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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Fault-tolerant one-bit addition with the smallest 
interesting color code
Yang Wang1,2, Selwyn Simsek3, Thomas M. Gatterman4, Justin A. Gerber4, Kevin Gilmore4,  
Dan Gresh4, Nathan Hewitt4, Chandler V. Horst4, Mitchell Matheny4, Tanner Mengle4,  
Brian Neyenhuis4, Ben Criger3,5*

Fault-tolerant operations based on stabilizer codes are the state of the art in suppressing error rates in quantum 
computations. Most such codes do not permit a straightforward implementation of non-Clifford logical opera-
tions, which are necessary to define a universal gate set. As a result, implementations of these operations must use 
either error-correcting codes with more complicated error correction procedures or gate teleportation and magic 
states, which are prepared at the logical level, increasing overhead to a degree that precludes near-term imple-
mentation. Here, we implement a small quantum algorithm, one-qubit addition, fault-tolerantly on a trapped-ion 
quantum computer, using the [[8, 3, 2 ]] color code. By removing unnecessary error correction circuits and using 
low-overhead techniques for fault-tolerant preparation and measurement, we reduce the number of error-prone 
two-qubit gates and measurements to 36. We observe arithmetic errors with a rate of ∼1.1 × 10−3 for the fault-
tolerant circuit and ∼9.5 × 10−3 for the unencoded circuit.

INTRODUCTION
Quantum computers have a large and growing number of potential 
applications (1), and quantum computers of increasing size are be-
ing constructed (2, 3).

Owing to the effects of noise and physical imperfections, these 
devices continue to have large physical error rates, on the order of 
2 × 10−3 (4) for a typical two-qubit entangling gate or measurement, 
preventing the direct implementation of large-scale algorithms with 
physical qubits. Therefore, it is necessary to carry out a quantum 
computation fault-tolerantly to reduce the effective error rate.

One straightforward way to construct a fault-tolerant circuit is to 
select a quantum error-correcting code together with a correspond-
ing set of fault-tolerant operations, and replace the individual opera-
tions of a given non–fault-tolerant circuit with their fault-tolerant 
counterparts (5). Error correction gadgets designed for the code in 
question are then inserted between every adjacent pair of fault-
tolerant operations to prevent the effect of errors building up over 
time. Proofs of the threshold theorem often provide an explicit con-
struction of such a procedure (6). However, this procedure often 
involves a large overhead in terms of both gate count and number of 
qubits required, which limits the suitability of such circuits to be 
implemented on experimental hardware.

Reducing the size of a fault-tolerant circuit (in terms of gate and 
qubit count) can make implementation easier. Smaller circuits are 
also preferable as there is reason to expect that they result in lower 
logical error rates. For instance, consider two fault-tolerant circuits Cs 
and Cl that act identically on all inputs, where the circuit Cs is shorter 
than the circuit Cl, and both circuits can detect or correct t – 1 faults. 
Cl contains more locations at which faults may occur and, therefore, 
has a higher likelihood of experiencing at least t faults, which may be 
undetectable/uncorrectable and contribute to the logical error rate, 

provided all other factors are equal. This is another reason why small-
er fault-tolerant circuits are to be preferred over larger ones.

Much previous work employs a conventional approach to imple-
menting fault-tolerant algorithms. One starts with a code in which it 
is straightforward to implement Clifford gates directly. For instance, 
this can be done with surface code patches via lattice surgery (7), and 
we note that an instance of Grover’s algorithm not containing non-
Clifford gates has already been implemented fault-tolerantly on two 
qubits (8) using the [[4, 2, 2]] code. Then, to obtain a universal gate 
set, a single non-Clifford gate such as the T gate is implemented by 
gate teleportation (9), which may require magic state distillation (10).

One may instead start with codes that have transversal (and 
hence fault-tolerant) non-Clifford gates. The Clifford gates are then 
implemented by gate teleportation with Pauli eigenstates as the an-
cillary inputs, requiring no expensive distillation to prepare.

Here, we realize a small instance of this proposal. We implement 
a one-qubit addition circuit using the [[8, 3, 2]] color code, which 
allows a transversal non-Clifford CCZ gate. Although this algorithm 
is simple, it computes the answer to a mathematical problem and con-
tains both Clifford and non-Clifford gates. The one-bit adder circuit 
is also a simple application of the Toffoli gate, which is a universal 
gate for reversible classical computing. It can be used to construct 
oracles for Grover’s algorithm (8, 11) as well as the modular expo-
nentiation circuits used within Shor’s algorithm. As a result, the 
fault-tolerant realization of a one-bit adder circuit has practical im-
plications for the realization of more substantial quantum algo-
rithms, as well as pushing forward the state of the art in the realization 
of fault-tolerant algorithms on contemporary quantum computers.

RESULTS
Experimental details
Using the techniques outlined in Materials and Methods, we are able 
to write a fault-tolerant implementation of one-bit addition in the 
[[8, 3, 2]] color code using 24 CNOTs and 12 measurements (single-
qubit operations are not counted for the purpose of estimating the final 
logical error rate, due to their much lower error rates) (see Fig. 1D). 
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For comparison, decomposing the one-qubit adder into CNOTs and 
single-qubit gates on bare qubits results in five CNOTs and three 
measurements (see Fig. 1C). These were submitted to both the 
Quantinuum H1-1 quantum computer and the Quantinuum H1-1E 
emulator. Upon submission, a compiler transforms each circuit into 
one corresponding to the native gate set of the quantum computer. 
The resulting circuits were executed 10,000 times on the quantum 
computer and 100,000 times on the emulator. Instances in which the 
fault-tolerant circuit returned any nonzero syndrome or flag out-
come were rejected, returning 8998 instances from the device and 
88,537 from the emulator with no errors detected. Frequencies at 
which the four incorrect outputs occur due to undetected errors are 
presented in Fig. 2.

To completely characterize the logical errors that occur in a fault-
tolerant one-qubit addition, it would be necessary to perform three-
qubit logical process tomography. However, process tomography 
results in prohibitively high sampling overhead and introduces 
the challenge of distinguishing state preparation and measurement 
(SPAM) errors from those occurring in the unitary of interest. For 
these reasons, we instead execute a complete protocol consisting of 
state preparation, unitary operations, and measurements and calcu-
late an operationally defined error rate that is affected by all steps of 
the process. At the end of each summation, we measure the register 
at the physical level and calculate classical values for the one-bit 
number a and the two-bit number s. If

we can infer that a logical error has occurred. We call these events 
arithmetic errors and compare the rates at which they occur in Fig. 2.

To evaluate the effectiveness of the arithmetic error rate as a 
measure of the true error rate, we attempt to estimate the true error 
rate. This cannot be done directly from the data presented in Fig. 2. 
Therefore, we carry out a density matrix–based simulation in 
QuTiP (12) [see (13) for source code] of the circuit, using a noise 
model motivated by that of the Quantinuum H1-1E emulator 

(which is in turn constructed using experimental data from the 
H1-1 device), and attempt to quantify the effect of noise on the 
state obtained at the end of the circuit. We obtain an arithmetic 
error rate of 0.39%, which is of comparable magnitude to that ob-
served in Fig. 2. The fidelity of the simulated state with the ideal 
error-free state is 99.7%, which implies that the use of the 

(s = 3) ∨ ((s = 2) ∧ (a = 0)) ∨ ((s = 0) ∧ (a = 1)) (1)

A B C

D

Fig. 1. Quantum circuits that realize addition of two one-qubit numbers. (A) One-bit addition circuit. The result of a + b is stored in the two-bit number s = s0s1. 
(B) One-bit addition with the uniform superposition as input, preparing the “superposition of valid sums” and measuring it destructively. (C) Non–fault-tolerant circuit as 
submitted to compiler. (D) Fault-tolerant implementation of one-bit addition given in Fig. 1B as submitted to the compiler. Dashed regions, from left to right: non–fault-
tolerant ∣+++ ⟩ preparation, flag fault-tolerant measurement of X1X3 and overlapping SZ, transversal CCZ, destructive measurement of X2 , and destructive measurement 
of Z1 and Z3.

Fig. 2. Results of evaluating fault-tolerant and non–fault-tolerant circuits on 
both the Quantinuum H1-1 quantum computer and emulator. Only those shots 
that pass postselection are used to estimate the arithmetic error rate of the fault-
tolerant circuit. The overall rates of arithmetic errors for the non–fault-tolerant cir-
cuit are 0.95 ± 0.19% (on H1-1) and 1.22 ± 0.07% (on the emulator); for the 
fault-tolerant circuit, they are 0.11 ± 0.07% (on H1-1) and 0.04 ± 0.014% (on the 
emulator).
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arithmetic error rate does not conceal significant logical errors in 
other bases.

Comparison with planar architectures
To understand the overhead reduction achieved in this implementa-
tion, we investigate a surface code–based implementation of one-bit 
addition for surface code patches with distance d  =  2. Similar to 
(14), logical qubits are realized in independent code blocks, logical 
Clifford gates are implemented using lattice surgery, and the logical 
Hadamard is propagated forward, resulting in an X  measurement 
on the third qubit at the end of the circuit. We can lower the over-
head of this implementation by generating the state CCZ ∣+++⟩ us-
ing a magic state factory (15), and computing with it directly, rather 
than using it for gate teleportation. At distance d = 2, the factory can 
detect any single-qubit error during the production of the ∣CCZ〉 state.

The overhead of this implementation is dominated by the CCZ 
magic state factory, whose measurement schedule is shown in Fig. 3. 
It requires 18 surface code patches to implement, which at distance 
d = 2 implies ∼18 ⋅ 2d2 = 144 physical qubits. This figure is over an 
order of magnitude higher than that of the [[8, 3, 2]] code imple-
mentation discussed above and is too large to be executed on a 
Quantinuum H-series device at time of writing.

The relative logical error rates resulting from different imple-
mentations of one-bit addition can be estimated by counting pairs 
of faults that result in logical errors (larger sets of independent 
faults being much less likely). We carry this estimation out using 
QuantumClifford.jl (16, 17), resulting in 84,873 fault pairs for the 
d = 2 surface code, and 1116 for the [[8, 3, 2]] code. While a more 
detailed comparison would not be applicable to devices of either ar-
chitecture, we can see that the number of malicious pairs is far greater 
than the number of malicious pairs for the  [[8, 3, 2]] code–based 

implementation, which suggests that higher code distance (and greater 
overhead) would be necessary to match the logical error rate obtained 
in this work.

By contrast, implementing one-qubit addition using the [[8, 3, 2]] 
color code on a device with square-lattice connectivity can be accom-
plished with moderate overhead using the qubit layouts in Fig. 4A. The 
initial layout is used for non–fault-tolerant state preparation, and four 
CNOTs are then required to change the layout so that the remainder 
of the experiment can be carried out. After non–fault-tolerant state 
preparation (shown in Fig. 4B), the stabilizer measurement requires 
an additional six CNOTs, since the SWAP gates must be decomposed 
into CNOTs rather than replaced with transport operations. While 
these additional CNOTs represent a significant increase in the overall 
size of the circuit without increasing its ability to tolerate errors, the 
induced overhead is not as significant as implementing the computa-
tion with surface code–based logical qubits.

DISCUSSION
The fault-tolerant implementation of one-bit addition demonstrates 
the combined effect of transversal non-Clifford gates, logical Cliffords 
by permutation, postselected state preparation, and omission of 
superfluous error correction gadgets (such as those after transversal 
single-qubit or automorphism gates) in a fault-tolerant computa-
tion. While we cannot expect each of these techniques to result in 
the same logical error rate reduction in all fault-tolerant computa-
tions, we believe that each of them will contribute to lower logical 
error rates and overheads in some future fault-tolerant computa-
tions. This result also highlights the peculiar “inversion of difficulty” 
in fault-tolerant quantum computing. That is, the operations that 
induce the most error at the physical level (CNOT and CCZ) can be 

Fig. 3. Schedule for simulating a CCZ state factory using lattice surgery with distance-2 surface codes. Top: Multi-qubit logical X  measurements performed in series. 
Bottom: Destructive distance-1 measurement in the SX  basis, applied to the eight surface codes used as logical ancillas. Note that, in a genuine magic state factory (15), 
T and T† gates would take the place of the S gates used here, which we use here for ease of simulation.
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carried out fault-tolerantly using high-fidelity transport and trans-
versal single-qubit gates. In contrast, state preparation (which is 
comparatively simple and reliable at the physical level) comprises 
most of the fault-tolerant circuit, causing a large fraction of logi-
cal errors.

A further example of this inversion of difficulty is the logical 
Hadamard gate, which is required to generate a universal gate set 
and cannot be implemented transversally. One possibility is to im-
plement this gate by teleportation, involving the preparation of an 
ancillary Pauli eigenstate of the [[8, 3, 2]] code. While this tech-
nique would require lower overhead than magic state distillation, 
the need for an ancillary encoded state doubles the number of data 
qubits necessary to complete a universal gate set. In “Logical Had-
amard gates on the [[8, 3, 2]] code” in the Supplementary Materi-
als, we derive a lower-overhead alternative, taking advantage of the 
transversal CNOT between the [[8, 3, 2]] code and the [[4, 2, 2]] 
code shown in Fig. 5D.

The fault-tolerant implementation of one-bit addition also high-
lights several open problems to address in future work. For instance, 
the experiment considered here uses postselection rather than cor-
rection and achieves a low conditional probability of error with 
moderate (∼10%) postselection overhead. Full postselection (i.e., 
accepting the output only if no syndrome is observed) on every 
fault-tolerant gadget would result in an exponentially decaying ac-
ceptance probability. Still, the effect of partial postselection (accept-
ing syndromes that indicate an error with weight w ≪ d/2 on 
selected gadgets within a larger algorithm) has yet to be explored.

In addition, the placement of quantum error correction (QEC) 
gadgets between every adjacent pair of fault-tolerant operations is 
sufficient to prove the existence of thresholds in the ExRec formal-
ism (6). However, it is not necessary to do this to make a circuit 
fault-tolerant. Omitting QEC gadgets (or using partial QEC gadgets, 
as in “Logical Hadamard gates on the [[8, 3, 2]] code” in the Sup-
plementary Materials) between consecutive fault-tolerant opera-
tions can reduce logical error rates and overheads in a wide variety 
of protocols.

Finally, we note that the fault-tolerant protocol we have devel-
oped leverages variable connectivity of the physical qubits and 
exhibits relatively high pseudothresholds for certain quantum com-
puting tasks, making it particularly suitable for other platforms with 

high qubit connectivity, such as neutral atoms (18, 19) and nitrogen-
vacancy (NV)–based networks (20, 21). A similar idea has recently 
been proposed to implement quantum low-density parity-check 
codes (qLDPCs) using reconfigurable atom arrays (18). By using the 
product structure inherent in many qLDPC codes to implement 
nonlocal syndrome extraction circuits via atom rearrangement, ef-
fectively constant overhead in practically relevant regimes can be 
achieved (18).

MATERIALS AND METHODS
One-bit addition
At the logical level, two bits (potentially in superposition) may be 
added using the circuit in Fig. 1A. Note that a classical one-bit addi-
tion requires only two bits of memory, as two bits are sufficient to 
store both the input bits and the output, which may be a two-bit 
number. However, the resulting circuit is not reversible, as the input 
bits cannot be recovered from their sum. To implement the one-bit 
adder on a quantum computer, a reversible classical circuit is need-
ed. The one-bit adder can be made reversible at the cost of requiring 
three bits or qubits.

Implementing the circuit in Fig.  1A with computational basis 
states as inputs would not be a good demonstration of quantum 
computing, as the state would not exhibit superposition or entangle-
ment throughout the computation. To remedy this, we input the 
state ∣+〉∣+〉, thus preparing the equal superposition of all four two-
bit sums and obtaining the result of one of them at measurement 
time. We also replace the Toffoli gate with a CCZ gate conjugated by 
Hadamards, which, after simplification, gives the circuit of Fig. 1B, 
which is the logical circuit we use in the remainder of this work. In 
the following section, we review the error-detecting code selected 
for this work (the [[8, 3, 2]] color code). We express the logical 
circuit in terms of simple, low-overhead fault-tolerant operations in 
the “Circuit construction” section.

[[8, 3, 2]] color code
To encode the three logical qubits necessary for one-bit addition and 
gain access to a transversal CCZ, we select the [[8, 3, 2]] color code 
(22, 23) (see Fig. 5A for a description of the stabilizers and logical 
Pauli operators). To prepare a uniform superposition of valid one-bit 

A

B

Fig. 4. Fault-tolerant one-bit addition on a planar architecture. (A) Small planar qubit layouts that facilitate fault-tolerant one-bit addition. Left: Layout for non–fault-
tolerant state preparation. Right: Layout for subsequent flag-based measurement of X1,2,5,6/Z1,2,5,6 and X1,3,5,7. (B) Modified non–fault-tolerant ∣+++ ⟩ preparation circuit, 
using the minimal number of CNOTs and qubits connected in a square lattice. D
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sums, we first fault-tolerantly prepare the ∣+⟩⊗3 state. We then per-
form the transversal CCZ, and a CNOT between qubits 1 and 2, then 
measure qubit 3 in the X basis, and finally measure qubits 1 and 2 in 
the Z basis. While the transversal CCZ of the [[8, 3, 2]] code is al-
ready well understood, the state preparation, Clifford gates, and 
measurements used here have not been described in the previous 
literature to our knowledge. We explain their derivation below, in 
order of execution in the experiment (shown in Fig. 1D).

Circuit construction
∣+⟩⊗3 preparation
There is a well-known procedure for fault-tolerant preparation of 
∣+⟩⊗k states in CSS codes of distance d involving measuring Z stabi-
lizers with the ∣+〉⊗n state as input. The first round of measurement 
will result in random outcomes, so multiple rounds (two for codes 
with d = 2) would be necessary to detect measurement errors. For 
the [[8, 3, 2]] code, this requires ∼32 CNOTs and 8 measurements.

To reduce the size of this circuit, we use the Goto circuit design 
technique (24), first writing out a non–fault-tolerant circuit with 
the minimum number of two-qubit gates and then measuring a 

limited set of stabilizers that detect high-weight errors resulting 
from error propagation through the initial circuit. We find the 
non–fault-tolerant stage of the circuit by inspection, beginning 
from the desired final state and using CNOT gates to break the 
state’s entanglement, until arriving at a state consisting of four Bell 
pairs, which can be prepared fault-tolerantly using CNOTs on bare 
qubits. We confirm that this circuit contains the minimum number 
of CNOTs using breadth-first search over an implicit graph whose 
vertices are canonical stabilizer states [see (16, 25, 26)].

Gottesman-Knill simulation reveals that all high-weight prop-
agated errors can be detected by fault-tolerant measurement of 
two weight-four stabilizers, X1,3,4,6 and Z1,3,4,6 (note: the only high-
weight errors not detectable by later stabilizer measurement are 
Z0,1 and Z0,6; had this been used as the criterion for fault toler-
ance, a flag-based measurement with two fewer CNOTs could 
have been used). This can be accomplished using an appropriately 
interleaved circuit designed by Reichardt (27). The final prepara-
tion circuit requires 18 CNOTs and two measurements, halving 
the number of relatively error-prone gates with respect to the ge-
neric technique.

A

B

C
D

Fig. 5. Stabilizers and logical operations of the [[8, 3 , 2 ]] color code. (A) Stabilizer generators and logical operators for the [[ 8, 3, 2 ]] color code. (B) Action of mea-
suring every qubit of the left face of the cube in the X basis. (C) Action of reflecting the top face of the cubic layout for the [[ 8, 3, 2 ]] code. The operators X2

 and Z3
 are 

mapped to X2X3 and Z2Z3 , respectively, leaving other logical operators unaffected, effectively performing a logical CNOT gate. (D) Transversal logical CNOT between a 
face of the [[ 8, 3, 2 ]] and [[ 4, 2, 2 ]] codes. Z  operators contained in the specified face and X  operators that share an edge with that face are affected.
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Destructive X  measurement
Similarly to state preparation, there is also a generic protocol for 
measuring the logical observables of CSS codes. In this protocol, all 
data qubits are measured in the X or Z basis, and the eigenvalues of 
stabilizers and logical operators in that basis are then reconstructed 
by calculating classical parities, allowing a final round of classical 
error correction to be performed. In this way, any set composed 
only of tensor products of Z or X  operators can be measured, but we 
cannot simultaneously measure Xj

 and Zk≠j
 using this protocol.

Typically, whenever we wish to measure a subset of logical qubits 
in a different basis, we would use a fault-tolerant circuit with addi-
tional ancillas to measure the relevant operators nondestructively 
(similarly to stabilizer measurements) or synthesize the logical mea-
surement by transferring the relevant subset of logical qubits to a 
new code block, which may subsequently be measured destructive-
ly. The [[8, 3, 2]] color code allows an alternative to such a proto-
col; a logical X operator supported on a face may be measured 
destructively by measuring the four qubits on that face in the X ba-
sis. The remaining X  operators are reduced to weight two, and the 
weights of the Z operators not supported on the measured face are 
preserved, leaving the remaining two logical qubits encoded in the 
[[4, 2, 2]] code (see Fig. 5B).

This destructive measurement is not fault-tolerant because no 
stabilizer eigenvalue can be reconstructed from the measurement 
outputs. To reconstruct SX = X⊗8, we use a flag-based circuit (see 
Fig. 1D, right-hand side) to nondestructively measure X⊗4 on the 
opposite face and take the parity of the five measurement outputs to 
reconstruct the stabilizer eigenvalue.
Logical CNOT by permutation
With CSS codes that encode a single logical qubit, such as surface 
code patches, entangling operations are implemented across differ-
ent code blocks, usually using transversal gates or lattice surgery 
(28). For codes such as the [[8, 3, 2]] code, which have k > 1 logical 
qubits, there is no general protocol for performing logical entan-
gling operations within a single code block [though architectures 
that use codes with k > 1 have been explored (29)].

However, the [[8, 3, 2]] color code has a logical CNOT gate, 
which can be implemented by permuting or relabeling the physical 
qubits. This is due to a spatial symmetry of the stabilizer group that 
the logical operators do not obey. The QCCD architecture (2, 30) 
allows us to transport physical qubits from one area of a device to 
another if necessary. As a result, the CNOT gate given in Fig. 1B can 
be implemented with near-unit fidelity using only transport opera-
tions (see Fig. 5C).

Supplementary Materials
This PDF file includes:
Supplementary Text
Fig. S1
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