
As mentioned at the beginning of Section 4.4, during hyperparameter tuning the randomness is fixed to
compare different hyperparameters. However, the strength of NNs is stochasticity. Therefore, different
random seeds are evaluated to verify the stochasticity of the model. Table 4.13 shows the result of ten
different seeds. From this table, it can be concluded that the model’s performance is slightly better or
worse, depending on the seed. However, the overall performance is comparable for all different seeds.

Random seed Loss Accuracy [%] Std accuracy Time [s]
1 0,0447 98,86 0,16 156
2 0,0372 98,96 0,25 155
3 0,0411 98,74 0,14 165
4 0,0601 98,44 0,04 148
5 0,0600 98,25 0,16 158
6 0,0514 98,49 0,07 165
7 0,0536 98,52 0,15 144
8 0,0392 99,10 0,14 155
9 0,0638 98,37 0,08 171
10 0,0517 98,61 0,07 169

Table 4.13: Final NN verification with 10 random seeds

Comparison of performance with literature
The performance of the NN is high and raises the question if this performance is reasonable. There-
fore, the performance is compared with different studies to NNs. The study of Er et al. (2012) about
predicting the diagnosis of 324 patients with a NN used a dataset with 34 variables and one output
label. One of these 34 variables contains the same values as the output label. Because of this, the
model was able to predict the correct output labels with 98% accuracy. In this research, there is no input
variable with similar values as the output classes. However, as mentioned in Section 4.2, the classes
are almost entirely separable by their input variables, and only several data samples show overlap to
other output classes. This is not comparable to the result of the study of Er et al. (2012) because now
the combination of input variables defines the output class instead of 1 input variable which contains
the same information as the output class.

Furthermore, different studies among which the study of Brownlee (2016a) shows that data profoundly
influences the performance of a ML model. The quality of the training data defines the quality of the
model. Besides the quality of the data, also the amount of data is essential as ML model performances
improve significantly with more data. In this research, the dataset used to train the model consists of
12.000 different samples and show excellent performance of the model. However, it is interesting to
check the relation between the size of the dataset and the performance. It is easier and faster to train
a model on a smaller dataset compared to a large dataset. The relationship between the size of the
dataset and the performance is shown in Table 4.14 and Figure 4.12.
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Size Loss Accuracy [%] Std
accuracy

12.000 0,0368 98,98 0,12
4.000 0,0539 98,90 0,12
3.000 0,0685 97,83 0,37
2.000 0,0866 98,10 0,37
1.500 0,0676 97,13 0,43
1.000 0,1111 96,20 0,60
500 0,1553 93,60 1,20
250 0,2749 90,80 5,08
100 0,3387 84,00 10,20

Table 4.14: Relationship between performance and
dataset size

Figure 4.12: Relationship between performance and dataset size

From this table and figure can be concluded that the dataset size does indeed influence the perfor-
mance. The datasets with aminimum size of 2.000 samples still show similar performance and datasets
with less than 2.000 samples show a decreasing performance. This indicates that the model’s ability to
be trained on a smaller dataset is less compared to larger datasets. Figure 4.12 also show a stabilizing
performance for the model trained with at least 2.000 samples, which indicates that generating more
data will not improve the performance of this model significantly.

Finally, many research is done to the MNIST dataset. This dataset contains handwritten digits and
is an extensively used example for NNs. Standard implementations of NNs are able to achieve an
accuracy of 98%. Achieving higher accuracies is difficult and requires optimal hyperparameter tuning.
Both Deotte (2018) and Gupta (2020) described their efforts to achieve accuracies above 98%, which
comes down to hyperparameter tuning and improving the quality of the data. However, these studies
show the possible performances of NNs, which also confirms that the results achieved in this research
are possible with a NN.

K-fold cross validation
As mentioned in Section 4.3, the training of the model in each configuration is verified by a k-fold cross
validation. K-fold cross validation divides the dataset into k different training and test splits. Then,
the model is trained according to these k different training datasets and verified according to the test
datasets. This results in k different models and performances. The dataset in this research is divided
into ten different folds. The results for the ten different folds are shown in Table 4.15. The results show
a stable logarithmic loss and accuracy over all ten different folds.

K-fold Loss Accuracy [%]
1 0,0352 98,92
2 0,0396 98,83
3 0,0354 98,91
4 0,0358 98,92
5 0,0349 99,08
6 0,0378 99,25
7 0,0361 98,92
8 0,0400 98,92
9 0,0371 99,08
10 0,0358 99,00
Average 0,0368 98,98

Table 4.15: K-fold cross validation
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Size of dataset
The dataset is split into six different datasets containing two thousand samples each to validate the
relationship between the size of the dataset and performance discussed in the previous section. The
model is trained on these six different datasets, and the result is shown in Table 4.16. The performance
of the model is comparable for five of the six datasets. However, the performance of the model on one
of the datasets is lower compared to the others, which is caused due to the low precision of output class
one. In the test dataset are relatively many samples with output class one, which is hard to distinguish
from other output classes based on their input variables. The distribution of the samples over the six
different datasets is done randomly so this would indicate a higher performance of the model on another
dataset. Table 4.16 also shows one dataset where the performance is much higher compared to the
other datasets. In this dataset are fewer samples that are hard to distinguish from other samples, and
this causes a higher performance for this dataset.

Part of dataset Loss Accuracy [%] Std accuracy
0-1999 0,0872 98,10 0,37
2000-3999 0,1111 95,65 0,55
4000-5999 0,0872 97,75 0,25
6000-7999 0,0663 98,45 0,42
8000-9999 0,0604 98,25 0,34
10.000-11.999 0,1500 99,95 0,15

Table 4.16: Result of model trained on six different datasets containing 2.000 samples

4.7. Overview
In this chapter, the development of the model is discussed according to the requirements specified in
Chapter 3. The NN is tuned according to the hyperparameters specified in Section 3.2.6. The model
is trained on a training dataset that is generated according to real-life variables from the physical en-
vironment. The samples of the training dataset are labelled with the desired output. An overview of
the hyperparameters with the best performance is shown in Table 4.10. The optimal NN achieves a
logarithmic loss of only 0,0368 and an accuracy of 98,98%.

Furthermore, the model is verified by executing manual verification, performance measures, random
verification, comparison of performance with literature, and k-fold cross validation. From the verifica-
tion can be concluded that the model is implemented according to the specifications. The achieved
accuracy is correct according to the predictions by hand and is reasonable compared to literature. Fur-
thermore, it can be concluded that the size of the dataset profoundly influences the performance of the
model. Below 2.000 samples, the performance of the model decreases significantly.
One of the design requirements is to achieve a high recall because this indicates that the actual class
is recognized correctly, which is essential to predict the right countermeasure. The recall of the model
is better than the precision. However, both show almost perfect performance. Recall and precision are
further validated with data from the packaging line of Alken-Maes in Chapter 5.

Now the model is trained according to the training dataset, and the model can be used in a physical
environment. The model can deal with unlabelled data and can predict countermeasures based on
this new data. In the next chapter, the model is applied to historical data from the packaging line of
Alken-Maes to validate the working of the model in the physical environment.





5
Case study

The fifth step of the System Engineering methodology is component integration and testing. As dis-
cussed in Section 1.2, the packaging line of Alken-Maes is used as a use case in this study. The NN is
developed and trained in the previous chapter and will be used to predict output classes based on real
values retrieved from the packaging line of Alken-Maes. This chapter answers the third sub-question:
How can real-time decision making be applied to an industrial asset? First, the data of the packaging
line is collected and prepared. Section 5.2 and Section 5.3 discusses the prediction and validation of
the model in the production environment, respectively. Continuing on the validation, Section 5.4 de-
scribes a simulation of the model to the data of the packaging line. Finally, the model is applied to a
second machine of the packaging line to verify the results of the Filler and discuss the importance of
line balancing in Section 5.5.

5.1. Data collection and preparation
The packaging line of Alken-Maes is connected to a new-installed IoT platform which enables the col-
lection of data. Data from the packaging line is tagged in the IoT platform to be saved in a database or
to retrieve the data in real-time.

Data points between the 4th up until the 10th of May 2020 will be further used to validate the model.
The data is collected from the cloud and saved locally as a .csv file. The first step is to combine this
event data with data from a reference database to connect every tag to the corresponding name/code
of this tag. The next step is to filter the data, so only the relevant data remains. This data format
corresponds to the training data format and is, therefore, suitable for validation. Similar to the training
dataset, only the top three occurring errors are considered. The filtered data consists of:

• Timestamp
• Error

– Error 1: External 3527 - Can lack at inlet 1
– Error 2: Operator Guard 0043 - Low speed inlet conveyor
– Error 3: External 3549 - Outlet can too full

• Program of the Filler
• Speed of the Filler

The information of the packaging line at one moment is scattered over multiple lines and must be com-
bined into one line of data. Furthermore, data is only stored in the database when the value or status
has changed at that moment. For example, if the speed of the Filler is constant for half an hour, only
one data sample can be found in the database corresponding to the first next deviation from the pre-
vious speed measurement. To fill the gap between consecutive speed measurements, equally spaced
time measurements are given the last saved speed measurement from the database.

47
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The same is done with the status of the Depalletiser. The entire dataset of the Depalletiser is retrieved
from the database and filtered, so only the status of the Depalletiser is left. The same yields for this
data as for the speed of the Filler. The previous status of the Depalletiser is added to all the empty
timestamps and then merged into the dataset. Now, the dataset contains the following information: the
timestamp, the program, the speed of the Filler, the error, and the state of the Depalletiser.

The last step is to add the inlet speed of the Filler into the dataset. The inlet speed of the Filler is not
measured, and therefore, the inlet speed is generated based on the Filler speed. It is assumed that
the inlet speed can never be higher than the Filler speed or lower than 80% of the Filler speed:

0, 8 ∗ 𝑆𝑝𝑒𝑒𝑑ፅ።፥፥፞፫ ≤ 𝑆𝑝𝑒𝑒𝑑ፈ፧፥፞፭ ≤ 𝑆𝑝𝑒𝑒𝑑ፅ።፥፥፞፫ (5.1)

The last step is to normalize the data into the same scale as is done with the training dataset. The
normalized data has a value between 0 and 1, corresponding to the format of the training dataset. The
total amount of samples for this time window is 1071. Every sample of the dataset refers to an occurred
error.

5.2. Prediction
Now, the defined and prepared dataset is fed into the model. The result of the model is a predicted
output class for each sample of the dataset. Keras is equipped with a function ’predict’, which predicts
the output class for each sample, corresponding to the input variables.

It takes 0,034 seconds to predict the entire dataset of 1071 samples and it took only 0,012 seconds to
predict one sample. The result of the prediction can be found in Table 5.1, which shows the number of
predicted outputs per class.

Output class Number of samples
1 1
2 23
3 18
4 850
5 173
6 6

Table 5.1: The number of predicted outputs per class

Interestingly, class 4 and 5 represent 79,4% and 16,2% of the predicted classes, respectively. The
training dataset contains two configurations where the required output class is 4 and one where the
required output class is 5. To check whether the predictions are right, 20 samples are checked by
hand. The complete overview of the results of this verification can be found in Appendix D.1. During
verification, it immediately appears that the dataset used for training the model does not satisfy the real
dataset of the packaging line. Half of the samples do not correspond to any of the different generated
groups of the training dataset. These samples contain the following values:

• Program: 1
• State Depalletiser: 1
• Speed Filler: 0-740 [cans/min]
• Inlet Speed: 0-740 [cans/min]
• Error: 1

The training dataset does not contain an output class for these samples. The model predicts an output
class that corresponds best to these samples but does not contain the same values. In this case, class
four is predicted because this class corresponds the best to the training dataset. Therefore, the training
dataset is expanded with samples that cover the requirements of the dataset of the packaging line. An
overview of the new training dataset is shown in Table 5.2, where the seventh column is added to the
existing dataset.
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Variables 1 2 3 4 5 6 7 8 9 10 11 12 13
Program 1 1 1 1 1 1 1 1 1 1 1 1 1
State
Depalletiser 1 1 2 2 1 2 1 1 2 1 2 1 1

Speed Filler
[cans/min]

740-
760

740-
760

740-
760

740-
760

740-
760

0-
750

0-
740

0-
750

740-
760

0-
750

0-
750

0-
750

740-
760

Inlet speed
[cans/min]

740-
760

600-
750

0-
750

740-
760

740-
760

0-
750

0-
740

0-
600

0-
600

0-
600

0-
600

0-
750

740-
760

Error 1 1 1 1 1 1 1 2 2 2 2 3 3
Measure/
Class 1 2 3 3 4 3 2 2 2 4 3 5 6

Number of
samples 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 5.2: Overview of trainings dataset

The model is again trained on this extended training dataset with the same hyperparameters as in the
previous model. The new logarithmic loss of the model is 0,0389, and the accuracy is 98,85%. A
new prediction on the dataset of the packaging line is made. The predicted output classes for all the
samples are summed up in Table 5.3. As expected, the predicted output of class 4 in the previous
check is distributed over classes 2 and 4 because the samples which were predicted faulty to be class
4 are now predicted to be class 2.

Output class Number of samples
1 3
2 502
3 18
4 369
5 173
6 6

Table 5.3: The number of predicted outputs per class

Again, twenty predicted output samples are manually verified according to the expected output classes
of these samples. A complete overview of the results of this manual verification can be found in Ap-
pendix D.2. Compared to the previously trained model, all samples which did not correspond to an
output class are now similar to the added samples. All these samples are predicted corresponding to
the expected output classes of the training dataset.

The verification of the model to the real data from the packaging line of Alken-Maes shows the impor-
tance of training the model correctly. If the training dataset does not contain all possible combinations
from the physical environment, the model can not predict the correct output class. However, the model
will predict an output class which contains comparable input variables. In this case, the prediction is
wrong because the desired output class is different.

5.3. Validation
Validation of the model is done by comparing the current situation of handling machine errors compared
to the proposed automated decision making. Unfortunately, there is a lack of information concerning
the current situation. Therefore, assumptions are made in consultation with experts from Alken-Maes
to validate the model.

5.3.1. Current problem solving
Alken-Maes do not know the time to resolve an error in the current situation. However, an analysis of
the data from multiple periods results in a distributed time to resolve an error according to a normal
distribution, see Figure 5.1. From this analysis can be concluded that the average time to resolve an
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error is approximately six minutes.

Figure 5.1: Normal distribution of the time to resolve an error

These six minutes are divided over different steps in the process of resolving an error. First, the operator
normally responds in approximately 30 seconds from the moment he is notified about an error. Then,
the operator walks to the PLC of the machine to determine which error causes the problem. Walking
to the PLC takes, on average, 100 seconds. Then, the operator decides which countermeasure is
executed to resolve the problem and walks to the location of the problem. Walking to the problem
takes on average 60, and 30 seconds, respectively. Finally, the operator resolves the problems in 120
seconds. An overview of these steps can be found in Table 5.4.

Steps to resolve an error Current situation [s]
Notification 30
Walk to PLC 100
Decide on countermeasure 60
Walk to problem 30
Resolve problem 140
Total time 360

Table 5.4: Time for every step between the moment an error occurs until the error is resolved

The times in the above table are assumed based on expert knowledge in combination with the infor-
mation available about average times to resolve an error. The times in Table 5.4 are simplifications of
the times in real-life. In real-life, the time to resolve errors varies according to the normal distribution of
Figure 5.1. However, the uncertainty of this data is high because it is namely based on expert knowl-
edge. Therefore, a total time to resolve an error of five and seven minutes is also taken into account to
address this uncertainty. In Table 5.5, this uncertainty is divided over the different steps of the process
to resolve an error. It is assumed that the time to walk to the PLC and the problem is the same in the
different situations because the distance does not change. The uncertainty is divided over the three
other steps of the process.
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Steps to resolve an error Current situation [s]
Notification 20 30 40
Walk to PLC 100 100 100
Decide on countermeasure 30 60 90
Walk to problem 30 30 30
Resolve problem 120 140 160
Total time 300 360 420

Table 5.5: Uncertainty for time to resolve an error per step

5.3.2. Intelligent problem solving
The time for the proposed model to decide which countermeasure the operator has to perform consists
of multiple components. First, once every second, the database is updated with the newest data inputs
from the packaging line. Then, the data is prepared, which takes on average 0,032 seconds. The
prediction of output classes takes 0,012 seconds. Furthermore, it is assumed that the communication
back to the brewery consumes the same amount of time (one second) as the communication between
the brewery and the database. This is summarized in Table 5.6. From this table can be concluded that
the preparation of data and prediction of output classes takes a minimal amount of time compared to
the communication of data between the brewery and the model.

Steps to predict Time [s]
Data extraction from brewery 1
Preparation of data 0,032
Prediction of output class 0,012
Communication back to brewery 1
Total 2,044

Table 5.6: Overview of the time per step from data extraction to counter measure proposal

The total time to predict the correct countermeasure is approximately two seconds from the moment the
error occurs. The operator receives a notification with the proposed countermeasure, walks towards
the location of the problem, and resolves the error. However, it is assumed that an operator does not
respond immediately to a notification (similar to the current situation). The time it takes for every step
is added to Table 5.4, and summarized in Table 5.7.

Steps to resolve an error Current situation [s] Proposed situation [s]
Notification 30 30
Walk to PLC 100 -
Decide on counter measure 60 -
Walk to problem 30 100
Resolve problem 140 140
Total time 360 270

Table 5.7: Time for every step between the moment an error occurs until the error is resolved

From Table 5.7 can be concluded that the difference between the two situations is 90 seconds (1,5
minutes) in favour of the situation with a decision-making algorithm. This difference is based on the
situation where the operator always decides to execute the right countermeasure. In practice, the op-
erator does not always choose the right countermeasure, so (s)he has to execute a second or even
third countermeasure, which takes another 120 seconds each time the executed countermeasure does
not resolve the problem. However, this is not considered for the validation of the model because it is
not known how many times an operator has to execute different countermeasures to resolve an error.
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5.4. Simulation
Now the difference between the current situation and the new situation with the decision-making al-
gorithm is known, the difference in total unplanned downtime can be simulated. Assumptions about
the countermeasures must be made to simulate both situations. The considered countermeasures are
already defined in Section 3.2.1 and are:

• Countermeasure 1: Unknown cause: investigate cause
• Countermeasure 2: Stop Filler
• Countermeasure 3: Solve a problem with Depalletiser
• Countermeasure 4: Solve can block at Filler
• Countermeasure 5: Slow down Filler
• Countermeasure 6: Solve can block at outlet Filler

Countermeasure 1 is defined as an Unknown cause and needs further investigation. Each time this
countermeasure is proposed, an operator has to find the cause of the problem by himself. Therefore,
the time to solve the problem when this countermeasure is proposed is similar to the current situation
(six minutes). Countermeasures 2, and 5 propose to stop and slow down the Filler, respectively, which
is done automatically and does not take time for the operator in both situations. Countermeasures 3, 4,
and 6 propose a solution to the operator, and it is assumed that the problem is solved in 4,5 minutes.

As mentioned in Section 5.1, the total amount of errors in the considered time window is 1071. From
these 1071 errors, 32 led to a minor stop of the Filler, which is considered as unplanned downtime.
Therefore, the numbers of errors from Table 5.3 are multiplied by this ratio of minor stops per error.
The result is shown in Table 5.8, where the predicted total number of errors and the number of minor
stops per output class are shown.

Output class Number of errors Number of minor stops
1 3 0
2 502 15
3 18 1
4 369 11
5 173 5
6 6 0
Total 1071 32

Table 5.8: The number of predicted outputs and minor stops per class

The recall of the model is specified in Section 3.2.5 as the percentage of output classes that are rec-
ognized correctly. The recall of each class is considered in this simulation. For each class that is not
predicted correctly, another two minutes are taken into account to solve the problem. The complete
overview of the simulation is summarized in Algorithm 9. An overview of the results of the simulation
is given in Table 5.9.

The simulation resulted in an improvement of the proposed situation of 16 minutes compared to the
current situation, which indicates a reduction of downtime of 22,2% under the assumptions made. This
improvement of 22,2% is according to the expected difference between both situations. The difference
between 6 and 4,5 minutes is 1,5 minutes which is an improvement of 25%. Considering the accuracy
of the model, the expected difference is a little less than 25%. Compared to the real situation of the
packaging line in Alken-Maes, this is plausible.

As mentioned in Section 5.3.1, the uncertainty of the assumed times to resolve an error is addressed
by applying the same calculation on 5 and 7 minutes to resolve an error. This results in a difference of
11 and 23 minutes between the current and proposed situation, respectively. This is a change of 31%
and 44%, respectively, which indicates that the uncertainty in the assumptions affects the results of
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Algorithm 9: Simulation of problem solving in both situations
Result: Times of problem-solving in both situations
Classes: [1, 2, 3, 4, 5, 6];
for Classes [1] do

Total time current situation = (Nr. of errors) * (6 minutes);
Time first attempt proposed situation = (Nr. of errors) * (6 minutes);

end
for Classes [2, 5] do

Total time current situation = 0;
Time first attempt proposed situation = 0;
Time second attempt proposed situation = (Nr. of errors) * (1-recall) * (2 minutes);
Total time proposed situation = (Time first attempt) + (Time second attempt);

end
for Classes [3, 4, 6] do

Total time current situation = (Nr. of errors) * (6 minutes);
Time first attempt proposed situation = (Nr. of errors) * (4,5 minutes);
Time first attempt proposed situation = (Nr. of errors) * (1-recall) * (2 minutes);
Total time proposed situation = (Time first attempt) + (Time second attempt);

end

Current situation Proposed situation

Class Nr. of stops Total time [min] Recall First attempt
[min]

Second attempt
[min]

Total time
[min]

1 0 0 1,00 0 0 0
2 15 0 0,98 0 0,6 0,6
3 1 6 1,00 4,5 0 4,5
4 11 66 0,98 50 1 51
5 5 0 1,00 0 0 0
6 0 0 1,00 0 0 0
Total time [min] 72 56

Table 5.9: Overview of results of simulation of problem solving in both situations

this simulation significantly. However, the actual downtime due to minor stops in that period is 84 min-
utes, which differs 12 minutes from the total simulated downtime (72 minutes), which is close enough
to consider the initial results as realistic.

In the entire problem, only the three most occurring errors are considered. If more errors are consid-
ered, this will lead to a higher absolute difference. The same applies to the expansion of this decision
model to multiple other machines of the packaging line. Now, only the Filler is considered. However,
other machines experience errors as well, and the application of this model on these machines can
achieve comparable results.

In the simulation, it is assumed that the operator makes the correct decision regarding the counter-
measure because there is no information available about the ratio between taking the correct or wrong
decision. This ratio will further increase the difference between the current and proposed situation in
favour of the proposed situation.

It is assumed that the packaging line of Alken-Maes is on average, 6 days a week operational. The
reduction of unplanned downtime of 16 minutes is multiplied by 52 to determine the reduction of un-
planned downtime for an entire year. The reduction of unplanned downtime for an entire year is 832
minutes. The nominal speed of the Filler is 750 cans per minute, which results in a daily, weekly, and
yearly improved production of 2.000, 12.000 and 624.000 cans, respectively. The improved production
can also be translated into profit in terms of money. The average profit of one can is € 0.05, which
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results in a daily, weekly, and yearly profit of € 100.-, € 600.-, and € 31.200.-, respectively.

The implementation of this system into the production environment of Alken-Maes is close to the sug-
gested implementation of IoT systems together with AI techniques in the research of Patel et al. (2018)
discussed in Section 2.5. However, the implementation of the model in this research goes beyond
the research of Patel et al. (2018) because the operator does not have to troubleshoot an occurring
problem.

5.5. Verification on second machine
Dataset of Shrink Packer
After training the model on the Filler, the model is implemented on another machine. This second
machine is the Shrink Packer. The Shrink Packer shrinks a plastic wrap around a specified number
of bottles. The final model from Chapter 4 is used, and a completely new dataset is generated. This
dataset contains the four following input variables:

• Program of the Shrink Packer
• State of the Shrink Packer
• Speed of the Shrink Packer
• Error

– Error 1: ALL306 - Minimal accumulation layer
– Error 2: ALL321 - Slow down outlet
– Error 3: ALL233 - Deformed pack at uphill conveyor
– Error 4: ALL273 - Minimal level reel film

In contradiction to the dataset of the Filler, for the program of the Shrink packer are three options
included in the dataset. Furthermore, three different states and the top five errors except the third
error: machine out of production are included. The six countermeasures to resolve the errors are:

• Countermeasure 1: Slow down Shrink Packer
• Countermeasure 2: Stop Shrink Packer
• Countermeasure 3: Remove deformed pack at uphill conveyor
• Countermeasure 4: Fill reel film
• Countermeasure 5: Reset sensor reel film
• Countermeasure 6: Fill accumulation layer

The dataset is created and contains many more different combinations compared to the dataset of the
Filler. Where the dataset of the Filler contains only 13 combinations, the dataset of the Shrink Packer
contains 57 different combinations. The complete overview of the dataset can be found in Appendix E
This extensive dataset is created to test the model on a (slightly) more complex dataset. The dataset
is visualized according to the method described in Section 4.2.3, see Figure 5.2. From this Figure can
be seen that many more small regions of data points show small overlap between each other, which
indicates that the dataset is more complex than the dataset of the Filler. However, the coloured lines in
Figure 5.2 are clearly separable from the other lines, which indicates that the model is able to achieve
good performance again.

Results
The model is trained similar to training the model on the dataset of the Filler, among which, training the
model on 10 folds. The time to train the model took more time due to the more extensive and complex
dataset. Training the model took 70 seconds compared to 15 seconds of training the model for the
Filler. However, after training the model, the logarithmic loss, accuracy, and standard deviation of the
model are 0,0248, 99,26%, and 0.07, respectively. The logarithmic loss and accuracy curves for one
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Figure 5.2: Visualization of input data Shrink Packer after dimensionality reduction

fold are shown in Figure 5.3. Both show a stable converging curve to the optimal performance.

Figure 5.3: Logarithmic loss and classification accuracy for one fold of Shrink Packer model

From the 4th up until the 10th of May 2020, 121 errors occurred at the Shrink Packer, which resulted
in 56 minor stops. The minor stops took on average 5 minutes which is a little less compared to the
average time of a minor stop at the Filler. It is assumed that the time to solve an error in the proposed
situation still takes 4,5 minutes. This results in a similar simulation than that of the Filler which is sum-
marized in Table 5.10.

From Table 5.10 can be concluded that the absolute improvement for the Shrink Packer is smaller
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Current situation Proposed situation

Class Nr. of errors/stops Total time [min] Recall First attempt
[min]

Second attempt
[min]

Total time
[min]

1 245/36 0 0,99 0,0 0,0 0,0
2 44/6 0 1,00 0,0 0,0 0,0
3 20/3 15 0,96 14,6 0,2 14,8
4 29/4 21 0,98 19,0 0,2 19,2
5 0/0 0 1,00 0,0 0,0 0,0
6 46/7 34 1,00 30,2 0,0 30,2

Total time [s] 69 64,2

Table 5.10: Overview of results of simulation of Shrink Packer in both situations

due to the smaller difference in time to resolve an individual error. Furthermore, it can be seen that
countermeasure one is proposed most often to errors, and countermeasure five is not proposed to any
error. However, countermeasure one and two are both countermeasures which do not require any
actions of the operator. Due to the combination of the number of errors solved by countermeasure one
and that countermeasure one does not require any action of the operator also results in only a small
improvement in the proposed situation.

Error propagation
As already discussed in Section 1.2.3, errors can propagate through the packaging line and causes
errors or minor stops at other machines. Error propagation occurs when the buffers cannot compensate
for the starvation of blockage of themachine. From theminor stops at the Shrink Packer, two are caused
by the Filler, five by the Tray Packer and one by the Palletiser. The minor stops of the Filler are mainly
caused internally, and the Depalletizer causes only four minor stops, see Table 5.11.

Caused by
Depalletiser Filler/Pasteurizer Shrink Packer Tray Packer Palletiser

Af
fe
ct
ed

Depalletiser 0 0 0 0 0
Filler/Pasteurizer 4 28 0 0 0
Shrink Packer 0 2 54 5 1
Tray Packer 0 0 2 86 2
Palletiser 0 0 0 0 1

Table 5.11: Error propagation between machines of the packaging line

From Table 5.11 can be concluded that the error propagation between the Filler and the Shrink Packer
is minimized to two minor stops of the Shrink Packer caused by the Filler. As discussed in Section 1.2.3
and further stressed by Elst et al. (2020), line balancing is in place to protect the bottleneck machine
(slowest machine) from any minor stops caused by other machines. Typically, the Filler and the Pas-
teurizer are the slowest machine(s) (Elst et al., 2020). Table 5.11 indicates that the line balancing of
the packaging line of Alken-Maes is working correctly as only the Depalletiser caused four minor stops
at the Filler/Pasteurizer.

The implementation of the proposed decision-making algorithm on each machine will lead to a further
reduction of error propagation as the errors are solved faster. The buffers have a specific capacity, and
when the capacity is reached, the error propagates to another machine. If the errors are solved faster,
the capacity of the buffers is less exceeded, and fewer errors propagate through the packaging line.

5.6. Discussion on results
First, assumptions are made to make simulation possible. These assumptions are made because the
information from the real-environment is missing. The first assumption, the inlet speed of the Filler, is
not available from the packaging line and therefore, the assumption of Equation 5.1 is made. Further-
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more, the number of input variables is small because other input variables are not available. The small
number of input variables led to a small model, which needs further expansion for implementation in
the brewery.

The input variables are existing values, while the countermeasures are fictional but realistic. However,
the relation between the input variables and the countermeasures is also fictional. Many countermea-
sures are now distinguished by the difference in Filler speed, Shrink Packer speed, or by the inlet
speed of the Filler. This is the result of a lack of input variables. It is more realistic to distinguish
countermeasures based on several different variables of a machine. However, the model proves the
decision-making requirement of the model based on input variables.

As mentioned in Section 1.1, a stable start-up of greenfield projects is not reached at Heineken due
to a disconnection between theory and reality. The experience of operators is proved to be important
in achieving a stable start-up. However, the equipment of breweries around the world consists only of
several different types. For example, a brewery in Mexico can have the same packaging line as the
brewery of Alken-Maes. The introduction of the developed service at Alken-Maes can be translated to
any other brewery with the same equipment relatively easily. The results achieved in the brewery of
Alken-Maes can be much higher if the service is applied in a greenfield project where the operators do
not have the experience to solve problems on their own. This results in a knowledge-transfer between
the breweries, which can improve the productivity of every affiliated brewery. However, the relatively
easy translation from the developed service to any other brewery with the same equipment requires
experts to implement the service in these breweries. The research of Elst et al. (2020) shows that
two similar packaging lines in the same brewery perform different, which indicates that although the
equipment is similar, local factors are in play as well. Therefore, the implementation of this service in
any new brewery requires verification and validation by experts.

5.7. Conclusion
In this chapter, the model is tested against the physical environment. The sub-question which is an-
swered in this chapter is: How can real-time decision making be applied to an industrial asset? The
developed model is a simplification of a real-world problem because it does not contain every aspect
of the packaging line of Alken-Maes. However, most of the variables correspond to the real variables
of the packaging line.

First of all, data preparation is an essential step in the integration of the model. Data is retrieved from
the physical environment in different formats and different databases. Combining all information is a
case-specific job and depends on the specifications of the data. Furthermore, labelling is essential
in classification problems because it is not possible to classify data without proper labels in a training
dataset.

The developed decisionmodel replaces the intelligent thinking of the operator once themodel is trained.
Based on the physical properties at the moment of an occurring error, the model decides which of the
available countermeasures is most effective according to the training data. Once the data is prepared
and the training dataset is covering the possible situations in the physical environment, it is possible to
predict output classes with 98,85% accuracy. These countermeasures are proposed to the operator
immediately when the errors occur. It only takes 2,044 seconds to retrieve data from the packaging line,
predict a countermeasure, and communicate the proposal back towards the brewery. This enables a
fast prediction of countermeasures to the operator. Compared to the current situation, errors can be
resolved 1,5 minutes faster when the decision algorithm is applied.

The simulation of the current and proposed situations show the potential improvement of implementing
the decision-making algorithm. However, the simulation is a simplification of the real-world problem,
but it indicates the potential improvement. A weekly reduction of 16 minutes of unplanned downtime is
achieved. Which translates into an estimated extra profit of € 31.200 annually.

Unfortunately, the model is not tested in a real-time environment due to the implementation possibilities



58 5. Case study

at the moment of model development. Therefore, it is hard to answer the sub-question from a practical
point of view. However, in Chapter 3 the model requirements are discussed. The model requirements
are met because the model can predict the correct countermeasure based on the input variables with
high accuracy. Furthermore, the time to predict a countermeasure is significantly low, which enables
resolving errors fast.

The NN in this research can predict the output classes for the top three errors of the Filler. However,
the classification of data is a labour-intensive task, and it requires expert knowledge of the physical
environment. When a service like this is extended to a complete machine or even an entire production
line, the NN has to be scalable. This will be discussed in Chapter 6.

The application of the model on a second machine of the packaging line shows how the model deals
with a more complex and extensive dataset. The model is able to predict with 99,26% accuracy, which
is comparable to the accuracy of the Filler. However, due to the selection of countermeasures, the
absolute improvement is smaller due to the smaller difference in time to resolve an individual error in
both situations.

The implemented system is an excellent example of AI applied in the supply chain, which is already
discussed from the literature in Section 2.5. The implemented system contains the reactive aspects
from the research of Patel et al. (2018) and the predictive aspects from the research of Rossit et al.
(2019) which are combined in this research. This enables the system to react to unexpected events
and propose/predict counteractions.
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Multi-machine environment

The two final steps of the System Engineering methodology are combined in this chapter. The previous
chapter described testing and validating the NN on the consideredmachine in the physical environment,
specifically. The final step is to describe the integration and validation of the complete system into the
production environment. The fourth sub-question is answered in this chapter: How can real-time deci-
sion making be applied in a production environment?

First, Section 6.1 describes the failure propagation in the physical production environment. Then,
Section 6.2 describes the implementation of the service on an entire packaging line. In Section 6.3
and Section 6.4, an architecture for implementing the service on an entire packaging line is proposed.
Finally, Section 6.5 discusses the challenges of implementing the service in a production environment.

6.1. Physical production environment
Section 1.2 describes the physical environment of a packaging line. A packaging line consists typically
of multiple machines connected by conveyors. Every machine contains typically between the 200 and
1.200 different errors. The study of Elst et al. (2020) shows that the performance of one machine af-
fects the performance of the other machines in the same production line. If a problem appears at one
machine, other machines might experience side effects; such as errors will raise at other machines
in the packaging line. For instance, if a can block happens at the Filler, after a while, the machines
downstream of the Filler will experience a can lack, and the machines upstream will experience a can
outlet too full. This is also shown in Table 5.11 for the packaging line of Alken-Maes. Van der Elst et al.
also analyzed the failure propagation of blockage events, which is shown in Figure 6.1.

This Figure shows that from 106 blockage observations at the Filler, 82 can be related to downstream
failure occasions. From the 82 observations can 63 occasions be related to problems at the Labeller,
and so on. The chapter discusses the importance of collaboration between machines in multi-machine
environments. From the research of Van der Elst et al. can be concluded that machines in one produc-
tion line are dependent on each other and events at one machine affect other machines sequentially.
Machines affecting each other indicates the importance of addressing problems across an entire pro-
duction line instead of focussing on one machine.

6.2. Monolithic Neural Network
The developed NN in Chapter 4 is a decision algorithm, trained explicitly for one machine. However,
the failure propagation of one other machine is taken into account in the NN. The output classes of
the NN consists of one countermeasure addressing a problem at the Depalletiser, see Section 3.2.1.
The developed NN can be expanded to address all errors of the Filler or any other machine. However,
it is already mentioned that many errors are an effect of problems elsewhere in the packaging line,
which can be encountered by expanding the model with several input variables from other machines

59
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Figure 6.1: Failure propagation of blockage events (Elst et al., 2020)

combined with output classes that mention these machines. Ultimately, all variables from the entire
packaging line can be combined into one NN together with expanding the number of output classes
according to all countermeasures possible. This is called a monolithic NN.

In the real-life situation, multiple errors of different machines may arise at the same moment while they
all have the same cause. This requires operators to decide what the cause of these errors is and
which error needs to be solved first. However, this problem can also be addressed by the developed
NN. Then, the final output of the model for an entire packaging line is a sequence of countermeasures
which is executed by the operator. The sequence of countermeasures is dependent on all the input
variables of the production line and the occurring errors.

Most of the used NNs have a monolithic structure and perform well on a small set of input variables
(Wasilewska, 2018). A NN is already computational expensive compared to other ML algorithms. Ex-
panding a NN with many more input variables requires much more data which again increases the
required computational capacity. As mentioned in Chapter 5, the dataset of the Shrink Packer is more
complex and contains more samples than the dataset of the Filler. The time to train the model of
the Filler with a dataset of 12.000 samples is 15 seconds. The dataset of the Shrink Packer contains
57.000 samples and training the model took 70 seconds. If the dataset of the Shrink Packer is reduced
to 19.000 samples, it only takes 22 seconds to train the model. Figure 6.2 shows the relation between
the dataset size and the time to train the model. It shows that the time to train the model increases
almost linear. However, increasing the complexity is not taken into account because the number of
input variables and output classes has not increased.

Expanding the number of input variables and output classes further increase the complexity of a NN
and the performance will decrease. The limit of using such a NN is the computational power to train
the NN, which heavily depends on the size of the data (Donges, 2019). Adding more variables for one
machine is possible, and the time to train the model will increase but adding entire machines to the
NN increases the complexity massively. Therefore, Modular Neural Networks (MNNs) are studied and
show excellent performance compared to monolithic NNs. The next section discusses the concept of
MNNs and shows the benefits of MNNs in a multi-machine environment.
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Figure 6.2: Time to train the model vs size of the dataset

6.3. Modular Neural Network
MNNs are based on the modularity of the human brain (Chen, 2015). The human brain uses modular-
ity to use specific modules together to solve complex tasks. Besides modularity, the human brain also
hierarchically processes information. Hierarchical information processing enables the human brain to
solve complex tasks in an effective way.

MNN consists of multiple separated NNs, each working independently on its domain. Each network is
built and trained for their specific task. The combination of the individual networks results in the final
decision. The decision system can be implemented by a logical majority vote function, another NN, or
a rule-based expert system (Wasilewska, 2018).

6.3.1. Benefits Modular Neural Networks
First of all, MNNs learn according to an alternative methodology (Chen, 2015). The complex optimiza-
tion problem can be solved by an ensemble of simple NNs, which avoids the complicated optimization
encountered in monolithic NNs without decreasing the performance. Furthermore, MNNs can flexibly
use prior knowledge and integrates this in learning. A problem faced by monolithic NNs during learning
is temporal and spatial cross-talk while MNNs are immune to this phenomenon (Haykin et al., 2009).
Next, MNNs yields a better generalization than monolithic NNs (Auda and Kamel, 1999). Finally, mod-
ularity in MNNs enables efficient and robust computation (Auda and Kamel, 1999). This computational
advantage makes MNNs scalable to large-scale implementation.

6.3.2. Architectures
There are many different MNN models which typically differ in there decomposition or aggregation.
Common used MNN architectures are decoupled modules, other-output modules, hierarchical net-
works, multiple experts network, Adaptive Resonance Theory-Back Propagation networks and ensem-
ble networks (Auda et al., 1996; Chen, 2015; Chris Tseng and Almogahed, 2009; Wasilewska, 2018).



62 6. Multi-machine environment

Another MNN architecture is constructive MNN,
see Figure 6.3 (Chen, 2015). Constructive mod-
ularization learning is developed for supervised
learning problems. The divide-and-conquer principle
is explicitly applied in this architecture. The idea
behind this method is to divide a complex problem
into several subproblems. These subproblems are
easily solvable by NNs matching the requirements
of the subproblems. The original problem is solved
by combining the solutions to the subproblems.
The NNs for the subproblems are relatively simple
compared to a monolithic NN, and the architectures
might differ per subproblem.

Figure 6.3: Self-generated tree-structured MNN (Chen,
2015)

The divide-and-conquer principle first divides the input space into overlapping subspaces, which facil-
itates dealing with various uncertainties. Next, in the conquering space, the NN works on the given
subspace to complete the subproblem. These principles create a tree-structured MNN with a learnable
partitioning mechanism that is placed at all intermediate levels of the MNN.

6.4. Architecture for service integration
Due to the multi-machine environment of the packaging line, multiple NNs are developed for different
machines. The divide-and-conquer principle does not apply in this case because the main problem is
already divided by the physical environment. Every subproblem considers its machine and predicts a
countermeasure to resolve the problem on the respective machine. The output of the main problem
consists of consecutive countermeasures for each machine defined by the general decision algorithm.

This architecture is close to that of a Mixture of
Experts (MoE), see Figure 6.4. A MoE architec-
ture consists of small clusters of neurons, each
specialized on a part of the problem (Moussa,
2004). However, a MoE architecture decides
dynamically which experts are used based on the
input variables. This is done by a gating network
that decides what expert to use.

Figure 6.4: MoE architecture (Auda et al.,
1996)

The outputs of the different NNs are combined as inputs in the general NN. This general NN is trained
to predict a sequence of countermeasures according to the separate countermeasures proposed in the
subproblems. An example of a MNN with expert NNs for each machine is shown in Figure 6.5.

An example of subproblems is discussed in the previous chapter, where a model is developed for the
Filler and the Shrink Packer. Together with Table 5.11, it is possible to handle the propagation of errors
and propose the right sequence of countermeasures to operators.

6.5. Challenges of implementation
The challenges of the system requirements are split into two parts, from which the challenges of the ser-
vice requirement is already discussed in the previous chapter. The requirements of the infrastructure
consist of access to sensors, an online database, and connections between the components. These
requirements are partly met because the implementation of the IoT platform on the packaging line of
Alken-Maes is still under construction.

The first requirement is also discussed in 5.6. The developed algorithm will benefit from access to more
sensors of the packaging line. Now, output classes are distinguished on differences in speed while in
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Figure 6.5: Example of a MNN with an expert NN for each machine

real production environments, this will be difficult. However, the current IoT platform offers access to
the available sensors and information is retrieved from the packaging line.

The latter two system requirements are closely connected as the online database is currently accessi-
ble, and the research is based on the information in this database. However, the implementation of this
model requires real-time access to the database and sensors to support operators in real-time. This
also requires a connection between the online model and the operator in the brewery as the output of
the model needs to be communicated to the operator. Due to these missing connections, it was not
possible to test the model in the real-time production environment of Alken-Maes.

According to the five-dimensional model in Section 2.3.3, the fifth requirement is a virtual model that
represents the physical model. A virtual model can consist of geometric models, physics models, be-
haviour models, or rule models. However, a virtual model goes beyond the scope of this research
and does not contribute to the user requirements of this research. However, a virtual model provides
insights into the physical asset and the output of the model.

Furthermore, the labelling of data is a massive task and requires much time of experts. Especially,
labelling data from the entire packaging line in every possible situation is an enormous task. This prob-
lem can be encountered by starting to label every occurring error during operation. When an error
occurs, the operator starts resolving the error as they usually do. When the operator is finished, and
the error is resolved, operators indicate which countermeasure is applied. The corresponding label is
given to the data sample at that moment. This method enables the model to learn on the spot, further
improving its performance.

6.6. Conclusion
The defined user requirement in this research is to reduce the unplanned operational downtime by sup-
porting operators to resolve errors faster to increase machine utilization. As discussed in Section 1.2,
an operator decides which countermeasure is performed to resolve the occurring error. The operator
takes a decision based on his experience and knowledge of the production line. If the countermeasure
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does not resolve the problem, a second countermeasure is performed. This continues until the error is
resolved.

The sub-question answered in this chapter is: How can real-time decision making be applied in a pro-
duction environment? The application of the decision model on one machine is already discussed in
the previous chapter. The application of the proposed model in a complete production environment
requires the integration of multiple decision models. Every machine has a dedicated decision model,
and these decision models are experts on their subproblem. The output of each decision model is
combined in one general decision model that determines a sequence of countermeasures.

A suitable architecture for this MNN is a combination of a constructive MNN and a MoE architecture.
However, the integration of multiple NNs in one MNN is not applicable to this research and is one of
the recommendations for further research.

Furthermore, the implementation of the service requires different aspects of the infrastructure. Without
extending the number of available sensors of the packaging line, it is not possible to implement the ser-
vice on the entire packaging line. Furthermore, real-time connections need to be established between
the (online) decision-making algorithm, the sensors of the packaging line, and the operators working in
the brewery. Without these two requirements, it is not possible to apply the service on the packaging
line because not all the errors and countermeasures can be distinguished by the current variables and
without real-time connections, it is not possible to communicate any decision made.



7
Conclusion and Recommendations

This research studies how operational productivity can be improved using intelligent intervention pro-
posals in case of unplanned downtime occasions. The user requirements define this goal. Then,
system requirements are determined to define the requirements of such a system in a production envi-
ronment. One of these requirements is to design a decisionmodel to propose interventions to operators.
This chapter presents the final conclusions in Section 7.1 and recommendations for further research in
Section 7.2.

7.1. Conclusion
The never-ending strive to reduce waste in production processes and maximize machine utilization
benefits from the introduction of Industry 4.0 and its tools. These tools are used to support the goal
of this research to improve operational productivity in a production environment. One of these tools is
a digital twin which enables the development of real-time services. This service is required to answer
the main research question: How to improve the operational productivity by using artificial intelligence-
driven intervention proposals in case of unplanned downtime occasions?

From this research can be concluded that only four of the five requirements of a digital twin are neces-
sary for the implementation of an intelligent real-time algorithm. These four requirements are a physical
asset, the access to real-time data of this asset, a service model, and the connections between these
three components. The fifth requirement, a virtual model, is not required for the development of a
decision-making service.

If the digital infrastructure between the physical asset, databases, and cloud computing services is
present, it is possible to develop a service that improves operational productivity. Furthermore, it is
possible to develop any other service based on this infrastructure and real-time or historical data.

The operational productivity is improved by implementing a service that decides which countermea-
sure an operator has to execute in case of an occurring error. This decision algorithm is a multi-class
classification algorithm that is trained based on a predefined training dataset. The chosen multi-class
classification algorithm is a neural network. The performance of the neural network is heavily depen-
dent on the compiled training dataset. Therefore, compiling a training dataset requires experts that can
label input samples. When the training dataset is compiled correctly, it is possible to predict correct
countermeasures to operators with high accuracy. This enables operators to reduce the time to resolve
errors faster which reduces the unplanned downtime and improves operational productivity.

The neural network is applied to the Filler of the packaging line of Alken-Maes. Simulation of the pro-
posed method shows the potential operational productivity improvement. The neural network predicts
the correct countermeasure with 98,98% accuracy, which results in a weekly reduction of unplanned
downtime of 16 minutes. This indicates a yearly improvement of the operational productivity of 624.000
cans, which corresponds to 22,2% reduction of unplanned downtime for downtime occasions where
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the operator has to resolve the problem. Implementing the service on each machine of the packaging
line and considering every error of the machines further reduces the unplanned downtime.

Furthermore, the use of a neural network enables solving an infinite amount of possible multi-class
classification problems, which makes this algorithm suitable in the case of an always-changing phys-
ical environment. Future expansions of the physical environment by any asset or sensor can be ad-
dressed by this algorithm as well. These expansions enable the continuous improvement of operational
productivity in the future.

7.2. Recommendations
In this section, recommendations are proposed to extend the current research. The recommendations
are divided into two sections. First, the recommendations for further academic research are proposed,
and Section 7.2.2 discusses the recommendations for Heineken.

7.2.1. Recommendations for further academic research
As already mentioned in the previous chapter, labelling input data is a labour extensive task. Operators
or other experts have to label the input data with a particular countermeasure. Therefore, it is recom-
mended to study the possibilities of active learning to reduce this task of operators. Active learning is
a form of learning where the learning algorithm controls input samples by a specific sample selection
process. It is a combination of supervised and unsupervised learning where operators only have to
label subsets of the training dataset and label specific occasions during operation.

Furthermore, Chapter 5 discusses the implementation and testing of the model on real data of the
packaging line. This implementation showed the importance of proper training dataset because the
training dataset did not match all occurring situations in real-life. The training dataset in this research
has (almost everywhere) clear boundaries between the classes which enable the model to predict with
almost 99% accuracy. It is expected that real data from the physical environment contains more over-
lap between classes which makes it harder to predict correctly. Therefore, it is recommended to study
novelty detection in the dataset. Novelty detection detects both standard samples as novelties in the
dataset. Novelty detection results in a division of data samples in known classes and unknown classes
which result in better and more realistic results as new classes are found.

Another interesting recommendation is to include a time component in the input dataset. A different
model has to be developed, which takes this time component into account. This model can find any
trends in time and predict future errors according to these trends. If these predicted errors are correct,
countermeasures can be proposed to prevent these errors. It is interesting to see if any trends can be
found because packaging lines are typically high-speed lines where events occur spontaneously. An
example of an algorithm that can remember time series is a Recurrent neural network.

The research focussed mainly on the service model of a digital twin. The service model is a decision-
making algorithm that can propose intelligent countermeasures to operators. The research only fo-
cussed on the development of one decision algorithm in the context of a multi-class classifier. A neural
network is chosen as the multi-class classifier based on the different studies and understanding of the
problem. It can be concluded that a neural network is a suitable algorithm for multi-class classification
problems. However, it is founded that a neural network is also over-qualified in the context of this re-
search. Neural networks can solve complex problems such as image recognition, text recognition, and
video analyses. In the end, the provided dataset in this research is relatively easy compared to these
complex problems. Therefore, it is interesting to study other machine learning algorithms which can
solve this multi-class classification problem. The results of the different algorithms can be compared
to choose the best suitable algorithm for this problem.

The final recommendation concerns an extension of the proposed neural network to multiple other ma-
chines of the packaging line. Different architectures to combine multiple neural networks are briefly
discussed in Chapter 6. The output of these individual neural networks can be used in a general
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decision algorithm to predict a sequence of countermeasures. In Chapter 6, these architectures are
discussed from a theoretical point of view. It is interesting to combine the results of individual neural
networks in one decision algorithm because this is useful information for implementing such a decision
algorithm on a real packaging line.

7.2.2. Recommendations for Heineken
The first recommendation concerns the extension of sensors available in the database. If the training
dataset is extended with new errors, more sensors are needed to distinguish outputs from each other.
These sensors can vary from binary sensors to sensors that measure analogue values such as tensor
sensors. Then, the training dataset can be extended with many more input variables. The problem
becomes more complex but also offers opportunities to improve operational productivity further.

The second recommendation for Heineken is to start building a platform where operators can start
labelling errors. Even if a decision algorithm is not yet in place, it is precious to start labelling errors
because this research showed the importance of a proper training dataset. Especially labelling errors
which do not occur often takes time. When a training dataset is available, it is relatively easy to develop
this decision algorithm and implement the service for operators.
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Design of a decision making algorithm to support
operators in a real-time production environment

S.N.J. Koot, Dr. W.W.W. Beelaerts van Blokland and Dr. ir. D.L. Schott

Abstract—Production environments experience unplanned
downtime occasions that have to be resolved by operators. An
intelligent decision algorithm is developed to support operators
in deciding which countermeasure will be successful. A neural
network was chosen as this multi-class classifier. The model is
applied to data from a production environment and simulated
according to a real-time environment. The model is trained on
two different machines with different datasets. The proposed
system, including the decision algorithm, improves operational
productivity in case of unplanned downtime by proposing correct
countermeasures.

Keywords: Multi-class classification problem, Real-time produc-
tion environment, Digital twin, Decision algorithm

I. INTRODUCTION

Production environments are volatile environments and ex-
periences downtime due to unexpected events. Every time the
equipment in a brewery experiences downtime, it is not able to
produce any goods. Downtime which occurs unexpectedly or
as a result of a failure is called unplanned downtime (Immer-
man, 2018). Therefore, the reduction of unplanned downtime
is one of the main goals in a production environment. The
reduction of unplanned downtime can be split into two focus
areas, the first one is to reduce the number of errors and the
second one is to reduce the time to resolve an error. Different
lean manufacturing methods such as zero-defect production
(Wang, 2013) and Total Productive Maintenance (Pascal et al.,
2019; Nakajima, 1984) describe the reduction of downtime in
their methods. The focus in this research is on reducing the
unplanned downtime from the moment the machine comes to
a standstill.

It is necessary to take rapid decisions regarding resolving
problems to reduce the unplanned downtime from a practical
point of view (Miškuf and Zolotová, 2016). Taking rapid
decisions can be established by dealing with real-time and
historical data from the packaging line, combined with in-
troducing intelligent decision algorithms. Such an algorithm
decides which countermeasure an operator has to perform
based on several parameters from the packaging line.

Both lean manufacturing and Industry 4.0 are promising
production paradigms to solve future manufacturing problems.
Mayr et al. (2018) did research about these two develop-
ments and how they support each other. From this research
can be concluded that digitalization contributes to different
lean manufacturing methods. Mainly, real-time computing in
combination with a Digital Twin (DT) enables many different
lean manufacturing methods to become more intelligent.

The technological basis of Industry 4.0 is the development
of Internet of Things (IoT) (Ashton, 2009). The development

of IoT resulted in many more sensors and devices connected to
the internet, data acquisition systems, and computer networks.
Managing these interconnected systems between physical as-
sets and computational capabilities is called Cyber-Physical
Systems (Lee et al., 2015). The controlling software part of
Cyber-Physical System is called a DT. The physical devices
of Cyber-Physical Systems communicate with each other with
the use of a software replica of the physical devices.

Tao et al. (2019) presented a five-dimensional DT model to
enable the use of a DT in more fields. Figure 1 shows the five-
dimensional DT model. The five components of the model are
(Qi et al., 2019):

• Physical entities - can be machines, products, devices,
etc., which are the starting point of a DT.

• Virtual models - are the virtual replicas of the physical
entity and consist of geometric models, physics models,
etc.

• Service models - consist of optimization, simulation,
diagnoses, etc.

• DT data - is obtained from the different components
• Connections - are crucial to communicate between the

different components

Figure 1. Five-dimensional DT model (Qi et al., 2019)

In this research, a digital service in a production en-
vironment based on real-time data is developed. This is
typically provided in the service domain of a DT. Service
plays an increasingly more critical role in manufacturing as
manufacturing evolves toward socialization and servitization
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(Lightfoot et al., 2013). The developed service is defined as
a multi-class classification problem (Terry-Jack, 2019). Multi-
class classification algorithms predict something into one of n
classes. Multi-class classification algorithms are used in many
real-world problems like speech recognition, face recognition,
medical diagnosis, fraud detection, and fault detection (Bhard-
waj et al., 2016). In the context of this research, the multi-
class classification algorithm decides which countermeasure
an operator has to execute based on specific real-time input
parameters from the production line.

The remainder of this research is focussed on applying
a multi-class classification algorithm on the packaging line
of Alken-Maes brewery, which is one of the breweries of
Heineken. From the packaging line of Alken-Maes, the model
is first developed on the Filler. The Filler first rinses the cans
quickly after which they are loaded on a circular star-wheel,
which fills the cans volumetrically. Subsequently, the Seamer
places a lid on the can and closes the seam of the lid. Finally,
the Fill Height Inspector measures the filling height of the can
and removes faulty cans from the line.

Section II discusses the development of the ML model ac-
cording to a seven-step framework. The results of this section
are used in Section III, which discusses the use case of this
research. Then, the use case is expanded to another machine of
the packaging line in Section IV. Finally, Section V presents
the conclusion of the research and several recommendations
for further research are presented.

II. MODEL DEVELOPMENT

The development of machine learning (ML) algorithms has
been studied extensively over the last decades. These studies
all use a seven-step framework for designing machine learning
algorithms (Brownlee, 2013; Guo, 2017; Mayo, 2018; van
Rijmenam, 2019). The seven steps are:

1) Data collection: The data collection consists of defining
and obtaining data. From the Filler, the created dataset
contains the following input parameters: the active pro-
gram, the top three errors, the speed of the Filler, the
inlet speed of the Filler, and the state of the Filler. The
output classes are six predefined countermeasures to the
errors.

2) Data preparation: The data is loaded into a suitable
format and prepared for use in the ML algorithm. Data
preparation is important because it will affect the result
positively or negatively depending on the taken steps.

3) Choose a model: The third step consists of selecting
the right model. The use of a NN as a multi-class
classifier is chosen because of the natural suitability
for this kind of problems. Moreover, a NN is effective
for high dimensional data, and as the problem in real-
life can expand to a high dimensionality problem, this
algorithm is very suitable for this research.

4) Train the model: The goal of training the model is
to incrementally improve the prediction of the model
based on the training data. By iteratively comparing
the predicted output with the corresponding output, the

model can adjust its prediction. After training the model
extensively, it can predict the right output corresponding
to the input variables.

5) Evaluate the model: A test dataset is created containing
new data which has not been seen by the model and is,
therefore, used to determine the skill of the model on
new data.

6) Hyperparameter Tuning: This step refers to hyperpa-
rameter tuning intending to improve the training of the
model further. The tuning of the hyperparameters is done
experientially and heavily depends on the specifics of the
dataset, model and training process.

7) Prediction: Finally, when the model satisfies the needs,
it is possible to predict based on the dataset and the
model.

As required in the first step of the framework, a dataset is
developed on which the model is trained. The dataset to train
the model contains the following input variables:

• Program of the Filler
• Speed of the Filler
• Inlet speed of the Filler
• Error

– Error 1: External 3527 - Can lack at inlet 1
– Error 2: Operator Guard 0043 - Low speed inlet

conveyor
– Error 3: External 3549 - Outlet can too full

Furthermore, the output classes of the dataset consists of
six countermeasures. The six countermeasures to resolve the
errors are:

• Countermeasure 1: Unknown cause: investigate cause
• Countermeasure 2: Stop Filler
• Countermeasure 3: Solve a problem with Depalletiser
• Countermeasure 4: Solve can block at Filler
• Countermeasure 5: Slow down Filler
• Countermeasure 6: Solve can block at outlet Filler

Following the described seven steps resulted in a final model
with accuracy, and logarithmic loss of 98,98%, 0,0368, respec-
tively. The curves of both performance measures are shown in
Figure 2. The optimal hyperparameters of the NN can be found
in Table I.

Table I
OVERVIEW OF OPTIMAL HYPERPARAMETERS

Hyperparameters Value or option
Nr. of training epochs 350
Batch size 256
Optimization algorithm Nadam
Learning rate of
optimization algorithm 0.0015

Activation function Tanh
Dropout regularization 0
Nr. of hidden layers 2
Nr. of neurons in
each layer 16
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Figure 2. Logarithmic loss and classification accuracy for one fold of final model with two hidden layers and 16 neurons

III. CASE STUDY

For the case study, data points from the packaging between
the 4th up until the 10th of May 2020 are used. First, the data
is collected and prepared according to step 1 and 2 from the
7-step framework. Then, the defined and prepared dataset is
fed into the model. The result of the model is a predicted
output class for each sample of the dataset. It took 0,034
seconds to predict the entire dataset of 1071 samples, and
it took only 0,012 seconds to predict one sample. The result
of the prediction can be found in Table II, which shows the
number of predicted outputs per class.

Table II
THE NUMBER OF PREDICTED OUTPUTS PER CLASS

Output class Number of samples
1 3
2 502
3 18
4 369
5 173
6 6

A. Calculation of time to resolve an error

The time to resolve an error in the current situation is
based on an analysis of the data from multiple periods which
resulted in a distributed time to resolve an error according to
a normal distribution. From this analysis can be concluded
that the average time to resolve an error is approximately 6
minutes. These 6 minutes are divided over different steps in
the process of resolving an error. First, the operator responds
typically in approximately 30 seconds from the moment he is
notified about an error. Then, the operator walks to the PLC
of the machine to determine which error causes the problem.
Walking to the PLC takes on average 100 seconds. Then, the
operator decides which countermeasure is executed to resolve
the problem and walks to the location of the problem. This

decision takes on average 60, and 30 seconds, respectively.
Finally, the operator resolves the problems in 120 seconds.
An overview of these steps can be found in Table III.

The times in Table III are assumed based on expert knowl-
edge in combination with the information available about
average times to resolve an error.

The time for the proposed model to decide which coun-
termeasure the operator has to perform consists of multiple
components. First, once every second, the database is updated
with the newest data inputs from the packaging line. Then,
the data is prepared, which takes on average 0,032 seconds.
The prediction of output classes takes 0,012 seconds. Fur-
thermore, it is assumed that the communication back to the
brewery consumes the same amount of time (1 second) as the
communication between the brewery and the database.

The total time to predict the correct countermeasure is
approximately 2 seconds from the moment the error occurs.
The operator receives a notification with the proposed coun-
termeasure, walks towards the location of the problem, and
resolves the error. However, it is assumed that an operator
does not respond immediately to a notification (similar to
the current situation). The time it takes for every step in the
process to resolve an error is summarized in Table III.

Table III
TIME FOR EVERY STEP BETWEEN THE MOMENT AN ERROR OCCURS UNTIL

THE ERROR IS RESOLVED

Steps to resolve an error Current situation [s] Proposed situation [s]
Notification 30 30
Walk to PLC 100 -
Decide on counter measure 60 -
Walk to problem 30 100
Resolve problem 140 140
Total time 360 270
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B. Results

As mentioned earlier, the total amount of errors in the
considered time window is 1071. From these 1071 errors,
32 led to a minor stop of the Filler, which is considered as
unplanned downtime. Therefore, the numbers of errors from
Table II are multiplied by this ratio of minor stops per error.

The recall of the model is specified as the percentage of
output classes that are recognized correctly. The recall of each
class is considered in this simulation. For each class that is not
predicted correctly, another 2 minutes are taken into account to
solve the problem. An overview of the results of the simulation
is given in Table IV.

The simulation resulted in an improvement of the proposed
situation of 16 minutes compared to the current situation,
which indicates a reduction of downtime of 22,2% under the
assumptions made. This improvement of 22,2% is according
to the expected difference. The difference between 6 and 4,5
minutes is 1,5 minutes which is an improvement of 25%.
Considering the accuracy of the model, the expected difference
is a little less than 25%. Compared to the real situation of the
packaging line in Alken-Maes, this is plausible.

C. Discussion on results

The uncertainty of the assumed times to resolve an error
is addressed by applying the same calculation on 5 and 7
minutes to resolve an error in the current situation. This results
in a difference of 11 and 23 minutes between the current and
proposed situation, respectively. This is a change of 31% and
44%, respectively, which indicates that the uncertainty in the
assumptions affects the results of this simulation significantly.
However, the actual downtime due to minor stops in that period
is 84 minutes. This differs 12 minutes from the total simulated
downtime (72 minutes), which is close enough to consider the
initial results as realistic.

In the entire problem, only the three most occurring errors
are considered. If more errors are considered, this will lead to a
higher absolute difference. The same applies to expand this de-
cision model to multiple other machines of the packaging line.
Now, only the Filler is considered. However, other machines
experience errors as well, and the application of this model on
these machines can achieve comparable results. Furthermore,
in the simulation, it is assumed that the operator makes the
correct decision regarding the countermeasure because there
is no information available about the ratio between taking the
correct or wrong decision. This ratio will further increase the
difference between the current and proposed situation in favour
of the proposed situation.

The implementation of this system into the production
environment of Alken-Maes is close to the suggested imple-
mentation of IoT systems together with AI techniques in the
research of Patel et al. (2018). However, the implementation
of the model in this research goes beyond the research of Patel
et al. because the operator does not have to troubleshoot an
occurring problem.

IV. EXPANSION OF USE CASE

The model is also applied to a second machine of the
packaging line of Alken-Maes. The second machine on which
the model is applied is the Shrink Packer. After the Filler, first
the Tunnel Pasteurizer and then the Shrink Packer is located.
The Shrink Packer shrinks a plastic wrap around a specified
number of filled bottles.

A. Model training

A completely new dataset is generated which contains the
four following input parameters:

• Program of the Shrink Packer
• State of the Shrink Packer
• Speed of the Shrink Packer
• Error

– Error 1: ALL306 - Minimal accumulation layer
– Error 2: ALL321 - Slow down outlet
– Error 3: ALL233 - Deformed pack at uphill conveyor
– Error 4: ALL273 - Minimal level reel film

The output classes of the dataset consists of six counter-
measures. The six countermeasures to resolve the errors are:

• Countermeasure 1: Slow down Shrink Packer
• Countermeasure 2: Stop Shrink Packer
• Countermeasure 3: Remove deformed pack at uphill

conveyor
• Countermeasure 4: Fill reel film
• Countermeasure 5: Reset sensor reel film
• Countermeasure 6: Fill accumulation layer
The dataset is created and contains many more different

combinations compared to the dataset of the Filler. Where the
dataset of the Filler contains only 13 combinations, the dataset
of the Shrink Packer contains 57 different combinations. The
time to train the model took more time due to the more
extensive and complex dataset. Training the model took 70
seconds compared to 15 seconds of training the model for
the Filler. However, after training the model, the logarithmic
loss, and accuracy of the model are 0,0248, and 99,26%,
respectively. The logarithmic loss and accuracy curves for one
fold are shown in Figure 3. Both show a stable converging
curve to the optimal performance.

B. Results

Data is retrieved from the Shrink Packer over the same
period as for the Filler. Over the period from the 4th up
until the 10th of May 2020, 121 errors occurred at the Shrink
Packer, which resulted in 56 minor stops. The minor stops
took on average 5 minutes which is a little less compared to
the average time of a minor stop at the Filler. It is assumed
that the time to solve an error in the proposed situation still
takes 4,5 minutes. This results in a similar simulation than that
of the Filler, which is summarized in Table V.

From Table V can be concluded that the absolute improve-
ment for the Shrink Packer is smaller due to the smaller
difference in time to resolve an individual error. The im-
provement is 4,8 minutes compared to the 16 minutes at
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Table IV
OVERVIEW OF RESULTS OF SIMULATION OF PROBLEM SOLVING IN BOTH SITUATIONS

Current situation Proposed situation

Class Nr. of stops Total time [min] Recall First attempt
[min]

Second attempt
[min]

Total time
[min]

1 0 0 1,00 0 0 0
2 15 0 0,98 0 0,6 0,6
3 1 6 1,00 4,5 0 4,5
4 11 66 0,98 50 1 51
5 5 0 1,00 0 0 0
6 0 0 1,00 0 0 0

Total time [min] 72 56

Figure 3. Logarithmic loss and classification accuracy for one fold of Shrink Packer model

Table V
OVERVIEW OF RESULTS OF SIMULATION OF SHRINK PACKER IN BOTH SITUATIONS

Current situation Proposed situation

Class Nr. of errors/stops Total time [min] Recall First attempt
[min]

Second attempt
[min]

Total time
[min]

1 245/36 0 0,99 0,0 0,0 0,0
2 44/6 0 1,00 0,0 0,0 0,0
3 20/3 15 0,96 14,6 0,2 14,8
4 29/4 21 0,98 19,0 0,2 19,2
5 0/0 0 1,00 0,0 0,0 0,0
6 46/7 34 1,00 30,2 0,0 30,2

Total time [s] 69 64,2

the Filler. Furthermore, it can be seen that countermeasure
one is proposed most often, and countermeasure five is not
proposed for errors. However, countermeasure one and two
are both countermeasures which do not require any actions of
the operator. Due to the combination of many errors solved
by countermeasure one and that this countermeasure does
not require any action of the operator also leads to a small
improvement in the proposed situation.

C. Error propagation

Furthermore, errors can propagate through the packaging
line and causes errors or minor stops at other machines. Error
propagation occurs when the buffers cannot compensate for

the starvation of blockage of the machine. From the minor
stops at the Shrink Packer, two minor stops are caused by the
Filler, five by the Tray Packer and one by the Palletiser. The
minor stops of the Filler are mainly caused internally, and the
Depalletizer causes only four minor stops, see Table VI.

From Table VI can be concluded that the error propagation
between the Filler and the Shrink Packer is minimized to
two minor stops of the Shrink Packer caused by the Filler.
Production lines, as the packaging line of Alken-Maes, are
designed to be balanced along the line to protect the bottleneck
machine (slowest machine) from any minor stops caused by
other machines (Patti et al., 2008). Typically, the Filler and
the Pasteurizer are the slowest machine(s) (Elst et al., 2020).
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Table VI
ERROR PROPAGATION BETWEEN MACHINES OF THE PACKAGING LINE

Caused by
Depalletiser Filler/Pasteurizer Shrink Packer Tray Packer Palletiser

A
ff

ec
te

d
Depalletiser 0 0 0 0 0
Filler/Pasteurizer 4 28 0 0 0
Shrink Packer 0 2 54 5 1
Tray Packer 0 0 2 86 2
Palletiser 0 0 0 0 1

Table VI indicates that the line balancing of the packaging line
of Alken-Maes is working correctly as only the Depalletiser
caused four minor stops at the Filler/Pasteurizer.

The implementation of the proposed decision-making algo-
rithm on each machine will lead to a further reduction of error
propagation as the errors are solved faster. The buffers have a
specific capacity, and when the capacity is reached, the error
propagates to another machine. If the errors are solved faster,
the capacity of the buffers is not or less exceeded, and the
fewer errors propagate through the packaging line.

V. CONCLUSION

From this research can be concluded that only four of
the five requirements of a digital twin are necessary for the
implementation of an intelligent real-time algorithm. These
four requirements are a physical asset, the access to real-
time data of this asset, a service model, and the connections
between these three components.

The operational productivity is improved by implementing
a service that decides which countermeasure an operator has
to execute in case of an occurring error. A neural network is
chosen as decision algorithm. The performance of the neural
network is heavily dependent on the compiled training dataset.
Therefore, compiling a training dataset requires experts that
can label input samples.

The neural network is applied to the Filler of the packaging
line of Alken-Maes. Simulation of the proposed method shows
the potential operational productivity improvement. The neural
network predicts the correct countermeasure with 98,98%
accuracy, which results in a weekly reduction of unplanned
downtime of 16 minutes. This corresponds to 22,2% reduction
of unplanned downtime for downtime occasions where the
operator has to resolve the problem. Implementing the service
on each machine of the packaging line and considering every
error of the machines further reduces the unplanned downtime.
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Figure B.1: Lay-out of Alken-Maes brewery



C
Manual verification

Actual Predicted Actual Predicted Actual Predicted Actual Predicted Actual Predicted
5 5 5 5 3 3 5 5 2 2
2 2 4 4 1 1 2 2 2 2
4 4 6 6 4 4 5 5 4 2
5 5 3 3 1 1 5 5 3 3
3 3 3 3 4 2 5 5 2 2
3 3 2 2 3 3 2 2 2 2
3 3 2 2 6 6 2 2 5 5
4 4 3 3 2 2 2 2 2 2
3 3 5 5 4 4 2 2 2 2
3 3 3 3 1 1 1 1 1 1
3 3 4 4 6 6 3 3 5 5
2 2 2 2 2 2 1 1 2 2
2 2 2 2 4 4 2 2 5 5
1 1 3 3 2 2 4 4 3 3
2 2 3 3 2 2 3 3 3 3
2 2 2 2 4 4 6 6 2 2
2 2 2 2 2 2 5 5 4 4
3 3 3 3 4 4 3 3 1 1
2 2 2 2 4 4 2 2 6 6
1 1 2 2 3 3 6 6 2 2

Table C.1: Actual and predicted classes of first 100 entries test dataset
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D
Use case verification

D.1. Use case verification with initial trainings dataset

Program State Depalletizer Speed Filler Inlet Speed Error Predicted class Required class
1 1 333 296 3 5 5
1 1 390 314 1 4 -
1 1 0 0 1 4 -
1 1 485 431 2 4 4
1 1 485 429 1 4 -
1 1 516 447 3 5 5
1 1 439 369 1 4 -
1 1 333 308 3 5 5
1 1 435 374 1 4 -
1 1 442 377 3 5 5
1 1 400 370 1 4 -
1 1 607 550 3 5 5
1 1 559 462 3 5 5
1 1 578 522 1 4 -
1 1 476 398 2 4 4
1 1 420 402 1 4 -
1 1 420 408 2 4 4
1 1 420 378 1 4 -
1 1 420 407 1 4 -
1 1 238 194 2 4 4

Table D.1: Manual verification of use case of first 20 samples
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D.2. Use case verification after expansion trainings dataset

Program State Depalletizer Speed Filler Inlet Speed Error Predicted class Required class
1 1 333 296 3 5 5
1 1 390 314 1 2 2
1 1 0 0 1 2 2
1 1 485 431 2 4 4
1 1 485 429 1 2 2
1 1 516 447 3 5 5
1 1 439 369 1 2 2
1 1 333 308 3 5 5
1 1 435 374 1 2 2
1 1 442 377 3 5 5
1 1 400 370 1 2 2
1 1 607 550 3 5 5
1 1 559 462 3 5 5
1 1 578 522 1 2 2
1 1 476 398 2 4 4
1 1 420 402 1 2 2
1 1 420 408 2 4 4
1 1 420 378 1 2 2
1 1 420 407 1 2 2
1 1 238 194 2 4 4

Table D.2: Manual verification of use case of first 20 samples



E
Overview of dataset Shrink Packer

Shrink packer
Program 1 1 1 1 1 1 1
State 5 7 7 6 6 6 6
Speed Packer [cans/min] 0-1400 1380-1400 0-1385 0-730 730-1400 725-1400 0-730
Error 1 1 1 1 1 2 2
Measure/Class 1 6 1 2 6 1 2

Shrink packer
Program 7 7 7 7 7 7 7
State 5 7 7 6 6 6 6
Speed Packer [cans/min] 0-1380 1360-1380 0-1365 0-730 730-1400 725-1400 0-730
Error 1 1 1 1 1 2 2
Measure/Class 1 6 1 2 6 1 2

Shrink packer
Program 10 10 10 10 10 10 10
State 5 7 7 6 6 6 6
Speed Packer [cans/min] 0-1000 950-970 0-955 0-370 370-1000 355-1000 0-360
Error 1 1 1 1 1 2 2
Measure/Class 1 6 1 2 6 1 2

Shrink packer
Program 1 1 1 1 1 1 1
State 7 5 6 6 6 7 5
Speed Packer [cans/min] 0-1400 0-1400 720-1400 710-730 0-710 0-1400 0-1400
Error 2 2 3 3 3 3 3
Measure/Class 1 6 3 2 1 3 1

Shrink packer
Program 7 7 7 7 7 7 7
State 7 5 6 6 6 7 5
Speed Packer [cans/min] 0-1360 0-1360 720-1380 710-730 0-710 0-1360 0-1360
Error 2 2 3 3 3 3 3
Measure/Class 1 6 3 2 1 3 1

Shrink packer
Program 10 10 10 10 10 10 10
State 7 5 6 6 6 7 5
Speed Packer [cans/min] 0-1000 0-1000 360-1000 350-370 0-350 0-1000 0-1000
Error 2 2 3 3 3 3 3
Measure/Class 1 6 3 2 1 3 1
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84 E. Overview of dataset Shrink Packer

Shrink packer
Program 1 1 1 1 1
State 6 5 5 7 7
Speed Packer [cans/min] 0-1400 1380-1400 0-1385 1380-1400 0-1380
Error 4 4 4 4 4
Measure/Class 4 5 4 5 4

Shrink packer
Program 7 7 7 7 7
State 6 5 5 7 7
Speed Packer [cans/min] 0-1360 1360-1380 0-1365 1360-1380 0-1360
Error 4 4 4 4 4
Measure/Class 4 5 4 5 4

Shrink packer
Program 10 10 10 10 10
State 6 5 5 7 7
Speed Packer [cans/min] 0-1000 950-970 0-955 950-970 0-1000
Error 4 4 4 4 4
Measure/Class 4 5 4 5 4

Table E.1: Overview of dataset Shrink Packer
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