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Abstract

This thesis utilizes Evolutionary Algorithms (EAs) within the BRIGHT framework for developing breast
cancer brachytherapy treatment plans. We use expert knowledge and state-of-the-art EAs to formulate
treatment planning as a multi-objective optimization problem whose solutions can be applied to actual
patients. We propose four novel 2- and 3-objective formulations of this problem, which we implement
within BRIGHT and empirically validate against anonymized data from 9 real-world patient cases. We
demonstrate that all four formulations, under reasonable computational and time budgets, are capable
of generating plans that match or exceed the properties of reference treatment plans. To verify the
clinical relevance of our contributions, we rely on the expertise of a clinical expert who assesses whether
the generated plans can be used in clinical treatment planning. The results of our empirical analysis
show that 17 of the 18 plans presented to the expert are clinically acceptable and of immediate value
to practitioners within the field of breast brachytherapy today.
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1
Introduction

This research employs Artificial Intelligence (AI), and more specifically, Evolutionary Algorithms (EAs),
to optimize treatment plans for patients undergoing partial breast irradiation (PBI). By leveraging the
adaptive and robust nature of EAs, we can explore a vast solution space to identify the most effective
treatment plan configurations. This integration of EAs in breast brachytherapy (BT) can enhance the
efficiency and efficacy of radiation therapy by providing personalized treatment plans that improve
patient outcomes and reduce the risk of complications [1].

This chapter builds up to the research questions that we seek to address within this work. To
motivate this study, we begin by introducing how clinicians treat breast cancer and why brachytherapy
is an appealing solution for treatments. Following this, we describe the conditions a treatment plan
must meet to be clinically relevant. Finally, we explain how we aim to advance the state-of-the-art
through automated EA plan generation.

1.1. Breast cancer and possible treatments
Breast cancer is a prevalent and potentially life-threatening condition characterized by the uncontrolled
growth of cells in the breast tissue [2]. Effective treatment of breast cancer often requires amulti-faceted
approach tailored to the specific characteristics of the tumor and the patient’s overall health [3]. The
primary treatment options for breast cancer include surgery, chemotherapy, radiation therapy, hormone
therapy, and targeted therapy, each playing a critical role in managing the disease [3].

Surgery is often the first line of defense. It can involve either a lumpectomy, where only the tumor
and a small margin of surrounding tissue are removed, or a mastectomy, which involves the removal
of one or both breasts. Post-surgical treatments typically include radiation therapy and chemotherapy
to eliminate any remaining cancer cells and reduce the risk of recurrence [3].

Radiation therapy is a key component of breast cancer treatment, delivered in various forms to
maximize efficacy. External Beam Radiation Therapy (EBRT) is the most common modality, using
high-energy X-rays or protons to target the tumor site while sparing surrounding healthy tissue [4]. In-
traoperative Radiation Therapy (IORT) directly provides a single, concentrated dose of radiation to the
tumor bed during surgery, effectively targeting residual cancer cells and reducing the need for pro-
longed postoperative treatment [4]. Brachytherapy, an internal radiation technique, plays a particularly
significant role in partial breast irradiation, where the goal is to concentrate the radiation dose on the tu-
mor while sparing surrounding healthy tissue. By placing radioactive sources directly within or near the
tumor, brachytherapy allows for precise dose delivery, reduced treatment times, and a highly localized
therapeutic effect. It is particularly effective for Accelerated Partial Breast Irradiation (APBI) and can be
delivered in different dose rates, such as low-dose rate (LDR) or high-dose rate (HDR) forms. The real-
world application we tackle in this study concerns APBI with interstitial multi-catheter brachytherapy
(IMB). Studies, such as the Phase III multicenter trial comparing interstitial brachytherapy with exter-
nal beam radiation therapy, have demonstrated the efficacy of brachytherapy in providing comparable
local control and reduced toxicity [5]. This approach minimizes the risk of damage to adjacent tissues
and organs while enhancing patient convenience [6, 7].

Chemotherapy is another key modality, employing cytotoxic drugs to target rapidly dividing cancer
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1.2. Treatment for brachytherapy patients in the clinic 2

cells. It can be administered as neoadjuvant therapy to shrink tumors before surgery, as adjuvant
therapy to eliminate residual cancer cells after surgery, or as palliative therapy to reduce symptoms
in advanced stages. Chemotherapy is typically delivered intravenously or orally and often involves
combinations of drugs to improve efficacy and reduce the risk of resistance [8].

Among these treatment options, brachytherapy stands out for its precision and effectiveness, partic-
ularly when enhanced with automated treatment planning. This research focuses on optimizing breast
brachytherapy using EAs to create individualized treatment plans. By leveraging EAs, this approach en-
ables comprehensive exploration of potential treatment configurations, ensuring each patient receives
a plan suited to their unique tumor characteristics and reducing potential toxicities.

Before delving into the details of how EAs generate suitable treatment plans, we first describe the
status quo of formulating treatment plans and the criteria such plans must meet before being applied
in the clinic.

1.2. Treatment for brachytherapy patients in the clinic
To better understand the problem, we discern two primary components of the brachytherapy treatment
in the clinic: treatment planning and delivery. The treatment planning consists of a series of steps:
the delineation of tumors and organs at risk (OARs) using imaging modalities such as CT and/or MRI,
reconstruction of applicators and catheters, and dose calculation and computation of dose-volume
histograms (DVHs) [9].

Advanced planning tools and algorithms are employed to delineate the breast volumes, reconstruct
the applicators, and accurately predict dose distributions. Effective planning for breast brachytherapy
is essential in clinical settings to ensure that the target area receives a uniform and adequate dose
while reducing the risk of radiation-induced side effects. Such tools become invaluable in reducing the
delay between imaging and treatment delivery [9].

The treatment planning process involves creating detailed clinical plans that specify radioactive
sources’ optimal placement and delivery time. These plans are designed to achieve precise dose
distributions that concentrate the therapeutic dose on the tumor site and create steep dose gradients
to protect nearby organs and tissues, such as the skin, lungs, and heart. The placements and delivery
times are named dwell positions and dwell times, respectively. There are different fixed dwell positions
in each of the inserted catheters, and, within one treatment, the longer the radioactive source resides
at a position, the more dose is delivered at that site. Thus, treatment planning entails finding the best
possible set of dwell times for each dwell position.

1.2.1. Clinical acceptance
For a treatment plan to be applied in the clinic, it must meet stringent clinical acceptance criteria, which
are critical to ensuring the efficacy and safety of the treatment. These criteria include several Dose Vol-
ume Indices (DVIs), also called dose-volume histogram parameters, specific to breast APBI. Key DVIs
encompass the coverage of the target volume (typically defined as the area of the tumor with a margin)
by the prescribed dose, ensuring that a sufficient dose is delivered to the entire tumor region. Addition-
ally, it is crucial to limit the maximum dose to critical and healthy structures, such as the skin, chest wall,
and underlying organs, to minimize the risk of radiation damage and associated complications [10].

Homogeneity within the target volume is another critical factor for clinical acceptance. Dose homo-
geneity ensures that the radiation is evenly distributed throughout the tumor, reducing the risk of both
underdosing (which can lead to ineffective treatment) and overdosing (which can cause unnecessary
damage to healthy tissues). The formation of large blobs of high radiation doses, named hotspots, can
commonly cause tissue damage. This research applies hotspot registration techniques while target-
ing reducing their volume during optimization. Furthermore, achieving homogeneity involves carefully
balancing the radiation dose across the tumor volume, often requiring iterative adjustments during
treatment plan optimization.

Clinical acceptance also involves evaluating the treatment plan against established protocols and
guidelines, such as those provided by the American Brachytherapy Society (ABS) [10, 11] and other
professional organizations. These guidelines offer benchmarks for acceptable dose distributions, crit-
ical structure sparing, and overall treatment quality. By adhering to these standards, clinicians can
ensure that the treatment plans not only meet the technical requirements but also provide the best pos-
sible therapeutic outcomes for patients, maximizing the effectiveness of the treatment while minimizing
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risks. In what follows, we formalize the procedure of automatically generating clinically acceptable PBI
treatment plans through evolutionary optimization and formulate the main research questions we seek
to answer in this thesis.

1.3. Problem statement
The complexity of creating optimal treatment plans for PBI poses significant challenges due to the in-
tricate interdependencies between numerous variables, including tumor size, location, patient-specific
anatomical considerations, and catheter placement.

Current manual and semi-automated planning methods often fall short of fully exploring the vast
solution space, potentially leading to suboptimal treatment configurations. These limitations can result
in less effective radiation delivery, higher risk of complications, and overall diminished therapeutic out-
comes. There is a critical need for advanced methodologies to enhance the speed, efficiency, and
personalization of treatment plans in breast brachytherapy.

This research addresses this gap by employing AI, specifically EAs, to optimize treatment plans
for patients undergoing PBI. Treatment planning is a nuanced problem in which clinicians attempt to
balance the conflicting objectives of delivering sufficient doses of radiation to cancer tissues while si-
multaneously sparing surrounding healthy organs. This makes treatment planning an inherently multi-
objective (MO) problem. The motivation behind choosing EAs for treatment planning stems from over
3 decades of research showing that EAs are practical tools for solving such MO problems [12]. EAs
are well-suited for this task due to their adaptive and robust nature, which allows for extensive ex-
ploration and exploitation of the solution space. Based on a state-of-the-art EA, we employ BRIGHT
(“BRachytherapy via artificial Intelligent GOMEA-Heuristic based Treatment planning”) to generate ra-
diation therapy treatment plans. By integrating BRIGHT into the planning process, this study aims to
identify the most effective treatment configurations, thereby enhancing the accuracy and efficacy of ra-
diation therapy. The ultimate goal is to provide personalized treatment plans that significantly improve
patient outcomes, shorten treatment times, and reduce the risk of complications, advancing the field of
breast cancer treatment.

1.4. Research questions
To address the current problems in breast brachytherapy treatment planning, this research focuses on
three main research questions:

Research questions

RQ1. How can we use BRIGHT for breast brachytherapy treatment planning?
RQ2. How do core parameter settings influence BRIGHT brachytherapy treatment planning out-

comes?
RQ3. How do clinical experts judge the breast brachytherapy treatment plans optimized with

BRIGHT?

Before addressing these research questions in detail, we first provide the necessary background
context in Chapter 2. In Chapter 3, we divide each question into subquestions and present our method-
ology for addressing each subquestion. Chapter 4 displays the results of our empirical study on clinical
patients in various optimization settings. Chapter 5 summarizes the research and discusses its most
insightful findings. Finally, Chapter 6 concludes this work.



2
Background

To optimize radiation therapy treatment plans, radiation oncologists must dedicate significant time and
effort to configuring dwell positions and times accurately. These parameters are critical for delivering
precise and effective doses to the target areas while minimizing exposure to surrounding healthy tissues
and organs at risk. This process is both time-intensive and complex in clinical practice, requiring the
integration of anatomical, pathological, and dosimetric considerations [9, 13].

This chapter introduces the foundation on which we built our solution. We introduce the metrics that
serve as bases for optimization criteria that evaluate the quality of generated plans. We follow this with
an introduction of how EAs, and, more specifically, their multi-objective variants, can use these metrics
to evolve clinically relevant treatment plans. Finally, we highlight one particular feature of treatment
plans that current EAs struggle with, which we aim to improve in this work.

2.1. Automated Treatment Planning in the Clinic
This section outlines the clinical practices and aims within breast brachytherapy shared by our clinical
expert. We define the breast target organs and the OARs and finally describe the DVIs accounted for
during the treatment planning in the clinic.

2.1.1. Current Clinical Practice
In the clinic, following the catheter implants, CT scans of the patients are taken. Further, catheters are
reconstructed within the Varian BrachyVision System, and ROIs are contoured. While some standard
ROIs are automatically generated, others require separate delineations or adjustments. Experts create
the so-called ring structure, a restricted volume of healthy tissue surrounding the CTVs to guide the
optimizer. We define this region more rigorously in the following chapter. The clinical plans are obtained
through dose calculation and optimization using Varian BrachyVision. The radiation source used during
treatment is GammaMed Ir192 HDR Plus, Varian.

2.1.2. Breast Targets and OARs
The clinical target volumes (CTVs) for breast brachytherapy are designed to encompass the tumor bed
with appropriate margins for microscopic disease spread. Various studies support the definition of the
CTV as the normal breast tissue within 1–2 cm from the lumpectomy cavity edge limited by breast
tissue extent [10, 14, 15, 16, 17]. Two primary target volumes are considered:

• Clinical Target Volume (CTV) at 1 cm (CTV1cm): This target volume includes the tumor bed with
a 1 cm margin to ensure the prescribed dose covers the area at risk of harboring microscopic
disease.

• Clinical Target Volume (CTV) at 1.5 cm (CTV1.5cm): This extended target volume encompasses
the tumor bed with a 1.5 cm margin, accounting for potential microscopic disease spread beyond
the immediate vicinity of the tumor bed.

It is critical to protect organs at risk from excessive radiation exposure to minimize potential compli-
cations. The primary OARs considered in this study include the skin, chest wall/pectoralis, lung, and
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heart. Protecting the skin is essential to avoid radiation-induced dermatitis and ulceration [18]. The
chest wall and pectoralis muscles need protection to prevent pain and functional impairment. Mini-
mizing radiation exposure to the lungs reduces the risk of radiation pneumonitis. Similarly, avoiding
excessive radiation to the heart is crucial to prevent cardiotoxicity, particularly in cases of left-sided
breast cancer [10]. To this end, in clinical practice, experts create a ring structure that margins the
target volumes. The ring becomes an effective technique for sufficiently constraining the dose to a
prescribed volume, which in turn protects the OARs that fall outside the ring [11].

2.1.3. Clinical Aims and DVIs
Dose-volume indices (DVI) are essential metrics in evaluating the effectiveness of the brachytherapy
treatment plan. The primary target of DVIs is ensuring that the tumor receives a dose sufficient to
achieve therapeutic effectiveness while maintaining the doses to OARs within acceptable limits [9].

DVIs are metrics used to quantify the volume of a target or OAR receiving a specific radiation dose.
As we further describe in more detail in Section 3.2, Vx is the volume percentage of the target or OAR
receiving at least x% of the prescribed dose. Dx is the most irradiated x% of the target or OAR volume.
The essential aims that make up our experts’ clinical protocol are the following:

• V CTV1cm
95 > 95%;

• V CTV1.5cm
90 > 90%;

• Minimize V150 and V200 for the breast tissue;
• Constrain the PD not to exceed the so-called ring structure.

The experts we consulted minimize the V breast
150 and V breast

200 in combination with the coverage targets
as a proxy for the Dose Homogeneity Index (DHI) in Equation 2.1.

DHIorgan = 1.0− V organ
150

V organ
100

(2.1)

Experts can only calculate the DHI and assess the plan’s clinical suitability after the optimization
process has concluded. Through practical experience and joint research, experts have observed that
maximizing the DHI reduces the chance of late toxicities. To this end, they have learned how to use
their available optimization methods best to gauge this metric [19].

Regarding organs at risk, the most effective way found by the experts to spare the surrounding
organs to the target is to create a ring structure around the CTV1.5cm [10]. They constrain the dose
outside this ring to be less than the prescription dose.

2.2. Evolutionary Algorithms
Before delving into techniques that can help increase the quality of care patients receive in the clinic, we
first need to establish an adequate framework to express them. Fundamentally, the problem of finding
optimal treatment plans is a mathematical optimization problem. The scope of the problem encom-
passes solutions (treatment plans) that aim to treat the area affected by cancer while simultaneously
minimizing damage to surrounding organs. To aid clinicians in finding adequate solutions, we require
a strategy that is able to automatically explore the space of possible solutions and uncover high-quality
plans. Over the years, researchers have developed many ways of tackling such problems, ranging
from algorithms that consider inverse planning methods [13, 20] to more sophisticated methods that
exploit the underpinning properties of optimization such as simulated annealing, linear programming
and mixed integer linear programming [21, 22], and evolutionary algorithms [23]. Among these numer-
ous options, we focus on one particularly promising paradigm inspired by nature itself – evolutionary
algorithms (EAs).

EAs are computational methods inspired by the principles of natural selection and genetic evolu-
tion. These algorithms mimic nature’s evolutionary biological processes, such as selection, crossover,
and mutation. Through this process, EAs evolve a population of candidate solutions toward optimal
individuals for complex problems. While EAs are rooted in biological inspiration, state-of-the-art EAs in-
corporate advanced techniques from fields such as statistical inference to enhance their performance.
In this thesis, we focus on such a subclass of EAs that leverages statistical methods in its recombi-
nation operator. These methods involve estimating probability distributions over subsets of solution
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variables, allowing for a more refined and efficient search of the solution space. This choice is moti-
vated by recent research showing that this method works particularly well for the treatment planning
problem [24]. We employ EAs through BRIGHT to automatically create a set of qualitative treatment
plans for each patient, from which the clinical experts can select their preferred plan [19]. BRIGHT and
EAs have also previously proven effective for prostate and cervix brachytherapy applications [25, 26],
being clinically introduced at the Amsterdam University Medical Centers (Amsterdam UMC, location
Academic Medical Center) for prostate cancer patients [25]. This work seeks to advance its application
to breast cancer treatment.

2.2.1. GOMEA
Optimization strategies can be broadly categorized by the degree to which they exploit the underlying
problem’s structure. This taxonomy leads to three distinct cases. At one end of the spectrum, white-box
(WB) approaches require a complete understanding of the problem’s facets, which can be exploited
to generate better solutions. At the opposite end, black-box (BB) methods assume only a rudimentary
grasp of the problem and thus pose far less stringent constraints. Nestled between the two extremes
is the class of so-called gray-box (GB) methods, where distinct components of the problem’s structure
can be separately exploited without requiring a whole (often untractable) model.

One of the leading advancements in this field is the Gene-Pool Optimal Mixing Evolutionary Algo-
rithm (GOMEA). GOMEA introduces an innovative GB approach to recombination, focusing on mixing
genes from a pool of solutions to create offspring that inherit statistically successful traits from their
parents. In this case, the gray-box categorization stems from a statistical model that is inferred based
on outstanding individuals in the population. In addition, the realization of the GOMEA framework is
flexible and allows for the inclusion of domain-specific knowledge into its linkage model data structure.

The gene-pool optimal mixing routine [27] is performed for each solution in the population as a
standalone variation operator and works as follows. Each solution is first cloned into an identical copy.
Then, following a model of variable correlation called a linkage model, different sets of variables are
iteratively considered. For each set, GOM selects a parent at random from the previous population
and swaps the selected variables of the offspring with that of the donor. Based on whether the change
of variables improves the quality of the solution, GOM either accepts or discards the swap. Though
GOM alone does not guarantee solution convergence [27], further auxiliary enhancements such as
Forced Improvement (FI) can provide this property [28]. Overall, GOM enhances the exploration and
exploitation capabilities of the algorithm, making it particularly powerful for solving complex optimization
problems with intricate variable dependencies.

In this work, we employ the Multi-Objective Real-Valued Gene-Pool Optimal Mixing Evolutionary
Algorithm (MO-RV-GOMEA) [24], a state-of-the-art algorithm that targets multi-objective problems, es-
timating probability distributions over subsets of solution variables and exploiting interdependencies
between them. We describe multi-objective real-valued optimization and MO-RV-GOMEA in further
detail in Section 2.2.2.

2.2.2. Multi-Objective Optimization
Multi-objective (MO) optimization describes a class of mathematical optimization problems in which
multiple objective functions are to be optimized simultaneously. These problems arise in many areas
of science and engineering, where complex real-life problems can be modeled as multiple functions
with often conflicting objectives. Before surveying the landscape of EAs that target MO optimization,
we first establish the foundational properties of such problems.

Formally and without loss of generality, a multi-objective optimization problem can be formulated
as described by Equation 2.2. That is, the optimal solution(s) x belong(s) to the set of all possible
solutions X whose objective values are the real-valued vector f(x), where each position of the vector
is the numerical value of one objective. Naturally, for the problem to be multi-objective, the number of
objectives n ≥ 2.

min
x∈X

(fi(x)) , fi ∈ R. (2.2)

Unlike their single-objective counterparts, MO optimization problems seldom have a single solution
that simultaneously excels in all objectives. For this reason, the comparison of competing solutions
is often carried out in terms of Pareto dominance and Pareto (approximation) fronts. Given any two
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solutions x1 and x2, x1 is said to dominate x2 if and only if both cases of Equation 2.3 hold. More
intuitively, x1 dominates x2 if it is at least as good as x2 in all objectives and strictly better than x2

in at least one objective. A solution x ∈ X is said to be Pareto-optimal if and only if ∄x′ ∈ X such
that x′ dominates x. The set of all Pareto-optimal solutions is called the Pareto front or Pareto frontier.
Obtaining a good approximation of this set is most often the goal of MO optimization strategies.{

∀i ∈ {1, . . . , n}, fi(x1) ≤ fi(x2),

∃i ∈ {1, . . . , n}, fi(x1) < fi(x2).
(2.3)

Over the years, several multi-objective evolutionary algorithms have emerged that exploit problem
knowledge differently. Discrete optimization MOEAs include NSGA-II [29] and MO-GOMEA [30], while
MAMaLGaM [31] addresses continuous optimization. More recently, Bouter et al. [24] have introduced
MO-RV-GOMEA, an extension of the discrete MO-GOMEA that adapts elements of prior algorithms to
better suit continuous optimization problems. We briefly describe the core attributes of MO-RV-GOMEA
before discussing the work of Bouter et al. [24].

2.2.3. Real-Valued Optimization
MO-RV-GOMEA [24] proceeds in a loop that consists of selection, clustering, model learning, and vari-
ation. Following a standard truncation selection procedure, solutions are bundled into distinct clusters
to improve the spread of individuals across the Pareto approximation front. The algorithm first es-
tablishes single-objective clusters that outwardly expand the scope of the Pareto approximation front
before heuristically selecting cluster centers that increase sparsity. After partitioning the population
into non-overlapping clusters, a Family of Subsets (FOS) linkage model is learned for each cluster. As-
signing models per cluster accounts for differences in the dependency structure of underlying problem
variables, which are likely to emerge in MO optimization. Once established, the linkage model serves
as a basis for variation. This borrows techniques for Estimation of Distribution Algorithms (EDAs) but
is tightly integrated into the GOM routine.

The RV-GOM step estimates a multivariate Gaussian distribution that provides samples, which are
the basis of a partial update to each solution in the cluster. Like MAMaLGaM [31], variation scaling
techniques control the rate at which solutions evolve. These mechanisms include adaptive variance
scaling and anticipated mean shifts. Finally, the algorithm includes a forced improvement mechanism
to update solutions that have not shown Pareto improvement in several generations. To achieve this,
MO-RV-GOMEA attempts to shift individuals towards the best solutions associated with their respective
clusters.

2.3. Automated Treatment Planning in BRIGHT
BRIGHT is an optimization tool developed to improve the quality and efficiency of brachytherapy treat-
ment planning. It uses a multi-objective real-valued evolutionary algorithm (MO-RV-GOMEA) to gener-
ate high-quality treatment plans that balance tumor coverage and sparing of healthy tissues [1].

The DVI aims concern both the target volumes and the organs at risk and are defined to ensure
adequate coverage and sparing. These aims are incorporated into the optimization model through the
BRIGHT objective functions to guide the generation of treatment plans. To determine the quality of a
plan, we define the Golden Corner – a specific region where all protocol aims are satisfied. Figure 2.1
illustrates the Golden Corner principle with a two-objective approximation front example.

The weights wc and ws are assigned to prioritize the most violated DVIs, ensuring that optimization
efforts focus on the most critical areas. The least violated DVI receives a weight of 1, and the weights
increase exponentially by a factor of 10 for consecutive violations, normalized between 0 and 1. The
optimization of the DVIs continues past the point when the aims are reached – the stopping criterion is
the time budget. Further optimizing the indices allows BRIGHT to improve the plan configurations as
much as possible within the computational budget.

2.3.1. Tumor Coverage
The first objective of BRIGHT is to ensure adequate tumor coverage. This is quantified using the Least
Coverage Index (LCI), which measures how well the dose covers the clinical target volumes. The LCI
for a plan p is defined as in Equation 2.4:
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Figure 2.1: Pareto approximation front example with two objectives: Least Coverage Index (LCI) and DHI (Dose Homogeneity
Index). We consider the plans with LCI>0.17 and DHI>0.86 to be in the Golden Corner.

LCIw(p) =
∑

a∈coverage aims

wcδc(DV Ia) (2.4)

where δc(DV Ia) represents the difference between the current dose-volume index value and its
target, and wc is the weight assigned to each coverage aim. The weights adapt during optimization
and are designed to prioritize the most violated DVIs, ensuring that optimization focuses on achieving
the necessary coverage.

2.3.2. Healthy Organ Sparing
The second objective focuses on sparing healthy organs from excessive radiation. This is quantified
using the Least Sparing Index (LSI), which measures how well the plan avoids unnecessary radiation
to OARs. The LSI for a plan p is defined as in Equation 2.5:

LSIw(p) =
∑

a∈sparing aims

wsδs(DV Ia) (2.5)

where δs(DV Ia) represents the difference between the current DVI value and its sparing aim, and
ws is the weight assigned to each sparing aim. Similar to the LCI, the weights are assigned to prioritize
the most violated DVIs, ensuring that the optimization also considers the sparing of healthy tissues.

2.4. Homogeneity in Treatment Planning
The distribution of radiation doses throughout the target organ can have significant consequences for
the patient’s well-being. To ensure that the risk of tissue damage is minimized, radiation delivery tech-
niques have to meet certain criteria. One such crucial criterion is homogeneity. Homogeneity refers to
how sharp the changes in radiation doses are between neighboring regions. Homogeneous treatment
plans deliver radiation in doses that resemble uniformity, with smooth transitions between close points.
By contrast, heterogeneous plans have sharp transitions between adjacent regions. These differences
lead to so-called hotspots. In this section, we elaborate on why homogeneous plans are important for
treatment plan quality and link their underlying properties to the underpinning evolutionary algorithm.

2.4.1. Challenges of Achieving Homogeneous Treatment Plans
Non-homogeneous treatment plans can lead to the formation of hotspots, which are contiguous regions
receiving excessively high radiation doses. Hotspots pose significant risks, including the potential for
radio-necrosis, where radiation irreversibly damages healthy tissue, which can result in severe side ef-
fects. For cancers such as prostate, the damage can result in bladder dysfunction [32], while for breast
cancer cases, radio necrosis can cause chronic pain, potentially difficult to manage, significantly im-
pacting the patient’s quality of life [33]. Long-term effects of breast radiation can lead to fibrosis, where
the breast tissue becomes stiff and less flexible. This can cause chronic pain and limit the movement
of the affected area [34]. Moreover, hotspots compromise the overall safety and effectiveness of the
treatment.
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Another challenge associated with heterogeneous treatment plans is their susceptibility to distur-
bances and uncertainties, such as patient movement, anatomical variations, and inaccuracies in catheter
placement or organ delineation. Heterogeneous plans with pronounced peaks and valleys in dose distri-
bution are more vulnerable to these uncertainties, potentially leading to suboptimal treatment outcomes
[35].

2.4.2. Current Optimization Techniques and Their Limitations
Traditional optimization techniques in HDR brachytherapy include manual adjustments and the use of
linear penalty models (LPMs) to optimize dwell times and positions of radioactive sources. Methods
like HIPO (hybrid inverse treatment planning optimization algorithm) [13] and IPSA (Inverse Planning
Simulated Annealing) [20] automate and improve the planning process [13, 20]. These methods aim to
meet clinical protocol objectives by achieving prescribed DVIs for target and healthy tissues. However,
these models use a simplification of the definition of DVIs since they use gradients. Therefore, they
do not directly optimize them. Furthermore, DVIs are aggregate measures that may not adequately
capture dose contiguity, leading to the potential formation of hotspots even in plans that meet DVI
criteria [36].

2.4.3. Contributions to Enhancing Homogeneity
Commandeur’s research [35] builds on BRIGHT by addressing treatment plan homogeneity. Comman-
deur discusses metrics such as the Hotspot Size Index (HSI) and the sum of extra V indices to measure
and reduce contiguous high-dose regions within treatment plans. By incorporating these metrics into
BRIGHT’s optimization process, Commandeur’s work aimed to generatemore homogeneous treatment
plans that minimize hotspots while adhering to clinical protocol goals.

To detect hotspots effectively, Commandeur developed a hotspot registration method based on con-
nected component analysis using the graph-based Afforest algorithm. This method identifies contigu-
ous high-dose regions (hotspots) by treating the dose distribution as a graph, where nodes represent
dose calculation points and edges represent dose contiguity.

The Afforest algorithm is a scalable, efficient method for detecting connected components in a graph.
Each dose calculation point (DCP) within the target and sparing volumes is considered a node in the
graph for hotspot registration. Edges between nodes are established based on spatial proximity and
dose levels, ensuring that nodes with high spatially close doses form a connected component. The
algorithm proceeds with initialization: each DCP is initially its own component. Further, random edges
are sampled and then processed to merge the connected components of the nodes they link. The
merging step involves iteratively uniting the nodes that share high dose values and are spatially close
into larger connected components. Once all relevant edges are processed, the remaining components
represent the hotspots.

This algorithm efficiently identifies large contiguous high-dose regions, enabling precise quantifica-
tion of hotspots. The Hotspot Size Index (HSI) is then calculated to guide the optimization process,
ensuring that the algorithm targets and mitigates these hotspots, leading to more homogeneous dose
distributions.

2.4.4. Broader Implications
The improvements in dose uniformity achieved through Commandeur’s work [35] have implications
beyond prostate HDR brachytherapy. Similar challenges in achieving dose uniformity exist in other
cancer treatments, such as breast brachytherapy. The techniques developed can also be adapted and
applied to improve treatment outcomes in these contexts.

Improving dose homogeneity in breast brachytherapy treatment plans is essential for maximizing
therapeutic effectiveness and minimizing adverse side effects. In this research, we adopt the same
hotspot detection algorithm and analyze its suitability for breast cancer treatment planning.



3
Research Method

Automated treatment planning in breast brachytherapy leverages algorithms to optimize the placement
and duration of radiation sources at given sites. The primary objective is to speed up the planning pro-
cess, potentially improve the dose distribution calculation, and finally speed up treatment time. These
goals concern clinicians, as their workflow can be eased and sped up, and patients, as the time spent
in a brachytherapy treatment setting is reduced, respectively.

While placement optimization can be done, and related research has explored catheter placement
optimization and dwell positions autoactivation [37, 38], this work focuses on an equally important and
complementary problem: duration optimization. This chapter outlines the steps necessary to apply
BRIGHT to the breast case to achieve these goals in a practical and advantageous way. We address the
overarching method in five steps. Firstly, we describe the anonymized patient data and the techniques
that prepare it for optimization in Section 3.1. Secondly, we report the clinical aims defined by the breast
protocols devised by clinical experts in Section 3.2. We use these targets to construct and adjust the
BRIGHT optimization functions to further optimize with GOMEA within BRIGHT. Third, we outline the
experimental setup employed to evaluate the results of applying BRIGHT to the breast case in Section
3.3. To prune the results GOMEA generates, we define a plan selection scheme that we use to reduce
the number of plans we analyze together with clinician experts in Section 3.4. Finally, we use the form
displayed in Section 3.5 to assess the clinical feasibility of the generated plans.

3.1. Data and Expert Knowledge
The data in this study consist of anonymized breast brachytherapy cases belonging to nine patients
with differing anatomical topologies. Each case pertains to a size category based on the breast volume
within the scan.

Each case receives a unique identifier based on case export time used throughout this study: p1, p2,
p3, p4, p5, p6, p7, p8, and p9 (Patients 1 through 9). The prescription dose used during the radiation
treatment for p1 is 4.3 Gy, while for all other patients, the prescription dose is 7.5 Gy.

We also note that Patient 8 and Patient 9 have suboptimal implant configurations, according to our
clinical expert. This observation suggests that their cases will be more challenging to optimize. Each
patient has associated CTV1cm and CTV1.5cm volumes and the number of dwell positions, which vary
significantly across the dataset. Table 3.1 shows the aforementioned metrics for each patient in our
dataset.

For CTV1cm, the median volume is 51.6 cm3, with a range of 73.1 cm3, spanning from 28.9 cm3

(Patient 3) to 102 cm3 (Patient 5). For CTV1.5cm, the median volume is 87.4 cm3, with a range of
110.6 cm3, spanning from 53.4 cm3 (Patient 3) to 164 cm3 (Patient 5). The number of dwell positions
also demonstrates variability, with a median of 134 positions and a range of 103 positions, spanning
from 87 (Patient 3) to 190 (Patient 5). The metrics highlight the differing tumor sizes, corresponding to
differing anatomical considerations and treatment complexities. Such diversity stresses the importance
of individualized treatment planning, which we enable with BRIGHT and describe in Section 3.2.

This research was conducted in collaboration with an expert fromVirginia Commonwealth University,
whose contribution covered evaluating breast brachytherapy treatment plans generated by BRIGHT.

10
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Table 3.1: Summary of CTV volumes and dwell positions for all patients.

Patient CTV1cm Volume CTV1.5cm Volume Number of Dwell Positions
Patient 1 95.1 cm3 138 cm3 175
Patient 2 37.4 cm3 69.1 cm3 102
Patient 3 28.9 cm3 53.4 cm3 87
Patient 4 51.6 cm3 87.4 cm3 111
Patient 5 102 cm3 164 cm3 190
Patient 6 58.2 cm3 99.5 cm3 134
Patient 7 50.4 cm3 87.1 cm3 144
Patient 8 59.4 cm3 92.6 cm3 143
Patient 9 42.1 cm3 77.1 cm3 102

The grounds for the evaluations are part of the experimental setup in Section 3.3.

3.2. Enabling BRIGHT to Optimize Breast Plans
This section addresses the first main research question: How canwe use BRIGHT for breast brachyther-
apy treatment planning?

Research questions

RQ1. How can we use BRIGHT for breast brachytherapy treatment planning?

RQ1.1. What particularities of the data should we account for prior to integrating with
BRIGHT? How is the dataset different from the other instances previously tackled
with BRIGHT?

RQ1.2. What steps are necessary to enable BRIGHT to generate treatment plans for breast
brachytherapy?

RQ1.3. How can we obtain clinically acceptable dose distributions using BRIGHT for breast?

RQ1.4. How can we obtain homogeneous dose distributions when optimizing with BRIGHT?

In the following subsections, we describe the implementation details and additions that help answer
the sub-questions and, ultimately, RQ1.

3.2.1. Defining the Breast ROIs
Different ROIs within the breast and surrounding organs are identified through high-resolution imaging
modalities, in this case, CT scans. These imaging techniques provide detailed anatomical data for
delineating the tumor bed and the surrounding critical structures.

Defining the Breast Targets and OARs
The clinical target volume is outlined with a margin, typically 1 to 1.5 centimeters, to ensure thorough
coverage of potential microscopic disease spread. For the breast case, the clinical aims concern the
(CTV1cm) and (CTV1.5cm), which we use as targets in BRIGHT. In the clinic, the dwell activation area is a
volume that identifies the region where dwell positions can be activated automatically in the BrachyVi-
sion system during planning. The activation area is necessary for the system’s optimizer to enable
dwells. However, BRIGHT does not directly require this structure to activate dwells. We initially allow
BRIGHT to consider all dwell positions as active. This approach works well for all patients except Pa-
tient 2, for whom a few dwell positions were activated too far from the target. To this end, we deactivate
certain dwell positions that exceed a certain margin from our breast ROIs.

Moreover, a ring structure is created around the activation area to protect OARs, such as the skin,
chest wall, and pectoralis. This ring acts as a buffer zone, constraining the radiation dose outside this
region to acceptable levels. As it has proven effective in clinical practice to ensure dose conformity, we
import this structure into BRIGHT.
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Defining the Breast Avoidance ROI
To answer RQ1.1, we note that the breast organ is significantly larger than other organs for which
BRIGHT has been previously used. An example of a significantly smaller organ BRIGHT has been
used to optimize plans for is the prostate [39]. The optimization relies on DVIs, which are:

• Do
v = dose index; the minimum dose received by the most irradiated sub-volume v of ROI o.

• V o
d = volume index; the sub-volume of ROI o that receives at least dose d.

To drive the optimization process, we utilize methods that can efficiently and accurately estimate
DVIs through sampling. This procedure works as follows. First, we discretize the ROI into a set of
randomly generated dose calculation (DC) points. These points are then subject to a Monte Carlo
sampling process that approximates the ROI and computes a vector of values D with entries di that
encode the total radiation dose received at the DC point with index i. We then link each discrete point
to the ROIs it belongs to, aggregating points into collections Do for each ROI o. We evenly divide the
sampled points across ROIs to avoid biasing particular regions. An exception to this is the avoidance
area ROI, which receives double the number of DCPs due to its larger size when computing its hotspot
volume. This choice allows more precise connected component analysis during the hotspot volume
calculations.

The discretization and sampling processes are crucial for estimating the radiation profile of the
solution. Based on the sampled points and their distribution between ROIs, we compute two values
describing this profile: the volume and dose indices.

Equation 3.1 defines the Volume Index (VI), with the S,O superscript indicating that the points are
sorted on dose. The VI of a given ROI is o is the fraction of DC points in ROI o that receives at least a
dose d. This quantity describes the degree to which the radiation covers the region, estimated on the
evenly sampled DC points.

V o
d =

∥{di ∈ Do|di ≥ d}∥
|Do|

(3.1)

Equation 3.2 describes the Dose Index (DI). Intuitively, the dose index tracks the minimum dose
received at any sampled set for a given ROI o. This metric indicates whether the amount of radiation
received by a specific ROI is appropriate, insufficient, or excessive.

Do
v =

dS,O
⌊(v/vo)⌋

PD
(3.2)

We define the breast avoidance region of interest to improve the optimization results and the com-
putational costs. The avoidance ROI structure is accomplished by merging the ring structure with the
dwell activation area. The merging process retains all relevant geometrical information, thus rigorously
delineating the avoidance area for subsequent optimization steps.

Integrating the contours of the activation area and the ring structure into a complete avoidance ROI
allows BRIGHT to focus the optimization efforts on regions of utmost importance without compromising
solution quality. This is possible as the metrics we compute across the avoidance region will be valid
for the entirety of the breast structure, thanks to the strict ring-sparing constraint. For instance, no
hotspots should occur within the breast outside the ring, as very high radiation doses should not pass
this delineation. Constraining the V100% within the ring would result in the dose outside of it being
too low for a point to be considered a hotspot. While this constraint is respected during optimization,
V100% within the ring slightly higher values can result after re-evaluation on more DCPs. We used a
limit of 1 cm3 to achieve values similar to those observed in clinical plans.

We introduce a margin to the ring and the avoidance ROI of 15cm to tackle the aforementioned
dwell activation outside of the avoidance ROI. This method allows for the deactivation of three dwell
positions deemed too far from the avoidance structure.

Another particularity of the breast data is its potential lack of breast delineations. In practice, this
makes the boundaries of the organ unclear and makes demarcation challenging. This observation
strengthens the necessity of the merged avoidance area since other means of determining the opti-
mization area can become very costly in computation efforts. For example, the optimization region
could be determined by computing the area between the skin organ and the pectoralis, which requires
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sampling dose calculation points across all mentioned structures. To circumvent the extra computa-
tion effort, we take advantage of the avoidance areas, which clinical experts generate routinely, unlike
breast delineations.

Furthermore, upon automatically generating the avoidance structures, experts follow up by adjusting
the structures so that the optimizer results match their expectations and goals best. This common
practice can introduce a lot of manual labor. For this reason, we also allow optimization aims to be
defined in terms of the unadjusted contours we have been provided with Patient 2.

3.2.2. BRIGHT Protocols for Breast
To address diverse clinical requirements, we define different protocols. These protocols determine the
treatment plan aims and can be standardized clinical constraints or consensus measures based on
expert groups’ recommendations such as the American Brachytherapy Society [10].

Such protocols vary in their approach to sparing certain regions and optimizing specific indices
such as V CTV1cm

95 . For instance, the protocol in Table 3.2 focuses on sparing the ring region while
optimizing the DHI, aiming to minimize radiation exposure to the ring structure and for a homogeneous
dose distribution within the target volume. Another protocol may prioritize optimizing the DHI without
specifically emphasizing sparing the ring region, focusing solely on achieving the most homogeneous
dose distribution possible.

Optimizing metrics other than DVIs in the clinic is not generally an option through the generic opti-
mizers embedded into the radiation machinery in clinically used treatment planning software. For this
reason, experts attempt to achieve the best DHI by proxy by maximizing the V 100% (i.e., the volume
receiving PD) in the target volume while minimizing V 150%, (i.e., the volume receiving 150% of the
PD). In BRIGHT, we can directly calculate and optimize the clinical goal metric, DHI, without needing a
proxy. We note that although promising, this scalarization approach is imperfect. One drawback of the
DHI is its limited capacity to capture nuanced problem details, such as spatial properties and structure.

The initial protocol aims used in BRIGHT for the breast experiments are as follows:

Targets (” > ”) Organs at risk (” < ”)

V CTV1cm
95 > 95% Dring

0.1 < 100%

V CTV1.5cm
90 > 90%

Table 3.2: Initial protocol used in the objective function calculations with a prescribed dose of 7.5 Gy (4.3 Gy for p1)

Targets (” > ”) Organs at risk (” < ”)

V CTV1cm
95 > 95% V ring

100 < 1cm3

V CTV1.5cm
90 > 90%

Table 3.3: Reworked protocol used in the objective function calculations with a prescribed dose of 7.5 Gy (4.3 Gy for p1). The
targets comprise the LCI objective, while the OARs comprise either a hard constraint or a third objective (LSI) during the

optimization. In addition, the second objective consists of either DHI or hotspot volume.

Following consultations with our clinical expert, we adjusted the OAR aim to constrain the volume
receiving V100% in the ring to 1cm3. Further iterations uncovered that this limit would vary across
patients, thus requiring a new approach to determine a reasonable bound. The protocol used in the
expert evaluation is shown in Table 3.3. The targets aid in computing the LCI objective, while the
OAR aids in computing the LSI objective or becomes a hard constraint based on the choice of 3- or
2-objective optimization (choice made when declaring the protocol).

3.2.3. Dose Homogeneity Index
A homogeneous dose distribution aims to prevent localized regions of excessive radiation that could
lead to increased toxicity. A homogeneous dose distribution in the context of radiation therapy, includ-
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ing breast brachytherapy, refers to the even distribution of the prescribed radiation dose throughout
the target volume. Ideally, the goal is to deliver a uniform dose to the tumor or treatment area while
protecting OARs.

The DHI objective aims to achieve dose homogeneity within the target area, which is essential
for avoiding hotspots that can lead to adverse side effects. For this purpose, we use the definition in
Equation 2.1. The goal is to maximize the DHI, with an ideal value of 1.0, indicating perfect homogeneity.
In practice, a DHI of 0.75 or higher is clinically acceptable, with values above 0.85 being preferred
according to clinical standards [10].

We follow the method of [40] and define two added targets in BRIGHT that allow for computing the
DHI: V avoid

100 and V avoid
150 . The avoid region of interest consists of the merged avoidance regions (the

dwell activation area and the ring structure).

3.2.4. Contiguous Volumes
While DHI provides a general assessment of dose uniformity, it may be insufficient in specific cases,
particularly for high-dose-rate brachytherapy in breast cancer treatment. The DHI treats dose variations
uniformly across the entire volume without considering the spatial arrangement of these dose variations.
This lack of spatial information makes assessing the clinical risks associated with the dose distribution
challenging. For instance, a plan with a high DHI might have an acceptable level of overall homogeneity.
However, it could still have small, intense hotspots near sensitive structures that have all of the high-
dose regions concentrated in close proximity, increasing the risk of tissue damage or necrosis. The
Contiguous Volume Analysis (CVA) method, as proposed by Commandeur [35], addresses this issue
by detecting connected high-dose regions (hotspots) and minimizing their size and volume, which the
DHI alone cannot account for.

We incorporated a previously developed hotspot volume detection algorithm into our optimization
process to minimize regions of excessive radiation dose within treatment plans. The algorithm is out-
lined in the pseudocode in Figure 3.1 and consists of two key stages: label initialization and connected
component analysis. The LabelInitialization stage (line 2) iterates over DCPs in a parallel fash-
ion and marks them with one of two labels. DCPs exceeding a predefined dose threshold for a given
OAR are labeled with their corresponding indices (line 9), while those that fall beneath the threshold are
marked with a placeholder value (e.g., −1 line 11), which establishes the initial identification of potential
hotspots based on radiation dose thresholds.

The connected component analysis stage takes place in the Afforest routine (line 14) and lever-
ages a parallelized union-find structure to group contiguous DCPs into clusters corresponding to distinct
hotspots. The algorithm efficiently identifies connected regions of excessive dose by iteratively merging
and compressing these labels across neighboring DCPs (lines 21, 28) bymeans of the FindAndCompress
procedure (lines 35-42). For each cluster, the volume of the hotspot is computed by summing the con-
tributions of all associated DCPs. Hotspots that meet a predefined minimum volume threshold (e.g.,
clinically significant regions larger than 0.1 cm3) are considered for further evaluation.

The hotspot volumes (HVs), or contiguous volumes (contVs), are then integrated into the treatment
plan optimization process in the objective function. Minimizing the HV during optimization incentivizes
the algorithm to reduce hotspot sizes while maintaining adequate dose coverage for the CTVs. Incor-
porating this algorithm allows the optimization framework to directly address dose homogeneity and
prioritize spatial properties of the dose distribution.

Managing the dose distribution within contiguous volumes around the target is essential to ensure
dose homogeneity and effective treatment. We employ the method from [35] to detect contiguous vol-
umes (contVs or HVs) of high doses through connected component analysis and hotspot detection as
shown in 3.1. We experiment with different minimum hotspot doses, lower bounds for hotspot volumes,
and factor edge length. The factor edge length requires a careful configuration, as this parameter can
influence what makes or breaks a hotspot. It is considered separately in an experiment from Appendix
B. In the given clinical setting, the minimum dose for considering hotspots for the breast case is gen-
erally 150% of the prescription dose. We further compare this heuristic to different contiguous volume
configurations in our experiments.
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Figure 3.1: Hotspot Detection method, taken from [35]. Used to calculate and minimize the hotspot volume during optimization
with BRIGHT.

3.3. Experimental Setup
This study uses a computational analysis approach to determine suitable parameter configurations for
BRIGHT. Additionally, it uses a clinical analysis approach to determine whether treatment plans created
by BRIGHT can be considered clinically acceptable. We describe the experimental setup in terms of
BRIGHT parameter settings and the chosen objective functions. This section’s goal is to address RQ2
and RQ3, for which we divide them into sub-questions:
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Research questions

RQ2. How do core parameter settings influence BRIGHT brachytherapy treatment planning out-
comes?

RQ2.1. How much optimization time do we need to obtain protocol-acceptable plans?
RQ2.2. How many DCPs do we need to obtain plans with accurate dose calculations?
RQ2.3. How do different optimization functions compare in terms of objective values and

protocol conformity?

The specifications of the servers used in our experiments are detailed in Table 3.4. 2O refers to the
server used for experiments with two objectives, while 3O refers to the server used for experiments
with three objectives.

Component Server 2O Server 3O

CPU Intel Xeon Bronze 3206R, 1.90 GHz, 16 cores Intel Xeon E5-2630 v4, 2.20 GHz, 20 cores

RAM 780 GB 1055 GB

GPU Model NVIDIA RTX A5000 NVIDIA TITAN X (Pascal)

GPU Memory 24564 MiB 12288 MiB

Driver Version 525.89.02 560.35.03

CUDA Version 12.0 12.6

Table 3.4: Hardware specifications of the servers used for the experiments.

3.3.1. Computational Experiments
BRIGHT utilizes several optimization parameters to achieve its aims effectively, including MO-RV-
GOMEA-specific and brachytherapy-specific parameters. A significant number of parameters are set
to the defaults in BRIGHT, while some have been varied or modified. These parameters include the
optimization time budget and the number of dose calculation points. When enabling the contiguous vol-
umes technique to minimize the hotspot volume, we vary the minimum hotspot dose, lower bound for
hotspot volumes, and the factor for the edge length. To test the robustness of the BRIGHT results, we
put the consistency of our resulting elitist solutions to the test. We run each experiment configuration
ten times to visualize the solution variance across the approximation front.

We analyze the solutions generated by BRIGHT using the different protocols and optimization func-
tions under various time constraints and illustrate the used settings in Table 3.5 and Table 3.6.

Optimization Time (s) DCPS
2O minV150 600 250k
2O DHI 30, 60, 180, 300, 600, 900 250k
3O DHI 30, 60, 180, 300, 600, 900 250k
2O contV 30, 60, 180, 300, 600, 900 10k, 20k, 50k, 100k, 200k, 250k, 300k
3O contV 30, 60, 180, 300, 600, 900 10k, 20k, 50k, 100k, 200k, 250k, 300k

Table 3.5: Optimization setup parameters: Time and DCPS for all optimization techniques.

Based on the results of the computational experiments, we choose the most suitable technique
(i.e., objectives and algorithm settings), which we employ in the following steps. We apply a selection
scheme so we can analyze our technique together with our experts.
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Optimization Min Hotspot Dose (%) LB Hotspot Volume (cc) Factor Edge Length
2O contV 110, 130, 150, 170, 200 0.05, 0.1, 0.2, 0.5 1, 2, 3, 5, 10
3O contV 110, 130, 150, 170, 200 0.05, 0.1, 0.2, 0.5 1, 2, 3, 5, 10

Table 3.6: Optimization setup parameters: Min Hotspot Dose, LB Hotspot Volume, and Factor Edge Length for contV
optimizations.

3.4. Plan Selection Scheme
To make the clinical analysis feasible, given the study time frame, we select plans based on predeter-
mined criteria. The plan selection scheme is divided into data processing, normalization, and visualiza-
tion steps, executed through a multi-threaded Python script.

The analysis is based on a randomly chosen run of BRIGHT given the selected optimization tech-
nique and setup parameters (in our case, 2-objective DHI and 3-objective contV, each using 250,000
DCPs and 600s). The clinical and BRIGHT output files are processed for a run, and the filenames
follow specific templates. The primary metrics used for analysis include the LCI and DHI, which reflect
the quality of each plan. The selection can be performed on any of the available objectives (LCI, LSI,
contV, DHI) or metrics such as V avoid

150 . These become the grounds of our selection method. The data
is then normalized to fall within the [0, 1] range, enabling direct comparison between the objectives and
the clinical and resulting plans. Once the data is loaded and normalized, each treatment plan is com-
pared against the clinical plan. Plans with better performance than the clinical plan are identified, and
the most balanced plan, representing the most balanced option within the better-than-clinical group, is
selected. Additionally, the plans at the extremes of the better-than-clinical group are extracted from the
results.

Firstly, we highlight three different plans based on their objective function values and balance be-
tween objectives. We focus the preselection on the area of plans better than the clinical plan in terms
of our optimization objectives. Thus, we filter on plans that dominate the clinical plan and extract the
following three plans:

• Highest LCI;
• Highest DHI or lowest contV;
• Most balanced dominating point (MBDP) in terms of all optimization objectives.

The third criterion is shown in Equation 3.3. It corresponds to the most balanced dominating point
and aims to maximize the improvement in terms of all optimization objectives to provide a reasonable
trade-off between them. Figure 3.2, with its highlighted plans, shows an example plot of a plan chosen
for clinical evaluation.

p = argmaxp∈{dominates clinical}(min (obj1(p), obj2(p), obj3(p)))
obj1(p) = LCI(p),

obj2(p) = DHI(p) or− contV (p) by choice of metric if minimizing contV, otherwise DHI(p),

obj3(p) = LSI(p) if 3-objective optimization, otherwise None

(3.3)

3.5. Clinical Acceptance
We perform an offline evaluation of two preselected BRIGHT plans for each patient to understand how
experts view the results obtained with BRIGHT and answer RQ3. We aim to know whether the BRIGHT
plans are viable solutions for clinical use and potential further feedback from a clinical standpoint.

Research questions

RQ3. How do clinical experts judge the breast brachytherapy treatment plans optimized with
BRIGHT?

To perform offline evaluations that uncover the expert opinions on the resulting treatment plans,
we compose a brief survey illustrated in Figure 3.3, based on the BRIGHT validation study for cervix
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Figure 3.2: Selection method example showing the clinical plan (CLIN), highest LCI, and most balanced dominating point
(MBDP), highlighted in yellow is the improvement over CLIN area (IoCLIN).

brachytherapy at Leiden University Medical Center (LUMC) for plan comparison.
We perform the first preselection phase to find the first set of plans (Plan 1) for all patients using

the 2O DHI technique (maximizing DHI and LCI). We consider this a suitable aim as it involves DHI
maximization, a measure of significant importance to clinical practice.

Following the first preselection phase, we discover that certain patients compromise too much on
homogeneity due to the hard constraint on the ring. This suggests we could further reduce ring sparing
in favor of homogeneity. Thus, adding the LSI objective can improve trade-offs between the clinical
aims. Having found an opportunity to optimize a third objective, we introduce the 3O DHI and 3O contV
techniques.

For the second preselection phase, we focus on the 3O contV technique. This approach aims to
reduce the ring sparing compared to the 2-objective approaches while minimizing the hotspot volume
within the avoidance ROI. In this case, we hypothesize that by using connected component analysis,
we can explore spatial structures and, ultimately, reduce hotspots.

Lastly, once we select the most balanced plan for the two chosen techniques, we take screenshots
of the BRIGHT interface. Each shared plan contains at least 10 and up to 50 screenshots of slices with
isodose lines, based on the number of slices per patient and the isodose line changes across slices
(i.e., very similar slices are omitted). Moreover, the screenshots contain the DVI tables within BRIGHT.
Across patients, we summarize the main DVIs in Table 4.1. Finally, our expert fills out each plan’s
questionnaires Figure 3.3.



3.5. Clinical Acceptance 19

BRIGHT validation study for BREAST BT at CWI:
Plan Evaluation

Plan Quality

The plan is satisfactory in terms of the DVH parameter values.

☐ ☐ ☐ ☐ ☐
Strongly
disagree

Disagree Neutral Agree Strongly
agree

Why?
Answer:

The plan is satisfactory in terms of homogeneity.

☐ ☐ ☐ ☐ ☐
Strongly
disagree

Disagree Neutral Agree Strongly
agree

Why?

Answer:

Is the plan clinically acceptable?
☐ yes ☐ no

If not, why?

Answer:

If you like, please share any unaddressed feedback:

Answer:

Figure 3.3: BRIGHT validation study questionnaire for plan evaluation. Based on the BRIGHT validation study for cervix
brachytherapy at LUMC



4
Results

This chapter showcases the results of our experimental analysis of two MO optimization setups for
nine different patients. Sections 4.2 and 4.1 each describe two optimization setups that use 2 and 3
objectives, respectively. The former is primarily concerned with optimizing DHI, while the latter sub-
stitutes it for contV. Section 4.3 describes the criteria we employed to pick individual plans from the
Pareto approximation front generated by the EA. Finally, Section 4.4 summarizes our clinical expert’s
feedback for the selected plans. Based on the analysis and the expert’s feedback, we make general
recommendations in Chapter 5.

4.1. Experimental Results for DHI
In this section, we present the results of the optimization experiments focused on maximizing the DHI
and maximizing the LCI. In this scenario, we employ DHI with the expectation that generated solutions
would be favorable for clinical practice, given the clinical importance of DHI in relation to late toxicities.
We include the LCI objective as it is key for ensuring that plans effectively cover the ROIs. The opti-
mization time budget and the number of dose calculation points varied, and results were aggregated
over ten runs for each patient. In this section, we primarily aim to address RQ2 and its subquestions,
stated in Section 3.3, and analyze the evidence relevant to answering RQ1 of Section 3.2.

4.1.1. Results for 2-Objective Optimization: DHI + LCI
Effects of optimization time: RQ2.1
We begin by analyzing the effects of varying the time budget. Figure 4.1 displays the results. We high-
light that all experiments generate solutions that dominate the clinical treatment plan for computational
budgets above 180 seconds for patients 1, 2, and patients 4 to 7. For patients 1, 2, 4, 6, and 7, all
computational budget experiments with a budget of 60 seconds or higher result in strict improvements
over the reference solution, whereas higher budgets are required for the other patients. For patients 3
and 9, the experiments could not generate solutions that dominated the clinical plan. In addition to this
observation, we highlight the following trends:

• Trade-offs between DHI and LCI: As seen in Figures 4.1a through 4.1i, there is a trade-off
between DHI and LCI. Optimizing for higher LCI tends to reduce DHI, especially in the regions
where LCI is maximized, and vice-versa.

• Longer time budgets lead to better results: As we increase the time budget from 30 seconds
to 900 seconds, the quality of solutions improves significantly. The Pareto approximation fronts
expand and shift toward higher DHI values while maintaining a high LCI.

• Impact on patients at extremes and suboptimal implants: Patients at extreme (with small-
est/largest CTVs), such as Patient 5, or patients with suboptimal implants, such as patients 8 and
9, require more computational effort to optimize effectively (as the experiments with contV and LCI
also observe). The results for patients at extremes and/or with suboptimal implants show broader
distributions compared to patients like Patient 2 or Patient 4. Furthermore, we note the different
shapes of the Pareto approximation front of patients 5, 8, and 9 for computational budgets of

20
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180 seconds or lower. For these time budgets, their Pareto approximation fronts are significantly
scarcer the higher the LCI. This hints at the difficulty of optimizing coverage for problems with
volumes at extremes or suboptimal implants.
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(a) Patient 1: Comparison by time (DHI + LCI) (b) Patient 2: Comparison by time (DHI + LCI)

(c) Patient 3: Comparison by time (DHI + LCI) (d) Patient 4: Comparison by time (DHI + LCI)

(e) Patient 5: Comparison by time (DHI + LCI) (f) Patient 6: Comparison by time (DHI + LCI)

(g) Patient 7: Comparison by time (DHI + LCI) (h) Patient 8: Comparison by time (DHI + LCI)

(i) Patient 9: Comparison by time (DHI + LCI)

Figure 4.1: Comparison of time budgets for different patients based on the 2-objective optimization (DHI + LCI). Each
experiment was run ten times. Each plot includes the clinical plan as a reference point.
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Effects of dose calculation points: RQ2.2
We analyze the effects of varying the number of dose calculation points on the generated solutions.
We use an experimental setup with between 10,000 and 300,000 DCPs and 600-second runs. Figure
4.2 displays the results. We note the following features:

• Clinical plan comparison: For all except patients 3, 8, and 9, runs of BRIGHT with 50,000 or
more DCP consistently generate Pareto approximation fronts that supersede the clinical reference
point. The results demonstrate that this configuration can produce Pareto-dominating solutions
with respect to plans produced in the clinic.

• Objective trade-offs: As in the contV + LCI configuration, DHI + LCI also leads to results with
significantly higher LCI values. While the upper bound for LCI in this experiment is above 0.9 for
all patients but Patient 9, increasing the number of DCPs tends to extend the breadth of the front
across the LCI axis. This is especially visible in the transition between 10,000 and 50,000 dose
calculation points and is less pronounced as the number of DCPs increases.

• Diminishing returns: The results suggest that increasing the number of DCPs beyond 200,000
yields little to no improvements for a fixed time budget of 600 seconds, and the front even decays
in some instances with 300,000 dose calculation points. This is especially visible for the subopti-
mal implant patients 8 and 9, as well as the extreme volume case of Patient 3. While this result
is not generalized, it highlights the importance of performing preliminary studies that aim to find
a balanced number of DCPs for the computational budget available to clinicians.
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(a) Patient 1: Comparison by number of DCPs (DHI + LCI) (b) Patient 2: Comparison by number of DCPs (DHI + LCI)

(c) Patient 3: Comparison by number of DCPs (DHI + LCI) (d) Patient 4: Comparison by number of DCPs (DHI + LCI)

(e) Patient 5: Comparison by number of DCPs (DHI + LCI) (f) Patient 6: Comparison by number of DCPs (DHI + LCI)

(g) Patient 7: Comparison by number of DCPs (DHI + LCI) (h) Patient 8: Comparison by number of DCPs (DHI + LCI)

(i) Patient 9: Comparison by number of DCPs (DHI + LCI)

Figure 4.2: Comparison of the number of DCPs for different patients based on the 2-objective optimization (DHI + LCI). Each
setting was run ten times as in previous experiments. Each plot includes the clinical plan as a reference point.
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4.1.2. Results for 3-Objective Optimization: DHI + LCI + LSI
In this subsection, we explore the effects of adding the Least Sparing Index as a third objective, next
to DHI and LCI. The rationale is that adding a third objective to the optimization problem may prove
valuable for clinicians as this could alter the profile of the evolved plans. By embracing trade-offs
in terms of LSI instead of discarding solutions through hard constraints, we can generate clinically
appealing plans in potentially different areas of the optimization landscape. In this case, LSI seeks to
minimize the radiation to surrounding organs, which is a conflicting (and therefore compelling) objective.

Effects of optimization time: RQ2.1
Figure 4.3 shows the effects of the time budget on the 3-objective optimization problem. For legibility,
we show the 3D approximation front split into one comparison between the DHI and LCI components
and one between LSI and LCI and assess the effect of the optimization problem on the three objectives.
We highlight the following features:

• Higher time budgets do not always lead to improved solutions: We specifically highlight the
along sections of the Pareto approximation front, in which runs with a budget of 180 is sufficient
to supersede the clinical point across all patients. This behavior is more accentuated than in
the 2-objective techniques. This indicates that lower time budgets (around 180 seconds) may
already suffice and reach a point of saturation, where increasing the computation time leads to
only marginal improvements.

• Profile similarity: We previously highlighted more complicated cases, such as Patient 5 and
Patient 8, which display similar behavior to the 2-objective case, though notably, the trend is
lesser. Such patients require a more extended computational budget to dominate the clinical
plans.

Together, these two observations lead to a compelling trade-off. The improvement in solution quality
is lesser for the 3-objective formulation than its 2-objective counterpart. Despite its higher computational
overhead, the 3-objective algorithm provides more and higher quality solutions for low computational
budgets. In the case of DHI, adding the LSI objective shows considerable improvements (for less
overhead than contV, shown in Section 4.2.2). This can be explained by the presence of the hotspot
detection mechanism of contV and the lack thereof in the case of DHI.
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(a) Patient 1: Comparison by time (DHI + LCI) (b) Patient 1: Comparison by time (LSI + LCI)

(c) Patient 2: Comparison by time (DHI + LCI) (d) Patient 2: Comparison by time (LSI + LCI)

(e) Patient 3: Comparison by time (DHI + LCI) (f) Patient 3: Comparison by time (LSI + LCI)

(g) Patient 4: Comparison by time (DHI + LCI) (h) Patient 4: Comparison by time (LSI + LCI)

(i) Patient 5: Comparison by time (DHI + LCI) (j) Patient 5: Comparison by time (LSI + LCI)
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(k) Patient 6: Comparison by time (DHI + LCI) (l) Patient 6: Comparison by time (LSI + LCI)

(m) Patient 7: Comparison by time (DHI + LCI) (n) Patient 7: Comparison by time (LSI + LCI)

(o) Patient 8: Comparison by time (DHI + LCI) (p) Patient 8: Comparison by time (LSI + LCI)

(q) Patient 9: Comparison by time (DHI + LCI) (r) Patient 9: Comparison by time (LSI + LCI)

Figure 4.3: Comparison of time budgets for different patients based on the 3-objective optimization (DHI + LCI + LSI). Each
plot includes the clinical plan as a reference point.
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Effects of dose calculation points: RQ2.2
As in previous experiments, we vary the number of DCPs from 10,000 to 300,000 and display the
results in Figure 4.4. For clarity, we present the LCI objective against DHI and then LSI in parallel to
observe all three objectives without a 3-dimensional visualization overhead. We highlight the following
observations:

• Clinical plan comparison: Across all nine patients, the DHI + LCI + LSI configuration gener-
ates solutions that exceed the objective values of the clinical plan in terms of DHI, LCI, and LSI.
We note that introducing LSI, in addition to the fronts on the (narrower) 2-objective front, the 3-
objective formulation generates more solutions with similar DHI and LCI features to the reference.

• Broader objective range: In addition to producing more solutions in the vicinity of the reference
clinical plan, the DHI + LCI + LSI technique also includes more plans towards the ”edges” of the
two objectives for both LCI, DHI and LCI, LSI pairs. The Pareto approximation fronts include
more solutions overall and more solutions towards the extreme ranges of the front (LCI ≥ 0.9,
DHI ≥ 0.8, LSI ≥ 0).

We further note the correlation between the shape of the fronts and the patients’ features. Figures
4.2c and 4.4e show a similar trend – the addition of LSI effectively makes the 3D Pareto approximation
front span almost the entirety of both DHI + LCI, and LSI + LCI spaces. While this may prove over-
whelming for clinicians in practice, it could provide additional insight into which underlying features of
patients like Patient 3 underpin this trend, which then, in turn, can provide further explanations as to
which (2- or 3-objective) implementation of BRIGHT might be preferable in practice.
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(a) Patient 1: Comparison by DCPs (DHI + LCI) (b) Patient 1: Comparison by DCPs (LSI + LCI)

(c) Patient 2: Comparison by DCPs (DHI + LCI) (d) Patient 2: Comparison by DCPs (LSI + LCI)

(e) Patient 3: Comparison by DCPs (DHI + LCI) (f) Patient 3: Comparison by DCPs (LSI + LCI)

(g) Patient 4: Comparison by DCPs (DHI + LCI) (h) Patient 4: Comparison by DCPs (LSI + LCI)

(i) Patient 5: Comparison by DCPs (DHI + LCI) (j) Patient 5: Comparison by DCPs (LSI + LCI)
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(k) Patient 6: Comparison by DCPs (DHI + LCI) (l) Patient 6: Comparison by DCPs (LSI + LCI)

(m) Patient 7: Comparison by DCPs (DHI + LCI) (n) Patient 7: Comparison by DCPs (LSI + LCI)

(o) Patient 8: Comparison by DCPs (DHI + LCI) (p) Patient 8: Comparison by DCPs (LSI + LCI)

(q) Patient 9: Comparison by DCPs (DHI + LCI) (r) Patient 9: Comparison by DCPs (LSI + LCI)

Figure 4.4: Comparison of DCP budgets for different patients based on the 3-objective optimization (DHI + LCI + LSI). Each
setting was run ten times. Each plot includes the clinical plan as a reference point.



4.2. Experimental Results for contV (HV) 31

4.2. Experimental Results for contV (HV)
This section presents the results of running BRIGHT with 2 and 3 multiobjective formulations. Section
4.2.1 provides an overview of the 2-objective formulation, while 4.2.2 analyzes the 3-objective counter-
part. For both instances, we consider the effects of 2 variables – the number of dose calculation points
optimization time. For each instance, we report the DHI and LCI of the solutions BRIGHT retains, as
these metrics are more widely considered in clinical practice. The results of this section are primarily
concerned with RQ2 and its subquestions, defined in Section 3.3. Together with Section 4.1, we aim
to formulate answers for the remainder of the sub-questions of RQ1.

Three additional experiments that consider three supplementary variables in factor edge length,
bound hotspot volume, and minimum hotspot dose are available in Appendix B. We found the most ad-
vantageous configuration to correspond to the combination of expert knowledge and contV research pa-
rameters previously employed in [35]. Namely, factor_edge_length = 2, lower_bound_hotspot_volume
= 0.1 cm3, and min_hotspot_dose = 150% of PD.

4.2.1. 2-Objective Optimization: HV + LCI
This section presents the results of the optimization experiments that focus on minimizing the hotspot
volume and maximizing the LCI. This technique is 2-objective and contains the ring-sparing hard con-
straint. The optimization time budget and the number of dose calculation points were varied, and the
results include comparisons between different numbers of DCPs and time budgets for each patient.

Effects of optimization time: RQ2.1
We analyze the results of experiments varying the optimization time for the five patients. Each exper-
iment was run ten times, and the results were aggregated. The number of dose calculation points for
this round of experiments was fixed at 250,000, a significant factor affecting computation time. These
experiments aimed to assess the effect of increasing the optimization time budget on the algorithm’s
performance regarding the two primary objectives: LCI and HV.

Figure 4.5a through 4.5i correspond to different patients, showing the Pareto approximation front
of different solutions with varying optimization times. The optimization time budgets used in the ex-
periments are 30, 60, 180, 300, 600, and 900 seconds. The clinical plan is included as a baseline for
comparison. We note the following trends:

• Clinical plan comparison: Across all patients, we observe that increasing the optimization time
generally improves solution quality, particularly in the higher time ranges (600-900 seconds). This
is most evident as the solutions shift further right along the LCI axis. For 6 out of 9 patients, the
Pareto approximation fronts dominate the clinical plan for all instances with a computational bud-
get of over 600 seconds. For shorter time budgets (e.g., 30, 60 seconds), the results tend to
cluster closer to the clinical plan or show either limited improvement or results with lesser prop-
erties than the clinical plan. This suggests the computational time was insufficient for exploring
the solution space well. The distribution of these points is broader in terms of hotspot volume
values, indicating more variance in contiguous volume performance with limited time for optimiza-
tion. These points often fall beneath or close to the clinical plan, particularly in the left region
where LCI is minimized. We note that, especially for Patient 8, the clinical plan has a different
profile than the solutions generated by the BRIGHT. This could prove useful clinically, as experts
might get a more diverse palette to select from.

• Improvement with longer time budgets: For the higher time budgets (300-900 seconds), the
algorithm has more time to refine solutions, resulting in clear improvements in both LCI and HV.
In all patients, the longer time runs push the solutions toward a better Pareto approximation front
compared to shorter runs. Notably, the Pareto approximation front’s slope steepens as LCI im-
proves with increasing time. This indicates that the algorithm can produce solutions that dominate
the clinical plan. Patient 1 and Patient 2 show significant improvements as time increases, partic-
ularly for runs of 600 and 900 seconds, which dominate the clinical plan more strongly. Patient 5
exhibits a similar trend, although the variance in contV is slightly higher for shorter runs, and the
front is more dispersed. Patient 3 and Patient 4 also follow this trend, with Patient 3 showing the
least variance overall, which may be attributed to the problem’s smaller search space.

• Contiguous volume: An interesting observation is the trade-off between LCI and HV. Solutions
with stronger LCI objective values may lead to a slight increase in contV, as increasing target
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organ coverage can imply higher radiation doses, thus also larger hotspots. This trade-off is more
prominent in patients with larger volumes, such as Patient 5, where larger contiguous regions also
require more coverage.

• Computational complexity: It is important to note that increasing the number of dose calculation
points makes the problem more computationally intensive, and in this case, the fixed number of
250,000 points amplifies this effect. More extended time budgets provide more opportunities
to explore the solution space but also require substantially more computational resources. The
connected component analysis used for calculating contV further complicates this. This leads to
the observed clustering for shorter runs and more refined fronts for longer runs.
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(a) Comparison by time for Patient 1 (HV + LCI). (b) Comparison by time for Patient 2 (HV + LCI).

(c) Comparison by time for Patient 3 (HV + LCI). (d) Comparison by time for Patient 4 (HV + LCI).

(e) Comparison by time for Patient 5 (HV + LCI). (f) Comparison by time for Patient 6 (HV + LCI).

(g) Comparison by time for Patient 7 (HV + LCI). (h) Comparison by time for Patient 8 (HV + LCI).

(i) Comparison by time for Patient 9 (HV + LCI).

Figure 4.5: Comparison of time for different patients based on the 2-objective optimization (HV + LCI) with varying time
budgets. Each setting has been run ten times to observe variance across the front. Each plot includes the clinical plan as a

reference point.
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Effects of dose calculation points: RQ2.2
Figure 4.6 shows how varying the number of dose calculation points affects the trade-off between the
HV and the LCI. The results for each dose calculation point number have been aggregated over ten
runs. Each run had an optimization time budget of 600 seconds. We highlight the following trends:

• Clinical plan comparison: The clinical plan serves as a reference point in each plot, helping to
visually compare how the DCP-based optimizations perform relative to existing clinical standards.
The results show that all tested instances generate Pareto approximation fronts that would either
contain or dominate the reference clinical plan for all patients. In practice, this means that all
optimization settings lead to improvements concerning the optimization criteria over the clinical
plans. In some cases, higher DCPs significantly improve upon the clinical plan, while in others,
the improvements are more modest.

• Higher DCPs generally lead to better results: As the number of DCPs increases, the solutions
tend to improve. More sampling points allow for better granularity and precision in the dose
calculations. However, for more difficult optimization cases, especially for patients 3, 8, and 9
(for small CTV and suboptimal implants), we note a decrease in HV with an increasing number
of DCPs. We hypothesize that in small CTV cases, a higher number of dose calculation points
can bias the optimization by overestimating the HV metric by discovering additional points with
a dose higher than the hotspot lower bound. A robust analysis of such out-of-distribution cases
likely requires a broader data set and more clinical resources and, as such, is left to future work.

• Computational complexity increases: However, the computational requirements also grow sig-
nificantly as the number of DCPs increases. Each additional DCP introduces more complexity,
especially in the case of contV optimization, which involves connected component analysis. This
analysis is computationally expensive and more challenging with higher resolution (more DCPs).
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(a) Patient 1: Comparison by DCPs for Patient 1 (HV + LCI). (b) Patient 2: Comparison by DCPs for Patient 2 (HV + LCI).

(c) Patient 3: Comparison by DCPs for Patient 3 (HV + LCI). (d) Patient 4: Comparison by DCPs for Patient 4 (HV + LCI).

(e) Patient 5: Comparison by DCPs for Patient 5 (HV + LCI). (f) Patient 6: Comparison by DCPs for Patient 6 (HV + LCI).

(g) Patient 7: Comparison by DCPs for Patient 7 (HV + LCI). (h) Patient 8: Comparison by DCPs for Patient 8 (HV + LCI).

(i) Patient 9: Comparison by DCPs for Patient 9 (HV + LCI).

Figure 4.6: Comparison of DCPs for different patients based on the 2-objective optimization (HV + LCI) with varying DCP
numbers. Each setting has been run ten times to observe variance across the front. Each plot includes the clinical plan as a

reference point.
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4.2.2. 3-Objective Optimization: HV + LCI + LSI
In this section, we analyze the results of BRIGHT on a 3-objective formulation of the problem. In
addition to HV and LCI, we supplement the optimization problem with an objective function that seeks
to minimize the Least Sparing Index. We hypothesize that the inclusion of LSI can help protect OARs
from excessive radiation and, in doing so, alter the structure of generated solutions and explore different
areas of the search space. Again, we consider the effects of increasing the computational time and
number of DCPs on the quality and distribution of obtained solutions.

Effects of optimization time: RQ2.1
In this section, we analyze the results of 3-objective optimization focusing on contV, LCI, and LSI with
time budgets ranging from 30 seconds to 900 seconds. The experiments were run on the same five
patients, with 250,000 dose calculation points, and the results were aggregated over ten runs. Each
figure includes the clinical plan as a baseline for comparison.

• Improvement with time budget: Increasing the optimization time improves solution quality
across all patients, particularly in the higher time ranges (600-900 seconds). Solutions tend to
shift rightward along the LCI axis, showing improved coverage.

• Time-performance relation: Shorter time budgets (30-60 seconds) cluster closer to the clinical
plan, offeringmodest improvements. Longer budgets (180-900 seconds) lead to Pareto-dominant
solutions with better LCI and more balanced contV.
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(a) Comparison by time for Patient 1 (HV + LCI). (b) Comparison by time for Patient 1 (LSI + LCI).

(c) Comparison by time for Patient 2 (HV + LCI). (d) Comparison by time for Patient 2 (LSI + LCI).

(e) Comparison by time for Patient 3 (HV + LCI). (f) Comparison by time for Patient 3 (LSI + LCI).

(g) Comparison by time for Patient 4 (HV + LCI). (h) Comparison by time for Patient 4 (LSI + LCI).

(i) Comparison by time for Patient 5 (HV + LCI). (j) Comparison by time for Patient 5 (LSI + LCI).
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(k) Comparison by time for Patient 6 (HV + LCI). (l) Comparison by time for Patient 6 (LSI + LCI).

(m) Comparison by time for Patient 7 (HV + LCI). (n) Comparison by time for Patient 7 (LSI + LCI).

(o) Comparison by time for Patient 8 (HV + LCI). (p) Comparison by time for Patient 8 (LSI + LCI).

(q) Comparison by time for Patient 9 (HV + LCI). (r) Comparison by time for Patient 9 (LSI + LCI).

Figure 4.7: Approximation fronts for plans generated by BRIGHT for breast. We vary the number of seconds to optimize and
understand the algorithm convergence.
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Effects of dose calculation points: RQ2.2
Figure 4.8 shows the results of varying the number of DCPs for a fixed budget of 600 seconds. For
conciseness and ease of visualization, we show plots of HV and LCI and LSI and LCI in parallel. We
highlight the following two key trends:

• Clinical plan comparison: across all nine patients, BRIGHT generates plans that improve the
HV, LCI, and LSI metrics with respect to the reference solution. Compared to the 2-objective
counterpart, we note that the 3-objective approach can create plans that satisfy the clinical aims
for out-of-distribution patients 3, 8, and 9. In addition to this, we observe that the 3-objective
formulation generates significantly more solutions that are similar to the clinical reference in terms
of HV and LCI. This behavior stems from including the third LSI objective, which allows for a
broader range of solutions with similar LCI and contV values.

• Broader objective range: In addition to producing more solutions in the vicinity of the reference
clinical plan, the HV + LCI + LSI technique also includesmore plans towards the ”edges” of the two
objectives, especially HV. This observation holds across all DCP settings but is readily apparent
when analyzing scenarios with fewer points. Consider, for instance, Patient 3, whose plans are
analyzed in Figures 4.6c and 4.8e, for the 2- and 3-objective formulations, respectively. When
comparing the plans that have the highest LCI values, for instance, with 10000 DCPs, the former
is only able to produce results with an LCI objective of ≈ 0.85, while the latter exceeds 0.9. This
comes at the cost of HV, whose values for the latter exceed 30 cm3, while no amount of DCPs in
the former reaches this range. This behavior is consistent across all patients.

These observations suggest that the 3-objective formulations may provide a wider set of choices
for clinicians to consider than the 2-objective counterpart. The 3-objective BRIGHT algorithm produces
more overall solutions andmore varied solutions that better cover the extremes of the 2-objective Pareto
approximation front. This also leads to more solutions in the immediate neighborhood of the clinical
plan in terms of contV and LCI, which is especially visible for Patient 5 (Figures 4.6e and 4.8i). This,
however, comes at a cost, as producing plans that dominate the clinical plan takes considerably longer
optimization time. While 180 seconds was sufficient for the 2-objective technique to surpass the clinical
plan in terms of objective values visibly, this is less noticeable in the 3-objective case. This suggests
that the 2-objective formulation can reach a similar search space with less computational resources.
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(a) Comparison by DCPs for Patient 1 (HV + LCI). (b) Comparison by DCPs for Patient 1 (LSI + LCI).

(c) Comparison by DCPs for Patient 2 (HV + LCI). (d) Comparison by DCPs for Patient 2 (LSI + LCI).

(e) Comparison by DCPs for Patient 3 (HV + LCI). (f) Comparison by DCPs for Patient 3 (LSI + LCI).

(g) Comparison by DCPs for Patient 4 (HV + LCI). (h) Comparison by DCPs for Patient 4 (LSI + LCI).

(i) Comparison by DCPs for Patient 5 (HV + LCI). (j) Comparison by DCPs for Patient 5 (LSI + LCI).
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(k) Comparison by DCPs for Patient 6 (HV + LCI). (l) Comparison by DCPs for Patient 6 (LSI + LCI).

(m) Comparison by DCPs for Patient 7 (HV + LCI). (n) Comparison by DCPs for Patient 7 (LSI + LCI).

(o) Comparison by DCPs for Patient 8 (HV + LCI). (p) Comparison by DCPs for Patient 8 (LSI + LCI).

(q) Comparison by DCPs for Patient 9 (HV + LCI). (r) Comparison by DCPs for Patient 9 (LSI + LCI).

Figure 4.8: Approximation fronts for plans generated by BRIGHT for breast. We vary the number of dose calculation points to
understand DCPs trade-offs

.
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4.3. Plan Selection Results
Following the computational experiments, the next step within our methodology is plan selection, in
order for the expert to assess the clinical acceptance of two plans per patient, with the aim of answering
RQ3 formulated in Section 3.5. The visualizations of the plan selection results can be found in Appendix
A.

In the context of the 2O DHI + LCI approach, DHI is used as a surrogate for minimizing hotspots
by penalizing dose distributions that exhibit high-dose regions (e.g., those exceeding 150% of the pre-
scribed dose). While this approach aligns with the clinical objective of minimizing hotspots, it remains
an indirect method. For this reason, we take both the 2O DHI + LCI and the 3O contV + LCI + LSI
approaches. The former targets an essential clinical metric, DHI, while the latter directly tackles the
spatial distribution of dose, enabling more precise control over the formation of hotspots. As previously
described, we enhance the optimization with an additional objective to uncover better trade-offs.

Table 4.1 summarizes the DVIs for the plans chosen as a result of our selection procedure outlined
in Section 3.4.

Table 4.1: Plan-specific DVIs for all patients.

Patient Plan LCI (Protocol > 0) DHI CTV1cm V95% CTV1.5cm V90% Ring V100%
Patient 1 P1 Plan 1 0.34 0.87 98.10% 93.40% 1.4 cm3

P1 Plan 2 0.81 0.80 99.50% 98.10% 2.2 cm3

Patient 2 P2 Plan 1 0.54 0.83 99.50% 95.40% 1.1 cm3

P2 Plan 2 0.81 0.78 99.80% 98.10% 1.6 cm3

Patient 3 P3 Plan 1 0.42 0.77 99.10% 94.20% 1.1 cm3

P3 Plan 2 0.43 0.81 99.20% 94.30% 3.0 cm3

Patient 4 P4 Plan 1 0.57 0.83 98.60% 95.70% 1.2 cm3

P4 Plan 2 0.50 0.82 98.20% 95.10% 1.8 cm3

Patient 5 P5 Plan 1 0.68 0.85 99.50% 96.80% 1.3 cm3

P5 Plan 2 0.68 0.84 99.50% 96.80% 2.7 cm3

Patient 6 P6 Plan 1 0.56 0.84 98.30% 95.60% 1.2 cm3

P6 Plan 2 0.44 0.82 97.80% 94.50% 1.7 cm3

Patient 7 P7 Plan 1 0.27 0.81 97.30% 92.70% 1.3 cm3

P7 Plan 2 0.22 0.80 97.50% 92.30% 1.5 cm3

Patient 8 P8 Plan 1 0.0002 0.75 95.00% 90.00% 1.5 cm3

P8 Plan 2 0.44 0.749 97.70% 94.40% 4.1 cm3

Patient 9 P9 Plan 1 0.55 0.68 99.80% 95.50% 1.3 cm3

P9 Plan 2 0.59 0.78 98.50% 95.90% 6.4 cm3

4.4. Clinical Acceptance Results
Following our methodology, we discuss the clinical acceptance results upon performing the computa-
tional experiments and selecting BRIGHT plans for clinical evaluation. Before the clinical acceptance
results, we illustrate preliminary experiments to shape our view in terms of clinical plan differences
compared to BRIGHT plans.

4.4.1. Comparing BRIGHT plans to clinical plans
For visualization purposes and as guides for our method improvement, we have compared a selection
of BRIGHT plans to the clinical plans in figures 4.9, 4.10, 4.11. This preliminary evaluation allowed us
to better view the differences between clinical and BRIGHT plans.



4.4. Clinical Acceptance Results 43

(a) BRIGHT interface showing Plan 19.

(b) Comparison of a slice from Plan 19 and the clinical plan (leftmost image). The middle image shows the difference between the clinical plan
and Plan 19, and the rightmost image represents Plan 19.

(c) Another slice comparison between Plan 19 and the clinical plan.

Figure 4.9: Visualization of Plan 19 compared to the clinical plan using the BRIGHT interface. The top image shows Plan 19,
while the two bottom images display slice comparisons and the differences between Plan 19 and the clinical plan, with purple

symbolizing that the dose is higher in the left plan and green that it is higher in the right plan.
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(a) BRIGHT interface showing Plan 96.

(b) Comparison of a slice from Plan 96 and the clinical plan (leftmost image). The middle image shows the difference between the clinical plan
and Plan 96, and the rightmost image represents Plan 96.

(c) Another slice comparison between Plan 96 and the clinical plan.

Figure 4.10: Visualization of Plan 96 compared to the clinical plan using the BRIGHT interface. The top image shows Plan 96,
while the two bottom images display slice comparisons and the differences between Plan 96 and the clinical plan, with purple

symbolizing that the dose is higher in the left plan and green that it is higher in the right plan.
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(a) BRIGHT interface showing Plan 239.

(b) Comparison of a slice from Plan 239 and the clinical plan (leftmost image). The middle image shows the difference between the clinical plan
and Plan 239, and the rightmost image represents Plan 239.

(c) Another slice comparison between Plan 239 and the clinical plan.

Figure 4.11: Visualization of Plan 239 compared to the clinical plan using the BRIGHT interface. The top image shows Plan
239, while the two bottom images display slice comparisons and the differences between Plan 239 and the clinical plan, with

purple symbolizing that the dose is higher in the left plan and green that it is higher in the right plan.
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4.4.2. Clinical Evaluation
Following the final experiments and plan selection, our expert reviewed the plans individually based on
DVH parameters, dose homogeneity, and isodose lines visualized within the BRIGHT interface. Table
4.2 summarizes the clinical acceptance results.

The evaluations revealed consistently positive feedback, with most plans rated clinically acceptable.
Experts highlighted the satisfactory DVH parameter values and substantial homogeneity across both
optimization techniques, citing values such as 0.83 or 0.85 as excellent. However, some plans exhibited
challenges in specific scenarios; for example, Plan 1 for Patient 9 was deemed unacceptable due to
suboptimal homogeneity. When looking at this plan, we observe that V100% in the ring is 1.3 cm3.
However, inspecting the clinical plan, we note that V100% within the ring has a value of 7.94 cm3. This
significant difference implies that the hard constraint introduced in the 2-objective DHI optimization is
too restrictive for Patient 9, who is deemed as having a suboptimal implant. This means potentially good
solutions might be thrown away during hard constraint checking. Meanwhile, employing the additional
LSI objective for the 3-objective contV approach guides the optimization toward a softer bound of 6.4
cm3.

Feedback frequently included recommendations for fine-tuning dwell positions and addressing spe-
cific high-dose areas to improve conformity. Overall, the evaluations indicate that BRIGHT plans hold
significant promise for clinical use, with areas for refinement identified to enhance future implementa-
tions.

Table 4.2: Clinical Evaluation of Plan 1 (2-objective DHI) and Plan 2 (3-objective contV).

Patient Plan DVH Satisfaction Homogeneity Satisfaction Acceptable Additional Feedback
Patient 1 1 Strongly agree Strongly agree (0.87) Yes Great coverage and excellent DHI.

2 Strongly agree Strongly agree (0.8) Yes Adjust dwell positions to reduce skin dose
(slice 47-10).

Patient 2 1 Strongly agree Strongly agree (0.83) Yes Excellent coverage, very good DHI.
2 Strongly agree Strongly agree (0.78) Yes Excellent coverage, very good DHI. Prefers

Plan 1 for higher DHI.
Patient 3 1 Strongly agree Strongly agree (0.77) Yes Adjust coverage (excellent) to improve DHI.

2 Strongly agree Strongly agree (0.81) Yes Improved DHI but higher irradiated tissue out-
side CTV_1.5cm.

Patient 4 1 Strongly agree Strongly agree (0.83) Yes Excellent coverage.
2 Strongly agree Strongly agree (0.82) Yes Practically indistinguishable from Plan 1.

Patient 5 1 Strongly agree Strongly agree (0.85) Yes Can activate posterior catheter (slice 42-56).
2 Strongly agree Strongly agree (0.84) Yes Prefers Plan 1 as it is more conformal.

Patient 6 1 Strongly agree Strongly agree (0.84) Yes Excellent coverage, very good DHI.
2 Strongly agree Strongly agree (0.82) Yes Prefers Plan 1.

Patient 7 1 Strongly agree Strongly agree (0.81) Yes Excellent coverage, very good DHI.
2 Strongly agree Strongly agree (0.80) Yes Prefers Plan 1.

Patient 8 1 Strongly agree Strongly agree (0.75) Yes Reduce skin dose exceeding 100%.
2 Strongly agree Strongly agree (0.749) Yes Improved coverage over Plan 1.

Patient 9 1 Strongly agree Disagree (0.68) No Excessive coverage; improve DHI.
2 Strongly agree Disagree (0.78) Yes Reduce coverage to improve DHI and confor-

mality.



5
Discussion

This study investigates and confirms that BRIGHT provides an effective method for generating high-
quality treatment plans by simultaneously optimizing multiple competing objectives, such as minimizing
hotspots and maximizing target coverage.

The results of the time and DCP experiments demonstrate that careful choices for optimization
time and number of dose calculation points can result in improvements over the clinical plans for our
available patients. As observed in the figures comparing various time budgets, longer optimization
times (e.g., 600 seconds) led to improved solutions. This trend was evident across all patients, with the
optimization algorithm producing more refined Pareto approximation fronts as time increased, enabling
more effective balancing of the conflicting objectives. Moreover, even a time budget of 180 seconds
can prove sufficient, for example, when using the contV + LCI optimization setup for patients 1, 2, and
4.

Furthermore, increasing the number of dose calculation points from 10,000 to 100,000 had a no-
ticeable effect on the homogeneity (and sparing constraint for 3-objective) of the results for the majority
of patients, especially for the 3-objective cases. More DCPs allow for a finer resolution in dose distri-
bution calculations, which, in turn, leads to better accuracy in controlling homogeneity. However, this
increase in precision comes at the cost of higher computational complexity, making it more challeng-
ing to achieve a high-quality solution within shorter time budgets. In terms of the minimum resources
required to generate results that are at least on par with clinical benchmarks, DCP, and time experi-
ments display similar trends. While the highest number of DCPs generally showed the best results for
most patients, we observed that 100,000 and occasionally 50,000 DCPs are often sufficient to provide
results that match or exceed the reference clinical plan across most setups.

Despite the observed improvements with more extended time budgets and higher DCPs, the dimin-
ishing returns of further increasing either parameter were also apparent. While the gains in solution
quality were substantial when moving from 30 to 600 seconds or 10,000 to 100,000 DCPs, additional
increases (e.g., 900 seconds or 300,000 DCPs) showed relatively marginal improvements compared
to the added computational burden. This highlights the need to balance computation time, accuracy,
and clinical applicability.

A main takeaway from the results is the effectiveness of using the 2-objective optimization ap-
proach focused on contiguous volumes and the Least Coverage Index. The comparison between
the 2- and 3-objective techniques (adding the Least Sparing Index) highlighted key differences. While
the 3-objective technique provided more varied solutions, it also introduced more complexity to the
decision-making process. The 2-objective approach explored the search space thoroughly and gen-
erated Pareto approximation fronts that were easier to interpret and use for clinical decisions. This
simplicity is critical, as it directly influences how effectively clinicians can compare and select treatment
plans.

The expert feedback further highlights the practical importance of BRIGHT in the clinic. Of the 18 se-
lected treatment plans, the clinician described the coverage as either great or excellent in 16 instances
and deemed 17 plans to be clinically applicable. This comes in addition to the objective metrics, in
which BRIGHT solutions outperform clinical reference plans consistently for numerous configurations.
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It is noteworthy that these results originate from a run with a time budget of just 10 minutes on contem-
porary hardware. Providing appropriate plan selection mechanisms underlines not only the viability of
applying BRIGHT for breast brachytherapy but also the immediate value it can provide to clinics and
patients today.

Regarding limitations, a significant observation from the clinical acceptance evaluation is the risk
that experts, despite the blinding, may recognize the clinical plan when comparing it with BRIGHT-
generated solutions. This familiarity could introduce bias in the subjective assessments of plan quality.
The sample size of 9 patients is another limitation, as it restricts the generalizability of the findings.
While the patients represented a range of anatomical complexities, a broader sample would provide a
more robust evaluation of BRIGHT’s capabilities.

Two other limitations stem from the scope of this study. While we addressed several formulations
of contV- and DHI-based optimization problems, the detailed analysis of the individual plans’ features
falls outside this scope. The limited dataset and clinical exposure make it difficult to compare the fine
details of when each method may excel or under which circumstances they fall short. Such analyses
would require a broader dataset and, as such, are left to future work. Similarly, integrating BRIGHT with
external and complementary optimization methods is also left to future work. Such integrations could
materialize as optimization problems with more degrees of freedom by also considering, for instance,
catheter placement optimization simultaneously.

The thesis demonstrates the advantages of using BRIGHT for breast brachytherapy treatment plan-
ning, and the use of evolutionary algorithms in this context shows significant promise. Future work
could focus on validating these findings with a larger patient cohort and investigating the impact of
expert bias in clinical evaluations. Moreover, exploring hybrid models that integrate human expertise
with automated planning may further enhance the clinical usability of BRIGHT-generated plans.



6
Conclusion

This study demonstrates the use of BRIGHT to optimize breast cancer brachytherapy treatment plans,
focusing on objectives that balance dose homogeneity, contiguous volume, and clinical coverage and
sparing.

We compare different objective formulations—primarily between two-objective and three-objective,
as well as the homogeneity index and hotspot volumes optimization techniques—by varying optimiza-
tion time and the number of dose calculation points.

After performing computational experiments, we determined that the 2-objective contV + LCI ap-
proach with a time budget of 600 seconds and 250,000 DCPs provided the best balance between
solution quality and computational complexity. We evaluate the obtained BRIGHT plans with the help
of a clinical expert and receive insightful feedback for further improvement and use of BRIGHT.

The results obtained in this study and previous BRIGHT applications set a strong foundation for
adopting BRIGHT in clinical practice for further use cases and promoting automated optimization meth-
ods such as evolutionary algorithms.
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A
Plan selection results

The following figures describe the highlighted plans during the selection process described in Sec-
tion 3.4. The plans used in the clinical evaluation cover two main techniques: 2-objective DHI and
3-objective HV plans.
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(a) Patient 1: Original plot (DHI + LCI). (b) Patient 1: Normalized plot (DHI + LCI).

(c) Patient 2: Original plot (DHI + LCI). (d) Patient 2: Normalized plot (DHI + LCI).

(e) Patient 3: Original plot (DHI + LCI). (f) Patient 3: Normalized plot (DHI + LCI).

(g) Patient 4: Original plot (DHI + LCI). (h) Patient 4: Normalized plot (DHI + LCI).

(i) Patient 5: Original plot (DHI + LCI). (j) Patient 5: Normalized plot (DHI + LCI).
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(k) Patient 6: Original plot (DHI + LCI). (l) Patient 6: Normalized plot (DHI + LCI).

(m) Patient 7: Original plot (DHI + LCI). (n) Patient 7: Normalized plot (DHI + LCI).

(o) Patient 8: Original plot (DHI + LCI). (p) Patient 8: Normalized plot (DHI + LCI).

(q) Patient 9: Original plot (DHI + LCI). (r) Patient 9: Normalized plot (DHI + LCI).

Figure A.1: Comparison of original and normalized plots for patients 6 to 9 in the 2-objective (2O) DHI optimization setup.
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(a) 2D HV plot for Patient 1. (b) 2D LSI plot for Patient 1.

(c) Original 3D plot for Patient 1. (d) Normalized 3D plot for Patient 1.

(e) 2D HV plot for Patient 2. (f) 2D LSI plot for Patient 2.

(g) Original 3D plot for Patient 2. (h) Normalized 3D plot for Patient 2.

Figure A.2: Plan selection results for Patients 1,2, showing the comparison of 2D and 3D plots highlighting the most balanced
points.
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(a) 2D HV plot for Patient 3. (b) 2D LSI plot for Patient 3.

(c) Original 3D plot for Patient 3. (d) Normalized 3D plot for Patient 3.

(e) 2D HV plot for Patient 4. (f) 2D LSI plot for Patient 4.

(g) Original 3D plot for Patient 4. (h) Normalized 3D plot for Patient 4.

Figure A.3: Plan selection results for Patients 3,4, showing the comparison of 2D and 3D plots highlighting the most balanced
points.
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(a) 2D HV plot for Patient 5. (b) 2D LSI plot for Patient 5.

(c) Original 3D plot for Patient 5. (d) Normalized 3D plot for Patient 5.

(e) 2D HV plot for Patient 6. (f) 2D LSI plot for Patient 6.

(g) Original 3D plot for Patient 6. (h) Normalized 3D plot for Patient 6.

Figure A.4: Plan selection results for Patients 5,6, showing the comparison of 2D and 3D plots highlighting the most balanced
points.
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(a) 2D HV plot for Patient 7. (b) 2D LSI plot for Patient 7.

(c) Original 3D plot for Patient 7. (d) Normalized 3D plot for Patient 7.

(e) 2D HV plot for Patient 8. (f) 2D LSI plot for Patient 8.

(g) Original 3D plot for Patient 8. (h) Normalized 3D plot for Patient 8.

Figure A.5: Plan selection results for Patients 7,8, showing the comparison of 2D and 3D plots highlighting the most balanced
points.
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(a) 2D HV plot for Patient 9. (b) 2D LSI plot for Patient 9.

(c) Original 3D plot for Patient 9. (d) Normalized 3D plot for Patient 9.

Figure A.6: Plan selection results for Patients 9, showing the comparison of 2D and 3D plots highlighting the most balanced
points.
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Contiguous volumes parameters

experiments

B.1. 2-Objective Optimization: HV + LCI
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(a) Comparison by factor edge length for Patient 1 (HV + LCI). (b) Comparison by factor edge length for Patient 2 (HV + LCI).

(c) Comparison by factor edge length for Patient 3 (HV + LCI). (d) Comparison by factor edge length for Patient 4 (HV + LCI).

(e) Comparison by factor edge length for Patient 5 (HV + LCI). (f) Comparison by factor edge length for Patient 6 (HV + LCI).

(g) Comparison by factor edge length for Patient 7 (HV + LCI). (h) Comparison by factor edge length for Patient 8 (HV + LCI).

(i) Comparison by factor edge length for Patient 9 (HV + LCI).

Figure B.1: Comparison of factor edge length for different patients based on the 2-objective optimization (HV + LCI) with
varying factor edge lengths. Each setting has been run ten times to observe variance across the front. Each plot includes the

clinical plan as a reference point.
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(a) comparison by lb hotspot volume for Patient 1 (HV + LCI). (b) comparison by lb hotspot volume for Patient 2 (HV + LCI).

(c) comparison by lb hotspot volume for Patient 3 (HV + LCI). (d) comparison by lb hotspot volume for Patient 4 (HV + LCI).

(e) comparison by lb hotspot volume for Patient 5 (HV + LCI). (f) comparison by lb hotspot volume for Patient 6 (HV + LCI).

(g) comparison by lb hotspot volume for Patient 7 (HV + LCI). (h) comparison by lb hotspot volume for Patient 8 (HV + LCI).

(i) comparison by lb hotspot volume for Patient 9 (HV + LCI).

Figure B.2: Comparison of lower bound hotspot volume for different patients based on the 2-objective optimization (HV + LCI)
with varying lower bound hotspot volumes. Each setting has been run ten times to observe variance across the front. Each plot

includes the clinical plan as a reference point.
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(a) Comparison by min hotspot dose for Patient 1 (HV + LCI). (b) Comparison by min hotspot dose for Patient 2 (HV + LCI).

(c) Comparison by min hotspot dose for Patient 3 (HV + LCI). (d) Comparison by min hotspot dose for Patient 4 (HV + LCI).

(e) Comparison by min hotspot dose for Patient 5 (HV + LCI). (f) Comparison by min hotspot dose for Patient 6 (HV + LCI).

(g) Comparison by min hotspot dose for Patient 7 (HV + LCI). (h) Comparison by min hotspot dose for Patient 8 (HV + LCI).

(i) Comparison by min hotspot dose for Patient 9 (HV + LCI).

Figure B.3: Comparison of minimum hotspot dose for different patients based on the 2-objective optimization (HV + LCI) with
varying minimum hotspot doses. Each setting has been run ten times to observe variance across the front. Each plot includes

the clinical plan as a reference point.
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B.2. 3-Objective Optimization: HV + LCI + LSI
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(a) Comparison by factor edge length for Patient 1 (HV + LCI). (b) Comparison by factor edge length for Patient 1 (LSI + LCI).

(c) Comparison by factor edge length for Patient 2 (HV + LCI). (d) Comparison by factor edge length for Patient 2 (LSI + LCI).

(e) Comparison by factor edge length for Patient 3 (HV + LCI). (f) Comparison by factor edge length for Patient 3 (LSI + LCI).

(g) Comparison by factor edge length for Patient 4 (HV + LCI). (h) Comparison by factor edge length for Patient 4 (LSI + LCI).

(i) Comparison by factor edge length for Patient 5 (HV + LCI). (j) Comparison by factor edge length for Patient 5 (LSI + LCI).
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(k) Comparison by factor edge length for Patient 6 (HV + LCI). (l) Comparison by factor edge length for Patient 6 (LSI + LCI).

(m) Comparison by factor edge length for Patient 7 (HV + LCI). (n) Comparison by factor edge length for Patient 7 (LSI + LCI).

(o) Comparison by factor edge length for Patient 8 (HV + LCI). (p) Comparison by factor edge length for Patient 8 (LSI + LCI).

(q) Comparison by factor edge length for Patient 9 (HV + LCI). (r) Comparison by factor edge length for Patient 9 (LSI + LCI).

Figure B.4: Approximation fronts for plans generated by BRIGHT for breast. We vary the factor edge length to understand its
impact on HV.
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(a) comparison by lb hotspot volume for Patient 1 (HV + LCI). (b) comparison by lb hotspot volume for Patient 1 (LSI + LCI).

(c) comparison by lb hotspot volume for Patient 2 (HV + LCI). (d) comparison by lb hotspot volume for Patient 2 (LSI + LCI).

(e) comparison by lb hotspot volume for Patient 3 (HV + LCI). (f) comparison by lb hotspot volume for Patient 3 (LSI + LCI).

(g) comparison by lb hotspot volume for Patient 4 (HV + LCI). (h) comparison by lb hotspot volume for Patient 4 (LSI + LCI).

(i) comparison by lb hotspot volume for Patient 5 (HV + LCI). (j) comparison by lb hotspot volume for Patient 5 (LSI + LCI).
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(k) comparison by lb hotspot volume for Patient 6 (HV + LCI). (l) comparison by lb hotspot volume for Patient 6 (LSI + LCI).

(m) comparison by lb hotspot volume for Patient 7 (HV + LCI). (n) comparison by lb hotspot volume for Patient 7 (LSI + LCI).

(o) comparison by lb hotspot volume for Patient 8 (HV + LCI). (p) comparison by lb hotspot volume for Patient 8 (LSI + LCI).

(q) comparison by lb hotspot volume for Patient 9 (HV + LCI). (r) comparison by lb hotspot volume for Patient 9 (LSI + LCI).

Figure B.5: Approximation fronts for plans generated by BRIGHT for breast. We vary the lower bound hotspot volume to
understand its impact on HV.
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(a) Comparison by min hotspot dose for Patient 1 (HV + LCI). (b) Comparison by min hotspot dose for Patient 1 (LSI + LCI).

(c) Comparison by min hotspot dose for Patient 2 (HV + LCI). (d) Comparison by min hotspot dose for Patient 2 (LSI + LCI).

(e) Comparison by min hotspot dose for Patient 3 (HV + LCI). (f) Comparison by min hotspot dose for Patient 3 (LSI + LCI).

(g) Comparison by min hotspot dose for Patient 4 (HV + LCI). (h) Comparison by min hotspot dose for Patient 4 (LSI + LCI).

(i) Comparison by min hotspot dose for Patient 5 (HV + LCI). (j) Comparison by min hotspot dose for Patient 5 (LSI + LCI).
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(k) Comparison by min hotspot dose for Patient 6 (HV + LCI). (l) Comparison by min hotspot dose for Patient 6 (LSI + LCI).

(m) Comparison by min hotspot dose for Patient 7 (HV + LCI). (n) Comparison by min hotspot dose for Patient 7 (LSI + LCI).

(o) Comparison by min hotspot dose for Patient 8 (HV + LCI). (p) Comparison by min hotspot dose for Patient 8 (LSI + LCI).

(q) Comparison by min hotspot dose for Patient 9 (HV + LCI). (r) Comparison by min hotspot dose for Patient 9 (LSI + LCI).

Figure B.6: Approximation fronts for plans generated by BRIGHT for breast. We vary the minimum hotspot dose to understand
its impact on HV.
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