
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Secure spectral clustering: the approximation of

eigenvectors in the integer domain

A thesis submitted to the

Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

by

Marie-Louise Christina Steverink

Delft, the Netherlands

August 2017

Copyright c© 2017 by Lisa Steverink. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Secure spectral clustering: the approximation of eigenvectors in the

integer domain”

MARIE-LOUISE CHRISTINA STEVERINK

Delft University of Technology

Daily supervisors

Dr. ir. M.B. van Gijzen

Dr. ir. P.J.M. Veugen

Other thesis committee members

Prof.dr.ir. C. Vuik

Dr. Z. Erkin

August, 2017 Delft

Summary

The upswing of big data and cloud storage services brings along a myriad of

possibilities to compare data points on a large scale. However, privacy concerns

may limit the applications of outsourced data mining. These arguments have

motivated research in privacy preserving data mining, in which multiple parties

interact to evaluate a function without obtaining information about any other

party’s input. One of the cryptographic tools to make a function privacy pre-

serving is Paillier encryption, which allows linear operations to be performed on

encrypted values. This thesis focuses on a data mining technique called spectral

clustering, which groups data points according to a measure of connectivity in a

data graph. A pivotal part of spectral clustering is the partial eigendecomposi-

tion of the graph Laplacian. Two numerical algorithms are used to approximate

the eigenvectors of the Laplacian: the Lanczos algorithm and the QR algorithm.

In this thesis, these numerical methods are adapted to work on Paillier encrypted

data values. The main challenge is the fact that Paillier encryption can only be

applied to a field of positive integers. Furthermore, cryptographic protocols have

to be invoked to perform non-linear operations. Also, the square root and di-

vision operations are computationally heavy in the privacy preserving domain.

The numerical algorithms are adapted to overcome these challenges and be more

suitable to work on encrypted values. Moreover, designs were given for the

privacy preserving approximation of eigenvectors with the use of cryptographic

protocols between two parties. The convergence and the accuracy of the adapted

algorithms were investigated, along with the influence of the adaptation on the

performance of the spectral clustering algorithm for datasets with two, five and

ten clusters. This research shows that the numerical algorithms approximate the

eigenvalues with high accuracy for all the datasets. For two and five clusters, the

eigenvectors are approximated accurately and the spectral clustering algorithm

performs well. For ten clusters, the Lanczos algorithm fails in the reconstruc-

tion of the eigenvectors and therefore the spectral clustering algorithm cannot

be performed.

iv

Acknowledgements

This thesis was submitted as the final requirement for the Applied Mathematics

Master of Science degree at the Delft University of Technology. I owe a debt of

gratitude to many people. First of all, I would like to thank my supervisors at

the TU Delft and at TNO. Martin van Gijzen, thank you for your enthusiasm

and positive attitude, even during our meetings at 5 PM. One does not encounter

your great combination of friendliness and originality so often. I also want to

thank Thijs Veugen for giving me the opportunity to write my thesis at TNO in a

notoriously difficult project. I was always impressed by your detailed knowledge

and your patience with a beginning learner in cryptography. Moreover, I would

like to thank Zekeriya Erkin and Kees Vuik for taking the time and effort to be

part of my graduation committee.

I would also like to show gratitude to a few people who may not have contributed

to this thesis directly, but without whom it would have been difficult to find the

perseverance and spirit that was required for the process. I want to thank the

interns at TNO for making me feel like a part of a group and Cindy and Saskia

for the warm welcome when I came to Delft. Eva and Marie Beth, thank you

for sharing the joys and sorrows of a mathematics thesis and understanding how

many “teamschotels” it required. Thank you Eva, Hanne and Shila for providing

a perfect home in which the kitchen always smells of something delicious. A big

thanks to my lovely girlfriend Evita for the dreams that we share and for being

arguably the most patient person in the world. Finally, I thank my dear parents

Paul and Maja and my brother Lars for their endless love and trust in me. You

taught me more than writing a thesis ever will.

Lisa Steverink

Amsterdam, August 2017

vi

Contents

Nomenclature xi

1 Introduction 1

2 Spectral clustering 4

3 Numerical methods 10

3.1 The Lanczos algorithm . 10

3.1.1 A derivation of the method 11

3.1.2 The Lanczos algorithm . 14

3.1.3 Convergence properties . 15

3.1.4 Limitations . 16

3.2 The QR algorithm . 19

3.2.1 The QR decomposition . 19

3.2.2 The QR algorithm . 21

3.2.3 Using shifts . 25

3.3 Back substitution . 26

3.4 Summary . 27

4 Computations on encrypted numbers 29

4.1 Introduction and set-up . 30

4.2 Paillier encryption . 31

4.3 Computations in the message space 33

4.3.1 Arithmetic operations . 34

4.3.2 Bit length . 35

4.3.3 Representation of numbers 35

4.4 Computations in the ciphertext space 37

4.4.1 Complexity of operations 37

4.4.2 Data packing . 38

4.4.3 Blinding numbers . 40

4.5 Privacy preserving computation protocols 40

4.5.1 Scalar multiplication . 41

4.5.2 Inner product . 41

viii

4.5.3 Secure matrix product . 43

4.5.4 Division protocols . 43

4.5.5 The square root . 47

5 An investigation of secure spectral clustering 49

5.1 Constructing the Laplacian and k-means clustering 49

5.1.1 The Laplacian . 50

5.1.2 Secure k-means clustering 51

5.2 The Lanczos algorithm . 52

5.2.1 The unnormalized Lanczos algorithm 52

5.2.2 The Lanczos algorithm in ZN 54

5.2.3 The secure Lanczos algorithm 55

5.3 The QR algorithm . 58

5.3.1 The QR decomposition in ZN 58

5.3.2 The QR algorithm in ZN 59

5.3.3 Secure design of the QR algorithm 59

5.4 Back substitution . 61

5.4.1 Back substitution in ZN 61

5.4.2 Secure back substitution 62

5.5 Connecting the algorithms . 63

6 Results 64

6.1 Methodology . 64

6.1.1 Assessment criteria . 64

6.1.2 Datasets . 65

6.2 The Lanczos algorithm . 69

6.2.1 Wisconsin Breast Cancer Dataset 69

6.2.2 Yeast5 Dataset . 71

6.2.3 Yeast10 Dataset . 74

6.3 The QR algorithm . 76

6.3.1 Wisconsin Breast Cancer Dataset 76

6.3.2 Yeast5 Dataset . 78

6.3.3 Yeast10 Dataset . 81

6.4 Back substitution . 84

6.4.1 Wisconsin Breast Cancer Dataset 84

6.4.2 Yeast5 Dataset . 84

7 Conclusion and discussion 88

7.1 Conclusion . 88

7.2 Discussion . 89

7.2.1 Influence of other steps . 89

7.2.2 Evaluation of results . 90

ix

7.2.3 Suggested improvements 91

7.2.4 Further research . 92

A The secure square root protocol 94

References 96

x

Nomenclature

Note that some symbols have multiple definitions. The context will clarify the

use of the symbol. Furthermore, in this thesis, a column of a matrix is denoted

by a lowercase letter, e.g. the jth column of T is denoted by tj.

(N, g) Public key for Paillier encryption

[m] Encrypted message/ciphertext

αi Diagonal entries of Ritz matrix T

βi Lower diagonal entries of Ritz matrix T

`c Bit length of the ciphertext space

`N Bit length of the message space

γi Upper diagonal entries of Ritz matrix T

κ Security parameter

λ Secret key for Paillier encryption

λi The ith smallest eigenvalue of L

φ Fixed point arithmetic map

ψ Map to encode signed integers

σ Gaussian similarity parameter

θi Ritz values

Ũ Approximated eigenvectors of L, also called Ritz vectors

A Adjacency matrix

aij Weight on the edge between point xi and xj

D Degree matrix

xi

d Scaling parameter in the Lanczos algorithm

e Scaling parameter in the QR algorithm

f Scaling parameter in the secure domain

G Similarity graph

g Scaling parameter in the back substitution phase

k Number of clusters

L Laplacian matrix

m Message

m Number of iterations of the Lanczos algorithm

N Product of primes p and q, defines the message space

p Number of iterations of the QR algorithm

p Prime number

Q Orthogonal matrix in QR decomposition

q Prime number

Q∏ Product of orthogonal matrices in QR algorithm

R Upper triangular matrix in QR decomposition

sij Similarity between data point xi and xj

T Tridiagonal Ritz matrix, result of the Lanczos algorithm

U Eigenvectors of L

V Lanczos matrix, orthogonal basis of Krylov subspace

W Eigenvectors obtained after back substitution

xi Data point corresponding to user i

xii

Chapter 1

Introduction

The upswing of big data and cloud storage services brings along a myriad of

possibilities to compare data points on a large scale. An important technique

in data mining is clustering, in which data points are grouped according to a

similarity measure. Examples of clustering applications are the generation of

recommendations in social networks and the identifcation of trends in medical

data [45]. The size and real-time updated character of datasets and the wish

to combine data from different sources makes it appealing to use an external

server or cloud infrastructure to perform a clustering algorithm. However, data

owners may be reluctant to upload data to a server because their data is privacy

sensitive or holds commercial value. These arguments have motivated research

in privacy preserving data mining, in which randomization, perturbation or en-

cryption can be used to obfuscate data values before performing analysis of the

data. However, even when measures have been taken to anonymize a dataset,

it may not be sufficient to guarantee user privacy. A famous example of this

phenomenon is the Netflix dataset that was published in a contest to improve

the company’s data science practices [17]. The identifying information had been

removed from the dataset and the data was perturbed, but still only a small

amount of information about a user was necessary to identify the Netflix movie

ratings that were given by the user [31]. It is far from straightforward to de-

sign a clustering algorithm in which data privacy is guaranteed. A function is

said to be privacy preserving when “no information can be obtained about any

party’s inputs other than what follows from the output of the function” [2]. For

clustering techniques, this means that values of user data cannot be identified

during the algorithm while each user still receives the cluster index to which he or

she belongs. This thesis will look at a specific clustering technique: the spectral

clustering algorithm. One of the cryptographic tools to make a function privacy

preserving is homomorphic encryption. This is a form of encryption that allows

computations to be performed on encrypted values [23].

1

The aim of this thesis is to research whether the spectral clustering algorithm

can be adapted to work on Paillier encrypted data values. The Paillier cryp-

tosystem is an additively homomorphic encryption technique [38]. A pivotal

part of spectral clustering is the partial eigendecomposition of a matrix. The

computation of eigenvectors is a complex process that scales superlinearly with

the size of the matrix. Because of this complexity, less intensive numerical meth-

ods are generally used to approximate the eigenvectors of a large matrix. The

focus of this thesis will be the approximation of eigenvectors with the Lanczos

algorithm and the QR algorithm. When these algorithms are translated to the

Paillier message space, new challenges are encountered. The fields of numerical

mathematics and cryptography have to be brought together. First of all, Pail-

lier encryption can only be applied to a field of positive integers, ZN , while the

spectral clustering algorithm is generally applied in the real domain. Also, to

perform non-linear operations on encrypted data, additional cryptographic pro-

tocols have to be invoked. Multiple parties have to participate in the execution

of these protocols. Certain operations, such as the division and square root op-

eration, increase the computational complexity of a privacy preserving algorithm

significantly. The numerical algorithms will be adapted to be more suitable to

work on encrypted values. Figure 1.1 shows the phases of the adaptation of an

algorithm to the privacy preserving domain. The algorithms have to be trans-

lated to work exclusively on positive integers. Then, the required computations

have to be investigated. For privacy preserving non-linear operations, multiple

parties need to be involved. Protocols for the computations are designed or

adjusted to perform optimally in the algorithmic context. Lastly, the privacy

preserving algorithm needs to be implemented so that it can work on encrypted

values. This research focuses mainly on phase 1 of the adaptation. Phase 2 will

also be discussed, but an in-depth investigation is beyond the scope of this thesis.

The following research questions will be answered:

1. How can the approximation of eigenvectors be performed in the integer

domain?

2. How does this influence the performance of the spectral clustering algo-

rithm?

These questions are centered around phase 1 of Figure 1.1. The investigation of

phase 2 will take the form of a possible design for the privacy preserving Lanczos

algorithm and QR algorithm.

This report is organized as follows. Chapter 2 gives an overview of the spectral

clustering algorithm. Chapter 3 zooms in on one part of this algorithm: the com-

putation of several eigenvectors of the Laplacian matrix. The Lanczos algorithm

2

Figure 1.1: Phases in the adaptation of an algorithm to the privacy preserving

domain.

and the QR algorithm will be used to approximate the eigenvectors. These al-

gorithms, their convergence properties and the characteristics of importance will

be discussed in this chapter. We turn towards the cryptographic background

in Chapter 4. The foreseen set-up for a privacy preserving spectral clustering

algorithm will be described. Moreover, Paillier encryption and computations on

encrypted numbers are discussed. In this chapter the integer domain ZN and its

arithmetic operations will be defined. In Chapter 5, the algorithms are adapted

to the integer domain ZN . Furthermore, designs of the privacy preserving ver-

sions of the algorithms are given. Chapter 6 contains the assessment of the

Lanczos and QR algorithm in ZN . Convergence and cluster quality results will

be discussed. Finally, Chapter 7 presents an answer to the research questions.

We finish with an extensive discussion of the results and suggestions for future

research. Since this thesis attempts to bridge a gap between numerical mathe-

matics and cryptography, some chapters will start from the absolute basics and

elaborate widely. This is mainly the case in Chapters 3 and 4.

3

Chapter 2

Spectral clustering

This chapter will give an introduction to the spectral clustering algorithm. First,

the k-means clustering algorithm will be used as an introductory clustering tech-

nique. Spectral clustering makes use of k-means clustering and is capable of

clustering more complex data structures. The steps of the spectral clustering

algorithm and its characteristics will be discussed.

Clustering is a widely used data mining technique to group data points according

to a certain degree of similarity. Data points within a cluster should have a

high degree of similarity while the similarity between clusters should be low.

A long-established clustering technique is k-means clustering. Figure 2.1 shows

the division of a dataset into seven convex clusters using the k-means clustering

technique. The crossed points are the cluster centroids, the arithmetic means of

the clusters. Per iteration, every data point is assigned to one of the k clusters

based on the cluster centroid to which the data point has the lowest Euclidean

distance. The centroids are updated until the clusters no longer change.

Figure 2.1: The k-means algorithm groups data points into convex clusters.

Source of dataset: [46].

4

The k-means clustering algorithm is given in Algorithm 1 [19].

Algorithm 1: The k-means clustering algorithm

1 Set a stopping criterion ε.

2 Set c1, . . . , ck ← 0.

3 Initialize k cluster centroids c̃1, . . . , c̃k.

4 while ‖c̃j − cj‖2 > ε do

5 cj ← c̃j
6 Compute ‖xi − cj‖2 for every data point i and centroid j.

7 Assign every user i to the closest cluster Cj.

8 Update the cluster centroids by computing the mean of the cluster points:

c̃j = 1
|Cj |
∑

xi∈Cj
xi.

9 end

Now let us consider the result of k-means clustering when we want to recog-

nize two intertwining rings as separate clusters. The result is shown in Figure

2.2. The k-means clustering algorithm fails to distinguish the rings as clusters.

Since the rings are not convex sets, data clustering cannot be based solely on the

Euclidean distance. Spectral clustering can be used to solve such problems. In

spectral clustering, the data points are mapped to a k-dimensional space in which

the data points form convex sets. These sets can be clustered with a k-means

clustering algorithm. The spectral clustering algorithm will now be described.

Figure 2.2: The k-means clustering algorithm is not able to differentiate between

two intertwining rings. Source of dataset: [46].

In spectral clustering, the set of data points is represented by a similarity graph,

in which a certain notion of similarity sij = s(xi, xj) = s(xj, xi) ≥ 0 is used to

define weights on the edges between all pairs of points xi and xj [51]. In Figure

5

2.3, an example is shown of a weighted undirected similarity graph. The goal of

spectral clustering is to cluster the dataset such that the weights on the edges

within a cluster are high and the weights on the edges between clusters are low.

In Figure 2.3, the division of the graph into two clusters is shown.

A popular example of a similarity function is the Gaussian similarity function

s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)). (2.1)

With the Gaussian similarity function, the similarity quickly diminishes when

two data points are further apart. The values s(xi, xj) can be used to con-

struct a graph in different ways. We will discuss three popular constructions. A

fully connected graph can be constructed, in which all points are connected with

weights s(xi, xj) on the edges. Another construction is to determine a threshold

ε and connect all points xi and xj for which s(xi, xj) > ε. Finally, in a k-nearest

neighbors graph, xi and xj are connected if xi is among the k most similar data

points to xj or vice versa.

Figure 2.3: The dataset is represented as a graph with weights between the edges.

Source: [18].

Given a set of data points x1, . . . , xn and a similarity measure sij ≥ 0 that

determines a weight aij ≥ 0 for the edge between every pair of points xi and

xj, suppose we have defined a certain undirected similarity graph G based on

this set. For a weighted graph G = (V,E), the adjacency matrix A is defined as

A = (aij)i,j=1,...,n. The degree of a vertex vi ∈ V is defined as

di =
n∑
j=1

aij. (2.2)

Degree matrix D is defined as the diagonal matrix with degrees d1, . . . , dn on the

diagonal. Matrices D and A are used in the computation of the unnormalized1

1A normalized Laplacian can be computed with Lnorm = I − D−1/2AD−1/2 [51]. The

normalized Laplacian is also symmetric positive semi-definite and is known to optimize the

within-cluster similarity better than an unnormalized Laplacian.

6

graph Laplacian matrix L :

L = D − A. (2.3)

Stated intuitively, the Laplacian matrix L contains information about the con-

nected components of graph G. The eigenvalues and eigenvectors of L can be

used to map this information to a space in which the connected components form

convex sets. In order to find these convex sets, we need the smallest eigenvalues

of L. The following proposition shows that 0 is always the smallest eigenvalue of

L [51].

Proposition 2.0.1 (Properties of L). L ∈ Rn×n has n non-negative, real-valued

eigenvalues 0 = λ1 ≤ λ2 ≤ . . . λn. The constant one vector 1 is the eigenvector

that corresponds to eigenvalue 0.

Proof. Since D and A are symmetric, it follows that L is also symmetric. We

will now show that L is positive semi-definite. For every vector v ∈ Rn we have

vTLv = vTDv − vTAv =
n∑
i=1

div
2
i −

n∑
i,j=1

vivjaij

=
n∑
i=1

n∑
j=1

aijv
2
i −

n∑
i,j=1

vivjaij

=
1

2
(

n∑
i,j=1

aijv
2
i − 2

n∑
i,j=1

vivjaij +
n∑

i,j=1

aijv
2
j)

=
1

2

n∑
i,j=1

aij(vi − vj)2 ≥ 0.

So L is positive semi-definitive and it follows that L has non-negative, real-valued

eigenvalues. It remains to show that 0 is an eigenvalue of L with the constant

one vector 1 as corresponding eigenvector. So we want to verify that L1 = 0 or

equivalently that D1 = A1. Since D is a diagonal matrix and D1 is a vector of

length n that contains the row sums of D, we see that D1 is a vector with di
as ith entry. By definition of di, this is equal to the row sums of matrix A. So,

D1 = A1.

When the graph G is not entirely connected, the eigenvalue 0 has multiple eigen-

vectors. These eigenvectors are the indicator vectors of the connected compo-

nents of the similarity graph. This is stated in the following proposition of which

the proof can be found in [51].

Proposition 2.0.2 (Number of connected components and the spectrum of L).

Let G be an undirected graph with non-negative weights. Then the multiplicity k

7

of the eigenvalue 0 of L equals the number of connected components B1, . . . , Bk

in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors

1B1 , . . . ,1Bk
of those components.

In the ideal case in which the similarity between points in different clusters is 0,

the first k eigenvectors u1, . . . , uk of L (i.e. those corresponding to eigenvalue 0)

are indicator vectors of the clusters. Let U ∈ Rn×k be the matrix with u1, . . . , uk
as columns. Then the rows yi ∈ Rk of U are of the ideal form (0, . . . , 0, 1, 0, . . . , 0)

in which the position of the 1 indicates to which cluster data point xi belongs.

The mapped data points yi form convex sets in Rk and will therefore be trivially

correctly clustered by the k-means clustering algorithm. An example of a nearly

ideal case is given in Figure 2.4.

Figure 2.4: After mapping the data points to the first two eigenvectors, they form

tight clusters that lie roughly 90◦ to each other relative to the origin. Source:

[32].

The unnormalized spectral clustering algorithm is summarized in Algorithm 2.

Algorithm 2: The spectral clustering algorithm

1 Construct a similarity graph G using similarity function s(xi, xj).

2 Construct weighted adjacency matrix A from G.

3 Construct degree matrix D.

4 L = D − A.

5 Compute the k smallest eigenvalues of L.

6 Compute the first k eigenvectors u1, . . . , uk of L.

7 Let U ∈ Rn×k be the matrix with u1, . . . , uk as columns.

8 For i ∈ {1, . . . , n} let yi ∈ Rk be the vector corresponding to the i-th row of U .

9 Cluster the points yi with the k-means algorithm into clusters C1, . . . , Ck.

8

When spectral clustering is applied to real data, we should take into account

that there is often not a perfect distinction between connected components. We

can look at this real case as a perturbed version of the ideal case. Suppose that

we have an ideal Laplacian L ∈ Rn×n with eigenvalues λ1, . . . , λn. Let V be the

eigenspace that corresponds to the eigenvalues of L. Define the perturbed “real”

Laplacian as

L̃ := L+H, (2.4)

where H ∈ Rn×n is a symmetric matrix that introduces weighted edges between

the connected components of the graph to which L corresponds. Suppose that L̃

has eigenvalues λ̃1, . . . , λ̃n and corresponding eigenspace Ṽ . Define the eigengap

δ = |λk+1 − λk|, which can be interpreted as the distance between the inter-

val [0, λk] and the first eigenvalue outside of the interval. A result by Davis

and Kahan now tells us that the following bound on the distance between the

eigenspaces V and Ṽ exists [8]:

d(V, Ṽ) ≤ ‖H‖F
δ

, (2.5)

where ‖.‖F is the Frobenius norm. The eigenvectors of the ideal and the per-

turbed matrices are closer when the perturbation H is smaller or when the eigen-

gap δ is larger. Therefore, the cluster results of the ideal and the real datasets

will be more similar for a smaller perturbation or a larger eigengap. The value

of k that maximizes the eigengap will generally give the best clustering result.

In this thesis, we will only work with graph Laplacians whose eigenvalue 0 has

multiplicity 1. This correponds to a similarity graph that consists of only one

connected component. The comparison of the ideal Laplacian L and the real

Laplacian L̃ shows that it is still possible to cluster a dataset whose similarity

graph consists of only one connected component. However, we should be able to

make a distinction between data points which are connected with higher weights

or lower weights, so that clusters can be assigned.

In the next chapter, we will zoom in on one step of the spectral clustering algo-

rithm: the computation of the k smallest eigenvalues of the Laplacian and the

corresponding eigenvectors.

9

Chapter 3

Numerical methods

We have seen that spectral clustering uses the eigenvectors of the Laplacian L to

isolate connected components in the graph of a dataset. However, the computa-

tion of eigenvectors scales badly with the size of the Laplacian. The complexity

of computing the entire eigendecomposition of L ∈ Rn×n is O(n3) [39]. For

large systems, this complexity is too high. Moreover, if the data set needs to be

clustered into k clusters, only k eigenvectors are required. Therefore, we wish

to use numerical methods to approximate k of the eigenvectors efficiently. This

chapter will give an overview of the two numerical methods that were applied:

the Lanczos algorithm and the QR algorithm. Section 3.1 discusses the Lanczos

algorithm, which turns the Laplacian into a smaller tridiagonal matrix whose

eigenvalues approximate some of the eigenvalues of L. This algorithm is par-

ticularly useful to approximate a few of the extremal eigenvalues of a matrix.

The QR algorithm can compute these eigenvalues efficiently. This algorithm is

discussed in Section 3.2. The final step in the computation of the eigenvectors

is the subject of Section 3.3. Details of the numerical methods will be provided

when this helps to gain insight into the convergence properties or the limitations

of the methods. Such insight is necessary in order to make informed decisions in

the design of these algorithms in a privacy preserving manner.

3.1 The Lanczos algorithm

This section contains a derivation of the Lanczos algorithm and an overview of

its properties. Recall the following definition of orthogonality :

Definition 3.1.1. A matrix A ∈ Rn×n is said to be orthogonal if ATA = I.

The Lanczos algorithm generates an orthogonal basis

Vk = {v1, . . . , vk} (3.1)

10

such that the extremal eigenvalues of L are approximated in a projection of L

onto the subspace Vk of dimension k. The following derivation of the Lanczos

algorithm is based on the excellent standard work by Golub and Van Loan [16].

3.1.1 A derivation of the method

Any symmetric matrix A ∈ Rn×n has real eigenvalues and its eigenvectors form

an orthonormal basis. In other words, the Schur decomposition always exists.

The proof of the following theorem can be found in [16].

Theorem 3.1.1 (Symmetric Schur decomposition). If A ∈ Rn×n is symmetric,

then there exists an orthonormal matrix U ∈ Rn×n such that

UTAU = Λ = diag(λ1, . . . , λn) (3.2)

and

Auk = λkuk (3.3)

for k ∈ {1, . . . , n}.

The eigenvalues of a symmetric matrix can be found by solving an optimization

problem of the Rayleigh quotient.

Definition 3.1.2. Given a symmetric matrix A and a nonzero vector y, the

Rayleigh quotient r(A, y) is defined as

r(A, y) =
yTAy

yTy
. (3.4)

When there is no confusion with respect to which matrix the Rayleigh quotient

corresponds to, we will write r(y) for the Rayleigh quotient. We want to compute

the eigenvectors of the Laplacian L that correspond to the k smallest eigenvalues.

Suppose that λ1 < . . . < λn are the ordered eigenvalues of L. If the Rayleigh

quotient r(L, y) is optimized over y 6= 0, we can find the largest and smallest

eigenvalue of L [42]:

Theorem 3.1.2. λ1 = min
y 6=0

yTLy

yTy
, λn = max

y 6=0

yTLy

yTy
.

Proof. The Laplacian L is a symmetric matrix. According to Theorem 3.1.1, the

eigenvectors {ui}ni=1 of L form an orthonormal basis. Therefore, any y 6= 0 can

11

be constructed with this basis: y =
∑n

i=1 aiui for certain scalars ai. Now

r(y) =
yTLy

yTy
(3.5)

=
(
∑n

i=1 aiu
T
i)L(

∑n
i=1 aiui)∑n

i=1 a
2
i

(3.6)

=
(
∑n

i=1 aiu
T
i)(
∑n

i=1 λiaiui)∑n
i=1 a

2
i

(3.7)

=

∑n
i=1 a

2
iλi∑n

i=1 a
2
i

. (3.8)

So the Rayleigh quotient is a weighted average of the λi. The weights are de-

termined by the ai. Without proof we will state that there is no loss of gen-

erality when we restrict ourselves to ‖y‖ = 1 [16]. Then the ai have to satisfy∑n
i=1 a

2
i = 1. The smallest eigenvalue λ1 can be found by choosing a1 = 1,

a2, . . . , an = 0, thus minimizing r(y) over y. The largest eigenvalue λn is found

by choosing a1, . . . , an−1 = 0, an = 1, thus maximizing r(y) over y.

The Lanczos method simplifies the optimization problem from finding y ∈ Rn to

finding the optimal u in a subspace Vk. When this subspace Vk is increased, a

better approximation for the original Rayleigh quotient can be achieved. Suppose

that we have an orthonormal matrix Vk =
[
v1 . . . vk

]
whose columns form an

orthonormal basis of subspace Vk. The matrix Vk is called the Lanczos matrix.

We can write any u ∈ Vk in terms of these basis vectors: u =
∑k

i=1 yivi = Vky

for some y ∈ Rk×1. Moreover, since V T
k Vk = I,

r(u) = r(Vky) =
yTV T

k LVky

yTy
. (3.9)

Suppose that the maximum and minimum of the Rayleigh quotient are attained

for u, v ∈ Vk respectively. So u, v ∈ span{v1, . . . , vk}. We want to expand the

optimization problem to Vk+1 by finding a basis vector vk+1 that is orthogonal

to the previous basis. To guarantee the discovery of a more optimal answer in

a larger subspace, it makes sense to search the new basis vectors vk+1 in the

direction of the gradient ∇r(u),∇r(v). So

∇r(u),∇r(v) ∈ span{v1, . . . , vk, vk+1}. (3.10)

Now the gradient of a general Rayleigh quotient r(x) is computed as

12

∇r(x) =

[
∂r(x)

∂x1
. . .

∂r(x)

∂xk

]
(3.11)

where
∂r(x)

∂xj
=

∂

∂xj

(
xTLx

xTx

)
=

∂
∂xj

(xTLx)xTx− xTLx ∂
∂xj

(xTx)

(xTx)2

=

∂
∂xj

(xT)Lx+ xT ∂
∂xj

(Lx)

xTx
− (xTLx)2xj

(xTx)2

=
2(Lx)j
xTx

− (xTLx)2xj
(xTx)2

.

(3.12)

When all the partial derivatives are combined, we obtain

∇r(x) =
2

xTx
(Lx− r(x)x). (3.13)

So ∇r(x) ∈ span{x, Lx} and therefore

∇r(u),∇r(v) ∈ span{v1, . . . , vk, Lv1, . . . , Lvk}. (3.14)

Both (3.10) and (3.14) hold for a set of vectors {v1, . . . , vk, vk+1} which satisfies

span{v1, . . . , vk, Lv1, . . . , Lvk} = span{v1, . . . , vk, vk+1}. (3.15)

We will now define a subspace for which the basis will satisfy (3.15). This

subspace is called the Krylov subspace.

Definition 3.1.3. The Krylov subspace Kk(L, v) is the linear subspace spanned

by the images of L applied to v: Kk(L, v) = span{v, Lv, L2v, . . . , Lk−1v}.

Hence, we want to find an orthonormal basis for the Krylov subspace Kk(L, v1) in

order to be able to approximate the extremal eigenvalues of L. A useful property

of this orthonormal basis is that it can be used for a similarity transformation of

L to a tridiagonal matrix T . This is stated in the following theorem:

Theorem 3.1.3. Suppose that Vk =
[
v1 . . . vk

]
is an orthonormal basis for

the Krylov subspace Kk(L, v1). Then V T
k LVk = T is a tridiagonal matrix.

Proof. We want to prove that Tij = vTi Lvj = 0 for i > j + 1 and i < j − 1.

Now Lvj ∈ span{v1, Lv1, . . . , Ljv1} = span{v1, . . . , vj+1}. The vi are mutually

orthogonal so vTi vj = 0 when i > j + 1. So Tij = vTi Lvj = 0 when i > j + 1.

Furthermore, V T
k LVk = T is symmetric so Tij = 0 when i < j − 1.

We can interpret T as the projection of the Laplacian onto the Krylov subspace

Vk. The eigenvalues θ1, . . . , θm of T are called Ritz values and are increasingly

better estimates of the eigenvalues of L as the dimension of the Krylov subspace

increases.

13

3.1.2 The Lanczos algorithm

The eigenvalues of the tridiagonal matrix T are less computationally complex to

compute than those of the original matrix L ∈ Rn×n. Suppose that

Vn =
[
v1 . . . vn

]
(3.16)

is an orthonormal basis for the Krylov subspace Kn(L, v1). The Lanczos method

exploits the sparsity of L by making use of the relation LVn = VnT to compute

the elements of T , called the Ritz matrix, directly:

T =


α1 β2 0

β2 α2 β3
.

βn−1 αn−1 βn
0 βn αn

 . (3.17)

From LV = V T follow the relations

Lvk = βkvk−1 + αkvk + βk+1vk+1, (3.18)

vTk Lvk = βkv
T
k vk−1 + αkv

T
k vk + βk+1v

T
k vk+1, (3.19)

vTk Lvk = αkv
T
k vk, (3.20)

αk =
vTk Lvk
vTk vk

. (3.21)

From (3.18) it is also possible to compute the βk+1 and vk+1:

βk+1vk+1 = (L− αkI)vk − βkvk−1, (3.22)

vk+1 =
(L− αkI)vk − βkvk−1

βk+1

. (3.23)

By setting rk = (L− αkI)vk − βkvk−1 and βk+1 = ‖rk‖2, the orthonormal vi are

obtained iteratively. The starting vector can be chosen randomly. This deriva-

tion of the Lanczos algorithm is summarized as follows:

Algorithm 3: Normalized Lanczos algorithm

1 Generate a random vector v1 ∈ Rn.

2 Set v0 = 0 and β1 = 1.

3 for j = 1, 2, . . . , n− 1 do

4 αj ← (Lvj · vj)/(vj · vj)
5 rj ← Lvj − αjvj − βjvj−1
6 βj+1 ← ‖rj‖2
7 vj+1 ← rj/βj+1

8 end

9 αn ← (Lvn · vn)/(vn · vn)

14

The complexity of numerical algorithms is measured in the number of elementary

floating point operations or flops. We will count the number of flops for a dense

matrix L. Note that the complexity is actually reduced for a sparse L because the

matrix vector product costs fewer operations. Per iteration, the Lanczos method

costs one matrix vector product (2n2 − n flops), two inner products (4n − 2

flops), two scalar vector multiplications (2n flops) and two vector subtractions

(2n flops). Also, the norm of rj has to be computed which requires a square

root operation. This is not counted in the number of flops. In m iterations, the

complexity can be estimated at O(mn2) flops.

3.1.3 Convergence properties

If L ∈ Rn×n and d = rank(Kn(L, v1), the Lanczos algorithm will terminate at

iteration d. The Krylov subspace is invariant after this iteration and a complete

basis for the subspace has been found. A value βd+1 = 0 is encountered in the

algorithm after which it breaks down. When L has a full rank, the Lanczos

algorithm will only terminate after n iterations. Since we only need a few of the

smallest eigenvalues of the Laplacian matrix and extremal eigenvalues are the

first to converge in matrix T , we would like to terminate the Lanczos algorithm

prematurely. Suppose that we terminate the algorithm at step m after obtaining

tridiagonal m × m matrix Tm and Lanczos matrix Vm. We need to know how

well the spectrum of Tm approximates the spectrum of L.

Suppose that the eigendecomposition of Tm is

TmSm = SmΘm.

Here, Θm is a diagonal matrix whose entries are the Ritz values. Ritz values

are approximations of the eigenvalues of L. The columns si of Sm are the cor-

responding eigenvectors of Tm. The approximations of the eigenvectors of L are

called Ritz vectors and can be computed with ui = Vmsi. The Ritz vectors form

an equivalent orthonormal basis for the Krylov subspace. The quality of the

approximation of the Ritz value and its Ritz vector to an eigenpair of L can be

assessed with the following theorem [16]:

Theorem 3.1.4. Suppose that m steps of the Lanczos algorithm have been per-

formed and that STmTmSm =diag(θ1, . . . , θm) is the eigendecomposition of Tm. If

Um = [u1 . . . um] = VmSm ∈ Rn×m, then for i = 1, . . . ,m we have

‖Aui − θiui‖2 = |βm||si(m)| (3.24)

where si(m) denotes the entry on position (m, i) of matrix S.

15

Proof. By construction, LVm = VmTm+rme
T
m with rm = (L−αmI)vm−βm−1vm−1.

Multiply this relation by the matrix of Ritz vectors to obtain:

LVmSm = VmTmSm + rme
T
mSm, (3.25)

LUm = VmSmΘm + rme
T
mSm. (3.26)

So the i-th column satisfies the relation

Lui = θiui + rme
T
mSmei. (3.27)

It follows that ‖Lui − θiui‖2 = |βm| · |smi| because |βm| = ‖rm‖2.

Since S is an orthonormal matrix, its entries are bounded. Therefore, a Ritz

value will have converged to an eigenvalue of A when βm is small. However, even

the occurrence a small βm is a rarity in practice [16]. Therefore, the accuracy

of the Ritz value is often used as a stopping criterion. After a certain number

of iterations, the Ritz values of the Ritz matrix T are computed and the bound

on their accuracy is computed using Theorem 3.1.4. When this bound is small

enough, the Lanczos algorithm is considered to be terminated. If m is the total

number of iterations and the input matrix has size n×n, the algorithm can often

be stopped at values of m as small as 2
√
n [40].

Until the first convergence, the Lanczos algorithm should behave as predicted

in exact arithmetic. After convergence, duplicate copies of Ritz values tend to

show up. The next section will explain why this occurs.

3.1.4 Limitations

Loss of orthogonality

In exact arithmetic, the Lanczos vectors in matrix V are perfectly orthogonal.

However, rounding errors due to finite precision computations cause a loss of or-

thogonality. This phenomenon was researched in the pioneering work of Christo-

pher Paige. One of the most important results of Paige was to express the loss of

orthogonality at iteration j between a Ritz vector ui (i < j) and Lanczos vector

vj+1 as follows [35, 37]:

uTi vj+1 ≈
ε‖Tj‖2
βi+1 · sji

, (3.28)

where ε is a small scalar that quantifies the rounding error and sji is the bottom

element of Tj’s eigenvector si. Equation 3.28 shows that loss of orthogonality

occurs when βi+1 is small. On the other hand, from Theorem 3.1.4 it was de-

ducted that the convergence of a Ritz pair is indicated by a small value of βi+1.

16

Thus, Paige discovered that loss of orthogonality and the convergence of a Ritz

pair go hand in hand.

Paige also gave an analysis for this phenomenon [5, 35]. When a Ritz value con-

verges, all the Lanczos vectors vj are perturbed in the direction of the converged

Ritz vector. The orthogonality of the subsequently computed eigenvectors is lost

in this direction. This Ritz vector becomes part of the subsequently computed

Lanczos vectors again. As an effect, the eigenvalue and corresponding eigenvec-

tor are discovered again by the algorithm. These double eigenvalues are referred

to as “ghost eigenvalues” or spurious eigenvalues. These multiple eigenvalues

of Ritz matrix Tj at iteration j correspond to the same eigenvalue of L with

algebraic multiplicity 1. The basis {v1, . . . , vk} of the Krylov subspace now con-

tains almost dependent vectors, leading to a loss of efficiency as unnecessarily

many vectors have to be computed and stored. Thankfully, there are methods

to restore the orthogonality of the Lanczos vectors.

Dealing with spurious eigenvalues

Three of the most widely applied techniques to deal with spurious eigenvalues

are full reorthogonalization, selective orthogonalization and the detection of spu-

rious eigenvalues, after which they can be discarded. These techniques will now

be discussed briefly.

Orthogonality of Lanczos vectors can be guaranteed by full reorthogonalization.

The orthogonality coefficients can be computed by applying the Gram-Schmidt

process to vector vj+1 in every iteration j . Matrix Vj contains the normalized

vectors v1, . . . , vj. The improved v′j+1 is obtained as follows:

h = V T
j vj+1,

v′j+1 = vj+1 − Vjh.
(3.29)

However, full reorthogonalization destroys the simple character of the Lanczos

algorithm. The number of operations in every iteration increases since an ad-

ditional matrix-vector product is introduced in every iteration [6]. Parlett and

Scott designed a more efficient reorthogonalization method based on the phe-

nomenon that loss of orthogonality occurs in the direction of the converged Ritz

vectors [40]. They proposed partial reorthogonalization, a method in which a

new Lanczos vector vj+1 is reorthogonalized against all Ritz vectors ui whose

Ritz values θi satisfy

|λi − θi| = βj|sji| ≤
√
ε‖L‖2, (3.30)

where ε and sji are defined as in (3.28). Although partial reorthogonalization

requires considerably fewer arithmetic operations, a disadvantage is that the Ritz

17

vectors have to be computed intermediately and the βj|sji| have to be compared

to a threshold.

A third method is to accept the occurrence of spurious eigenvalues and to try

to identify and discard them. Cullum and Willoughbly proposed to look at a

submatrix T̂j of Tj at every iteration j [6]. The submatrix T̂j is obtained by

removing the first row and the first column of Tj. If an eigenvalue θij of Tj is

also an eigenvalue of T̂j, this eigenvalue is labelled as spurious and discarded.

The argument behind this method is that the tridiagonal matrix Tj is unreduced.

Unreduced tridiagonal matrices only have simple eigenvalues, i.e. eigenvalues

with multiplicity 1. This property follows from the following definitions and

theorem.

Definition 3.1.4. A matrix is called an upper Hessenberg matrix when all the

entries below the first subdiagonal are zero.

Definition 3.1.5. An upper Hessenberg matrix A is called unreduced when its

subdiagonal entries are nonzero.

Theorem 3.1.5. An unreduced diagonalizable tridiagonal matrix T ∈ Rn×n has

n distinct eigenvalues.

Theorem 3.1.5 also implies that it is not possible to find eigenvalues with a

multiplicity larger than 1 with the standard Lanczos method. The next section

will expound on this limitation.

Finding multiple eigenvalues

The approximation of eigenvalues of L with multiplicity larger than 1 is not

possible with the standard Lanczos algorithm, since the matrices Tj are unre-

duced and tridiagonal. In order to compute linearly independent eigenvectors

corresponding to a multiple eigenvalue, the block Lanczos method can be applied

[6, 16]. The block Lanczos method starts with p starting directions instead of

a single starting vector. Let B = [b1, . . . , bp] be the matrix with the starting

directions as columns, where p is the multiplicity of the desired eigenvalue. The

goal of the algorithm is to compute an orthonormal basis for the Krylov subspace

Kk(L,B) = span{LB,L2B, . . . , Lk−1B}. (3.31)

In every iteration j, an orthonormal basis Vj for Krylov subpace Lj−1B is con-

structed. The concatenated matrix V = [V1 . . . Vm] is the orthonormal basis

after final iteration m. A block tridiagonal matrix T is also constructed by the

18

algorithm:

T =


A1 BT

2 0

B2 A2 BT
3

B3
. . .

0 Am

 . (3.32)

The block tridiagonal matrix T is similar to L and the Ritz values have the same

multiplicities as the eigenvalues of L. The block Lanczos method has a large dis-

advantage. Whereas the construction of a linearly dependent basis vector vj+1

means the termination of the algorithm in the standard Lanczos algorithm, this

is not the case in the block Lanczos algorithm. Moreover, linearly dependent vec-

tors have to be detected and removed because the similarity property between L

and T is lost otherwise. The process of detection and removal of linearly depen-

dent vectors is called deflation. The current research is focused on the standard

Lanczos algorithm, so the block Lanczos method is not considered. However,

since spectral clustering may require the computation of multiple eigenvectors

corresponding to the same eigenvalue, the block Lanczos algorithm is an inter-

esting consideration for further research.

After m iterations of the Lanczos algorithm, a tridiagonal matrix T ∈ Rm×m is

obtained. The QR algorithm will be applied to T to obtain its Ritz values.

3.2 The QR algorithm

This section gives an overview of the QR algorithm. The algorithm makes use

of a QR decomposition in every iteration. First, the QR decomposition will

be explained, after which the QR algorithm is derived. The convergence and

possible accelerations hereof are also discussed.

3.2.1 The QR decomposition

The following theorem states that the QR decomposition exists for any matrix

A ∈ Rn×n:

Theorem 3.2.1. Any matrix A ∈ Rn×n can be decomposed into a unique pair of

an orthogonal matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rn×n with

positive diagonal entries such that

A = QR. (3.33)

19

When the columns of A are linearly independent, the columns of Q form an

orthonormal basis for the column space of A. The QR factorization of A can be

computed directly by making use of the following relation for every column in

ak of A = QR:

ak =
k−1∑
i=1

rikqi + rkkqk (3.34)

qk =
ak −

∑k−1
i=1 rikqi
rkk

. (3.35)

To ensure that qk is orthogonal to {q1, . . . , qk−1} and that it is normalized, the

entries of R are defined for i ∈ {1, . . . , k − 1}, k ∈ {1, . . . , n} as

rik = qTi ak, (3.36)

rkk = ‖ak −
k−1∑
i=1

rikqi‖2. (3.37)

So, the projections of a column of A onto the previous qi are subtracted from

this column to generate a new orthogonal basis vector. The computation of an

orthogonal set of vectors in this way is called the classical Gram-Schmidt method.

Unfortunately, this method is numerically unstable since subsequent columns of

Q are often not entirely orthogonal due to rounding errors. A more stable vari-

ant of the Gram-Schmidt method makes a new column of Q orthogonal to every

previous column of Q separately. In this way, a new column qk+1 is also orthog-

onalized against errors that were introduced into the previous columns. This

variant is called the modified Gram-Schmidt algorithm. The QR decomposition

using the Gram-Schmidt method is summarized in Algorithm 4.

Algorithm 4: QR decomposition using Gram-Schmidt orthogonalization

1 q1 ← 0

2 for j = 1, . . . , n do

3 vGS = aj
4 for i = 1, . . . , j − 1 do

5 rij ← qTi aj in classical Gram-Schmidt or

6 rij ← qTi vGS in modified Gram-Schmidt

7 vGS ← vGS − rijqi
8 end

9 rjj ← ‖vGS‖2
10 qj ← vGS/rjj

11 end

Let us now discuss the complexity of the modified Gram-Schmidt algorithm on

a n × n matrix A. In iteration k, the following computations are performed:

20

k − 1 inner products cost (k − 1)(2n − 1) flops, multiplication and subtraction

of these inner products costs 2(k − 1)n flops, and the computation of rkk and

the new column of Q costs 3n flops. In total, the complexity of the modified

Gram-Schmidt algorithm can be estimated at 2n3 flops. Later in this chapter,

we will see that the structure of T is exploited to reduce the complexity of the

QR algorithm.

Other methods to decompose A into Q and R make use of Householder reflections

or Givens rotations. Both of these methods transform A into an upper triangu-

lar matrix R by introducing zero elements below the diagonal in a column of A

through a matrix multiplication. These methods are numerically more stable,

but are approximately twice more complex than the modified Gram-Schmidt al-

gorithm [16]. Therefore, we prefer to apply the Gram-Schmidt method in the

QR decomposition if the resulting decomposition is accurate enough.

The QR decomposition is the basis for the QR algorithm. This will be shown in

the next section.

3.2.2 The QR algorithm

We set A = A0 and will use its QR decomposition in an iterative algorithm.

Suppose that we have found the QR decomposition of matrix Ak−1 for a certain

k:

Ak−1 = QkRk. (3.38)

The reversed multiplication yields the next matrix Ak:

Ak = RkQk. (3.39)

The QR decompositions are stored in the following sequences:

Q(k) = Q1 · . . . ·Qk, (3.40)

R(k) = R1 · . . . ·Rk. (3.41)

Both orthonormal matrices and upper triangular matrices are closed under mul-

tiplication, so Q(k) is an orthonormal matrix and R(k) is upper triangular. The

next theorem states that all subsequent Ak are similar to the original matrix A0.

Theorem 3.2.2. Let A0 ∈ Rm×m and let Ak and Q(k) be defined as in (3.39)

and (3.40) respectively. Then Ak and A0 have the same eigenvalues since the

following relation holds: A0Q
(k) = Q(k)Ak.

21

Proof. We will prove this theorem with induction. For k = 1, we have A0 = Q1R1

so Q(1) = Q1 and R(1) = R1. So

A0 = Q(1)R(1)

A0 = Q(1)R(1)Q(1)(Q(1))T

A0Q
(1) = Q(1)R(1)Q(1)

A0Q
(1) = Q(1)A1.

(3.42)

The hypothesis holds for the basis step. Now suppose that A0Q
(k) = Q(k)Ak for

some value of k. We isolate Ak and use its QR decomposition to find:

Ak = (Q(k))TA0Q
(k)

Qk+1Rk+1 = (Q(k))TA0Q
(k)

Rk+1Qk+1 = (Qk+1)
T (Q(k))TA0Q

(k)Qk+1

Ak+1 = (Q(k+1))TA0Q
(k+1)

Q(k+1)Ak+1 = A0Q
(k+1).

(3.43)

This proves the result for k + 1 and we have thus proven the relation for all

k ∈ N.

Moreover, the Ak converge to an upper triangular matrix. In order to give the

arguments for this convergence, we first need the following result:

Theorem 3.2.3. Let A0 = A ∈ Rm×m and let Ak, Q
(k) and R(k) be defined as in

(3.39), (3.40) and (3.41). The QR decomposition of Ak, the kth power of A, can

be written as Ak = Q(k)R(k).

Proof. We will prove the result with induction. The basis step A0 = Q(1)R(1) is

trivially true. So suppose that Ak = Q(k)R(k) for some k. By Theorem 3.2.2 we

can write A as A = Q(k)Ak(Q
(k))T and so

Ak+1 = AAk = Q(k)Ak(Q
(k))TAk

= Q(k)Ak(Q
(k))TQ(k)R(k)

= Q(k)AkR
(k)

= Q(k)Qk+1Rk+1R
(k)

= Q(k+1)R(k+1).

We can conclude that the result holds for all k ∈ N.

We will now explain why Ak converges to an upper triangular matrix. The for-

mal proof is lengthy and can be found in [16]. A discussion of the entire proof

does not contribute to the aim of this chapter, which is to give an intuitive idea

of the effectiveness of the QR algorithm. The inspiration for this overview was

22

taken from [4].

Suppose that the eigenvalues of A are λ1, . . . , λm which are the entries of the

diagonal matrix Λ. We assume that the eigenvalues are ascending and distinct,

so

|λ1| < |λ2| < . . . < |λm|. (3.44)

The corresponding eigenvectors u1, . . . , um constitute the columns of matrix U .

Now we can decompose A = UΛU−1 and hence the k-th power of A satifies

Ak = UΛkU−1 =
m∑
j=1

ujλ
k
jw

T
j ,

where wj is the jth row of U−1. Since λkm dominates the other eigenvalues

strongly, we can approximate Ak by

Ak ≈ λkmumw
T
m. (3.45)

From Theorem 3.2.3 we know that this matrix can also be decomposed as

Ak = Q(k)R(k). We can use these two relations to express the QR decompo-

sition in terms of the eigendecomposition. The first vector q1 of Q(k) can be

found by normalizing the first column of Ak. Equation (3.45) tells us that we

can approximate q1 by normalizing um. In the computation of subsequent or-

thonormal vectors q2, . . . , qm, we need more approximation terms because the

orthogonal vectors cannot be multiples of each other. For example, to compute

q2 an extra term in the approximation of Ak is used:

Ak ≈ λkmumw
T
m + λkm−1um−1w

T
m−1. (3.46)

So the second column of Ak is a linear combination of um and um−1. Therefore,

q2 can be found by applying Gram-Schmidt orthogonalization to {um, um−1}. In

an analogous manner, qj is computed by applying the Gram-Schmidt procedure

to the basis {um, . . . , um−j+1}. This boils down to the following relation between

Q(k) and U : [
q1 . . . qm

]
=
[
um . . . u1

]
R, (3.47)

for an upper triangular matrix R. The quality of this approximation can be

measured by defining the following value:

τ = maxj

{
|λj|
|λj+1|

}
. (3.48)

23

The approximation is better when τ becomes smaller. We will now show that

Ak = (Q(k))TA0Q
(k) becomes upper triangular when k is sufficiently large:

(Q(k))TA0Q
(k) = (Q(k))TA0(UR)

= (Q(k))TUΛR

= (Q(k))TQ(k)R−1ΛR

= R−1ΛR.

Now R and R−1 are upper triangular and Λ is a diagonal matrix, so the product

is again upper triangular. The QR algorithm converges linearly with a conver-

gence rate that is approximated by τ , so more distinct eigenvalues lead to a

better convergence. The eigenvalues of an upper triangular matrix are the en-

tries on its diagonal, so the QR algorithm can be used to find the eigenvalues of A.

The QR algorithm has been discussed by making use of general matrix A ∈
Rm×m. In this research, the QR algorithm will be applied to the tridiagonal

matrix T that is obtained in the Lanczos algorithm. From now on, T will be

used instead of A. The QR algorithm is given in Algorithm 5.

Algorithm 5: QR algorithm

1 Set T1 ← T and Q∏ ← I ∈ Rm×m

2 for k = 1, 2, . . . do

3 Compute Tk = QkRk using a QR decomposition method.

4 Tk+1 ← RkQk.

5 Q∏ ← Q∏Qk

6 end

The QR algorithm is generally expensive, with a complexity of O(n3) per itera-

tion. However, the structure of T can be exploited. Since T is upper Hessenberg,

then the amount of work per iteration is reduced from O(n3) to O(n2) [16].

Stopping criterion

The Ak converge to an upper triangular matrix. Since the QR decomposition of

an upper triangular matrix is

Ak = IR = IAk, (3.49)

the subsequent matrix Ak+1 = RQ is equal to Ak. Therefore, a stopping criterion

could be to measure the difference between Ak and Ak+1 with the Frobenius norm

and to stop the algorithm when

‖Ak − Ak+1‖F < ε (3.50)

24

for a certain ε > 0. Another stopping criterion is to check whether the subdiag-

onal entries of Ak have converged closely enough to zero.

3.2.3 Using shifts

If the eigenvalues of tridiagonal matrix T are ordered according to (3.44), the jth

subdiagonal entry of the subsequent Tk converges to zero with rate (λj/λj+1)
k in

iteration k [16]. We will improve this convergence rate by applying a shift µ to

T . The eigenvalues of T − µI are

|λ1 − µ| < . . . < |λm − µ|. (3.51)

Hence, when applying the QR algorithm to T − µI, the convergence rate of the

jth subdiagonal entry becomes ∣∣∣∣ λj − µλj+1 − µ

∣∣∣∣k . (3.52)

If µ is chosen such that it is closer to λj than to λj+1, the new convergence rate is

an improvement. The algorithm now converges quadratically instead of linearly.

In order to guarantee similarity between subsequent Tk, the shift is added to

Tk+1 after an iteration of the QR algorithm so that:

Tk+1 = RQ+ µI

= QTQRQ+QTQµI

= QT (QR + µI)Q = QTTkQ.

(3.53)

The shifted QR algorithm is given in Algorithm 6.

Algorithm 6: Shifted QR algorithm

1 Set T1 ← T and Q∏ ← I ∈ Rm×m

2 for k = 1, 2, . . . do

3 Determine shift µ

4 Compute Tk − µI = QkRk using a QR decomposition method

5 Tk+1 ← RkQk + µI

6 Q∏ ← Q∏Qk

7 end

The approximation of an eigenvalue is a good choice for a shift. A commonly

picked shift is the Rayleigh quotient shift. In iteration k the Rayleigh quotient

shift is

µ(k) =
qTmTkqm
qTmqm

= qTmTkqm, (3.54)

25

where qm is the last column of matrix Qk. Since Qk is an orthonormal matrix,

the Rayleigh quotient shift corresponds to setting µ(k) = Tk(m,m), the last di-

agonal entry of T . According to Golub and Van Loan, it is “a good heuristic

to regard Tk(m,m) as the best approximate eigenvalue along the diagonal” [16].

Alternatively, one can compute the eigenvalues of a square subset of Tk and use

them as shifts [53].

Looking back at Theorem 3.1.1, we see that the QR algorithm actually gives a

symmetric Schur decomposition when it is applied to a symmetric matrix. In

this case, the Tk converge to a diagonal matrix whose entries are the eigenvalues.

The columns of matrix Q∏ converge to the corresponding eigenvectors. The

eigenvectors of L are the columns of the matrix V Q∏ ∈ Rn×m. Therefore, the QR

algorithm is a direct eigenvalue and eigenvector method for symmetric matrices.

In Chapter 5 we will encounter a version of the Lanczos algorithm that yields

an unsymmetric matrix. An extra step is required to compute the eigenvectors

of an initial unsymmetric matrix T after the QR algorithm is applied. This step

will now be discussed.

3.3 Back substitution

After p iterations of the QR algorithm, upper triangular matrix Tp has been

obtained. Suppose that wk is the eigenvector of Tp corresponding to the Ritz

value θk. Then the eigenvector sk of T1 can be computed with

sk = Q∏wk, (3.55)

where Q∏ is constructed with Algorithm 6. This section discusses the compu-

tation of eigenvector wk of Tp. The computation boils down to solving a simple

linear system.

The eigenvalues of the upper triangular matrix Tp are on its diagonal and are

called the Ritz values. To compute the eigenvector wk that corresponds to Ritz

value θk, one needs to solve the following equation:

(Tp − θkI)wk = 0. (3.56)

Now T̃p := Tp − θkI has a zero entry on the diagonal. Suppose that diagonal

element T̃p(l,l) is zero. An illustration of the situation is given in Figure 3.1.

26

Figure 3.1: The linear system T̃pwk = 0 to compute eigenvector wk corresponding

to Ritz value θk.

Starting at the last row of T̃p, we find that the entries wmk, . . . , wl+1,k have to be

zero. The system can be solved from bottom to top as follows

wmk, . . . , wl+1,k = 0,

wlk = −T̃p(l−1,l−1),
wl−1,k = T̃p(l,l−1),

wik =
0−

∑n
j=i+1 T̃p(i,j)wjk

T̃p(i,i)
for i ∈ {l − 2, . . . , 1}.

(3.57)

By choosing the desired Ritz values from the diagonal of Tp and solving the corre-

sponding linear systems, the eigenvectors of Tp can be found. These eigenvectors

can be used to compute approximations of the eigenvectors of the Laplacian L.

Put the approximated eigenvectors in matrix W . The eigenvectors of L are the

columns of the matrix V Q∏W ∈ Rn×m.

3.4 Summary

We end this chapter with a summary of the steps that will be taken to compute

approximations of the eigenvectors of Laplacian L:

1. Decompose L ∈ Rn×n with m iterations of the Lanczos algorithm into an

orthogonal matrix V ∈ Rn×m and a tridiagonal matrix T ∈ Rm×m.

2. Decompose T ∈ Rm×m with p iterations of the QR algorithm into an or-

thogonal matrix Q∏ ∈ Rm×m and upper triangular matrix Tp ∈ Rm×m with

the eigenvalues of T on the diagonal.

3 a. When T is symmetric, the columns of Q∏ converge to the eigenvectors of

T . The eigenvectors of L are the columns of the matrix V Q∏ ∈ Rn×m.

3 b. When T is unsymmetric, the eigenvectors of Tp can be computed with back

substitution. Put these eigenvectors in matrix W . The eigenvectors of L

are the columns of the matrix U = V Q∏W ∈ Rn×m.

27

The discussed algorithms will be translated to the message space of the Paillier

encryption scheme. Computations work differently in this domain, as will be

explained in the next chapter.

28

Chapter 4

Computations on encrypted

numbers

Data mining algorithms may be limited by privacy constraints, for example be-

cause datasets of different institutions are not allowed to be combined. Therefore,

the ability to cluster a dataset into k clusters in a privacy preserving manner could

broaden the applications in data mining. Let us first define the term privacy pre-

serving [30]. In this thesis, secure and privacy preserving will be interpreted as

synonyms.

Definition 4.0.1. A function is privacy preserving when no party learns any-

thing more than its prescribed output. In particular, the only information that

should be learned about other parties’ inputs is what can be derived from the

output itself.

In a privacy preserving spectral clustering algorithm, every data contributor

should only learn the cluster index to which he or she belongs. Other informa-

tion, such as the number of points in a cluster or the values of other contributors’

data, should remain private. Therefore, a secure spectral clustering algorithm

would be performed on encrypted data. This chapter will give an introduction

to computing with encrypted numbers. First, an overview will be given of the

parties that could participate in the algorithm. The Paillier encryption scheme

will be discussed in Section 4.2. Only positive integers can be encrypted. Com-

putations in the integer domain are the topic of Section 4.3. Sections 4.4 and 4.5

expound on the computations after encryption. Secure multiparty computation

techniques will be discussed in which a function is computed by multiple parties

over combined inputs while the inputs stay private.

Lastly, it remains to add that the discussed set-up and secure multiparty tech-

niques are by no means meant to be the optimal choices. Such an ambition

is beyond the scope of this thesis. The purpose of this chapter is to clarify

29

the context to which the spectral clustering algorithm is translated. A good

understanding of the challenges, possibilities and limitations of privacy preserv-

ing computation techniques is vital to a successful adaptation of the algorithm.

Thus, this chapter lays the foundations for the choices that are made in Chapter

5.

4.1 Introduction and set-up

Multiple parties will be involved in a privacy preserving clustering algorithm. We

will refer to the parties whose data is clustered as users. Without introducing

a third party, user participation is required to process user data [11]. Chapters

2 and 3 have shown that both the k-means clustering step and the approxima-

tion of eigenvectors make use of iterative algorithms. Moreover, many steps are

required to perform the entire spectral clustering algorithm, and the Laplacian

grows with the number of users. We would like to spare the users from perform-

ing the computations themselves. Therefore, a service provider is introduced

that has resources for storage and processing. After providing their data, the

users do not have to participate (they are offline) until they receive their cluster

index. An illustration of the foreseen set-up is given in Figure 4.1. The data

contributors first encrypt their data before sending it to the service provider, so

that their privacy is preserved. However, the data also needs to be clustered.

We will see in Section 4.2 that certain computations are possible on encrypted

data. For other computations, the data needs to be decrypted. The data can

only be decrypted with a secret decryption key. Since the service provider is not

allowed to learn the values of the user data, it cannot have the decryption key.

Inspired by [10], a privacy service provider (PSP) that owns this private decryp-

tion key is introduced. The service provider and PSP perform an interactive

protocol to cluster the encrypted user data. The service provider and PSP will

be referred to as the computing parties. After the privacy preserving spectral

clustering algorithm, the service provider sends encrypted cluster indices to the

data contributors. These indices can be decrypted with the help of the PSP.

This research is carried out in a semi-honest model in which all the parties follow

the protocol that they agreed on, but which also store the intermediate iteration

results [15]. The parties may use these results to gain more knowledge. The

service provider and PSP are assumed to be non-colluding parties, which means

that they are not allowed to collaborate to learn more about the data. If they

colluded, they could obtain all the values of the data points, since the service

provider stores the encrypted data and the PSP owns the decryption key.

30

Figure 4.1: Users can request a clustering result to a service provider, which

only receives encrypted data. A privacy service provider (PSP) who owns the

decryption key is required to facilitate the computations.

4.2 Paillier encryption

The computing parties cannot know the content of the data, so they will work on

encrypted data. Therefore, an encryption scheme that allows computations to be

performed on encrypted data is necessary.1 Such schemes are called homomorphic

encryption schemes. In 2009, Craig Gentry showed that a fully homomorphic

encryption scheme is realizable [14]. Let E be a fully homomorphic encryption

scheme and let m1, . . . ,mn be data points that should be secret. Gentry’s en-

cryption scheme allows encrypted messages E(m1), . . . , E(mn) to be evaluated

with any desired function f . The encrypted result E(f(m1, . . . ,mn)) can be

computed by anyone without leaking any information about m1, . . . ,mn. After

decryption, the evaluation f(m1, . . . ,mn) is obtained. However, for the moment

the computational complexity is impractical to use for mining applications of

large datasets. The communication complexity and memory costs are too high.

Therefore, secure multiparty algorithms that make use of homomorphic encryp-

tion generally use encryption schemes that are either additively homomorphic

or multiplicatively homomorphic, i.e. either the addition or multiplication of

encrypted messages is allowed.

The Paillier encryption scheme has a proven track record in privacy preserving

data mining [38]. Paillier encryption is often used in secure multiparty com-

putation because of its computational efficiency and the relatively small size of

encrypted messages. Suppose that we want to encrypt a message m. Define

N = pq to be the product of two large prime numbers p and q. The encryption

1Many other secure multiparty computation techniques can be applied, such as garbled

circuits or secret sharing [43, 55]. Homomorphic encryption was chosen because this thesis

builds upon previous work by Thijs Veugen. Other secure multiparty computation techniques

also work on positive integers so the current research is partially applicable to these techniques.

31

function is defined as

Eg : ZN × Z∗N → Z∗N2

(m, r) 7→ gmrN mod N2.
(4.1)

The messages are mapped from the message space to the ciphertext space when

they are encrypted. We will refer to unencrypted messages as plaintext mes-

sages. The message space is ZN .2 The finite field ZN consists of the following N

elements:

ZN = {0, 1, . . . , N − 1}. (4.2)

Modular arithmetic is used on ZN . Therefore, computations on messages have

to abide certain rules. This is the subject of Section 4.3. After encryption, the

message has become a ciphertext in Z∗N2 . This set consists of the integers that

are coprime to N2, i.e. they do not share a divisor larger than 1 with N2:

Z∗N2 = {z|z ∈ Z, 0 < z < N2, gcd(z,N2) = 1}. (4.3)

To encrypt a message m ∈ ZN , one uses the public key (N, g). We denote the

encryption of the message by [m]. A new random number r ∈ Z∗N is generated

for every encryption. This ensures that two encryptions of the same message

have a different value. The security of the Paillier cryptosystem is based on

the property that given [m] = gmrN mod N2 and the public key (N, g), there

does not exist an algorithm in polynomial time to find the original value of m [50].

Anyone can encrypt data using the public key (N, g). The secret key λ = lcm(p−
1, q − 1) is necessary to be able to decrypt a ciphertext:

m =
L(cλ mod N2)

L(gλ mod N2)
mod N. (4.4)

Here, the function L is defined for u ∈ {0 < u < N2| u = 1 mod N} as

L(u) =
u− 1

n
. (4.5)

Details of the correctness of the decryption can be found in [38, 50]. An encryp-

tion scheme in which different keys are used for encryption and decryption is

called an asymmetric scheme. By contrast, in a symmetric encryption scheme

2Actually, the message space is Z∗N = {z|z ∈ Z, 0 < z < N, gcd(z,N) = 1}. However, the

probability of finding a divisor of N is negligible and would break the cryptosystem. Therefore,

we call the Paillier message space ZN for notational convenience. The set Z∗N is a finite field on

which addition, subtraction, multiplication and division are defined. We assume ZN to satisfy

these conditions for now.

32

the same key is used for encryption and decryption and therefore this key needs

to be secret. The asymmetric property of the Paillier encryption scheme makes it

suitable for a setting in which multiple parties participate, since the encryption

key can be distributed publicly.

The Paillier encryption scheme is additively homomorphic, which means that the

scheme allows for the following computations with messages m1,m2 ∈ ZN and

constant k ∈ ZN :

Eg(m1) · Eg(m2) = Eg(m1 +m2), (4.6)

Eg(m1)
k = Eg(k ·m1), (4.7)

Eg(m1)
−1 = Eg(−m1). (4.8)

Let us now consider an example of how an additively homomorphic encryption

scheme such as Paillier encryption can be used for secure two-party computation.

Suppose that Alice and Bob want to compute the inner product of their vectors

vA and vB. Alice has the secret decryption key. Alice encrypts the entries of

her vector separately to obtain entries [vA,i] and sends these encryptions to Bob.

Bob may then perform the following computations by making use of his own

plaintext vector vB and the additively homomorphic properties of the Paillier

cryptosystem:

[〈vA, vB〉] = [
n∑
i=1

vA,i · vB,i] =
n∏
i=1

[vA,i · vB,i] =
n∏
i=1

[vA,i]
vB,i . (4.9)

Bob never learns the entries of vA. Alice can decrypt the obtained encrypted

inner product and can either share the result with Bob or keep it to herself.

Linear operations such as the inner product can be computed in the encrypted

domain by one party. However, when we want to compute non-linear operations

such as the product [a · b] of two encrypted values [a] and [b], other computation

protocols are necessary. These protocols will be discussed in Section 4.5. First,

the operations that can be performed in the message space will be discussed.

4.3 Computations in the message space

The message space of the Paillier cryptosystem is ZN , which is defined as

ZN = {z|z ∈ Z, 0 ≤ z < N} = {0, 1, . . . , N − 1}. (4.10)

Therefore, in order to encrypt the entries of the matrices and vectors in the

algorithms that have been discussed so far, these entries should be elements of

33

ZN . When spectral clustering is applied in the plaintext domain, entries can be

elements of R. Arithmetic operations in ZN and R are different. This section

will explain how data can be represented and processed in ZN .

4.3.1 Arithmetic operations

A congruence relation is introduced on ZN in order to relate the operations as

defined in Z to operations in ZN . The congruence relation a ≡ b (mod N) is

the remainder of the Euclidean division of a by N . This congruence relation is

compatible with addition, subtraction and multiplication. If a1 ≡ b1 (mod N)

and a2 ≡ b2 (mod N), then

a1 + a2 ≡ b1 + b2 (mod N),

a1 − a2 ≡ b1 − b2 (mod N),

a1a2 ≡ b1b2 (mod N).

Section 4.2 has shown that computations can be performed on an encrypted mes-

sage [m]. Care should be taken that the resulting message m′ does not become

larger than N − 1, since it will be mapped to the value m′ mod N . This phe-

nomenon is called overflow and is not acceptable if we want to be able to derive

the original message with decryption. Thankfully, N is chosen to have a large

size of 1024 or 2048 bits, so overflow does not occur too soon.

The message space ZN is not closed under division: if a, b ∈ Z, the division a
b

need not be an integer. Therefore an integer division operation is defined, in

which the remainder is discarded:

Definition 4.3.1. Let a, b ∈ Z. The integer division a ÷ b is defined as the

integer q such that a = qb+ r with remainder r ∈ Z, where 0 ≤ r < b.

In modular arithmetic, the division operation is sometimes interpreted as multi-

plication by the multiplicative inverse. We stress here that division as defined in

Definition 4.3.1 is not to be confused with multiplication by the multiplicative

inverse. Division as multiplication by the multiplicative inverse may not even

exist if not all elements in ZN have a multiplicative inverse [2]. Suppose that

the multiplicative inverse b−1 ∈ ZN of a certain b ∈ ZN exists, so bb−1 = 1. The

following example shows that a/b = ab−1 differs from a÷b. In Z21, the multiplica-

tive inverse of 2 is 11 since 2·11 = 22 ≡ 1 (mod 21). So 5/2 = 5·2−1 = 5·11 ≡ 13

(mod 21). However, when using Definition 4.3.1, the result 5÷2 = 2 is obtained.

Finally, the integer square root is defined as follows:

Definition 4.3.2. The integer division operation b
√
nc ∈ ZN is the largest m ∈

ZN such that m2 ≤ n.

34

For convenience of notation, the integer square root b
√
nc will be denoted with√

n. The context will clarify the domain in which the square root operation is

performed.

4.3.2 Bit length

When performing computations on values in the message space ZN , the messages

may comprise a growing number of bits. Let us first define the bit length of a

number.

Definition 4.3.3. A number b ∈ ZN is said to have a bit length of ` bits when

2`−1 ≤ b ≤ 2` − 1. The number of bits can be calculated from b by

` = blog2(b)c+ 1. (4.11)

In this thesis, the terms bit length and bit size will be used interchangeably.

Overflow occurs when the result of a computation is too large to be represented

by the alloted number of bits of N . Let us determine the required bit space

after an addition or multiplication operation. Subtraction and division decrease

a number, so overflow is not a problem. Suppose that b1 has `1 bits and b2 has

`2 bits. The addition b1 + b2 has a maximum size of max(`1, `2) + 1 bits. The

multiplication b1b2 is in the bit size range [`1 + `2 − 1, `1 + `2]. Therefore, it

should be taken into account that there is a limit on the number of additions

and multiplications that can be performed on encrypted data. However, since N

is generally chosen to comprise 1024 or 2048 bits, this only happens after many

operations.

4.3.3 Representation of numbers

When user data consist of real-valued numbers, the inputs have to be represented

as messages in ZN . Suppose that the user data is a d-dimensional vector. The

Euclidean space Rd is approximated via Qd to ZdN and the input of the cryp-

tographic protocol is restricted to this range.3 From this point on, we consider

numbers to be represented explicitly in the binary system. This is to remain

consistent with the literature, since privacy preserving protocols regularly use

bitwise computations.

We will first discuss how to represent Q in Z〈`〉, the set of `-bit signed integers:

Z〈`〉 =
{
x ∈ Z| − 2`−1 < x ≤ 2`−1

}
. (4.12)

3This discretization is natural in computer science since, due to memory constraints, the

use of a finite number of decimals is a standard procedure [2]. Therefore, we can consider all

user inputs to be in Qd.

35

Fixed point arithmetic will be used to represent fractions as signed integers. In

fixed point arithmetic, a fixed number of bits is reserved for the fractional part

[20]. Define the set

Q〈`〉,f = {x ∈ Q| x = x̄ · 2−f , x̄ ∈ Z〈`〉}. (4.13)

Suppose that a precision of f digits of the fractional part is desired. By mul-

tiplying numbers in Q〈`〉,f by 2f , a signed integer with a maximum of ` bits is

obtained. The map φ from Q〈`〉,f to Z〈`〉 is defined as follows:

φ : Q〈`〉,f −→ Z〈`〉,
x 7−→ 2f · x.

(4.14)

Suppose that the number N = pq that defines the message space comprises

`N := blog2Nc bits. Since a fixed number of f bits is reserved for the fractional

part of a message, `N − f bits can be used to represent the integer part without

causing overflow.

The map φ preserves addition and subtraction. So let � ∈ {+,−}. The following

relation holds:

φ−1(z) = x� y if z = φ(x)� φ(y). (4.15)

However, multiplication requires more attention. Let x, y ∈ Q〈`〉,f , then

z := φ(x) · φ(y) = 22fxy = 2fφ(xy). (4.16)

So the result is scaled twice while it should only be scaled once. In order to obtain

a correctly scaled result, truncation has to be applied. A truncation operation

discards the f least significant bits as follows:

Trunc (z) =
z

2f
=

2fφ(xy)

2f
= φ(xy) ∈ Z〈k〉. (4.17)

When two fixed point numbers are divided using integer division, the scaling

factor is eliminated:

φ(x)÷ φ(y) = (2fx)÷ (2fy) = x÷ y. (4.18)

Therefore, in the division of numbers in fixed point arithmetic, the enumerator

is always scaled first:

φ(x÷ y) = (2fφ(x))÷ φ(y) = φ(2fx)÷ φ(y). (4.19)

We now have a means to represent fractions as signed integers. However, only

integers in ZN can be encrypted. Therefore, a way to represent negative numbers

36

in ZN is required. The following injective map ψ can encode signed integers as

positive integers when N > 2`:

ψ : Z〈`〉 −→ ZN , (4.20)

x 7−→ x mod N. (4.21)

Its inverse ψ−1 : ZN → Z〈`〉 is given by

ψ−1(x) =

{
x, if x < N/2,

x−N, otherwise.
(4.22)

Informally stated, the upper half of the domain ZN will be taken to represent

the negative integers of maximum bit length `. The map ψ preserves addition,

subtraction, multiplication and integer division. So let � ∈ {+,−, ·,÷}. The

following relation holds:

ψ−1(z) = x� y, if z = ψ(x)� ψ(y). (4.23)

We finish this section by defining ξ := ψ◦φ with ψ and φ as defined in Definitions

4.21 and 4.14 respectively. The function ξ will be used to represent elements of

Q〈`〉,f in ZN . Addition and subtraction are preserved by ξ. Multiplication and

division require the adjustments for fixed points arithmetic that were explained

in (4.17) and (4.19).

4.4 Computations in the ciphertext space

After encryption with the Paillier encryption function (4.1), the messages are

mapped to the ciphertext space Z∗N2 . This section will give an introduction

to computing on ciphertexts. These computations are heavier due to the large

size of the messages. The complexity of basic computations and techniques to

make the computations more efficient will be discussed. It will be investigated

later on whether these techniques can be used in a secure spectral clustering

algorithm. We have seen that at least two parties are required to perform the

secure computations: the service provider and privacy service provider. These

two parties will be given the more general names Alice and Bob in the upcoming

sections, to indicate that these protocols are not limited to the current context.

Bob owns the decryption key.

4.4.1 Complexity of operations

In order to compare the protocols in Section 4.5, they will be assessed in terms of

the number of operations on encrypted numbers [11, 12]. The complexity of com-

putations on plaintext numbers is negligible in comparison with computations on

37

encrypted numbers. This due to the size of the encrypted numbers, which have

a maximum bit length of `c := 2`N . Moreover, addition and multiplication over

mod N on plaintext numbers become multiplication and exponentiation over

mod N2 on encrypted numbers. The complexity of a negation is approximately

equal to the complexity of a multiplication. The number of negations, multi-

plications, exponentiations, encryptions and decryptions will be counted in the

complexity analysis. Furthermore, the privacy preserving protocols will require

the cooperation of multiple parties. To give an indication of the communication

complexity of secure multiparty protocols, the back and forth communication

of encrypted messages between two parties will be referred to as a round. The

bandwidth of a protocol is the maximum amount of data to be transmitted at a

certain point in time. The total bandwidth is the total amount of data that needs

to be transmitted. The generation of the public and private keys and of the ran-

dom numbers can be computed beforehand and their complexity will therefore

not be taken into account.

4.4.2 Data packing

An encrypted message is an element of Z∗N2 and is therefore a very large integer.

This is true for any original message size. This is illustrated in Example 1.

Example 1.

m
Eg7−−−−−→ [m]

88
Eg7−−−−−→ 2705410348988235825082347192 . . .

17083762124792945
Eg7−−−−−→ 1832994261736908802356782035 . . .

Since operations on encrypted data are expensive, data packing can be used to

improve the protocol in terms of efficiency. Data packing is a technique that

puts multiple entries that need to be processed into one message. Every entry

fills a compartment of the message. This is illustrated in Example 2, in which

five messages are packed into one encryption.

Example 2.

88 | 24 | 57 | 50 | 16
Eg7−−−−−→ 9368217908688528064048285943 . . .

The use of data packing can be motivated by two observations during the exe-

cution of an algorithm [10]:

1. The same operations are performed multiple times, e.g. the multiplication

of a vector’s entries by a constant.

38

2. The Paillier message space ZN is larger than the necessary message bit

space as the messages are relatively small.

Suppose that we want to add an encrypted constant [α] to an encrypted vec-

tor [w]. Instead of encrypting the entries of w = (w1, . . . , wk)
T separately and

multiplying these entries with constant [α], we can pack the entries of w in one

encryption and multiply the packed encrypted vector by [α]. Suppose that the

entries of w are represented with t bits. Some operations, such as addition by

α, cause an increase in bit length of the entries of w. Therefore, suppose that

b more bits need to be reserved as “expansion space”. The message space ZN
comprises `N bits. The entries of w can be concatenated into one large number

with a maximum bit length `N as follows:

wPacked =
k−1∑
i=0

wi+1 · (2t+b)i (4.24)

= wk | . . . | w1 . (4.25)

We can use a single encryption to pack this vector. The α can also be concate-

nated such that every compartment of the packed αPacked contains α:

αPacked =
k−1∑
i=0

α · (2t+b)i (4.26)

= α | . . . | α . (4.27)

The packed encrypted constant [α] can be added to every entry of w with one

multiplication:

[wPacked] · [αPacked] = [wk + α | . . . | w1 + α] . (4.28)

Since the communication complexity of a computation is mainly determined by

the exchange of Paillier encrypted messages, it is a large advantage to reduce

the number of encryptions through data packing. Of course, there is a limitation

to the number of entries that can be packed in one encryption. The number of

entries that fit in one encryption is `N/(t + b), where b depends on the desired

operations that are performed on the encrypted data. It should be noted that

data packing causes an increase in the size of a message. The message can have a

bit length as large as `N . Therefore, computations on packed plaintext numbers

are not necessarily negligible in terms of complexity. In this research, the bit

lengths of numbers during an algorithm will be mentioned in order to investigate

whether data packing can be applied.

39

4.4.3 Blinding numbers

Due to the additively homomorphic property of Paillier, linear operations can

be performed on encrypted numbers. To perform non-linear operations, we need

to decrypt the numbers at some point. Therefore, we need a method to hide

the values of numbers even after decryption. Such a method is additive blinding

or additive obfuscation. Suppose that Alice has an encrypted message [m] and

chooses a random number r ∈ ZN . Alice can hide the value of m as follows:

[m] · [r] mod N2 = [m+ r]. (4.29)

Now Alice can send [m+r] to Bob, who owns the decryption key. We want to en-

sure that m+ r does not provide any information about the value of m, i.e. that

m+r appears to be a random number. Therefore, random numbers r should be κ

bits larger than m in order to guarantee that m+r hides m well enough. The pa-

rameter κ is called the security parameter. A value of κ = 80 is often applied [48].

We now have the preliminary knowledge to investigate the required computations

on encrypted numbers.

4.5 Privacy preserving computation protocols

Chapter 3 introduced the numerical methods that will be used to approximate

eigenvectors. It became clear from Algorithms 3, 5 and the back substitution

process that scalar multiplication, inner products, matrix products, divisions and

square roots to compute vector norms are required. This section gives examples

of privacy preserving protocols that could be used to implement these numerical

methods securely. These protocols were found in related literature on privacy

preserving data mining. The authors proved the protocols to be secure under

the semi-honest adversary model. The composition of secure protocols in the

semi-honest adversary model is again secure in this model, as was proven by

Canetti [3]. We will see that secure division and secure square root protocols are

computationally heavy. The complexity of protocols influences the applicability

of a secure algorithm. Therefore, the upcoming section is vital to understand

the considerations that will be made in Chapter 5.

In the following sections, `c is the bit size of a ciphertext. Recall that the relation

`c = 2`N holds. For a secure cryptosystem, `N has to be chosen as 1024 or 2048

bits. Moreover, we will take some notational freedom in the encryption of vectors

and matrices. An encrypted vector v and encrypted matrix M will be denoted

with [v] and [M] respectively. They are encrypted entry-wise, so the encrypted

vector and matrix are filled with separately encrypted entries.

40

4.5.1 Scalar multiplication

Suppose that Alice has [a] and [b], and Bob owns the decryption key SK. Alice

wants to know the encrypted value [a · b] without Bob learning either a or b.

A secure multiplication protocol that achieves these goals is given in Protocol

2 [10]. Suppose that a has bit length `a and b has bit length `b. First, Alice

obfuscates [a] and [b] with two random values r1 and r2 of size κ+ `a and κ+ `b
respectively, where κ is the security parameter. The obfuscated values [ã] and [b̃]

are sent to Bob, who can safely decrypt them. Bob computes the product ã · b̃
and sends the encrypted [ã · b̃] back to Alice. Alice can remove the obfuscation

with additive homomorphic properties as follows:

[a · b] = [ã · b̃− ar2 − br1 − r1r2] (4.30)

= [ã · b̃] · [a]−r2 · [b]−r1 · [−r1r2]. (4.31)

Protocol 2: [ab]← Mult([a], [b]) [10]

Input : A: [a], [b], random r1, r2.

B: decryption key SK.

Output: A obtains [ab].

1 A| [ã]← [a] · [r1]
2 A| [b̃]← [b] · [r2]
3 A sends [ã] and [b̃] to B.

4 B| ã← Decrypt([ã])

5 B| b̃← Decrypt([b̃])

6 B| [ã · b̃]← Encrypt(ã · b̃)
7 B sends [ã · b̃] to A.

8 A| [a · b]← [ã · b̃] · [a]−r2 · [b]−r1 · [−r1r2]

Protocol 2 requires one round with a bandwidth of 2`c. The total bandwidth is

3`c. In total 2 multiplications are required to obfuscate a and b, and 3 multipli-

cations, 2 negations and 2 exponentiations to recover [ab] from [ãb̃]. Moreover,

2 decryptions and 1 encryption are performed.

4.5.2 Inner product

The privacy preserving inner product is an extension of the privacy preserving

multiplication protocol. Suppose that Alice holds two entry-wise encrypted vec-

tors [v] and [w], both of length n. Bob holds the decryption key SK. To compute

the encrypted inner product [〈v, w〉], the vectors are first obfuscated. Alice gen-

erates two random vectors rv and rw, whose entries are at least κ bits larger than

the entries of v and w respectively. Alice sends the obfuscated encrypted vectors

41

[ṽ] = [v + rv] and [w̃] = [w + rw] to Bob, who can decrypt them to compute the

obfuscated inner product:

〈ṽ, w̃〉 =
n∑
i=1

ṽiw̃i. (4.32)

The encrypted resulted is sent back, after which the obfuscation can be removed

by Alice. She makes use of the following relation:

〈ṽ, w̃〉 =
n∑
i=1

(vi + rvi)(wi + rwi
) (4.33)

=
n∑
i=1

(viwi + virwi
+ wirvi + rvirwi

). (4.34)

So, Alice performs the following computations:

[〈v, w〉] = [〈ṽ, w̃〉 −
n∑
i=1

virwi
−

n∑
i=1

wirvi −
n∑
i=1

rvirwi
] (4.35)

= [〈ṽ, w̃〉] ·
n∏
i=1

[vi]
−rwi ·

n∏
i=1

[wi]
−rvi · [−

n∑
i=1

rvirwi
]. (4.36)

The privacy preserving inner product protocol is given in Protocol 3 [12].

Protocol 3: [〈v, w〉]← Inner([v], [w])[12]

Input : A: Entry-wise encrypted vectors [v], [w], random vectors rv, rw.

B: Decryption key SK.

Output: A obtains [〈v, w〉].
1 A| [ṽi]← [vi] · [rvi] for i ∈ 1, . . . , n

2 A| [w̃i]← [wi] · [rwi
] for i ∈ 1, . . . , n

3 A sends [ṽ] and [w̃] to B.

4 B| ṽi ← Decrypt([ṽi]) for i ∈ 1, . . . , n

5 B| w̃i ← Decrypt([w̃i]) for i ∈ 1, . . . , n

6 B| [〈ṽ, w̃〉]← Encrypt(〈ṽ, w̃〉)
7 B sends [〈ṽ, w̃〉] to A.

8 A| [〈v, w〉]← [〈ṽ, w̃〉] ·
∏n

i=1 [vi]
−rwi ·

∏n
i=1 [wi]

−rvi · [−
∑n

i=1 rvirwi
]

One round of communication is required for Protocol 3 with a bandwidth of

2n`c. The total bandwidth is (2n+ 1)`c because two encrypted vectors and one

encrypted inner product are communicated. The computational complexity is

2n decryptions, 1 encryption, 2n multiplications to obfuscate the vectors and 2n

exponentiations and negations and 2(n − 1) + 3 multiplications to remove the

obfuscation.

42

4.5.3 Secure matrix product

Suppose that Alice has two entry-wise encrypted matrices [M1] and [M2] of size

n×n.4 Bob owns the decryption key SK. Since the entry-wise encrypted product

[M1M2] can be computed with n2 secure inner products, an explicit protocol for

the secure matrix product will not be given. An improvement of the product

of two Paillier-encrypted matrices is a topic for further research. We will only

state the complexity of the secure matrix product that makes use of n2 secure

inner products as were presented in Protocol 3. One round of communication

is necessary with a bandwidth of 2n2`c for the communication of two encrypted

matrices. Bob performs 2n2 decryptions and n2 encryptions. The inner products

cost 2n3 exponentiations and negations and n2(2n+ 1) multiplications in total.

4.5.4 Division protocols

Many divisions are performed in the approximation of eigenvectors, as was shown

in Chapter 3. Even on plaintext numbers, the division operation is more com-

plex than addition, subtraction and multiplication, since an iterative algorithm

is generally used to approximate the reciprocal of a number [52]. In the previous

sections it became clear that computations in the encrypted domain are com-

putationally more heavy than the same computations in the plaintext domain.

This is certainly true for division, which is a relatively expensive operation in

the encrypted domain [48]. Moreover, the division operation will be much more

computationally intensive when the divisor d is encrypted than when d is public.

The aim of this section is to give an intuition for this difference, since it will be

of great importance for the translation of the spectral clustering algorithm to

the encrypted domain. First, division by a public divisor d will be discussed.

Secure integer division with public divisor

Suppose that Alice wants to divide an encrypted number [x] by a public divisor

d. Thijs Veugen has designed division protocols in which either an exact integer

division [xd] = [x÷d], or approximate integer division [xd] ∈ {[x÷d], [x÷d+1]}
is computed [48]. In exact integer division an additional comparison protocol

has to be performed, which can be explained with the following example.

Example 3. Suppose that Alice wants to divide [x] = [23] by d = 5. Bob owns

the decryption key. She strives to find the result x÷d = 4 in a privacy preserving

manner, so Bob cannot learn the value of x. Therefore, Alice blinds the value x

4For simplicity, only the product of two equally sized matrices is considered. The secure

matrix product for matrices of general sizes m× k and k × n follows in an analogous manner.

43

with r = 13 and sends it to Bob.5 The value [z] = [x+ r] = [36] is decrypted by

Bob and he computes z ÷ d in plaintext. Bob encrypts the result and sends it

back to Alice. Alice knows how to correct the result [z ÷ d]. Now

[x÷ d] = [(z ÷ d)− (r ÷ d)]

= [(36÷ 5)− (13÷ 5)]

= [7− 2] = [5].

The subtraction operation can be performed with the additively homomorphic

property of Paillier encryption. However, actually x ÷ d = 23 ÷ 5 = 4, so the

additive blinding has influenced the division result. This has happened because

the remainders of 23 and 13 after integer division by 5 add up to at least 5.

Example 3 showed that additive blinding can influence the division result. This

occurs when

(x mod d) + (r mod d) ≥ d. (4.37)

Therefore, this inequality needs to be checked in order to perform exact divi-

sion. An inequality can be checked in the encrypted domain with a comparison

protocol, but this makes computations significantly more intensive. For now, it

is assumed that approximate integer division is exact enough since the numbers

are scaled with fixed point arithmetic before division. When more precision is

required, more bits can be reserved to store the remainder of a division. The

protocol for approximate integer division with a public divisor is given in Proto-

col 4. Note that there is a constraint on x. The sum x + r should not overflow

the message space ZN . Moreover, the additive blinding should be of at least

size log2 x + κ to be effective. Therefore, the size of x has to be constrained by

log2 x < log2N − κ. This is equivalent to the constraint 0 ≤ x < N · 2−κ.

Protocol 4: [xd] ∈ {[x÷ d], [x÷ d+ 1]} ← PubDiv([x], d) [48]

Constraints: 0 ≤ x < N · 2−κ and 0 < d < N .

Input : A: [x], d, random r of size log2N − 1.

B: d, decryption key SK.

Output: A obtains [xd] ∈ {[x÷ d], [(x÷ d) + 1]}.
1 A| [z]← [x] · [r]
2 A sends [z] to B.

3 B| z ← Decrypt([z])

4 B| [z ÷ d]← Encrypt(z ÷ d)

5 B sends [z ÷ d] to A.

6 A| [xd]← [z ÷ d] · [−(r ÷ d)]

5Actually, r should be at least κ bits larger than x. In this example, x is 5 bits long so with

κ = 80, r should at least be 284. However, the example only means to illustrate the idea of

additive blinding so we take a small value of r.

44

Protocol 4 requires one round with a bandwidth of 2`c. Furthermore, 2 multipli-

cations, 1 encryption and 1 decryption are required.

In Section 4.3 the truncation operation was defined in (4.17) to correct the mul-

tiplication of two numbers in fixed point arithmetic. We note here that the

truncation operation Trunc is the same as division by a public divisor, in which

the divisor is a power of 2.

In Protocol 4, the divisor d is public. The divisor may contain valuable informa-

tion and therefore we would like to be able to divide [x] by an encrypted divisor

d. An intermediate step would be to make divisor d known only to one party.

Another protocol by Thijs Veugen ensures that the divisor is only known to Bob

who has the decryption key [48]. Bob has to perform an extra encryption and

Alice has to perform an extra exponentiation. There is an additional commu-

nication step from Bob to Alice. We will now discuss division by an encrypted

divisor.

Secure integer division with encrypted divisor

In order to perform a computation in which the privacy is perfectly preserved,

the divisor should be encrypted for both parties. An efficient solution that does

not make use of an iterative algorithm was proposed by Dahl, Ning and Toft

to compute n ÷ d for Paillier encryptions of `′-bit values n and d [7]. In their

division protocol, the two participating parties secret share the decryption key,

for example by making use of Shamir’s secret sharing scheme [43]. The two

parties can thus only decrypt with mutual consent. The inputs and intermediary

values are held in encrypted form by both parties. The solution consists of two

parts:

1. Compute encrypted approximation [ã] of [a] = [2k ÷ d].

2. Compute [n÷ d] = [(ã · n)÷ 2k].

In part 1, Dahl, Ning and Toft make use of the Taylor series of 1
x

around 0:

1

x
=
∞∑
i=0

(1− x)i ≈
ω∑
i=0

(1− x)i. (4.38)

Now take ω = `′, `d := blog2(d) + 1c, x = d
2ld

and k = `′2 + `′. Note that `d and

45

`′ have to be private, since information about n or d leaks otherwise. Now

2k

d
= 2k−`d · 1

d/2`d
(4.39)

≈ 2k−`d ·
ω∑
i=0

(1− d/2`d)i (4.40)

= 2k−`d ·
ω∑
i=0

((2`d − d) · 2−`d)i. (4.41)

Since k ≥ `d and 2`d > d, it follows that the approximate division ã ≈ 2k

d
can

be computed with addition and multiplication in ZN . After obtaining ã, part 2

consists of computing n · ã and truncating it by 2k. The result q̃ is in the interval

[(n ÷ d) − 1, n ÷ d]. These computational steps are summarized in Protocol 5.

The protocol makes use of a multiplication protocol such as the one given in

Protocol 2. Additional sub-protocols πbl, πinv, πpoly and Trunc are invoked. The

details of these protocols are beyond the scope of this thesis, but the functions

of the protocols are as follows:

• πbl : [2`d]← [d] where `d = blog2(d) + 1c,

• πinv : [x−1]← [x],

• πpoly : [A(p)]← [p] for a known polynomial A(x) =
∑ω

i=0 x
i,

• Trunc : [q̃]← [q̂ ÷ 2k] such that q̃ ∈ [q̂ ÷ 2k, (q̂ ÷ 2k) + 1].

Protocol 5: [n÷ d]← EncDiv([n], [d]) [7]

Input : [n], [d].

Output: [n÷ d] ∈ [(n÷ d)− 1, n÷ d].

1 [2`d]← πbl([d])

2 [2−`d]← πinv([2
`d])

3 [p]← [2`d − d] = [2`d] · [d]−1

4 [p]← Mult([p], [2−`d])

5 [ã]← 2k · [2−`d] · πpoly([p]) = [2−`d]2
k · πpoly([p])

6 [q̂]← Mult([n], [ã])

7 [q̃]← Trunc([q̂], k)

This protocol requires O(`′) encryptions to be exchanged. The invocation of the

sub-protocols make Protocol 5 relatively complex. Details on the complexity can

be found in [7]. In Protocol 4, the public divisor ensures that the division can be

performed with the additive homomorphic property of Paillier encryption and

one intermediate encryption. Therefore, Protocol 5 is computationally complex

in comparison with Protocol 4. The decision on whether or not to publish the

divisor is a trade-off between privacy and efficiency.

46

4.5.5 The square root

The square root operation is particularly complex in the encrypted domain.

The square root of a number is found by an iterative method. The method

of Newton-Raphson is often applied to approximate the square root, but this

method may oscillate when performed over integer arithmetic [33]. Privacy pre-

serving square root protocols have been designed that are based on the Newton-

Raphson method, Goldschmidt’s algorithm or on bit-by-bit computation [29, 33].

These protocols either need many iterations with a comparison protocol or they

use multiple multiplication and division operations in every iteration in order

to compute one square root. Moreover, if the number of iterations is public,

information about the computation is leaked. The numbers of iterations can be

hidden, but this will make the square root protocol even more complex. There-

fore, we will strive to avoid the computation of an integer square root in the

design of a privacy preserving spectral clustering algorithm.

To give the reader an intuition for the complexity of a square root protocol, we

will summarize the approach that was designed by Manuel Liedel [29]. It uses

a combination of the Newton-Raphson method and Goldschmidt’s algorithm,

which will be discussed first.

The Newton-Raphson method

The Newton-Raphson method can be used to approximate the zero of a dif-

ferentiable function f . Starting with an initial approximation, the subsequent

approximation is given by

xj+1 = xj −
f(xj)

f ′(xj)
. (4.42)

When Equation 4.42 is applied to the function f(R) = 1
R2 − x, the zero R = 1√

x

can be approximated with quadratic convergence. By multiplying the result

with x, an approximation of
√
x is obtained. Substituting f(R), the following

recursion has to be implemented:

Rj+1 =
1

2
Rj(3− x ·R2

j). (4.43)

Goldschmidt’s algorithm

Goldschmidt’s algorithm is a variation of the Newton-Raphson method that al-

lows one to approximate
√
x and 1√

x
. An inital estimate y0 = 1√

x0
is assumed

such that 1
2
< x0y

2
0 <

3
2
. Set g0 = x0y0 and h0 = y0

2
. Now gi and hi will converge

47

to
√
x and 1

2
√
x

respectively. Goldschmidt’s algorithm is given in Algorithm 7.

Algorithm 7: Goldschmidt’s algorithm to approximate a square root

Input : Initial approximation y0 = 1√
x0

such that 1
2
< x0y

2
0 <

3
2
.

Output: Approximations gi of
√
x and hi of 1

2
√
x
.

1 Set g0 = x0y0 and h0 = y0
2

.

2 while |gi − gi−1| > ε do

3 ri−1 = 1
2
− gi−1hi−1

4 gi = gi−1(1 + ri−1)

5 hi = hi−1(1 + ri−1)

6 end

It is beyond the scope of this thesis to investigate the secure square root proto-

col in detail. The square root protocol that ensures an approximation of k bits

accuracy is given in Protocol 6 in Appendix A. A fixed point representation of

numbers is assumed with f bits for the fractional part. In the secure square root

protocol in Appendix A, sub-protocols for the secure multiplication operation

and the division operations Trunc and PubDiv are invoked multiple times in ev-

ery iteration. This makes the computational and communication complexity of

a square root operation in the encrypted domain large in comparison to other

secure computations.

This section has discussed some of the necessary building blocks for a privacy

preserving spectral clustering algorithm. These protocols are not sufficient. For

example, a secure comparison protocol may be required to implement a stopping

criterion for the QR algorithm. It is beyond the scope of this research to give an

exhaustive design of a privacy preserving spectral clustering algorithm. However,

in the Discussion section we will expound more on a privacy preserving design.

Let us first consider the translation of the numerical algorithms from Chapter 3

to the message space of the Paillier cryptosystem, i.e. the integer domain.

48

Chapter 5

An investigation of secure

spectral clustering

The focus of this thesis is the approximation of the eigenvectors of the Laplacian

in the integer domain. However, we recall from Algorithm 2 that the spectral

clustering algorithm consists of several steps. First, the Laplacian matrix is con-

structed. The eigenvectors of the Laplacian are computed and form the columns

of a matrix U . The final step is to perform k-means clustering on the rows of

U . This chapter will mainly be about the computation of eigenvectors in the

integer domain. The numerical algorithms from Chapter 3 will be adapted to

the integer domain. We will first, in Section 5.1, briefly discuss previous research

that can be applied to the other steps of the spectral clustering algorithm. Next,

the Lanczos algorithm will be adapted to ZN in Section 5.2. A secure design of

the Lanczos algorithm will also be proposed. The QR algorithm in ZN is the

subject of Section 5.3. The adaptation of the back substitution step is discussed

in Section 5.4. The accuracy of the eigenvectors in the integer domain will be

assessed in Chapter 6.

5.1 Constructing the Laplacian and k-means clus-

tering

After this section, the research will be focused on the eigendecomposition of the

Laplacian. This section shows how previous research on the other steps of the

spectral clustering algorithm can be connected to the current research. Figure

5.1 gives an overview of the phases of the spectral clustering algorithm. The first

and third blocks on the algorithm will now be discussed.

49

Figure 5.1: The spectral clustering algorithm consists of several steps.

5.1.1 The Laplacian

In Chapter 2 it was discussed that the Laplacian can be constructed in many

different ways. The optimal choice depends on the context. However, a similarity

measure s(xi, xj) for every pair of data points xi and xj and a way to define the

weights wij for matrix W are always required. Previous work by Erkin et al. can

be applied to compute a similarity measure securely [10].

In [10], Erkin et al. use the cosine similarity between users A and B with data

vectors xA and xB of length n. The cosine similarity is given by

sim(A,B) =

∑n
j=1 xA,j · xB,j√∑n

j=1 x
2
A,j ·

∑n
j=1 x

2
B,j

(5.1)

=
n∑
j=1

xA,j√∑n
j=1 x

2
A,j

· xB,j√∑n
j=1 x

2
B,j

(5.2)

:=
n∑
j=1

x̃A,j · x̃B,j. (5.3)

Every user I can compute x̃I,j individually and send the encrypted [x̃I,j] to the

service provider. Once encrypted, a secure multiplication protocol is necessary

to compute [x̃A,j · x̃B,j]. The sum of the encrypted products can be computed

with the additive homomorphic property of the Paillier cryptosystem.

The Lanczos algorithm efficiently exploits the sparsity of the input matrix.

Therefore, we strive to use the similarity measure such that we obtain a sparse

Laplacian L. For example, the cosine similarity may be compared to a threshold

and the weight wAB can be assigned the value sim(A,B) if the similarity at least

50

meets the threshold. The weight wAB is 0 otherwise. This corresponds to a sim-

ilarity graph in which vertices are connected, if and only if, the threshold is met.

Once the encrypted weights wij on the edges between user pairs are computed,

the entries of Laplacian L can be computed with linear operations:

[lij] = [wij − dij] = [wij] · [dij]−1. (5.4)

5.1.2 Secure k-means clustering

Suppose that the eigenvectors of the Laplacian have been approximated securely

and that these vectors form the columns of an encrypted matrix [U]. The rows

of [U] have to be clustered using the k-means clustering algorithm. Extensive

research has been done on privacy preserving k-means clustering. This section

succinctly discusses secure k-means algorithms on Paillier encrypted values with

the aid of a third party. Note that many other privacy preserving k-means algo-

rithms were designed and further research is necessary to investigate the optimal

algorithm.

Erkin et al. provide a secure k-means algorithm in which multiple users and a

server interact [9]. The proposed method requires the participation of all users

and the computation and communication complexity is high. An improvement in

terms of efficiency came from Erkin et al. in 2013 [11]. The users are divided into

M groups and each group contains one helper user who owns a decryption key.

The helper users and a server cooperate to obtain the clustering result. While

these algorithms may be adapted to cluster the eigenvector matrix [U], the users

would have to participate in the computations. A secure algorithm in which the

users are considered offline after a precomputation phase was designed in [1].

Beye et al. use a three-party setting in which encrypted user data is stored in a

central entity, called the User Representative. The User Representative interacts

with a Key Holder and an Efficiency Provider. The User Representative and the

Efficiency Provider use permutations to prevent each other from learning which

data belongs to which user. Blinding is used to prevent the Key Holder from

learning data values after decryption. In this algorithm, the cluster centroids

are encrypted. In order to determine the distances of the users to the centroids,

division by an encrypted denominator is required. Moreover, a protocol to find

the minimum distance of each user to the centroids is necessary. The algorithm

stops after t rounds. The increased workload due to computation on encrypted

centroids make the final complexity of this algorithm to the work of Erkin in [9]

similar.

We will now turn to the adaptation of the numerical methods from Chapter 3

to the integer domain. From now on, it is assumed that the Laplacian [L] is

51

constructed in a privacy preserving manner. In this setting, a service provider

and a privacy service provider would collaborate to approximate the encrypted

eigenvectors of [L]. The situation is illustrated in Figure 5.2.

Figure 5.2: The two-party computation of the eigenvectors of a matrix L whose

entries are encrypted with the Paillier cryptosystem. The PSP owns the decryp-

tion key.

5.2 The Lanczos algorithm

Recall that, given a symmetric matrix L ∈ Rn×n the Lanczos algorithm computes

an orthonormal basis V ∈ Rn×k and a tridiagonal matrix T ∈ Rk×k such that

LV = V T and the Ritz values of T are an approximation of the eigenvalues of

L. The standard Lanczos algorithm incorporates normalization of the Lanczos

vectors. However, in Section 4.5 it was discussed that the square root operation is

expensive in a finite field. Therefore, it is proposed to perform an unnormalized

version of the Lanczos algorithm in the integer domain. This algorithm will be

tested in Chapter 6. At the end of this section, a secure design of the Lanczos

algorithm will be discussed.

5.2.1 The unnormalized Lanczos algorithm

Christopher Paige became famous with his research on the performance of vari-

ants of the Lanczos algorithm [36, 35]. He described the unnormalized version

of Lanczos, stemming from a different approach to the method. We no longer

assume that n×n matrix T is symmetric. The unsymmetric equivalent of matrix

T in (3.17) is

T =


α1 γ2 0

β2 α2 γ3
β3 α3 γ4

0
.

 . (5.5)

52

The unsymmetric equivalent of (3.18) is

Lvj = γjvj−1 + αjvj + βjvj+1. (5.6)

Multiplication from the left by vTj or vTj−1 respectively yields the following equa-

tions for αj and γj:

αj = vTj Lvj/v
T
j vj, (5.7)

γj = vTj−1Lvj/v
T
j−1vj−1. (5.8)

These equations hold because vTi vj = 0 for i 6= j. Now the γj can also be

expressed in terms of βj with the following relations:

γjv
T
j−1vj−1 = vTj−1Lvj from (5.8)

= vTj Lvj−1 since LT = L

= vTj V tj−1 using LV = V T

= vTj (γj−1vj−2 + αj−1vj−1 + βjvj)

= βjv
T
j vj.

(5.9)

The coefficients and equation for forming the next vector vj+1 thus become

γj = βjv
T
j vj/v

T
j−1vj−1, (5.10)

αj = vTj Lvj/v
T
j vj, (5.11)

βj+1vj+1 = Lvj − αjvj − γjvj−1. (5.12)

Paige subsequently assumes that βj+1 = 1 and states that “this lack of normal-

ization is unimportant [...] except that it may lead to exponent overflow in some

computations”[35].

We thus obtain

T =


α1 γ2 0

1 α2 γ3
1 α3 γ4

0
.

 (5.13)

and an orthogonal basis V . Note that βj = 1 implies that the columns of V are

no longer orthonormal, but only orthogonal and not unitary. More concretely,

this implies

V TV = DV , (5.14)

for a diagonal matrix DV . The entries of DV are the squared Euclidean norms

of V ’s columns, since these columns are not normalized:

DV (ii) =
n∑
j=1

v2ij, i ∈ {1, . . . , n}. (5.15)

53

Due to this lack of normalization, the entries of vj tend to grow as the algorithm

progresses. One should pay attention to the possibility of overflow. This will be

further investigated when the algorithm is tested in Chapter 6.

An overview of the unnormalized Lanczos algorithm is given in Algorithm 8.

Algorithm 8: Unnormalized Lanczos algorithm

1 v0 ← 0

2 Generate a random vector v1 ∈ Rn.

3 β1 ← 0

4 for j = 1, 2, . . . ,m− 1 do

5 αj ← (vj · Lvj)/(vj · vj)
6 γj ← βj(vj · vj)/(vj−1 · vj−1)
7 βj+1 ← 1

8 vj+1 ← Lvj − αjvj − γjvj−1
9 end

10 αm ← (Lvm · vm)/(vm · vm)

We will now show the equivalence of the unnormalized and the normalized Lanc-

zos algorithms. Define diagonal matrixDγ = diag
(
1,
√
γ2,
√
γ2γ3, . . . ,

√
γ2 · · · γm

)
.

Let C denote the symmetric Ritz matrix in (3.17) that is obtained with the nor-

malized Lanczos algorithm. Matrix T is similar to C with the following trans-

formation:

DγTDγ−1 = C =


α1

√
γ2 0

√
γ2 α2

√
γ3√

γ3 α3
√
γ4

0
.

 . (5.16)

Algorithm 8 can directly be translated to the integer domain using the integer

operations that were defined in Section 4.3.

5.2.2 The Lanczos algorithm in ZN
The unnormalized Lanczos algorithm can be translated to ZN in a straightfor-

ward manner. The Lanczos algorithm without square roots was also implemented

in a finite field in [24, 26]. However, the authors did not investigate the influ-

ence of this adaptation on the convergence and accuracy of the algorithm. The

Lanczos algorithm in ZN is given in Algorithm 9. The addition, subtraction,

multiplication and division operation in ZN were defined in Section 4.3. In Algo-

rithm 9, fixed point arithmetic is applied in the decimal number system because

the algorithm was implemented in this format. The scaling parameter d can be

54

adjusted. In a secure version of the algorithm, the binary number system will

be used again. After the unnormalized Lanczos method is performed, αj and γj
are obtained. These values are scaled by 10d. The Laplacian L is unscaled. Note

that the computations are performed modulo N .

It was investigated whether the number of divisions could be reduced by only

performing divisions every few iterations. However, the danger of overflow occurs

quickly due to the number of multiplications and the growth of the entries of the

vectors vj. No systematical way of reducing the number of divisions was found.

Algorithm 9: Unnormalized fixed point Lanczos algorithm in ZN
1 v0 ← 0

2 Generate a random vector v1 ∈ ZnN .

3 v1 ← 10d · v1
4 β1 ← 0

5 for j = 1, 2, . . . ,m− 1 do

6 αj ← (10dvj · Lvj)÷ (vj · vj)
7 γj ← (βjvj · vj)÷ (vj−1 · vj−1)
8 βj+1 ← 10d

9 vj+1 ← Lvj − (αjvj)÷ 10d − (γjvj−1)÷ 10d

10 end

11 αm ← (10dvm · Lvm)÷ (vm · vm)

In Chapter 6, the performance of Algorithm 9 will be tested on three real

datasets. It will be compared to the performance of Algorithm 8, in which

the computations take place in R.

5.2.3 The secure Lanczos algorithm

The privacy preserving protocols of Section 4.5 will now be used in a secure de-

sign of the Lanczos algorithm. The design gives the reader an idea of the shape

that such an algorithm could take. Certainly, further research is required for an

optimal design.

Suppose that matrix [L] contains Paillier encrypted ciphertexts. The initial

vectors v0 and v1 are known or random and can be in plaintext. Therefore, the

first matrix vector product [w] = [L · v1] can be computed with the additive

homomorphic property of Paillier encryption. Let lk denote the kth row of L.

The entry [wk] is computed as follows:

[wk] = [lk · v1] = [
n∑
i=1

lkiv1i] =
n∏
i=1

[lki]
v1i . (5.17)

55

The subsequent vj’s and the αj and γj are preferably not leaked as they can be

used to obtain the eigenvalues of L. All the [αj], [γj] and [vj] have to be stored

in order to compute the eigenvectors of [L]. The sub-diagonal entries βj do not

have to be computed since they are known to be equal to 2f .

In Algorithm 10, vectors will be in bold notation in order to distinguish between

scalars and vectors. Vectors are encrypted entry-wise. When computations on

vectors such as addition, truncation or the multiplication by a scalar are per-

formed, the computations are performed entry-wise. Encrypted numbers with-

out a subscript, such as [x] and [w], denote intermediate results that can be

overwritten. Note that an alternative computation is performed for vector [v3]

because v1 is a public vector. Furthermore, scalars m,n and f are public values.

Data packing

We will now give the reader an idea of how data packing may be applied to

improve the efficiency of a secure Lanczos algorithm. In Algorithm 10, the en-

crypted Laplacian [L] is used in a secure matrix vector product MatMult([L], [v]).

A secure matrix vector product is relatively complex. A matrix vector product

is a series of inner products of the rows of the matrix with the same vector vj.

Therefore, data packing may be used to reduce the number of operations over

encrypted entries of L. A similar construction was applied in [10]. Suppose that

we pack column lj of L in one encryption:

lPackedj = [l1j| . . . |lnj]. (5.18)

Let ⊗ denote a secure multiplication operation. If another encryption contains

the jth entry of v, the entire column of L can be multiplied with this entry with

one secure multiplication protocol:

[l1j| . . . | lnj]⊗ [vj] = [l1jvj| . . . | lnjvj]. (5.19)

Now the packed matrix vector product can be computed as

n∏
j=1

[l1jvj| . . . | lnjvj] = [
n∑
j=1

l1jvj| . . . |
n∑
j=1

lnjvj] := [w1| . . . |wn]. (5.20)

Let us discuss the necessary compartment size for such a packed matrix-vector

product. Suppose that the entries of L are represented by tL bits and the en-

tries of vj are represented by tv bits. The packed entries
∑n

j=1 lijvj will comprise

tL + tv + dlog(n)e bits, so this should be the minimum size of the compartments.

Since the message space has `N bits, a total of s = `N/(tL + tv + dlog(n)e) en-

cryptions will be necessary per row of L. We need sn secure multiplications

56

Algorithm 10: Secure Lanczos algorithm

Input : n× n symmetric encrypted matrix [L]

Output: [αj], [γj], [vj], j ∈ {1, . . . ,m}.
1 v0 ← 0

2 γ1 ← 0

3 Generate a random vector v1 ∈ ZnN in plaintext.

4 v1 ← 2f · v1.

5 [w]← [L · v1] using additive homomorphic properties

6 [x]← [v1 ·w] using additive homomorphic properties

7 [α1]← [(2fx)÷ (v1 · v1)] = PubDiv([x]2
f
,v1 · v1)

8 [u]← Trunc([α1]
v1 , 2f)

9 [v2]← [w − u] = [w] · [u]−1

10 for j = 2, . . . ,m− 1 do

11 [w]← [Lvj] = MatMult([L], [vj])

12 [x]← [vj ·w] = Inner([vj], [w])

13 [yj]← [vj · vj] = Inner([vj], [vj])

14 [yj]← Trunc([yj], 2
f) store for next iteration

15 [αj]← [(2fx)÷ yj] = PrivDiv([x]2
f
, [yj])

16 [γj]← [(2fyj)÷ yj−1] = PrivDiv([yj]
2f , [yj−1])

17 [u]← [αjvj] = Mult([αj], [vj])

18 [u]← Trunc([u], 2f)

19 [z]← [γjvj−1] = Mult([γj], [vj−1])

20 [z]← Trunc([z], 2f)

21 [vj+1]← [w − u− z] = [w] · [u]−1 · [z]−1(∗)
22 end

23 (∗)[v3]← [w − u− γ2v1] = [w] · [u]−1 · [γ2]−v1

24 [w]← [Lvm] = MatMult([L], [vm])

25 [x]← [vj ·w] = Inner([vj], [w])

26 [ym]← [vj · vj] = Inner([vj], [vj])

27 αm ← [(2fx)÷ ym] = PrivDiv([x]2
f
, [yj])

and s(n− 1) secure additions for a secure matrix vector product. When s < n,

this is an improvement. This packed operation can also improve other steps of

the Lanczos algorithm. For example, it may be beneficial to perform the mul-

tiplication of the vectors [v] by encrypted constants [α] or [γ] in a packed manner.

However, attention should be paid to the fact that the entries of the columns

of V grow due to the iterative nature of the algorithm. Therefore, a differ-

ent number of packed entries may be allowed in each iteration. More research is

required to see whether data packing is beneficial to the secure Lanczos algoritm.

57

After the unsymmetric Ritz matrix T has been obtained, the QR algorithm is

applied. The QR algorithm will now be adapted to ZN .

5.3 The QR algorithm

The input of the QR algorithm is the m×m unsymmetric tridiagonal matrix T .

Let tj denote the jth column of T . Let rij denote the entries of upper triangular

matrix R and vGS the modified Gram-Schmidt vector. The scaling factor e can

be varied. First, the QR decomposition and QR algorithm in ZN will be given,

using the arithmetic operations as defined in Section 4.3. Secure designs of the

algorithms that make use of the protocols in Section 4.5 follow.

5.3.1 The QR decomposition in ZN
Algorithm 11 shows the QR decomposition in integer arithmetic. While a QR

decomposition in R generally makes use of the Euclidean 2-norm to compute the

diagonal entries rjj of R, now the 1-norm is used.1 Since mapping ψ in (4.21) is

used to represent negative numbers in ZN , the absolute value can be defined for

x ∈ [0, N − 1] as the operation

x 7→

{
x, if x ∈ [0, N/2− 1],

N − x, if x ∈ [N/2, N − 1].
(5.21)

By using the 1-norm, the square root operation is eliminated while overflow of

the vectors qj of Q is avoided. Note that, as a consequence, the columns of Q

are orthogonal but not normalized.

Algorithm 11: The adapted QR decomposition in ZN
1 q1 ← 0

2 for j = 1, . . . ,m do

3 vGS ← tj
4 for i = 1, . . . , j − 1 do

5 rij ← (10e qi · vGS)÷ (qi · qi)
6 vGS ← vGS − (rijqi)÷ 10e

7 end

8 rjj ←
∑m

l=1 |vl|
9 qj ← (10e vGS)÷ rjj

10 end

1The inf-norm ‖v‖∞ = max(|v1|, . . . , |vm|) was also attempted, but this caused overflow to

occur quickly in the columns of Q.

58

5.3.2 The QR algorithm in ZN
The QR algorithm in ZN makes use of the QR decomposition in ZN and can

directly be translated to ZN with integer arithmetic operations:

Algorithm 12: The adapted QR algorithm with shifts in ZN
1 T1 ← T

2 Q∏ ← I ∈ Zm×m

3 for k = 1, 2, . . . , p do

4 µ← Tk(m,m)

5 Tk ← Tk − µI
6 Compute Tk = QkRk with the integer QR decomposition

7 Tk+1 ← (RkQk)÷ 10e + µI

8 Q∏ ← (Q∏Qk)÷ 10e

9 end

The performance of Algorithms 11 and 12 will be discussed in Chapter 6.

5.3.3 Secure design of the QR algorithm

A privacy preserving version of Gram-Schmidt orthogonalization for two parties

was designed by Failla and Barni [12]. They make use of a secure multiplication,

division and inner product protocol. The normalization step is left out. The

effect of the adaptation of the Gram-Schmidt algorithm to the integer domain

was not investigated. The authors remark that “a study of the error introduced

by quantization will be really needed for practical implementations.”

A possible design for a secure QR decomposition is given in Algorithm 13. Note

that only the three non-zero diagonals of [T] need to be encrypted. The pri-

vacy preserving protocols change accordingly. The computation of q1 is different

than the other iterations, because no iteration over i takes place. Vector q1 is

directly computed by dividing t1 with the 1-norm. Moreover, some adaptations

are proposed for the privacy preserving QR decomposition. First of all, since

the normalization factor is only used to avoid overflow, we hypothesize that it is

acceptable to substitute the 1-norm for the following normalization factor:

rjj =
m∑
l=1

vl. (5.22)

This “semi-norm” discards the absolute value and hereby reduces the complexity

of the algorithm. However, care should be taken that this normalization factor

may become either very small or even 0, causing the algorithm to break down.

The 1-norm does not have this disadvantage and could be used instead when

59

the normalization factor in (5.22) equals 0. The reader is referred to [22] for a

privacy preserving absolute value protocol.

Furthermore, division takes place multiple times in each iterations: to compute

the [rij] and to compute the qj in the final step. The algorithm would be speeded

up considerably if the divisors qi · qi and rjj were public instead of encrypted.

We suggest to publish the value qi · qi since the norms of Qk’s columns do not

reveal too valuable information. By contrast, the diagonal entries of Tk should

definitely be private, because these entries converge to the eigenvalues in the QR

algorithm. Since Q is a diagonal matrix and the matrix product RQ is used to

compute the next Tk+1, we propose to keep the [rjj] encrypted. The effects of

publishing these entries for the privacy of Tk’s diagonal can not be overseen.

In Algorithm 13, the variables without a subscript can be overwritten in every

iteration. Vectors are indicated in bold.

Algorithm 13: Secure QR decomposition

Input : m×m tridiagonal encrypted matrix [T]

Output: m×m orthogonal matrix [Q]

m×m upper triangular matrix [R]

1 q1 ← 0

2 for j = 1, . . . ,m do

3 [vGS] = [tj]

4 for i = 1, . . . , j − 1 do

5 [x]← Inner([qi], [vGS])

6 [y]← Inner([qi], [qi])

7 y ← Decrypt([y])

8 [rij]← Div([x]2
f
, y)

9 [z]← Mult([rij], [qi])

10 [z]← Trunc([z], 2f)

11 [vGS]← [vGS − z] = [vGS] · [z]−1

12 end

13 [rjj]← [
∑m

l=1 vl] = [v1] · · · [vm]

14 [qj]← PrivDiv([vGS]2
f
, [rjj])

15 end

When the QR decomposition is performed securely, a design for a secure imple-

mentation of the QR algorithm is quite straightforward. The secure QR algo-

rithm is given in Algorithm 14. Again, the first iteration is different from the

other iterations because the first Q∏ is the identity matrix and can be public.

60

Algorithm 14: Secure QR algorithm with shifts

Input : m×m tridiagonal matrix [T]

Output: m×m upper triangular matrix [Tp]

m×m orthogonal [Q∏]

1 [T1]← [T]

2 Q∏ ← I ∈ Zm×m

3 for k = 1, 2, . . . , p do

4 [µ]← [Tk(m,m)]

5 [Tk]← [Tk − µI] = [Tk] · [µI]−1

6 Compute [Qk], [Rk] with the secure QR decomposition

7 [Tk+1]← MatMult([Rk], [Qk])

8 [Tk+1]← Trunc([Tk+1], 2
f)

9 [Tk+1]← [Tk+1 + µI] = [Tk+1] · [µI]

10 [Q∏]← MatMult([Q∏], [Qk])

11 [Q∏]← Trunc([Q∏], 2f)

12 end

5.4 Back substitution

We will describe the computation of one eigenvector w with the use of back

substitution. For every eigenvector such a system needs to be solved. After

solving k linear systems, the eigenvectors constitute the columns of matrix W ,

which can be used to compute the eigenvectors of L.

5.4.1 Back substitution in ZN
After p iterations of the shifted QR algorithm, an upper triangular matrix Tp is

obtained with the Ritz values in ascending order on the diagonal. We assume

that the matrix Tp is scaled by 10g at the beginning of the back substitution

step. Suppose that we select diagonal entry (l, l) of Tp as Ritz value θl. The

linear system (Tp − θlI)w = 0 is solved in Algorithm 15. Note that the system

is solved from bottom to top so the iterates are descending. Due to the scaled

entries of T̃p, no scaling or truncation is required.

61

Algorithm 15: Back substitution in ZN
1 θl ← Tp(l,l)
2 T̃p ← Tp − θlI
3 for i = m, . . . , l + 1 do

4 wi ← 0

5 end

6 wl ← −T̃p(l−1,l−1)
7 wl−1 ← T̃p(l−1,l)
8 for i = l − 2, . . . , 1 do

9 wi ← (−
∑m

j=i+1 T̃p(i,j)wj)÷ T̃p(i,i)
10 end

5.4.2 Secure back substitution

The design for a secure back substitution algorithm is given in Algorithm 16.

Note that TP is an upper triangular matrix and thus only the non-zero entries

have to be encrypted. The privacy preserving protocols change accordingly.

Algorithm 16: Secure back substitution

Input : m×m upper triangular matrix [Tp]

Output: eigenvector [w] of [Tp]

1 [θl]← [Tp(l,l)]

2 [T̃p]← [Tp − θlI] = [Tp] · [θlI]−1

3 for i = m, . . . , l + 1 do

4 wi ← 0

5 end

6 [wl]← [−T̃p(l−1,l−1)] = [T̃p(l−1,l−1)]
−1

7 [wl−1]← [T̃p(l−1,l)]

8 for i = l − 2, . . . , 1 do

9 for j = i+ 1, . . . , l do

10 [yj]← [T̃p(i,j)wj] = Mult([T̃p(i,j)], [wj])

11 end

12 [x]← [
∑l

j=i+1 T̃p(i,j)wj] =
∏l

j=i+1[yj]

13 [wi]← [(−
∑l

j=i+1 T̃p(i,j)wj)÷ T̃p(i,i)] = PrivDiv([x], [T̃p(i,i)])

14 end

62

5.5 Connecting the algorithms

We end this chapter with an overview of how the eigenvectors of the Laplacian

can be computed in ZN . If the Lanczos basis V , the orthogonal Q∏ and the

eigenvectors W of Tp are computed in ZN , the approximated eigenvectors of L

are computed as the columns of a matrix Ũ with

Ũ = V Q∏W. (5.23)

If [V], [Q∏] and [W] have been obtained securely, a secure matrix product has

to be performed twice to compute [Ũ] securely:

[Y] = MatMult([Q∏], [W]), (5.24)

[Ũ] = MatMult([V], [Y]). (5.25)

In this chapter we saw the adaptation of the approximation of eigenvectors to

the integer domain. Theoretically, the eigenvectors should be computable in the

message space of the Paillier cryptosystem. A design for the algorithms in the

ciphertext space was also given. However, the influence of the adaptation of the

algorithms to ZN should be investigated. This is the topic of Chapter 6.

63

Chapter 6

Results

It has been assessed whether the adaptation of the algorithms to the integer

domain has influence on the accuracy of the algorithms and on the cluster quality.

This chapter will first explain in Section 6.1 how the algorithms were assessed.

The results for the Lanczos algorithm, QR algorithm and back substitution are

shown in Sections 6.2, 6.3 and 6.4 respectively.

6.1 Methodology

Three stages of the eigenvector approximation are distinguished: the Lanczos

algorithm, the QR algorithm and back substitution. In order to investigate the

influence of adapting the algorithms to the integer domain, the performance of

the algorithms in R and ZN are compared. The value of N is chosen to comprise

2048 bits. Therefore, we say that overflow occurs when a number becomes larger

than 1024 bits, since half of the domain is used to represent negative numbers.

The algorithms were implemented in Python 3.6 and tested on three real datasets.

This section describes the assessment criteria, the datasets and their Laplacians.

6.1.1 Assessment criteria

Both the accuracy of the eigenvector approximation and the clustering accuracy

are a topic of research. The accuracy of the Ritz value θi to eigenvalue λi of L

is assessed with the relative error:

|θi − λi|
|λi|

. (6.1)

The accuracy of the corresponding Ritz vector ũi to an eigenvector ui of L is

measured with the absolute cosine of the angle α between the vectors:

| cos(α)| = |ũi · ui|
‖ũi‖ · ‖ui‖

. (6.2)

64

To investigate the applicability of the algorithms to the encrypted domain, the

number of iterations, the bit lengths of the entries and the required scaling factor

in fixed point arithmetic will be mentioned for every algorithm. Furthermore,

two quality criteria are for the clustering results: the clustering accuracy and the

average silhouette value of the data points.

The algorithm is tested on datasets for which the cluster indices of the data

points are known. The spectral clustering algorithm also assigns a cluster index

to every data point. The cluster indices are compared. The clustering accuracy

is the percentage of correctly assigned indices:

correctly clustered data points

total # data points
· 100%. (6.3)

The silhouette value is a measure of the compactness and separation of clusters

[41]. The distance of the data point to other data points in the same cluster is

compared to the distance to data points in other clusters. Formally, the silhouette

value of data point i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (6.4)

where a(i) is the average distance from point i to other points in the same

cluster, and b(i) is the minimum average distance from point i to points in a

different cluster. The squared Euclidean distance is used in the computation of

the silhouette value. From the above definition it follows that

−1 ≤ s(i) ≤ 1 (6.5)

for each data point i. A positive silhouette value indicates that the data point

is clustered well. From a negative silhouette value we may conclude that a data

point has been misclassified.

6.1.2 Datasets

Three datasets from the UCI Machine Learning Repository were used to assess

the spectral clustering algorithm in ZN : the Wisconsin Breast Cancer Dataset,

the Yeast5 dataset and the Yeast10 dataset [28]. This section gives a description

of the datasets and the corresponding Laplacian matrices. A part of the spec-

trum of the Laplacians will be given as the distance between eigenvalues may

have an influence on the performance of the algorithms.

The Wisconsin Breast Cancer Dataset dataset contains samples of breast mass of

699 individuals whose breast mass contains either benign or malignant cells [28].

65

The size of the dataset is 699 × 9. The normalized Laplacian of this dataset was

constructed with a full Gaussian similarity graph, using σ = 22. The entries of

the Laplacian should be integers. Therefore, the entries were scaled by a factor

105 and rounded down. An accuracy of 96% can be achieved with this Laplacian.

A part of the spectrum is shown in Figure 6.1.

Figure 6.1: The first five eigenvalues of the Laplacian of the Wisconsin Breast

Cancer dataset.

An illustration of the classification of the first two eigenvectors of the Laplacian

is shown in Figure 6.2. A rough division of this dataset into two convex sets

is possible, but some of the outlying malignant data points will be difficult to

cluster.

The second real dataset is the Yeast5 dataset, a DNA microarray dataset that

contains gene expression levels of yeast cell cycles. The fluctuation of 384 genes

over 17 time instances is measured, so the dataset has size 384 × 17. The data

points should be clustered into five phases of the cell cycle. The log-transformed

data set was downloaded from [56]. In previous spectral clustering research, an

accuracy of 65% was achieved [47]. These results were reproduced by using the

correlation coefficient matrix of the gene expression levels as adjacency matrix

A. The correlation coefficients were scaled to the interval [0, 2] to mimic the

similarity that was used in [47]. A normalized Laplacian was constructed and

scaled by 105. A part of the spectrum is shown in Figure 6.3.

66

Figure 6.2: Clusters of the first two eigenvectors of the Laplacian for the Wis-

consin Breast Cancer dataset. Yellow data points are benign cells, purple data

points are malignant cells.

Figure 6.3: The first ten eigenvalues of the Laplacian of the Yeast5 dataset.

Three eigenvectors and their cluster division are shown in Figure 6.4. The clusters

are not perfectly convex and the clustering task are therefore expected to be

challenging.

67

Figure 6.4: Two angles of the second to fourth eigenvectors of the Laplacian of

the Yeast dataset divided into five clusters.

The Yeast10 dataset is a 1484 × 8 dataset in which ten classes of yeast proteins

can be distinguished [21]. This dataset is notoriously difficult and an accuracy of

40% was considered acceptable in previous research [44, 54]. An unnormalized

Laplacian with a 16-nearest neighbors similarity function and σ = 3.4 was used.

This Laplacian yields an approximate accuracy of 38%. The Laplacian was scaled

by a factor 101. A plot of the eigenvectors is omitted since the eigenvectors can

not be visualized well in three dimensions. A part of the spectrum is given in

Figure 6.5.

Figure 6.5: The first 15 eigenvalues of the Laplacian of the Yeast10 dataset.

68

6.2 The Lanczos algorithm

The performance of Algorithm 8 and Algorithm 9 are compared. After the

Lanczos algorithm, the Ritz values and the eigenvectors of T are computed with

the scipy.linalg.eig function in Python. After the algorithm in ZN , the Ritz

values are rescaled by 10d. The eigenvectors of T are stored in a matrix W . The

Ritz vectors are computed with Ũ = VW .

6.2.1 Wisconsin Breast Cancer Dataset

A scaling parameter d = 6 was required to obtain sufficient accuracy. Figure 6.6

shows the Ritz values in the first 16 iterations of the Lanczos algorithm in ZN .

Note that a spurious eigenvalue occurs at iteration 7. The Lanczos algorithm

converges quickly to the smallest eigenvalues because the large eigenvalues of L

are bundled at one end of the spectrum.

Figure 6.6: The Ritz values in the first 16 iterations of the Lanczos algorithm in

ZN for the Breast Cancer dataset. The eigenvalues of the Laplacian are shown

in red on the right.

In the following results, the number of iterations is fixed at m = 6. Table 6.1

shows the relative accuracy of the first two Ritz values. Both in R and in ZN
the eigenvalues are approximated well. The accuracy is higher in R.

69

i |θi−λi|
|λi| R |θi−λi|

|λi| ZN

1 6.7998e-13 3.1379e-5

2 1.5898e-14 5.0171e-9

Table 6.1: The relative error of the two smallest Ritz values. Parameters: d = 6,

m = 6.

Table 6.2 shows the cosine of the angle between the Ritz vectors and the exact

eigenvectors. The values show that the eigenvectors are approximated with high

accuracy.

i | cosα| R | cosα| ZN
1 1.00000000 1.00000000

2 1.00000000 1.00000000

Table 6.2: The absolute cosine of the angle between Ritz vectors ũi and eigen-

vector ui for the Wisconsin Breast Cancer dataset.

Figure 6.7 shows the cluster results on the first two Ritz vectors that were com-

puted with Lanczos basis V .

R ZN

Figure 6.7: Comparison of first two eigenvectors of L for the Wisconsin Breast

Cancer dataset as approximated by the Lanczos algorithm with m = 6 and d = 6

in R (left) and in ZN (right). The colours indicate the clusters that are assigned

by the k-means clustering algorithm.

Table 6.3 shows the cluster quality. Both in R and in ZN , the first two eigenvec-

tors are approximated well enough to form the correct convex clusters.

70

Lanczos R Lanczos ZN
Cluster accuracy 95.85% 95.85%

Silhouette value 0.9118 0.9118

Table 6.3: Cluster quality of the Wisconsin Breast Cancer dataset. Parameters:

k = 2, d = 6, n = 6.

Finally, the maximum bit length is 51 in T and 76 in V .

6.2.2 Yeast5 Dataset

A scaling parameter of d = 6 is sufficient. After ten iterations, spurious eigen-

values show up. This is shown in Figure 6.8.

Figure 6.8: The Ritz values in the first 15 iterations of the Lanczos algorithm in

ZN for the Yeast5 dataset. The eigenvalues of the Laplacian are shown in red on

the right.

The relative error of the first five eigenvalues after ten iterations is shown in

Table 6.4.

71

i |θi−λi|
|λi| R |θi−λi|

|λi| ZN

1 4.3646e-11 5.7123e-04

2 2.1933e-16 4.2349e-09

3 1.6780e-15 2.9113e-09

4 5.4441e-12 2.4535e-08

5 2.4629e-08 4.1245e-05

Table 6.4: The relative error of the smallest five Ritz values of the Yeast5 dataset

as computed by the Lanczos algorithm in R and in ZN with d = 6 after 10

iterations.

Table 6.5 shows the absolute cosine of the angles between the first five Ritz

vectors and the first five eigenvectors. The eigenvectors are approximated well.

i | cosα| R | cosα| ZN
1 1.00000000 1.00000000

2 1.00000000 1.00000000

3 1.00000000 1.00000000

4 0.99999971 0.99999985

5 0.99974208 0.99950233

Table 6.5: The absolute cosine of the angle between Ritz vectors ũi and eigen-

vector ui for the Yeast5 dataset.

The average performance of the clustering algorithm after the Lanczos phase in

R and ZN is shown in Table 6.6. An example of a clustering result is given in

Figure 6.9.

Lanczos R Lanczos ZN
Cluster accuracy 43.23% 54.69%

Silhouette value 0.5269 0.4775

Table 6.6: Clustering results after the Lanczos algorithm in R and ZN on the

Yeast5 dataset. Parameters: d = 6, n = 10.

72

R ZN

Figure 6.9: Cluster results after Lanczos in R (upper left) and ZN (upper right).

The actual clusters are indicated by the colours in the lower figures. Two of the

four eigenvectors are shown.

Figure 6.9 shows that the spectral clustering algorithm has difficulties in distin-

guishing the cluster structure of the Ritz vectors. After the Lanczos algorithm in

R, the eigenvectors are clustered into five stripes. The dense cluster on the right

of the ring is not recognized. After the Lanczos algorithm in ZN , the k-means

step assigns a vertically striped pattern of four clusters. The fifth cluster, indi-

cated in yellow, is spread out over the ring. The dense cluster is distinguished

quite well in ZN . This explains the higher accuracy of the spectral clustering

algorithm after Lanczos in ZN .

The entries of the Lanczos matrix V grow to 130 bits and the entries of T are a

maximum of 50 bits.

73

6.2.3 Yeast10 Dataset

A scaling factor d = 6 is sufficient. Figure 6.10 shows the convergence of the Ritz

values. After 72 iterations, the algorithm breaks down because overflow occurs,

i.e. entries of more than 1024 bits are encountered. The relative error of the first

ten Ritz values after 72 iterations is given in Table 6.7.

Figure 6.10: The Ritz values of T are plotted against the iteration number. The

1484 eigenvalues of L are plotted as red dots on the right side. A zoomed in plot

of the convergence of the 20 smallest Ritz values is shown in the lower figure.

74

i |θi−λi|
λi

R |θi−λi|
λi

ZN

1 6.7998e-13 2.2589e-04

2 1.5898e-14 1.1925e-05

3 1.3129e-14 2.8286e-06

4 1.1559e-11 1.1538e-05

5 1.6783e-13 4.0184e-06

6 3.2107e-11 3.4317e-06

7 2.7197e-10 6.2687e-06

8 2.4903e-07 1.3887e-05

9 1.8286e-04 4.8851e-03

10 4.5403e-05 2.5330e-03

Table 6.7: The relative error of the smallest ten Ritz values for the Yeast10

dataset. Parameters: d = 6, m = 72.

Let us investigate the quality of the Ritz vectors, of which the accuracy is shown

in Table 6.8. The small values show that the approximations are very poor:

it seems that the approximations are actually perpendicular to the exact vec-

tors. Further investigation shows that the approximated eigenvectors all point

approximately in the same direction, i.e. copies of an approximated eigenvector

are found. Orthogonality is lost completely. Re-orthogonalization was applied

to try to improve the approximations, but this caused the algorithm to overflow

before a sufficiently accurate approximation of the eigenvalues was achieved.

i | cosα| R | cosα| ZN
1 1.3565e-07 1.9567e-03

2 9.6185e-07 1.0796e-04

3 8.0197e-06 1.6427e-04

4 2.5474e-04 2.6230e-02

5 2.2338e-05 5.9645e-03

6 1.7451e-04 2.8707e-03

7 3.4285e-04 3.1437e-03

8 2.5142e-03 5.9683e-02

9 3.7567e-02 6.5497e-01

10 9.1887e-03 2.5041e-01

Table 6.8: The absolute cosine of the angle between Ritz vectors ũi and eigen-

vector ui for the Yeast10 dataset.

The entries of V grow to 492 bits. The entries of T have a maximum bit size of

156.

75

6.3 The QR algorithm

The QR algorithm is applied to the matrix T that is obtained after the Lanczos

algorithm in R or ZN . The performance of Algorithm 12 and the same algorithm

in the real domain are compared. After p iterations of the QR algorithm, the

Ritz values and the eigenvectors of Tp are computed with the scipy.linalg.eig

function in Python. After the algorithm in ZN , the Ritz values are rescaled by

10e. The eigenvectors of Tp are stored in a matrix W . The Ritz vectors are

computed with Ũ = V Q∏W .

6.3.1 Wisconsin Breast Cancer Dataset

A scaling factor e = 20 is required for the QR algorithm in ZN . Let us start

by investigating the influence of using shifts on the convergence of the QR al-

gorithm. Figure 6.11 shows the relative error of the smallest diagonal elements

of Tp as approximations of the eigenvalues of L after every iteration of QR in R
and ZN . A better accuracy is achieved when shifts are used. Figure 6.11 shows

that the algorithms in R and in ZN behave similarly in terms of convergence:

the first eigenvalue converges steeply within 10 iterations. The second eigen-

value converges within 15 iterations. For the second eigenvalue to converge with

better accuracy, the QR algorithm without shifts needs at least 200 iterations.

Therefore, the QR algorithm with shifts is used to obtain subsequent results.

Figure 6.11: (a) The relative error of the smallest diagonal elements of Tp after

every iteration of the QR algorithm in R with g = 20.

76

Figure 6.11: (b) The relative error of the smallest diagonal elements of Tp after

every iteration of the QR algorithm in ZN with g = 20.

The following results were obtained with 5 iterations of the QR algorithm.

Table 6.9 shows the angle between the approximated eigenvectors and the exact

eigenvectors. The approximation is highly accurate after 5 iterations of the QR

algorithm.

i | cosα| R | cosα| ZN
1 1.00000000 1.00000000

2 0.99999999 1.00000000

Table 6.9: The absolute cosine of the angle between Ritz vectors ũi and eigen-

vector ui for the Wisconsin Breast Cancer dataset.

Table 6.10 shows the cluster quality. The QR algorithms in R and in ZN yield

very accurate results.

QR R QR ZN
Cluster accuracy 95.85% 95.85%

Silhouette value 0.9118 0.9118

Table 6.10: The QR algorithm performs equally well in R and in ZN on the

Wisconsin Breast Cancer dataset. Parameters: e = 20, p = 5.

77

Figure 6.12 shows the approximations of the first two eigenvectors of the Lapla-

cian after the QR algorithm. The eigenvectors are approximated well enough

to distinguish the two original clusters with great accuracy. Note that the pic-

tures are rotated because the eigenvectors were approximated in the opposite

direction. This does not have influence on the accuracy of the eigenvectors.

R ZN

Figure 6.12: Comparison of first two eigenvectors of L for the Wisconsin Breast

Cancer dataset as approximated by the QR algorithm with p = 5 and e = 20 in

R (left) and in ZN (right). The colours denote the clusters that are assigned by

the k-means clustering algorithm.

The entries of Q∏ have a maximum bit length of 67. The entries of Tp become

98 bits long and the entries of R become 99 bits long.

6.3.2 Yeast5 Dataset

A scaling factor of e = 40 was required to reconstruct the eigenvectors of L.

Figure 6.13 shows the relative error of the five smallest diagonal elements of

Tp after every iteration of the QR algorithm. The eigenvalues are approximated

with greater accuracy in R. Strikingly, the first eigenvalue converges faster in the

algorithm without shifts. The second to fifth eigenvalues converge to a greater

accuracy within 50 iterations in the QR algorithm with shifts. The convergence

of the fifth eigenvalue in the algorithm with shifts shows oscillatory behavior.

78

Figure 6.13: The relative error of the five smallest diagonal elements of Tm after

every iteration of QR in R (upper figure) and in ZN (lower figure) with e = 40.

The continuous lines correspond to the QR algorithm without shifts, the dashed

lines correspond to the algorithm with shifts.

Figure 6.14 shows the absolute cosine of the angle between the second to the

fourth Ritz vectors and the eigenvectors that they approximate. The absolute

cosine is given for the first 20 iterations of the QR algorithm in ZN . The first

Ritz vector is not taken into account since the first eigenvector is known to be the

79

constant eigenvector. After 15 iterations, the Ritz vectors have a constantly high

accuracy. Therefore, 15 iterations of the QR algorithm were chosen to assess the

cluster accuracy.

Figure 6.14: The cosine of the angle between the four Ritz vectors and the exact

eigenvectors for the Yeast5 dataset for the first 20 iterations of the QR algorithm

in ZN .

Table 6.11 shows the cluster quality for the Yeast5 dataset. The accuracy of

the spectral clustering algorithm after the QR step in R is lower than in ZN .

Strikingly, the clusters in R have a negative silhouette value. This indicates

that no substantial cluster structure has been found by the k-means clustering

algorithm.

QR R QR ZN
Cluster accuracy 43.23% 55.73%

Silhouette value -0.1687 0.3137

Table 6.11: Cluster quality after the QR algorithm in R and ZN on the Yeast5

dataset. Parameters: e = 40, m = 15.

Figure 6.15 shows the cluster results on three of the approximated vectors. Just

as the cluster results after the Lanczos algorithm, we see that the dense cluster

(indicated in blue in the lower plots) is not picked up on by the k-means clustering

step in R. This cluster is better distinguished in ZN . This explains the higher

accuracy of the results after the QR algorithm in ZN .

80

R ZN

Figure 6.15: Cluster results after the QR algorithm in R (upper left) and ZN
(upper right) with e = 40 and m = 15. The actual clusters are indicated by the

colours in the lower figures. Three of the four eigenvectors are shown.

The entries of Q and Qprod become 101 bits large. The maximum bit length of

both R and Tm is 130.

6.3.3 Yeast10 Dataset

Since it is not possible to compute Ritz vectors of the Yeast10 dataset, we will

only investigate the accuracy of the diagonal elements of Tp as Ritz values. The

relative error is plotted against the iterations of the QR algorithm in Figure 6.16.

Strikingly, we see that the shifted QR algorithms do not converge at all in the

first 200 iterations. Apparently, the shifts are not good approximations of the

eigenvalues. Figure 6.17 shows the relative error of the Ritz values when the

81

algorithm in ZN is shifted after first running 15 iterations without shifts. This

indeed shows that the algorithm with shifts now does converge. However, the

algorithm with shifts does not perform better.

Figure 6.16: (a) The relative error of the diagonal elements of Tm after every

iteration of QR in R with g = 30. The continuous lines correspond to the

QR algorithm without shifts, the dashed lines correspond to the algorithm with

shifts.

82

Figure 6.16: (b) The relative error of the diagonal elements of Tm after every

iteration of QR in ZN with g = 30. The continuous lines correspond to the

QR algorithm without shifts, the dashed lines correspond to the algorithm with

shifts.

Figure 6.17: After 15 iterations without shifts, the QR algorithm in ZN with

shifts also works on the Yeast10 dataset.

83

6.4 Back substitution

The back substitution step is not tested on the Yeast10 dataset since we were not

able to compute the eigenvectors of the Laplacian with the constructed Lanczos

basis V . A linear system is solved for k− 1 Ritz values, which are selected from

the diagonal of Tp. The eigenvectors of TP are stored in a matrix W . The Ritz

vectors are computed with Ũ = V Q∏W .

6.4.1 Wisconsin Breast Cancer Dataset

Figure 6.18 shows the entries of the second eigenvector of L as computed with

the back substitution method in R and in ZN . The entries are plotted against

their index. The colours of the data points indicate the actual clusters.

Table 6.12 shows the cluster quality in R and ZN .

BS R BS ZN
Cluster accuracy 95.57 % 96.42%

Silhouette value 0.9122 0.9092

Table 6.12: Parameters: d = 6 , e = 20 , g = 5 , m = 6 , p = 5.

The absolute cosine of the angle between the Ritz vector and the second eigen-

vector is shown in Table 6.13.

i | cosα| R | cosα| ZN
2 0.99987914 0.99913171

Table 6.13: The absolute cosine of the angle between ũ2 and eigenvector u2 for

the Wisconsin Breast Cancer dataset.

The maximum bit length of entries of eigenvector w2 of Tp is 10 bits. The

maximum bit length of entries of the Ritz vector ũ2 is 122.

6.4.2 Yeast5 Dataset

A scaling factor g = 10 is required for the back substitution step. Table 6.14

shows the angles between the approximations and the exact eigenvectors.

84

R ZN

Figure 6.18: Cluster results after back substitution in R (upper left) and ZN
(upper right) with d = 6 , e = 20 , g = 5 , m = 6 , p = 5. The actual clusters

are indicated by the colours in the lower figures. Three of the four eigenvectors

are shown.

i | cosα| R | cosα| ZN
2 0.99999999 0.99995171

3 1.00000000 0.99840385

4 0.99999968 0.99948435

5 0.99999964 0.99893584

Table 6.14: The absolute cosine of the angle between vectors ũi and eigenvector

ui for the Yeast5 dataset.

Table 6.15 shows the accuracy and silhouette values after the eigenvectors are ap-

85

proximated entirely in R or ZN . The same scaling factor as in the QR algorithm

can be used.

BS R BS ZN
Cluster accuracy 35.94 % 35.42 %

Silhouette value 0.6820 0.6881

Table 6.15: Cluster quality of the back substitution phase on the Yeast dataset.

Parameters: d = 6 , e = 40, g = 10, m = 10, p = 15.

Figure 6.19 shows a representative example of a cluster result after the eigenvec-

tors of the Laplacian are approximated in R or ZN . The actual clusters are also

shown. This figure illustrates the complex behavior of the k-means clustering

step. Although the eigenvectors are approximated well, the k-means algorithm

finds a different pattern than one would expect. This determines the decline in

accuracy when compared to the other cluster results of this dataset.

The entries of the eigenvectors wi have a maximum bit length of 71 bits. The

maximum bit length in the Ritz vectors is 231.

86

R ZN

Figure 6.19: Cluster results after back substitution in R with 36% accuracy

(upper left) and ZN with 35% accuracy (upper right). The actual clusters are

indicated by the colours in the lower figures. Three of the four eigenvectors are

shown.

87

Chapter 7

Conclusion and discussion

7.1 Conclusion

The aim of this research was to answer the following two research questions:

1. How can the approximation of eigenvectors be performed in the integer

domain?

2. How does this influence the performance of the spectral clustering algo-

rithm?

To answer the first research question, three stages were distinguished in the ap-

proximation of the eigenvectors of a symmetric matrix. The Lanczos algorithm

was used to transform a symmetric matrix into a tridiagonal matrix with similar

eigenvalues. The QR algorithm was used to find these eigenvalues and to find

an upper triangular matrix that can be used to approximate the eigenvectors.

Finally, the back substitution step was performed to find the approximate eigen-

vectors. The Lanczos algorithm, the QR algorithm and the back substitution

method were adapted to ZN in such a way that they can be implemented more

easily in a privacy preserving manner. The square roots were eliminated from

the algorithms. It was investigated whether the number of divisions could be

reduced, but overflow turned out to occur too fast with fewer divisions. A design

for the privacy preserving approximation of eigenvectors was proposed.

The adapted algorithms were implemented and tested in order to answer the

second research question. The influence of the approximation of eigenvectors in

the integer domain on spectral clustering was investigated for three datasets with

k = 2, k = 5 and k = 10 respectively, where k denotes the number of clusters.

We can conclude from the results in Chapter 6 that the Lanczos algorithm per-

forms well in the integer domain. Although the Ritz values are more accurate in

R, both in R and in ZN the smallest k eigenvalues are approximated accurately

88

enough before spurious eigenvalues occur. For k = 2 and k = 5, the eigenvectors

were approximated with high accuracy. The cluster quality is higher in ZN for

k = 5, because the k-means algorithm was able to recognize clusters with various

densities. For k = 10, orthogonality is lost and we were not able to approximate

the eigenvectors. Re-orthogonalization was applied in an attempt to solve this

issue, but this caused overflow to occur before a sufficiently accurate approxima-

tion of the eigenvalues was achieved.

Of the three steps in ZN , the QR algorithm needs the highest scaling factor.

For k = 2 and k = 5, applying shifts in the QR algorithm improves the con-

vergence speed of the eigenvalues. However, whereas we would expect quadratic

convergence in the QR algorithm with shifts, linear convergence was observed

instead. Again, a higher cluster quality was obtained in ZN . For k = 10, the QR

algorithm performs worse when shifts are applied. The back substitution step

performs as good in R as in ZN for k = 2. This is also the case for k = 5, but

both in R and in ZN the cluster accuracy is lower than in the other algorithms,

while the eigenvectors are approximated with high accuracy. We were not able

to test the back substitution step for k = 10.

We can conclude that the eigenvalues of the Laplacian are approximated well

in the integer domain. A small number of corresponding eigenvectors can be

approximated with high accuracy. For a small number of clusters, a good perfor-

mance of the spectral clustering algorithm was achieved. The k-means clustering

step has a strong impact on the cluster quality, even when the eigenvectors are

approximated well. As a higher number of clusters requires more iterations of the

Lanczos algorithm, the loss of orthogonality affects the accuracy of the spectral

clustering algorithm. We will now evaluate the conclusions and suggest directions

for future research.

7.2 Discussion

In this section, we will first discuss the influence of the Laplacian and the k-

means clustering step on the results. Next, we zoom in on some of the striking

results that were encountered in Chapter 6. Moreover, improvements for the

designed algorithms will be proposed. We will finish the thesis with suggestions

for future research.

7.2.1 Influence of other steps

The topic of this research was the influence of the approximation of eigenvectors

in the integer domain on the spectral clustering results. However, two other

89

phases in the spectral clustering algorithm had an influence on the results: the

construction of the Laplacian and the k-means clustering step. Many different

similarity functions and graphs can be used in the construction of the Laplacian.

Moreover, either an unnormalized or a normalized Laplacian can be used. The

Laplacian had to be constructed in such a way that the multiplicity of eigenvalue

0 was 1, and that the entries were integer values. The optimal Laplacian depends

strongly on the context [51]. The k-means clustering step also has a strong

influence on the performance of the spectral clustering algorithm. This was

shown in the plots of the cluster results: even although convex clusters would

sometimes be visible to the bare eye, they would not always be detected in the

k-means clustering step. A drawback of the k-means clustering algorithm is

that clusters of different densities are hard to detect [19]. The algorithm is also

sensitive to outliers. Moreover, the clusters should be of similar sizes.

7.2.2 Evaluation of results

The Lanczos algorithm failed on the dataset with k = 10. When many iter-

ations of the Lanczos algorithm are performed, the orthogonality between the

basis vectors in V is lost. While this problem is also inherent to the standard

Lanczos algorithm, we hypothesize that loss of orthogonality is aggravated in the

unnormalized Lanczos algorithm. Due to the lack of normalization, the entries

of the columns of V grow with every iteration. Therefore, small errors also grow

and many large entries are introduced outside of the diagonal of V TV . This

hypothesis could be tested by applying an alternative normalization step in the

Lanczos algorithm, for example with the 1-norm.

In the QR algorithm with shifts, we expected a quadratic convergence rate. A

linear convergence rate was observed instead. This may be caused by the fact

that the Q are now not orthonormal but only orthogonal. Taking the lower right

entry Tp(m,m) of matrix Tp as eigenvalue approximation is based on the equality

µ(k) =
qTmTpqm
qTmqm

= Tp(m,m). (7.1)

However, since qTmqm = 1 now does not hold, the applied shift may not be a good

enough approximation of an eigenvalue to induce quadratic convergence.

Furthermore, the QR algorithm with shifts has a grave disadvantage: the eigen-

values do no longer necessarily converge in order of magnitude on the diagonal

of Tp. While the smallest eigenvalues will show up in the upper left corner, the

more interior part of the spectrum will be more mixed on the diagonal. In the

QR algorithm without shifts, the eigenvalues show up in a descending order on

90

the diagonal from top to bottom. In a privacy preserving version of the QR

algorithm, it is extremely convenient to know in which matrix position a certain

eigenvalue will converge. Therefore, the QR algorithm without shifts may be

preferable. However, we have seen that more iterations will be required.

7.2.3 Suggested improvements

Several improvements can be made to the algorithms. First of all, it was now

manually checked whether spurious eigenvalues occurred in the Lanczos algo-

rithm. The removal or detection of spurious eigenvalues by implementing a

reorthogonalization method is a desirable improvement. Reorthogonalization

methods were discussed in Section 3.1.4. For a privacy preserving Lanczos algo-

rithm, full reorthogonalization as shown in (3.29) may be the most straightfor-

ward technique. Full reorthogonalization can be implemented with matrix vector

products and subtraction operations. Partial reorthogonalization would require

a secure comparison protocol and the intermediate computation of the Ritz vec-

tors. A second improvement would be to implement stopping criteria. It was

discussed in Section 3.1.3 that the stopping criterion of the Lanczos algorithm

is generally defined by the accuracy of the Ritz vectors. Therefore, we propose

to run the Lanczos algorithm for several iterations and subsequently to compute

the Ritz vectors. The required number of Lanczos iterations is dependent on the

desired number of eigenvectors. A stopping criterion for the QR algorithm could

be implemented by computing the difference between two consecutive Tp. In

the privacy preserving domain, this would require a secure comparison protocol.

Third, we were not able to approximate eigenvalues with a multiplicity larger

than 1 with the Lanczos algorithm. Since the multiplicity of eigenvalue 0 of the

Laplacian is equal to the number of connected components in the data graph,

this limits the set of Laplacians that can be analyzed. The block Lanczos algo-

rithm could be implemented in order to solve this problem. Finally, the number

of clusters k now had to be known in advance. A truly privacy preserving spec-

tral clustering algorithm does not publish the number of clusters either. In order

to find the optimal k, the algorithm could be run for different values of k. The

silhouette values for the different k could be used to determine the optimal k.

Another method is the elbow method, which finds the optimal k by looking at

the percentage of variance that is explained [19]. However, this would require to

run the entire spectral clustering algorithm multiple times and would therefore

be extremely computationally complex.

In the privacy preserving algorithms, there is a trade-off between security and

efficiency. The unnormalized Lanczos algorithm requires two divisions to be

performed in every iterations. It was discussed in Section 4.5 that a privacy

91

preserving division protocol with an encrypted divisor is computationally heavy.

Therefore, a variation of the privacy preserving Lanczos algorithm could use a

public inner product vj · vj. This would mean that the privacy service provider

learns the squared norm of the vectors vj in every iteration. As a result, the

super-diagonal entries

γj = (vj · vj)÷ (vj−1 · vj−1) (7.2)

are known to the privacy service provider as well. So, only the diagonal of T

is encrypted. An advantage of this approach in comparison with the entirely

secure Lanczos procedure in Algorithm 10, is that a symmetric matrix T can

be obtained. After all, we saw in (5.16) that the
√
γj are sufficient to construct

a symmetric T . When T is symmetric, the QR algorithm computes the eigen-

values and eigenvectors directly, so the back substitution step is not necessary.

Furthermore, Ortega and Kaiser developed a version of the symmetric QR al-

gorithm without square roots [34]. Further research is required to investigate

whether the publication of the γj is a good trade-off between security and effi-

ciency.

Finally, it was suggested in Section 5.3 that the normalization factor of (5.22)

that is defined as the 1-norm without the absolute values may also be used in the

QR algorithm. This would reduce the complexity of the algorithm in the privacy

preserving domain. The QR algorithm in ZN gave the same performance with

this “semi-norm” as with the 1-norm. We would like to remark that normal-

izing vectors with the Euclidean norm is only necessary in two situations: the

computation of the angle between vectors and the rotation of a vector.

7.2.4 Further research

If we look back at Figure 1.1, a natural suggestion for future research is to focus

on the remaining phases of the design of a privacy preserving algorithm. More-

over, the second phase should be investigated more in-depth. The suggested

protocols can be optimized for the specific setting. For example, the Laplacian

is a symmetric matrix and therefore only half of the matrix needs to be stored.

In this research, the Paillier cryptosystem was chosen for its computational effi-

ciency and relatively small ciphertext size. The application of other cryptosystem

may be an interesting topic for future research. For example, the Damg̊ard-Jurik

cryptosystem “enables more efficient encryption of larger plaintexts than Pail-

lier’s cryptosystem” [30]. Furthermore, the possible application of data packing

was mentioned in this thesis. Although the entries grow quite large during the

algorithm, data packing may still provide an improvement in terms of efficiency.

92

Further research is required to investigate if and how data packing can be ap-

plied. Another coding technique that may be applicable is batching, which makes

use of the Chinese Remainder Theorem [49]. A number of small integers of size

mi can be batched into one large integer of size M in the plaintext domain by

computing

(x1, . . . , xn)B =
n∑
i=1

µi
M

mi

xi. (7.3)

A great advantage of batching is that it allows both the addition and multiplica-

tion with another batched integer. This may be convenient in the computation

of the matrix products and inner products that are required for the algorithms.

Packing only allows addition and multiplication with a constant. However, en-

coding a batch is computationally more complex than packing. Further research

should investigate whether batching may provide an additional advantage over

the packing technique.

Another possible future extension of this research is to implement a general-

ization of the spectral clustering method in a privacy preserving manner. The

co-regularized multi-view spectral clustering method allows for multiple represen-

tations of a dataset, for example the translations of text documents in multiple

languages [25]. Every view can be used to cluster the dataset, but a combination

of the views can lead to more robust and accurate results. This method looks

for clusters that are consistent across multiple views of the data. Complex data

structures with multiple views are often encountered in the biomedical domain,

in which the contribution of multi-view clustering is becoming increasingly ap-

parent [45].

Finally, we would like to make a concluding remark with respect to further re-

search. This thesis aimed to bridge a gap between numerical mathematics and

cryptography. It was explained that some operations that are often applied in

numerical mathematics, such as the square root operation, increase the complex-

ity of a privacy preserving protocol disproportionately. Therefore, the successful

application of the numerical algorithms with an alternative norm is a useful result

for the field of privacy preserving data mining. More research in general is re-

quired with respect to the effect of the adaptation of numerical algorithms to the

privacy preserving domain on the accuracy and convergence of the algorithms,

such as was performed in [13] and [27].

93

Appendix A

The secure square root protocol

Liedel’s secure square root protocol assumes an initial approximation that is up

to 5.4 bits accurate [29]. The number of iterations of Goldschmidt’s algorithm

is fixed at θ = dlog2(
k
5.4

)e. This can ensure an accuracy of k bits. In the last

iteration, the Newton-Raphson method is applied because it can eliminate accu-

mulated errors. It should be noted that the cryptographic primitive underlying

Protocol 6 is a linear secret sharing scheme, which is a different multiparty com-

putation technique than Paillier encryption [43]. However, secret sharing also

works on messages in the integer domain. In Protocol 6, a secret-shared number

x is denoted by [x]. With the notation Trunc([x], k, f), the truncation of the f

least significant bits of secret-shared number x with total bit length k is meant.

The goal of Protocol 6 in this thesis is merely to give an indication of the sub-

protocols that a secure square root solution would require, so that the relative

complexity of the square root operation becomes clear.

94

Protocol 6: [
√
x]← sqrt([x], k, f) [29]

Input : Initial encrypted approximation [y0] = [1√
x0

].

Output: Encrypted approximation [g] of [
√
x].

1 θ ← dlog2(
k
5.4

)e
2 [g0]← Mult([y0], [x])

3 [g0]← Trunc([g0], k, f)

4 [h0]← PubDiv([g0], 2)

5 [gh]← Mult([g0], [h0])

6 [gh]← Trunc([gh], k, f)

7 for i = 1, . . . , θ − 2 do

8 [r]← [3
2
· 2f]− [gh] = [3

2
· 2f] · [gh]−1

9 [g]← Mult([g], [r])

10 [h]← Mult([h], [r])

11 [g]← Trunc([g], k, f)

12 [h]← Trunc([h], k, f)

13 [gh]← Mult([g], [h])

14 [gh]← Trunc([gh], k, f)

15 end

16 [r]← [3
2
· 2f]− [gh] = [3

2
· 2f] · [gh]−1

17 [h]← Mult([h], [r])

18 [h]← Trunc([h], k, f)

19 [H]← 4 · [h]2 = Mult([h]4, [h])

20 [H]← Mult([H], [x])

21 [H]← [3 · 22f]− [H] = [3 · 22f] · [H]−1

22 [H]← Mult([h], [H])

23 [g]← Mult([H], [x])

24 [g]← PubDiv([g], 2)

95

References

[1] M. Beye, Z. Erkin, and R. L. Lagendijk. Efficient privacy preserving k-

means clustering in a three-party setting. In IEEE International Workshop

on Information Forensics and Security, pages 1–6. IEEE, 2011.

[2] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In Proceed-

ings of the 14th ACM conference on Computer and communications security,

pages 486–497. ACM, 2007.

[3] R. Canetti. Security and composition of multiparty cryptographic protocols.

Journal of Cryptology, 13(1):143–202, 2000.

[4] E. Carlen. Lecture notes on the non–symmetric eigenvalue prob-

lem. http://www.math.wustl.edu/~wick/teaching/Math2605Notes/

chap4.pdf, 2003.

[5] P. Ciarlet and J. Lions. Handbook of Numerical Analysis. North-Holland,

1990.

[6] J. Cullum and R. Willoughby. Lanczos Algorithms for Large Symmetric

Eigenvalue Computations: Vol. 1: Theory. Society for Industrial and Ap-

plied Mathematics, 2002.

[7] M. Dahl, C. Ning, and T. Toft. On secure two-party integer division. In In-

ternational Conference on Financial Cryptography and Data Security, pages

164–178. Springer, 2012.

[8] C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation.

SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[9] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Privacy-preserving user

clustering in a social network. In Information Forensics and Security, 2009.

WIFS 2009. First IEEE International Workshop on, pages 96–100. IEEE,

2009.

[10] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Generating private rec-

ommendations efficiently using homomorphic encryption and data packing.

96

http://www.math.wustl.edu/~wick/teaching/Math2605Notes/chap4.pdf
http://www.math.wustl.edu/~wick/teaching/Math2605Notes/chap4.pdf

IEEE Transactions on Information Forensics and Security, 7(3):1053–1066,

2012.

[11] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Privacy-preserving dis-

tributed clustering. EURASIP Journal on Information Security, 2013(1):1–

15, 2013.

[12] P. Failla and M. Barni. Gram-schmidt orthogonalization on encrypted vec-

tors. In Trustworthy Internet, pages 93–103. Springer, 2011.

[13] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright.

Secure multiparty computation of approximations. Automata, Languages

and Programming, pages 927–938, 2001.

[14] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,

volume 9, pages 169–178, 2009.

[15] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.

Cambridge University Press, 2009.

[16] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University

Press, 1996.

[17] K. Hafner. And if you liked the movie, a Netflix contest may reward

you handsomely. http://www.nytimes.com/2006/10/02/technology/

02netflix.html, October 2006.

[18] D. Hamad and P. Biela. Introduction to spectral clustering.

http://lagis-vi.univ-lille1.fr/~lm/classpec/reunion_28_02_

08/Introduction_to_spectral_clustering.pdf, 2008.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Second Edition. Springer

New York, 2009.

[20] S. J. A. Hoogh, de. Design of large scale applications of secure multiparty

computation: secure linear programming. PhD thesis, Eindhoven University

of Technology.

[21] P. Horton and K. Nakai. A probabilistic classification system for predicting

the cellular localization sites of proteins. In ISMB, volume 4, pages 109–115,

1996.

[22] A. Jeckmans, Q. Tang, and P. Hartel. Privacy-preserving collaborative fil-

tering based on horizontally partitioned dataset. In Collaboration Technolo-

gies and Systems (CTS), 2012 International Conference on, pages 439–446.

IEEE, 2012.

97

http://www.nytimes.com/2006/10/02/technology/02netflix.html
http://www.nytimes.com/2006/10/02/technology/02netflix.html
http://lagis-vi.univ-lille1.fr/~lm/classpec/reunion_28_02_08/Introduction_to_spectral_clustering.pdf
http://lagis-vi.univ-lille1.fr/~lm/classpec/reunion_28_02_08/Introduction_to_spectral_clustering.pdf

[23] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC press,

2014.

[24] L. Kuang, L. Yang, J. Feng, and M. Dong. Secure tensor decomposition

using fully homomorphic encryption scheme. IEEE Transactions on Cloud

Computing, 2015.

[25] A. Kumar, P. Rai, and H. Daume. Co-regularized multi-view spectral clus-

tering. In Advances in neural information processing systems, pages 1413–

1421, 2011.

[26] R. J. Lambert. Computational aspects of discrete logarithms. PhD thesis,

University of Waterloo, 1997.

[27] R. Lazzeretti, T. Pignata, and M. Barni. Piecewise function approxima-

tion with private data. IEEE Transactions on Information Forensics and

Security, 11(3):642–657, 2016.

[28] M. Lichman. UCI machine learning repository. http://archive.ics.uci.

edu/ml, 2013.

[29] M. Liedel. Secure distributed computation of the square root and appli-

cations. In International Conference on Information Security Practice and

Experience, pages 277–288. Springer, 2012.

[30] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-

preserving data mining. Journal of Privacy and Confidentiality, 1(1):1–39,

2009.

[31] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse

datasets. In IEEE Symposium on Security and Privacy, pages 111–125.

IEEE, 2008.

[32] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and

an algorithm. Advances in neural information processing systems, 2:849–

856, 2002.

[33] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft.

Privacy-preserving ridge regression on hundreds of millions of records. In Se-

curity and Privacy (SP), 2013 IEEE Symposium on, pages 334–348. IEEE,

2013.

[34] J. M. Ortega and H. F. Kaiser. The LLT and QR methods for symmetric

tridiagonal matrices. The Computer Journal, 6(1):99–103, 1963.

98

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[35] C. C. Paige. The computation of eigenvalues and eigenvectors of very large

sparse matrices. PhD thesis, University of London, 1971.

[36] C. C. Paige. Computational variants of the lanczos method for the eigen-

problem. IMA Journal of Applied Mathematics, 10(3):373–381, 1972.

[37] C. C. Paige. Accuracy and effectiveness of the lanczos algorithm for the

symmetric eigenproblem. Linear algebra and its applications, 34:235–258,

1980.

[38] P. Paillier. Public-key cryptosystems based on composite degree residuos-

ity classes. In International Conference on the Theory and Applications of

Cryptographic Techniques, pages 223–238. Springer, 1999.

[39] V. Y. Pan and Z. Q. Chen. The complexity of the matrix eigenproblem. In

Proceedings of the thirty-first annual ACM symposium on Theory of com-

puting, pages 507–516. ACM, 1999.

[40] B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthog-

onalization. Mathematics of computation, 33(145):217–238, 1979.

[41] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of computational and applied mathe-

matics, 20:53–65, 1987.

[42] S. Sanghavi. Lecture notes on Large scale learning. http://users.ece.

utexas.edu/~sanghavi/courses/scribed_notes/, 2013.

[43] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979.

[44] K. Tasdemir, Y. Moazzen, and I. Yildirim. Geodesic based similarities for

approximate spectral clustering. In Pattern Recognition (ICPR), 2014 22nd

International Conference on, pages 1360–1364. IEEE, 2014.

[45] E. Tsivtsivadze, H. Borgdorff, J. van de Wijgert, F. Schuren, R. Verhelst,

and T. Heskes. Neighborhood co-regularized multi-view spectral clustering

of microbiome data. In IAPR International Workshop on Partially Super-

vised Learning, pages 80–90. Springer, 2013.

[46] A. Ultsch. Clustering with som: U*c. pages 75–82, 2005.

[47] D. Verma and M. Meila. A comparison of spectral clustering algorithms.

University of Washington Tech Rep UWCSE030501, 1:1–18, 2003.

[48] T. Veugen. Encrypted integer division. In IEEE International Workshop

on Information Forensics and Security, pages 1–6. IEEE, 2010.

99

http://users.ece.utexas.edu/~sanghavi/courses/scribed_notes/
http://users.ece.utexas.edu/~sanghavi/courses/scribed_notes/

[49] T. Veugen. Efficient coding for computing with encrypted data. In IEEE

Transactions on Information Forensics and Security. IEEE, 2017. Unpub-

lished article.

[50] T. Volkhausen. The paillier cryptosystem: A mathematical intro-

duction. http://www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/

proseminar_WS2005/material/Volkhausen_Ausarbeitung.pdf, 2006.

[51] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[52] H. S. Warren. Hacker’s Delight. Addison-Wesley, 2012.

[53] D. S. Watkins. The QR algorithm revisited. SIAM review, 50(1):133–145,

2008.

[54] Y. Yang, H. T. Shen, F. Nie, R. Ji, and X. Zhou. Nonnegative spectral

clustering with discriminative regularization. In AAAI, pages 2–4, 2011.

[55] A. C.-C. Yao. How to generate and exchange secrets. In Foundations

of Computer Science, 1986., 27th Annual Symposium on, pages 162–167.

IEEE, 1986.

[56] K. Y. Yeung. Model-based clustering and data transformations for gene

expression data, 2006.

100

http://www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/proseminar_WS2005/material/Volkhausen_Ausarbeitung.pdf
http://www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/proseminar_WS2005/material/Volkhausen_Ausarbeitung.pdf

	Nomenclature
	Introduction
	Spectral clustering
	Numerical methods
	The Lanczos algorithm
	A derivation of the method
	The Lanczos algorithm
	Convergence properties
	Limitations

	The QR algorithm
	The QR decomposition
	The QR algorithm
	Using shifts

	Back substitution
	Summary

	Computations on encrypted numbers
	Introduction and set-up
	Paillier encryption
	Computations in the message space
	Arithmetic operations
	Bit length
	Representation of numbers

	Computations in the ciphertext space
	Complexity of operations
	Data packing
	Blinding numbers

	Privacy preserving computation protocols
	Scalar multiplication
	Inner product
	Secure matrix product
	Division protocols
	The square root

	An investigation of secure spectral clustering
	Constructing the Laplacian and k-means clustering
	The Laplacian
	Secure k-means clustering

	The Lanczos algorithm
	The unnormalized Lanczos algorithm
	The Lanczos algorithm in ZN
	The secure Lanczos algorithm

	The QR algorithm
	The QR decomposition in ZN
	The QR algorithm in ZN
	Secure design of the QR algorithm

	Back substitution
	Back substitution in ZN
	Secure back substitution

	Connecting the algorithms

	Results
	Methodology
	Assessment criteria
	Datasets

	The Lanczos algorithm
	Wisconsin Breast Cancer Dataset
	Yeast5 Dataset
	Yeast10 Dataset

	The QR algorithm
	Wisconsin Breast Cancer Dataset
	Yeast5 Dataset
	Yeast10 Dataset

	Back substitution
	Wisconsin Breast Cancer Dataset
	Yeast5 Dataset

	Conclusion and discussion
	Conclusion
	Discussion
	Influence of other steps
	Evaluation of results
	Suggested improvements
	Further research

	The secure square root protocol
	References

