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Sweden (e-mail: {mans.klingspor, anders.hansson}@liu.se,

johanl@isy.liu.se).
∗∗ Delft Center for Systems and Control, Delft University of

Technology, Delft, The Netherlands (e-mail: m.verhaegen@tudelft.nl).
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1. INTRODUCTION

One of the challenges in system identification is input
selection. Being subject to a number of potential inputs,
it is desirable to only include relevant inputs to avoid an
overly complex model. This task may be troublesome due
to an excessive number of inputs and noisy measurements,
making input selection a research topic of interest in the
system identification community, see for example Van de
Wal and De Jager [2001] and Rojas, Tóth and Hjalmarsson
[2014]. Thus, there are several methods available for input
selection which we will briefly discuss before introducing
our method.

Perhaps most popular and widely referenced are various
methods of Adaptive Neuro Fuzzy Inference System (AN-
FIS) which is an artificial neural network method. ANFIS
may be used for input selection for both linear and nonlin-
ear systems, see Jang [1993]. As for applications, ANFIS is
for example used for input selection in problems related to
identifying the most significant input parameters for pre-
dicting global solar radiation shown by Mohammadi et al.
[2001]. Furthermore, despite its popularity, one has to keep
in mind that optimizing neural networks are non-convex
problems and implementation can be difficult. Also, as
ANFIS is solely used for the input selection problem, if a
model is desired one has to consult some suitable method
for identification.

Other, perhaps simpler, methods for input selection in-
clude Partial Linear Correleation (PLC) and Partial Mu-
tual Information (PMI) which are model-free techniques,
see Tran et al. [2015]. These model-free approaches rely on
the statistical relationship between the various inputs and
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outputs using linear and non-linear correleation. Simply,
inputs that in a statistical sense highly correlate with any
of the outputs should be regarded as relevant inputs. On
the contrary, inputs that do not correlate with any of the
outputs should not be considered relevant for the system
and should thus be discarded from the modeling process.

Another closely related method that is worth mentioning
are nearest correlation spectral clustering in combination
with a group lasso, see Fujiwara and Kano [2015]. This
method is used in applications related to soft sensors and
the group lasso regularization is the same technique our
method employs. Worth mentioning is also Relative Gain
Array (RGA) methods, see Kadhim et al. [2014].

In this paper, we introduce an extension to the Nuclear
Norm Subspace Identification (N2SID) framework pro-
posed by Verhaegen and Hansson [2015]. As a natural
extension to N2SID, we introduce a novel method where
input selection is directly incorporated into the N2SID
framework. This extension does not interfere with the
convex property of the N2SID problem and neither its
property to be recast as a Semi-Definite Programming
(SDP) problem. Thus, computational complexity remains
virtually unchanged with this input selection feature ex-
tension. Furthermore, as we show in the paper, the esti-
mated and input selected models that our modified N2SID
method provides are excellent, and the input selection
works accurately.

1.1 Notation

For simplicity and readability, we introduce a notation for
submatrices. Given X ∈ Rm×n and integers 1 ≤ i ≤ j ≤
m, 1 ≤ k ≤ l ≤ n, then Xi:j,k:l is the submatrix of X with
rows from i to j and columns k to l. For further readability,
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Sweden (e-mail: {mans.klingspor, anders.hansson}@liu.se,

johanl@isy.liu.se).
∗∗ Delft Center for Systems and Control, Delft University of

Technology, Delft, The Netherlands (e-mail: m.verhaegen@tudelft.nl).

Abstract: Input selection is an important and oftentimes difficult challenge in system
identification. In order to achieve less complex models, irrelevant inputs should be methodically
and correctly discarded before or under the estimation process. In this paper we introduce a
novel method of input selection that is carried out as a natural extension in a subspace method.
We show that the method robustly and accurately performs input selection at various noise
levels and that it provides good model estimates.

Keywords: Input selection, System identification, State-space models, N2SID, Subspace
methods, Signal-to-noise ratio

1. INTRODUCTION

One of the challenges in system identification is input
selection. Being subject to a number of potential inputs,
it is desirable to only include relevant inputs to avoid an
overly complex model. This task may be troublesome due
to an excessive number of inputs and noisy measurements,
making input selection a research topic of interest in the
system identification community, see for example Van de
Wal and De Jager [2001] and Rojas, Tóth and Hjalmarsson
[2014]. Thus, there are several methods available for input
selection which we will briefly discuss before introducing
our method.

Perhaps most popular and widely referenced are various
methods of Adaptive Neuro Fuzzy Inference System (AN-
FIS) which is an artificial neural network method. ANFIS
may be used for input selection for both linear and nonlin-
ear systems, see Jang [1993]. As for applications, ANFIS is
for example used for input selection in problems related to
identifying the most significant input parameters for pre-
dicting global solar radiation shown by Mohammadi et al.
[2001]. Furthermore, despite its popularity, one has to keep
in mind that optimizing neural networks are non-convex
problems and implementation can be difficult. Also, as
ANFIS is solely used for the input selection problem, if a
model is desired one has to consult some suitable method
for identification.

Other, perhaps simpler, methods for input selection in-
clude Partial Linear Correleation (PLC) and Partial Mu-
tual Information (PMI) which are model-free techniques,
see Tran et al. [2015]. These model-free approaches rely on
the statistical relationship between the various inputs and

1 Support from the Swedish Research Council under contract No
E05946CI is gratefully acknowledged.

outputs using linear and non-linear correleation. Simply,
inputs that in a statistical sense highly correlate with any
of the outputs should be regarded as relevant inputs. On
the contrary, inputs that do not correlate with any of the
outputs should not be considered relevant for the system
and should thus be discarded from the modeling process.

Another closely related method that is worth mentioning
are nearest correlation spectral clustering in combination
with a group lasso, see Fujiwara and Kano [2015]. This
method is used in applications related to soft sensors and
the group lasso regularization is the same technique our
method employs. Worth mentioning is also Relative Gain
Array (RGA) methods, see Kadhim et al. [2014].

In this paper, we introduce an extension to the Nuclear
Norm Subspace Identification (N2SID) framework pro-
posed by Verhaegen and Hansson [2015]. As a natural
extension to N2SID, we introduce a novel method where
input selection is directly incorporated into the N2SID
framework. This extension does not interfere with the
convex property of the N2SID problem and neither its
property to be recast as a Semi-Definite Programming
(SDP) problem. Thus, computational complexity remains
virtually unchanged with this input selection feature ex-
tension. Furthermore, as we show in the paper, the esti-
mated and input selected models that our modified N2SID
method provides are excellent, and the input selection
works accurately.

1.1 Notation

For simplicity and readability, we introduce a notation for
submatrices. Given X ∈ Rm×n and integers 1 ≤ i ≤ j ≤
m, 1 ≤ k ≤ l ≤ n, then Xi:j,k:l is the submatrix of X with
rows from i to j and columns k to l. For further readability,

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 9882

Input selection in N2SID using group lasso
regularization
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if the number of rows in the submatrix is equal to m, then
X1:m,k:l is written simply asX:,k:l. The same simplification
applies to columns.

Some special norms are used in this article which include
the nuclear norm and the H2 norm. The nuclear norm is
denoted ‖ · ‖� and the H2 norm is denoted ‖S‖H2 where
S is some state-space model.

Finally, L = logspace (a, b, n) defines an ordered set L =
{l1, ..., ln} where l1 = 10a, ln = 10b and all the elements
are logarithmically spaced (compare with the Matlab
function logspace).

2. PRELIMINARIES

2.1 State-space representation and input selection

A common problem in system identification is to identify
a state-space model of a linear, time-invariant system with
multiple inputs and multiple outputs. A general discrete-
time state-space representation is given by{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where x(t) ∈ Rn, y(t) ∈ Rq, u(t) ∈ Rp. Explicitly,

x(t) = [x1(t) . . . xn(t)]
T

(2)

u(t) = [u1(t) . . . up(t)]
T

(3)

y(t) = [y1(t) . . . yq(t)]
T

(4)

where (2) is the state vector, (3) is the input vector and
(4) is the output vector. In u(t) and y(t), each component
represents an input and output, respectively.

Provided input and output measurement data, given by
u(1), ..., u(N) and y(1), ..., y(N), the challenge is to esti-
mate the matrices A,B,C,D in (1) so that they fit the
measurement data. However, all inputs might not actually
affect the system, and this will correspond to zero columns
in the B and D matrices. These possibly redundant inputs
leads us to the following definition:

Definition 1. Suppose uk, k ∈ {1, .., p} is a component
of the input vector u(t) in the state-space system in (1).
The component uk is said to be a non-significant input if
B:,k = 0, D:,k = 0. Otherwise, the component is said to
be a significant input.

If an input is non-significant it is clear from the definition
that the input has no effect on the state equations (through
B) nor directly on the output (through D). Thus, it is
unnecessary to include this input component in our state-
space model. This is the very core of input selection, where
only significant inputs should be included in the final
model.

Remark 2. In practice, the condition in (1) that B:,k = 0,
D:,k = 0 for a non-significant input is replaced with
|B1,k| ≤ ε, ..., |Bn,k| ≤ ε, |D1,k| ≤ ε,...,|Dq,k| ≤ ε for
some tolerance ε > 0.

One might model the system with all inputs treated as
significant. Then, hopefully, the estimations of B and D
will tell which inputs are significant and which can be
discarded. However, the measurements u(1), ..., u(N) and

y(1), ..., y(N) often contain noise and the ideal framework
in (1) is not suitable. In this paper, we restrict ourselves to
the case where the input is known and the output measure-
ments contain white noise. Then the system description is
given by: {

x(t+ 1) = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t)
(5)

where e(t) ∼ N (0, σ) with the same dimension as y(t).
Because of the presence of the noise in our system and
thus in the output measurements, it will be transferred to
the estimations of B and D, and hence make the detection
of zero-columns non-trivial.

2.2 State-space identification with N2SID

Before introducing the method of input selection, we will
introduce and discuss Nuclear Norm Subspace Identifica-
tion (N2SID) briefly. For a more thorough review regard-
ing this particular subspace method, we refer to Verhaegen
and Hansson [2015]. The reason why we use N2SID is
because it is a convex problem which can be written as a
Semi-Definite Programming (SDP) problem. Also, N2SID
has shown to work well for relatively short batches of
measurement data. Before we go into more details about
the N2SID problem some definitions are required.

The model in (5) may be represented in its observer form{
x(t+ 1) = (A−KC)x(t) + (B −KD)u(t) +Ky(t)

y(t) = Cx(t) +Du(t) + e(t)
(6)

where we may define A = A −KC and B = B −KD for
a slightly more compact notation. This yields{

x(t+ 1) = Ax(t) + Bu(t) +Ky(t)

y(t) = Cx(t) +Du(t) + e(t)
(7)

which will be used for constructing the data equation. As
before, assume that we have input and output measure-
ments u(1), ..., u(N) and y(1), ..., y(N). Let s > n and
define the block Hankel matrix Us for the input u(t) as

Us =




u(1) u(2) . . . u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) . . . u(N)


 . (8)

In the very same manner as (8), define block Hankel matri-
ces Y s and Es for y(t) and e(t), respectively. Furthermore,
define the block Toeplitz matrix Tu,s from the quadruple
of system matrices {A,B, C,D} as

Tu,s =




D 0 . . . 0
CB D 0
...

. . .

CAs−2B . . . D


 (9)

and similarly, define T y,s from the quadruple {A,K,C, 0}.
Also, define the extended observability matrix, Os:

Os =
[
CT ACT . . .

(
AT

)s−1
CT

]T
. (10)

Finally, let the state sequence be stored as:

X = [x(1) x(2) . . . x(N − s+ 1)] (11)
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Sweden (e-mail: {mans.klingspor, anders.hansson}@liu.se,

johanl@isy.liu.se).
∗∗ Delft Center for Systems and Control, Delft University of

Technology, Delft, The Netherlands (e-mail: m.verhaegen@tudelft.nl).

Abstract: Input selection is an important and oftentimes difficult challenge in system
identification. In order to achieve less complex models, irrelevant inputs should be methodically
and correctly discarded before or under the estimation process. In this paper we introduce a
novel method of input selection that is carried out as a natural extension in a subspace method.
We show that the method robustly and accurately performs input selection at various noise
levels and that it provides good model estimates.

Keywords: Input selection, System identification, State-space models, N2SID, Subspace
methods, Signal-to-noise ratio

1. INTRODUCTION

One of the challenges in system identification is input
selection. Being subject to a number of potential inputs,
it is desirable to only include relevant inputs to avoid an
overly complex model. This task may be troublesome due
to an excessive number of inputs and noisy measurements,
making input selection a research topic of interest in the
system identification community, see for example Van de
Wal and De Jager [2001] and Rojas, Tóth and Hjalmarsson
[2014]. Thus, there are several methods available for input
selection which we will briefly discuss before introducing
our method.

Perhaps most popular and widely referenced are various
methods of Adaptive Neuro Fuzzy Inference System (AN-
FIS) which is an artificial neural network method. ANFIS
may be used for input selection for both linear and nonlin-
ear systems, see Jang [1993]. As for applications, ANFIS is
for example used for input selection in problems related to
identifying the most significant input parameters for pre-
dicting global solar radiation shown by Mohammadi et al.
[2001]. Furthermore, despite its popularity, one has to keep
in mind that optimizing neural networks are non-convex
problems and implementation can be difficult. Also, as
ANFIS is solely used for the input selection problem, if a
model is desired one has to consult some suitable method
for identification.

Other, perhaps simpler, methods for input selection in-
clude Partial Linear Correleation (PLC) and Partial Mu-
tual Information (PMI) which are model-free techniques,
see Tran et al. [2015]. These model-free approaches rely on
the statistical relationship between the various inputs and
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outputs using linear and non-linear correleation. Simply,
inputs that in a statistical sense highly correlate with any
of the outputs should be regarded as relevant inputs. On
the contrary, inputs that do not correlate with any of the
outputs should not be considered relevant for the system
and should thus be discarded from the modeling process.

Another closely related method that is worth mentioning
are nearest correlation spectral clustering in combination
with a group lasso, see Fujiwara and Kano [2015]. This
method is used in applications related to soft sensors and
the group lasso regularization is the same technique our
method employs. Worth mentioning is also Relative Gain
Array (RGA) methods, see Kadhim et al. [2014].

In this paper, we introduce an extension to the Nuclear
Norm Subspace Identification (N2SID) framework pro-
posed by Verhaegen and Hansson [2015]. As a natural
extension to N2SID, we introduce a novel method where
input selection is directly incorporated into the N2SID
framework. This extension does not interfere with the
convex property of the N2SID problem and neither its
property to be recast as a Semi-Definite Programming
(SDP) problem. Thus, computational complexity remains
virtually unchanged with this input selection feature ex-
tension. Furthermore, as we show in the paper, the esti-
mated and input selected models that our modified N2SID
method provides are excellent, and the input selection
works accurately.

1.1 Notation

For simplicity and readability, we introduce a notation for
submatrices. Given X ∈ Rm×n and integers 1 ≤ i ≤ j ≤
m, 1 ≤ k ≤ l ≤ n, then Xi:j,k:l is the submatrix of X with
rows from i to j and columns k to l. For further readability,
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Sweden (e-mail: {mans.klingspor, anders.hansson}@liu.se,

johanl@isy.liu.se).
∗∗ Delft Center for Systems and Control, Delft University of

Technology, Delft, The Netherlands (e-mail: m.verhaegen@tudelft.nl).

Abstract: Input selection is an important and oftentimes difficult challenge in system
identification. In order to achieve less complex models, irrelevant inputs should be methodically
and correctly discarded before or under the estimation process. In this paper we introduce a
novel method of input selection that is carried out as a natural extension in a subspace method.
We show that the method robustly and accurately performs input selection at various noise
levels and that it provides good model estimates.

Keywords: Input selection, System identification, State-space models, N2SID, Subspace
methods, Signal-to-noise ratio

1. INTRODUCTION

One of the challenges in system identification is input
selection. Being subject to a number of potential inputs,
it is desirable to only include relevant inputs to avoid an
overly complex model. This task may be troublesome due
to an excessive number of inputs and noisy measurements,
making input selection a research topic of interest in the
system identification community, see for example Van de
Wal and De Jager [2001] and Rojas, Tóth and Hjalmarsson
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if the number of rows in the submatrix is equal to m, then
X1:m,k:l is written simply asX:,k:l. The same simplification
applies to columns.

Some special norms are used in this article which include
the nuclear norm and the H2 norm. The nuclear norm is
denoted ‖ · ‖� and the H2 norm is denoted ‖S‖H2 where
S is some state-space model.

Finally, L = logspace (a, b, n) defines an ordered set L =
{l1, ..., ln} where l1 = 10a, ln = 10b and all the elements
are logarithmically spaced (compare with the Matlab
function logspace).

2. PRELIMINARIES

2.1 State-space representation and input selection

A common problem in system identification is to identify
a state-space model of a linear, time-invariant system with
multiple inputs and multiple outputs. A general discrete-
time state-space representation is given by{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where x(t) ∈ Rn, y(t) ∈ Rq, u(t) ∈ Rp. Explicitly,

x(t) = [x1(t) . . . xn(t)]
T

(2)

u(t) = [u1(t) . . . up(t)]
T

(3)

y(t) = [y1(t) . . . yq(t)]
T

(4)

where (2) is the state vector, (3) is the input vector and
(4) is the output vector. In u(t) and y(t), each component
represents an input and output, respectively.

Provided input and output measurement data, given by
u(1), ..., u(N) and y(1), ..., y(N), the challenge is to esti-
mate the matrices A,B,C,D in (1) so that they fit the
measurement data. However, all inputs might not actually
affect the system, and this will correspond to zero columns
in the B and D matrices. These possibly redundant inputs
leads us to the following definition:

Definition 1. Suppose uk, k ∈ {1, .., p} is a component
of the input vector u(t) in the state-space system in (1).
The component uk is said to be a non-significant input if
B:,k = 0, D:,k = 0. Otherwise, the component is said to
be a significant input.

If an input is non-significant it is clear from the definition
that the input has no effect on the state equations (through
B) nor directly on the output (through D). Thus, it is
unnecessary to include this input component in our state-
space model. This is the very core of input selection, where
only significant inputs should be included in the final
model.

Remark 2. In practice, the condition in (1) that B:,k = 0,
D:,k = 0 for a non-significant input is replaced with
|B1,k| ≤ ε, ..., |Bn,k| ≤ ε, |D1,k| ≤ ε,...,|Dq,k| ≤ ε for
some tolerance ε > 0.

One might model the system with all inputs treated as
significant. Then, hopefully, the estimations of B and D
will tell which inputs are significant and which can be
discarded. However, the measurements u(1), ..., u(N) and

y(1), ..., y(N) often contain noise and the ideal framework
in (1) is not suitable. In this paper, we restrict ourselves to
the case where the input is known and the output measure-
ments contain white noise. Then the system description is
given by: {

x(t+ 1) = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t)
(5)

where e(t) ∼ N (0, σ) with the same dimension as y(t).
Because of the presence of the noise in our system and
thus in the output measurements, it will be transferred to
the estimations of B and D, and hence make the detection
of zero-columns non-trivial.

2.2 State-space identification with N2SID

Before introducing the method of input selection, we will
introduce and discuss Nuclear Norm Subspace Identifica-
tion (N2SID) briefly. For a more thorough review regard-
ing this particular subspace method, we refer to Verhaegen
and Hansson [2015]. The reason why we use N2SID is
because it is a convex problem which can be written as a
Semi-Definite Programming (SDP) problem. Also, N2SID
has shown to work well for relatively short batches of
measurement data. Before we go into more details about
the N2SID problem some definitions are required.

The model in (5) may be represented in its observer form{
x(t+ 1) = (A−KC)x(t) + (B −KD)u(t) +Ky(t)

y(t) = Cx(t) +Du(t) + e(t)
(6)

where we may define A = A −KC and B = B −KD for
a slightly more compact notation. This yields{

x(t+ 1) = Ax(t) + Bu(t) +Ky(t)

y(t) = Cx(t) +Du(t) + e(t)
(7)

which will be used for constructing the data equation. As
before, assume that we have input and output measure-
ments u(1), ..., u(N) and y(1), ..., y(N). Let s > n and
define the block Hankel matrix Us for the input u(t) as

Us =




u(1) u(2) . . . u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) . . . u(N)


 . (8)

In the very same manner as (8), define block Hankel matri-
ces Y s and Es for y(t) and e(t), respectively. Furthermore,
define the block Toeplitz matrix Tu,s from the quadruple
of system matrices {A,B, C,D} as

Tu,s =




D 0 . . . 0
CB D 0
...

. . .

CAs−2B . . . D


 (9)

and similarly, define T y,s from the quadruple {A,K,C, 0}.
Also, define the extended observability matrix, Os:

Os =
[
CT ACT . . .

(
AT

)s−1
CT

]T
. (10)

Finally, let the state sequence be stored as:

X = [x(1) x(2) . . . x(N − s+ 1)] (11)
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With these definitions, the data equation is given by:

Y s = OsX + Tu,sUs + T y,sY s + Es (12)

This data equation can be slightly reformulated. Let ŷ(t) =

y(t) − e(k) and Ŷ s be a Hankel matrix defined in the
same way as Y s for y(t). Furthermore, let T p,m denote
the class of lower triangular block-Toeplitz matrices with
block entries p×m matrices. Also, let Hp denote the class
of block-Hankel matrices with block entries of p column
vectors. With these definitions, we may now provide the
final expression of the N2SID problem and for more details
regarding this, we refer to Verhaegen and Hansson [2015].

This is a convex problem that includes a rank penalty (the
nuclear norm) and a penalty on the sample average. Note
that the penalty on the sample average may be adjusted
with the regularization parameter λ1 ≥ 0.

min
Ŷ s∈Hp,T̂u,s∈T p,m,T̂y,s∈T p,p

‖Ŷ s − T̂u,sUs − T̂ y,sY s‖�+

+ λ1

N∑
k=1

‖y(k)− ŷ(k)‖22

(13)

To conclude, with (13) the ”best” estimation in the N2SID
sense is now well defined.

3. GROUP LASSO REGULARIZATION

The main idea behind our input selection method is
adopted from group lasso proposed by Yuan and Lin [2006]
and further discussed by Friedman, Hastie and Tibshirani
[2010]. Assuming that the variables in some optimization
problem have a natural grouping, group lasso imposes
regularization on the groups and helps to achieve sparse
solutions at group level.

For our problem in (13), the matrix variable T̂u,s is related
to the B and D matrices of the system through (9).
Looking at (9), and in particular

Tu,s
:,1:p =




D
CB
...

CAs−2B


 =




D
C(B −KD)

...
CAs−2(B −KD)


 (14)

we note that Tu,s
:,1:p uniquely describes Tu,s because of the

Toeplitz structure. Furthermore, it is not hard to see that
a column k in Tu,s

:,1:p is related to respective column k in B

and D and thus related to the component uk(t) in u(t).
Consequently, it makes sense to penalize each column in
T̂u,s
:,1:p in order to achieve zero columns in the solution of

said matrix. These zero columns in T̂u,s
:,1:p will then transfer

to corresponding columns in the estimates of B andD, and
the components that are non-significant inputs become
easily distinguishable.

With this background, a slight modification of the problem
in (13) is proposed with the introduction of a group lasso

term where each column in T̂u,s
:,1:p is penalized.

min
Ŷ s∈Hp,T̂u,s∈T p,m,T̂y,s∈T p,p

‖Ŷ s − T̂u,sUs − T̂ y,sY s‖�+

+ λ1

N∑
k=1

‖y(k)− ŷ(k)‖22 + λ2

p∑
k=1

‖T̂u,s
:,k ‖2

(15)

Note that a regularization parameter λ2 ≥ 0 is introduced
for the group lasso penalty.

Remark 3. In the group lasso setup proposed by Friedman,
Hastie and Tibshirani [2010], there is a unique regular-
ization parameter for each group penalty dependent on
the number of elements in the group. For (15) this would
be superfluous since all groups have the same number of
elements and hence λ2 is sufficient.

4. METHOD

With the theory established, we may now introduce our
method of input selection. The assumption is that we
have some linear system as in (5) with n states, in-
puts u1(t), ..., up(t) and outputs y1(t), ...yq(t). We as-
sume that there are measurement data of both the in-
puts and outputs, u1(1), ..., up(1), ..., u1(N), ..., up(N) and
y1(1), ..., yq(1), ..., y1(N), ..., yq(N).

i. For each t = 1, ..., N , stack the measurement data as

u(t) = [u1(t) . . . up(t)]
T

(16)

y(t) = [y1(t) . . . yq(t)]
T
. (17)

ii. From the measurement data in (16) and (17), form
the Hankel matrices Us and Y s as according to (8)
for some s > n.

iii. Define variables Ŷ s, T̂u,s and T̂ y,s according to the
discussion. Note that the variable ŷ(t) is extracted

from Ŷ s.
iv. Solve the problem in (15), that is

min
Ŷ s∈Hp,T̂u,s∈T p,m,T̂y,s∈T p,p

‖Ŷ s − T̂u,sUs − T̂ y,sY s‖�+

+ λ1

N∑
k=1

‖y(k)− ŷ(k)‖22 + λ2

p∑
k=1

‖T̂u,s
:,k ‖2

(18)

for some suitable λ1, λ2.
v. Let T̂u,s be the optimal solution to problem above.

Given a tolerance ε > 0, an input uk, k ∈ {1, ..., p} is

regarded as non-significant if it holds that |T̂u,s
1,k | ≤ ε,

..., |T̂u,s
n,k | ≤ ε. Otherwise, the input is significant.

vi. With ps significant inputs, let S = {k1, ..., kps
} be a

ordered subset of the indices of the significant inputs.
Then for each ki ∈ S, define a reduced Toeplitz matrix
T̂u,s,GL given by

T̂u,s,GL
:,ki+mp = T̂u,s

:,ki+mp (19)

for i = 1, ..., ps and m = 0, ..., s− 1.
vii. Define uGL(t) as

uGL(t) =
[
uk1

(t) . . . ukps
(t)

]T
(20)

for each t = 1, ..., N . This is a stacking of the
input measurements as in (16) but only including
the significant inputs. The superscript GL stands for
Group Lasso.
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viii. From the reduced input measurement data uGL(t),
construct the Hankel matrix Us,GL according to (8)
for the same s as before.

ix. With Us,GL and T̂u,s,GL (instead of Us and T̂u,s),

use N2SID software to extract estimations Â, B̂, Ĉ, D̂
yielding the estimated system{

x(t+ 1) = Âx(t) + B̂uGL(t)

y(t) = Ĉx(t) + D̂uGL(t)
(21)

where uGL(t) ∈ Rps is given by

uGL(t) =
[
uk1(t) . . . ukps(t)

]T
. (22)

5. VALIDATION STUDY

5.1 Preliminaries

Simulations have been carried out in Matlab using
Mosek 7.1 as an SDP solver and N2SID software for
estimating the system matrices, see Verhaegen and Hans-
son [2016].

For quantitative results, systems are randomly generated
in Matlab using the function drss which generates ran-
dom, stable, discrete-time state-space models. Since the
generated systems are on the form{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(23)

and the desired form is (5), some adjustments have to
be made. As e(t) may be treated as an input, a system
with p + 1 inputs is generated using drss. This yields
p + 1 columns in B and D respectively, and we assign
K = B:,p+1 and D:,p+1 = 1. Then, to avoid clumsy
notation we redefine B = B:,1:p and D = D:,1:p. Finally,
given ps significant inputs we assign B:,ps+1:p = 0 and
D:,ps+1:p = 0. Thus, a random system of the form in (5)
with ps significant inputs has been achieved.

Since it makes sense to use Signal-to-Noise Ratio (SNR)
for comparison, we must make sure that the amplification
between the ”regular” input channels and the output is the
same as from the noise channel to the output. To achieve
this, consider two systems where the matrices are defined
as in the discussion above.

Su :

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(24)

Se :

{
x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)
(25)

With ‖Su‖H2
and ‖Se‖H2

, we can define the system that
will be simulated:

S :




x(t+ 1) = Ax(t) + 1/‖Su‖H2 ·Bu(t)

+ 1/‖Se‖H2
·Ke(t)

y(t) = Cx(t) + 1/‖Su‖H2 ·Du(t)

+ 1/‖Se‖H2
· e(t)

(26)

For (26), the input to output channels and noise to output
channels are equally normalized, making SNR of the inputs
a consistent tool for comparison (see Zhou [1997] for an
extensive description of the H2 norm).

Provided S, the system will be simulated with inputs

u1, ..., up as random telegraph signals. That is, uk(t) ∈
{−1, 1}, k ∈ {1, ..., p} randomly for t = 1, .., N , see Ljung
[1999]. Since Var (uk) = 1 and Var (e) = σ2, the SNR
between an input uk, k ∈ {1, ..., p} and the noise is then
given by

SNR =
Var (uk)

Var (e)
=

1

σ2
. (27)

5.2 Experiments

In order to vindicate our new method of input selection,
the following will be investigated:

i. Input selection: How well does our method perform
the input selection? Are all non-significant inputs
detected? Are all significant inputs correctly detected
as such?

ii. Model estimation: Does our method, with the input
selection, also provide good model estimations?

The first question will be investigated by implementing our
input selection method on batches of measurement data
generated by systems Sσ1

1 , ..., Sσ1

M , ..., SσR
1 , ..., SσR

M respec-
tively. Here, each Sσr

m , m ∈ {1, ...,M}, σr ∈ {σ1, ..., σR}
is a random system on the same form as S in (26). Each
system Sσr

m has n states, p inputs, q outputs, noise level
σr and random number of significant inputs ps.

The outcome of a single input selection experiment is
labeled as one of the following disjoint cases:

i. All significant inputs detected as significant. All non-
significant inputs detected as non-significant.

ii. All significant inputs detected as significant. Some
non-significant input detected as significant.

iii. Some significant input detected as non-significant.

For an input selection experiment on a series of systems
Sσr
1 , ..., Sσr

M with fixed noise level σr, the result will be
presented by the number of outcomes that we labeled (i),
(ii) and (iii) respectively.

The second question will be investigated by checking the
quality of the estimated model that is provided by our
method. For this purpose, the so called Normalized Root
Mean Square Error (NRMSE) fitness value will be used
as the tool for determining the quality for an estimated
model, see Ljung [1999].

Definition 4. Suppose yv is output data generated from
the system S with input data uv. Let Ŝ be an estimation
of S. If ŷv is output generated from Ŝ with input uv, then
the NRMSE fitness value for Ŝ is given by

FITŜ = 100 ·
(
1− ‖yv − ŷv‖2

‖yv −mean (yv)‖2

)
[%] (28)

We will consider batches of measurement data generated
by systems Sσ1

1 , ..., Sσ1

M , ..., SσR
1 , ..., SσR

M as before. Half
of the data for each system is used to perform our method
which includes estimation and input selection and the
other half is used for validation. Let the respective input
selected, estimated systems be given by Ŝσ1

1 , ..., Ŝσ1

M , ...,

ŜσR
1 , ..., ŜσR

M . Then for a series of estimations Ŝσr
1 , ..., Ŝσr

M
with fixed noise level σr, an average FIT value, FITŜσr ,
can be defined as
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viii. From the reduced input measurement data uGL(t),
construct the Hankel matrix Us,GL according to (8)
for the same s as before.

ix. With Us,GL and T̂u,s,GL (instead of Us and T̂u,s),

use N2SID software to extract estimations Â, B̂, Ĉ, D̂
yielding the estimated system{

x(t+ 1) = Âx(t) + B̂uGL(t)

y(t) = Ĉx(t) + D̂uGL(t)
(21)

where uGL(t) ∈ Rps is given by

uGL(t) =
[
uk1(t) . . . ukps(t)

]T
. (22)

5. VALIDATION STUDY

5.1 Preliminaries

Simulations have been carried out in Matlab using
Mosek 7.1 as an SDP solver and N2SID software for
estimating the system matrices, see Verhaegen and Hans-
son [2016].

For quantitative results, systems are randomly generated
in Matlab using the function drss which generates ran-
dom, stable, discrete-time state-space models. Since the
generated systems are on the form{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(23)

and the desired form is (5), some adjustments have to
be made. As e(t) may be treated as an input, a system
with p + 1 inputs is generated using drss. This yields
p + 1 columns in B and D respectively, and we assign
K = B:,p+1 and D:,p+1 = 1. Then, to avoid clumsy
notation we redefine B = B:,1:p and D = D:,1:p. Finally,
given ps significant inputs we assign B:,ps+1:p = 0 and
D:,ps+1:p = 0. Thus, a random system of the form in (5)
with ps significant inputs has been achieved.

Since it makes sense to use Signal-to-Noise Ratio (SNR)
for comparison, we must make sure that the amplification
between the ”regular” input channels and the output is the
same as from the noise channel to the output. To achieve
this, consider two systems where the matrices are defined
as in the discussion above.

Su :

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(24)

Se :

{
x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)
(25)

With ‖Su‖H2
and ‖Se‖H2

, we can define the system that
will be simulated:

S :




x(t+ 1) = Ax(t) + 1/‖Su‖H2 ·Bu(t)

+ 1/‖Se‖H2
·Ke(t)

y(t) = Cx(t) + 1/‖Su‖H2 ·Du(t)

+ 1/‖Se‖H2
· e(t)

(26)

For (26), the input to output channels and noise to output
channels are equally normalized, making SNR of the inputs
a consistent tool for comparison (see Zhou [1997] for an
extensive description of the H2 norm).

Provided S, the system will be simulated with inputs

u1, ..., up as random telegraph signals. That is, uk(t) ∈
{−1, 1}, k ∈ {1, ..., p} randomly for t = 1, .., N , see Ljung
[1999]. Since Var (uk) = 1 and Var (e) = σ2, the SNR
between an input uk, k ∈ {1, ..., p} and the noise is then
given by

SNR =
Var (uk)

Var (e)
=

1

σ2
. (27)

5.2 Experiments

In order to vindicate our new method of input selection,
the following will be investigated:

i. Input selection: How well does our method perform
the input selection? Are all non-significant inputs
detected? Are all significant inputs correctly detected
as such?

ii. Model estimation: Does our method, with the input
selection, also provide good model estimations?

The first question will be investigated by implementing our
input selection method on batches of measurement data
generated by systems Sσ1

1 , ..., Sσ1

M , ..., SσR
1 , ..., SσR

M respec-
tively. Here, each Sσr

m , m ∈ {1, ...,M}, σr ∈ {σ1, ..., σR}
is a random system on the same form as S in (26). Each
system Sσr

m has n states, p inputs, q outputs, noise level
σr and random number of significant inputs ps.

The outcome of a single input selection experiment is
labeled as one of the following disjoint cases:

i. All significant inputs detected as significant. All non-
significant inputs detected as non-significant.

ii. All significant inputs detected as significant. Some
non-significant input detected as significant.

iii. Some significant input detected as non-significant.

For an input selection experiment on a series of systems
Sσr
1 , ..., Sσr

M with fixed noise level σr, the result will be
presented by the number of outcomes that we labeled (i),
(ii) and (iii) respectively.

The second question will be investigated by checking the
quality of the estimated model that is provided by our
method. For this purpose, the so called Normalized Root
Mean Square Error (NRMSE) fitness value will be used
as the tool for determining the quality for an estimated
model, see Ljung [1999].

Definition 4. Suppose yv is output data generated from
the system S with input data uv. Let Ŝ be an estimation
of S. If ŷv is output generated from Ŝ with input uv, then
the NRMSE fitness value for Ŝ is given by

FITŜ = 100 ·
(
1− ‖yv − ŷv‖2

‖yv −mean (yv)‖2

)
[%] (28)

We will consider batches of measurement data generated
by systems Sσ1

1 , ..., Sσ1

M , ..., SσR
1 , ..., SσR

M as before. Half
of the data for each system is used to perform our method
which includes estimation and input selection and the
other half is used for validation. Let the respective input
selected, estimated systems be given by Ŝσ1

1 , ..., Ŝσ1

M , ...,

ŜσR
1 , ..., ŜσR

M . Then for a series of estimations Ŝσr
1 , ..., Ŝσr

M
with fixed noise level σr, an average FIT value, FITŜσr ,
can be defined as
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FITŜσr =
FITŜσr

1
+ ...+ FITŜσr

M

M
. (29)

This will help us to see the quality of the estimations on
average and how different noise levels affects the NRMSE
fitness value.

Finally, the tests were conducted with a constant regu-
larization parameter λ1 = 10, n = 6 states, p = 6 inputs,
q = 1 output(s), ps ∈ {1, ..., p} significant inputs (random)
and σr ∈ logspace (−3,−1/2, 10). The number of tests in
each series was M = 350.

Remark 5. In the N2SID algorithm, an optimal λ1 is
calculated. Since, however, we are concerned with input
selection properties which is related to λ2, λ1 remains fixed
in the experiments.

5.3 Results

In figures 1, 2 and 3 there are plots of the results of input
selection tests. For each figure, a different regularization
parameter λ2 ∈ {20, 25, 30} was used. Furthermore, for
each fixed λ2, various threshold levels ε were used as
indicated by the title of respective subplot.

As indicated by the results, it is imperative to select λ2

and ε carefully. In Figure 1, for instance, λ2 was chosen
too small and thus non-significant inputs were not detected
properly. This is because the corresponding columns in
T̂u,s are not sufficiently close to zero because of a relatively
low penalty. While this may be remedied with a bigger
threshold, the trade-off is that significant inputs may be
incorrectly discarded. On the contrary, if λ2 is too big, the
proportion of wrongfully discarded significant inputs will
grow as can be seen in Figure 3. As for Figure 2 where
λ2 = 25, we are closer to the optimal values of λ2 and
ε for this experimental setup. One should, however, still
carefully note the apparent trade-off between the level of
threshold ε and discarded significant inputs.

From these test results we draw the conclusion that the
method is robust for different SNR levels and accurately
performs input selection for a suitable choice of the pa-
rameters λ2 and ε.

Now, as the performance of the method with regards to the
input selection property has been established, the quality
of the estimated model that the method provides will be
addressed. For comparison, for each Sσr

m , the following
estimations will be performed:

i. Oracle estimation: As an omniscient oracle, we only
include the significant inputs in the model estimation.
Thus, the input selection is conducted theoretically
and then a model estimated using N2SID method
without the group lasso penalty. This estimation is in
a sense an upper bound for the quality of an estimated
model.

ii. Naive estimation: Here, both significant and non-
significant inputs are included in the estimation. Thus,
no input selection is performed and the N2SID method
without the group lasso penalty term is used to
estimate an model. Contrary to the oracle estimation,
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Fig. 1. Input selection test with λ2 = 20 and threshold
levels given above each single subplot.
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Fig. 2. Input selection test with λ2 = 25 and threshold
levels given above each single subplot.

this estimation is in a sense a lower bound for the
quality of an estimated model.

iii. Input selection and estimation in one step (our
method): Here, we use our method where input
selection and estimation of the model is carried out
in the same step.

iv. Input selection and estimation in two steps:
Here, our method is used in one step solely for input
selection. Then, using the inputs that have been
detected as significant, we estimate an model from
scratch.

In Figure 4 there are plots of the results of a fitness
test with λ2 = 25 and ε = 0.01. As can be seen in the
plot, the oracle estimations are upper bounds and the
naive estimations are lower bounds – both in terms of the
average FIT. Furthermore, the reward of performing input
selection and estimation in two steps is small compared
to our method. Thus, we can conclude that our method
provides a good model and that input selection and model
estimation just as well can be performed in one single step.
As also can be seen in the plot, the reward of using our
method is larger for lower SNR:s.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

9886

SNR (dB)

10 20 30 40 50 60

%

0

50

100
ε = 10

−5

i

ii

iii

SNR (dB)

10 20 30 40 50 60

%

0

50

100
ε = 10

−4

i

ii

iii

SNR (dB)

10 20 30 40 50 60

%

0

50

100
ε = 10

−3

i

ii

iii

SNR (dB)

10 20 30 40 50 60

%

0

50

100
ε = 10

−2

i

ii

iii

Fig. 3. Input selection test with λ2 = 30 and threshold
levels given above each single subplot.
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Fig. 4. Average FIT test with λ2 = 20 and threshold
level ε = 0.001. The upper solid line is the average
fit using oracle estimation and the lower dashed line
is the average fit using naive estimation. The solid
line with circle markers is the average fit using input
selection and estimation in one step (our method).
The solid line without markers is the average fit using
input selection and estimation in two steps.

6. CONCLUSIONS

In this paper, we have introduced a novel method of input
selection and estimation in one step for time-discrete state-
space models. This method works well and is robust as
quantitative results have shown us – both in the input
selection feature and in the sense of model fit.

Future work includes a more thorough investigation of
the effects of λ2 and ε and how they should be optimally
chosen with regards to the noise levels. Also, software for
a more efficient solver should be developed in the future
as trials have been carried out in Matlab with YALMIP.

Lastly, our method should be implemented on real appli-
cations where input selection is needed on a data set and
compared with other methods of input selection.
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Fig. 4. Average FIT test with λ2 = 20 and threshold
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6. CONCLUSIONS

In this paper, we have introduced a novel method of input
selection and estimation in one step for time-discrete state-
space models. This method works well and is robust as
quantitative results have shown us – both in the input
selection feature and in the sense of model fit.

Future work includes a more thorough investigation of
the effects of λ2 and ε and how they should be optimally
chosen with regards to the noise levels. Also, software for
a more efficient solver should be developed in the future
as trials have been carried out in Matlab with YALMIP.

Lastly, our method should be implemented on real appli-
cations where input selection is needed on a data set and
compared with other methods of input selection.
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