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Summary

In our study, we develop a model for simulating fracturing processes in a

poroelastic medium. The proposed approach combines the discrete fracture

model enriched with contact plane mechanics. The model captures mechanical

interactions of fractures and a deformable medium, fluid, and heat transfer in

fractures and in a porous medium. Both effects of poroelasticity and

thermoelasticity are accounted in our model. Mass and heat conservation equa-

tions are approximated by the finite volume method, and mechanical equilib-

rium equations are discretized by means of the Galerkin finite element

approach. Two‐dimensional grid facets between 3‐dimensional finite elements

are considered as possible fracture surfaces. Most of these facets are inactive

from the beginning and are activated throughout the simulation. A fracture

propagation criterion, based on Irwin's approach, is verified on each nonlinear

iteration. When the criterion is satisfied, additional contact elements are added

into finite element and discrete fracture model formulations respectively. The

proposed approach allows modeling of existing natural and artificially created

fractures within one framework. The model is tested on single‐ and multiple‐

phase fluid flow examples for both isothermal and thermal conditions and ver-

ified against existing semianalytical solutions. The applicability of the approach

is demonstrated on an example of practical interests where a sector model of an

oil reservoir is simulated with different injection and production regimes.

KEYWORDS

discrete fracture model, fracture mechanics, geomechanics, reservoir simulation
1 | INTRODUCTION

There are certain technological operations where injection of various fluids into a subsurface is exploited. Fields, where
these activities are routinely performed, comprise extraction of geothermal energy, development of unconventional
hydrocarbon reservoirs, disposal of wastewater, sequestration of CO2, storage of natural gas, and improved oil recovery.
Injection of gases and liquids into subsurface formations leads to changes in their pressure, temperature, and stress
state. All these phenomena can potentially lead to generation of induced fractures or activation of existing natural
fractures and faults. To produce energy from the subsurface or store highly pressurized fluids underground and perform
it in an efficient and safe manner, a study of fractures and faults behavior is essential.

To model hydraulically stimulated fractures, analytical and numerical models are usually used. There are a number
of analytical solutions for a single fracture in a homogeneous continuous medium subjected to a uniform stress field.
470. Copyright © 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/nag 1445
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Two of the most common two‐dimensional (2‐D) models used in fracture treatment design are Khristianovich‐
Geertsma‐de Klerk1,2 and Perkins‐Kern‐Nordgren3,4 models. Their solutions are applicable for fractures induced in
low‐permeability reservoirs. There, the effect of the pressure field alteration around the fracture can be disregarded.

For different operations, such as waterflooding and water disposal processes, thermally induced fractures and
poroelastic and thermoelastic stress changes cannot be ignored since fluids are injected during long periods, which is
enough for them to penetrate deeply into a formation. Fracture growth happens much slower than in the case of
hydraulically stimulated fractures. Analytical solutions for these problems were derived and further developed by
Hagoort,5 Koning,6 and Van den Hoek.7

A number of numerical models were developed in the past to address the fracturing process. One of the approach
is to couple a numerical reservoir simulator with analytical 2‐D and pseudo–three‐dimensional (pseudo–3‐D)
fracture solutions. Such models were developed and tested by Hustedt et al8 and Dikken and Niko.9 Another
approach uses a full numerical representation of fractures and a surrounding porous medium. These models are
challenging to develop because fluid flow, fracture deformation, and stress distribution have to be considered simul-
taneously. Some authors used the finite volume approach to model multiphase flow within a fractured medium.10-12

Others used finite element,13,14 mixed finite element,14-16 and discontinuous Galerkin methods.17,18 In addition,
Faivre et al19 considered an extended finite element formulation for coupled fluid flow and deformation of a
fractured solid porous matrix. Recently, Nordbotten20 proposed a finite volume method, and McClure and Horne21

and Norbeck et al22 presented a finite volume and boundary element framework for modeling coupled flow and
mechanics. In most of these approaches, fractures were present in both flow and mechanical domains using
simplified assumptions.

In this study, we focus on an explicit fracture approximation where fracture topology can be considered as 2 sur-
faces in contact. Contact mechanics was extensively studied by means of finite elements,23 extended finite ele-
ments,24,25 and mortar methods.26 There are several commonly used approaches to model contact mechanics
problems. They include Lagrange multipliers,23 a penalty regularization,27 and the Nitsche method.28 For situations
of complex fracture network topologies, where discontinuous fracture representation can be complicated, the diffusive
fracture models were introduced by the continuum damage approach,29 the phase field approach,30,31 and level set
models.32

The discrete fracture model (DFM), developed by Karimi‐Fard et al12 for simulating fluid flow in fractured
formations, is the basis of our study. This model allows for accurate representation of pressure, temperature,
and fluid distributions since all fractures are treated explicitly. However, the original method does not take into
account poroelastic and thermoelastic deformations induced by injection or production. As shown by Bandis
et al,33 the hydraulic characteristics of fractures are strongly coupled to their mechanical properties, such as
roughness and strength. This issue was resolved by Garipov et al,34 where DFM was extended to account for
deformations. The extended DFM inherits all the benefits of the original model and allows representation of frac-
ture properties, such as acting stresses, conductivity, and aperture changes due to loading conditions.
The extended model enables the simulation of hydromechanical behaviors of existing and nonpropagating
fractures as well as faults on a large scale. However, propagation mechanisms were not addressed in the
extended DFM.

In this work, we further develop the DFM approach and present a model that enables modeling of both station-
ary and growing fractures within the same numerical framework. The model is implemented in the Automatic
Differentiation General Purpose Research Simulator (AD‐GPRS) developed at Stanford University.35 Our approach
is validated against test cases with available analytical solutions. We also demonstrate applicability of the model to
problems of practical interest and consider a waterflooding process, where both growing and existing fractures are
modeled.
2 | THEORETICAL BACKGROUND

We consider a fractured medium as an aggregate of two objects, namely, porous medium and fractures, and accordingly
introduce governing equations for both objects. The behavior of the porous medium is described by the Biot theory,36

and fractures are considered as two surfaces in contact. Since the Biot theory is well known37,38 and similar approaches
for fractures are widely used,34,39,40 we provide only a general description, necessary definitions, and governing
equations.
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2.1 | Porous medium

The porous medium is treated as a superimposition of two continua, the skeleton and the fluid.37 Further, we consider a
fluid consisting of 2 phases (compressible water and oil) and accept the following mass conservation equations:

∂
∂t

ϕρjsj
� �

þ ∇· ρjvj
� �

¼ 0; j ¼ w; oð Þ; (1)

vj ¼ −k
krj
μj
∇pj; (2)

∑
j
sj ¼ 1; (3)

where (w, o) are the water and oil phases, respectively; pj is the pressure of phase j; ρj and μj are the density and the
viscosity of the phase j, respectively; krj is the relative permeability of the phase j; vj is the phase velocity vector; and
sj is the corresponding phase saturation. The value ϕ is the porosity of the medium, and k is the permeability tensor.
Further, we assume thermal equilibrium between the fluid and the solid skeleton and obtain

∂
∂t

ðρCÞm T−T0ð Þ� �þ ∇· ∑
j
hjρjvj

 !
−∇· κm∇Tð Þ ¼ 0; (4)

where T is the temperature, T0 is the reference temperature, and hj is the enthalpy of the phase j. The medium heat
capacity, ρCð Þm, and the thermal conductivity of the saturated porous medium, κm, are defined as

ðρCÞm ¼ ϕ∑
j
Cv; jρjsj þ ð1−ϕÞCv;sρs (6)

κm ¼ ϕ∑
j
Kjsj þ ð1−ϕÞKs; (7)

where Cv,j and Cv,s are the fluid phases and the skeleton‐specific heat capacities, respectively; Kj and Ks are the thermal
conductivity of the fluid phases and the skeleton, respectively; and ρs is the skeleton density. In this paper, we accept a
simplified fluid description and define the fluid enthalpy and density as follows:

hj ¼ Cv; j T−T0ð Þ; (8)

ρj ¼ ρj;0 þ Cp; j p−p0ð Þ−βT; j T−T0ð Þ; (9)

where ρj,0 is the reference density and Cp,j and βT,j are the fluid j compressibility and volumetric thermal expansion,
respectively.

Changes in deformations, temperature, and pressure trigger the porosity (void space) change. In accordance with
Coussy,37 porosity update accounting for poroelastic and thermoelastic effects has the form

ϕ ¼ ϕ0 þ αϵv þ ðα−ϕ0Þð1−αÞ
Kd

p−p0ð Þ−3βϕ T−T0ð Þ; (10)

where Kd is the drained bulk modulus, α is the Biot coefficient, ϵv = trace(ϵ) is the volumetric strain, and ϕ0 is the ref-
erence porosity. Here, we define the porosity‐related linear thermal expansion coefficient that can be estimated as
βϕ ¼ β α−ϕ0ð Þ, where β is the linear thermal expansion coefficient.
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Following Coussy,37 we use the momentum conservation equation to describe porous medium deformation:

∇·σ ¼ 0; (11)

where the total stress tensor, σ, accounts for contribution of both the fluid and the skeleton:

σ ¼ Cϵ − αIp − βCIT: (12)

Here, I is the identity matrix, andC is the elastic moduli tensor. With the adoption of the infinitesimal strain theory,
the strain tensor, ϵ, can be expressed through the displacement vector, u, as follows:

ϵ ¼ 1
2
ð∇uþ ∇TuÞ: (13)

The governing equations (1, 4, and 11), in conjunction with Equations 6 and 10 and fluid properties, provide a math-
ematical formulation of thermo‐poroelastic behavior of the saturated porous medium.
2.2 | Treatment of fractures

We represent fractures as two interfering surfaces (Figure 1). When they are in contact, we assume that a fracture is
closed; otherwise, it is open. Then, we define a gap function, g = (gN, gT), where gN is the normal displacement relative
to the reference state and gT is the displacement in the fracture plane, as shown in Figure 1. When a fracture is open, a
normal gap is negative gN < 0, and gN = 0 when it is closed. Surfaces of natural fractures have a rough structure that
makes it possible to contain a fluid in between, for both open and closed states.

Further, we adopt the formulation given for the porous medium yet use unit porosity for fractures. Because of the
nature of hydraulic properties of fractures, their hydraulic permeability, kf, depends on stresses acting on their surfaces
when gN = 0,41 and the permeability, kf, becomes a function of a fracture opening when gN < 0.

Stresses on surfaces are transferred by fluid and a contact. Introducing the traction vector, tF (tN, tT), and projecting
the total stress tensor, σ, on a fracture surface yield

tF ¼ −σn ¼ −ðσ′−IpÞn ¼ tNnþ tTτ þ pIn; (14)

where n and τ are the normal and tangential unit vectors, defined on each fracture surface, and σ′ is the effective stress.
Here, we also assume continuity of all the components of tF across fracture surfaces. For open fractures, components tN
are tT are vanishing, and only pressure p holds apart fracture faces. Further, we distinguish two states of closed frac-
tures, namely, slip and stick:

tN ¼ 0 and gN < 0; open fracture (15)

tT < F tNð Þ; ġT ¼ 0; and gN ¼ 0; stick state (16)

tT ¼ F tNð Þ; ġT > 0; and gN ¼ 0; slip state: (17)

Here, the dot denotes a derivative of the gap function with respect to time, ie, the deformation rate or change in gap between
loading steps. The slip state is possible when the tangential and normal components are coupled by the friction law F.
gT

gN

FIGURE 1 Illustration of a fracture
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In this study, we consider brittle materials and use Irwin's criterion for linear elastic failure42:

K I ≤ KIc: (18)

Fracturing occurs when a fracture Stress Intensity Factor (SIF), KI, reaches a fracture toughness value, KIc. A fracture
grows toward a plane with maximum tangential tensional effective stress.
3 | SOLUTION METHOD

3.1 | Domain discretization

In this section, we discuss a discretization of the governing equations. Figure 2(A) shows a physical domain, Ω, where
the external contour of the model is defined by Γ and the fracture surfaces are defined by Γf. Figure 2(B) gives an exam-
ple of discretization of the matrix using triangles (wedges, tetrahedrons, and hexahedrons in 3‐D) and the fracture using
segments (thick lines). This geometrical grid is used for both flow and mechanical problems. For the flow/energy equa-
tions, we associate control volumes with every element of the grid, as shown in Figure 2(B). Then, we define piecewise
constant primary variables, such as pressure and temperature, at each control volume. For mechanics, fractures are
delineated as contacts between matrix elements. We define primary variables, u, at vertices and secondary variables,
traction vectors, tF, on fracture surfaces. Their locations correspond to the Gauss points used for numerical integration.
Discretization of the mechanical domain is given in Figure 2(C).

The flow/heat equations are discretized using a finite volume technique with a two‐point flux approximation. Follow-
ing Karimi‐Fard et al,12 the flow/heat rate between two adjacent control volumes is expressed through pressure and tem-
perature gradients. The mechanical equations use the standard finite element approximation. In addition to that,
contacting elements (triangles and quads in 3‐D) have associated contact forces. Calculation of these forces is based on
the “penalty” approach, when a force is proportional to the penetration of one element into another.43

In this study, we discussmodifications of a discretization scheme for the geomechanical part only, since we use existing
capabilities of the research simulator AD‐GPRS developed at StanfordUniversity. The simulator allows us to solve the vari-
ety of multiphysics problems including coupled thermal‐compositional flow44 and geomechanics.45 The details of approx-
imation techniques of the mass and energy conservation equations can be found in previous works.12,46-48

An illustration of the numerical treatment of fractures is given in Figure 3.Here, we define a contact element as “master”
and “slave” faces in contact, and a vector, tF, is defined at eachGauss integration point on themaster surface.When a failure
criterion is satisfied, the fracture propagates one element further from its tip. Next, we separate two cells, create a new pair
of the master and slave faces, and add a new set of vertices. The grid, used to discretize mass and energy balance equations,
is not affected by this procedure since it already has finite volumes assigned to every possible fracture geometry.
3.2 | Discretized governing equations

The DFM was extensively used to discretize the mass and energy balance equations by many authors.10-12 Thus, we only
focus on the treatment of the mechanics equations and introduce a weak form of Equation (11):

∫
Ω
δϵ:σdΩ−∫

Γ
δutdΓ−∫

Γ f

δgNpf dΓ f−∫
Γ f

ðδgNtN þ δgTtTÞdΓ f ¼ 0: (19)
(A) (B) (C)

FIGURE 2 Illustration of a grid structure. A, Physical domain, Ω, and external, Γ, and internal, Γf, boundaries. B, Extended grid for flow

with variables defined in cell centers. C, Grid for mechanics with variables assigned in cell vertices and contact surfaces [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 3 Illustration of the numerical treatment of a fracture. Its surfaces are labeled as “master” and “slave.” The fracture propagates

along a plane with maximum tangential tensional effective stress [Colour figure can be viewed at wileyonlinelibrary.com]
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Here, tN and tT are the normal and tangential components of a traction vector tF acting on a boundary Γf, values gN and
gT are the normal and tangential components of a fracture gap function, pf is the pressure inside the fracture, t is the
traction vector acting on the external boundary Γ. The gap function components are equal to gN ¼ um−usð Þn and
gT ¼ um−usð Þτ, where vectors um and us are the displacement vectors on the master and slave faces correspondingly.
It is important to mention that the last term in Equation 19 is present only when the fracture is closed and the two sur-
faces of it are in contact. As soon as it opens, the contact integral vanishes:

∫Γf ðδgNtN þ δgTtTÞdΓf ¼ 0: (20)

For the open fracture, the only force acting on a contact Γf is the pressure pf. This situation is common for growing
fractures. However, treatment of the integral in Equation 20 becomes important when a previously growing fracture
closes or some preexisting fractures are present.

The traction vector tF tN; tTð Þ is defined at the Gauss integration points and is evaluated using the return mapping
algorithm:

Compute gap function gN; gTð Þnþ1at the Gauss integration point:

Evaluate the normal traction :

tnþ1
N ¼ εNgnþ1

N :

(21a)

Compute a trial tangential traction predictor and evaluate the yield function :

ttrialT ¼ tnT þ εT gnþ1
T −gnT

� � ¼ εT gnþ1
T −gp;nT

� �
;

(21b)

Φtrial ¼ ttrialT

�� ��−F tnþ1
N

� �
: (21c)

If the yield condition;Φtrial≤0; is satisfied; then set

tnþ1
T ¼ ttrialT :

(21d)

Else iterate tnþ1
T ;Δλ
� �

:

gp;nþ1
T −gp;nT −Δλ

∂Φ
∂tT

¼ 0;
(21e)

Φ ¼ tnþ1
T

�� ��−F tnþ1
N

� � ¼ 0: (21f)

Here; tnþ1
T −εT gnþ1

T −gp;nþ1
T

� �
¼ 0: (21g)

http://wileyonlinelibrary.com
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Here, the indices (n+1) and (n) refer to the current and previous time steps, respectively, Δλ is the plastic multiplier,
and gpT is the irrecoverable tangential slip. The iterative procedure (21e‐21f) are similar to the return mapping algo-
rithm considered in other studies.49,50
3.3 | Evaluation of the SIF

We use the SIF KI as a fracture propagation criterion. There are a number of methods used in fracture mechanics to
evaluate KI. Simulations at the reservoir scale demand that the KI calculation procedure could be performed on a rea-
sonably coarse mesh with an acceptable accuracy.

The plain strain analytical solution for a local displacement field near a fracture tip couples material properties and
the SIF:

ux ¼ K I

G

ffiffiffiffiffiffi
r
2π

r
cosðθ=2Þ½1−2νþ sin2ðθ=2Þ�;

uy ¼ K I

G

ffiffiffiffiffiffi
r
2π

r
sinðθ=2Þ½2−2ν − cos2ðθ=2Þ�;

(22)

where G is the shear modulus, r is the distance from the fracture tip, ν is the Poisson ratio, and θ is the angle estimated
from the plane in front of the fracture tip. Inverting (22) for KI and taking θ=π, such that displacements along the frac-
ture surface are evaluated, yield an expression for KI. Applying a similar procedure on the set of equations written in
terms of KII yields an expression for KII:

KI ¼
ffiffiffiffiffiffi
2π
r

r
Guy

2ð1−νÞ;

KII ¼
ffiffiffiffiffiffi
2π
r

r
Gux

2ð1−νÞ:
(23)

The proposed formulas cannot be directly used in numerical implementation since an exact value of KI and KII is
undefined when r is 0. Therefore, an estimation of SIFs from the closest to the tip element would give an erroneous
number. To directly use a definition of SIF, Fu et al51 suggested an empirical procedure to calculate a correction factor
based on a mesh topology and an element size. The procedure directly applies the analytical expression to calculate SIF
at the element connected to the fracture tip yet multiplies the calculated value by a correction value to eliminate the
numerical error. Chan et al52 proposed the Displacement Extrapolation Technique (DET), where values of K∗

I are
approximated at some distance r from the fracture tip inwards the fracture. Then, a range of K∗

I values, not affected
by the tip interference, is identified. A final value of KI is then obtained by extrapolating the K∗

I toward the fracture
tip based on the previously defined range. The DET is schematically shown in Figure 4.

The described algorithm perfectly works for 2‐D straight fractures. However, its 3‐D extension is not trivial. An alter-
native algorithm is based on the Virtual Crack Closure Technique method. This method uses only local information
near the fracture tip and is suitable for 3‐D simulations.53 The method is based on the energy balance proposed by
Irwin, and its extensive overview and calculation procedures are performed by Krueger.54 For testing purposes, both
methods were implemented and tested in our numerical framework.
3.4 | Solution algorithm

The solution procedure, presented in this section, contains several key steps. First, we solve the mass, energy, and
momentum balance equations using the Newton iterations. On each iteration, we evaluate the SIF at the fracture tip.
Finally, we update the fracture trajectory and mesh parameters if it is necessary and continue iterations. In this proce-
dure, we consider a single growing fracture Γfa and closed fractures Γfp . We directly apply the return mapping algorithm
equations (21a‐21f) to evaluate stress values on the closed fractures. We assume that Γfa extends from its tip, and
branching is not allowed. If the fracturing condition is satisfied, then the selected face is added into Γfa , and it obtains
a new status. The fracture status allows us to distinguish active fracture faces (all the faces on fracture surfaces Γfa ),
assign a conductivity calculation law, and track its trajectory.



h/2 5h/2 9h/2 13h/2 17h/2 21h/2

Distance from the fracture tip inwards

K
* I

K*
I
 FEM approximation

K*
I
 extrapolation line

Extrapolated K
I

FIGURE 4 Illustration of the Displacement Extrapolation Technique. K∗
I are evaluated at the centers of the fracture segments. Left

extreme of the plot is the center of the element closest to the fracture tip. Distance inwards the fracture increases from left to right

[Colour figure can be viewed at wileyonlinelibrary.com]
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The details of the algorithm are given in Appendix B. The proposed algorithm requires modification of an existing
nonlinear procedure for the solution of an extended DFM model34 and includes detection of opening and closing events
of the growing fracture, an additional procedure for pressure stabilization on nonlinear iterations, and an adjusted con-
vergence criterion. It is necessary to mention that the developed algorithm works for closed fractures without limitation
yet demands one growing fracture that does not intersect other fractures. The approach can be extended for multiple
growing fractures; however, modeling of interaction between them still requires additional efforts.
4 | MODEL VALIDATION

In this section, we validate the developed framework against a semianalytical solution proposed by Koning.6 We con-
sider several test cases, which include different types of injection scenarios. First, we test a scenario where injected
and reservoir fluids have the same properties. Second, we consider injection of water into a reservoir containing oil,
which is the most common scenario in practice. It is distinguished by the development of a separation interface between
two fluids known as a waterfront. This example contains favorable (sharp waterfront) and unfavorable (smeared front)
types of displacement. Third, we study how temperature of an injected fluid affects fracture evolution. Finally, we inves-
tigate the effects of mesh resolution, time step size, and mesh irregularity along the fracture path.

Koning6 considered a simplified formulation for a decoupled problem and used a total compressibility of the porous
medium. To satisfy the Koning formulation, we consider incompressible fluids for all the test cases and use the follow-
ing equation for porosity change:

ϕ ¼ ϕ0 þ Cp;r p−p0ð Þ−βT;r T−T0ð Þ; (23)

where Cp,r and βT,r are the rock compressibility and volumetric rock thermal expansion coefficient.
4.1 | Model geometry, boundary, and initial conditions

The considered model contains a reservoir with an initial fracture. We simulate only half of the domain because of a
given symmetry of the problem. The model size is 300 m in the Y direction and 150 m in the X direction. The corre-
sponding unstructured grid is shown in Figure 5(C). This grid has a predefined fracture propagation line and a refine-
ment along it.

The reservoir is modeled as a 3‐D plate with a unit thickness. The illustration of the domain size and boundary con-
ditions for a flow problem can be seen in Figure 5(A). We apply no flow boundary conditions on the left side of the
model and a constant pressure value pr at the radius Rr. The initial reservoir pressure equals pinit.

http://wileyonlinelibrary.com


(A) (B) (C)

FIGURE 5 The model used for simulations. Flow (A) and mechanics (B) problems boundary and initial conditions. C, Unstructured grid
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A schematic view of mechanical boundary conditions is given in Figure 5(B). The upper and lower boundaries are
loaded by the stress σh, and the right boundary is loaded by σH. The initial conditions for the mechanical problem are
defined by the stress state, which complies with the boundary conditions (σh and σH). The symmetry condition for
mechanics is applied by fixing displacements in the X direction on the left boundary. To exclude the rigid body motion,
we fix a single‐node displacement in the Y direction.

Fluid is injected into the existing fracture with the initial length L0 under a constant rate Q. This leads to accumu-
lation of pressure and following fracture extension. Analytical derivation of the solution is given in Appendix A and is
used for validation of numerical results.
4.2 | Single‐phase fluid flow

First, we consider a fracture growing due to injection of a single‐phase fluid (water) into the reservoir. Properties of the
porous medium, fluid, and fracture, used in the current model, are given in Table 1. The pressure profile across the
domain in the beginning and the end of propagation is shown in Figure 6.

Development of the fracture length and pressure inside the fracture as function of time can be seen in Figure 7.
Numerical fracture length, given in Figure 7(A), has a good match with the analytical solution. Both curves coincide in
terms of fracture initiation time and its length during the growth stage. When the pressure front reaches the pressure
boundary, the analytical curve flattens (t > 6·10−2day). The difference between the final length in the numerical and ana-
lytical solutions is caused by certain simplifications used in the semianalytical solution. Indeed, the solution given by
Koning6 assumes constant reservoir pressure after the pressure wave reaches the boundary. In contrast, the numerical
model captures the effect of further pressure change, and, consequently, the fracture keeps growing. When the pressure
solution becomes stationary (t> 1·10−1 day), fracture growth stops. Nevertheless, the numerical solution fairly reproduces
the analytical solution within its applicability range.

Pressure, normalized over minimum horizontal stress σh, is given in Figure 7(B). There is a close fit between two
curves in the validity range of the analytical solution. During the initial pressure buildup (t < 4·10−3day), pressure in
the fracture accumulates above the sum of minimum horizontal stress σh and pressure‐induced stress Δσp. Less pressure
is needed for the fracture to grow when it becomes longer (see Appendix A).

It is important to point that normalized pressure is always higher than one or higher than the initial stress σh, which
indicates a buildup of pressure‐induced stresses Δσp (see Figure 7B). Similar observations were obtained by Carrier and
Granet55 and Salimzadeh et al.56 These authors demonstrated the important impact of pressure‐induced stresses on the
dynamics of growing fractures.



(A) (B)

FIGURE 6 Pressure profile (A) before

and (B) after fracture growth [Colour

figure can be viewed at wileyonlinelibrary.

com]

TABLE 1 Properties used in the single‐phase simulation

Property Value

Reservoir drainage radius Rr, m 100

Initial fracture length L0, m 5

Stress in the X direction σH, MPa −30

Stress in the Y direction σh, MPa −25

Initial reservoir pressure pinit, MPa 18

Reservoir pressure at the drainage radius pr, MPa 18

Porosity ϕ 0.3

Permeability k, mD 25

Fracture conductivity cf, mD · m ∞

Biot coefficient α 1

Young modulus E, GPa 50

Poisson ratio ν 0.25

Rock compressibility Cp,r, 1/Pa 1·10−10

Water density ρw, kg/m
3 1000

Water viscosity μw, cP 1

Injection rate (into a half‐fracture) Q, m3/day 30
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4.3 | Favorable displacement

In this section, we consider a multiphase flow problem. In this model, we inject water into an oil‐filled reservoir, which
is commonly done during secondary oil recovery operations. This scenario leads to a development of a separation inter-
face between two fluid phases (waterfront). Whether a waterfront is sharp (“favorable” or “piston‐like” displacement) or
smeared (“unfavorable” displacement) strongly depends on the ratio between relative mobilities of the two fluids. The
adopted semianalytical solution was derived for a favorable fluid displacement and constant relative permeabilities of
each phase krw and kro within flooded and displaced zones. To match the numerical and analytical solutions, we chose
fluid parameters properly to approximate favorable displacement type. The fluid properties are given in Table 2.
Resulting mobility ratio M ≤ 1 allows oil to flow with the same or even higher velocity than water, which leads to
the favorable displacement scenario. In contrast, mobility ratio M ≥ 1 leads to a faster water flow. As before, we use
incompressible fluids and set the rock compressibility Cp,r equal to 1·10−10 1/Pa.

The numerically obtained fracture length (Figure 8A) has a perfect match with the analytical solution during pri-
mary fracture growth. At this stage, the main driver of the fracture propagation is pressure growth inside the reservoir,
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TABLE 2 Properties used in multiphase simulations

Phase parameter

Favorable displacement Unfavorable displacement

IF DF IF DF

Viscosity μj, cP 0.5 1.0 0.5 1.0

Density ρj, kg/m
3 1000 850 1000 850

Endpoint relative permeability krj 0.3 0.7 1.0 1.0

Irreducible saturation Si 0 0 0 0

Corey exponent 1 1 1 1

Mobility ratio M 0.85 2.0

Abbreviations: IF, injected fluid; DF, displaced fluid.
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FIGURE 7 Development of (A) the fracture length and (B) pressure in the numerical model compared with the semianalytical solution.

The numerical model has an average mesh size equal to 1.0 m. The time step dynamically changes from 1·10−5 to 1·10−2 day. Results for the

fracture length and pressure are normalized by the radius of the reservoir Rr and minimum horizontal stress σh accordingly [Colour figure

can be viewed at wileyonlinelibrary.com]
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FIGURE 8 A, Comparison between the numerical and analytical solutions for the fracture length normalized over the distance to the

aquifer, LD=L/Rr, in conditions of the favorable multiphase flow. Numerically obtained length matches the analytical solution during the

primary growth stage and has the same increase rate during the secondary stage. B, Comparison between the numerical and analytical

solutions for pressure normalized over minimum horizontal stress, pD=p/σh. Two curves differ in the early‐time stage owing to the limited

validity of the analytical solution. Both solutions indicate similar fracture growth initiation time, after which pressure decreases as the

fracture keeps opening [Colour figure can be viewed at wileyonlinelibrary.com]
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which is almost 100% filled by oil. When a pressure signal reaches the boundary Rr, the analytical solution “freezes”
(as in the previous example) while the numerical solution keeps developing, as it accounts for the residual compressibil-
ity of the fluid.
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The secondary fracture growth is caused by expansion of the flooded zone. In the case of favorable displacement, the
injected fluid is less mobile than the displaced one. To displace the larger volume of the less mobile fluid, the fracture
has to extend. Expansion of the flooded zone leads to the further fracture growth. The rate of the secondary fracture
growth is the same in the numerical and analytical solutions.

Bottom hole pressure change is shown in Figure 8(B). At the moment t=0, the normalized pressure is equal to the
normalized initial reservoir pressure of 0.72 (it is normalized by the horizontal stress σh). This value is not shown in the
figure owing to the logarithmic timescale. While two solutions differ in the early‐time stage because of the limited appli-
cability of the analytical model, there is a fair agreement in the late‐time stage. It includes pressure break time due to
fracture growth initiation as well as further pressure decrease due to fracture opening and growth. The pressure behav-
ior is similar to the single‐phase case.
4.4 | Unfavorable displacement

In the unfavorable displacement regime, more mobile water is injected into less mobile oil, which leads to smearing of
the water saturation profile. While the piston‐like displacement assumption, adopted for the analytical solution, does
not hold anymore, the numerical model can realistically reproduce both the saturation front and the pressure profile
of the unfavorable oil displacement.

Results of the simulation and its comparison with the analytical solution are presented in Figure 9. Primary fracture
growth, shown in Figure 9(A), is caused by the initial pressure buildup across the domain. In the second stage, expan-
sion of the zone flooded with a more mobile fluid leads to the gradual fracture closure. As a smaller fracture length is
needed to displace more mobile fluid, the fracture shortens. Both the numerical and analytical curves capture this clos-
ing behavior. A moderate difference between two solutions during the initial pressure growth can be seen in Figure 9
(B). Further, the fracture starts to close because of the expansion of the flooded zone and the difference between two
solutions becomes more pronounced. Both solutions qualitatively provide similar results, yet only the numerical solu-
tion is accurate since the analytical model uses simplified assumptions. This example illustrates the ability of the devel-
oped numerical model to reproduce a fracture closure phenomenon, also observed during laboratory experiments.57,58
4.5 | Fracture growth due to cooling

In the previous examples, the effect of temperature‐induced stresses was ignored. Injected fluid had the same temper-
ature as the reservoir. In the current section, we consider the effect of cooling. Fluid and porous skeleton parameters,
used in the following test, are given in Table 3. We use the same skeleton properties as before, yet adding tempera-
ture‐related parameters (see Table 3 for details). A higher rock compressibility (see Table 3) was used to delay the pres-
sure‐induced stress change and to exaggerate the thermally induced stresses. The main purpose of this section is to
demonstrate the effect of the temperature‐induced stresses on the fracture growing process.
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FIGURE 9 A, Comparison between the numerical and analytical solutions for the normalized fracture length, LD=L/Rr, in conditions of

unfavorable multiphase flow. Length development profiles have similar behavior during the primary and secondary stages. B, Comparison

between the numerical and analytical solutions for normalized pressure, pD=p/σh. Pressure profiles have similar behavior during the primary

fracture growth [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 Properties used in the thermal simulation

Property Value

Reservoir drainage radius Rres, m 100

Initial fracture length L0, m 5

Stress in the X direction σH, MPa −62

Stress in the Y direction σh, MPa −57

Initial reservoir pressure pinit, MPa 50

Pressure on the drainage radius pR, MPa 50

Initial reservoir temperature Tinit, K 373.15

Rock compressibility Cp,r, 1/Pa 1·10−8

Rock thermal expansion βT,r, 1/K 2.1·10−6

Specific heat capacity Cv,s, kJ/(kg K) 0.78

Thermal conductivity Ks, kJ/(m day K) 0

Fluid thermal expansion coefficient CT,j, 1/K 0

Viscosity μj, cP 1

Specific heat capacity Cv,j, kJ/(kg K) 4.185

Thermal conductivity Kj, kJ/(m day K) 0

Injected fluid temperature Tinj, K 323.15

GALLYAMOV ET AL. 1457
We apply the no‐flow boundary condition on the left side of the model and the constant pressure value pR=50 MPa
at the radius Rres=100 m. The initial reservoir pressure is pinit=50MPa. The upper and lower boundaries are loaded by
the stress σh=−57 MPa, and the right boundary is loaded by σH=−62 MPa. Symmetry conditions for mechanics are
applied by fixing displacements in the X direction on the left boundary. For simplicity, the thermal domain has a
zero‐heat flow condition on its external boundaries.

As shown in Appendix A, the semianalytical solution for stresses induced by pressure and temperature is based on
the assumption of a zero‐heat conduction. To reproduce a similar setup in our numerical model, the thermal conduc-
tivity is taken zero for both the skeleton and the fluid. Reduction of the effective stresses, necessary for the fracture
to grow, at first, happens because of the thermal contraction of the skeleton rather than high fluid pressure inside. Later,
further contribution of the fracture pressure and the poroelastic effect increases and adds to the thermoelastic driver.
After that, the fracture continues growing because of both pressure and temperature effects.

The analytical solution for the fracture pressure and length can be seen in Figure 10. Skeleton shrinkage due to
cooling leads to a reduction of the bottom hole pressure, necessary for the fracture to grow. This effect can be clearly
seen when comparing analytical pressure curves with and without temperature contribution (Figure 10B). A similar
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FIGURE 10 Comparison between numerical and analytical solutions of (A) normalized length, LD=L/Rres, and (B) normalized pressure

inside the fracture, pD=p/σh, in the thermal simulation. The numerical solution 1 is obtained by the Displacement Extrapolation

Technique and the numerical solution 2 by the Virtual Crack Closure Technique [Colour figure can be viewed at wileyonlinelibrary.com]
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behavior can be observed in the length‐vs‐time plot in Figure 10(A). The “cold” fracture starts growing earlier than the
isothermal one. When the latter detains, the “cold” fracture keeps growing because of the strong thermoelastic effects.
The effect of thermoelasticity is particularly revealing itself in the different timing of the fracture growth initiation and
is perfectly captured by the numerical model.

As discussed in Section 3.3, our numerical framework supports two methods of SIF evaluation: the Displacement Extrap-
olation Technique52 and the Virtual Crack Closure Technique.53 The first method uses a sequence of displacement values
along a fracture surface and extrapolates KI toward the fracture tip. The second method uses only local information at the
tip. A comparison of results obtained using two differentmethods is shown in Figure 10. It demonstrates that within the devel-
oped model the Displacement Extrapolation Techinque and the Virtual Crack Closure Technique provide similar results.
4.6 | Mesh refinement study

The following step in the model verification is testing the effects of the selected model parameters on the results. Such
parameters are the mesh size and the characteristic time step. Both tests are done based on the single‐phase setup.
Parameters are given in Table 1 unless indicated otherwise.

To evaluate the effect of the mesh size on the resulting solution, a mesh refinement study was conducted. Simula-
tions were performed with 4 meshes. They differ in size of the elements along the fracture path. The following sizes
were used: 0.25, 0.5, 1.0, and 2.0 m. The elements along the fracture path are the smallest in the whole domain. The
element size gradually increases toward the boundaries of the model (see Figure 5C). The maximum size of the ele-
ments adjoining the external boundary is constant for all simulations and equals to 20.0 m. The maximum time step
in this study was limited to 1·10−3 days. Figure 11(A) shows the effect of mesh size on the fracture length. Curves
obtained for the meshes with minimum sizes of 0.25 and 0.5 m are in fair agreement with each other and with the ana-
lytical curve. Results for the larger mesh sizes slightly outrun the analytical solution. This happens because the waiting
time between 2 subsequent openings of larger fracture segments also becomes larger. To have a close fit between
numerical and analytical solutions, the size of the elements adjoining the fracture should be kept below 1.0 m in the
parameter space of the problem.

Figure 11(B) shows the variation of the bottom hole pressure for four mesh sizes. Coarser meshes display higher
jumps in pressure upon the opening of each segment. For denser meshes, these jumps are less noticeable as the volume
of a newly opened fracture segment that has to be filled with a fluid is smaller.
4.7 | Time step size effect

In this section, we consider the time step effect on the solution for pressure and fracture length. The following simula-
tions were performed on the same model previously used (single‐phase setup) with an average mesh size equal to 0.5 m.
Every simulation is conducted with a constant time step. The range of used time steps varies between the smallest one of
1·10−3 day and the largest one of 0.1 day.
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FIGURE 11 A, Fracture length comparison with a maximum time step equal to 1·10−3 day. Increase of an average mesh size makes the

numerical fracture outrun its analytical counterpart. Solutions obtained with the average mesh sizes of 0.25 and 0.5 m fit the analytical solution.

B, Bottom hole pressure comparison. The curve for the larger mesh size exhibits higher pressure jumps upon opening of new fracture segments.

Pressure curves corresponding to denser meshes demonstrate smoother behavior [Colour figure can be viewed at wileyonlinelibrary.com]
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We plot the length of the fracture for different time steps in Figure 12(A). Small time steps match the analytical solu-
tion very well and bigger time steps lead to a delay in fracture growth. Irrespective of the time step used, all solutions
yield the same final fracture length. In addition, irrespective of the chosen time step, all curves have the same rate incre-
ment during the active fracture growth.

Figure 12(B) shows variation of the bottom hole pressure for solutions obtained with different time steps. All the
solutions exhibit similar height of fluctuations as they were obtained on the same mesh. However, the width of these
fluctuations varies for different time steps. The use of a larger time step also leads to a slight underestimation of the bot-
tom hole pressure during the initial stage of the pressure accumulation.

Analysis of both plots led to the conclusion that, to capture fracture growth accurately, the time step size should be
sufficiently small. The absence of the evaluation points during the pressure growth stage may cause delays in length and
pressure profiles. However, the differences in length are not significant and provide a reasonable approximation even at
the largest time step used.
4.8 | Effect of the mesh irregularity

In the previous examples, the fracture is growing along the horizontal line, defined by the grid geometry. In the current
subsection, we perform several tests where no such a predefined path exists. Fracture growth is stimulated in four geom-
etries with different mesh sizes. They are 0.25, 0.5, 1.0, and 2.0 m. All the simulations are performed with an adaptive
time step starting with 1·10−5 day and ending with 5·10−3day. Resulting fracture geometries are given in Figure 13.
Development of the fracture length and bottom hole pressure is shown in Figure 14.

From the analysis of Figure 13, we see that for a denser mesh (red line), fracture trajectory is almost straight. For
coarser meshes, the fracture paths' irregularity is more pronounced. However, in all the simulations, fractures are fol-
lowing the most straight paths possible. In Figure 14(A), the large mesh size (green line) has the larger deviation from
the analytical solution. The rest of the mesh resolutions (0.2, 0.5, and 1.0 m) give solutions very close to the analytical
curve. Bottom hole pressure change, given in Figure 14(B), leads to a similar conclusion. The bottom hole pressure has a
larger error for a coarser mesh.
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FIGURE 12 The normalized fracture length (A) and pressure comparison (B) in the time step refinement study for the model with an

average mesh size equal to 0.5 m. An increase of the time step leads to a slight delay of the fracture growth. Irrespective of the time step

size, the final fracture length and incremental rate are similar for all the simulations. The length and pressure curves obtained with the

smallest time step size (1·10−3 day) have the best match with the analytical curve in its validity range [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 13 Fracture paths for

geometries with no horizontal line in front

of the initial fracture (resolutions: red line,

0.25 m; black line, 0.5 m; blue line, 1.0 m;

and green line, 2.0 m) [Colour figure can

be viewed at wileyonlinelibrary.com]
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FIGURE 14 A, Comparison of the fracture lengths in time for meshes without a perfectly horizontal path. The largest mesh size shows an

overshoot in length and nonsmooth growth in time. Denser meshes have better agreement with the analytical curve. B, Pressure development

curves. A solution obtained on a larger mesh size exhibits higher pressure fluctuations upon opening of new segments [Colour figure can be

viewed at wileyonlinelibrary.com]
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The performed study demonstrates the applicability of the proposed algorithm for the class of problems with irreg-
ular unstructured grids. Additional tests including sensitivity to the initial fracture length, volume of inactive fracture
elements, compressibility of the fluids, and turning fractures were conducted as well but are omitted here for brevity.
Full description can be found in the MSc thesis by Gallyamov.59
5 | PRACTICAL APPLICATION

The purpose of this chapter is to demonstrate the applicability of the developed model to some practical tasks. The spe-
cific problem solved here is modeling hydraulic fracture growth during waterflooding operations within a classic injec-
tion pattern. The waterflooding operation aims to increase recovery of hydrocarbons by their displacement with injected
water. Different injection patterns may be used. Here, we consider one of the most common ones ‐ the inverted 9‐spot.
This injection pattern is a specific design of a reservoir development plan, where water is injected into a well
surrounded by 8 producing wells. A schematic representation of the pattern is given in Figure 15(A). It is adopted in
many oil & gas fields worldwide due to its high extraction rates and the coverage ratio.

An example of a successful use of 9 spots is the Priobskoye field in Western Siberia, Russia. The field is the second
largest field by the amount of geological reserves in Russia, after the Samotlorskoye field. It has a low‐permeability
(A) (B)

FIGURE 15 A, Inverted 9‐spot injection pattern and direction of principal stresses. B, Simulated part of the pattern with the boundary

conditions for the mechanical part [Colour figure can be viewed at wileyonlinelibrary.com]
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porous matrix, and the hydraulic fracturing is widely used to accelerate the production. A typical stimulated fracture
half‐length is around 100 to 150 m. However, when the water injection process begins, the induced fractures continue
to grow owing to waterflooding. The half‐length of these extended fractures may reach 350 to 400 m. This can lead to an
early water breakthrough at production wells. A comparison of well test results performed in the years 2004 and 2008
verified the assumption that water injection causes fracturing.60 To illustrate the effect of the early water
breakthrough and demonstrate growth of induced fractures, we consider the coupled geomechanical model for the
following problem setup.
5.1 | Model description

Here, we model induced fracture behavior in the section of the injection pattern. The considered region is denoted by the
dashed line (see Figure 15A). Because of the symmetry of the pattern, the modeled section comprises one injecting and
three producing wells. Induced hydraulic fractures are oriented in the direction perpendicular to the minimum horizontal
stress σh with a small deviation of ±8°. The length of the induced fractures is approximately 200 to 300 m. To simplify gen-
eration of the model input, boundaries of the region are co‐oriented with the direction of principal stresses. The consid-
ered domain and its boundary conditions for the mechanical problem are given in Figure 15(B). To reduce the size of the
discrete model, only a half‐space is modeled. The symmetrical boundary condition is imposed at x = 0 m. The computa-
tional domain is defined by Ω=[900×920×1m]. The mesh with an average size of an element equal to 10 m in the center
and 100 m toward the boundaries is used. The matrix is discretized using 9990 prismatic elements and 10 052 vertices.
The fractures are discretized using 11 695 rectangles. The total number of control volumes is 21 685.

Initial conditions for the mechanical part correspond to the stresses applied at the boundaries. The flow domain is
surrounded by the impermeable boundaries. The fluid is injected at the rate of Qinj. Recovery is ensured by extracting oil
from three wells with the production rate of Qext=Qinj/3 each. Since the model is 2‐D and the numerical domain has a
third dimension equal to 1 m, injection flow rates are given per unit height of the reservoir, and the used unit of cubic
meter per day corresponds to each meter of the reservoir thickness. The conductivity of the fracture segments is sensi-
tive to the stress field. Values corresponding to the Barnett Shale were adopted from Zhang et al.61 They are shown as a
function of the normal traction and the aperture in Figure 16. The curve on the left is plotted against the fracture aper-
ture, while the right part is plotted against the normal traction acting on a fracture surface. The reduction of the stresses
on the fracture surface and following opening of the fracture leads to increase in its conductivity. Properties of the res-
ervoir, injected and extracted fluids and the operational parameters are given in Table 4.
5.2 | Results

We consider two typical waterflooding scenarios. The first one is characterized by the absence of induced fracture
when the injection flow rate is relatively low. The second one is induction of the fracture growth by injection of
water at a high rate. Even for the noninduced fracture case, including the geomechanical calculation makes a
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TABLE 4 Parameters used in numerical simulations

Property Value

Porosity ϕ 0.2

Permeability k, mD 5

Density ρs, kg/m
3 2500

Biot coefficient α 1

Young modulus E, GPa 20

Poisson ratio ν 0.25

Rock compressibility Cr, 1/Pa 1·10−10

Fracture toughness KIc, Pa
ffiffiffiffiffi
m

p
30·105

Oil density ρo, kg/m
3 1000

Water density ρw, kg/m
3 1000

Oil viscosity μo, cP 0.5

Water viscosity μw, cP 0.2

Oil compressibility Cp,o, 1/Pa 5·10−10

Water compressibility Cp,w, 1/Pa 4·10−10

Endpoint relative permeability of oil kro 0.8

Endpoint relative permeability of water krw 0.8

Mobility ratio M 2.5

Initial reservoir pressure pinit, MPa 20.0

Stress in the X direction σH, MPa −38.6

Stress in the Y direction σh, MPa −36.0

Initial oil saturation so 0.75

Initial water saturation sw 0.25

Irreducible oil saturation soi 0.1
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significant impact on the results. It allows predicting conductivity changes of fractures and a porous medium owing
to change of stresses.

The nonpropagating fracture response was observed in the numerical simulations with water injection rates of
Qinj=5, 7, and 9 m3/day. The resulting pressure and water saturation profiles after three years of injection of
Qinj=9 m3/day are shown in Figure 17. Pressure growth along the hydraulic fracture connected to the injection well
is much more pronounced than the pressure drop in producers. The reason behind this phenomenon is the aperture‐
dependent fracture conductivity. As the injection well tends to open up the fracture, its conductivity increases. In con-
trast, production wells reduce the pressure in their surroundings, which leads to an increase of the normal traction. As a
result, conductivity of fractures at producing wells reduces. The waterfront, explicitly visible in Figure 17(B), still does
not reach any of the producing wells after three years.

Different waterflooding responses, with growing hydraulic fracture, were observed in simulations with injection
rates of Qinj=14, 21, and 28 m3/day. Pressure and water saturation profiles for simulation with Qinj=21 m3/day after
three years are shown in Figure 18. In comparison with the previous case, pressure and water saturation fronts
advanced on a larger distance owing to a conductive path, created by the fracture, and the higher value of the injection
rate. It can also be seen that the waterfront reaches all producing wells.

Bottom hole pressure, normalized over the minimum horizontal stress σh, is given in Figure 19(A). To compare typ-
ical behavior irrespective of time, the variables are plotted against the volume of injected water normalized by the
drained pore volume, Vinjw/Vpor. The ratio Vinjw/Vpor shows the fraction of the available pore volume already displaced
by water and serves as an indicator of waterflooding progress. Pressure curves for nongrowing fractures (5, 7, and 9 m3/
day) stay below similar curves for growing fracture cases (14, 21, and 28 m3/day) throughout the whole simulation time.
The critical pressure value, after which the fracture starts growing, is found in between these two sets. In the growing



FIGURE 18 Pressure (A) and water

saturation (B) profiles across the domain

in the simulation with Qinj=21 m3/day

after 3 years. Water front, larger owing to

the extended fracture, reaches producing

wells causing water break through [Colour
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FIGURE 17 Pressure (A) and water

saturation (B) profiles across the domain

in the simulation with Qinj=9 m
3/day after

3 years. No pronounced water break at the

producing wells is observed [Colour figure

can be viewed at wileyonlinelibrary.com]
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fracture cases, pressure increases above the critical stress, which makes fracture propagation possible. Unlike the non-
growing fracture case, the pressure profile for the growing fracture case has fluctuations associated with opening of new
fracture segments. The fracture with the initial length of 1/4W (W is the shortest distance between two neighboring
wells) develops a length larger than W.
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Fracture length changes for three simulations are shown in Figure 19(B). The figure reveals that the growth rate is
directly dependent on the injection rate. Similarly to pressure behavior, the most intensive fracture growth happens dur-
ing displacement of the first 2% of the total pore volume. Assessment of Figure 19(A,B) shows that, although the bottom
hole pressure profiles at the injector are very similar during the fracture growth, the corresponding lengths are different.
During the waterflooding operation, controlling only the injection pressure is not sufficient for having control over the
induced fracture length.

Water production as a function of time is shown in Figure 20(A). Higher injection rates lead to an earlier water break-
through. However, the efficiency of the waterflooding operation cannot be evaluated based on Figure 20(A). For this pur-
pose, Figure 20(B) is introduced. It shows the volume of produced water with respect to the volume of injected water
Vprodw/Vinjw. When fracture is not induced, the water production curve is the same for all of the flow rates (5, 7, and
9 m3/day). In contrast, the growing fracture changes the waterflooding performance. In this particular case, development
of the hydraulic fracture with Qinj=14m

3/day leads to a more effective operation and later water breakthrough than in the
case with the nongrowing fracture. However, a further increase of the injection rate leads to an earlier water break.

Evolution of the fracture conductivity during the waterflooding process is given in Figure 21 and correlated with the
pressure at the adjacent production well. The averaged conductivity of the fracture at the producing well Prod2 is nor-
malized over its initial (undisturbed) conductivity, CfD=Cf/Cf0, and plotted against the injected volume of water normal-
ized over the pore volume. After 1% of the total pore volume is displaced (Vinjw/Vpor=0.01 or 56 days), the conductivity
drops down to 0.7Cf0 but further recovers and almost doubles. This behavior is caused by the initial pressure drop
around the producing well followed by the pressure increase due to the arrival of the pressure signal from the injector.

http://wileyonlinelibrary.com
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The normal traction profile along the fracture surface is plotted in Figure 21. It is normalized over the effective mini-
mum horizontal stress tND=tN/σ′y. Reduction of pressure leads to a higher normal traction on the fracture (see
Figure 21(B) at time=56 days) and reduces its conductivity. Increase of pressure, in contrast, reduces the normal trac-
tion and lets the fluid flow faster within the fracture (see Figure 21(B) at time=1080 days).

As can be seen from the last example, dynamics of the induced fracture can significantly change the efficiency of the
waterflooding operations. With limited fracture propagation, the sweep efficiency can be enhanced, which leads to a
higher oil recovery factor. However, when the propagation is too fast, the efficiency drops because of faster water break-
through to the production wells. This process is highly nonlinear and involves complex interactions between the propagat-
ing and existing fractures. In the presence of large uncertainties in reservoir properties, a fully coupled simulation of the
entire process is extremely important to achieve a better production strategy.
6 | CONCLUDING REMARKS

A model that allows simulation of the fracture growth in the waterflooding process is proposed in this study. The model
consists of the contact‐enriched finite elementmethod formechanics and the finite‐volume based Discrete FractureModel
approach for flow. To simulate the fracturing process, Irwin's fracturing criterion for linear elastic failure of mode I is
adopted. Two methods of Stress Intensity Factor KI estimation are implemented within the AD‐GPRS framework.
In the first approach, KI is calculated using the Displacement Extrapolation Technique, where KI values are extrapolated
toward the fracture tip. In the second approach, the Virtual Crack Closure Technique is used as an alternative. Maximum
tangential tensional effective stress values are used to determine a preferable fracture direction.

The solution algorithm involves simultaneous solution of the flow, energy, and mechanics equations. The Stress
Intensity Factor is evaluated at each nonlinear step, and fracture trajectory is updated when KI reaches the critical value.
A fracture trajectory follows the existing faces of the computational grid. Only faces connected to a fracture tip can be
activated or deactivated. Activated faces are added to the fracture trajectory. On the basis of the selected solution strat-
egy, the face activation algorithm is performed on each nonlinear iteration. Alternatively, this strategy can be combined
with other criteria for fracture propagation.

Several validation tests were performed where the results are compared against the available semianalytical solu-
tions. The test cases include fracture propagation in a porous medium with single‐ or multi‐phase fluids. Obtained
results are in a full compliance with the analytical solution. Another test case is devoted to an injection of cold fluid into
a hot reservoir. Cooling of the reservoir by injected water leads to the shrinkage of porous medium. Resulting tensional
stresses around the initial fracture facilitate its further propagation. Comparison of the numerical and analytical results
confirmed accuracy of the proposed model in capturing thermoelastic effects.

In addition, the proposed model was tested in a realistic field application. A segment of an inverted 9‐spot injection
pattern is simulated with different injection and production rates. Fracture growth rate and its final length show strong
dependence on the injection rate. Limited fracture propagation may improve the efficiency of waterflooding operations.
However, when propagation is too fast owing to the higher rate, efficiency may drop owing to faster breakthrough of
water to production wells.
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APPENDIX A

SEMIANALYTICAL SOLUTION

The following semianalytical solution for fracture length is used. It consists of solutions for pressure and stresses and a
fracture propagation criterion. The semianalytical solution for the pressure distribution was developed by Koning.6

First, the elliptical coordinate system is used:

x ¼ Lcoshξcosη;

x ¼ Lsinhξsinη;
(A1)

where L is the fracture length, ξ is the ellipse number starting from the smallest, and η is the direction angle. Further, a
solution for the steady‐state pressure profile surrounding an infinite conductivity fracture derived by Muskat62 was used:

ΔpðξÞ ¼ Qμ
2πkh

ln
ae þ be

L
−ξ

� 	
; (A2)

where q is the injection flow, μ is the fluid viscosity, k is the absolute permeability, h is the fracture thickness, and ae and be
are the semiaxes of an area influenced by the change in pressure. It is assumed that the pressure penetration front moves
radially outward with respect to the slowly growing fracture. This allows us to define an effective time‐dependent exterior
radius as follows:

ReðtÞ ¼ 1:5
ffiffiffiffi
ηt

p
; (A3)

where η is the fluid diffusivity. After Equation A3 is substituted into Equation A2, the following equation for pressure dis-
tribution in the late‐time regime is obtained:

ΔpðξÞ ¼ Qμ
2πkh

ln
3
ffiffiffiffi
ηt

p
L

−ξ
� 	

: (A4)

Koning6 modified this equation to account for different fluid properties in three domains surrounding the fracture:
(1) cold water zone, (2) warm water zone, and (3) oil zone. Pressure distribution in the near‐fracture (cold water) zone is
described in the following way:

pðξ; tÞ ¼ pR þ
Q
2πh

1
λc

ln
ac þ bc

L
−ξ

� 	
þ 1
λw

ln
aw þ bw
ac þ bc

þ 1
λoil

ln
3
ffiffiffiffiffiffiffiffi
ηoilt

p
aw þ bw


 �
; (A5)

where λc, λw, and λoil are the fluid mobilities for cold, warm, and oil zones, respectively, and ai and bi with i=c, w, oil are
the major and minor semiaxes of these zones.

A simple analytical solution have been derived for the SIF from stresses at infinity is used. It is rewritten in terms of
pressures and stresses:

pf−σ0−ΔσP−ΔσT ¼ KIcffiffiffiffiffiffi
πL

p ; (A6)

where pf is the pressure inside the fracture, σ0 is the far‐field total stress perpendicular to the fracture face, ΔσP and ΔσT
are the induced stresses on the fracture face caused by pressure and temperature changes in the vicinity of the fracture.
Next, analytical solutions have been derived for the pressure‐ and temperature‐induced stresses, which for the 2‐D case
can be written as

https://doi.org/10.1002/nag.2797
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ΔσP ¼ 1
2
Ap½pðξ ¼ 0Þ−pR�−Ap

Q
4πh

1
λc

bc
ac þ bc

þ λc
λw

bw
aw þ bw

−
bc

ac þ bc

� 	
þ λc
λoil

1
2
−

bf
af þ bf

� 	
 �
; (A7)

where Ap is the poroelastic constant, related to Biot coefficient α through Ap ¼ 1−2ν
1−ν

α.

Expression for the pressure‐ and temperature‐induced stresses is based on the study by Perkins and Gonzalez,63 who
proposed an empirical fit to numerical simulations:

ΔσT ¼ AT Tc−Toilð Þ bc
ac þ bc

þ ac
ac þ bc

·
1

1þ 1=2·½1:45ðh=2bcÞ0:9 þ 0:35ðh=2bcÞ2�½1þ ðbc=acÞ0:774�

" #
; (A8)

where AT is the thermoelastic constant, related to the linear thermal expansion coefficient β through AT=Eβ/(1−ν).
Equation A8 is based on the assumption of the elliptic shape of the fracture cross section. When this assumption is
adopted for the 2‐D scenario, fracture height h is taken equal to infinity. That makes the second term in the brackets
to vanish. When obtaining Equation A8, authors ignored heat conduction, making heat convection the only energy flow
mechanism. Equation A6 with Equations A5, A7, and A8 forms a set of semianalytical equations used for benchmarking
of the developed numerical model.
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APPENDIX B

NONLINEAR SOLUTION PROCEDURE


