

Delft University of Technology

Online reinforcement learning control for aerospace systems

Zhou, Ye

DOI
10.4233/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4
Publication date
2018
Document Version
Final published version
Citation (APA)
Zhou, Y. (2018). Online reinforcement learning control for aerospace systems. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4
https://doi.org/10.4233/uuid:5b875915-2518-4ec8-a1a0-07ad057edab4

ONLINE REINFORCEMENT LEARNING CONTROL
FOR AEROSPACE SYSTEMS

ONLINE REINFORCEMENT LEARNING CONTROL
FOR AEROSPACE SYSTEMS

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 11 april 2018 om 15:00 uur

door

Ye ZHOU

ingenieur luchtvaart en ruimtevaart

geboren te Hefei, Anhui, China

Dit proefschrift is goedgekeurd door de promotoren:

prof. dr. ir. M. Mulder en dr. Q. P. Chu

Copromotor:

dr. ir. E. van Kampen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. ir. M. Mulder, Technische Universiteit Delft, promotor

Dr. Q. P. Chu, Technische Universiteit Delft, promotor

Dr. ir. E. van Kampen, Technische Universiteit Delft, copromotor

Onafhankelijke leden:

Prof. dr. J. Si, Arizona State University

Prof. dr.-ing F. Holzapfel, Technische Universität München

Prof. dr. D. G. Simons, Technische Universiteit Delft

Prof. dr. R. Babuska, Technische Universiteit Delft

Keywords: Reinforcement Learning; Aerospace Systems; Optimal Adaptive Con-

trol; Approximate Dynamic Programming; Adaptive Critic Designs; In-

cremental Model; Nonlinear Systems; Partial Observability; Hierarchi-

cal Reinforcement Learning; Hybrid Methods.

Printed by: Ipskamp Printing.

Front & Back: Designed by Ye Zhou.

ISBN 978-94-6366-021-1

An electronic version of this dissertation is available at

http://repository.tudelft.nl/.

Copyright © 2018 by Ye ZHOU. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior per-

mission in writing from the proprietor.

To my beloved parents, husband, and little daughter . . .

SUMMARY

ONLINE REINFORCEMENT LEARNING CONTROL
FOR AEROSPACE SYSTEMS

Ye ZHOU

Recent technological improvements have spurred the development of innovative

and more advanced aerospace systems. The increased complexity of these systems has

become one of the major challenges of the aerospace control system design. The multi-

objective tasks in various applications, ranging from the air domain to space domain and

from military use to commercial use, also increase the automatic control requirements

and complexity. Furthermore, the uncertainties in aerospace systems, such as changing

shapes of morphing aircraft, and in the environment, such as sudden gusts, complex air

traffic, and space debris impacts, have also heightened the need for online adaptability

in control systems. To meet the growing complexity of the system dynamics, the increas-

ing difficulty of control tasks, and the demanding requirement of adaptability, aerospace

systems are in urgent need of higher levels of autonomy.

The complexity and diversity of aerospace systems and autonomous control tasks

motivate researchers to explore intelligent methods. Intelligent autonomous aerospace

systems, on the one hand, need to learn the current system dynamics and the environ-

ment online and control the system adaptively and accurately. On the other hand, these

systems also need to be able to trade off among multiple objectives and retain safety.

Therefore, a complete intelligent system often has a hierarchical control architecture.

The low-level control ability is the foundation of the higher levels and limits the im-

provement of the whole autonomous control system. This limitation is one of the main

reasons for the fact that many existing high-level autonomous algorithms cannot be suc-

cessfully applied yet to real aerospace systems. Besides, the intelligence and autonomy

of high-level decision-making systems are also in need of improvement, to meet the new

challenges in current and future aerospace systems, such as deep-space exploration, in-

door guidance and navigation, and self-organized swarm formation.

Reinforcement Learning (RL) is a framework of intelligent, self-learning methods

that can be applied to different levels of autonomous operations and applications. It

links bio-inspired artificial intelligence techniques to the field of control and decision-

making. RL methods, in the low-level control field, can be used to improve the con-

trol efficiency and adaptability when the dynamical models are unknown or uncertain.

vii

viii SUMMARY

These control problems, such as stabilization and reference tracking, are often modeled

in continuous state and action spaces. RL methods, in the high-level decision-making

field, can be applied to enhance the intelligence of planning and to ensure the coor-

dination with the low-level control. In these problems, state and action spaces can be

discrete, continuous or even hybrid.

RL methods are relatively new in the field of aerospace guidance, navigation, and

control. They have many benefits, but also some limitations, when applied to aerospace

systems. This dissertation aims to deal with the following main research question:

How can aerospace systems exploit RL methods to improve the autonomy and

online learning with respect to the a priori unknown system and environment,

dynamical uncertainties, and partial observability?

This main research question is addressed in three parts, for three specific RL meth-

ods and applications: (i) Approximate Dynamic Programming (ADP) for control prob-

lems with an approximately convex true cost-to-go, (ii) Adaptive Critic Designs (ACDs)

for general nonlinear control problems, and (iii) Hierarchical Reinforcement Learning

(HRL) for high-level guidance and navigation. This leads to the following research ques-

tions:

1. How to generalize Linear Approximate Dynamic Programming (LADP) to deal with

nonlinear and/or time-varying systems, model mismatch, and partial observa-

tions, while retaining the efficiency and mathematical explicitness?

2. How to devise online adaptive critic designs and improve the online adaptability,

to cope with internal uncertainties, external disturbances, and even sudden faults?

3. How to establish a systematic hierarchical reinforcement learning controller that

deals with multiple objectives and partial observability, possesses transfer learn-

ing ability, and utilizes diverse RL methods?

To address the first question, this dissertation proposes incremental Approximate

Dynamic Programming (iADP) methods. Instead of using nonlinear function approxi-

mators to approximate the true cost-to-go, iADP methods use an (extended) incremental

model to deal with the nonlinearity of unknown systems and uncertainties of the envi-

ronment. These methods can still apply a quadratic cost function to generate an efficient

and mathematically explicit optimal control algorithm. These methods do not need any

a priori knowledge of the system dynamics, online identification of the global model,

nor even an assumption of the time scale separation, but only an online identified (ex-

tended) incremental model.

The iADP method is first proposed to solve regulation problems for nonlinear sys-

tems. When the direct measurement of the full state is available, the incremental model

can be identified to predict the next state. With this prediction and a quadratic cost

function, the control increment can be calculated adhering to the optimality principle.

When the only measurements are the input/output of the dynamical system, the opti-

mal control increment is calculated with an output feedback algorithm and an extended

incremental model. This method is applied to an unknown nonlinear missile model,

SUMMARY ix

with both full state and output measurements, to iteratively optimize the flight control

policy. The simulation results demonstrate that the iADP method improves the closed-

loop performance of the nonlinear system, while keeping the design process simple and

systematic.

The concept of iADP is further expanded to tracking problems for Multiple-Input

Multiple-Output (MIMO) nonlinear systems and to partial observable control problems.

Because iADP methods have a separate structure to represent the local system dynamics,

the cost function can be less dependent on the system or the reference, and only needs to

be a rough approximation of the cost-to-go. This approximation is a quadratic function

only of the current tracking error, without expanding the dimension of the state space

for the cost function to an augmented one.

Two observability conditions are considered in this tracking control problem. When

the direct measurement of the full state is available, the incremental model can be online

identified to design the optimal control increment. In addition, when the only measure-

ment is the output tracking error, involved with tracking a stochastic dynamical refer-

ence, the system becomes partially observable. The observations are used to identify the

extended incremental model and to predict the next output tracking error for the optimal

tracking control. For each observability condition, an off-line learning algorithm is ap-

plied to improve the policy iteratively until it is accurate enough, and hereafter an online

algorithm is applied to update the policy recursively at each time step. The recursive al-

gorithms can also be used online in real systems which may be different from the system

model used in the iterative learning stage. These algorithms are applied to an attitude

control problem of a simulated satellite disturbed by liquid sloshing. The results demon-

strate that the proposed algorithms accurately and adaptively deal with time-varying

internal dynamics, while retaining efficient control, especially for unknown nonlinear

systems with only partial observability.

To answer the second research question, this dissertation develops online ACDs

based on the incremental model. ACDs can generally be categorized into three groups: 1)

Heuristic Dynamic Programming (HDP), 2) Dual Heuristic Programming (DHP), and 3)

Globalized Dual Heuristic Programming (GDHP). Besides, action dependent variations

of these three original versions have been developed by directly connecting the output

of the actor to the input of the critic. This dissertation focuses on action independent

ACDs, specifically HDP and DHP.

An Incremental model based Heuristic Dynamic Programming (IHDP) method is

proposed to online and adaptively control unknown aerospace systems. This method

replaces the global system model approximator with an incremental model. This ap-

proach, therefore, does not need off-line training stages and may accelerate online learn-

ing. The IHDP method is compared with conventional HDP in an online tracking con-

trol of the unknown nonlinear missile model. The results show that the presented IHDP

method speeds up the online learning, has a higher tracking precision, and can deal

with a wider range of initial states than the conventional HDP method. In addition, the

IHDP method is also applied to the MIMO satellite attitude tracking control disturbed

by liquid sloshing and with sudden external disturbances. The simulation results also

demonstrate that the IHDP method is adaptive and robust to internal uncertainties and

x SUMMARY

external disturbances.

To further improve the control performance and accelerate the online learning, an

Incremental model based Dual Heuristic Programming (IDHP) method is developed.

The IDHP method uses a Recursive Least Square (RLS) approach, to identify in real-time

the incremental model instead of the global system model. In addition to the online ref-

erence tracking problem, a Fault-Tolerant Control (FTC) task is performed using IDHP

and conventional DHP. The results demonstrate that the IDHP method can successfully

control a faulty and unstable system adaptively before the states diverge, where DHP

fails. To further validate the robustness of the proposed IDHP method, high-frequency

measurement noise is superimposed to the measurements of system states. The simu-

lation results indicate that the IDHP method is not sensitive to the measurement noise.

The third research question is answered through the development of the hybrid Hi-

erarchical Reinforcement Learning (hHRL) method, for guidance and navigation prob-

lems. This method consists of several hierarchical levels, where each level uses differ-

ent methods to optimize the learning with different types of information and objectives.

The explicit rules of establishing the hierarchies, decomposing the tasks, and assigning

the rewards are formulated. Detailed implementations of the proposed hHRL method

are presented for an online, multi-objective guidance and navigation task with partial

observability and multiple objectives (i.e., approaching a target area while avoiding ob-

stacles).

The proposed method is first applied to a benchmark maze, to prevent collision on-

line and to improve the performance of approaching the target episodically. The result

is compared to a ‘flat’ RL method and a single-method HRL method and indicates that

the proposed hHRL method is more efficient in dealing with the ‘curse of dimensional-

ity’ and in reducing the uncertainty or ambiguity. The learned results are then applied

to a different, expanded maze, which validates that learning results can indeed be trans-

ferred across tasks to speed up learning in new tasks or environments. Lastly, the same

method is applied to a non-stationary environment with modified sensors and a par-

tial map. The hHRL method, using relative micro states and absolute macro states in

different hierarchical levels, allows for learning in non-stationary environments with-

out loss of efficiency. These results indicate that the proposed hHRL method can help

to accelerate learning, to alleviate the ‘curse of dimensionality’ in complex decision-

making tasks, to reduce the uncertainty or ambiguity, to transfer the learned results

within and across tasks efficiently, and to be applied to non-stationary environments.

This proposed method can potentially design a near-optimal policy hierarchically for

autonomous guidance and navigation with an unknown system and environment.

In conclusion, this dissertation contributes with several methods that improve the

intelligence and autonomy of aerospace systems. These improvements are mainly from

three perspectives: 1) enhancing the adaptability and efficiency of low-level control, 2)

improving the intelligence and online learning ability of guidance, navigation, and con-

trol, and 3) creating a well-organized hierarchy to ensure coordination between each

level. The proposed methods provide novel insights for both the reinforcement learning

research community and for developers of aerospace automatic control system.

CONTENTS

Summary vii

1 Introduction 1

1.1 Autonomous Control in Aerospace Systems. 1

1.2 Challenges in Reinforcement Learning Controllers 4

1.2.1 Efficiency of RL Control for Nonlinear, Unknown, and Partially Ob-

servable Systems . 4

1.2.2 Generalization and Online Adaptability of RL Control for Unknown

or Faulty Nonlinear Systems . 6

1.2.3 Systematic and Transferable RL Methods in High-level Guidance

and Navigation. 7

1.3 Research Questions, Methods, and Scope 7

1.3.1 Research Questions . 7

1.3.2 Research Methods and Contributions 9

1.3.3 Scope and Limitations . 11

1.4 Outline of the Thesis . 12

1.5 Thesis Publications . 13

I Incremental Approximate Dynamic Programming 15

2 Incremental Approximate Dynamic Programming for Regulation Control

with Output Measurements 17

2.1 Introduction . 18

2.2 Incremental Approximate Dynamic Programming 19

2.2.1 Incremental Approximate Dynamic Programming Based on Full

State Feedback . 19

2.2.2 Incremental Approximate Dynamic Programming Based on Output

Feedback. 22

2.3 Numerical Experiments and Results . 25

2.3.1 Air vehicle model . 25

2.3.2 Results . 26

2.4 Conclusion . 29

3 Incremental Approximate Dynamic Programming for Tracking Control with

Partial Observability 31

3.1 Introduction . 32

3.2 Incremental Approximate Dynamic Programming for Tracking Control. . . 34

3.2.1 The Incremental Approach. 35

3.2.2 IADP with Full State Feedback . 36

xi

xii CONTENTS

3.2.3 IADP with Partial Observability 38

3.2.4 Incremental Model Online Identification 43

3.3 Tracking Control Simulation . 45

3.3.1 Spacecraft with Liquid Sloshing 46

3.3.2 Implementation Issues. 47

3.4 Results and Discussion . 49

3.4.1 iADP with Full State Measurements for Tracking Control. 49

3.4.2 iADP with Partial Observability for Tracking Control 51

3.5 Conclusion . 54

II Online Adaptive Critic Designs 57

4 Incremental Model Based Heuristic Dynamic Programming 59

4.1 Introduction . 60

4.2 Foundations . 62

4.2.1 HDP Framework and Global System Model 62

4.2.2 ANN and Back-Propagation . 63

4.3 Incremental Model Based Heuristic Dynamic Programming 63

4.3.1 IHDP Framework and Adaptation Rules 63

4.3.2 Incremental Model Online Identification 67

4.3.3 Implementation Issues. 68

4.4 Numerical Experiments and Results . 69

4.4.1 Missile Flight Control: Comparison between HDP and IHDP 69

4.4.2 Spacecraft Attitude Control: Validation of IHDP with Uncertainties . 75

4.5 Conclusion . 79

5 Incremental Model Based Dual Heuristic Programming 81

5.1 Introduction . 82

5.2 Incremental Model Based Dual Heuristic Programming Design. 84

5.2.1 DHP Framework and Global System Model 84

5.2.2 IDHP Framework and Adaptation Rules 85

5.2.3 Incremental Model Identification 89

5.3 Flight Control Simulation . 90

5.3.1 Air Vehicle Model . 90

5.3.2 Implementation Related Issues 91

5.4 Results and Discussion . 93

5.4.1 Online Reference Tracking . 93

5.4.2 Online Fault-Tolerant Control . 96

5.5 Conclusion . 102

III High-level Guidance and Navigation 105

6 Hybrid Hierarchical Reinforcement Learning with Partial Observability 107

6.1 Introduction . 108

6.2 Foundations . 110

6.2.1 Markov Decision Processes and Semi-Markov Decision Processes . . 110

6.2.2 Reinforcement Learning methods 111

CONTENTS xiii

6.3 Autonomous Guidance and Navigation Task 113

6.3.1 System Description . 113

6.3.2 Problem Description . 113

6.4 Hybrid Hierarchical Reinforcement Learning 115

6.4.1 Decomposition and Hierarchies 115

6.4.2 Hybrid Learning . 117

6.4.3 Strategy Connecting Hierarchies and Sub-tasks 119

6.4.4 Implementation: Value Functions Adaptation 120

6.5 Results and Discussion . 122

6.5.1 Learning Efficiency in an A Priori Unknown Maze A 123

6.5.2 Transferability of Learning to a New Maze B 126

6.5.3 Applicability in Non-stationary Environments 129

6.6 Conclusion . 132

7 Conclusions and Recommendations 133

7.1 Discussion . 133

7.1.1 Incremental Approximate Dynamic Programming 134

7.1.2 Online Adaptive Critic Designs Based on the Incremental Model . . 135

7.1.3 Hybrid Hierarchical Reinforcement Learning for High-level Guid-

ance and Navigation . 136

7.2 Final conclusions . 137

7.3 Recommendations . 139

References 141

Samenvatting 153

Acknowledgements 159

Curriculum Vitæ 161

List of Publications 163

1
INTRODUCTION

1.1. AUTONOMOUS CONTROL IN AEROSPACE SYSTEMS

T
HE last few decades have seen rapid advances of automated control in many do-

mains, ranging from industrial manufacturing and household appliances to un-

manned aerial vehicles. The emergence of self-driving cars on the road and household

robots at home brings advanced automated control into our everyday lives. However,

most of these systems can only complete their tasks under similar, predictable circum-

stances for which they are designed. Autonomous control systems, on the other hand,

must be able to change their behaviour to unexpected situations in both the system and

environment [1, 2]. Aerospace systems are urgently in need of higher levels of auton-

omy, to meet the growing complexity of the dynamical systems, the increasing difficulty

of control tasks and unmanned operations, and the demanding requirement of adapt-

ability.

Recent technological improvements have spurred the development of innovative

aerospace systems. Since then, system complexity has become one of the major chal-

lenges of control design for these aerospace systems. The bio-inspired ornithopters,

such as Nano-Hummingbird (by AeroVironment) [3], RoboBee (by Harvard University)

[4, 5], and DelFly (by Delft University of Technology) [6, 7], in Fig. 1.1(a)-(c), are examples

of extremely complex aerial vehicles. First, the aerodynamics and kinematics of the flap-

ping wings interact with each other, which impedes the analysis of the force and moment

mechanisms. Second, the high nonlinearity complicates the identification of the system

dynamics. Thus, it is almost impossible to build globally accurate mathematical models

for these systems [8, 9]. Other examples are increasingly sophisticated spacecraft, in-

volving complex internal dynamics, as presented in Fig. 1.1(d). Here, liquid sloshing is

one of the unknown and uncertain internal dynamics interacting with the motion of the

vehicle [10–12]. Although it has been studied for many years, an accurate liquid sloshing

model is extremely difficult to obtain [12, 13].

With the rapid development and evolution, aerospace systems have already had a

multitude of applications ranging from the air domain to space domain. Air domain

1

1

2 1. INTRODUCTION

(a) (b) (c)

(d)

Figure 1.1: Examples of complex aerospace systems. Aerial vehicles: (a) Nano-Hummingbird[3], (b)

RoboBee[5], (c) DelFly Micro[7]; Space vehicle: (d) International Space Station[14].

applications include reconnaissance, surveillance, and targeting for military use, trans-

portation for civilian use, aerial photography for commercial use, etc. Spacecraft can

be used for space exploration, obtaining observations from a different perspective on

Earth phenomena, and for the multi-domain task, launching communication satellites

and space telescopes. Many systems are demanded to execute multiple tasks, while re-

taining safety and performance, without direct human supervision. The growing control

requirements and multiple objectives also increase the control complexity.

Furthermore, there are growing demands for adaptability that allows the control of

unknown and/or time-varying systems in the presence of uncertainties. Compared to

conventional aircraft, new types of aerospace systems are far more complex and un-

certain, e.g., convertiplane with large angle maneuvers [15] and morphing aircraft with

changing shapes [16, 17]. Besides uncertainties in the system, the uncertainties in the

environment, such as sudden gusts, complex air traffic, and space debris impacts, have

also heightened the need for online adaptability in control systems.

The complexity and diversity of aerospace systems and control tasks motivate re-

searchers to explore autonomous control methods. Intelligent autonomous aerospace

systems, on the one hand, need to learn the current system dynamics and the envi-

ronment online and control the system adaptively and accurately. On the other hand,

these systems need to trade off among multiple objectives and retain safety. Therefore,

a complete intelligent system often has a hierarchical control architecture, where the

1.1. AUTONOMOUS CONTROL IN AEROSPACE SYSTEMS

1

3

higher intelligence requires the lower precision [18, 19]. The intelligence and autonomy

of an aerospace system can be increased from three aspects: 1) enhancing the adaptabil-

ity and efficiency of low-level control, 2) improving the intelligence and online learning

ability of guidance, navigation, and control, and 3) creating a well-organized hierarchy to

ensure coordination between each level. The low-level control ability is the foundation

of the higher levels and limits the improvement of the whole autonomous control sys-

tem. This limitation is one of the main reasons for the fact that many existing high-level

autonomous algorithms cannot be successfully applied yet to real aerospace systems

[20–22].

Conventional control methods in aerospace are based on piecewise mathematical

models of the physical system, and then generate decentralized controllers around each

operating point by using appropriate methods such as stability analysis or manual tun-

ing [1]. This design procedure relies on an accurate model and usually takes several

iterations, each of them incurring a considerable cost for evaluating and testing the de-

signed control system and also significantly extending the time to develop new models.

Adaptive control, which is an active field since the 1960s, has been proposed for com-

plex dynamical systems. Although model-based control strategies have been extensively

studied and successfully applied to many applications [23–28], they are reliant on an ac-

curate system model or on its identification. However, in many real aerospace applica-

tions, an accurate model of the complex system is often not available, nor is its identifi-

cation trivial [8, 9]. In addition, when uncertain dynamics or environments are involved,

the mismatch between the model and real system may degrade the control performance

of model-based methods.

Besides the low-level control methods, the intelligence and autonomy of high-level

decision-making systems are also in need of improvement, to meet the new challenges in

current and future aerospace systems, such as deep-space exploration, indoor guidance

and navigation, and self-organized swarm formation. Most of the current aerospace sys-

tems are only equipped with limited autonomy and are controlled by human pilots re-

motely and intensively. Some others, although mostly in academic research laborato-

ries, can be preset to perform certain tasks, such as the RoboBee (by Harvard University)

and the DelFly (by Delft University of Technology). However, in the aforementioned new

applications, the systems might not have a static environment, perfect observations, or

access to human control. Therefore, in the higher level, the control system needs to deal

with the complexity of tasks and environment, the partial observability of the system

and environment, and the transition of objectives and/or control requirements.

Reinforcement Learning (RL) is a framework of intelligent, self-learning methods

that can be applied to different levels of autonomous operations and applications. This

method links bio-inspired artificial intelligence techniques to the field of control and

decision-making, to overcome some of the limitations and problems in traditional meth-

ods that demand precise models [29–31]. In the low-level control field, RL methods

are mainly used to improve the control efficiency and adaptability when the dynamical

models are unknown or uncertain [31–34]. These control problems, such as stabilization

and reference tracking, are often modeled in continuous state and action spaces. In the

high-level decision-making field, RL methods are applied to enhance the intelligence of

planning and also to ensure the coordination with the low-level control [35–38]. In these

1

4 1. INTRODUCTION

problems, state and action spaces can be discretized, continuous or even hybrid.

1.2. CHALLENGES IN REINFORCEMENT LEARNING CON-

TROLLERS

Reinforcement Learning methods learn to take actions that affect the system states, such

as attitude angles, rotational rates, and positions, to maximize some numerical reward

from interaction with the environment (Fig. 1.2). Traditional RL methods were devised

for discrete state and action spaces, such as Q-learning and Sarsa, by using a lookup

table [31]. As with increased real-life applications, in particular optimal control prob-

lems, RL methods have been confronted with high-dimensional, continuous spaces,

which can lead to an exponential growth of states and actions known as the ‘curse of

dimensionality’[21, 29, 32, 34, 39].

To tackle these problems, RL methods can apply function approximators, which turn

them to as Approximate Dynamic Programming (ADP) methods [22, 32, 39]. Within this

category, Linear Approximate Dynamic Programming (LADP) and Adaptive Critic De-

signs (ACDs) have been extensively studied. Although LADP and ACDs are both contin-

uous RL methods, they are categorized into different groups in terms of their memory

structures [31, 40, 41]. LADP methods are critic-only methods, which only have state(-

action) value functions and rely on the optimality principle to calculate the action. On

the other hand, ACDs are actor-critic methods, which have separate memory structures

to represent the policy and value function independently.

Different RL methods have their appealing benefits, successful applications as well

as limitations and challenges. When applied to aerospace systems, current RL methods

are often confronted with three main challenges:

• Efficiency of reinforcement learning control for nonlinear, unknown, and partially

observable systems.

• Generalization and online adaptability of reinforcement learning control for un-

known or faulty nonlinear systems.

• Systematic and transferable reinforcement learning methods for high-level guid-

ance and navigation.

These will all be further explained in this section.

1.2.1. EFFICIENCY OF RL CONTROL FOR NONLINEAR, UNKNOWN, AND

PARTIALLY OBSERVABLE SYSTEMS

ADP is a RL method which applies function approximators to solve optimality prob-

lems. This function approximator can approximate the value/cost of any state in the

state space. This approximate function caches information, such as value, cost, and/or

the Temporary Difference (TD) error, from the observed states, and then generalizes to

similar, previously unseen states. Ultimately, it can represent the utility of any state in

the state space and exploit this information to achieve the overall goal.

1.2. CHALLENGES IN REINFORCEMENT LEARNING CONTROLLERS

1

5

System

Environment

action
state

reward

Figure 1.2: An example of the system-environment interaction with Reinforcement Learning. In this exam-

ple, the system represents an air vehicle. The environment encompasses everything that surrounds and may

change the system states, including the stationary obstacles, such as trees and buildings, and non-stationary

obstacles, such as human beings, animals, and even other air vehicles. The system, at each moment, observes

its state in this environment and may get a reward for being in that state, and then decides what actions to take

to affect its state in that environment.

A widely used model-free ADP method for linear systems is the linear approximate

dynamic programming method, including Value Iteration (VI) algorithms and Policy It-

eration (PI) algorithms with a quadratic value function [33, 42, 43]. These methods, from

a control-theoretic perspective, use a TD method to numerically approximate the kernel

matrix in a Linear-Quadratic Regulator (LQR) when the system is linear but unknown,

and from a RL perspective, use a quadratic cost function to approximate the true cost-to-

go and to learn it adaptively. Based on this simple and efficient quadratic cost function,

LADP can provide an explicit solution to linear optimal control problems [44]. Although

model-free, efficient and adaptive, LADP methods were devised based on the assump-

tion that the dynamical system is Linear Time-Invariant (LTI). All the system information

is implicitly contained in the quadratic cost function. These methods, therefore, have

difficulties solving problems with nonlinear or time-varying systems.

In addition to nonlinearity and complexity, real aerospace systems often involve sys-

tem uncertainties and partial observability. System uncertainty includes internal uncer-

1

6 1. INTRODUCTION

tainties, such as the unknown aerodynamics in aerial vehicles and internal dynamics in

spacecraft, and external uncertainties, such as gust and space debris impact. Most of the

current LADP methods are based on an iterative off-line policy adaptation. When un-

certain dynamics are involved, the model mismatch/change and the never-experienced

situations, such as sudden gust or new environment, may significantly degrade the per-

formance of off-line learned LADP methods.

Conventional RL assumes the availability of full states. However, partial observability

also happens in real applications, when the system does not have enough information to

infer its real states [45]. Those methods dealing with deterministic systems and measure-

ments are often referred to as output feedback methods [33, 46, 47]. When stochastic,

time-varying dynamics are involved, they belong to Partially Observable Markov Deci-

sion Processes (POMDPs) [36, 48, 49] and bring about additional challenges.

1.2.2. GENERALIZATION AND ONLINE ADAPTABILITY OF RL CONTROL FOR

UNKNOWN OR FAULTY NONLINEAR SYSTEMS

Another class of ADP methods, adaptive critic designs, have shown great success in op-

timal adaptive control of more general nonlinear problems [32, 34, 50, 51]. They are also

well known as Actor-Critic methods (ACs) because they separate evaluation (critic) and

improvement (actor) using parametric structures [50]. Although they are called ACs, they

often need an extra structure to approximate the global system model so as to close the

update path of the actor, the critic, or both. Compared to LADP methods, ACDs can be

used to control highly nonlinear systems by exploiting more complex function approxi-

mators, such as Artificial Neural Networks (ANNs) [32, 34, 50, 52].

Nevertheless, like other adaptive control methods, ACDs in one form or another still

rely on off-line and/or online identification of system dynamics and adaptation of con-

trol laws. In practice, the online identification of the global system model is hard to

achieve due to the unavailability of global input/output data in online tasks and the

complexity of nonlinear systems [8, 9, 23–27]. Therefore, ACDs often have two learning

phases [50, 51, 53, 54]: off-line learning and online learning. The off-line identification

stage still needs representative simulation models, however, which are difficult to obtain.

Furthermore, during the online phase, the global model adaptation has to be suf-

ficiently quick and smooth to cope with unforeseen dynamics, such as the resulting

changes from the changes in the actor, a time-varying component in the system, uncer-

tainties in the environment, and unexpected changes due to failures. When the global

system model is approximated by function approximators, their complexity will affect

the convergence speed and smoothness of the online adaptation. Several studies [55, 56]

have therefore suggested to remove the global system model and to exploit previous

critic outputs and/or inputs instead. Although this technique has been successfully ap-

plied to many ACD methods, it can only relieve the off-line learning phase of some Ac-

tion Dependent (AD) forms. The AD variations of ACDs directly connect the output of

the actor to the input of the critic [51, 53, 54, 56, 57]. From a theoretical point of view, the

actor output is not necessarily an input to the critic; and from a practical perspective,

the additional input can increase the dimension and complexity of the critic. Further-

more, previous studies comparing ACDs and their AD forms have reported that ACDs

have higher success rates and online adaptability [51, 54]. Therefore, online learning

1.3. RESEARCH QUESTIONS, METHODS, AND SCOPE

1

7

control with ACDs is still one of the most active areas in RL today.

1.2.3. SYSTEMATIC AND TRANSFERABLE RL METHODS IN HIGH-LEVEL

GUIDANCE AND NAVIGATION

In addition to low-level control, RL methods are also widely applied to high-level guid-

ance and navigation tasks. Traditional RL methods, which solve optimal control prob-

lems of Markov Decision Processes (MDPs) [29, 31], have been well studied for these

tasks in known or small-scaled environments. However, aerospace applications can have

a huge amount of states and actions, and consequently, ‘curse of dimensionality’. This

phenomenon is caused not only by the high dimensionality of state and action spaces

but also by the complexity of the environment and task, which often impede RL appli-

cations to solve these problems. Although ADP methods can relieve this situation some-

what, the number of parameters will still grow with the exponentially growing number of

states and actions, especially for complex guidance and navigation tasks with multiple

objectives [58, 59].

Furthermore, in practice, aerospace systems often need to explore an initially un-

known and uncertain environment with limited sensors, which is known as Partially

Observable Markov Decision Processes [36, 45, 48, 49, 60]. They do not have a perfect

perception of the absolute states in the environment, such as exact positions. Instead,

they observe a relative state, such as heading angles and images captured by a camera.

The sensed relative states can be ambiguous and prevent the value/cost of that state

from converging. These problems significantly impede the application of RL methods to

guidance and navigation tasks in aerospace systems.

Recent research has sought to deal with these problems through Hierarchical Rein-

forcement Learning (HRL) [32, 37, 61, 62]. It replaces the state-to-action mapping by a

hierarchy of abstract actions. These ideas are inspired by human learning and decision

making, such as illustrated in Fig.1.3. Hierarchical decomposition speeds up learning

in an efficient way and naturally reduces the uncertainty induced by the partial observ-

ability. However, detailed HRL designs and their applications have barely been reported.

The reason can be that the explicit rules for establishing the hierarchies still need expert

knowledge, and the learned results in one application cannot be directly used in other

applications. Thus, it is essential to develop a more systematic design of HRL possessing

transferable learning capabilities.

1.3. RESEARCH QUESTIONS, METHODS, AND SCOPE

This section presents the research questions, the methods and contributions, and the

scope and limitation of this dissertation.

1.3.1. RESEARCH QUESTIONS

RL methods are relatively new in the field of aerospace guidance, navigation, and

control. They have many benefits, but also some limitations, when applied to aerospace

systems. The aim of this thesis is to address the previously mentioned knowledge gaps

by dealing with the following research question:

1

8 1. INTRODUCTION

HOME

Child Center

Level 1:

Level 2:

Level 3:

Home-Child Center-Work

Follow the bicycle lane

Sustain the equilibrium of

the bicycle

Figure 1.3: HRL on human behaviors: an example of human learning and decision making with a hierarchy

of action abstraction and task decomposition. In this example, the high-level path plans are devised in Level

1, for efficiently fulfilling the tasks, e.g., bringing a child to the child center and going to the office by bike.

Based on this plan, sub-tasks, such as following the bicycle lane and preventing collisions for safety reason,

require decisions of action in Level 2, e.g., to go forward, turn left, or turn right. These tasks can be further

decomposed down to a lower level, Level 3, such as sustaining the equilibrium of the bicycle and keeping a

proper speed.

Main Research Question

How can aerospace systems exploit RL methods to improve the autonomy and

online learning with respect to the a priori unknown system and environment,

dynamical uncertainties, and partial observability?

This main research question is addressed in three specific methods and/or applications:

(i) approximate dynamic programming with a quadratic cost function, (ii) adaptive critic

designs, and (iii) high-level guidance and navigation.

ADP WITH QUADRATIC COST FUNCTION

LADP is an attractive combination of optimal control and RL strategy. Based on the

assumption of LTI systems, this method uses temporary difference errors to numerically

approximate the kernel matrix of the quadratic cost function. Therefore, this method is

model-free, and the model information is implicitly contained in the kernel matrix. In

addition, the method is efficient and mathematically explicit by calculating the optimal

control input. However, most aerospace systems are nonlinear, and the eventually

converged quadratic cost function cannot represent this nonlinearity. This challenge

can be formulated as the first research question:

1.3. RESEARCH QUESTIONS, METHODS, AND SCOPE

1

9

RQ1: How to generalize LADP to deal with nonlinear and/or time-varying sys-

tems, model mismatch, and partial observations, while retaining the efficiency

and mathematical explicitness?

ADAPTIVE CRITIC DESIGNS

ACDs can be used in aerospace systems to control nonlinear systems by exploiting

nonlinear function approximators. However, in ACDs, an accurate global system model

still plays an important role. This model is identified off-line using representative simu-

lation models, which may be difficult to obtain and are often not accurate themselves.

In addition, the online adaptation of the system model also needs to be sufficiently

quick and smooth, to deal with unforeseen dynamics in the system, uncertainties in the

environment, and unexpected changes due to failures. This leads to the second research

question:

RQ2: How to devise online ACDs and improve the online adaptability, to cope

with internal uncertainties, external disturbances, and even sudden faults?

HIGH-LEVEL GUIDANCE AND NAVIGATION

With the increasing difficulty of high-level tasks, the state and action space can be

high-dimensional, which even ADP methods cannot cope with. Recent research tackles

the ‘curse of dimensionality’ in multi-objective, high-level decision-making problems

through using hierarchical structures. However, the explicit rules of establishing the

hierarchies and of assigning the rewards have not yet been well-published and usually

involve engineer’s preference, which may prevent the transfer learning from one appli-

cation to another. Furthermore, current HRL methods often use the same or very similar

RL methods within one application to ease the combination of different hierarchies. To

acquire optimal decision-making efficiently, however, different levels within one HRL

application often need different learning methods, learning types, rewards assignment,

and even state information. The third research question of this dissertation, therefore,

can be formulated as follows:

RQ3: How to establish a systematic HRL controller that deals with multiple ob-

jectives and partial observability, possesses transfer learning ability, and utilizes

diverse RL methods?

1.3.2. RESEARCH METHODS AND CONTRIBUTIONS

Incremental control methods [63–67] are often used in adaptive control to deal with sys-

tem nonlinearity and uncertainty without identifying the global system. The incremen-

tal form of a nonlinear dynamic system is actually a linear time-varying approximation

of the original system, assuming a sufficiently high sample rate for discretization. This

1

10 1. INTRODUCTION

form has been successfully applied to the design of nonlinear adaptive controllers, such

as Incremental Nonlinear Dynamic Inversion (INDI) [63–66] and Incremental BackStep-

ping (IBS) [67], to reduce their model dependency. Nevertheless, these methods still

need some a priori knowledge of the system model, and have neither addressed opti-

mization nor synthesis of designed closed-loop systems.

Therefore, the incremental control technique, in LADP and ACD methods, is used to

generalize their use to nonlinear, unknown systems, and to improve their online adapt-

ability. The main contributions in the optimal adaptive control field are listed as follows:

• A novel, model-free incremental Approximate Dynamic Programing (iADP)

method is proposed for regulation problems with full state feedback and output

feedback. This method uses incremental techniques to cope with system nonlin-

earities.

• An optimal tracking control method, based on iADP, is developed, to deal with

unknown, time-varying internal dynamics and stochastic references with full state

measurements and partial observability.

• This dissertation also presents the proofs and necessary conditions of the pre-

dictability of the system output in the regulation problem, and of the output track-

ing error in the tracking problem with partial observations.

• An Incremental model based Heuristic Dynamic Programming (IHDP) method is

proposed to online and adaptively control unknown aerospace systems in the

presence of nonlinear aerodynamic uncertainties, internal disturbances, and/or

external disturbances.

• An Incremental model based Dual Heuristic Programming (IDHP) method is de-

veloped as an online ACD, which further improves the precision, accelerates the

online learning, and deals with a wider range of initial conditions. This method

is also validated to be successful in a Fault-Tolerant Control (FTC) task and in the

presence of high-frequency measurement noise.

For high-level guidance and navigation, HRL methods have shown potential for

large-scaled and complex tasks. The main contributions in this decision-making field

are listed as follows:

• The hybrid Hierarchical Reinforcement Learning (hHRL) is proposed for online

guidance and navigation in PO environment. This method allows for different

learning methods, learning types, rewards assignment, and state information in

different levels to improve the efficiency.

• The rules of establishing the hierarchies are set out to assimilate the multiple ob-

jectives and to allow transfer of learning within and across tasks.

1.3. RESEARCH QUESTIONS, METHODS, AND SCOPE

1

11

1.3.3. SCOPE AND LIMITATIONS

In order to focus on the main goal of this dissertation, the scope is limited as follows:

Aerospace systems: The proposed methods in this dissertation can be applied to, but

are not necessarily limited to, aerospace systems. One application is an aerial vehicle,

which is a second-order continuous missile model [68, 69]. This model is simple but

nonlinear. It contains aerodynamic uncertainties and can operate at a high and rapidly

changing angle of attack. It is suitable for a validation of the newly-developed model-

free methods and for a fair comparison with the current RL methods. Another appli-

cation is spacecraft attitude control disturbed with liquid sloshing [11, 12]. This is a

Multiple-Input Multiple-Output (MIMO) nonlinear control problem, which is used to

further validate the proposed methods and/or ideas in more complex systems and tasks.

In the guidance and navigation part, the focus is shifted onto high-level decision-making

problems. Therefore, the aerospace system is further simplified as a point mass model

with discrete state and action spaces.

In addition, this dissertation focuses on the method development, theoretical analy-

sis, and simulation experiments and does not include experiments on complex simula-

tion models or any real systems.

Model-free: The proposed methods for low-level control all belong to model-free ap-

proaches, as they do not need any a priori information of the system dynamics nor on-

line identification of the global system model. They assume a general continuous state

space model, which can represent any aerospace system, and then identify the time-

varying incremental model online to approximate the system linearized around the cur-

rent instant.

Online reinforcement learning: Reinforcement learning is learning from the re-

wards/penalties, or even from failures. There may be several degrees of online learning

ability requirements, which depend on the system stability, the reward/penalty assign-

ment, and even the control objectives. If the system is inherently stable or has a repre-

sentative model, the control policy can be updated iteratively until converged, and then

used as an initial policy for mismatched systems or different control tasks with further

online, recursive adaptation. On the other hand, if the system is open-loop unstable,

and a priori unknown, online reinforcement learning needs to update the control pol-

icy online recursively and learns a feasible controller before failure. The online learning

ability in one application can vary also, depending to the desired behaviors and reward

assignments of each objective, such as preventing collisions and approaching the target

in the guidance and navigation task. Because the system receives penalties after each

collision, but rewards only after it reaches the target, the collision avoidance policy and

goal reaching policy are updated within and after each iteration.

In addition, online learning also depends on the on-board computing capability,

proper excitation and exploration, and other system features, which, however, are not

addressed. This dissertation aims at enhancing the online applicability of current RL

methods from the theoretical perspective.

Partial observability: Partial observability often occurs in aerospace systems when the

system does not have enough information to infer all of its states [45]. Those meth-

1

12 1. INTRODUCTION

ods dealing with deterministic systems and measurements are often referred to as out-

put feedback methods [33, 46]. When stochastic, time-varying dynamics are involved,

they belong to Partially Observable Markov Decision Processes (POMDPs) [36, 48, 49].

In low-level control tasks, stochastic, unknown dynamics, such as unpredictable gusts

and unmeasurable, time-varying reference signals, bring stochastic dynamics into the

measurement and may lead to partial observability. Note that in this situation the ob-

servability matrix of the system, from a control theoretic perspective, still can be full col-

umn rank. In guidance and navigation tasks, partial observability is often referred to as a

non-perfect perception of the environment. The absolute state in the environment can

not be inferred from the observation, e.g., in an indoor navigation task the flying robot

is only equipped with limited visual sensors and it cannot perfectly know its absolute

position.

1.4. OUTLINE OF THE THESIS

The body of this thesis is divided into three parts to answer the three research questions,

respectively, as seen in Fig. 1.4. Part I encompasses Chapters 2 and 3, which generalize

the LADP methods to nonlinear systems with an approximate convex cost function. Part

II, consisting of Chapters 4 and 5, introduces incremental models in ACDs to enhance

the online applicability. Part III addresses a high-level guidance and navigation problem

with a hybrid HRL method in Chapter 6. The outline of this thesis is as follows:

Chapter 2 proposes an effective and systematic adaptive control method for sta-

bilization problems, called incremental Approximate Dynamic Programming (iADP)

methods, to deal with system nonlinearity. This method combines the advantages

of LADP methods and the incremental nonlinear control techniques to generate two

model-free, effective adaptive flight controllers for nonlinear systems: iADP based on

full-state feedback (iADP-FS) and iADP based on output feedback (iADP-OP). These two

controllers are developed to solve optimal control problems with direct availability of

full states and with only the availability of the system outputs.

In addition, Chapter 3 expands the idea of iADP to optimal tracking control prob-

lems for MIMO nonlinear systems and proposes two controllers for different observabil-

ity conditions: full state measurement and partial observability. Because of the incre-

mental model, the cost functions can be less dependent on the system or the reference

and only need to be a rough approximation of the true cost-to-go. This approximation

is a quadratic function only of the current tracking error, without expanding the dimen-

sion of the state space for the cost function to an augmented one. For each observability

condition, two algorithms are developed for off-line batch learning and online recursive

adaptation, respectively.

Chapter 4 develops an Incremental model based Heuristic Dynamic Programming

(IHDP) method to deal with reference signal tracking problems. It generates a near-

optimal controller for nonlinear systems, without a priori knowledge of the system dy-

namics. The IHDP method utilizes an online identified incremental model, instead of a

neural network plant approximator, to simplify the updating of the actor network. This

method can avoid off-line learning of the global system model, so as to improve the con-

trol performance and to accelerate the online learning efficiently.

Chapter 5 proposes another online self-learning adaptive controller for reference

1.5. THESIS PUBLICATIONS

1

13

tracking problems, namely Incremental model based Dual Heuristic Programming

(IDHP). This method accelerates the online learning compared to traditional DHP meth-

ods, and increases the convergence rate and control performance compared to the IHDP

method presented in Chapter 4. In addition, this method is validated in an fault-tolerant

control task and in the presence of measurement noise.

Chapter 6 designs a hybrid Hierarchical Reinforcement Learning (hHRL) method

consisting of several levels, where each level uses different methods to optimize the

learning with different state information and objectives. This method can help to ac-

celerate learning, address the ‘curse of dimensionality’ in complex guidance and naviga-

tion tasks, reduce the uncertainty or ambiguity at higher levels, and efficiently transfer

the learning results within and across tasks. The formulated rules of establishing the

hierarchies make this method more flexible, transferable and closer to human behavior.

Chapter 7 concludes that (1) LADP methods can be applied to nonlinear systems

using incremental techniques, while keeping them systematic and computationally effi-

cient, (2) ACDs can utilize online identified incremental models to prevent off-line learn-

ing of the global model, to speed up the convergence rate, and to improve the control

performance, and (3) hHRL methods provide a systematic design for guidance and nav-

igation tasks with multiple objectives and partial observability.

1.5. THESIS PUBLICATIONS

This section lists the publication sources for main chapters:

• Chapter 2 is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu, Nonlinear adaptive flight control us-

ing incremental approximate dynamic programming and output feedback, Jour-

nal of Guidance, Control, and Dynamics, Vol. 40, No. 2, p. 493-500, 2017.

https://doi.org/10.2514/1.G001762.

• Chapter 3 is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental approximate dynamic pro-

gramming for nonlinear adaptive tracking control with partial observability, Jour-

nal of Guidance, Control, and Dynamics, (under review).

• Chapter 4 is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu, Launch vehicle adaptive flight control with

incremental model based heuristic dynamic programming, Acta Astronautica, (un-

der review).

• Chapter 5 is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental model based online dual

heuristic programming for nonlinear adaptive control, Control Engineering Prac-

tice, Vol. 73, p. 13-25, 2018. https://doi.org/10.1016/j.conengprac.2017.12.011.

• Chapter 6 is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu, Hybrid hierarchical reinforcement learning

with partial observability, Artificial Intelligence (submitted).

1

14 1. INTRODUCTION

Chapter 1

Chapter 2 Chapter 3

Chapter 4 Chapter 5

Chapter 6

Chapter 7

Part I: Incremental Approximate Dynamic Programming

Part II: Online Adaptive Critic Designs

Part III: High-level Guidance and Navigation

RQ 1

RQ 2

RQ 3

Introduction

IADP regulation control

with output feedback

IADP tracking control in

partially observable environment

Incremental model based

heuristic dynamic programming

Incremental model based

dual heuristic programming

Hybrid hierarchical reinforcement learning

in partially observable environment

Conclusion and

recommendations

Cost Function

Representation

Quadratic

Cost Function

Neural

Networks

Discrete Table

Figure 1.4: Outline of the thesis.

I
INCREMENTAL APPROXIMATE

DYNAMIC PROGRAMMING

15

2
INCREMENTAL APPROXIMATE

DYNAMIC PROGRAMMING FOR

REGULATION CONTROL WITH

OUTPUT MEASUREMENTS

As was already suggested in the introduction, Linear Approximate Dynamic Program-

ming (LADP) methods have attractive merits: model-free processes, mathematical ex-

plicitness, and efficiency of resource usage. However, these methods cannot be applied

to nonlinear or time-varying systems. In this chapter, LADP methods are combined with

incremental techniques to deal with nonlinear control problems. Two incremental Ap-

proximate Dynamic Programming (iADP) algorithms are developed, one which has di-

rect availability of full states and one which uses only input/output measurements. This

chapter starts with the development of these two iADP algorithms in Section 2.2. Section

2.3 validates these algorithms with numerical experiments on a simulated aerospace sys-

tem. The results show improvement of the closed-loop performance of the nonlinear

system.

This chapter is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu. Nonlinear adaptive flight control using incremental approximate

dynamic programming and output feedback. Journal of Guidance, Control, and Dynamics. Vol. 40, No. 2, p.

493-500, 2017. https://doi.org/10.2514/1.G001762 [46].

17

2

18

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

2.1. INTRODUCTION

Model-free adaptive control approaches are worthwhile to be investigated for fault-

tolerant flight control due to many unsolved challenges in model-based strategies

[8, 9, 23–28]. Reinforcement Learning (RL) controllers have been proposed to solve non-

linear, optimal control problems without using accurate system models [29, 31]. Tra-

ditional RL, solving optimality problems, is an off-line method using an n-dimensional

look-up table for all possible state vectors, which may cause the “curse of dimensional-

ity” [32, 34].

To tackle the “curse of dimensionality”, numerical methods, such as Approximate

Dynamic Programming (ADP), have been developed to solve the optimality problem

[32, 44], by applying a function approximator with parameters to approximate the

value/cost function. Searching for an applicable structure and parameters of the func-

tion approximator is a global optimization problem as these approximators are in gen-

eral highly nonlinear. For special cases that the dynamics of the system are linear, Dy-

namic Programming (DP) gives a complete and explicit solution, because the one-step

state cost and the cost function in these cases are quadratic [44]. For general nonlinear

control problems, DP is difficult to carry out, and ADP designs are not systematic [34].

Considering the design challenges mentioned above, trade-off solutions which may

lead to simple and systematic designs are extremely attractive. Some successful ap-

proaches have been reported lately [33, 70–72]. In this chapter, an incremental ADP

(iADP) model-free adaptive control approach is developed for nonlinear systems. This

control approach is inspired by the ideas and solutions given by several articles [33, 44,

63, 65, 67] . It starts with the selection of the cost function in a systematic way [44], and

follows with the Linear ADP (LADP) model-free adaptive control approach [33]. As the

plant to be controlled in this chapter is nonlinear, the iADP is developed based on the

linearized incremental model of the original nonlinear system [63, 65, 67].

The incremental form of a nonlinear dynamic system is actually a linear time-varying

approximation of the original system assuming sufficiently high sample rate for the dis-

cretization [63, 65, 67]. Combining LADP and the incremental form of the system to

be controlled leads to a new nonlinear adaptive control algorithm iADP. It retains the

advantages of LADP with a systematic formulation of cost function approximations for

nonlinear systems, while keeping the closed-loop system optimized.

Classical ADP methods assume that the system is fully observable and that the ob-

served states obey a Markov process. The problems of partial/imperfect information and

unmeasurable state vector estimation are very challenging and demanded to be solved

in numerous applications [45]. Many studies have already taken the presence of stochas-

tic, time-varying wind disturbance into account as a general problem in practical navi-

gation and guidance control [73, 74]. Despite that, parametrized output feedback con-

trollers have been designed to deal with problems without full state information and to

achieve finite time stability based on observers [38, 75–79]. However, these methods still

need a priori knowledge and/or an assumption of the system model structure.

Other than that, output feedback ADP algorithms [33] have been proposed, as op-

posed to full state feedback, to tackle problems without direct state observations. These

algorithms do not require any a priori knowledge of the system or engineering knowl-

edge to design control parameters or even a separate observer. However, these algo-

2.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING

2

19

rithms are derived for affine in control input Linear Time-Invariant (LTI) systems.

The remainder of this chapter is structured as follows. Section 2.2 starts with an algo-

rithm development combining ADP and the incremental approach assuming the direct

availability of the full state observation [80], and follows by an iADP algorithm based on

output feedback, which is designed by applying only the output and input measurement.

Those algorithms are applied to a flight control simulation in section 2.3. Lastly, section

2.4 makes a brief conclusion on the benefits of using the proposed iADP methods as well

as their limits and also addresses the challenges and possibilities for future work.

2.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING

Incremental methods are able to deal with nonlinear systems. These methods compute

the required control increment at a certain moment using the conditions of the system

in the instant before [65]. Aircraft models are highly nonlinear and can be generally given

as follows:

ẋ(t) = f [x(t),u(t)], (2.1)

y(t) = h[x(t)], (2.2)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rp is the measured

output, f [x(t),u(t)] ∈ Rn provides the physical evaluation of n states over time, and

h[x(t)] ∈Rp is the output (observation) function and can be measured using sensors.

The system dynamics around the condition of the system at time t0 can be linearized

by using the first-order Taylor series expansion:

ẋ(t) ≈ ẋ(t0)+F [x(t0),u(t0)][x(t)−x(t0)]+G[x(t0),u(t0)][u(t)−u(t0)], (2.3)

where F [x(t),u(t)] =
∂ f [x(t),u(t)]

∂x(t)
∈ Rn×n is the system matrix of the linearized model at

time t , and G[x(t),u(t)] =
∂ f [x(t),u(t)]

∂u(t)
∈ Rn×m is the control effectiveness matrix of the

linearized model at time t .

It is assumed that the control inputs, states, and state derivatives of the system are

measurable. Under this assumption, the model around time t0 can be written in an in-

cremental form:

∆ẋ(t) ≃ F [x(t0),u(t0)]∆x(t)+G[x(t0),u(t0)]∆u(t). (2.4)

This linearized incremental model is identifiable by using Least Square (LS) techniques.

2.2.1. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING BASED ON

FULL STATE FEEDBACK

Physical systems are often continuous, but the collected data are discrete samples. It

is assumed that the control system has a constant high sampling frequency. Thus, the

nonlinear system can be written in a discrete form as follows:

xt+1 = f (xt ,ut), (2.5)

yt = h(xt). (2.6)

2

20

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

When the system has a direct availability of the full state observations, the output

equation can be written as

yt = xt . (2.7)

By taking the Taylor expansion, the linearized discrete model of this nonlinear system

around xt−1, which approximates xt , can also be written in an incremental form:

∆xt+1 ≃ Ft−1∆xt +Gt−1∆ut , (2.8)

where ∆xt = xt −xt−1, ∆ut = ut −ut−1, Ft−1 =
∂ f (x,u)

∂x
|xt−1,ut−1 ∈ Rn×n is the system tran-

sition matrix, and Gt−1 =
∂ f (x,u)

∂u
|xt−1,ut−1 ∈ Rn×m is the input distribution matrix at time

step t −1. Because of the high frequency sample data and slow-varying system, the cur-

rent linearized model (Ft−1,Gt−1) can be identified from L different data points using a

piecewise sequential LS method [80, 81]. Because there are n +m parameters in the i th

row, L needs to satisfy L ≥ (n +m).

To minimize the cost of the system to reach its goal, the one-step cost function is

defined quadratically:

ct = c(yt ,ut ,y
r e f
t) = (yt −y

r e f
t)T Q(yt −y

r e f
t)+uT

t Rut , (2.9)

where Q and R are positive definite matrices, and y
r e f
t denotes the output reference.

Considering a regulation control problem, the one-step cost function at time t can be

written as

ct = c(yt ,ut) = yT
t Qyt +uT

t Rut . (2.10)

For infinite horizons, the cost-to-go function is the cumulative future reward from

any initial state xt :

J µ(xt) =
∞∑

i=t

γi−t (yT
i Qyi +uT

i Rui)

= yT
t Qyt + (ut−1 +∆ut)T R(ut−1 +∆ut)+γJ µ(xt+1),

(2.11)

where µ is the current policy (control law) for this iADP algorithm, γ ∈ [0,1] is a param-

eter called the discounted rate or the forgetting factor. The cost-to-go function for the

optimal policy µ∗ is defined as follows:

J ∗(xt) = min
∆ut

[
yT

t Qyt + (ut−1 +∆ut)T R(ut−1 +∆ut)+γJ ∗(xt+1)
]

. (2.12)

In this regulation problem, the policy µ is defined as the feedback control law in an in-

cremental form:

∆ut =µ(ut−1,xt ,∆xt). (2.13)

The optimal policy at time t is given by

µ∗
= arg min

∆ut

[
yT

t Qyt + (ut−1 +∆ut)T R(ut−1 +∆ut)+γJ ∗(xt+1)
]

. (2.14)

When the dynamics of the system are linear, this problem is known as the Linear-

Quadratic Regulator (LQR) control problem. For this nonlinear case, the true cost-to-go

2.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING

2

21

is the sum of quadratic values in the outputs and inputs with a forgetting factor. Thus, the

true cost-to-go J µ(xt) should always be positive. In general, ADP uses a surrogate cost

function Ĵ µ(xt) to approximate the true cost-to-go. The goal is to capture its key fea-

tures instead of accurately approximating the true cost-to-go. In many practical cases,

even for time-varying systems, simple quadratic cost function approximations are cho-

sen so that the evaluation step can be exactly carried out and the optimization prob-

lem is reduced to be tractable [44]. A systematic cost function approximation applied in

this chapter is chosen to be quadratic in xt for some symmetric, positive definite matrix

P ∈Rn×n :

Ĵ µ(xt) = xT
t Pxt . (2.15)

This quadratic cost function approximation has an additional, important benefit for

this approximately convex state-cost system with a fixed minimum value. To be specific,

this system has an optimal state when it reaches the desired state and keeps it. The

true cost-to-go may have local minima elsewhere because of the nonlinearity. On the

other hand, this quadratic cost function has only one local minimum, which is also the

global one. Therefore, this quadratic form helps to prevent the policy from going into

any other local minimum. The learned symmetric, positive definite P matrix guarantees

progressive optimization of the policy.

The LQR Bellman equation for Ĵ µ in the incremental form becomes

Ĵ µ(xt) = yT
t Qyt + (ut−1 +∆ut)T R(ut−1 +∆ut)

+γ(xt +Ft−1∆xt +Gt−1∆ut)T P (xt +Ft−1∆xt +Gt−1∆ut).
(2.16)

By setting the derivative with respect to ∆ut to zero, the optimal control can be obtained:

∆ut =−(R +γGT
t−1PGt−1)−1[Rut−1 +γGT

t−1Pxt +γGT
t−1PFt−1∆xt]. (2.17)

From Eq. (2.17), it can be concluded that the policy is in the form of system variables

(ut−1,xt ,∆xt) feedback, and the gains are functions of the dynamics of the current lin-

earized system matrices (Ft−1,Gt−1).

Opposite to the model-based control algorithms with an online identification of

global nonlinear systems, the availability of these local linear models is sufficient for

iADP algorithms. Furthermore, the determination of the linear model structure is much

simpler than the identification of the nonlinear model structure. If the nonlinear model

is unknown, while the full state is measurable, the iADP algorithm, as shown below, can

be applied to improve the policy iteratively online.

iADP algorithm based on Full State feedback (iADP-FS)

Evaluation. The cost function kernel matrix P under policy µ can be evaluated and

updated recursively to Bellman equation for each iteration j = 0,1, ... until convergence:

xT
t P (j+1)xt = yT

t Qyt +uT
t Rut +γxT

t+1P (j)xt+1. (2.18)

Policy improvement. The policy improves for the new kernel matrix P (j+1):

∆ut =−(R +γGT
t−1P (j+1)Gt−1)−1[Rut−1 +γGT

t−1P (j+1)xt +γGT
t−1P (j+1)Ft−1∆xt]. (2.19)

2

22

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

When ∆t approximates to 0, the identified incremental model Ft−1, Gt−1 and the

prediction of the next state approximate their true values. With this linearized model,

this problem locally becomes an LQR problem. Referring to optimal control problems,

the policy designed above approaches the optimal policy as γ = 1. However, in ADP,

the discount factor γ is usually chosen as γ ∈ (0,1), so that the infinite sum has a finite

value as long as the cost sequence is bounded, and the agent is not ‘myopic’ in being

concerned only with maximizing immediate cost [31].

2.2.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING BASED ON

OUTPUT FEEDBACK

The full state of a system, such as an air vehicle system, is often not available. In ad-

dition, agents often try to control a system without enough information to infer its real

states [45]. The Partially Observable Markov Decision Process (POMDP) framework can

be used to deal with stochastic systems. For deterministic systems, these types of meth-

ods are often referred to as output feedback. The systems still need to be observable,

which means that the unmeasurable internal states (the full state) can be reconstructed

with the observations over a long enough time horizon. For model-free methods, the

system is observable when the observability matrix has a full column rank.

Considering the nonlinear system again, see Eq. (2.5) and (2.6), the output (observa-

tion) around xt−1 can also be linearized with Taylor expansion:

∆yt ≃ Ht−1∆xt , (2.20)

where Ht−1 =
∂h(x)
∂x

|xt−1 ∈ Rp×n is the observation matrix at time step t − 1. The non-

linear system incremental dynamics, see Eq. (2.8) and (2.20), at current time t can be

represented by the previously measured data on time horizon [t-N, t]:

∆xt ≃ F̃t−2,t−N−1 ·∆xt−N +UN ·∆ut−1,t−N , (2.21)

∆yt ,t−N+1 ≃VN ·∆xt−N +TN ·∆ut−1,t−N , (2.22)

where symbol F̃t−a,t−b =
∏t−b

i=t−a
Fi = Ft−a · · · · ·Ft−b ,

∆ut−1,t−N =

∆ut−1

∆ut−2

...

∆ut−N

∈RmN , ∆yt ,t−N+1 =

∆yt

∆yt−1
...

∆yt−N+1

∈RpN ,

UN =
[
Gt−2 Ft−2Gt−3 ... F̃t−2,t−N ·Gt−N−1

]
∈Rn×mN is the controllability matrix,

VN =

Ht−1F̃t−2,t−N−1

Ht−2F̃t−3,t−N−1

...

Ht−N Ft−N−1

∈RpN×n is the observability matrix,

2.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING

2

23

TN =

Ht−1Gt−2 Ht−1Ft−2Gt−3 Ht−1F̃t−2,t−3Gt−4 · · · Ht−2F̃t−3,t−N ·Gt−N−1

0 Ht−2Gt−3 Ht−2Ft−3Gt−4 · · · Ht−2F̃t−3,t−N ·Gt−N−1

0 0 Ht−3Gt−4 · · · Ht−3F̃t−4,t−N ·Gt−N−1

...
...

. . .
. . .

...

0 0 · · · 0 Ht−N ·Gt−N−1

∈

RpN×mN .

When the system is fully observable, the left inverse of VN , which has a full column

rank, can be obtained:

V
l e f t

N
= (V T

N VN)−1V T
N . (2.23)

To have a full column rank for observability matrix VN , N needs to satisfy N ≥ n/p. Mak-

ing the number of parameters to be identified as small as possible, the smallest value for

N which meets N ≥ n/p is usually selected.

By left-multiplying V
l e f t

N
to Eq. (2.22), and then substituting the equation of ∆xt−N

into Eq. (2.21), the incremental state can be reconstructed uniquely as a function of the

past input/output:

∆xt ≃ F̃t−2,t−N−1 ·V
l e f t

N
·∆yt ,t−N+1 + (UN − F̃t−2,t−N−1 ·V

l e f t

N
·TN) ·∆ut−1,t−N

=
[
M∆u M∆y

][
∆ut−1,t−N

∆yt ,t−N+1

]

= Mt−1∆zt ,t−N ,

(2.24)

where M∆y denotes F̃t−2,t−N−1 ·V
l e f t

N
∈Rn×pN , M∆u denotes (UN −M∆y TN ∈Rn×mN),

and Mt−1 = [M∆u M∆y] ∈Rn×(m+p)N . The matrix Mt−1 is identifiable by using previous

M̂ steps with M̂ ≥ (m +p)N .

The nonlinear incremental output equation, Eq. (2.20), can be represented by a his-

tory of measured input/output data on time horizon [t-N, t-1] in another form:

∆yt−1,t−N ≃V N ·∆xt−N +T N ·∆ut−1,t−N , (2.25)

where V N =

Ht−2F̃t−3,t−N−1

Ht−3F̃t−4,t−N−1

...

Ht−N−1

∈RpN×n ,

T N =

0 Ht−2Gt−3 Ht−2Ft−3Gt−4 · · · Ht−2F̃t−3,t−N ·Gt−N−1

0 0 Ht−3Gt−4 · · · Ht−3F̃t−4,t−N ·Gt−N−1

...
...

. . .
. . .

...

0 0 · · · 0 Ht−N ·Gt−N−1

0 0 0 0 0

∈RpN×mN .

When the system is fully observable, the left inverse of V N , which also has a full col-

umn rank, can be obtained:

V
l e f t

N = (V
T

N V N)−1V
T

N . (2.26)

2

24

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

Left-multiplying V
l e f t

N to Eq. (2.25) and substituting the resulted ∆xt−N into Eq. (2.21)

and then the resulted ∆xt into Eq. (2.20), the dynamics of the output and of previous

measured data can be obtained:

∆yt ≃ (Ht−1UN −Ht−1F̃t−2,t−N−1 ·V
l e f t

N T N) ·∆ut−1,t−N

+Ht−1F̃t−2,t−N−1V
l e f t

N ·∆yt−1,t−N

=G t−1 ·∆ut−1,t−N +F t−1 ·∆yt−1,t−N .

(2.27)

The output increment ∆yt+1 can also be reconstructed uniquely as a function of the

measured input/output data of N previous steps:

∆yt+1 ≃G t ·∆ut ,t−N+1 +F t ·∆yt ,t−N+1

=G t ,11 ·∆ut +G t ,12 ·∆ut−1,t−N+1 +F t ·∆yt ,t−N+1,
(2.28)

where G t ∈ Rp×N m is the extended control effectiveness matrix, F t ∈ Rp×N p is the

extended system matrix, G t ,11 ∈ Rp×m and G t ,12 ∈ Rp×(N−1)m are partitioned matri-

ces from G t . Matrices G t and F t are identifiable by using the piecewise sequential LS

method [80, 81]. In this case, there are (m +p)N parameters in each row. Therefore, the

number of previous data samples M needs to satisfy M ≥ (m +p)N .

It is assumed that the cost function of the system state at time t can be written as a

function of a symmetric expended kernel matrix P ∈ RN (m+p)×N (m+p) in the quadratic

form in terms of a history of observation vectors zt ,t−N = [uT
t−1,t−N ,yT

t ,t−N+1]T :

Ĵ µ(zt ,t−N) = zT
t ,t−N Pzt ,t−N . (2.29)

The optimal policy under the estimation of P in terms of zt ,t−N is rewritten to be

µ∗
= arg min

∆ut

(yT
t Qyt +uT

t Rut +γzT
t+1,t−N+1 P zt+1,t−N+1), (2.30)

where

zT
t+1,t−N+1 P zt+1,t−N+1 =

ut−1 +∆ut

ut−1,t−N+1

yt +∆yt+1

yt ,t−N+2

T

P11 P12 P13 P14

P T
12 P22 P23 P24

P T
13 P T

23 P33 P34

P T
14 P T

24 P T
34 P44

ut−1 +∆ut

ut−1,t−N+1

yt +∆yt+1

yt ,t−N+2

 . (2.31)

By differentiating with respect to ∆ut , the policy improvement step can be obtained in

terms of the measurements:

− [R +γP11 +γ(G t ,11)T
·P33 ·G t ,11 +γP13G t ,11 +γ(P13G t ,11)T] ·∆ut

= [R +γP11 +γ(G t ,11)T
·P T

13]ut−1 +γ[(G t ,11)T P33 +P13]yt

+γ[P12 + (G t ,11)T
·P T

23]ut−1,t−N+1 +γ[P14 + (G t ,11)T
·P34]yt ,t−N+2

+γ[(G t ,11)T P33 +P13](G t ,12 ·∆ut−1,t−N+1 +F t ·∆yt ,t−N+1).

(2.32)

If the nonlinear model is unknown, and only partial information about the states is

accessible, the output feedback ADP algorithm combined with the incremental method

can be applied to improve the policy iteratively online.

2.3. NUMERICAL EXPERIMENTS AND RESULTS

2

25

iADP algorithm based on OutPut feedback (iADP-OP)

Evaluation. The cost function kernel matrix P under policy µ can be evaluated and

updated recursively according to Bellman equation for each iteration j = 0,1, ... until

convergence:

z′Tt ,t−N+1P
(j+1)

z′t ,t−N+1 = yT
t Qyt +uT

t Rut +γz′Tt+1,t−N+2P
(j)

z′t+1,t−N+2. (2.33)

Policy improvement. The policy improves for the new kernel matrix P
(j+1)

according

to the derived optimal control policy:

∆ut =− [R +γP11 +γ(G t ,11)T
·P33 ·G t ,11 +γP13G t ,11 +γ(P13G t ,11)T]−1

·

{[R +γP11 +γ(G t ,11)T
·P T

13]ut−1 +γ[(G t ,11)T P33 +P13]yt

+γ[P12 + (G t ,11)T
·P T

23]ut−1,t−N+1 +γ[P14 + (G t ,11)T
·P34]yt ,t−N+2

+γ[(G t ,11)T P33 +P13](G t ,12 ·∆ut−1,t−N+1 +F t ·∆yt ,t−N+1)}.

(2.34)

Approximating ∆t to 0, the policy designed above approaches the optimal policy.

2.3. NUMERICAL EXPERIMENTS AND RESULTS

This section applies both iADP-FS and iADP-OF algorithms on a simulation of control-

ling an aerospace-related model, and shows how the algorithms perform in stabilizing

and regulating the system in the presence of input disturbances and an initial offset.

2.3.1. AIR VEHICLE MODEL

A nonlinear air vehicle simulation model is used in this section. Air vehicle models can

be highly nonlinear and are generally given as follows:

ẋ(t) = f [x(t),u(t)+w(t)], (2.35)

y(t) = h[x(t)], (2.36)

where Eq. (2.35) is the kinematic state equation, w(t) is the external disturbance, which

is set to be caused only by the input noise, Eq. (2.36) is the output (observation) equation.

As an application, only the elevator deflection will be regulated as pitch control to

stabilize the air vehicle. Thus, two longitudinal states, angle of attack α and pitch rate q

(i.e. x = [α q]), and one control input, the elevator deflection angle δe , are concerned.

The nonlinear model in the pitch plane is simulated around a steady wings-level

flight condition:

α̇= q +
q̄S

maVT
Cz (α, q, Ma ,δe), (2.37)

q̇ =
q̄Sd

Iy y
Cm(α, q, Ma ,δe), (2.38)

where q̄ is dynamic pressure, S is reference area, ma is mass, VT is speed, d is reference

length, and Iy y is pitching moment of inertia. Cz and Cm are the aerodynamic force and

moment coefficients, which are nonlinear functions.

2

26

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

The aerodynamic parameters of this model are valid for −10◦ <α< 10◦ [68, 69]:

Cz (α, q, Ma ,δe) =Cz1(α, Ma)+Bzδe ,

Cm(α, q, Ma ,δe) =Cm1(α, Ma)+Bmδe ,

Bz = b1Ma +b2,

Bm = b3Ma +b4,

Cz1(α, Ma) =φz1(α)+φz2Ma ,

Cz2(α, Ma) =φm1(α)+φm2Ma ,

φz1(α) = h1α
3
+h2α|α|+h3α,

φm1(α) = h4α
3
+h5α|α|+h6α,

φz2 = h7α|α|+h8α,

φm2 = h9α|α|+h10α,

(2.39)

where b1, ...,b4, h1, ...,h10 are constant coefficients in the flight envelop, and the Mach

number Ma is set to be 2.2.

When the input is u(t) = 0, α = 0 and q = 0 form an equilibrium of the system. The

flight control task is to stabilize the system (i.e., a regulation problem), if there is any

input disturbance or any offset from this condition. Specifically, an optimal policy µ∗

and the associated optimum performance need to be found by minimizing the state cost

[82].

2.3.2. RESULTS

IADP ALGORITHM BASED ON FULL STATE FEEDBACK

As with other ADP methods, good state cost estimation depends heavily on the explo-

ration of the state space, which is represented by persistent excitation in this case. An

amplitude varying multiple doublet disturbance is used in this numerical experiment to

test the performance of the proposed controllers. Figure 2.1 shows the response when

an amplitude varying multiple doublet disturbance was used in the numerical example.

The control system trained with the iADP algorithm rejects the disturbance compared to

the response with the initial policy, where the initial kernel matrix is an identity matrix

multiplied by a small positive value (0.01 in this chapter) P0 = 0.01I .

State 1: angle of attack

Time [s]

α
[◦

]

State 2: pitch rate

Time [s]

q
[◦

/s
]

Input: elevator

Time [s]

δ
[◦

]

initial policy trained policy input disturbance

0 4 8 120 4 8 120 4 8 12

-0.1

0

0.1

-15

-10

-5

0

5

10

15

-8
-6
-4
-2
0
2
4
6

Figure 2.1: IADP-FS applied to nonlinear aircraft model with an amplitude varying multiple doublet

disturbance.

2.3. NUMERICAL EXPERIMENTS AND RESULTS

2

27

Figure 2.2 shows the control performance when the initial state is an offset after a

simulated gust. After training, the information of G(x,u) and F (x,u) can be used to es-

timate the current linearized system when the system cannot be identified using online

identification without persistent excitation. Because the iADP method uses a simple

quadratic cost function, the policy parameters of kernel matrix P converge after only

two iterations.

State 1: angle of attack

Time [s]

α
[◦

]

State 2: pitch rate

Time [s]

q
[◦

/s
]

Input: elevator

Time [s]

δ
[◦

]

initial policy trained policy

0 4 8 120 4 8 120 4 8 12

-1.2

-0.8

-0.4

0

0.4

-10

-8

-6

-4

-2

0

2

-5

-4

-3

-2

-1

0

1

Figure 2.2: IADP-FS applied to nonlinear aircraft model with an initial offset.

This control method does not need the model of the nonlinear system, but still needs

the full state to estimate the cost function and the control effectiveness matrix. If the

model of the nonlinear system is unknown, and only coupled state information (obser-

vations) can be obtained, the iADP algorithm based on output feedback can be used.

IADP ALGORITHM BASED ON OUTPUT FEEDBACK

In practice, vane measurement techniques are cost-effective in measuring the angle of

attack α [83]. Vanes are usually mounted on the aircraft in a location xvane that allows

for relatively undisturbed air flow to be measured:

αmeasur e ≃Cc (α+
xvane −xcg

V
·q), (2.40)

where Cc denotes the calibration coefficient, and xcg is the aircraft center of gravity. As

a consequence, the kinematic position error induced by angular velocities q at the vane

location has to be considered.

According to this practical case, the output/sensor measurement is set to be a com-

bination of α and q with coefficients. Considering a practical case, which is to regulate

α, a big portion of α (0.9) and a small portion of q (0.1) are selected:

y(t) = [c1 c2] ·x(t) = [0.9 0.1] ·

[
α

q

]
. (2.41)

Figure 2.3 shows the disturbance response when a 3211 input disturbance was intro-

duced; Fig. 2.4 shows the control performance when the initial state is an offset from the

stable condition after a simulated gust; Fig. 2.5 shows that the policy parameters of the

kernel matrix converge quickly. After only 4 training iterations, the nonlinear system can

be regulated, as shown in Figs. 2.3 and 2.4.

2

28

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

Note that when information of α is available, we can calculate q by using the iden-

tified model and enough previously measured observations. With some knowledge or

assumptions on the model, the aircraft pitch plane system, α and q , is observable with

only information of α. However, the proposed iADP algorithm is a model-free method,

i.e., no assumptions about the model are needed, and the observations are from only

two samples. Therefore, the observability is defined in terms of whether VN in Eq. (2.22)

has full column rank. If no information about one of the states can be provided, the iADP

algorithm might not be beneficial.

State 1: angle of attack

Time [s]

α
[◦

]

State 2: pitch rate

Time [s]

q
[◦

/s
]

Input: elevator

Time [s]

δ
[◦

]

initial policy trained policy input disturbance

0 4 8 120 4 8 120 4 8 12

-0.2

-0.1

0

0.1

0.2

-20

-15

-10

-5

0

5

10

15

-10
-8
-6
-4
-2
0
2
4
6

Figure 2.3: IADP-OP applied to nonlinear aircraft model with an amplitude varying multiple doublet

disturbance.

State 1: angle of attack

Time [s]

α
[◦

]

State 2: pitch rate

Time [s]

q
[◦

/s
]

Input: elevator

Time [s]

δ
[◦

]

initial policy trained policy

0 4 8 120 4 8 120 4 8 12
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

-15

-10

-5

0

5

10

-8

-6

-4

-2

0

2

Figure 2.4: IADP-OP applied to nonlinear aircraft model with an initial offset.

Figures 2.6 and 2.7 show a comparison of disturbance response and natural response,

respectively, among three policies. The initial policy is what the original system follows.

It cannot compensate for the undesired inputs, such as gusts and ground effects. When

the full state is available, the iADP-FS algorithm improves the closed-loop performance,

lowers the disturbance response, and stabilizes the system from an offset much quicker.

When the full state is unavailable, but the system is observable, the iADP-OP algorithm

generates a policy. This policy has an almost equal ability to the policy of iADP-FS in

terms of stabilizing and regulating the system.

2.4. CONCLUSION

2

29

Policy number

P
a

ra
m

e
te

rs

P11

2P12

2P13

2P14

P22

2P23

2P24

P33

2P34

P44

1 2 3 4 5 6 7 8 9 10
-600

-500

-400

-300

-200

-100

0

100

200

300

400

Figure 2.5: Kernel matrix parameters during training with IADP-OP.

State 1: angle of attack

Time [s]

α
[◦

]

State 2: pitch rate

Time [s]

q
[◦

]

Input: elevator

Time [s]

δ
[◦

]

initial policy iADP-FS policy iADP-OP policy input disturbance

0 4 8 120 4 8 120 4 8 12
-0.25

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15

0.2

-20

-15

-10

-5

0

5

10

15

-10

-8

-6

-4

-2

0

2

4

6

Figure 2.6: Comparison of policies applied to nonlinear aircraft model with an amplitude varying multiple

doublet disturbance.

2.4. CONCLUSION

This chapter proposes a novel adaptive control method for nonlinear systems, called

incremental Approximate Dynamic Programming (iADP). It systematically applies a

quadratic cost function and greatly simplifies the design process of ADP. In addition,

the incremental approach can deal with the nonlinearity of systems. The iADP method

combines the advantages of both the Linear ADP (LADP) method and the incremental

approach, and provides a model-free, effective adaptive flight controller for nonlinear

systems. In addition to the iADP algorithm based on Full State feedback (iADP-FS), an

iADP algorithm based on OutPut feedback (iADP-OP) is developed. IADP-OP uses only

a history of input/output measurements from a dynamical nonlinear system to identify

an extended incremental model.

Both the iADP-FS algorithm and the iADP-OP algorithm are applied to a missile

model. The simulation results show that the trained policy with either algorithm rejects

2

30

2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR REGULATION CONTROL

WITH OUTPUT MEASUREMENTS

State 1: angle of attack

Time [s]

α
[◦

]

State 2: pitch rate

Time [s]

q
[◦

]

Input: elevator

Time [s]

δ
[◦

]

initial policy iADP-FS policy iADP-OP policy

0 40 4 8 120 4 8 12
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

-15

-10

-5

0

5

10

15

-7

-6

-5

-4

-3

-2

-1

0

1

Figure 2.7: Comparison of policies applied to nonlinear aircraft model with an initial offset.

the disturbance compared to the response with the initial policy. This demonstrates that

both the proposed algorithms improve the closed-loop performance of the nonlinear

system, while keeping the design process simple and systematic as compared to con-

ventional nonlinear ADP algorithms.

This new method can potentially design a near-optimal controller for nonlinear sys-

tems without a priori knowledge nor full state measurements of the dynamic model.

Although still no theoretical guarantees on the nonlinear system performance can be of-

fered, the performance of systems with approximately convex cost functions is observed

to be very promising. For more complex systems, real applications, and general nonlin-

ear control tasks, other possibilities such as piecewise quadratic cost functions will be

studied in the future.

3
INCREMENTAL APPROXIMATE

DYNAMIC PROGRAMMING FOR

TRACKING CONTROL WITH

PARTIAL OBSERVABILITY

The previous chapter presented the incremental Approximate Dynamic Programming

(iADP) method for regulation problems. This chapter further expands the idea of iADP

to tracking problems for multiple-input multiple-output nonlinear systems and to par-

tially observable control problems. This chapter starts with the formulation of the iADP

algorithms with full state observations and partial observability, in Section 3.2. Then,

Section 3.3 describes the nonlinear spacecraft model, which has disturbance modeled

by liquid sloshing. Section 3.4 validates the proposed method in tracking control tasks

with both the full state observation and partial observability. For each observability con-

dition, an off-line learning algorithm is applied to iteratively improve the policy until it

is accurate enough, and hereafter an online algorithm is used to recursively update the

policy in real-time. The results demonstrate that the proposed algorithms accurately

and adaptively deal with time-varying internal dynamics while retaining efficient con-

trol, especially for unknown nonlinear systems with partial observability.

This chapter is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu. Adaptive spacecraft attitude control with incremental approximate

dynamic programming. in 68th International Astronautical Congress (IAC) (Adelaide, Australia, 2017) [84].

31

3

32

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

Approximate dynamic programming is a class of reinforcement learning, which

solves adaptive, optimal control problems and tackles the curse of dimensionality with

function approximators. Within this category, linear approximate dynamic program-

ming provides a model-free control method by systematically utilizing a quadratic cost

function. Although efficient, linear approximate dynamic programming methods are

difficult to apply to nonlinear or time-varying systems. To overcome the above lim-

itations, this chapter proposes an adaptive nonlinear tracking control method based

on incremental Approximate Dynamic Programming, which combines the advantages

of linear approximate dynamic programming and incremental nonlinear control tech-

niques. This is a model-free method for unknown, nonlinear systems and time-varying

references. The trait of separating the local model information from the cost function

approximation makes this method an option for partially observable control problems.

This chapter, therefore, proposes two reference tracking controllers for different observ-

ability conditions: the direct full measurement, and the partial observation. In each

condition, two algorithms are developed for off-line learning and online learning, re-

spectively. These algorithms are applied to attitude control of a spacecraft disturbed by

internal liquid sloshing. The results demonstrate that the proposed algorithms accu-

rately deal with the unknown, time-varying internal dynamics while retaining efficient

control, even with only partial observability.

3.1. INTRODUCTION

Adaptive control has been an active field of research for decades. It adapts the control

law to the time-varying system or environment. Although model-based control strate-

gies have been extensively studied and successfully applied to many applications [23–

28, 85–88], they are heavily reliant on an accurate model or system identification. How-

ever, in many real applications, the system model may not be available, nor is its identifi-

cation trivial [8, 9]. In addition, when uncertain dynamics or environments are involved,

the mismatch between the model and real system may degrade the control performance

of model-based methods. Therefore, this chapter aims to develop a model-free nonlin-

ear adaptive control method in order to improve the tracking control performance.

Reinforcement Learning (RL) [29, 31] has been proposed to solve adaptive, optimal

problems without using accurate system models. Conventional RL methods have suc-

cessfully solved many problems in discrete spaces [31]. However, in the control field,

applications often have continuous state and/or action spaces. To solve these problems,

RL methods usually apply function approximators to tackle the ‘curse of dimensionality’.

These methods are referred to as Approximate Dynamic Programming (ADP) methods.

Adaptive Critic Designs (ACDs) constitute a class of ADP methods and have shown great

success in optimal adaptive control of nonlinear problems [32, 34, 50, 51]. They are also

well known as or Actor-Critic methods (ACs) because they separate the evaluation (critic)

and improvement (actor) of the control policy using different parametric structures. The

function approximation in ACDs are, mostly, implemented with black-box approaches

such as Artificial Neural Networks (ANNs), which increase the complexity of analysis and

design.

Opposite to ACDs is the Linear Approximate Dynamic Programming (LADP) method

[33, 39, 89], which is another widely used model-free ADP method for linear systems

3.1. INTRODUCTION

3

33

with an explicit structure. This method utilizes a quadratic function to approximate the

true cost-to-go and learns it adaptively. Based on this simple and efficient quadratic cost

function, LADP can provide a mathematically explicit solution to linear optimal control

problems [44]. Although model-free, efficient and online adaptive, LADP methods were

devised based on the assumption that the dynamical system is Linear Time-Invariant

(LTI). All the system information is implicitly contained in the quadratic cost function.

These methods, therefore, have difficulties in solving problems with nonlinear or time-

varying systems.

On the other hand, incremental control techniques can deal with system nonlin-

earity and uncertainties without identifying the global system [63–67]. The incremen-

tal model is a linear time-varying approximation of the original nonlinear dynamical

system, assuming a sufficiently high sample rate for discretization. This technique has

been successfully applied to adaptive nonlinear control methods, such as Incremental

Nonlinear Dynamic Inversion (INDI) [63–66] and Incremental BackStepping (IBS) [67].

Although these methods have reduced the model dependency in the control system, op-

timization or synthesis of the designed closed-loop systems has not been addressed.

To combine the advantages of LADP methods and the incremental nonlinear control

techniques, the incremental Approximate Dynamic Programming (iADP) method has

been proposed to solve nonlinear regulation control problems off-line [46, 80, 81]. The

regulation algorithms have been validated with a simple 2-state 1-input control problem

for unknown, deterministic systems. This method, to some extend, can also be seen as a

customized version of ACDs for convex cost function control problems [44, 90], or more

specifically as Heuristic Dynamic Programming [53–55, 91, 92]. The quadratic cost func-

tion acts as the critic, the incremental model provides the model information, and thus,

the actor is an explicit expression to optimal control. Although limited to convex cost

function problems, this method does not need the identification of the global system or

extensive tuning of nonlinear approximators.

However, real systems and control tasks are often more complex and involve un-

known or uncertain dynamics, such as spacecraft attitude control with internal dynam-

ics. Researchers have extensively studied non-adaptive nonlinear control methods for

rigid satellites, or with flexible parts that can be modeled, such as solar panels. However,

when unknown or uncertain dynamics are involved, the mismatch between the model

and real system may degrade the performance of model-based methods.

Liquid sloshing is one of the unknown and uncertain internal dynamics interacting

with the motion of the spacecraft [10–12]. A typical case is the liquid in the fuel tank

sloshing around. The forces and torques acting on the spacecraft will slosh the fuel

around. The fuel will, in turn, interact with the fuel tank and thus produce additional

forces and torques to the spacecraft, which influence the performance of attitude control

systems. Although fuel sloshing has been studied for years, an accurate liquid sloshing

model is extremely difficult to obtain [12, 13].

This chapter, therefore, develops a systematic optimal adaptive tracking control

method based on the idea of iADP and generates off-line and online model-free con-

trol algorithms for unknown, time-varying dynamical systems. This method belongs to

model-free control because it does not need any a priori information of the system dy-

namics, online identification of the global nonlinear system, nor even an assumption of

3

34

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

the time scale separation, but only an incremental model. The increment model, in this

chapter, is identified online using a Recursive Least Square (RLS) technique assuming a

sufficiently high sample rate. The property of separating this local model information

from the cost function approximation makes iADP suitable for Partially Observable (PO)

control problems.

Partial observability often happens in real applications, when the system does not

have enough information to infer its real states [45]. Those methods dealing with deter-

ministic systems and measurements are often referred to as output feedback methods

[33, 46, 47, 76, 93]. When stochastic, time-varying dynamics are involved, it belongs to

Partially Observable Markov Decision Process (POMDP) [36, 48, 49]. This chapter also

develops off-line and online algorithms for optimal tracking problems in PO conditions.

The only measurement is the output tracking error, where the unknown, time-varying

reference signal brings the stochastic dynamics into the measurement.

This proposed PO algorithms can be applied to spacecraft rendezvous/docking prob-

lems [93–95] with liquid sloshing in the chaser, such as the Automated Transfer Vehicle

(ATV) [96, 97], a cargo ship to the International Space Station (ISS). Liquid sloshing may

happen due to the 4,700 kg propellant for guidance and control of the vehicle with a

launch mass of 20,750 kg. The current docking sensors are infrared cameras, which only

provide the navigation information about the tracking errors between the ATV and the

ISS. Due to the flexibility of ISS, ATV has to dock to the moving or vibrating docking port

of the Russian service module on the ISS. These challenges in aerospace systems and

tasks motivate the development of the new control approach proposed in this chapter.

The remainder of this chapter is structured as follows. Section 3.2 presents the for-

mulation of the iADP algorithms with full state observations and partial observability.

Section 3.3 introduces the Multiple-Input Multiple-Output (MIMO) nonlinear spacecraft

model disturbed with liquid sloshing and discusses the implementation of the proposed

control method. Then, section 3.4 validates the algorithms with both the full state ob-

servation and partial observability by applying the off-line algorithms to the tracking

problem on one model, and then on another mismatched model and/or different ref-

erence signal with online adaptation. Lastly, section 3.5 shows the advantages and dis-

advantages of using the iADP and addresses the challenges and possibilities for future

research.

3.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING

FOR TRACKING CONTROL

The incremental Approximate Dynamic Programming (iADP) method expands the LADP

to solve nonlinear control problems with an incremental model. It was first proposed to

solve regulation problems for nonlinear systems [46, 80, 81]. In this chapter, this idea

will be further developed for more complex systems and more general control tasks with

different observation conditions. This section first introduces the idea of the incremen-

tal approach, and then presents and elaborates the proposed iADP method for tracking

problems both with full state measurements and with only partial observations.

3.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

3

35

3.2.1. THE INCREMENTAL APPROACH

The incremental approach is approximating the nonlinear system with a time-varying

linear model. This incremental model is identified at each moment by using the con-

ditions of the system in an instant before [65]. This technique has been successfully

applied to deal with unknown or inaccurate nonlinear systems [46, 63–67, 80, 81, 91].

The dynamic and kinematic equations of a nonlinear system can be generally given as

follows:

ẋ(t) = f [x(t),u(t)], (3.1)

where x ∈ Rn is the system state vector, u ∈ Rm is the control input vector, and

f [x(t),u(t)] ∈Rn provides the physical evaluation of the state vector over time.

If the system is first-order continuous, the system dynamics around the condition at

time t0 can be linearized approximately by using the first-order Taylor series expansion:

ẋ(t) ≈ ẋ(t0)+F [x(t0),u(t0)][x(t)−x(t0)]+G[x(t0),u(t0)][u(t)−u(t0)], (3.2)

where F [x(t0),u(t0)] =
∂ f [x(t),u(t)]

∂x(t)
|x(t0),u(t0) ∈Rn×n is the system matrix and G[x(t0),u(t0)]

=
∂ f [x(t),u(t)]

∂u(t) |x(t0),u(t0) ∈ Rn×m is the control effectiveness matrix of the linearized model

at time t0.

When the control inputs, states, and state derivatives of the system are measurable,

i.e., ∆u, ∆ẋ, and ∆x are measurable, the system model around time t0 can be written in

an incremental form:

∆ẋ(t) ≃ F [x(t0),u(t0)]∆x(t)+G[x(t0),u(t0)]∆u(t). (3.3)

Although most physical systems are continuous, their measurements are often dis-

crete. With a sufficiently high, constant data sampling frequency, the before-mentioned

nonlinear systems can also be written in a discrete form:

xt+1 = f (xt ,ut). (3.4)

The system dynamics around xt can also be linearized by taking the Taylor expansion,

as follows:

xt+1 ≈ xt +Ft−1 · (xt −xt−1)+Gt−1 · (ut −ut−1), (3.5)

where Ft−1 =
∂ f (x,u)

∂x
|xt−1,ut−1 ∈ Rn×n is the system transition matrix, and Gt−1 =

∂ f (x,u)
∂u

|xt−1,ut−1 ∈ Rn×m is the input distribution matrix at time step t −1 for discretized

systems. The incremental form of this discrete nonlinear system can be written as

∆xt+1 ≈ Ft−1∆xt +Gt−1∆ut . (3.6)

The nonlinear system can be represented as the time-varying incremental model.

This linear model needs to be available online to provide the model information for

the iADP algorithm instead of using a global nonlinear system model. With the high-

frequency sample data and the relatively slow-varying system assumption, time-varying

matrices Ft−1 and Gt−1 can be identified online using Least Squares (LS) techniques.

3

36

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

3.2.2. IADP WITH FULL STATE FEEDBACK

Since the iADP method assumes a time-varying incremental model, it can be used to

solve MIMO tracking problems. In addition, this method optimizes the control incre-

ment by minimizing the system cost approaching its goal. Therefore, it does not assume

the time-scale separation, but need to define the one-step cost function:

c(t) = (xt −x
r e f
t)T Q(xt −x

r e f
t)+uT

t Rut , (3.7)

where Q and R are positive definite matrices, and x
r e f
t is the reference signal for the

system state. The cost-to-go function from any initial state xt and reference x
r e f
t under

current policy µ is the cumulative sum of future costs:

Jµ(t) =
∞∑

l=t

γl−t [(xl −x
r e f

l
)T Q(xl −x

r e f

l
)+uT

l Rul]

= (xt −x
r e f
t)T Q(xt −x

r e f
t)+uT

t Rut +γJµ(t +1),

(3.8)

where γ ∈ (0,1) is the forgetting factor representing the importance of the cost in the fu-

ture. This nonlinear tracking control defines its one-step cost quadratically in the track-

ing error et = xt −x
r e f
t and the control input ut . Therefore, the true cost-to-go, which is

the sum of these quadratic values with a forgetting factor, should always be positive.

To represent the true cost-to-go, the LADP method uses a cost function of the aug-

mented state [89, 98] consisting of the system states and the references for Linear

Quadratic Tracking (LQT) problems. The reason is that the conventional LADP method

does not have a separate structure to approximate the model, and all the linear model

information are included in the cost function. The iADP method, on the other hand, as-

sumes the system to be time-varying and uses an online identified incremental model to

deal with the changes of the system. Therefore, the true cost-to-go can be approximated

by a function of the tracking error et .

ADP methods, in general, use a surrogate function to approximate the true cost-to-

go so as to capture the key attributes or features instead of the accurate values. As with

many other practical cases, LADP uses simple quadratic cost functions, with which the

expectation step can be explicitly carried out, and the optimization problem becomes

tractable [44]. The iADP method, therefore, adopts this quadratic cost function in the

tracking error et for a symmetric, positive definite kernel matrix P ∈ Rn×n , as shown

below:

Ĵµ(et) = eT
t Pet . (3.9)

Another benefit of the above quadratic cost function is that it only has one lo-

cal/global minimum, although the true cost-to-go may have many local minima due

to the nonlinearity of the system and the uncertainty of the tracking task. Specifically,

this system has an optimal state at each moment when satisfying the condition et = 0.

Therefore, this quadratic form helps to prevent the policy from going into any other local

minimum. To guarantee the progressive optimization of the policy, the P matrix learned

from proper data samples should be symmetric, positive definite.

Except for the cost function, the optimization of the iADP method also depends on

the tracking error prediction. With the incremental model information Ft−1 and Gt−1,

3.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

3

37

the tracking error can be predicted approximately as follows:

et+1 = xt+1 −x
r e f
t+1

≈ xt +Ft−1∆xt +Gt−1∆ut −x
r e f
t −∆x

r e f
t+1

= et +Ft−1∆xt +Gt−1∆ut −∆x
r e f
t+1.

(3.10)

The reference dynamics are often taken into consideration for tracking control prob-

lems. In the full state observable condition, all the states and references are measurable.

In this situation, an assumption is made as follows:

Assumption 1. The reference signal is slow-variant, and the sampling frequency is suffi-

ciently high.

Under this assumption, the increment of the reference ∆x
r e f
t+1 can be ignored. In another

word, the control input ut is designed to track the current, available reference signal

x
r e f
t . Therefore, the tracking error at the next time instant can be further approximated

as follows:

et+1 ≈ et +Ft−1∆xt +Gt−1∆ut . (3.11)

Consequently, the Bellman equation for Ĵµ becomes

Ĵµ(et) = eT
t Qet +uT

t Rut +γeT
t+1Pet+1

≈ eT
t Qet +uT

t Rut +γ(et +Ft−1∆xt +Gt−1∆ut)T P (et +Ft−1∆xt +Gt−1∆ut).
(3.12)

In addition, the optimal cost-to-go J∗(t) is defined as

J∗(t) = min
∆ut

[eT
t Qet + (ut−1 +∆ut)T R(ut−1 +∆ut)+γJ∗(t +1)]. (3.13)

Thus, the optimal policy µ∗ at time t can be given by

µ∗
= arg min

∆ut

[eT
t Qet + (ut−1 +∆ut)T R(ut−1 +∆ut)+γJ∗(t +1)]. (3.14)

With this optimality principle, the optimal control input can be derived by setting the

derivative of the approximated cost function Ĵµ(et) in Eq. (3.12) w.r.t. ∆ut to zero, as

follows:

∆ut =−(R +γGT
t−1PGt−1)−1[Rut−1 +γGT

t−1P (et +Ft−1∆xt)]

=−(R +γGT
t−1PGt−1)−1[Rut−1 +γGT

t−1Pet +γGT
t−1PFt−1∆xt].

(3.15)

From Eq. (3.15), we can conclude that the policy is in the form of system variables

(ut−1,et ,∆xt) feedback, and the gains are functions of the dynamics of the current lin-

earized system (Ft−1,Gt−1) and kernel matrix P .

If the nonlinear model is unknown, while the Full State (FS) is measurable, the iADP

method can be applied to improve the tracking control policy as follows:

3

38

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

Batch iADP-FS algorithm for reference tracking

Evaluation. The cost function kernel matrix P under policy µ can be evaluated and

updated recursively with the Bellman equation for each iteration j = 0,1, ... until conver-

gence:

eT
t P (j+1)et = eT

t Qet +uT
t Rut +γeT

t+1P (j)et+1. (3.16)

Policy improvement. The policy improves for the new kernel matrix P (j+1):

∆ut =−(R +γGT
t−1P (j+1)Gt−1)−1[Rut−1 +γGT

t−1P (j+1)et +γGT
t−1P (j+1)Ft−1∆xt]. (3.17)

Opposite to model-based control algorithms with an online identification of global

nonlinear systems, the current approach needs only a local linear model. In another

word, availability of the local linear model is sufficient for iADP algorithms. This feature

considerably reduces the complexity of the nonlinear control problems because the de-

termination of the linear model structure is much simpler than the identification of the

nonlinear model structure.

Although the progressive optimization of the policy should theoretically be guaran-

teed, the convergence of the batch iADP algorithms, as with other ADP methods, de-

pends on the data samples and the state space exploration. When the trained policy

P (j) can track the reference very accurately, and the input disturbances are rejected, the

system does not have much exploration, and the parameters in P (j+1) might not be iden-

tified using the batch LS. Therefore, when the averaged one-step-cost in an iteration j

is smaller than a threshold c(t)(j) < cthr eshol d , the kernel matrix P will be updated using

RLS with forgetting factor γRLS
P

= 1. The iADP-FS algorithm in Eqs. (3.16) and (3.17) will

be rewritten using the RLS method as follows:

Recursive iADP-FS algorithm for reference tracking

Evaluation. The cost function kernel matrix P within iteration j +1 can be evaluated

and updated recursively for each time step t :

eT
t Pt et = eT

t Qet +uT
t Rut +γeT

t+1Pt−1et+1. (3.18)

Policy improvement. The policy improves for the new kernel matrix Pt :

∆ut =−(R +γGT
t−1Pt Gt−1)−1[Rut−1 +γGT

t−1Pt et +γGT
t−1Pt Ft−1∆xt]. (3.19)

In iteration j +1, the initial kernel matrix P0 is the last updated P (j) from the previous

iteration. This recursive algorithm will also be used when the off-line trained policy are

applied to the real system online.

3.2.3. IADP WITH PARTIAL OBSERVABILITY

In many real applications, such as object tracking with visual sensors, the only measure-

ment is the output tracking error, which is partially observed relative state:

et+1 = yt+1 −y
r e f
t+1, (3.20)

where yt+1 ∈Rp is the output of the nonlinear system, and y
r e f
t+1 ∈Rp is the output refer-

ence. This measurement correlated with the reference signal introduces the stochastic

3.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

3

39

dynamics into this tracking problem. Therefore, this problem can be seen as a Partially

Observable (PO) control problem.

The output of the nonlinear system can be written as

yt+1 = h(xt+1), (3.21)

where h denotes the output equation. The output around time instance t can also be

linearized with Taylor expansion:

∆yt+1 = Ht∆xt+1, (3.22)

where Ht =
∂h(x)
∂x

|xt+1 ∈Rp×n is the observation matrix at the current time instance.

The first step of applying iADP methods is to analyze the predictability of the track-

ing error. It has been approved that if a nonlinear system is fully observable with its

output, this system, especially for regulation problems, still can be seen as determinis-

tic [46]. The system output can, therefore, be represented by the previous input/output

measurements over a long-enough time horizon [t −N , t] as derived in [46] :

∆yt+1 ≈G t ·∆ut ,t−N+1 +F t ·∆yt ,t−N+1

=G t ,11 ·∆ut +G t ,12 ·∆ut−1,t−N+1 +F t ·∆yt ,t−N+1,
(3.23)

where N ≥ n/p, G t ∈ Rp×N m , F t ∈ Rp×N p , G t ,11 ∈ Rp×m and G t ,12 ∈ Rp×(N−1)m are

partitioned matrices from G t . Matrices G t and F t are identifiable by using LS methods

with output/input measurements [46, 80].

If accepting the assumption from the previous section (section 3.2.2) that the output

reference signal yr e f is slow-variant and the sampling frequency is sufficiently high, the

increment of the reference can be ignored. Therefore, the tracking error at the next time

instant can be approximated as follows:

et+1 = yt+1 −y
r e f
t+1

≈ yt +F t∆yt ,t−N+1 +G t∆ut ,t−N+1 −y
r e f
t −∆y

r e f
t+1

≈ et +F t∆yt ,t−N+1 +G t∆ut ,t−N+1

≈ et +F t∆et ,t−N+1 +G t∆ut ,t−N+1.

(3.24)

However, matrices F t and G t cannot be identified because the separate measurement

of the system output y is not available. In addition, the last approximation in Eq. (3.24)

is based on ∆yt ,t−N+1 ≈∆et ,t−N+1 by assuming that the reference increments ∆y
r e f

t ,t−N+1

are all zeros. In another word, the reference is assumed constant in the time horizon

[t −N , t], which is heavy and not valid in many situations/moments.

Therefore, this section makes a more general assumption as follows:

Assumption 2. The output reference signal is first-order continuous and can partially be

a function of the system output.

Under this assumption, the dynamics of the reference can be written in a discrete form

with a high sampling frequency:

y
r e f
t+1 = f r e f (y

r e f
t ,yt). (3.25)

3

40

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

Taking the Taylor expansion, the incremental form of this discrete reference signal can

be written as

∆y
r e f
t+1 ≈ F

r e f
t−1∆y

r e f
t +G

r e f
t−1∆yt , (3.26)

where F
r e f
t−1 =

∂ f r e f (yr e f ,y)

yr e f |
y

r e f
t

∈ Rp×p , and G
r e f
t−1 =

∂ f r e f (yr e f ,y)
y

|yt
∈ Rp×p . In this PO con-

dition, the reference is stochastic, and thus the matrix F
r e f
t−1 is time-varying. If the ref-

erence is independent of the system, matrix G
r e f
t−1 is a zero matrix. In some other cases,

matrix G
r e f
t−1 is non-zero when the reference is partially determined by the system output,

such as moving targets equipped with anti-tracking systems.

The system dynamics in Eqs. (3.6) and (3.22) can be combined with the reference

dynamics in Eq. (3.26) and represented as:

[
∆xt+1

∆y
r e f
t+1

]
=Ft−1

[
∆xt

∆y
r e f
t

]
+Gt−1∆ut , (3.27)

∆et+1 =H t

[
∆xt+1

∆y
r e f
t+1

]
, (3.28)

where Ft−1 =

[
Ft−1 0

G
r e f
t−1 Ht−1 F

r e f
t−1

]
∈ R(n+p)×(n+p), Gt−1 =

[
Gt−1

0

]
∈ R(n+p)×m , and H t =

[
Ht −I

]
∈ Rp×(n+p). The new system in Eq. (3.27) consists of the system state and

reference dynamics, which are also known as an augmented system [89, 98]. Eq. (3.28)

represents the observations in the PO condition.

Therefore, the system state and output reference can be represented by the previous

data on the time horizon [t-M, t]:

[
∆xt+1

∆y
r e f
t+1

]
≈ F̃t−1,t−M ·

[
∆xt−M+1

∆y
r e f

t−M+1

]
+UM ·∆ut ,t−M+1, (3.29)

where symbol F̃t−a,t−b =
∏t−b

i=t−a
Fi =Ft−a · · · · ·Ft−b ,

∆ut ,t−M+1 =

∆ut

∆ut−1

...

∆ut−M+1

∈RmM , and

UM =
[
Gt−1 Ft−1Gt−2 ... F̃t−1,t−M+1 ·Gt−M

]
∈ R(n+p)×mM . Similarly, the tracking

error can be represented by previous system state and control input on the time horizon

[t-M, t]:

∆et ,t−M+1 ≈ V M ·

[
∆xt−M+1

∆y
r e f

t−M+1

]
+T M ·∆ut ,t−M+1, (3.30)

where ∆et ,t−M+1 =

∆et

∆et−1

...

∆et−M+1

∈RpM ,

3.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

3

41

V M =

H t−1F̃t−2,t−M

H t−2F̃t−3,t−M

...

H t−M

∈RpM×(n+p) is the observability matrix of this new system, and

T M =

0 H t−1Gt−2 H t−1Ft−2Gt−3 · · · H t−1F̃t−2,t−M+1 ·Gt−M

0 0 H t−2Gt−3 · · · H t−2F̃t−3,t−M+1 ·Gt−M

...
...

...
. . .

...

0 0 0 · · · H t−M+1 ·Gt−M

0 0 0 · · · 0

∈RpM×mM .

The necessary condition for a full column rank observability matrix V M is that M

needs to satisfy M ≥ (n+p)/p. This chapter uses the smallest value for M that meets the

condition to make parameters to be identified as less as possible. When the new system

is fully observable, V M has a full column rank, and its left inverse V
l e f t

M can be obtained:

V
l e f t

M = (V
T

M V M)−1V
T

M . (3.31)

Left-multiplying V
l e f t

M to Eq. (3.30) and substituting the resulted

[
∆xt−M+1

∆y
r e f

t−M+1

]
into Eq.

(3.29) and then the resulted

[
∆xt+1

∆y
r e f
t+1

]
into Eq. (3.28), the dynamics of the measurement

can be obtained:

∆et+1 ≈ (H t UM −H t F̃t−1,t−M ·V
l e f t

M T M) ·∆ut ,t−M+1

+H t F̃t−1,t−M V
l e f t

M ·∆et ,t−M+1.
(3.32)

This proves that at the moment V M is full column rank, the tracking error at (t +1)

can be represented only by the observations e and control input u over the time horizon

[t-M, t]:

∆et+1 ≈G t ·∆ut ,t−M+1 +F t ·∆et ,t−M+1, (3.33)

where

G t = (H t UM −H t F̃t−1,t−M ·V
l e f t

M T M) ∈Rp×Mm

is the extended input distribution matrix, and

F t =H t F̃t−1,t−M V
l e f t

M ∈Rp×M p

is the extended transition matrix. Matrices G t and F t can be identified using LS tech-

niques. With the identified extended incremental model, the one-step prediction of the

tracking error can be made:

et+1 = et +G t ,11 ·∆ut +G t ,12 ·∆ut−1,t−M+1 +F t ·∆et ,t−M+1, (3.34)

3

42

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

where G t ,11 ∈Rp×m and G t ,12 ∈Rp×(M−1)m are partitioned matrices from G t . Therefore,

the control increment ∆ut can be designed based on this prediction and the optimality

principle.

This extended incremental model can predict the error one-step ahead without

direct reconstruction of the unmeasured internal dynamics and reference dynamics.

Therefore, the approximation of the cost function Ĵµ can be only based on the observed

tracking error at the current time et without expanding the dimensionality of the rela-

tive state space. Consistently, a systematic cost function approximation is chosen to be

quadratic in this tracking error for a kernel matrix P ∈Rp×p as

Ĵµ(et) = eT
t P et (3.35)

so that this optimization problem can have an explicit solution. For continuous tracking

problems, the kernel matrix P shall be a positive definite matrix, and the cost function

shall only have one local minimum, which is also the global minimum. Another reason

for choosing this cost function is that the one-step cost is a quadratic value in the output

tracking error and control input:

c(t) = (yt −y
r e f
t)T Q(yt −y

r e f
t)+uT

t Rut , (3.36)

where Q and R are positive definite matrices.

The Bellman equation for the true cost-to-go Jµ in Eq. (3.8) is rewritten here again:

Jµ(t) = eT
t Qet + (ut−1 +∆ut)T R(ut−1 +∆ut)+γJµ(t +1). (3.37)

The difference is that et represents the output tracking error in Eq. (3.37). By taking

the approximation function in Eq. (3.35) and the one-step prediction in Eq. (3.32), the

cost-to-go at the next time instance Jµ(t +1) can be approximated as follows:

Ĵµ(t +1) =eT
t+1P et+1

≈[et +G t ,11 ·∆ut +G t ,12 ·∆ut−1,t−M+1 +F t ·∆et ,t−M+1]T
·P

· [et +G t ,11 ·∆ut +G t ,12 ·∆ut−1,t−M+1 +F t ·∆et ,t−M+1].

(3.38)

With the optimality principle, the optimal control input can by derived by setting the

derivative of the approximated cost function Ĵµ in Eq. (3.37) w.r.t. ∆ut to zero, as follows:

∆ut =− (R +γG T
t ,11P G t ,11)−1

· [Rut−1 +γG T
t ,11P (et +G t ,12 ·∆ut−1,t−M+1 +F t ·∆et ,t−M+1)].

(3.39)

In this equation, G t and F t are identified time-varying matrices, which provide the local

system model information. The matrix P provides the cost function information, which

can be time-invariant if the policy improved iteratively or be time-varying if the policy

updates recursively.

The batch iADP tracking control algorithm with Partial Observability (PO) is given as

follows:

3.2. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

3

43

Batch iADP-PO algorithm for reference tracking

Evaluation. The cost function kernel matrix P under current policy can be evaluated

and updated recursively for each iteration j = 0,1, ... until convergence:

eT
t P (j+1)et = eT

t Qet +uT
t Rut +γeT

t+1P
(j)et+1. (3.40)

Policy improvement. The policy improves for the new kernel matrix P (j+1):

∆ut =− (R +γG T
t ,11P

(j+1)G t ,11)−1

· [Rut−1 +γG T
t ,11P (j+1)(et +G t ,12 ·∆ut−1,t−M+1 +F t ·∆et ,t−M+1)].

(3.41)

Matrices G t and F t are online identified using the LS techniques. The identifiability at

each moment relies not only on the full column rank of V M but also on the excitation.

The RLS method can partly relieve the dependence on the data sample at each specific

moment.

When the trained policy P (j) becomes fast and accurate enough, the system does

not have much exploration in the relative state space, and consequently, the parameters

in P (j+1) might not be identified using the batch LS method hereafter. Hence, the kernel

matrix P can be continuously updated using RLS with the forgetting factor γRLS
P

= 1:

Recursive iADP-PO algorithm for reference tracking

Evaluation. The cost function kernel matrix P within one iteration j +1 can be eval-

uated and updated adaptively for each time step t :

eT
t P t et = eT

t Qet +uT
t Rut +γeT

t+1P t−1et+1. (3.42)

Policy improvement. The policy improves for the new kernel matrix P t :

∆ut =− (R +γG T
t ,11P t G t ,11)−1

· [Rut−1 +γG T
t ,11P t (et +G t ,12 ·∆ut−1,t−M+1 +F t ·∆et ,t−M+1)].

(3.43)

The initial value of the kernel matrix for the recursive iADP-PO, P0, is the last updated

P (j) from the batch iADP-PO. Furthermore, this online recursive adaptation can be ap-

plied to changing or faulty systems.

This section proves that the one-step ahead tracking error is predictable in Eqs. (3.23)

to (3.33) and elaborates the necessary measurements to make this prediction in Eq.

(3.34). Although in this proof the system is augmented as in Eq. (3.27), the derived iADP-

PO algorithms do not identify the augmented system or even reconstruct the internal

augmented states. Instead, these algorithms only need to identify the extended incre-

mental model with the matrices F t and G t and to approximate the true cost-to-go with

the cost function kernel matrix P .

3.2.4. INCREMENTAL MODEL ONLINE IDENTIFICATION

Assumption 3. The (extended) incremental model is identifiable with proper excitation.

Under the above assumption, this chapter adopts Recursive Least Square (RLS) ap-

proaches to online identify the (extended) incremental model.

3

44

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

INCREMENTAL MODEL WITH FULL STATE MEASUREMENTS

To implement the iADP-FS algorithms in section 3.2.2, the incremental model needs to

be identified with the system transition matrix Ft−1 and the input distribution matrix

Gt−1. The incremental form of the state in Eq. (3.6) can be rewritten row by row as

follows:

∆xr,t+1 ≈
[
∆xT

t ∆uT
t

]
·

[
fT

r,t−1

gT
r,t−1

]
, (3.44)

where ∆xr,t+1 = xr,t+1−xr,t is the increment of r th state element, and fr,t−1 and gr,t−1 are

the elements of r th row vector of Ft−1 and Gt−1. The identification of these parameters

with RLS is usually row by row. Since they share the same covariance matrix, they can

also be identified together as in the parameter matrix Θt−1 =

[
FT

t−1

GT
t−1

]
∈R(n+m)×n .

The state prediction equation can be written as

∆x̂T
t+1 = X T

t Θ̂t−1, (3.45)

where X t =

[
∆xt

∆ut

]
∈R(n+m)×1 stands for the input information of the incremental model

identification. The RLS approach adopted to identify the incremental model is presented

as follows [99]:

ǫt =∆xT
t+1 −∆x̂T

t+1, (3.46)

Θ̂t = Θ̂t−1 +
Covt−1X t

γRLS
m +X T

t Covt−1X t

ǫt , (3.47)

Covt =
1

γRLS
m

(
Covt−1 −

Covt−1X t X T
t Covt−1

γRLS
m +X T

t Covt−1X t

)
, (3.48)

where ǫt ∈ Rn is the prediction error, also called innovation, Covt ∈ R(n+m)×(n+m) is

the estimation covariance matrix, and γRLS
m ∈ [0,1] is the forgetting factor in the RLS ap-

proach for the incremental model identification. For these time-variant model param-

eters, the forgetting factor is chosen as γRLS
m = 0.8. In addition, this chapter initializes

the F matrix as an identity matrix, the G matrix as a zero matrix, and the covariance

matrix as an identity matrix multiplied by a large positive value (1000 in this chapter)

Cov0 = 1000I.

EXTENDED INCREMENTAL MODEL WITH PARTIAL OBSERVABILITY

In the implementation of the iADP-PO algorithms in section 3.2.3, the extended incre-

mental model needs to be identified with the extended transition matrix F t and the

extended input distribution matrix G t . The incremental form of the observation in Eq.

(3.33) can be rewritten row by row as follows:

∆er,t+1 ≈

[
∆e

T

t ,t−M+1 ∆u
T

t ,t−M+1

]
·

[
F T

r,t

G T
r,t

]
, (3.49)

3.3. TRACKING CONTROL SIMULATION

3

45

where ∆er,t+1 = er,t+1 − er,t is the increment of r th tracking error element, and F r,t and

G r,t are the elements of r th row vector of F t and G t . Similarly, although the identifica-

tion of these parameters are usually row by row, they can also be identified together as in

the parameter matrix Θt =

[
F T

t

G T
t

]
∈R(p+m)M×p because they share the same covariance

matrix.

The tracking error prediction equation can be written as

∆êT
t+1 = X

T

t Θ̂t , (3.50)

where X t =

[
∆et ,t−M+1

∆ut ,t−M+1

]
∈ R(p+m)M×1 stands for the input information of the extended

incremental model identification. The RLS algorithm adopted to identify the extended

incremental model is presented as follows:

ǫt =∆eT
t+1 −∆êT

t+1, (3.51)

Θ̂t = Θ̂t−1 +
Cov t−1X t

γRLS
em +X

T

t Cov t−1X t

ǫt , (3.52)

Cov t =
1

γRLS
em

(
Cov t−1 −

Cov t−1X t X
T

t Cov t−1

γRLS
em +X

T

t Cov t−1X t

)
, (3.53)

where ǫt ∈ Rp is the innovation term, Cov t ∈ R(n+p)M×(n+p)M is the estimation covari-

ance matrix, andγRLS
em ∈ [0,1] is the forgetting factor in the RLS approach for the extended

incremental model identification. For these time-variant model parameters, the forget-

ting factor is also chosen as γRLS
em = 0.8. In addition, this chapter initializes the extended

transition matrix as F 0 = [I 0], the extended input distribution matrix G 0 as a zero ma-

trix, and the covariance matrix also as Cov0 = 1000I .

The RLS approach used in this chapter possesses a significant advantage over the

piecewise Ordinary Least Square (OLS) method: RLS has fewer issues with persistent ex-

citation. The OLS method needs to do a matrix inversion at each update [46, 91]. If there

is not enough excitation at that moment, the matrix might not be invertible, and the pa-

rameters cannot be identified. The RLS method, on the other hand, does not need to

do matrix inversions because it uses the matrix inversion lemma to update the covari-

ance matrix, which contains the information of that inverted matrix. Therefore, it can

effectively identify parameters of the time-varying system and also keep the parameters

stable when the excitation is not enough.

3.3. TRACKING CONTROL SIMULATION

This section firstly introduces an aerospace application for validation of the proposed

algorithms. The second part explicates the implementation of the aforementioned al-

gorithms and discusses some related issues, including the persistent excitation and the

forgetting factor.

3

46

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

3.3.1. SPACECRAFT WITH LIQUID SLOSHING

In many real applications, there are often internal dynamics that cannot be modeled

or directly controlled. One of the most undesired, unknown, and uncertain dynamics

involved in the spacecraft attitude control is the liquid sloshing. This phenomenon is

caused, for example, by the liquid in the fuel tank sloshing around due to the forces and

torques acting on the spacecraft. In turn, the sloshing fuel will interact with the fuel tank

and thus perturb the spacecraft. This chapter applies the model-free iADP method to

control a satellite disturbed by the liquid sloshing. The model in this section is used as a

validation of the proposed method.

a

b
X

Z
vx

vz

ψ

θ

Ms

Fs

fs

Figure 3.1: A satellite model with pendulum dynamics modeling liquid sloshing.

As seen in Fig. 3.1, apart from the liquid the satellite can be seen as a rigid body,

whose mass and moment of inertia are ms and Is . The liquid sloshing can be represented

by a pendulum [10–13], whose mass, moment of inertia, and angle w.r.t. the space-

craft longitudinal axis are mp , Ip , and ψ, respectively. The attitude angle θ is defined

w.r.t. a fixed reference (X , Z), and vx and vz are the axial and transverse components

of the velocity of the center of the fuel tank. Three external forces/moments are acting

through/on the satellite center of mass: the transverse force fs and the pitching moment

Ms are the satellite attitude control inputs, and the thrust Fs is constant.

Although the proposed method is model-free, the satellite model is included in this

chapter for validation and reproduction. The satellite and analogous liquid sloshing dy-

namic and kinematic state equations are directly taken from [11, 12] and presented as

follows:

(ms +mp)(v̇x + vz θ̇)+ms bθ̇+mp a(ψ̈+ θ̈)si n(ψ)+mp a(ψ̇+ θ̇)2cos(ψ) = Fs , (3.54)

(ms +mp)(v̇z − vx θ̇)+ms bθ̈+mp a(ψ̈+ θ̈)cos(ψ)−mp a(ψ̇+ θ̇)2si n(ψ) = fs , (3.55)

ms b(v̇z − vx θ̇)+ (Is +ms b2)θ̈−κψ̇= Ms +b fs , (3.56)

(mp a2
+ Ip)(ψ̈+ θ̈)+mp a[(v̇x + vz θ̇)si n(ψ)+ (v̇z − vx θ̇)cos(ψ)]+κψ̇= 0, (3.57)

where the parameters used in off-line simulations are

model A: ms = 600kg , Is = 720kg /m2, mp = 100kg , Ip = 90kg /m2, a = 0.3m, b = 0.3m,

Fs = 500N , and κ= 0.19kg ·m2/s.

3.3. TRACKING CONTROL SIMULATION

3

47

From Eqs. (3.54) and (3.55), the translational movement related variables can be iso-

lated as follows:

(v̇x + vz θ̇) =
Fs −ms bθ̇−mp a(ψ̈+ θ̈)si n(ψ)−mp a(ψ̇+ θ̇)2cos(ψ)

ms +mp
, (3.58)

(v̇z − vx θ̇) =
fs −ms bθ̈−mp a(ψ̈+ θ̈)cos(ψ)+mp a(ψ̇+ θ̇)2si n(ψ)

ms +mp
. (3.59)

The rotational variables can be separated from the translational variables by substituting

Eqs. (3.58) and (3.59) into Eqs. (3.56) and (3.57):

ms b[fs −ms bθ̈−mp a(ψ̈+ θ̈)cos(ψ)+mp a(ψ̇+ θ̇)2si n(ψ)]

+ (ms +mp)(Is +mb2)θ̈− (ms +mp)κψ̇= (ms +mp)(Ms +b fs),
(3.60)

mp a{si n(ψ)[Fs −ms bθ̇−mp a(ψ̈+ θ̈)si n(ψ)−mp a(ψ̇+ θ̇)2cos(ψ)]

+ cos(ψ)[fs −ms bθ̈−mp a(ψ̈+ θ̈)cos(ψ)+mp a(ψ̇+ θ̇)2si n(ψ)]}

+ (ms +mp)(mp a2
+ Ip)(ψ̈+ θ̈)+ (ms +mp)κψ̇= 0.

(3.61)

The rotational motion of the satellite and the pendulum do not contain any translational

variables. Hence, the MIMO nonlinear model of the satellite attitude control problem

has been generated for simulations.

3.3.2. IMPLEMENTATION ISSUES

This section discusses some issues related to the implementation of iADP algorithms,

including the forgetting factors in the cost function and in RLS approaches, the reliance

on persistent excitation, and model-free approaches.

FORGETTING FACTOR

In ADP methods, the forgetting factor γ represents the importance of the upcoming

states in the future and is usually chosen as γ ∈ (0,1). Therefore, the infinite sum has a

finite value as long as the cost sequence is bounded, and the agent is not “myopic” in be-

ing concerned only with maximizing immediate cost [31]. Compared to LADP methods,

iADP methods prefer a smaller γ because the nonlinear system, as well as the reference

signal in the tracking task, has more uncertainties. In this chapter, γ= 0.5. Note that the

control performance is not very sensitive to γ as γ= 0.2 and γ= 0.8 have similar perfor-

mance to the nominated value, but the magnitude of the value function may increase

with a larger γ.

In RLS techniques, the forgetting factor γRLS ∈ [0,1] represents the reliance on the

previous data samples in the past when making an identification. If the parameters are

assumed time-invariant, such as the P matrix under a certain policy, the forgetting factor

is chosen to be γRLS
P

= 1. Thus, all the samples are equally taken into account. Otherwise,

the forgetting factor is often chosen as γRLS < 1, and the most recent data receive higher

credit, such as γRLS
m = 0.8 in the online identification of time-varying (extended) incre-

mental models.

3

48

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

PERSISTENT EXCITATION

The trade-off between exploration and exploitation is a common issue in RL methods.

In control field, a good evaluation also relies on a proper exploration of the state space,

which is referred to as Persistent Excitation (PE). The iADP method is designed based

on the optimality principle, which is represented as the exploitation. Therefore, the first

purpose of PE is to provide exploration so as to achieve a better evaluation of the current

policy. Second, although RLS, compared to OLS, depends less on PE, PE is still imperative

for identifying the (extended) incremental model, especially when it is time-varying.

This requirement also explains the need for the off-line batch iADP algorithms. The

policy derived from iADP methods is explicitly based on the cost function. If the policy

updated recursively at the initial unstable stage, the true cost-to-go also changes in each

iteration. Consequently, the approximated cost function is not reliable and the system

state may diverge even faster. On the other hand, the off-line learning with batch LS

method keeps the policy fixed in each iteration, and the PE helps the exploration of the

state space. Therefore, the kernel matrix will converge iteratively.

This chapter introduces an input disturbance, which is a sum of sinusoidal signals.

This disturbance persistently excites the system for identification of the system and ex-

ploration of the state space. On the other hand, disturbances are usually undesirable

inputs in the real world. Therefore, the control task is to track the reference signal as well

as to reject the disturbance, which also increases the difficulty of the task.

MODEL-FREE APPROACHES AND PARTIAL OBSERVABILITY

Although the rotational motion of the satellite model with liquid sloshing can be analo-

gous to the pendulum dynamics as Eqs. (3.60) and (3.61) in the previous section. The

iADP model-free nonlinear method does not need any a priori knowledge about the

model, but only assumes a general model, which can represent any structure and pa-

rameters:

ẋ(t) = f [x(t),u(t)+d(t)], (3.62)

where x = [θ, θ̇,ψ,ψ̇]T is the state vector, u = [fs , Ms]T is the control input vector of the

system since the thrust Fs is constant, and d is the input disturbance vector. The batch

iADP-FS algorithm for reference tracking in Eqs. (3.16) and (3.17) can be used to up-

date the matrix P and train the policy off-line. The system information are provided by

the incremental model identified online using Eqs. (3.46) to (3.48). After the averaged

one-step-cost is smaller than a threshold, the kernel matrix will keep updating using the

recursive iADP-FS algorithm in Eqs. (3.18) and (3.19).

In aerospace applications, it is common that the only measurement is the output

tracking error, such as the relative position and the relative angle pointing to the target.

This chapter also applies iADP-PO algorithms to this spacecraft attitude control problem

in such situations. The only observation is the output tracking error e = y−yr e f , where

y = [θ,ψ]T . For regulation problems, the observation becomes the system output y, and

the system is fully observable with input/output measurements. This chapter will ap-

ply an unknown time-varying reference signal, which can be seen as a continuous-time

stochastic process. It brings the stochastic property to the observations. Although the

system output cannot be separated from the observations, the output tracking error is

3.4. RESULTS AND DISCUSSION

3

49

still predictable as proved in section 3.2.3. This problem can be solved with the iADP-PO

algorithms in Eqs. (3.40) to (3.43).

3.4. RESULTS AND DISCUSSION

This chapter demonstrates the performance of the proposed iADP-FS and iADP-PO al-

gorithms in different observability conditions by simulation experiments on satellite at-

titude control problems disturbed by liquid sloshing. In both observability conditions,

the policy is trained off-line using the before-mentioned model A, and is then applied

to a different reference and/or a different model with changed parameters as

model B : ms = 1200kg , Is = 900kg /m2, mp = 50kg , Ip = 80kg /m2, a = 0.2m, b = 0.5m,

Fs = 600N , and κ= 0.19kg ·m2/s.

3.4.1. IADP WITH FULL STATE MEASUREMENTS FOR TRACKING CONTROL

Time [s]

[◦
]

θ
ψ

θr e f

Time [s]

[◦
/s

]

θ̇

ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12
0

5

10

-10

0

10

20

30

40

50

-50

0

50

100

150

200

Figure 3.2: The control performance on model A, using the initial policy (1st iteration) with PE.

Time [s]

[◦
]

θ
ψ

θr e f

Time [s]

[◦
/s

]

θ̇

ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

10

0

10

20

-1

-0.5

0

0.5

-30

-20

-10

0

10

20

30

Figure 3.3: The control performance on model A, using the trained policy (5th iteration) to track a filtered

doublet signal.

3

50

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

Iterations

A
v

e
ra

g
e

d
o

n
e

-s
te

p
-c

o
st

c
(t

)
iADP using OLS

Off-line
iADP using RLS

Online

Unfinished trials

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

7

7.2

0

20

40

60

80

100

120

140

×10−4

Figure 3.4: The averaged one-step-cost during the training on model A in tracking the filtered doublet signal.

Time [s]

[◦
]

θ
ψ

θr e f

Time [s]

[◦
/s

]

θ̇

ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

-40

-20

0

20

40

-1

-0.5

0

0.5

-30

-20

-10

0

10

20

30

Figure 3.5: The online control performance on a different model (model B), using the recursive iADP-FS algo-

rithm to track the filtered doublet signal.

Time [s]

[o
]

θ
ψ

θr e f

Time [s]

[o
/s

]

θ̇
ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

-40

-20

0

20

-0.5

0

0.5

-30

-20

-10

0

10

20

30

Figure 3.6: The online control performance on a different model (model B), using the recursive iADP-FS algo-

rithm to track a different reference (a sinusoidal signal).

3.4. RESULTS AND DISCUSSION

3

51

The iADP-FS algorithms are based on the assumption that the full states (θ, ψ, θ̇, and

ψ̇) and the control input (fs , Ms) are measurable. The target is to track a reference signal

of θ while stabilizing ψ. It often happens in the initial attitude acquisition or tracking a

(relatively) moving target.

This iADP method starts with an off-line learning stage of 10 iterations. In this stage,

the termination of each iteration can happen 1) when it finishes the whole trial and

reaches the time limit 1000 seconds or 2) when any of the states reaches their limit: 180◦

for θ and ψ and 50◦/s for θ̇ and ψ̇. The initial kernel matrix P 0 is a zero matrix. Therefore,

the first iteration is an open loop system with sinusoidal PE, as shown in Fig. 3.2. This

iteration stops at around 13s when θ reaches 180◦.

The first tracking task is to follow a filtered doublet signal in the attitude angle. As il-

lustrated in Fig. 3.3, the control performance of the trained policy in the 5th iteration can

track the reference of θ, stabilize ψ, and reject the input disturbance. Figure 3.4 shows

the averaged one-step-cost in 10 iterations of the off-line stage. After the 5th iteration,

the averaged one-step-cost is below the threshold, and the adaptation of the policy uses

the RLS approach afterward. The first 3 iterations cannot finish the whole trial and stop

because they reach the state limit.

This chapter also examines the situations that the target system is different from the

model that is used to train the policy, which often happens in practice. To validate the

proposed control method, the policy trained with model A will be applied to model B

using the recursive iADP-FS online. As depicted in Fig. 3.5, the recursive iADP algorithm

can be applied to a different model starting with the trained policy without loss of accu-

racy. The main reason is that the iADP method separates the cost function with an ap-

proximation and the model information with the online identified incremental model.

When the system changes, the value function does not necessarily change a lot, while

the incremental model will change immediately using the RLS approach.

Except for the system model, the reference dynamics may also affect the control per-

formance. To further validate the online adaptability of the proposed method, the policy

trained off-line with model A and doublet reference in Fig. 3.3 is applied to a different

model, model B , as well as a different reference: a sinusoidal signal. As visible in Fig.

3.6, the recursive iADP-FS algorithm can update the incremental model and the policy

adaptively and consequently track the dynamical reference of θ, minimize ψ, and also

reject the input disturbance.

3.4.2. IADP WITH PARTIAL OBSERVABILITY FOR TRACKING CONTROL

In this section, the proposed iADP-PO algorithms are applied to the same problem with

only the measurement of the control input u and output tracking error e = y−yr e f , where

y = [θ,ψ]T . The reference θr e f may have its own stochastic dynamics, and the separate

measurement of θ or θr e f is not available. Since the reference ψr e f is constant, the ex-

tended dynamical states in Eqs. (3.27) and (3.28) are (θ, ψ, θ̇, ψ̇, and θr e f), which are 5

in total, and the order of matrices become Ft−1 ∈ R5×5, Gt−1 ∈ R5×2, and H t ∈ R2×5.

Consequently, the extended observability matrix in Eq. (3.29) becomes V M ∈R2M×5. In

this case, to make V M full column rank, the number of data samples M in Eqs. (3.41) and

(3.43) is chosen to be M = 3. Note that, as long as the system is observable, the necessary

condition M ≥ (n +p)/p mentioned in section 3.2.3 still holds for those cases that only

3

52

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

Time [s]

[o
]

θ
ψ

θr e f

Time [s]
[o

/s
]

θ̇
ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

-40

-20

0

20

40

-3

-2

-1

0

1

2

3

-30

-20

-10

0

10

20

30

Figure 3.7: The control performance on model A, using the trained policy (9th iteration) to track a filtered

doublet signal.

Time [s]

[o
]

θ
ψ

θr e f

Time [s]

[o
/s

]

θ̇
ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

-40

-20

0

20

40

-10

-8

-6

-4

-2

0

2

4

6

8

-30

-20

-10

0

10

20

30

Figure 3.8: The online control performance on a different model (model B), using the recursive iADP-PO

algorithm to track the filtered doublet signal.

Time [s]

[o
]

θ
ψ

θr e f

Time [s]

[o
/s

]

θ̇
ψ̇

Time [s]

[N
,N

·m
]

fs

Ms

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

-40

-20

0

20

40

-1

-0.5

0

0.5

1

-30

-20

-10

0

10

20

30

Figure 3.9: The online control performance on a different model (model B), using the recursive iADP-PO

algorithm to track a different reference (a sinusoidal signal).

3.4. RESULTS AND DISCUSSION

3

53

part of the output references is dynamical. Therefore, when the iADP-PO algorithms are

applied to an tracking control application, no matter how many dynamical output refer-

ences there are, M ≥ (n +p)/p can be used as the selection criteria.

Figure 3.7 illustrates the control performance of the policy trained off-line with

model A using the batch iADP-PO algorithm. Note that the angular rates θ̇, ψ̇ and even

the attitude angle θ are not measurable in the PO cases. As seen in sub-figure (a), the

control performance in terms of the attitude tracking is at the same level of accuracy as

the full state feedback control in Fig. 3.3 (a). However, in sub-figures (b) and (c), there

are oscillations in angular rates and control input at the beginning and at 500s. These

differences are due to the partial observability of the system.

The optimization in iADP algorithms is based on the cost function approximation

and the online identified (extended) incremental model. In the PO condition, the one-

step-cost, as well as the approximated cost function, are lack of internal states infor-

mation, which is the angular rate in this case. Hence, the optimization does not take

these internal measurements into account, and consequently, the policy does not reg-

ulate them and may induce oscillations. This is, to some extent, inevitable in PO cases

without a priori information of the system.

Another reason for the oscillation is the delay and inaccuracy of the extended in-

cremental model identification. The incremental model identification is based on the

measurements and the assumption of the first-order Taylor series expansion. Hence, the

first-order derivation calculated from the discrete measurement often has a smaller ab-

solute value than the true value and will lead to an over-high control input design. This

phenomenon is worse, when the full observation is not available, because the extended

incremental model is identified with the measurements in a few time steps in the past,

and this introduces a time delay and expands the time span of the measurements for the

local model identification. In the PO condition, the extended incremental model needs

more time to be identified. In addition, since the system output θ and the reference θr e f

are combined in the measurement, the sudden changes in the reference dynamics will

deteriorate the online identification at the moment the reference signal is not 1st order

continuous.

To validate the online adaptability of the recursive iADP-PO algorithm, the policy

trained off-line with model A, and doublet reference is applied to a different model

(model B), as seen in Fig. 3.8, and to a different model (model B) as well as for a

different reference (a sinusoidal signal), as shown in Fig. 3.9. Comparing the Figs. 3.8

and 3.9, the iADP algorithms under the PO condition performs better when tracking a

1st order continuous reference as assumed in section 3.2.3 . As seen in these figures,

the oscillation happens 1) at the beginning of each iteration on model B , and 2) when

the reference suddenly changed. The reason is that both the mismatched model and the

suddenly changed reference affect the identification of the extended incremental model.

By taking a closer look at the first a few seconds in Figs. 3.8 and 3.9, when the policy

trained on one model applied to another model, the system presents more oscillations

compared to the full state feedback control performance. This phenomenon is also obvi-

ous when comparing Fig. 3.8 to Fig. 3.7. Except that the system needs more time to iden-

tify the extended incremental model, another reason is that the extended kernel matrix

P contains less information and hence may need more time for online adaptation when

3

54

3. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING FOR TRACKING CONTROL

WITH PARTIAL OBSERVABILITY

applied to a different model. After this online adaptation of P and a proper identified

extended incremental model, the tracking control performance becomes satisfactory.

3.5. CONCLUSION

This chapter proposes an adaptive nonlinear control method for optimal tracking based

on incremental Approximate Dynamic Programming (iADP). Nonlinear ADP methods

often use highly nonlinear functions to approximate the true cost-to-go and the system

model. The iADP method, on the other hand, uses an (extended) incremental model to

deal with the nonlinearity of the unknown system and uncertainty of the environment.

Therefore, this method still can apply a systematic quadratic cost function to generate

an explicit optimal control algorithm, which simplifies the design process of nonlinear

ADP methods. This method does not need any a priori knowledge of the system dynam-

ics, online identification of the global model nor even an assumption of the time scale

separation, but only an online identified (extended) incremental model.

This study expands the iADP method to tracking problems for MIMO nonlinear sys-

tems and to partial observable control problems. First, when the direct measurement of

the full state is available, the incremental model can be identified and used to predict the

next state. With this prediction, the optimal control increment can be designed to track

the current reference signal. Second, when the only measurement is the output tracking

error involved with stochastic dynamical reference, the system becomes partially ob-

servable. Under the assumption of the first-order continuity, the next output tracking

error is proved to be predictable with the partial observations over a long enough time

horizon and an online identified extended incremental model. Because iADP methods

have a separate structure to represent the local system dynamics, the cost function can

be less dependent on the system or the reference and only need to be a rough approxi-

mation of the cost-to-go. This approximation is a quadratic function only of the current

tracking error without expanding the dimension of the state space for the cost function

to an augmented one.

For each observability condition, two algorithms are developed for off-line batch

learning and online recursive adaptation, respectively. The off-line learning algorithms

use OLS to improve the policy iteratively. After the averaged one-step-cost is below a

threshold, the online algorithms will be applied to update the policy recursively at each

time step. The recursive iADP algorithms can also be used online in real systems, which

are mismatched from the original model and are not easy to reset after failure. These

algorithms are applied to an attitude control problem of a simulated satellite disturbed

by liquid sloshing. The results show that the off-line trained policy in either observabil-

ity condition rejects the disturbance and tracks references accurately. When the trained

policy is applied to a different system and/or a different reference, the control perfor-

mance reaches the same level of accuracy in a few seconds. The online learning using

the recursive iADP ensures the adaptability of the proposed method.

The performance of the tracking control using the proposed algorithms is observed

to be very promising, especially for unknown nonlinear systems with only partial observ-

ability. The quadratic cost function simplifies the approximation of the cost-to-go and

also provides an explicit optimal control solution. Although beneficial for most track-

ing control problems with approximately convex cost-to-go, the quadratic function may

3.5. CONCLUSION

3

55

not be suitable for systems and tasks with highly nonlinear cost-to-go. For more com-

plex systems and tasks, general nonlinear function approximators, such as piecewise

quadratic functions, will be studied in the future. In addition, the iADP-PO algorithms

provide insights for future research using only relative states in the aerospace applica-

tions/areas, such as air missile guidance, UAV swarm flight control, and aircraft forma-

tion flying.

II
ONLINE ADAPTIVE CRITIC

DESIGNS

57

4
INCREMENTAL MODEL BASED

HEURISTIC DYNAMIC

PROGRAMMING

In the previous chapters, incremental Approximate Dynamic Programming (iADP)

methods were proposed to deal with nonlinear systems, while keeping the design pro-

cess simple and mathematically explicit with a quadratic cost function. As these meth-

ods are suitable only for control problems with approximately convex true cost-to-go,

this chapter proposes a new approach for more general nonlinear problems, called In-

cremental model based Heuristic Dynamic Programming (IHDP). This chapter starts

with a conventional Heuristic Dynamic Programming (HDP) algorithm using a nonlin-

ear global system model, in Section 4.2. After that, the development of the IHDP algo-

rithm is presented in Section 4.3. Section 4.4 validates the proposed method in several

nonlinear control problems. The results show that the IHDP method can speed up on-

line learning and can improve the control performance compared to the conventional

HDP method. Moreover, it is adaptive and robust to internal uncertainties and external

disturbances.

This chapter is based on the following articles:

Y. Zhou, E. van Kampen, and Q. P. Chu. Incremental model based heuristic dynamic programming for nonlin-

ear adaptive flight control. in International Micro Air Vehicle Conference and Competition 2016 (IMAV 2016)

(Beijing, PR of China, 2016) p. 173-180 [91].

Y. Zhou, E. van Kampen, and Q. P. Chu. Launch vehicle adaptive flight control with incremental model based

heuristic dynamic programming. in 68th International Astronautical Congress (IAC) (Adelaide, Australia, 2017)

[100].

59

4

60 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

A self-learning controller which makes quick and successful adaptations to new con-

ditions can considerably benefit autonomous operations of launch vehicles. To provide

a model-free, adaptive process for optimal control, approximate dynamic programming

has been introduced to aerospace engineering. A widely used structure of approximate

dynamic programming for nonlinear systems is heuristic dynamic programming. This

chapter proposes a new method using an incremental model in heuristic dynamic pro-

gramming to improve the online learning capacity. This method generates an adaptive

near-optimal controller online without a priori knowledge of the system dynamics or

off-line learning of the system model. This chapter validates the proposed method on

two different online tracking problems: missile flight control and satellite attitude con-

trol disturbed by liquid sloshing. The results demonstrate that the incremental model

based heuristic dynamic programming method accelerates online learning, improves

the precision, and can deal with a wider range of initial states compared to the conven-

tional heuristic dynamic programming method, and robust to internal uncertainties and

external disturbance.

4.1. INTRODUCTION

Spaceflight is one of the greatest technological achievements of humankind. It is used in

space exploration, launching communication satellites and space telescopes, and also to

make observations from a different perspective of the phenomena that occur on Earth.

Adaptive and robust control takes a vital part in these activities. Most existing control

methods are based on an accurate model and may require a thorough evaluation and

test. In addition, the system uncertainties, such as model mismatch, aerodynamic un-

certainties, internal dynamics and external disturbances, may also degrade the control

performance of model-based control methods. Therefore, this chapter aims to develop

a nonlinear self-adaptive flight control algorithm for a wide range of spaceflight.

Reinforcement Learning (RL) methods have been introduced to solve nonlinear, op-

timal control problems without using accurate models [29, 31]. These methods link

bio-inspired artificial intelligence techniques to the field of control in order to overcome

some of the limitations and challenges of control methods that require accurate models.

In the control field, RL is also referred to as Approximate Dynamic Programming (ADP),

which solves nonlinear, optimal, fault-tolerant control problems with large or continu-

ous state spaces [50, 53, 101–103]. Different from traditional RL methods, ADP applies a

function approximator to approximate the value/cost of the states, theoretically to any

arbitrary degree of precision. ADP methods exploit this function to approximate the util-

ity of any state and to obtain optimal solutions of the Hamilton-Jacobi-Bellman (HJB)

equations. With this approximate function, ADP methods can tackle the ‘curse of di-

mensionality’, which traditional RL methods are confronted with [32, 34].

Adaptive Critic Designs (ACDs, also known as Actor-Critic designs, ACs) constitute a

class of ADP methods that separates the evaluation and improvement using parametric

structures [50]. The most basic and widely used form is Heuristic Dynamic Programming

(HDP). It consists of an actor, a critic, and an approximate plant structure connecting

the actor and the critic [32, 34, 50, 104]. An alternative approach is Action Dependent

Heuristic Dynamic Programming (ADHDP), which does not need a plant approximation,

but directly connects the output of the actor to the input of the critic. From a theoretical

4.1. INTRODUCTION

4

61

point of view, the actor output is not necessarily an input to the critic, which estimates

the value/cost function; and from a practical perspective, the extra input can increase

the complexity of the critic. Furthermore, an investigation on the difference between

HDP and ADHDP found that HDP controller, compared with the ADHDP controller, can

operate in a wider range of flight conditions, adapts quicker to changed plant dynamics,

and has a higher success ratio in controlling an F-16 aircraft model [54]. Therefore, this

chapter only considers HDP instead of its AD form.

HDP methods can control highly nonlinear systems by exploiting nonlinear function

approximators, such as Artificial Neural Networks (ANNs). With these approximators,

they can identify the system dynamics globally and generate the control laws adaptively.

However, online identification of the global model is not a trivial task, especially when

the system is complex and highly nonlinear [8, 9, 23–27]. It needs a certain time to ap-

proximate a feasible model with a nonlinear approximator. HDP method may even need

an off-line identification process beforehand using representative simulation models

which are also difficult to obtain. Furthermore, it requires adequate computing power,

which flight control systems often lack, to perform the approximation of the desired sys-

tem dynamics.

System nonlinearity can also be dealt with by means of the incremental control tech-

nique without identifying the global system [63, 65–67]. This technique has been suc-

cessfully applied to design adaptive controllers, such as Incremental Nonlinear Dynamic

Inversion (INDI) [63, 65, 66] and Incremental Backstepping (IBS) [67]. These methods

are based on a linear time-varying approximation of the original system when assum-

ing a sufficiently high sample rate for discretization. However, these methods have not

addressed optimization or synthesis of designed closed-loop systems. Incremental Ap-

proximate Dynamic Programming (iADP) was proposed for the first time to control un-

known nonlinear systems. This approach uses a quadratic function to approximate the

cost function [46, 80]. Therefore, it is suitable only for systems with approximately con-

vex cost functions.

This chapter develops a model-free adaptive control approach for unknown non-

linear systems to improve the online learning capability: the Incremental model based

Heuristic Dynamic Programming (IHDP). It uses linearized incremental models of the

original nonlinear system instead of the artificial neural networks that are often used

in HDP controllers. This method is called model-free because it does not need any a

priori information of the system dynamics at the beginning of the algorithm nor online

identification of the global nonlinear system, but only the online identified incremental

model. This algorithm can be seen as an extension of the iADP algorithms developed in

[46, 80] with a more general cost function approximator.

The remainder of this chapter is structured as follows. Section 4.2 starts with an intro-

duction of the traditional HDP method and then describes the most widely used approx-

imator: ANN. Section 4.3 proposes the IHDP method using the incremental approach

and discusses some implementation related issues. Then, section 4.4 applies the pro-

posed method to online tracking control problems on two different systems and quan-

titatively presents how much the IHDP method can improve the online performance.

Lastly, section 4.5 shows the advantages and disadvantages of using the incremental ap-

proach with HDP and addresses the challenges and possibilities of the future research.

4

62 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

4.2. FOUNDATIONS

4.2.1. HDP FRAMEWORK AND GLOBAL SYSTEM MODEL

Heuristic Dynamic Programming (HDP) algorithms, similar to other ADP methods, op-

erate by alternating between two steps: policy evaluation, implemented by the critic,

and policy improvement, implemented by the actor [41, 53, 55, 105]. Fig.4.1 shows a

schematic diagram of an HDP controller, which uses three artificial neural networks to

approximate the actor, the critic, and the global system model with weights wa , wc , and

wm , respectively.

Actor

Critic

System

Global

System Model

xt ,x
r e f
t

xt ,x
r e f
t ut ut

ut

xt

xt

xt+1

x̂t+1

Ĵ (xt)

−γ

Ĵ (xt−1)− ct−1

ea

ec

em

z−1

Ĵ (x̂t+1)
− Ĵ∗(x̂t+1)

∑

∑

∑

−

(1)

(2)

(3)

Figure 4.1: A schematic diagram of HDP using a global system model, where solid lines represent the feedfor-

ward flow of signals, and dashed lines represent the BP pathways.

The global system model approximates the system dynamics and outputs the esti-

mated next state, x̂t+1 ∈ Rn . The inputs of the network are the current state, xt ∈ Rn ,

and the system input, ut ∈Rm . The adaptation algorithms of both the critic and the ac-

tor are based on this system model. The system model updates its weights by minimizing

the difference between the measured state xt and the estimated state x̂t :

Em(t) =
1

2
e2

m(t), (4.1)

where

em(t) = xt − x̂t . (4.2)

The system model weights are updated according to the gradient-descent algorithm with

a learning rate ηm :

wm(t +1) = wm(t)+∆wm(t), (4.3)

4.3. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

4

63

where

∆wm(t) =−ηm ·
∂Em(t +1)

∂wm(t)

=−ηm ·
∂Em(t +1)

∂x̂t+1

∂x̂t+1

∂wm(t)
.

(4.4)

4.2.2. ANN AND BACK-PROPAGATION

The actor, critic, and global model are approximated with ANNs, or more specifically

Multilayer Perceptrons (MLP), which consist of multiple, fully connected, and feedfor-

ward layers of nodes. Each network has an input layer, a hidden layer, and an output

layer. Each node in the hidden layer is a neuron with a continuous, nonlinear hyperbolic

tangent activation function σ:

σ(o) =
1−e−o

1+e−o
. (4.5)

Its derivative is continuous and positive at every point:

∂σ(o)

∂o
=

1

2
(1−σ(o)2). (4.6)

In fully connected multilayer neural networks, the input of the next layer consists

of the outputs of this layer and sometimes also a bias term. Because the output of a

hyperbolic tangent function is bounded with (−1,1), and the output of the hidden layer

is multiplied with an output weight, the neural network with bias terms can theoretically

approximate any value. The detailed neural network calculation and Back-Propagation

(BP) algorithms have been provided in [91] and will not be carried out in this chapter.

The actor and critic networks in both HDP and IHDP methods have the same setting

in this chapter. The number of hidden layer neurons in the actor and the critic is 6, and

in the global system network is 10. The network weights are updated recursively using

the Least Mean Square (LMS) method. The neural network weights are limited within

the range [−30,30] to prevent their sudden growth to infinity.

4.3. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PRO-

GRAMMING

This section proposes an adaptive controller for nonlinear systems without a priori

knowledge of the system dynamics, namely Incremental model based Heuristic Dy-

namic Programming (IHDP). This method is devised based on the HDP method and

incremental control techniques. As illustrated in Fig. 4.2, the IHDP controller uses only

two artificial neural networks to approximate the actor and the critic with weights wa

and wc , and an incremental model to find the system dynamics at the current moment.

Therefore, the design of the IHDP controller relieves the off-line learning stage. This

section will devise and elaborate this new method using the incremental approach.

4.3.1. IHDP FRAMEWORK AND ADAPTATION RULES

4

64 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

Actor

Critic

System

Incremental

Model

Stored

Measurements

xt ,x
r e f
t

xt ,x
r e f
t ut ut

ut

xt

xt

xt+1

x̂t+1

Ĵ (xt)

−γ

Ĵ (xt−1)− ct−1

ea

ec

FG

z−1

Ĵ (x̂t+1)
− Ĵ∗(x̂t+1)

∑

∑

(1)

(2)

(3)

Figure 4.2: A schematic diagram of IHDP using a time-varying incremental model, where solid lines represent

the feedforward flow of signals, and dashed lines represent the adaptation pathways.

INCREMENTAL MODEL

Incremental techniques identify the incremental model at the current time by using the

conditions of the system in an instant before [46, 65]. This technique can be applied

to nonlinear systems with sufficiently high sample rate. The dynamic and kinematic

equations of a nonlinear system, such as an aircraft, can be generally given as follows:

ẋ(t) = f [x(t),u(t)], (4.7)

where x ∈ Rn is the system state vector, u ∈ Rm is the control input vector, and

f [x(t),u(t)] ∈Rn provides the physical evaluation of the state vector over time.

The system dynamics around the condition of the system at time t0 can be linearized

approximately by using the first-order Taylor series expansion:

ẋ(t) ≈ ẋ(t0)+F [x(t0),u(t0)][x(t)−x(t0)]

+G[x(t0),u(t0)][u(t)−u(t0)],
(4.8)

where F [x(t0),u(t0)] =
∂ f [x(t),u(t)]

∂x(t)
|x(t0),u(t0) ∈ Rn×n is the system matrix of the linearized

model at time t0, and G[x(t0),u(t0)] =
∂ f [x(t),u(t)]

∂u(t)
|x(t0),u(t0) ∈Rn×m is the control effective-

ness matrix.

The states and state derivatives of the system are assumed to be measurable, which

means ∆ẋ(t),∆x(t),∆u(t) are measurable. Therefore, the model around time t0 can be

written in an incremental form:

∆ẋ(t) ≃ F [x(t0),u(t0)]∆x(t)+G[x(t0),u(t0)]∆u(t). (4.9)

4.3. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

4

65

The current incremental model can be identified with a Least Squares (LS) technique.

This model can be used to obtain an approximated value of ∂x(t+1)
∂u(t)

without using an

ANN model.

Most of the physical systems are continuous, while measurements are often discrete.

With a constant, high data sampling frequency, the nonlinear system can be written in a

discrete form as follows:

xt+1 = f (xt ,ut), (4.10)

where f (xt ,ut) ∈Rn provides the system dynamics.

When the sample time ∆t is sufficiently small, the system dynamics around xt can

be linearized by taking the Taylor expansion, as follows:

xt+1 ≈ xt +Ft−1 · (xt −xt−1)+Gt−1 · (ut −ut−1), (4.11)

where Ft−1 =
∂ f (x,u)

∂x
|xt−1,ut−1 ∈ Rn×n is the system transition matrix, and Gt−1 =

∂ f (x,u)
∂u

|xt−1,ut−1 ∈ Rn×m is the input distribution matrix at time step t −1 for discretized

systems. The incremental form of this discrete nonlinear system can be obtained as fol-

lows:

∆xt+1 ≈ Ft−1∆xt +Gt−1∆ut , (4.12)

With the high-frequency sample data and the relatively slow-variant system assump-

tion, the current linearized model can be identified from L previous measurements using

LS methods. With the identified F̂t−1 and Ĝt−1 matrix, the next state can be predicted as

follows:

x̂t+1 = xt + F̂t−1∆xt +Ĝt−1∆ut . (4.13)

THE CRITIC

The critic network approximates the true cost-to-go J(xt), which is the cumulative sum

of future costs cl from any initial state xt :

Jµ(xt) =
∞∑

l=t

γl−t cl , (4.14)

where µ is the current policy (control law), which is provided by the actor, and γ ∈ (0,1)

is a scalar called discount factor or forgetting factor. The discount factor ensures that the

cost for any state is finite and provides a reasonable evaluation and approximation to

infinite-horizon problems as well as problems involving a finite but very large number

of stages. By adjusting γ, it is able to control the extent to which the short-term cost or

long-term cost is concerned [105].

The cost cl at a future time l is often a function of the state at that time, and called

the one-step cost function. In this chapter, it is defined quadratically, so as to minimize

the cost of the system state xl approaching the reference signal x
r e f

l
, as follows:

cl = c(xl ,x
r e f

l
) = (xl −x

r e f

l
)T Q(xl −x

r e f

l
), (4.15)

where Q ∈ Rn×n is a positive definite matrix. To normalize the effect of each state, we

usually use normalization factors in the Q matrix: Q = di ag {ζ1,ζ2, ...,ζn}, where ζ is a

4

66 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

given weight to indicate the importance of the cost for the related state approaching the

reference.

HDP methods are on-policy Temporal Difference (TD) methods. They iteratively up-

date the critic by estimating the true cost-to-go for the current policy and update the

actor to change the policy towards greediness [31]. The target for the critic update is

ct−1 +γ Ĵ (xt). Thus, the evaluation of the critic is the TD error:

ec (t) = ct−1 +γ Ĵ (xt)− Ĵ (xt−1), (4.16)

where Ĵ (xt) is the approximated cost function from state xt under the current policy.

Note that Ĵ is a function of xt and wc (t) and is represented by a static neural network.

The critic network is updated so as to minimize the defined error function for the

critic Ec (t):

Ec (t) =
1

2
e2

c (t). (4.17)

The weights of the critic network are updated according to the gradient-descent algo-

rithm with a learning rate ηc :

wc (t +1) = wc (t)+∆wc (t), (4.18)

where

∆wc (t) =−ηc ·
∂Ec (t)

∂wc (t)

=−ηc ·
∂Ec (t)

∂ Ĵ (xt)
·
∂ Ĵ (xt)

∂wc (t)
.

(4.19)

With a converged policy, the critic and its network parameters wc (t) will also converge.

THE ACTOR

The actor is used to find the policy which minimizes the defined cost function Ĵ (xt).

Therefore, the target for the actor update is J∗(t) = 0, and the error function for the actor,

Ea(t), is defined as follows:

Ea(t) =
1

2
e2

a(t), (4.20)

ea(t) = Ĵ (xt)− J∗(t). (4.21)

The actor update is complicated because it involves the critic and the model. As

illustrated in Figs. 4.1 and 4.2, the actor weights affect the true cost-to-go J(xt+1) through

affecting xt+1 and ut along 3rd back-propagation direction. Therefore, the actor network

weights can be updated according to the gradient-descent algorithm with a learning rate

ηa :

wa(t +1) = wa(t)+∆wa(t), (4.22)

where

∆wa(t) =−ηa ·
∂Ea(t +1)

∂wa(t)

=−ηa ·
∂Ea(t +1)

∂ Ĵ (xt+1)

∂ Ĵ (xt+1)

∂xt+1

∂xt+1

∂ut

∂ut

∂wa(t)
.

(4.23)

4.3. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

4

67

The approximated model can output the estimation of the next state x̂t+1 for an input

ut . This also helps to get the useful term ∂x̂(t+1)
∂ut

, which approximates
∂xt+1

∂ut
, in updating

the actor network [54]. Therefore, Eq. (4.23) can be rewritten as follows:

∆wa(t) =−ηa
∂Ea(t +1)

∂ Ĵ (x̂t+1)

∂ Ĵ (x̂t+1)

∂x̂t+1

∂x̂t+1

∂u(t)

∂u(t)

∂wa(t)
. (4.24)

The structure of the actor network in IHDP is the same as the one in HDP controller.

However, the actor network update is easier and faster than the one in HDP controller,

since it involves an incremental model instead of the global system model. The input

distribution matrix G of the incremental model can be online identified and be directly

used to approximate the derivative of the next state w.r.t. the system input,
∂x̂t+1

∂ut
:

∂x̂t+1

∂ut
≈ Ĝt−1. (4.25)

Therefore, with a direct online identification of the incremental model, this method sim-

plifies the approach of updating the actor network weights and accelerates the learning.

4.3.2. INCREMENTAL MODEL ONLINE IDENTIFICATION

The system transition matrix Ft−1 and the input distribution matrix Gt−1 of the current

linearized model are identifiable by using the LS method:

∆xr,t−l+1 = fr∆xt−l +gr∆ut−l

=
[
∆xT

t−l
∆uT

t−l

][
fT
r

gT
r

]
,

(4.26)

where ∆xr,t−l+1 = xr,t−l+1 − xr,t−l is the increment of r th state element, fr and gr are the

elements of r th row vector of Ft−1 and Gt−1, l = 1,2...L denotes at which time the historic

information is available, and L is the data window length. Because there are n +m pa-

rameters in the r th row, L needs to satisfy L ≥ (n +m). With a piecewise moving window

Least Squares method, the linearized system dynamics (r th row) can be identified from

L different data points: [
f̂
T
r

ĝT
r

]
= (AT

t ,LAt ,L)−1AT
t ,Lxr,t ,L , (4.27)

where

At ,L =

∆xT

t−1 ∆uT
t−1

...
...

∆xT
t−L ∆uT

t−L

 , xr,t ,L =

∆xr,t

...

∆xr,t−L+1

 . (4.28)

As incremental models are able to describe the system dynamics within a small time

range, the window length L is also important. The identified model may not represent

the locally linearized model of the nonlinear system with an L larger than necessary.

However, if L is too small, it may run into an identifiability problem, especially when

the system excitation is not sufficient. Therefore, to choose L depends not only on the

sampling frequency and the nonlinearity but also on the intensity of the excitation. This

chapter adopts L to be 2 · (n +m), which works well in practice.

4

68 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

4.3.3. IMPLEMENTATION ISSUES

This section addresses some issues for implementing the aforementioned algorithms,

including the excitation of the system, the structured actor network, and the learning

rate.

PERSISTENT EXCITATION

To accomplish the reference tracking task, an adaptive controller with the actor needs to

be found out by minimizing the cost-to-go J(xt) with a feasible critic and model. As with

other ADP methods, good evaluation depends heavily on the exploration of the state

space, which is represented by Persistent Excitation (PE). PE is also imperative for iden-

tifying the incremental model. Many different input techniques can be used to excite

aircraft modes, such as doublets, 3211 doublets, pseudo-random noise, and classical

sine waves.

This chapter introduces an input disturbance, which is a sum of sinusoidal signals.

This disturbance persistently excites the system for identification of the system and ex-

ploration of the state space in HDP methods. On the other hand, disturbances are usu-

ally undesirable inputs in the real world. Therefore, the flight control task is to track the

reference signal as well as to stabilize the system, if there is any disturbance. Because

of the online learning capability of HDP methods, the disturbance can be compensated

without being identified.

CASCADED ACTOR NETWORK

To take advantages of the physical properties of the air vehicle system, a structured cas-

caded actor network [53, 54] is used as shown in Fig. 4.3. This cascaded structure sep-

arates the inner loop and outer loop control, which provides specific relationships be-

tween the angular rate and the attitude. As long as the concerned full states and control

input of this air vehicle are known, this structure can be easily implemented in the actor

network.

Actor

ANNa,1 ANNa,2

xt ,x
r e f
t

αt

α
r e f
t

ut

qt

q
r e f
t

Figure 4.3: The architecture of the cascaded actor network.

ADAPTIVE LEARNING RATE

HDP methods, similar to other ACDs, are online learning methods in the sense of the

adaptation of the critic and the actor. They iteratively learn the critic and the actor, of

which value depends on each other. The online learning stage of HDP uses LMS tech-

niques, which update the weights based only on the error at the current time. This

method incrementally updates the neural network weights along the steepest descent

with a learning rate η. The convergence to the optimal weights depends heavily on a

4.4. NUMERICAL EXPERIMENTS AND RESULTS

4

69

properly chosen η. If η is chosen to be too small, the time to converge will be very large,

and it may be trapped in a local optimum. If η is too large, the weight may change by a

large amount and oscillate around the optimal weights.

To make the convergence less sensitive to the chosen learning rate, this chapter uses

an adaptive learning rate ηt at time t . It is self-tuned in each update. A proper learn-

ing rate needs to meet the condition that the new weights decrease the network error.

In each time-step, the initial learning rate is assigned by the previous time-step. This

method calculates the direction of steepest descent ∂E(t)
∂w(t)

and searches along this line by

halving the learning rate ηt until it meets the condition. With this ηt , the neural network

weight can be updated as follows:

w(t +1) = w(t)−ηt ·
∂E(t)

∂w(t)
. (4.29)

If the network errors of the new weights and the old weights have different signs, this

new learning rate will also be assigned as the initial learning rate for the next step. Oth-

erwise, the learning rate for the next time-step will be doubled. The initial learning rates

η0,0 at time t = 0 for the model, the critic, and the actor are chosen to be 10, 20, and 10,

respectively. They are set the same values for the traditional HDP and the IHDP algo-

rithms.

4.4. NUMERICAL EXPERIMENTS AND RESULTS

This section validates the proposed IHDP method to online tracking control problems

on two different systems. First, this method is applied to a short period flight control

problem for a missile model. This model is simple while nonlinear, which is suitable

for an online performance comparison with the conventional HDP method. The second

task is a spacecraft attitude control, which is disturbed by internal liquid sloshing. This

is for validation on complex Multiple-Input Multiple-Output (MIMO) nonlinear control

problems, which contain uncertainties in both the internal system and the external en-

vironment.

4.4.1. MISSILE FLIGHT CONTROL: COMPARISON BETWEEN HDP AND

IHDP

MISSILE MODEL

The proposed IHDP method is first applied to a simplified missile model for a compari-

son with the conventional HDP method. The missile model of a short period flight con-

trol problem consists of two states: angle of attack α and pitch rate q . Only the pitch is

controlled using elevator deflection δe . This nonlinear model in the pitch axis is simu-

lated around a steady wings-level flight condition:

α̇= q +
q̄S

maVT
Cz (α, q, Ma ,δe), (4.30)

q̇ =
q̄Sdl

Iy y
Cm(α, q, Ma ,δe), (4.31)

4

70 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

where q̄ is dynamic pressure, S is reference area, ma is mass, VT is speed, dl is reference

length, Iy y is pitching moment of inertia, Cz is the force coefficient in body Z-direction,

and Cm is the pitch moment coefficient. Cz and Cm are nonlinear functions of angle of

attack α, pitch rate q , Mach number Ma and elevator deflection δe . In this simulation

experiment, an air vehicle model [68, 69, 81] is taken in the pitch plane for −10o < α <

10o , and the Mach number Ma is set to be 2.2.

There are several reasons for using this missile model: 1) This model is simple while

nonlinear, which is suitable for a validation of the newly-developed online adaptive

IHDP method. 2) For more complex models, conventional HDP may need off-line learn-

ing stage [50–53], which will impede a fair comparison to the IHDP method. 3) The mis-

sile model can operate at a high and rapidly changing angle of attack, which leads to a

high nonlinearity. 4) It is a second-order continuous model, which means it is relatively

real and complete. Although the model is only valid within the given flight envelope, the

model can be still used out of the envelope numerically in this simulation.

Although the missile model is presented above, the IHDP model-free method does

not need any a priori knowledge about the model, but only assumes a general dynamic

and kinematic state equations as follows:

ẋ(t) = f [x(t),u(t)+d(t)], (4.32)

where x = [α, q]T is the state vector, u = δe is the control input vector of the system, and

d(t) is the external disturbance and is set to be caused by the input noise.

RESULTS AND DISCUSSIONS

To solve this tracking problem, two algorithms are applied: 1) traditional HDP uses an

artificial neural network to approximate the global system model, and 2) IHDP uses the

incremental model to approximate the linearized model at the current moment. In both

cases, the identified models have two functions. First, they are used to predict the next

states x̂t+1 so as to estimate the cost of the next state Ĵ (x̂t+1) and its difference from the

minimal cost J∗. Second, some information of the models is necessary to estimate the

input distribution matrix G at the current moment, which is used to update the actor

during the error back-propagation.

Figure 4.4 shows the one-step prediction of α and q using the ANN model and the

incremental model identified with LS, respectively, when there is a sinusoidal input ex-

citation. As shown in Fig. 4.4(a), the one-step state predictions are feasible using both

the ANN model and the incremental model. However, the online identification using

the ANN needs more time to generate an accurate prediction at the beginning. The

incremental model, on the other hand, predicts the next state accurately after only a

few measurements. Figure 4.4(b) and (c) take a close look at the prediction errors, and

show that the prediction using incremental approach has higher precision than using

the ANN model. This also explains the reason for having the off-line stage to train the

global model in traditional HDP methods.

To back-propagate the error for the actor update, the partial derivative of the next

state of the system w.r.t. the input signal,
∂xt+1

∂ut
, needs to be approximated. This term

is the input distribution matrix for a linearized model with discrete measurements.

Figure 4.5 presents the identification results of this term, represented as the matrix

4.4. NUMERICAL EXPERIMENTS AND RESULTS

4

71

(a) One-step prediction of the system states, α and q

[◦
,
◦
/s

]

α

q

α̂AN N

q̂AN N

α̂LS

q̂LS

(b) Prediction error of the state α

∆
α

[◦
] α− α̂AN N

α− α̂LS

(c) Prediction error of the state q

Time [s]

∆
q

[◦
/s

]

q − q̂AN N

q − q̂LS

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

-0.5

0

0.5

-15

-10

-5

0

5

Figure 4.4: The one-step state prediction with a sinusoidal input excitation using the online identified ANN

and the LS technique.

(a)

∂
α

t+
1

/∂
δ

e
,t g 1r eal

g 1AN N

g 1LS

(b)

Time [s]

∂
q

t+
1

/∂
δ

e
,t

g 2r eal

g 2AN N

g 2LS

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.5: Online identified control derivatives, G = [g 1, g 2]T , using the online identified ANN and the LS

technique.

4

72 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

G = [g 1, g 2]T , using the ANN model and the incremental model, respectively. The matrix

identified with the incremental model has higher accuracy than the ANN model.

The reason is that the traditional HDP method updates the model network by min-

imizing the difference between the measurement of the state and its prediction. The

identified ANN model does not have to be a feasible approximation of the derivatives of

the system states because it does not build an explicit representation for the derivatives.

The IHDP method, on the other hand, identifies the system transition matrix and the in-

put distribution matrix for the linearized model, which directly approximate the control

derivatives of the current system states.

Figures 4.6 to 4.8 compare the performance of the traditional HDP method and IHDP

method when applied to an online tracking problem. The sub-figures on the top present

how these algorithms control the angle of attack α to track the reference signal, which is

a sine function of time with the amplitude of 10◦. These simulations run 2 periods of the

reference signal, which is 4π seconds. The sub-figures on the bottom provides the error

using these two algorithms during this tracking task. Figure 4.6 shows the simulation

results when the initial states is zero.

The influence of the initial states is also examined in this research. When the initial

state α0 is ±2◦, both methods perform similar to the simulation results with zero initial

states, as presented in Figs. 4.7 and 4.8. However, when the initial stateα0 is changed fur-

ther to ±4◦ or more, the traditional HDP method cannot track the reference signal. The

IHDP method, on the other hand, can deal with different initial states within [−8◦,8◦]

and performs as good as zero initial states, as shown in Fig. 4.9.

These results uniformly show that, compared to traditional HDP method, IHDP

method can identify the local model and reject the disturbance faster, follow the ref-

erence signal more precisely, and deal with a wider range of initial states. In realistic

cases, the slow online training of the model network may lead to a large overshoot and

lost control at the initial stage. Therefore, the traditional HDP usually needs an off-line

training of the model before online training of the controller to prevent failures. On the

other hand, IHDP does not need off-line learning, because the linearized local model

can be identified with only a few measurements. The incremental model identification

is faster and more accurate than the neural network model.

Except for the initial conditions of the air vehicle, the initial weights of neural net-

works can also affect the HDP learning, especially when they are learning online. There-

fore, different, random initial neural network weights and different initial states are ex-

amined for the traditional HDP and IHDP methods. To reduce the impact of initial

weights, the neural network weights are initialized with small, random numbers from

the range (−0.01,0.01). With these initial weights, both methods have a high success ra-

tio: 70.2% for traditional HDP and 86.7% for IHDP, when the initial state α0 ∈ [−2◦,2◦].

Note that this chapter admits a successful trail if it converges within 4π seconds and the

error between the target state and the reference signal is no more than 2.5◦ hereafter, as

seen in Figs. 4.6 to 4.8.

Figure 4.10 presents the changes of the actor output surface during the online track-

ing problem. This figure examines the actor outputs δe of M even distributed state vec-

tors within the sub state space: α ∈ [−10,10]◦ , q ∈ [−10,10]◦/s. The output surface at

time t = 0 is nearly flat, as shown in Fig. 4.10(a), because the initial weights are very

4.4. NUMERICAL EXPERIMENTS AND RESULTS

4

73

(a)

α
[◦

]

αr e f

αHDP

αI HDP

(b)

Time [s]

∆
α

[◦
]

αr e f −αHDP

αr e f −αI HDP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-10

-5

0

5

-10

-5

0

5

10

Figure 4.6: Online tracking control with zero initial states using HDP and IHDP approaches.

(a)

α
[◦

] αr e f

αHDP

αI HDP

(b)

Time [s]

∆
α

[◦
]

αr e f −αHDP

αr e f −αI HDP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-15

-10

-5

0

5

-10

-5

0

5

10

Figure 4.7: Online tracking control with a positive initial state, α0 = 2◦, using HDP and IHDP approaches.

(a)

α
[◦

] αr e f

αHDP

αI HDP

(b)

Time [s]

∆
α

[◦
]

αr e f −αHDP

αr e f −αI HDP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-10

-5

0

5

-10

-5

0

5

10

Figure 4.8: Online tracking control with a negative initial state, α0 =−2◦, using HDP and IHDP approaches.

4

74 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

α
[◦

]

(a)

Time [s]
(b)

Time [s]

α0 = 8◦

α0 = 6◦

α0 = 4◦

α0 =−4◦

α0 =−6◦

α0 =−8◦

αr e f

0 2 4 6 8 10 120 0.2

-8

-4

0

4

8

-8

-4

0

4

8

Figure 4.9: Online tracking control with different initial states using the IHDP approach.

Time [s]

(c) Average actor output surface change after each update

∆
δ

e
[◦

]

(a) Actor with wa at t = 0 (b) Actor with wa at t = 4π

HDP

IHDP

q[◦/s]α[◦]

δ
e

[◦
]

q[◦/s]α[◦]

δ
e

[◦
]

-10
0

10
-10

0
10

0 2 4 6 8 10 12

-10

-5

0

5

10

-10

-5

0

5

10

-10
0

10
-10

0
10

0

0.1

0.2

0.3

0.4

0.5

-10

0

10

-10

0

10

Figure 4.10: The actor output surface changes during an online tracking problem using HDP and IHDP ap-

proaches.

4.4. NUMERICAL EXPERIMENTS AND RESULTS

4

75

small. Figure 4.10(b) exhibits the output surface after this tracking task at time t = 4π

(2 periods of the reference signal). The average output surface change ∆δe after each

update time t is calculated over the selected state vectors xl , l = 1, ..., M , as follows:

∆δe (t) =

∑M
l=1

|δe (xl ,wa(t))−δe (xl ,wa(t −1))|

M
. (4.33)

Figure 4.10(c) gives the average output surface changes of the actor using traditional

HDP and IHDP methods, which indicate the changes of the actor network weights. The

differences between traditional HDP and IHDP methods are highlighted in this figure.

The traditional HDP updates the actor network later then IHDP because it needs to first

have a feasible system model network and critic network. If the system model network

converges into a local optima, the actor also adapts to that model, which leads to 3 major

changes shown in this figure. On the other hand, IHDP can update the actor as long

as it has a feasible critic network and an incremental model, which can be identified

immediately.

Table 4.1 illustrates the average tracking error and the average settling time for those

successful trails. The average tracking error is calculated within (2π, 4π) seconds. In this

chapter, the average settling time is defined as the time that the error reaches and re-

mains within 2.5◦. The data in this table is quite revealing in two ways. First, the IHDP

method spends less time (0.14 seconds) to find a feasible actor, compared to the tra-

ditional HDP (2.11 seconds), which is also apparent in Fig. 4.10. Second, the average

tracking error after 2π seconds is decreased from 1.47 degrees with the traditional HDP

to 0.11 degrees with the IHDP method, which means that the online IHDP method fol-

lows the reference signal more precisely.

Table 4.1: Performance of HDP and IHDP in the Missile Control Simulations

HDP IHDP

Average Tracking Error 1.47 ◦ 0.11 ◦

Average Settling Time 2.11 s 0.14 s

4.4.2. SPACECRAFT ATTITUDE CONTROL: VALIDATION OF IHDP WITH UN-

CERTAINTIES

SPACECRAFT WITH LIQUID SLOSHING

To validate the IHDP method for more complex systems and control tasks, this chapter

also carries out simulation experiments on a spacecraft attitude control problem dis-

turbed with liquid sloshing. Liquid sloshing is one of the most undesired, unknown,

and uncertain internal dynamics involved in the spacecraft attitude control [10–12]. Al-

though been studied for years, an accurate liquid sloshing model is extremely difficult to

obtain [12, 13]. This chapter, therefore, applies the model-free IHDP method to control

a satellite disturbed by the liquid sloshing.

Apart from the liquid, the satellite can be seen as a rigid body, whose mass and mo-

ment of inertia are ms and Is . The liquid sloshing can be represented by a pendulum

4

76 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

[10–13, 84], whose mass, moment of inertia, angle w.r.t. the spacecraft longitudinal axis,

and length are mp , Ip , ψ, and a, respectively. The pendulum point of attachment is in

front of the spacecraft center of mass with a distance b. The attitude angle θ is defined

w.r.t. a fixed reference, and vx and vz are the axial and transverse components of the

velocity of the fuel tank center. Three external forces/moments are acting through/on

the satellite center of mass: the transverse force fs and the pitching moment Ms are the

satellite attitude control inputs, and the thrust Fs is constant.

With the satellite and analogous liquid sloshing dynamic and kinematic state equa-

tions from [11, 12], the rotational variables can be separated from the translational vari-

ables as follows [84]:

ms b[fs −ms bθ̈−mp a(ψ̈+ θ̈)cos(ψ)+mp a(ψ̇+ θ̇)2si n(ψ)]

+ (ms +mp)(Is +mb2)θ̈− (ms +mp)κψ̇= (ms +mp)(Ms +b fs),
(4.34)

mp a{si n(ψ)[Fs −ms bθ̇−mp a(ψ̈+ θ̈)si n(ψ)−mp a(ψ̇+ θ̇)2cos(ψ)]

+ cos(ψ)[fs −ms bθ̈−mp a(ψ̈+ θ̈)cos(ψ)+mp a(ψ̇+ θ̇)2si n(ψ)]}

+ (ms +mp)(mp a2
+ Ip)(ψ̈+ θ̈)+ (ms +mp)κψ̇= 0.

(4.35)

Thus, the MIMO nonlinear model of the satellite attitude control problem has been

generated for simulations. The parameters used in the online learning simulations are

ms = 600kg , Is = 720kg /m2, mp = 100kg , Ip = 90kg /m2, a = 0.3m, b = 0.3m, Fs = 500N ,

and κ= 0.19kg ·m2/s.

RESULTS AND DISCUSSIONS

The target of this attitude control problem is to track a sinusoidal reference of θ while sta-

bilizing ψ, which represent the liquid sloshing. The system model and even the thrust Fs

is unknown, but the measurements of the system state x = [θ,ψ, θ̇,ψ̇]T and the control

input u = [fs , Ms]T are available. The force and moment directly act on the rigid satellite

and will slosh the liquid around. The liquid will start interacting with the satellite, which

increases the system complexity and control difficulties. It is almost impossible to iden-

tify the global system model online and generate a proper actor before the system state

diverges in this simulation.

Therefore, this section only applies the IHDP method to this satellite attitude control

problem online without any a priori knowledge of the system. Figure 4.11 presents the

online control performance in tracking the dynamical reference with zero initial tracking

error ∆θ0 = 0. The sub-figure on the top shows the system states θ and ψ during online

tracking the sinusoidal signal with the amplitude of 30◦. This simulation runs 3 periods

of the sinusoidal signal, which is 2400 seconds. The sub-figure on the bottom provides

not only the one-step cost at each time step ct but also the averaged one-step cost over

each 400 seconds (π/2) ct .

Initial tracking error in satellite angle ∆θ0 may cause extra oscillations, system un-

certainties, and even divergence if the online adaptability of the controller is not effi-

cient and fast enough. Figures 4.12 and 4.13 present the online performance of the IHDP

method with initial tracking errors ±30◦, respectively. As seen in these figures, the IHDP

method can deal with different initial tracking error without loss of accuracy.

4.4. NUMERICAL EXPERIMENTS AND RESULTS

4

77

(a) System states

[◦
]

θ
ψ

θr e f

(b) One-step cost

Time [s]

c t

ct

ct

0 400 800 1200 1600 2000 2400

0 400 800 1200 1600 2000 2400

0

0.05

0.1

0.15

-30

0

30

Figure 4.11: Online tracking control with zero initial states using the IHDP approach.

(a) System states

[◦
]

θ
ψ

θr e f

(b) One-step cost

Time [s]

c t

ct

ct

0 400 800 1200 1600 2000 2400

0 400 800 1200 1600 2000 2400

0

3

6

-30

0

30

Figure 4.12: Online tracking control with a positive initial satellite angle θ0 = 30◦ using the IHDP approach.

(a) System states

[◦
]

θ
ψ

θr e f

(b) One-step cost

Time [s]

c t

ct

ct

0 400 800 1200 1600 2000 2400

0 400 800 1200 1600 2000 2400

0

3

6

-30

0

30

Figure 4.13: Online tracking control with a positive initial satellite angle θ0 =−30◦ using the IHDP approach.

4

78 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

External

Disturbance

(a) System states

[◦
]

θ

ψ

θr e f

(b) One-step cost

Time [s]

c t

ct

ct

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

0

0.1

0.2

-30

0

30

Figure 4.14: Disturbance response without further adaptation when the disturbance occurs.

External

Disturbance

(a) System states

[◦
]

θ

ψ

θr e f

(b) One-step cost

Time [s]

c t

ct

ct

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

0

0.1

0.2

-30

0

30

Figure 4.15: Disturbance response with consistent adaptation.

4.5. CONCLUSION

4

79

To further validate the adaptability and robustness of the proposed IHDP method,

another simulation is carried out with sudden external disturbance. One of the com-

mon disturbances on satellite is the external force. In this simulation, the external force

f ext
s acts through the satellite center of mass as same as fs . It is −100N , placed at 2400

seconds and lasts for 1 second. This force brings an immediate oscillation to the liquid

sloshing angle ψ, which also expands the experienced state space. Therefore, the control

policy needs to adapt itself to stabilize this oscillation. Figure 4.14 presents the distur-

bance response without any adaptation of the actor by freezing the actor weights after

2400 seconds. The oscillation is damped out very slowly. This result also indicates that

even the off-line learning can generate an exceptional policy in the experienced situa-

tions, the changes and uncertainties in the system or in the environment may degrade

the control performance without online adaptation.

The sudden external disturbances may excite the local model identification imme-

diately, adapt the cost function in the just experienced state space, and consequently

self-adjust the control policy by updating the actor. As shown in Fig. 4.15, the IHDP

method with further adaptation rejects the disturbance and improves the closed-loop

performance much quicker compared to the result in Fig. 4.14. This result validates that

the IHDP method is robust not only to internal uncertainties but also to external distur-

bances.

4.5. CONCLUSION

This chapter proposed a new approach, Incremental model based Heuristic Dynamic

Programming (IHDP), to design adaptive controllers without a priori knowledge of the

system dynamics. This method adopts the basic structure and adaptation rules of the

Heuristic Dynamic Programming (HDP), which has a general nonlinear cost function.

On the other hand, this method replaces the global system model approximator with an

incremental model reconstructed by using a series of the most recent measurements.

This linear model provides more accurate local system dynamics and state prediction

and simplifies the actor update process. Therefore, this method does not need off-line

training stage and may accelerate online learning. To accelerate the online learning is

of great practical value, especially when a priori knowledge is unknown, the system is

initially unstable, or the system or environment changes suddenly.

To compare the online control performance of the IHDP method and the conven-

tional HDP method, this chapter applied both methods to a tracking problem on an un-

known missile model with nonlinear aerodynamic uncertainties. The results show that

the presented IHDP method speeds up the online learning, has a higher precision, and

can deal with a wider range of initial states than the traditional HDP method. In addition,

this chapter also applied the IHDP method to a more complex multiple-in multiple-out

satellite attitude tracking control disturbed by liquid sloshing. The simulation results

also demonstrate that the IHDP method is adaptive and robust to internal uncertainties

and external disturbances.

As an extension of the incremental Approximate Dynamic Programming (iADP)

method that uses a quadratic cost function, the IHDP method presented in this chapter

separates the policy evaluation and improvement into two nonlinear structures, which

are artificial neural networks in this chapter. Although these two approximations update

4

80 4. INCREMENTAL MODEL BASED HEURISTIC DYNAMIC PROGRAMMING

alternatively based on each other, their adaptation is not necessarily synchronized. In

another word, the critic update usually happens earlier than the actor. This time differ-

ence also provides a chance for the critic to evaluate a relatively consistent policy and

makes it possible to prevent the initial off-line learning stage. This study generalized the

use and applications of the iADP methods. Further research should, therefore, concen-

trate on the investigation of different types of approximators, experimentation of higher

degree-of-freedom and more realistic applications, and further extensions to partially

observable conditions.

5
INCREMENTAL MODEL BASED

DUAL HEURISTIC PROGRAMMING

The previous chapter presented the Incremental model based Heuristic Dynamic Pro-

gramming (IHDP) method, which exploits incremental models instead of a global sys-

tem model, as in conventional HDP methods. This IHDP method shows the advan-

tages of using incremental models in Adaptive Critic Designs (ACDs), which make them

promising solutions for control of aerospace systems. To further accelerate the conver-

gence and improve the control performance, this chapter develops another online ACD

method: Incremental model based Dual Heuristic Programming (IDHP). This chapter

begins with a brief introduction of the conventional DHP algorithm and then focuses

on the development of the IDHP method, in Section 5.2. Then, Section 5.3 describes

the nonlinear missile model and discusses some implementation-related issues. Sec-

tion 5.4 validates the IDHP method in an online reference tracking task and an online

Fault-Tolerant Control (FTC) task, even with high-frequency measurement noise. The

results demonstrate that the IDHP method can further increase the convergence rate

and control performance compared to the DHP method, and can successfully control a

faulty and unstable system in real-time.

This chapter is based on the following article:

Y. Zhou, E. van Kampen, and Q. P. Chu. Incremental model based online dual heuristic program-

ming for nonlinear adaptive control. Control Engineering Practice. Vol. 73, p. 13-25, 2018.

https://doi.org/10.1016/j.conengprac.2017.12.011 [106] .

81

5

82 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

Dual heuristic programming has gained an increasing interest in recent years be-

cause it provides an effective process for optimal adaptive control of uncertain nonlinear

systems. However, it requires a global system model, which usually needs to be trained

off-line. This chapter presents a new and efficient approach for online self-learning con-

trol based on dual heuristic programming. This method uses a recursive least square

method to online identify an incremental model of the system instead of a global system

model. The presented incremental model based dual heuristic programming method

can adaptively generate a near-optimal controller online without a priori information

of the system dynamics or an off-line training stage. To compare the online adaptabil-

ity of the conventional dual heuristic programming method and the newly proposed

method, two numerical experiments are performed: an online reference tracking task

and a fault-tolerant control task. The results reveal that the proposed method outper-

forms the conventional dual heuristic programming method in online learning capacity,

efficiency, accuracy, and robustness.

5.1. INTRODUCTION

Adaptive control strategies are the foundation for controlling nonlinear systems with un-

certainties. To solve these control problems, Reinforcement Learning (RL) offers an op-

tion without using accurate system models [34]. RL is a self-learning method, in which

actions are trained in order to minimize the cost-to-go from interaction with the en-

vironment. These self-learning methods link bio-inspired artificial intelligence tech-

niques to the field of optimal control and adaptive control to overcome some of the lim-

itations and challenges of traditional model-based control methods. Approximate Dy-

namic Programming (ADP) is an RL method aiming to solve optimal control problems

with large or continuous state spaces [32, 50, 53, 101–103]. They apply an approximation

of the true cost-to-go of states and/or an approximation towards the optimal control

policy so as to tackle the ‘curse of dimensionality’. Therefore, these methods belong to

optimal adaptive control [34], and the trained policy is near-optimal.

As a class of ADP methods, Adaptive Critic Designs (ACDs) have shown great suc-

cess in optimal adaptive control of nonlinear problems [32, 34, 50, 51, 107]. They are

also known as Actor-Critics (ACs) because they separate evaluation (critic) and improve-

ment (actor) using parametric structures. The critic adopts Temporal Difference (TD)

methods to update the cost function, while the actor adapts its parameters towards the

optimal policy by applying the principle of optimality [31, 34]. Although they are called

ACs, they often need an extra structure to approximate the global system model so as

to close the update path of the actor, the critic, or both. The critic, actor, and system

model can be implemented with nonlinear function approximators, such as Artificial

Neural Networks (ANN). With these approximators, ACDs can identify the system dy-

namics globally and then adaptively generate the control laws.

ACDs can generally be categorized into three groups: 1) Heuristic Dynamic Program-

ming (HDP), which is the most basic form and uses the critic to approximate the true

cost-to-go; 2) Dual Heuristic Programming (DHP), in which the critic approximates the

derivatives of the true cost-to-go with respect to the critic inputs; and 3) Globalized Dual

Heuristic Programming (GDHP), which approximates both the true cost-to-go and its

derivatives. Several studies comparing the before-mentioned ACDs have shown that

5.1. INTRODUCTION

5

83

both DHP and GDHP outperform HDP in success rate and precision [51, 52]. The main

reason is that the critic of the DHP and the GDHP directly outputs the derivatives of the

cost function, which reduces the error introduced by the derivation backward through

the critic of the HDP [55]. Although the GDHP did not show distinct advantages over the

DHP, the computational complexity is considerably higher due to the second derivative

terms [51, 55]. Therefore, the proposed method in this chapter is mainly related to the

DHP.

In addition, Action Dependent (AD) variations of these three original versions have

been developed by directly connecting the output of the actor to the input of the critic

[51, 53, 54, 56]. The AD forms may reduce the dependency on the system model. From

the theoretical point of view, the actor output is not necessarily an input to the critic,

which estimates the value/cost function; from the practical perspective, the extra input

can increase the complexity of the critic. Furthermore, previous studies comparing HDP

and its AD form have reported that HDP controllers have a higher success rate in an

auto-landing task [51], besides which it can operate in a wider range of flight conditions

and adapts faster to the changed plant dynamics in controlling an F-16 aircraft model

[54].

Online learning control with ACDs has been studied for years and is still one of

the most active areas in RL today. However, ACDs often have two learning phases

[50, 51, 53, 54, 108]: off-line learning and online learning. The main reason is that the

identification of the global system model is not a trivial task, which needs certain time

and usually an off-line learning phase beforehand [8, 9, 23–27]. During the online phase,

extra computing cost is required to adaptively perform the approximation of the system

with unforeseen dynamics, such as the resulting changes from the changes in the actor,

a time-varying component in the system, uncertainties in the environment, and unex-

pected changes due to failures. Several studies [55, 56] have suggested to remove the

global system model and to exploit previous critic outputs and/or inputs instead. Al-

though this technique has been successfully applied to many ACD methods, it can only

relieve the off-line learning phase of the AD forms. An accurate global system model still

plays an important role in most ACDs, especially in DHP and GDHP because the update

of both the critic and the actor depends on the system model.

This chapter proposes a systematic approach to developing online ACD controllers,

more specifically for DHP, based on the incremental control technique. This incremental

technique has been successfully applied to design adaptive controllers, such as Incre-

mental Nonlinear Dynamic Inversion (INDI) [63, 65], Incremental BackStepping (IBS)

[67] and incremental adaptive sliding mode control [109], to deal with system nonlin-

earities. However, these methods have not addressed optimization or synthesis of de-

signed closed-loop systems. Incremental Approximate Dynamic Programming (iADP)

[46, 80] was proposed for off-line near-optimal control of unknown nonlinear systems

without using system models. This approach uses a quadratic function to approximate

the cost function. Therefore, it is suitable only for systems with approximately convex

cost functions.

In this chapter, Incremental model based Dual Heuristic Programming (IDHP) is de-

veloped for online adaptive control of unknown nonlinear systems. It uses a linear time-

varying approximation of the original system to replace the global system model in con-

5

84 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

ventional DHP. In addition, a Recursive Least Square (RLS) technique is used to identify

the incremental model when assuming a sufficiently high sample rate for discretization.

This method belongs to model-free control because it does not need any a priori infor-

mation of the system dynamics at the beginning nor online identification of the global

nonlinear system, but only the online identified incremental model.

The remainder of this chapter is structured as follows. Section 5.2 starts with a brief

introduction of the conventional DHP algorithm and then focuses on the development

of the IDHP method. Section 5.3 introduces the nonlinear air vehicle model and dis-

cusses some related issues to achieve the implementation of the DHP and IDHP meth-

ods. Then, section 5.4 applies these two algorithms to two illustrative control tasks and

compares their performance with regard to success rates, tracking errors, settling time,

and robustness in different initial states and failures. Lastly, section 5.5 concludes the ad-

vantages and disadvantages of using the incremental approach with DHP and addresses

the challenges and possibilities of the future research.

5.2. INCREMENTAL MODEL BASED DUAL HEURISTIC PRO-

GRAMMING DESIGN

This section develops an online adaptive controller for unknown nonlinear systems,

namely Incremental model based Dual Heuristic Programming (IDHP). The major dif-

ference with the conventional DHP is that IDHP does not use a nonlinear function ap-

proximator to approach the global system model. Instead, it exploits an online identi-

fied incremental model. Therefore, this method can adapt the controller online without

a priori knowledge of the system dynamics or off-line learning of the system model. The

rest of this section will briefly introduce the conventional DHP and then focus on the

IDHP algorithm and adaptation rules.

5.2.1. DHP FRAMEWORK AND GLOBAL SYSTEM MODEL

DHP methods are most favored within the ACD category because they have higher

success rate and accuracy than HDP and lower computational complexity than GDHP

[51, 52]. Conventional DHP controllers use three nonlinear function approximators to

approach the actor, the critic, and the system dynamical model with weights (or more

generally called model parameters) wa , wc , and wm , respectively, as shown in Fig.5.1.

The Back-Propagation (BP) algorithms of both the critic and the actor are based on the

system model.

The DHP method uses the system model to approximate the dynamics of the global

system. The inputs of the system model are the current state, xt ∈ Rn , and the control

input, ut ∈ Rm , based on which it outputs the estimated next state, x̂t+1 ∈ Rn . The

system model weights wm(t) are updated by minimizing the model error. The error is

defined as the difference between the measured state xt and the estimated state x̂t :

Em(t) =
1

2
em(t)T em(t), (5.1)

where

em(t) = xt − x̂t . (5.2)

5.2. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING DESIGN

5

85

Actor

Critic

System

Global

System Model

xt ,x
r e f
t

xt ,x
r e f
t ut ut

ut

xt

xt

xt+1

x̂t+1

λ̂(xt)

−γ∂xt /∂xt−1

λ̂(xt−1)−∂ct−1/∂xt−1

ec

em

z−1

λ̂(x̂t+1)

through pathways (2.a) and (2.b)

∑

∑

−

(1)

(2)

(3) (2.a)
(2.b)

Figure 5.1: A schematic diagram of DHP using a global system model, where the solid lines represent the

feedforward flow of signals, and the dashed lines represent the BP pathways.

The update rule for system model weights are formulated according to the gradient-

descent algorithm with a learning rate ηm :

wm(t +1) = wm(t)+∆wm(t), (5.3)

∆wm(t) =−ηm ·
∂Em(t)

∂x̂t

∂x̂t

∂wm(t)
. (5.4)

Nonlinear function approximators, such as artificial neural networks, can identify

the system dynamics globally. However, online identification of the global model is not a

trivial task. It needs a certain time and effort, depending on the complexity and nonlin-

earity of the system, to approximate a feasible model. Therefore, conventional DHP usu-

ally needs an off-line stage beforehand to identify the global system model. This stage

makes the DHP an off-line method and less robust in the presence of sudden changes of

the system dynamics. On the other hand, incremental model techniques provide a quick

approximation of the locally linearized model. It will not only make the algorithm online

but also reduce the computational burden of the whole adaptation process.

5.2.2. IDHP FRAMEWORK AND ADAPTATION RULES

The IDHP method is devised based on the DHP method and incremental control tech-

niques. As illustrated in Fig. 5.2, the IDHP controller only has two nonlinear function

approximators to approach the actor and the critic. The system information to update

the critic and the actor can be obtained from the incremental model identified immedi-

ately after a few measurements. Therefore, the design of the IDHP controller relieves the

off-line learning phase. This section will present and elaborate the IDHP method.

5

86 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

Actor

Critic

System

Incremental

Model

RLS

xt ,x
r e f
t

xt ,x
r e f
t ut ut

ut

xt

xt

xt+1

x̂t+1

λ̂(xt)

−γ∂xt /∂xt−1

λ̂(xt−1)−∂ct−1/∂xt−1
ec

FG

z−1

λ̂(x̂t+1)

through pathways (2.a) and (2.b)

∑

Eq.(5.26)

(1)

(2)

(3)

(2.a)

(2.b)

Figure 5.2: A schematic diagram of the IDHP using a time-varying incremental model, where the solid lines

represent the feedforward flow of signals, and the dashed lines represent the adaptation pathways.

INCREMENTAL MODEL

The incremental model at the current time can be approximated by using the conditions

of the system in an instant before [46, 65]. This technique has been successfully applied

to deal with system nonlinearity assuming sufficiently high sample rate [63, 65, 67]. The

dynamic and kinematic equations of a nonlinear system can generally be given as fol-

lows:

ẋ(t) = f [x(t),u(t)], (5.5)

where f [x(t),u(t)] ∈Rn provides the physical evaluation of the state vector over time.

The system dynamics at time t approaching t0 can be linearized approximately by

using the first-order Taylor series expansion:

ẋ(t) ≈ ẋ(t0)+F[x(t0),u(t0)][x(t)−x(t0)]+G[x(t0),u(t0)][u(t)−u(t0)], (5.6)

where F[x(t0),u(t0)] =
∂ f [x(t),u(t)]

∂x(t)
|x(t0),u(t0) ∈ Rn×n is the system matrix of the linearized

model, and G[x(t0),u(t0)] =
∂ f [x(t),u(t)]

∂u(t)
|x(t0),u(t0) ∈ Rn×m is the control effectiveness ma-

trix. When the states and state derivatives of the system are assumed to be measurable,

i.e., ∆ẋ(t),∆x(t),∆u(t) are measurable, the system model around time t0 can be written

in an incremental form:

∆ẋ(t) ≈ F[x(t0),u(t0)]∆x(t)+G[x(t0),u(t0)]∆u(t), (5.7)

where ∆ẋ(t) = ẋ(t)− ẋ(t0), ∆x(t) = x(t)−x(t0), and ∆u(t) = u(t)−u(t0).

5.2. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING DESIGN

5

87

Although most physical systems are continuous, their measurements are always dis-

crete. With a constant, high data sampling frequency, nonlinear systems can be written

in a discrete form:

xt+1 = f (xt ,ut), (5.8)

where f (xt ,ut) ∈ Rn provides the system dynamics. When the sample time ∆t is suffi-

ciently small, the system dynamics around xt can also be linearized by taking the Taylor

expansion:

xt+1 ≈ xt +Ft−1 · (xt −xt−1)+Gt−1 · (ut −ut−1), (5.9)

where Ft−1 =
∂ f (x,u)

∂x
|xt−1,ut−1 ∈ Rn×n is the system transition matrix, and Gt−1 =

∂ f (x,u)
∂u

|xt−1,ut−1 ∈ Rn×m is the input distribution matrix at time step t −1 for discretized

systems. The incremental form of this discrete nonlinear system can be obtained as fol-

lows:

∆xt+1 ≈ Ft−1∆xt +Gt−1∆ut , (5.10)

With the high-frequency sample data and the relatively slow-varying system assump-

tion, the current linearized model is time-varying. This model needs to be available on-

line to obtain the approximated value of
∂xt

∂xt−1
|m and

∂xt

∂ut−1
|m without using a global non-

linear system model. Therefore, an online identification of the time-varying matrices

F̂t−1 and Ĝt−1 is required.

THE CRITIC

Although the function and structure of the critic in the IDHP method is similar as in the

DHP method, the calculation burden is reduced by directly applying the incremental

model. The critic approximates the derivatives of the true cost-to-go function J(xt) with

respect to the state vector xt :

λ(xt) =
∂J(xt)

∂xt
. (5.11)

The true cost-to-go of the current state xt is the cumulative future cost:

J(xt) =
∞∑

l=t

γl−t cl , (5.12)

where γ ∈ [0,1] is a scalar called discount factor or forgetting factor, and cl is the one-step

cost at a future time l . The cost cl is often a function of the state and/or the control input

at that time, as follows:

cl = c(xl ,x
r e f

l
) = (xl −x

r e f

l
)T Q(xl −x

r e f

l
), (5.13)

where Q ∈ Rn×n is a positive definite matrix. To normalize the effect of each state,

the normalization factors are used in the Q matrix: Q = di ag {ζ1,ζ2, ...,ζn}, where ζ is

a weight indicating the importance of the cost for the related state.

The error function for the critic is defined according to the TD error as shown below:

Ec (t) =
1

2
ec (t)T ec (t), (5.14)

5

88 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

where

ec (t) =
∂[J(xt−1)− ct−1 −γJ(xt)]

∂xt−1

=λ(xt−1)−
∂ct−1

∂xt−1
−γλ(xt)

∂xt

∂xt−1
.

(5.15)

In Eq. (5.15), λ(xt−1) and λ(xt) can be approximated by λ̂(xt−1) and λ̂(xt), which are

calculated through the critic with weights at the current time wc (t). The system state is

a function of the previous state and the control input. This can be approximated by a

global system model in conventional DHP method or by an incremental model in the

proposed IDHP method. Therefore, the last term in Eq. (5.15),
∂xt

∂xt−1
, need to be cal-

culated through two pathways, pathways (2.a) and (2.b) as shown in both Figs. 5.1 and

5.2:

∂xt

∂xt−1
=

∂xt

∂xt−1
|m

︸ ︷︷ ︸
pathw ay(2.a)

+
∂xt

∂ut−1
|m ·

∂ut−1

∂xt−1
|a

︸ ︷︷ ︸
pathw ay(2.b)

. (5.16)

IDHP method directly applies the incremental model information to approximate

the two system model derivative terms in Eq. (5.16), which are all supposed to be calcu-

lated back through the global system model in conventional DHP methods. Therefore,

IDHP can simplify the calculation of Eq. (5.16) as follows:

∂xt

∂xt−1
≈ F̂t−1 + Ĝt−1 ·

∂ut−1

∂xt−1
|a . (5.17)

The critic weights can be updated with a learning rate ηc to minimize the error Ec (t):

wc (t +1) = wc (t)+∆wc (t), (5.18)

∆wc (t) =−ηc ·
∂Ec (t)

∂λ̂(xt−1)
·
∂λ̂(xt−1)

∂wc (t)

=−ηc ·ec (t)T
·
∂λ̂(xt−1)

∂wc (t)
.

(5.19)

THE ACTOR

Similar to the critic, the actor adaptation in the IDHP is also simplified by involving the

incremental model instead of the global system model. The control policy is improved

through updating the actor to minimizes the non-negative cost-to-go, J(xt):

u∗
t = arg min

ut
J(xt)

= arg min
ut

[ct +γJ(xt+1)].
(5.20)

By applying the gradient descent method, a weight update expression can be written as

follows:

wa(t +1) = wa(t)+∆wa(t), (5.21)

5.2. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING DESIGN

5

89

∆wa(t) =−ηa ·
∂J(xt)

∂ut

∂ut

∂wa(t)

=−ηa ·

[
∂ct

∂ut
+γλ(xt+1)

∂xt+1

∂ut

]
∂ut

∂wa(t)
.

(5.22)

The weight update of the actor involves the critic and the system model, through the

3rd back-propagation direction, as shown in Figs. 5.1 and 5.2. The incremental model

can output the estimation of the next state x̂t+1 for an input ut . This also helps to get the

useful term ∂x̂(t+1)
∂ut

, which approximates
∂xt+1

∂ut
, in updating the actor [54]. Therefore, Eq.

(5.22) can be rewritten as follows:

∆wa(t) =−ηa ·

[
∂ct

∂ut
+γλ̂(x̂t+1)

∂x̂t+1

∂ut
|m

]
∂ut

∂wa(t)
. (5.23)

In the forward calculation, the next state can be predicted using the identified incre-

mental model as follows:

x̂t+1 = xt + F̂t−1∆xt + Ĝt−1∆ut . (5.24)

In the back-propagation calculation, the derivative of the next state with respect to the

control input,
∂x̂t+1

∂ut
, can be approximated using the incremental model information:

∂x̂t+1

∂ut
≈ Ĝt−1. (5.25)

Therefore, Eq. (5.23) can be further simplified as follows:

∆wa(t) =−ηa ·

[
∂ct

∂ut
+γλ̂(x̂t+1)Ĝt−1

]
∂ut

∂wa(t)
. (5.26)

5.2.3. INCREMENTAL MODEL IDENTIFICATION

Assuming that the incremental model is identifiable using LS techniques with measure-

ments of proper excitation and response, this chapter adopts the Recursive Least Square

(RLS) approach to online identify the system transition matrix Ft−1 and the input dis-

tribution matrix Gt−1 of the linearized model. The incremental form of the state in Eq.

(5.10) can be rewritten row by row as follows:

∆xr,t+1 ≈
[
∆xT

t ∆uT
t

]
·

[
fT
r

gT
r

]
, (5.27)

where ∆xr,t+1 = xr,t+1 − xr,t is the increment of r th state element, fr and gr are the ele-

ments of r th row vector of Ft−1 and Gt−1. These parameters can be identified using the

RLS usually row by row. Since they share the same covariance matrix, they can also be

identified together as in the parameter matrix Θt−1 =

[
FT

t−1

GT
t−1

]
∈R(n+m)×n .

The state prediction equation can be written as follows:

∆x̂T
t+1 = X T

t Θ̂t−1, (5.28)

5

90 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

where X t =

[
∆xt

∆ut

]
∈ R(n+m)×1 stands for the input information of the incremental

model. The RLS approach adopted in this chapter is presented as follows [99]:

ǫt =∆xT
t+1 −∆x̂T

t+1, (5.29)

Θ̂t = Θ̂t−1 +
Covt−1X t

γRLS +X T
t Covt−1X t

ǫt , (5.30)

Covt =
1

γRLS

(
Covt−1 −

Covt−1X t X T
t Covt−1

γRLS +X T
t Covt−1X t

)
, (5.31)

where ǫt ∈ R1×n is the prediction error, also called innovation, Covt ∈ R(n+m)×(n+m) is

the estimation covariance matrix, and γRLS is the forgetting factor for this RLS approach.

The RLS approach used in this chapter possesses a significant advantage over the

piecewise Ordinary Least Square (OLS) method: RLS has fewer issues with persistent

excitation. The OLS method needs to do a matrix inversion at each update [46, 91]. If

there is not enough excitation at that moment, the matrix might not be invertible, and

the parameters cannot be identified. The RLS method, on the other hand, does not need

to do matrix inversions because it uses the matrix inversion lemma to update the co-

variance matrix, which contains the information of that inverted matrix. Therefore, it

can effectively identify parameters of the time-varying system and also keeps the pa-

rameters relatively stable when the excitation is not enough. A comparison of these two

methods will be made in section 5.4.2. This chapter initializes the F matrix as an identity

matrix and the G matrix as a zero matrix and chooses the forgetting factor γRLS to be 0.8.

5.3. FLIGHT CONTROL SIMULATION

The first part in this section briefly introduces the nonlinear air vehicle model. The sec-

ond part discusses the implementation of the aforementioned algorithms and some re-

lated issues, including the excitation of the system, the structured actor, and the learning

rate.

5.3.1. AIR VEHICLE MODEL

Air vehicle models can be highly nonlinear, and their dynamic and kinematic state equa-

tions can be generally given as follows:

ẋ(t) = f [x(t),u(t)+w(t)], (5.32)

where w(t) is the external disturbance and is set to be caused only by the input noise.

This chapter applies the discussed methods to a simplified missile model obtained

from [68, 69] to track a reference signal. There are several reasons for using this mis-

sile model: 1) This model is simple while nonlinear, which is suitable for a validation

of the newly-developed model-free adaptive IDHP method. 2) For more complex mod-

els, conventional DHP will need off-line learning stage [50–53], which may impede a fair

comparison to the IDHP method. 3) The missile model can operate at a high and rapidly

changing angle of attack, which leads to a high nonlinearity. 4) It is a second-order con-

tinuous model, which means it is relatively real and complete. Although the model is

5.3. FLIGHT CONTROL SIMULATION

5

91

only valid within the given flight envelope, the model can be still used out of the enve-

lope in the failure occasions.

The nonlinear model of a short period flight control problem consists of two states:

angle of attack α and pitch rate q (i.e., the system state vector is x = [α q]T). Only the

pitch is controlled using elevator deflection δe . The nonlinear model in the pitch axis is

simulated around a steady wings-level flight condition:

α̇= q +
q̄S

maVT
Cz (α, q, Ma ,δe), (5.33)

q̇ =
q̄Sdl

Iy y
Cm(α, q, Ma ,δe), (5.34)

where q̄ is dynamic pressure, S is reference area, ma is mass, VT is speed, dl is reference

length, Iy y is pitching moment of inertia, Cz is the force coefficient in body Z-direction,

and Cm is the pitch moment coefficient. Cz and Cm are nonlinear functions of angle of

attack α, pitch rate q , Mach number Ma and elevator deflection δe .

The aerodynamic parameters of this model are valid for −10◦ <α< 10◦ [68, 69]:

Cz (α, q, Ma ,δe) =Cz1(α, Ma)+Bzδe ,

Cm(α, q, Ma ,δe) =Cm1(α, Ma)+Bmδe ,

Bz = b1Ma +b2,

Bm = b3Ma +b4,

Cz1(α, Ma) =φz1(α)+φz2Ma ,

Cz2(α, Ma) =φm1(α)+φm2Ma ,

φz1(α) = h1α
3
+h2α|α|+h3α,

φm1(α) = h4α
3
+h5α|α|+h6α,

φz2 = h7α|α|+h8α,

φm2 = h9α|α|+h10α,

(5.35)

where b1, ...,b4, h1, ...,h10 are identified constant coefficients in the flight envelop, and

the Mach number Ma is set to be 2.2.

5.3.2. IMPLEMENTATION RELATED ISSUES

In this chapter, all the nonlinear function approximators in both DHP and IDHP algo-

rithms are MultiLayer Perceptrons (MLPs) neural networks, which consist of fully con-

nected, feedforward layers of nodes. Each neural network has one hidden layer, where

each node is a neuron with a hyperbolic tangent activation function bounded with

(−1,1). Because the output of the hidden layer is multiplied with an output weight, the

neural network with bias terms can theoretically approximate any value. The detailed

neural network calculation and derivation have been provided in [91] and will not be

carried out in this chapter.

The actor and the critic neural networks in the IDHP method have the same setting

as the DHP method. In this chapter, the number of hidden layer neurons in the actor

and the critic is 6, and in the system model network is 10. The neural network weights

5

92 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

are updated using the Least Mean Square (LMS) method. To prevent the sudden growth

to infinity, the limit of the neural network weights is [−30,30].

CASCADED ACTOR NETWORK

To take advantages of the physical properties of the air vehicle system, a structured cas-

caded actor network [53, 54] is used as shown in Fig. 5.3. This cascaded structure sep-

arates the inner loop and outer loop control, which provides specific relationships be-

tween the angular rate and the attitude. As long as the concerned full states and control

input of this air vehicle are known, this structure can be easily implemented in the actor

network.

Actor

ANNa,1 ANNa,2

xt ,x
r e f
t

αt

α
r e f
t

ut

qt

q
r e f
t

Figure 5.3: The architecture of the cascaded actor network.

PERSISTENT EXCITATION

To accomplish the reference tracking task, an adaptive controller with the actor needs to

be found out by minimizing the cost-to-go J(xt) with a feasible critic and system model.

As with other ADP methods, good evaluation depends heavily on the exploration of the

state space, which is represented by Persistent Excitation (PE). Although RLS depends

less on PE, PE is still imperative for identifying the incremental model. Many different

input techniques can be used to excite aircraft modes, such as doublets, 3211 doublets,

pseudo-random noise, and classical sine waves.

This chapter introduces an input disturbance, which is a sum of sinusoidal signals.

This disturbance persistently excites the system for identification of the system and ex-

ploration of the state space in DHP methods. On the other hand, disturbances are usu-

ally undesirable inputs in the real world. Therefore, the flight control task is to track the

reference signal as well as to stabilize the system, if there is any disturbance. Because

of the online learning capability of DHP methods, the disturbance can be compensated

without being identified.

ADAPTIVE LEARNING RATE

DHP methods, similar to other ACDs, are online learning methods. They iteratively learn

the actor and the critic, of which value depends on each other. Online learning in DHP

uses the LMS techniques, which update the weights based only on the error at the cur-

rent time. This method incrementally updates the neural network weights along the

steepest descent with a learning rate η. The convergence to the optimal weights depends

heavily on a properly chosen η. If η is chosen to be too small, the time to converge will

be very large, and it may be trapped in a local optimum. If η is too large, the weight may

change by a large amount and oscillate around the optimal weights.

5.4. RESULTS AND DISCUSSION

5

93

To make the convergence less sensitive to the chosen learning rate, this chapter uses

an adaptive learning rate ηt at time t . It is self-tuned in each update. A proper learn-

ing rate needs to meet the condition that the new weights decrease the network error.

In each time-step, the initial learning rate is assigned by the previous time-step. This

method calculates the direction of steepest descent ∂E(t)
∂w(t) and searches along this line by

halving the learning rate ηt until it meets the condition. With this ηt , the neural network

weights can be updated as follows:

w(t +1) = w(t)−ηt ·
∂E(t)

∂w(t)
. (5.36)

This learning rate will also be assigned as the initial learning rate for the next step, if

the network errors of the new weights and the old weights have different signs. Other-

wise, the learning rate for the next time-step will be doubled. The initial learning rates

η0,0 at time t = 0 for the traditional DHP and the IDHP algorithms are set the same. They

are chosen to be 10, 20, 10 for the system model, the critic, and the actor, respectively.

5.4. RESULTS AND DISCUSSION

In this section, both the DHP and the IDHP algorithms are applied to a simulation of

controlling a nonlinear air vehicle model for validation. First, the flight controller learns

to track a changing reference in the presence of input disturbances, which is a most basic

and essential control task for air vehicles. Then, these two methods are applied to failure

cases, where the system suddenly changes and becomes unstable.

5.4.1. ONLINE REFERENCE TRACKING

This section compares the conventional DHP and the IDHP methods by applying them

to an online tracking problem. To be more specific, the controllers are required to control

the angle of attack α to track the reference signal αr e f , which is a sine function of time

with the amplitude of 10 degrees within 2 periods of the reference signal (4π seconds).

One of the objectives of these algorithms is to train the controller to track the refer-

ence regardless of the initial conditions of the air vehicle. Therefore, multiple numerical

experiments are conducted with different initial conditions. Figures 5.4 to 5.6 compare

the performance of DHP and IDHP with different initial states. Figure 5.4 shows their

performance when the initial state is zero (α0 = 0◦). In addition, Figs. 5.5 and 5.6 present

the simulation results with positive (α0 = 4◦) and negative (α0 = −4◦) initial states. The

subfigures (a) and (b) in Figs. 5.4 to 5.6 provide how these algorithms learn to track the

reference signal online and their tracking errors during this task, respectively. As illus-

trated in these figures, IDHP method can identify the local model and reject the distur-

bance faster, and follow the reference signal more precisely.

Furthermore, IDHP method can deal with different initial states within the valid

range of angle of attack (α ∈ [−10◦,10◦]) without loss of accuracy, which is visible in Fig.

5.7. On the other hand, the conventional DHP method cannot perform the online track-

ing task when the initial states are beyond the range [−4◦,4◦]. This difference indicates

that IDHP can deal with a wider range of the initial states compared to DHP methods.

Besides the initial states, initial weights of neural networks may also manipulate

the learning. This chapter, therefore, examines different, random initial neural network

5

94 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

(a)

α
[◦

]
αr e f

αD HP

αI D HP

(b)

Time [s]

∆
α

[◦
]

αr e f −αD HP

αr e f −αI D HP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-15

-10

-5

0

5

-10

-5

0

5

10

Figure 5.4: Online tracking control with the zero initial state using DHP and IDHP approaches.

(a)

α
[◦

] αr e f

αD HP

αI D HP

(b)

Time [s]

∆
α

[◦
]

αr e f −αD HP

αr e f −αI D HP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-15

-10

-5

0

5

-10

-5

0

5

10

Figure 5.5: Online tracking control with a positive initial state, α0 = 4◦, using DHP and IDHP approaches.

(a)

α
[◦

]

αr e f

αD HP

αI D HP

(b)

Time [s]

∆
α

[◦
]

αr e f −αD HP

αr e f −αI D HP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-15

-10

-5

0

5

-10

-5

0

5

10

Figure 5.6: Online tracking control with a negative initial state, α0 =−4◦, using DHP and IDHP approaches.

5.4. RESULTS AND DISCUSSION

5

95

(a)

Time [s]

α
[◦

]

(b)

Time [s]

α0 = 10◦

α0 = 8◦

α0 = 6◦

α0 =−6◦

α0 =−8◦

α0 =−10◦

αr e f

0 2 4 6 8 10 120 0.1 0.2

-10

-5

0

5

10

-10

-5

0

5

10

Figure 5.7: Online tracking control with different initial states using the IDHP approach.

weights from the range (−0.01,0.01). A successful trial is admitted if it converges within

1 period of the reference signal and the error between the target state and the reference

signal is no more than 1.5 degrees hereafter. With these different initial weights as well

as different initial states within [−4◦,4◦], the success rate is 95.5% for IDHP method and

80.9% for traditional DHP method. However, when the initial states are randomly cho-

sen from the full valid range of angle of attack [−10◦,10◦], the success rate remains at the

same level (93.3%) for IDHP method, while drops to 45.9% for traditional DHP method.

The tracking error and settling time for those successful trials are also analyzed as

indicated in Table 5.1. The average tracking error is calculated within (2π,4π) seconds.

In addition, the average settling time is defined as the time that the error reaches and

remains within 1.5 degrees. It is apparent from this table that 1) the IDHP method spends

averagely less time (0.103 seconds) to track the reference, compared to the conventional

DHP (1.598 seconds), and 2) the average tracking error after 2π seconds is decreased

from 0.722 degrees with conventional DHP to 0.059 degrees with IDHP method. This

again validates that online IDHP method follows the reference signal faster and more

precisely.

Table 5.1: Performance of DHP and IDHP in the online tracking task

DHP IDHP

Average Tracking Error 0.722◦ 0.059◦

Average Settling Time 1.598 s 0.103 s

Consistent with findings in [51, 52] , the DHP method has less average settling time

and higher accuracy than the HDP method [91]. The IDHP method, as expected, also

5

96 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

outperforms the IHDP method [91] in both success rate, precision, and the range of the

initial states when applied to the same online tracking task. In addition, the use of RLS

approach in IDHP further improves the accuracy and reduces the noise of the incre-

mental model identification. These merits make IDHP method a successful candidate

for online fault-tolerant control.

5.4.2. ONLINE FAULT-TOLERANT CONTROL

In practical cases, system uncertainties, such as a time-varying component in the sys-

tem, unexpected changes due to failures and measurement disturbances, need to be

taken into account [26, 66, 110, 111]. However, conventional DHP methods usually

need an off-line learning stage to train the global system model. The reason is that the

slow online learning capability of DHP may lead to a large overshoot and lost control at

the initial stage. This feature makes the DHP unable to perform Fault-Tolerant Control

(FTC) in many applications, especially when the system changes suddenly and might

become unstable. On the other hand, IDHP method can online identify the incremen-

tal model faster and more accurately. This merit makes IDHP method also suitable for

fault-tolerant control tasks with sudden changes in the system.

COMPARISON OF THE PERFORMANCE OF IDHP AND DHP

This chapter validates the IDHP method in 3 different situations that sudden changes

are introduced to the original plant dynamics: 1) the changes in signs of the Cz1 and

Cm1 terms in Eq.(5.35), 2) the changes in signs of the b2 and b4 terms in Eq.(5.35), and

3) the changes in signs of all the 4 terms. In these situations, the conventional DHP are

unable to change the policy quick enough before the divergence of the states even with a

perfect Fault Detection and Isolation (FDI). The sudden changes introduced may lead to

unstable open loop plant. The policy trained with the original system may even increase

the instability of the closed loop plant. Therefore, the actor weights will be reset to small,

random numbers from the range (−0.01,0.01) when the fault is detected.

Figure 5.8 to 5.10 compare the online adaptability of the DHP method and the IDHP

method in the presence of the aforementioned three different situations with sudden

changes in the system dynamical model. These changes are introduced after the con-

vergence of the policy for the original system. Because the DHP method can only deal

with online tracking problems with initial states within the range ±4◦, the subfigures

introduce the sudden changes in three different angle of attack values of the reference

signal: (a) αr e f =−4◦, (b) αr e f = 0◦, and (c) αr e f = 4◦.

When the changes are introduced at different, random times in these FTC tasks, the

IDHP method has a success rate of 91.1% and an average tracking error of 0.067 degrees.

However, the average settling time after the changes is 0.43 seconds, which is slower than

the online tracking problem with the original system as depicted in table 5.1. The main

reasons may be as follows: 1) the changes of the dynamical model may make the system

unstable; 2) the fault detection also needs time; and 3) the RLS approach may take longer

to identify the system from a fault estimation than from an initialized uninformative

estimation to the same accuracy.

In addition to these performance results, different levels of simulation data are still

needed for a better understanding of the success of the IDHP in FTC tasks. The rest

5.4. RESULTS AND DISCUSSION

5

97

(a)

α
[◦

]

αr e f

αD HP

αI D HP

(b)

α
[◦

]

(c)

Time [s]

α
[◦

]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

Figure 5.8: Online fault-tolerant control using DHP and IDHP approaches in the presence of sudden changes

in signs of Cz1 and Cm1 at 3 different angle of attack values.

(a)

α
[◦

]

αr e f

αD HP

αI D HP

(b)

α
[◦

]

(c)

Time [s]

α
[◦

]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-10

0

10

20

-10

0

10

20

-20

-10

0

10

Figure 5.9: Online fault-tolerant control using DHP and IDHP approaches in the presence of sudden changes

in signs of b2 and b4 at 3 different angle of attack values.

5

98 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

(a)

α
[◦

] αr e f

αD HP

αI D HP

(b)

α
[◦

]

(c)

Time [s]

α
[◦

]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-10

0

10

20

-20

-10

0

10

-20

-10

0

10

Figure 5.10: Online fault-tolerant control using DHP and IDHP approaches in the presence of sudden changes

in signs of Cz1, Cm1, b2 and b4 at 3 different angle of attack values.

w
a

(a)

Time [s]

w
a

(b)

Time [s]

w
a

(c)

Time [s]

(c)

5.65 5.7 5.75 5.8 5.85 5.9 5.950 0.05 0.1 0.15 0.2 0.25 0.3

0 2 4 6 8 10 12

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

Figure 5.11: Convergence of the actor weights using the IDHP approach.

5.4. RESULTS AND DISCUSSION

5

99

of results are based on the online FTC task in the presence of the third situation when

αr e f = −4◦, i.e., Fig. 5.10 (a). Figure 5.11 illustrates the adaptation of the 38 actor

weights during this online FTC task. This figure demonstrates the convergence of the

actor weights, which represents the achieved control policy. Figure 5.11 (b) and (c) take

a closer look at the first 0.3 seconds at the beginning and after the changes introduced,

respectively.

FAULT DETECTION USING THE INNOVATION TERM

The aim of this section is to validate the adaptability of the IDHP method to uncertain-

ties. Although there are many different, elaborate approaches to FDI [66, 111, 112] , this

chapter uses a simple method to detect the fault for IDHP and assumes a perfect FDI

for conventional DHP (i.e., the controller knows when the system will change and reset

the actor weights at that moment). These presented results indicate that conventional

DHP method cannot perform FTC tasks especially when the system becomes unstable

after sudden changes, although this method assumes a perfect FDI. In contrast, IDHP

method can detect the system fault, reset the actor weights, and rapidly adapt its policy

(the actor weights) online before the system states diverge.

IDHP method monitors the innovation term ǫt in Eq. (5.29) in RLS approach so as

to detect the fault. This term is the difference between the measured next state and

its one-step prediction, which reflects the accuracy of the online identified incremen-

tal model. When the system changes suddenly, the magnitude of the innovation terms

will also increase and exceed a threshold, ǫthr eshol d , and trigger the fault alarm. In this

case, the thresholds are chosen as ǫthr eshol d = [3×10−4 ◦, 0.1◦/s]T . As depicted in Fig.

5.12, the magnitude of the innovation terms increase suddenly and immediately after the

changes of the system. Although the selection of reasonable thresholds is also crucial in

the FDI scope, this chapter focus on the validation of the proposed online adaptive IDHP

method.

INCREMENTAL MODEL IDENTIFICATION AND PREDICTION

The main reason for the success of the IDHP method is the use of the online identified

incremental model. This model, as same as the global system model in DHP method, is

used to estimate the term
∂xt

∂xt−1
|m and

∂xt

∂ut−1
|m in Eq. (5.16) for updating the critic, and

to estimate the term
∂x̂t+1

∂ut
|m and to predict the next state x̂t+1 in Eq. (5.23) for updating

the actor. Therefore, a proper control policy is based on a feasible system model. Figure

5.13 compares the one-step prediction of α obtained from the global system model, and

incremental models using Ordinary Least Square (OLS) method and using RLS method

during an online fault-tolerant control task. Because the DHP method fails in this task,

the online identification using the artificial neural network, OLS, and RLS are identified

using the same data obtained from a task using the IDHP method (the red line as shown

in Fig. 5.10 (a)) for a fair comparison. Although all the predictions are feasible as depicted

in Fig. 5.13 (a), the incremental models have more accurate prediction by looking at the

prediction errors in Fig. 5.13 (b).

To examine the accuracy of the aforementioned partial derivative terms, Figs. 5.14

and 5.15 present these terms calculated from the global system model and incremental

models. These derivative terms obtained from the incremental models (using both OLS

5

100 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

∆
α

[◦
]

(a)

∆
q

[◦
/s

]

(b)

Time [s]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-15

-10

-5

0

5

-10

-5

0
×10−4

Figure 5.12: The innovation term ǫt obtained by RLS using IDHP approach, where the dashed lines represent

the threshold.

α
[◦

]

(a)

αr eal

α̂AN N

α̂OLS

α̂RLS

∆
α

[◦
]

(b)

Time [s]

α̂AN N −αr eal

α̂OLS −αr eal

α̂RLS −αr eal

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-0.05

0

0.05

0.1

-10

-5

0

5

Figure 5.13: The one-step state prediction using ANN, OLS, and RLS.

5.4. RESULTS AND DISCUSSION

5

101

(a)

∂
α

t+
1

/∂
α

t

Fr eal

FAN N

FOLS

FRLS

∂
q

t+
1

/∂
α

t

(b)

∂
α

t+
1

/∂
q

t

(c)

∂
q

t+
1

/∂
q

t

(d)

Time [s]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0

1

2

3

4

5

-10

-5

0

5

-1

-0.5

0

0.5

1

0

0.5

1

1.5

2

×10−3

Figure 5.14: Online identified system derivatives, F, using ANN, OLS, and RLS.

(a)

∂
α

t+
1

/∂
δ

e
,t

Gr eal

GAN N

GOLS

GRLS

∂
q

t+
1

/∂
δ

e
,t

(b)

Time [s]

0 2 4 6 8 10 12

0 2 4 6 8 10 12

-20

-15

-10

-5

0

5

10

-0.04

-0.02

0

0.02

0.04

Figure 5.15: Online identified control derivatives, G, using ANN, OLS, and RLS.

5

102 5. INCREMENTAL MODEL BASED DUAL HEURISTIC PROGRAMMING

and RLS) have higher accuracy than calculated from the neural network system model.

This difference is owning to different structures and adaptation laws of the neural net-

work model and incremental models. The artificial neural network is updated by mini-

mizing the difference between the measurement of the state and its prediction instead

of building an explicit representation for the derivatives. Therefore, it does not have to

be a feasible approximation of the derivatives of the system states. Incremental model

techniques, on the other hand, identify the system transition matrix and the input distri-

bution matrix for the linearized model, which directly approximate the control deriva-

tives of the current system states. These results elucidate the higher online adaptivity

of the IDHP compared to conventional DHP methods. These figures also show that RLS

outperform OLS in identifying the system derivatives.

VALIDATION IN THE PRESENCE OF MEASUREMENT NOISE

To further validate the robustness of the proposed IDHP method, high-frequency mea-

surement noise is superimposed to the measurements of the states, α̌ and q̌ . The simu-

lated noise is zero-mean normal distributed white noise. The standard deviations of the

noise for α̌ and q̌ are 0.05◦ and 0.005◦/s, respectively. As shown in Fig. 5.16, the perfor-

mance of the fault-tolerant control task using the IDHP method is still satisfactory in the

presence of the simulated noise. The settling time at the initial stage is longer because

the high-frequency measurement impedes the online identification of the incremental

model and slows the critic and actor adaptation, consequently. For the same reason, the

tracking error becomes bigger after the sudden change of the dynamical model.

If the amplitude of the noise is further increased, the adaptation of the actor will start

even later. In consequence, the states may exceed their allowable range after the sudden

change, which makes the system unstable. For the tracking task without sudden changes

of the dynamical model, the success rate remains at the same level (above 90%) if the

standard deviations of the noise for α̌ and q̌ are increased to 0.5◦ and 0.05◦/s, respec-

tively. It is shown that the IDHP method is robust to measurement noise. The tolerance

of the measurement noise can be higher, and the performance can be further improved,

by using the adaptive least square method to identify the incremental model or using a

filter to reduce the measurement noise. This is beyond the scope of this chapter and is

recommended for future research.

5.5. CONCLUSION

This chapter develops a new approach to design an online adaptive control method that

does not need a priori information of the system dynamics, called Incremental model

based Dual Heuristic Programming (IDHP). This method is based on DHP methods,

which are adaptive and use nonlinear function approximators, such as neural network

functions. The IDHP method uses Recursive Least Square (RLS) approach to online iden-

tify the incremental model instead of the global system model. This approach, there-

fore, does not need the off-line training stage and can accelerate the online learning

efficiently. Online learning ability is of great practical values, especially when a priori

knowledge of the system is unknown or the system dynamics are changed in operations.

This chapter conducts two nonlinear flight control tasks by applying both the DHP

method and the IDHP method. The first is an online reference tracking task. The results

5.5. CONCLUSION

5

103

Time [s]

α
[◦

]

αr e f

αI D HP

α̌I D HP

0 2 4 6 8 10 12
-10

-5

0

5

10

Figure 5.16: Online fault-tolerant control using IDHP approach in the presence of measurement noise.

indicate that the presented IDHP method, compared to the DHP method, can accel-

erate the online learning, improve the precision, and deal with a wider range of initial

states. The second task is fault-tolerant control in the presence of sudden changes of the

original system dynamics. The results also reveal that the IDHP method can success-

fully control a new and unstable system adaptively before the states diverge, while DHP

fails to. Although this chapter focus on the artificial neural networks as nonlinear func-

tion approximators, the result is expected to be comparable for other global function

approximators.

This study is an extension of the incremental Approximate Dynamic Programming

(iADP) method, which uses a quadratic cost function, and the IHDP method, which is

based on HDP. In comparison to these methods, the presented IDHP method can be

used in more general control problems and shows higher learning capability, efficiency,

accuracy, online adaptability, and robustness. Further investigation and experimenta-

tion are recommended into different types of function approximators and more com-

plex, realistic applications.

III
HIGH-LEVEL GUIDANCE AND

NAVIGATION

105

6
HYBRID HIERARCHICAL

REINFORCEMENT LEARNING WITH

PARTIAL OBSERVABILITY

In previous chapters, incremental techniques were integrated into ADP methods to solve

control problems for unknown, nonlinear systems. As guidance and navigation are also

essential to an intelligent autonomous control system, this chapter develops a hybrid Hi-

erarchical Reinforcement Learning (hHRL) method for high-level decision making. This

method consists of several hierarchical levels, where each level uses different methods

to optimize the learning with different types of information and objectives. This chap-

ter starts with a brief introduction to Markov and semi-Markov decision processes and

several RL methods, in Section 6.2. Section 6.3 describes the mobile robot system and

formulates the autonomous guidance and navigation problem. After that, Section 6.4

presents the hHRL approach for online guidance and navigation and sets out rules for

establishing the hierarchies and sub-tasks. The implementation and simulation results

in stationary and non-stationary mazes are presented in Section 6.5. The results indi-

cate that the proposed hHRL method can deal with multiple objectives and partial ob-

servability, possesses the ability to transfer learning, and also learns in non-stationary

environments.

107

6

1086. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

Autonomous guidance and navigation problems often have high-dimensional

spaces, multiple objectives, and consequently a large number of states and actions,

which is known as the ‘curse of dimensionality’. Furthermore, systems often have par-

tial observability instead of a perfect perception of their environment. Recent research

has sought to deal with these problems by using Hierarchical Reinforcement Learning,

which often uses same or similar RL methods within one application so that multiple ob-

jectives can be combined together. However, there is not a single learning method that

can benefit all targets. To acquire optimal decision-making most efficiently, this chap-

ter proposes a hybrid Hierarchical Reinforcement Learning method consisting of several

levels, where each level uses different methods to optimize the learning with different

types of information and objectives. A guidance and navigation algorithm is provided

using the proposed method and applied to a multi-objective task: getting to a target area

while avoiding obstacles. The navigation environments are complex, partially observ-

able, and completely unknown at the beginning. The results indicate that the proposed

hybrid hierarchical reinforcement learning method can help to accelerate learning, to

alleviate the ‘curse of dimensionality’ in complex decision-making tasks, to naturally re-

duce the uncertainty or ambiguity at higher levels, to transfer the learned results within

and across tasks efficiently, and to apply to non-stationary environments. This proposed

method can potentially yield a near-optimal policy hierarchically for autonomous guid-

ance and navigation without a priori knowledge of the system or the environment.

6.1. INTRODUCTION

Reinforcement learning is a collection of algorithms that learn what actions to take to af-

fect the system state in order to maximize some numerical reward from interaction with

the environment. This method links bio-inspired artificial intelligence techniques to the

field of guidance, navigation and control to overcome some of the limitations and prob-

lems in conventional model-based methods requiring the system model and complete

environment information. RL has been successfully applied to solve optimal decision-

making problems in known or small-scaled environments [29, 31]. Nevertheless, when

applied to complex multi-objective tasks, such as autonomous guidance and navigation

problems, traditional RL methods are still rendered intractable by the following chal-

lenges:

• The large state and action space, which may lead to the ‘curse of dimensionality’.

• The multiple, conflicting objectives.

• The transfer of learning across tasks.

• The partial observability of the system state and unknown, non-stationary envi-

ronments.

Many studies have provided successful solutions to part of the aforementioned chal-

lenges. To solve the exponential growth of states caused by the complexity of the envi-

ronment and system, many RL algorithms apply Approximate Dynamic Programming

(ADP), which uses an approximator to approximate the cost/value function, so that

they can be used to solve the optimality problems with large or continuous state spaces

6.1. INTRODUCTION

6

109

[32, 34, 80, 81]. Besides the large state and action space, multiple objectives also scale

up the problem complexity [113]. A considerable amount of multi-objective optimiza-

tion strategies have been developed [114–118] to simultaneously solve several tasks with

different reward systems. Another source of problem complexity is the partial observ-

ability, i.e., in the real world, the agent might not have a perfect perception of the states

or the environment [45]. Nevertheless, the agent has to pick an action based on its

current observation and its knowledge accumulated through the involvement with the

environment [119]. The framework dealing with Partially Observable Markov Decision

Process (POMDP) problems has been developed, mainly based on calculating beliefs,

to decide how to act in these situations and still remains an active area of research

[36, 48, 49, 60, 120].

Recent research attempts, dealing with the ‘curse of dimensionality’, focus on the hi-

erarchical decomposition with Hierarchical Reinforcement Learning (HRL) [32, 37, 61,

121], such as HAMs[122, 123], options[124], MAXQ [125, 126], and HEXQ [127]. These

methods replace state-to-action mapping by a hierarchy of temporally abstract actions

which operate over several time steps. HRL is a natural approach to problem-solving,

with which a complex problem can be solved by decomposing it into several smaller and

simpler problems. Hierarchical decomposition speeds up learning for multi-objective

tasks by allowing different objectives in different levels. HRL also naturally reduces

the uncertainty and ambiguity induced by partial observability at higher levels because

some hidden variables can be estimated at different levels. Some of those hierarchi-

cal learning methods, especially for large scale, partially observable environments, form

a branch called Hierarchical POMDP (H-POMDP)[37, 128–130]. The hierarchical Q-

learning [131] has been proposed to deal with partial observable maze navigation prob-

lems based on the HAMs design [123].

Current HRL approaches often use same or similar RL methods within one applica-

tion so that multiple objectives can be combined together. Otherwise, a more careful

design with expert knowledge may be needed. However, it is indicated[58, 59] that there

is not a single learning method that can benefit all targets. To acquire optimal decision-

making most efficiently, different levels within one HRL application often need different

learning methods, learning types, rewards assignment, and state information.

Furthermore, there is less research on the explicit rules of establishing the hierarchies

and of assigning the rewards. These designs, such as the components of the hierarchy

or the decomposition rules and the reward signals, have to be decided in advance [61].

These designs, involving engineers’ preferences, may prevent the transfer learning from

one application to another even similar application.

Transfer Learning (TL), from source domain models to the target domain model, has

been studied over the past decades for clustering problems [132], machine learning tasks

[133–135], planning tasks [136], etc. In recent years, TL has attracted gaining attention in

RL community [137–141]. TL allows for reusing some previous results, learned from sev-

eral related tasks, in a subsequent task [139]. In RL, for example, policies learned in one

environment can be applied or partially applied to another environment, depending on

how their state/action spaces differ. The transferability of RL methods across different

guidance and navigation tasks is of tremendous importance from a practical perspective.

Conventional RL studies assume that the environment is stationary within one task.

6

1106. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

However, in the real world, guidance and navigation environments are often non-

stationary. For example, when an agent episodically traverses in an office-like environ-

ment, the position of desks and chairs, the open/closed windows and doors, and walking

people may change dynamically over episodes or even over time. There has been some

successful adaptive learning methods [49, 142–144] and mapping approaches [145–148]

dealing with non-stationary environments. Nevertheless, learning in non-stationary en-

vironments is still challenging and promising due to the increasing prevalence in practi-

cal applications [143, 145].

The aim of this chapter is to address the aforementioned knowledge gaps by propos-

ing a hybrid Hierarchical Reinforcement Learning (hHRL), with explicit rules to establish

the hierarchies. The hHRL method allows for different methods in different levels and

sub-tasks, assimilates multiple objectives, and possesses transferable learning results.

This proposed method is validated, in an online guidance and navigation task with par-

tial observability, in respect to the following abilities:

• Learning efficiency.

• Transferability across tasks.

• Applicability in non-stationary environments.

The remainder of this chapter is structured as follows. Section 6.2 begins with a brief

introduction to Markov and semi-Markov decision processes and different RL methods

that are used in this chapter. Section 6.3 describes the mobile robot system and for-

mulates the autonomous guidance and navigation problem. Then, section 6.4 presents

a hybrid Hierarchical Reinforcement Learning approach for online guidance and nav-

igation, sets out rules for establishing the hierarchies and sub-tasks, and presents the

implementation in each sub-task. The proposed method and implementations are val-

idated in the guidance and navigation task with partial observability in section 6.5. The

last section concludes the advantages and disadvantages of using the proposed method

and addresses the challenges and possibilities of the future research.

6.2. FOUNDATIONS

This section introduces the fundamentals of Hierarchical Reinforcement Learning,

including Markov Decision Processes (MDPs) and Semi-Markov Decision Processes

(SMDPs), and several RL methods that will be used in this chapter.

6.2.1. MARKOV DECISION PROCESSES AND SEMI-MARKOV DECISION PRO-

CESSES

Markov Decision Processes describe the mathematical framework of decision making

that Reinforcement Learning aims to solve [29, 31, 149]. An MDP consists of 5 elements:

1) a set of states s ∈S ,

2) a set of actions a ∈A ,

3) the transition probabilities P a
ss′

= P (st+1 = s′|st = s, at = a),

4) the expected immediate reward Ra
ss′

= E {rt+1|st = s, at = a, st+1 = s′}, and

6.2. FOUNDATIONS

6

111

5) the discounted rate γ ∈ [0,1],

where rt denotes the immediate reward of the next state s′ after taking a possible action

a. This 5-tuple specifies the major aspects of the dynamics of an MDP.

With the concept of an MDP dynamical model, the value function under policy π is

defined by the Bellman equation [31]. RL approaches seek to improve the policy by ap-

proximating and maximizing the value function until an optimal policy π∗ is ultimately

established. The state value function, V π(s), is defined as the expected return starting

from s and following the current policy π. The corresponding Bellman optimality equa-

tion for V ∗(s) is shown as follows [31]:

V ∗(s) = max

{
∞∑

k=0

γk rt+k+1|st = s

}

= max
a∈A

Eπ∗

{
rt+1 +γV ∗(s′)|st = s, at = a

}
.

(6.1)

Similarly, the Bellman optimality equation for the state-action value function, Q∗(s, a),

is defined as the expected return starting from s, taking the action a, and thereafter fol-

lowing the optimal policy π∗:

Q∗(s, a) = E {rt+1 +γ max
a′∈As′

Q∗(s′, a′)|st = s, at = a}

=Ra
ss′ +γ

∑

s′
P a

ss′ max
a′∈As′

Q∗(s′, a′).
(6.2)

An MDP defines only the sequential decision process, while an SMDP, which is a

generalization of the MDP, also takes the time between one decision and the next into

account [61, 124]. The SMDP is the basis of HRL. If action a is executed in the current

state st , the next decision will be made when the next state st+1 occurs after certain time

τ. Its joint transition probabilities is written as P (τ, st+τ = s′|st = s, at = a) [61]. The

remaining or waiting time in the current stage, τ, can be either real valued in continuous-

time discrete-event systems or integer valued in discrete-time systems as in this chapter.

A common way of writing the Bellman optimality equation of SMDPs [61] for state value

function, V ∗, is

V ∗(s) = max
a∈A

{
Ra

ss′ +
∑

(s′,τ)

γτP (τ, st+τ = s′|st = s, at = a)V ∗(s′)

}
, (6.3)

and for state-action value function, Q∗, it is

Q∗(s, a) =Ra
ss′ +

∑

(s′,τ)

γτP (τ, st+τ = s′|st = s, at = a) max
a′∈As′

Q∗(s′, a′), (6.4)

where Ra
ss′

is the accumulated reward within the time span (t , t +τ].

6.2.2. REINFORCEMENT LEARNING METHODS

Fundamental RL methods can be classified into three categories [21, 31]: 1) Dynamic

Programming (DP), which uses a complete knowledge of the system and/or environ-

ment to compute the optimal policy; 2) Monte Carlo (MC), which does not require a

6

1126. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

priori knowledge of the environment but only sample experiences and final rewards for

episodic tasks; and 3) Temperal-Difference (TD), which is a combination of DP and MC

ideas and updates the policy based on the sample experience at each step. Although dif-

ferent, some of these ideas are joint to extensively utilize the resources and to achieve

the best solution in solving the problems in this chapter.

MONTE CARLO

Monte Carlo methods do not need a model of the system or environment. Instead, they

execute the current policy during an iteration and update the policy afterward based

on the trace of the experienced states, actions, and received rewards. This chapter uses

an MC method in the higher level to estimate the state-action values Q(sk , ak), where k

represents the high-level state-action sequences. These values can be updated based on

the averaged rewards, finite horizon, or discounted rewards.

This chapter focuses on the discounted rewards because they are more suitable for

guidance tasks that receive a (constant) final reward rT , if and only if it reaches the tar-

get position. After the termination of the j th iteration, the values of experienced state-

action pairs, (sk , ak), are updated, as follows:

Q j+1(sk , ak) = γT−1−k
· rT + max

ak+1∈Ask+1

Q j (sk+1, ak+1), (6.5)

where k = 1, ...,T −1.

Q-LEARNING

As an off-policy TD method, Q-learning will be used for online adaptation in this chap-

ter when immediate rewards are available. This method approximates the optimal state-

action value function Q∗ of the estimation policy, which is independent of the behaviour

policy [31]. This separation allows exploration with the behaviour policy and simplifies

the analysis of the algorithm. This chapter uses a one-step Q-learning algorithm to up-

date state-action values in discrete form with immediate rewards rt+1, as follows [150]:

Qt+1(st , at) = (1−δ)Qt (st , at)+δ

[
rt+1 +γ max

at+1∈Ast+1

Qt (st+1, at+1)

]
, (6.6)

where δ is a learning-rate parameter.

When applied to SMDP, Q-learning updates the value function when it receives an

immediate reward. This immediate reward rt+τ is assigned after the agent executes ac-

tion a in state s and gets into another state s′ after time τ. In discrete-time systems,

Q-learning updates the estimated state-action value Qk (s, a) of the optimal Q∗(s, a) as

follows [61]:

Qk+1(s, a) = (1−δ)Qk (s, a)+δ

[
Rt ,τ+γτ · max

a′∈As′

Qk (s′, a′)

]
. (6.7)

where Rt ,τ is the accumulated reward during the waiting time:

Rt ,τ = rt+1 +γrt+2 +·· ·+γτ−1rt+τ. (6.8)

6.3. AUTONOMOUS GUIDANCE AND NAVIGATION TASK

6

113

Q-learning is adopted as the ‘flat’ method, which refers to non-hierarchical RL, in this

chapter because it has three advantages [30, 31, 61, 151]. First, it uses iterative data sam-

ples obtained from the real world test or from produced stochastic simulations, rather

than access to the explicit knowledge of the expected rewards or the state-transition

probabilities. This trait allows Q-learning to be used as a model-free RL method. Sec-

ond, it uses state-action values instead of state values. Thus, in discrete-event systems,

finding optimal actions does not require one-step ahead search or access to the one-

step action models. Third, it is easy and explicit to store all state-action values for small-

scaled problems. And it is possible to extend this advantage to large-scale problems by

using function approximation methods or HRL methods.

6.3. AUTONOMOUS GUIDANCE AND NAVIGATION TASK

This section will introduce an autonomous guidance and navigation task in unknown

mazes with multiple objectives and partial observability.

6.3.1. SYSTEM DESCRIPTION

As depicted in Fig. 6.1, the agent represents a flying robot navigating in indoor environ-

ments with limited sensors. It does not know its absolute state, i.e. the exact position in

the environment, but only observes a relative state, s ∈ S : 3-step short-sight (obstacle

in the 1, 2, 3-step away or nothing) in 3 directions (front, left, and right), represented

by s f ∈ S f , sl ∈ Sl , and sr ∈ Sr , and its heading angle sh ∈ Sh : {0◦,90◦,180◦,270◦} rep-

resenting {North, West, South, East}. Thus, this robot only has 256 possible observed

states S : S f ×Sl ×Sr ×Sh . If the absolute state is fully and always observable, this

problem is deterministic. On the other hand, if the system only senses its relative state

in the environment, this problem becomes stochastic. The observed relative states can

be ambiguous in complex environments, which is also referred to as the POMDP. Fig-

ure 6.2, as an example, presents two situations, where the agent senses the same relative

state s = [1,0,0,180◦]. They are, however, in two different absolute states and should take

different actions to approach the target area. Furthermore, if the agent takes the same

action in these two situations, it will sense different next states. This partial observability

will prevent the state-action values from converging with a ‘flat’ RL method.

The agent has limited mobility A : {turn left, turn right, move forward}. If the agent

moves towards an obstacle when it is next to the obstacle, it will automatically turn

around and result in a penalty ‘-4’. When it reaches the target area, the robot will land

at this area and get a final reward ‘10’. This agent does not know the map of this maze

in advance, but has an internal memory of its trajectory, which will be removed before

another episode, and a long-term external memory, which can only store a map. This

chapter focuses on the high-level online guidance and navigation rather than the sys-

tem model or the low-level control and, therefore, makes the following assumption:

Assumption 1. The flying robot is able to accurately perform the one-step actions in A .

6.3.2. PROBLEM DESCRIPTION

Figure 6.3 shows an indoor guidance and navigation problem for the agent in a discrete

maze. This maze A is a benchmark maze from Parr [123], which has about 3600 possible

6

1146. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

Agent

Relative state s (sensor)

Obstacles

sl = 0

s f = 2

sr = 1

sh = 90◦

Figure 6.1: An example of the agent, sensing a relative state, s = [s f , sl , sr , sh], in a discrete environment.

Agent Relative state s ObstaclesTarget area

Figure 6.2: An example of an agent in two possible situations, sensing the same relative state s = [1,0,0,180◦],

which, however, are in two different absolute states (positions) and should take different actions to approach

the target area.

6.4. HYBRID HIERARCHICAL REINFORCEMENT LEARNING

6

115

Target

20 40 60 80

20

40

60

80

Figure 6.3: A guidance and navigation problem with obstacles and a target in maze A.

absolute states (without considering the heading) and a target area. The agent has to

perform two tasks at the same time: avoiding the obstacles, and approaching the target

area as soon as possible.

Compared to Parr’s original maze problem [123], the current task is more complex

and realistic with partial observability, unknown starting positions, limited mobility, and

a possibly changing environment. The agent does not have any a priori information

about the environment or its position and learns everything online. This maze environ-

ment and the target position may change, and the agent needs to transfer the learning

result across different environments. In addition, some of the obstacles in this maze can

also be non-stationary.

6.4. HYBRID HIERARCHICAL REINFORCEMENT LEARNING

This section presents a hybrid Hierarchical Reinforcement Learning (hHRL) method to

allow for different methods and types of state information in each level and each sub-

tasks.

6.4.1. DECOMPOSITION AND HIERARCHIES

For online guidance and navigation in a priori unknown environments, decomposition

of tasks and abstraction of actions allow agents to solve current sub-problems and to

ignore irrelevant details at the current level. Each higher level uses a partial description

of the environment, which can partition the environment into sub-environments, from

a top-down point of view, or macro states, from a bottom-up perspective. This feature

may naturally reduce the uncertainty or ambiguity induced by partial observability of

the environment. The activities or decisions in higher levels are called macro actions or

behaviors, which instruct the policy in the lower level. The original one-step actions for

each state are called primitive actions.

In guidance and navigation problems, the environment can be decomposed into sev-

6

1166. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

eral sub-environments based on physical isolation, such as rooms or floors. For more

general environments, such as maze A, which does not have clear, observable isolation,

it can be decomposed, based on the physical distance, into macro states, e.g., encom-

passing 12×12 absolute micro states as in Fig. 6.4, which results in coarser-grained be-

havior b ∈B: {go North, go West, go South, go East}. Therefore, the two situations in Fig.

6.2 can be distinguished by the macro states and follow different behaviors: go West and

go South.

ObstaclesTarget area

Figure 6.4: An example of environment decomposition. The pink dotted line decomposes the environment

into macro states, each of which encompasses 12×12 absolute micro states.

The maze guidance and navigation problem can be addressed with a hierarchical

structure as depicted in Fig. 6.5, using the following rules:

• Rule 1. The hierarchical levels depend on the state abstraction levels: the more ab-

stracted, the higher the level.

• Rule 2. Each sub-task only focuses on one objective, uses its related reward assign-

ment system, and has a corresponding value function.

• Rule 3. If there are multiple sub-tasks within one level, an order of priority is nec-

essary to be determined for evaluating the importance of the related value function.

The order of priorities may depend on the inherent properties or can change based

on a higher level instruction.

In Fig. 6.5, the agent operates in Level 3 (L3) on micro states, in Level 2 (L2) on macro

states, and in Level 1 (L1) based on the cognition of the entire situation. Except for the

decomposition into hierarchical levels, the tasks in some levels need to be further de-

composed into sub-tasks, each of which focuses on only one objective and has one value

function to store the learned result. In Level 2, the 1st sub-Task (L2.T1) attempts to ex-

pand the explored area in the maze for a long-term interest with multiple iterations, and

6.4. HYBRID HIERARCHICAL REINFORCEMENT LEARNING

6

117

Trade between

Exploration and Exploitation

Sub-task 1. Exploration:

Search for the Target

Sub-task 2. Exploitation:

Get to the Target

Sub-task 1.

Follow Instruction
Sub-task 2.

Prevent Collision

Level 1.

Decision level

Level 2.

Macro state level

Level 3.

Micro state level

Priority for Exploration Priority for Exploitation

Behaviour

Action

Figure 6.5: An architecture for hybrid Hierarchical Reinforcement Learning.

the 2nd sub-Task (L2.T2) focuses on the exploitation of the greedy policy to approach the

target area in the current iteration. In Level 3, the 1st sub-Task (L3.T1) is following the

higher level instruction, which is either exploration or exploitation, to get to the target

area, while the 2nd sub-Task (L3.T2) has another objective: preventing collision with the

wall or obstacles. These sub-tasks in the same level are decomposed for ease of chang-

ing the priority and of transferring the learned results to different tasks. If the maze has

been thoroughly explored, L1 will give priority to L2.T2, and, on the other hand, when

the maze is unexplored, or when the environment changes, L1 may decide to give pri-

ority to L2.T1 to better estimate the state and to find the target. In the 3rd level, L3.T2

always takes priory over L3.T1 in this aerial vehicle guidance and navigation task for

safety reason.

6.4.2. HYBRID LEARNING

There is no single method that can benefit all targets [58, 59]. This is also applicable to

HRL. Within a hierarchical structure, the state and action spaces in different levels can

be discrete, continuous, or even hybrid. For instance, the lower level has a continuous

state-action space, where approximate dynamic programming method might be more

useful, while abstracted higher levels may have discrete state and action spaces, where

Q-learning and SARSA may be more efficient. Different sub-tasks within the same level

can also have different learning requirements with different reward assignment systems,

such as a final reward or immediate rewards.

6

1186. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

Therefore, the hHRL method is proposed to allow for different methods and different

types of state information in each level or even in each sub-task, adhering to the follow-

ing rule:

• Rule 4. Within one level, different sub-tasks are allowed to use different learning

methods, state information, learning types, reward assignment systems, as long as

the learned result can be transferred into a same-structured value function.

The aim of the hHRL method is to better use the acquired information and appropriate

methods to effectively tackle each sub-task.

RELATIVE AND ABSOLUTE STATES

In this guidance and navigation problem, the agent only has partial observability with

a relative state s. This relative state has only 256 possibilities as depicted in section 6.3.

On the other hand, maze A, as an example, has about 14400 possible absolute states

(3600× 4, considering the heading), and this amount can ever-increase due to the in-

creasingly expanded environment. Although relative state brings ambiguity into maze

problems, it also, to some extent, limits the growing of the state space and consumes

less computational and memory resources. In addition, the relative state information

can directly meet the objective of preventing collisions and remains flexible in uncer-

tain environments. Therefore, the relative state is still used in the lower level (L3) in the

proposed hHRL method.

Absolute position has its own benefit in target approaching tasks, especially for small

scaled problems. The higher level (L2) is operated based on macro states, each of which

is a collection of nearby absolute micro states. These macro states are absolute positions

in the maze, of which there is a relatively small amount. The higher level estimates the

absolute macro state of the agent and focuses on the objective of approaching the target.

REWARD ASSIGNMENT SYSTEM

External rewards, used in most RL algorithms, are positive or negative outcomes received

from the external reward system or other environmental sources. They are tangible, such

as consuming energy or reaching a charger in a robot navigation task. The external re-

wards of this guidance and navigation task are the immediate obstacle collision penalty,

rt =−4, and the final reward, rT = 10, as depicted in section 6.3.1.

Besides external rewards, HRL algorithms also require internal rewards, which are

intangible and come from the sense of performance itself, such as accomplishment of

following a higher level instruction or achievement of a sub-task. The internal reward

can either be a reward observed immediately after taking an action in the current state,

or be a delayed reward returned after termination of a higher level action. Assigning

suitable internal rewards can be difficult. It can affect the evaluation of the actions in

each state following an instruction.

In this maze guidance and navigation problem, two internal rewards are assigned.

First, if there is an obstacle in front of agent indicated by s f , the agent will receive an

immediate penalty according to the distance from the obstacle: rt =−2 if s f = 1, rt =−1

if s f = 2, and rt =−0.5 if s f = 3. This internal reward assignment is a supplement to the

collision penalty. Second, if the agent in a macro state successfully follows the behavior

from L2 and enters the next macro state at time τ, it will obtain a delayed reward rτ = 2.

6.4. HYBRID HIERARCHICAL REINFORCEMENT LEARNING

6

119

LOCALIZATION WITH MAPPING

This chapter deals with POMDP problems by using hierarchical state information in-

stead of estimating the absolute state (also known as belief state) in the lower level. Nev-

ertheless, to approach the target area, the agent still needs to localize itself in the map in

a higher level. In some practical POMDP tasks, the agent may have an accurate relative

state as in this chapter and an inaccurate absolute positioning. This additional posi-

tioning information can be used to estimate its macro state. In a static environment,

positioning can also be realized by using the mapping strategy.

The agent has an internal memory of its trajectory, which can be used for localiza-

tion in the current episode and also for drawing a map to ease future tasks. The agent

explores in the maze and can simultaneously draw a map based on its experienced mi-

cro states and actions. Once this episode finishes, the incomplete map will be compared

to and then used to enrich the map in the external memory. The off-line learning phase,

e.g., with Monte Carlo, can use this map together with its trace in the current episode

to evaluate and update value functions. From the second episode onwards, the agent

can create a local map online and match itself to this map to estimate its absolute macro

state in the maze.

A partial map, which only contains the static environment, such as walls, is more

efficient in practical use because surrounding obstacles are not always stationary. To

achieve this partial map, the sensors are modified to measure if the obstacles are sta-

tionary, such as walls, or non-stationary, such as chairs or tables. With this information,

the proposed hHRL method can be efficiently used for non-stationary environments,

which will be explained in section 6.5.3.

6.4.3. STRATEGY CONNECTING HIERARCHIES AND SUB-TASKS

The hHRL method allows for different-structured value functions for different hierar-

chies. These hierarchies are not connected with each other by their value functions.

Instead, the higher level passes on an instruction to the lower level. This instruction can

be a behavior, e.g., from L2 to L3, a list of priorities, or an activation signal for a lower

sub-task, e.g., from L1 to L2 in Fig. 6.5.

The hHRL method, according to Rule 4, allows for different learning methods within

one level as long as the learned results are in same-structured value functions so as to

be summed up to decide what actions to take. For example, L3 uses state-action value

functions QL3,T i ,P j (s, a|b), where (L3,T i ,P j) indicates this value function is for the 3rd

level, i th sub-task, and j th order in the list of priorities. These value functions can be

normalized into Ni ·QL3,T i ,P j (s, a|b) with normalization factor Ni . When getting into

a relative state st under behavior bt , the agent will calculate the Q-values for possible

actions by summing up the sub-task Q-values as follows:

Q(st , a) = w2 ·N1 ·QL3,T 1,P2(st , a|bt)+w1 ·N2 ·QL3,T 2,P1(st , a), a ∈Ast , (6.9)

where the weight w j ≥ 0 indicates the importance of Q-values according to the order of

priority P j . These weights can be assigned, in principle, as w1 > w2 > ·· · . If a sub-task

has strict priority to others in one level, e.g., preventing collisions is strictly prior to other

behaviors, a simple design principle for their importance weights is provided as follows:

6

1206. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

• Rule 5. If the order of priority, indicated by j , is strict, the weight w j is assigned

as w j = 2−(j−1). If the priorities do not change, this importance assignment can be

done, practically, by assigning the reward at a 50% difference.

This reward assignment principle works well for L3 in these guidance and navigation

problems.

This method estimates value functions for each sub-task independently, which eases

the transfer of learning to other guidance and navigation tasks and other systems. In

addition, this method does not sum up the complete value functions within the whole

state space or state-action space, which may vary among different methods, but only the

values for the current possible actions within the action sub-space as in Eq. (6.9). This

trait makes the hHRL method allows for different methods in sub-tasks within the same

level.

6.4.4. IMPLEMENTATION: VALUE FUNCTIONS ADAPTATION

The concept of hHRL and its rules have been explained. This section will present the

detailed implementation of the proposed hHRL in this online guidance and navigation

problem, focusing on the value functions and their adaptation in each sub-task in Fig.

6.5.

LEVEL 1

The decision level, L1, judges if the agent should focus on exploration or exploitation.

This is based on whether the agent has experienced enough in an episode to localize it-

self, and whether the experienced environment in the current episode matches the map

in its external memory. When the agent starts an episode, it only observes its surround-

ing environment, and L1 will give priority to exploration. Once the macro state is es-

timated, L1 will change the priority to exploitation. If the environment of the current

episode is different from the memorized map, e.g., the maze is expanded, or the target

position is changed, the exploration will again take priority.

LEVEL 2 SUB-TASK 1

In the second level, L2, the macro state S ∈ SM is an absolute position, which is esti-

mated online and may be inaccurate. Behavior b is defined over its input set B, macro

states S, the current high-level policy from L1, and additionally, over a termination con-

dition βstop : {0,1}. The current behavior will be terminated when

1) the agent enters into another macro state,

2) the agent stays in the current macro state for too long, and

3) the higher-level policy changes.

The first sub-task, L2.T1, is based on a look-up table, Count (S), counting visits to

each macro state. Note that the agent is initially not aware of its absolute state in each

episode. The macro states are partitioned and marked on the external map, according

to the memorized map of its first episode. At the start of the following episodes, the

macro states are partitioned according to the first position in the current episode, which

may be different from the partition in the external map. Once localized, the macro-state

count will be transferred into the external map and used for the remainder of the current

episode.

6.4. HYBRID HIERARCHICAL REINFORCEMENT LEARNING

6

121

The number of visits can be seen as penalties for this sub-task L2.T1, and can be

transferred into a state value function format:

VL2,T 1(S) =−Count (S) /
∑

S∈SM

Count (S). (6.10)

The state value function can also be transferred into a state-action value function with

an ideal agent model of macro states S and behaviors b. In this implementation, the

instruction from L1 is an activation signal. Therefore, when L2.T1 is activated, VL2,T 1(S)

can directly decide the next behavior.

LEVEL 2 SUB-TASK 2

This sub-task is learned off-line with a Monte Carlo method. When an episode ends, the

agent will receive a final reward rT if it reaches the target to update the value function.

This adaptation is based on the trace-back of the experienced macro-state level state-

action pairs (Sk ,bk), where k represents the macro-state level state-action sequences.

The MC off-line learning allows for backwards adaptation of these values, k = T −1,T −

2, ..., as follows:

QL2,T 2(Sk ,bk) = γT−1−k
· rT + max

bk+1∈BSk+1

QL2,T 2(Sk+1,bk+1). (6.11)

Therefore, the final reward can be propagated backwards more efficiently than using Q-

learning [131].

LEVEL 3 SUB-TASK 1

In the third level, L3, the value functions are conditional under b, for the first sub-task,

which can be represented as QL3,T 1(s, a |b). The value function dimension will be, there-

fore, expanded to S ×A ×B, where S : S f ×Sl ×Sr ×Sh [131]. To use the sample data

and storage more efficiently, the state information s = [s f , sl , sr , sh] will be separately

used in the two sub-tasks in L3.

The first sub-task, L3.T1, is following the higher level behavior b, which is actually a

connection between L2 and L3. To improve the storage efficiency, this implementation

first combines the heading angle sh ∈ Sh and the behavior b and formulates a relative

instruction, which is a turning angle, b̃ ∈ B̃ : {0◦,90◦,180◦,270◦}, without taking its cur-

rent orientation into account. Figure 6.6, as an example, describes two situations where

the agent has different heading angles sh and behaviors b, but actually should follow the

same relative instruction b̃.

In addition, the obstacle prevention can be taken care of by L3.T2, which even has

higher priority. Therefore, L3.T1 does not necessarily consider the obstacle-related mea-

surements: s f , sl , or sr . The value function can be reduced to QL3,T 1(b̃, a), whose di-

mension is B̃×A . Note that the relative instruction b̃ is processed information from the

current heading angle sh and behavior b, and can change micro-step-wise.

When the higher-level behavior bk is terminated, the agent may receive an internal

reward rτ at time τ if the agent correctly followed the behavior. Within this time span

of executing bk , the experienced state-action pairs (st , at) can be transferred to (b̃t , at),

6

1226. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

sh = 90◦

sh = 0◦

b = g oNor th

b = g oE ast

(a) (b)

Figure 6.6: Two different situations where the agent should follow the same turning angle, b̃ = 270◦.

and their values are updated, similar to the SMDP Q-learning method in Eq. (6.7):

QL3,T 1(b̃t , at) = (1−δ)QL3,T 1(b̃t , at)+δ

[
γτ−1−t

· rτ+γτ−t
· max

aτ∈A
b̃τ

QL3,T 1(b̃τ, aτ)

]
. (6.12)

LEVEL 3 SUB-TASK 2

The second sub-task, L3.T2, is learning to prevent collisions online with the Q-learning

method. After taking an action, the agent may receive an immediate reward rt+1, which

can not only be a collision penalty (external reward) but can also be a getting-close

penalty (internal reward) if the agent observes an obstacle in front. This task does not

directly relate to the agent’s heading, which can, therefore, reduce the dimension of the

value function to S f ×Sl ×Sr ×A . The value function is updated as follows:

QL3,T 2(sT 2
t , at) = (1−δ)QL3,T 2(sT 2

t , at)+δ

rt+1 +γ max

at+1∈A
sT 2

t+1

Qt (sT 2
t+1, at+1)

 , (6.13)

where sT 2 = [s f , sl , sr].

The lower levels (L2 and L3) also keep exploring within their state-action spaces

with an ǫ-greedy strategy, which chooses the greedy policy with probability 1− ǫ, and

a random action with probability ǫ. The exploration rate in this chapter is initialized as

ǫ0 = 0.5 and is decayed by 0.95 after each update until it reaches the minimum explo-

ration rate ǫ= 0.1.

6.5. RESULTS AND DISCUSSION

In this section, three simulation experiments are carried out for online guidance and

navigation problems to demonstrate different capabilities of hHRL. First, the agent

learns to prevent collisions online and to episodically improve the performance of ap-

proaching the target in maze A. The result will be compared to those using a ‘flat’ Q-

learning and a hierarchical Q-learning algorithm. Second, the hHRL method is ap-

plied to a different, expanded maze to validate the transferability of learning. Next, this

6.5. RESULTS AND DISCUSSION

6

123

method is also applied to a non-stationary environment using modified sensors and a

partial map.

6.5.1. LEARNING EFFICIENCY IN AN A PRIORI UNKNOWN MAZE A

The proposed hHRL method is applied to the guidance and navigation problem in maze

A as Fig. 6.3. The maze is a priori unknown to the agent. In addition, the initial position

in each episode is also unknown and can vary. These simulations use pseudo-random

initial positions (pre-determined and in the northeast area in maze A) for 30 episodes,

where the first and final episodes start from the most northeast position, for a fair com-

parison with the ‘flat’ Q-learning (fQ) and the hierarchical Q-learning (hQ) algorithm

[131].

Number of episodes

N
u

m
b

e
r

o
f

p
ri

m
it

iv
e

a
c

ti
o

n
s

fQ

hQ

hHRL

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
×105

Figure 6.7: The number of primitive actions taken in each episode with a ‘flat’ Q-learning (fQ) [131], a hierar-

chical Q-learning (hQ) [131], and the proposed hHRL algorithm (averaged of 5 runs).

Number of episodes

N
u

m
b

e
r

o
f

b
e

h
a

v
io

rs

hQ

hHRL

0 5 10 15 20 25 30
0

1

2

3

4

×103

Figure 6.8: The number of macro actions taken in each iteration with a hierarchical Q-learning (hQ) [131] and

the proposed hHRL algorithm (averaged of 5 runs).

6

1246. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

Figure 6.7 compares the numbers of primitive actions taken in each iteration using

the fQ, hQ algorithms from [131], which has the same agent, same maze, and same en-

vironment decomposition as this chapter, and the proposed hHRL method. With fQ, the

agent learns how to prevent collisions in the first several episodes. However, the perfor-

mance will not be improved significantly hereafter. There are two main reasons: first,

the huge number of actions taken before reaching the target area makes the effect of

the terminal reward propagate very slowly to the experienced states; and second, the

partial observability leads to the ambiguity in real absolute states, which prevents the

convergence of observed state-action values. These features impair the agent’s ability to

perform the second task: approaching the target area.

On the other hand, the HRL algorithms, including hQ and hHRL, improve the per-

formance of both the collision avoidance objective and the searching for the target area

objective. The low-level agent focuses on avoiding obstacles and following high-level in-

structions. The high-level agent focuses on the exploration of the state space and finds

the optimal behaviors to get to the target area as soon as possible. In Fig. 6.8, there is a

clear trend of decreasing number of the behaviors during learning. This result indicates

that the agent improves the performance also from a higher level.

Compared to hQ, the proposed hHRL algorithm improves the performance consid-

erably and much faster even from the first episode, as depicted in Figs. 6.7 and 6.8. There

are several reasons:

1) The hHRL algorithm separates different objectives into different sub-tasks and

efficiently uses different value functions for each sub-task, e.g., Eq. (6.11) for L3.T1 and

Eq. (6.12) for L3.T2. The adaptations of these value functions are independent from each

other.

2) The hHRL method allows for different, appropriate methods for different sub-

tasks to effectively tackle each sub-task. The MC off-line learning in L2.T2 is more ef-

ficient in the use of the final reward than the Q-learning in hQ.

3) The hHRL method uses a better strategy to connect sub-tasks in the same level as

in Eq. (6.9).

4) The hHRL algorithm is open to being expanded and has a decision level to trade

between the exploration and exploitation in macro-state levels, which improves the

learning efficiency in a totally unknown environment, e.g., during the first episode.

Figure 6.9 shows the agent’s internal memory during online learning in its 30th

episode, starting from the most northeast position. This episode takes 272 primitive

actions, 15 behaviors, and experiences 12 macro states. The greedy behaviors in the

learned external map after 30 episodes are presented in Fig. 6.10. Since each macro state

consists of an area of fixed size, the corridor area is not completely separated from the

inaccessible area with walls. Greedy behaviors are also assigned to those macro states

with partly corridor, partly inaccessible area with walls, and partly inexperienced envi-

ronment. The agent creates the map in Fig. 6.10 by stitching the constructed maps from

the internal memory after each episode. After 30 episodes (actually from around the 15th

episode), the agent, using the hHRL algorithm, has the ability to find a near-optimal path

online in the micro-state level, and optimal behaviors in the macro-state level.

Note that the hHRL method is not very sensitive to the pre-determined parameters:

macro-state size in the state space decomposition, different reward assignment systems,

6.5. RESULTS AND DISCUSSION

6

125

Start
End

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 6.9: An example of agent’s internal memory in the 30th episode, which takes 272 primitive actions, 15

behaviors, and experiences 12 macro states. The blue line shows the trace of the agent in this episode. The

white and black areas are experienced or observed states and obstacles. The gray color indicates that those

areas haven’t been experienced or observed in this episode.

NORTH

SOUTH

EAST WEST

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 6.10: The greedy behaviors in the external map after 30 iterations with hHRL in maze A. The grid with

pink dotted line decomposes the environment into macro states. The light gray color indicates that those areas

haven’t been experienced or observed. The dark gray areas are experienced target states and are clustered with

a red rectangle.

6

1266. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

the forgetting factor, and the learning-rate. Although in the shown results, a macro state

encompasses 12×12 micro states, which is the same as in [131], simulations with other

macro-state sizes, e.g., 8×8 or 6×6, can also reach a similar level of performance. The

rewards used in different levels are independent and will not affect the learning results.

However, the rewards assigned at the same level or for the same sub-task may change

the learning and the performance. The above results use a reward assignment system

adhering to Rule 5. When the rewards change reasonably, e.g. if the immediate penalty

for obstacles in front of the agent ‘-2’, ‘-1’, ‘-0.5’ in section 6.4.2 is changed to ‘-1’, ‘-0.8’, ‘-

0.6’, the learning performance will not change. This chapter uses a same forgetting factor

and learning-rate, as γ = 0.2 and δ = 0.8, for all sub-tasks. These parameters are also

changeable and will not significantly affect the learning performance within a proper

range.

6.5.2. TRANSFERABILITY OF LEARNING TO A NEW MAZE B

Target

20 40 60 80 100 120 140

10

20

30

40

50

60

70

80

Figure 6.11: A guidance and navigation problem with obstacles and a target area in maze B .

The hHRL method allows for the transfer of learned results across tasks, such as guid-

ance and navigation in a new and unknown environment. Figure 6.11 shows another

maze expanded from maze A. This maze B has about twice the number of absolute states

as maze A and a different target area in the northwest of the new maze. The agent, which

has been trained in maze A, can still use the low-level results in L3.T1 and L3.T2 and only

need to learn a new higher level policy.

Figure 6.12 presents the agent’s internal memory during an online learning in its 30th

episode in maze B. This episode takes 520 primitive actions, 23 behaviors, and experi-

ences 20 macro states. The agent creates a map of maze B in its external memory with

greedy behaviors, as depicted in Fig. 6.13. Although the starting positions are all in the

northeast area in maze B (pseudo-random, same as maze A), most of the greedy behav-

iors in Fig. 6.13 are optimal. With more learning episodes and starting from different lo-

cations, the agent will explore all possible actions and exploit those experience to learn

6.5. RESULTS AND DISCUSSION

6

127

Start

End

20 40 60 80 100 120 140 160

10

20

30

40

50

Figure 6.12: An example of agent’s internal memory in the 30th episode, which takes 520 primitive actions, 23

behaviors, and experiences 20 macro states. The blue line shows the trace of the agent in this episode. The

white and black areas are experienced or observed states and obstacles. The gray color indicates that those

areas haven’t been experienced or observed in this episode.

NORTH

SOUTH

EAST WEST

20 40 60 80 100 120 140 160

20

40

60

80

100

Figure 6.13: The greedy behaviors in the external map after 30 episodes with hHRL in maze B. The grid with

pink dotted line decomposes the environment into macro states. The light gray color indicates that those areas

haven’t been experienced or observed. The dark gray areas are experienced target states and are clustered with

a red rectangle.

6

1286. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

to accomplish the tasks better. The agent will, therefore, has the ability to find the hier-

archical optimal path online from any initial position.

The previous experience in maze A and the learned results can be transferred to sim-

ilar tasks in maze B. Figure 6.14 compares the learning performance in maze B with

and without pre-training in maze A. The agent, pre-trained in maze A, takes less primi-

tive actions and behaviors since the first episode, and its policy converges since around

the 10th to 15th episode, as depicted in Figs. 6.14(a) and (b). On the other hand, the

agent, without pre-training in maze A, takes more primitive actions and behaviors and

reaches the same level of performance as the pre-trained one since around the 20th to

25th episode. In addition, the pre-trained agent can effectively prevent collisions in a

new environment, as presented in Fig. 6.14(c), which is useful particularly in practice.

The results show that the proposed hHRL method owns an ability to transfer the learned

results across tasks and can speed up learning for different, more complex tasks or envi-

ronments.

(a)N
u

m
b

e
r

o
f

p
ri

m
it

iv
e

a
c

ti
o

n
s

Pre-trained in maze A Without pre-training

(b)

N
u

m
b

e
r

o
f

b
e

h
a

v
io

rs

(c)

Number of episodes

N
u

m
b

e
r

o
f

c
o

ll
is

io
n

s

5 10 15 20 25 30

5 10 15 20 25 30

5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0

5

10

0

1

2

3

0

2

4

6

0

20

40

60

80

100

120

0

2

4

6

8

0

0.5

1

1.5

2

×105

×103

×103

×102

Figure 6.14: Numbers of (a) primitive actions, (b) behaviors, and (c) collisions during the first 30 episodes in

maze B using the proposed hHRL algorithm, with and without pre-training in maze A (averaged of 5 runs).

6.5. RESULTS AND DISCUSSION

6

129

6.5.3. APPLICABILITY IN NON-STATIONARY ENVIRONMENTS

Target

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Figure 6.15: A guidance and navigation problem in non-stationary environments. The black color represents

stationary obstacles, while the gray color represents non-stationary obstacles.

The proposed hHRL method can also be used for non-stationary environments, as

depicted in Fig. 6.15, only by changing the complete map in external memory to a par-

tial map. This partial map only contains the static environment, for macro-state level

localization. The non-stationary surroundings are treated as temporary obstacles and

will be forgotten when the current episode ends. The sensors equipped on the agent

are modified to be able to measure if the obstacles are stationary or non-stationary, as

represented by the black and gray colors in Fig. 6.15.

Instead of changing any of the value functions in section 6.4.4, the agent pass on

different sensor information to the sub-tasks in different levels. The micro-state level,

L3, only concerns whether there are observed obstacles instead of what kind of obstacles

are there. On the other hand, the macro-state level, L2, treats non-stationary obstacles

as empty areas. The internal and external memory will store partial maps, which only

contain stationary obstacles.

This section focuses on the validation of the proposed method in non-stationary en-

vironments, especially on the consistency of online performance in never experienced

environments. The agent starts with the original maze in Fig. 6.15, denoted as maze a,

for 15 episodes, and from the 16th episode onwards, the non-stationary obstacles may

change their position every per 5 episodes. Figure 6.16 (a) shows the agent’s trace in the

15th episode in maze a. The environment changes to maze b, maze c, and maze d in the

16th, 21th, and 26th episodes for the first time, where the traces of the agent are recorded

in Figs. 6.16 (b), (c), and(d), respectively.

Figure 6.17 presents the greedy behaviors in the learned partial map after 30 episodes

in the external memory. In addition, the number of primitive actions and behaviors

taken in each episode are illustrated in Fig. 6.18. The policy converges since around the

10th to 15th episode. From the 16th episode onwards, the averaged number of primitive

actions and behaviors are 686 and 33. And the averaged numbers over the episodes in

6

1306. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

Start End

(a) The 15th episode, in maze a. (b) The 16th episode, the first time in maze b.

(c) The 21th episode, the first time in maze c. (d) The 26th episode, the first time in maze d.

1010

1010

2020

2020

3030

3030

4040

4040

5050

5050

6060

6060

7070

7070

8080

8080

1010

1010

2020

2020

3030

3030

4040

4040

5050

5050

6060

6060

7070

7070

8080

8080

Figure 6.16: The traces of the agent in non-stationary environments.

6.5. RESULTS AND DISCUSSION

6

131

NORTH

SOUTH

EAST WEST

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 6.17: The greedy behaviors in the external (partial) map after 30 episodes with hHRL in the non-

stationary environment. The black color represents stationary obstacles. The white color indicates that those

areas are empty spaces or non-stationary obstacles.

Number of episodes

N
u

m
b

e
r

o
f

p
ri

m
it

iv
e

a
c

ti
o

n
s

N
u

m
b

e
r

o
f

b
e

h
a

v
io

rs
Maze a

Maze b

Maze c

Maze d

5 10 15 20 25 30
0

500

1000

1500

2000

2500

0

50

100

150

200

250

Figure 6.18: Numbers of primitive actions and behaviors during the first 30 episodes in non-stationary envi-

ronments, using the proposed hHRL algorithm and a partial map (averaged of 5 runs).

6

1326. HYBRID HIERARCHICAL REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY

new environments (16th, 21th, and 26th episodes) are 655 and 32, which are in the same

level of performance as the average, and are even slightly better. The above results indi-

cate that the proposed algorithm is applicable to non-stationary environments without

the loss of efficiency.

6.6. CONCLUSION

This chapter proposes a systematic hybrid Hierarchical Reinforcement Learning (hHRL)

method for multiple-objective problems with partial observability. This method uses dif-

ferent methods, types of state information, and reward assignment systems to optimize

the learning. This chapter formulates the explicit rules of establishing the hierarchies,

decomposing the tasks, and assigning the rewards. The detailed implementations of the

proposed hHRL method are presented for an online guidance and navigation task.

The proposed method is applied to a benchmark maze, Parr’s maze, with partial ob-

servability to prevent collision online and to episodically improve the performance of

approaching the target. The result is compared to a ‘flat’ Q-learning and a hierarchical

Q-learning method and indicates that the proposed hHRL method is more efficient in

dealing with the ‘curse of dimensionality’ and in reducing the uncertainty or ambiguity

in a higher level. The learned results are, then, applied to a different, expanded maze,

which validates that learned results can be transferred across tasks to speed up learn-

ing for different environments. In addition, the same method is also applied to non-

stationary environments with modified sensors and a partial map. The hHRL method,

using relative micro states and absolute macro states at different levels, allows for learn-

ing in non-stationary environments without loss of efficiency.

This chapter focuses on the partial observability, the transfer of learning, and the ap-

plicability in non-stationary environments in an online guidance and navigation task.

Future research is recommended to be undertaken in the following areas: 1) The hHRL

method can be applied to more realistic environments in continuous (both relative and

absolute) state spaces. 2) Approximate dynamic programming methods, presented in

Chapters 2 to 5, can be used in the lower level to combine the control of nonlinear, un-

known aerospace systems to this online guidance and navigation method. 3) The map-

ping of and adaptation to changes in non-stationary environments, with limited sensing

information, and changing over time instead of over episodes, are worth to be inves-

tigated. The proposed hHRL is open to being expanded both upwards to tackle more

complex, multiple-objective tasks and downwards to control more complex, nonlinear,

or continuous systems.

7
CONCLUSIONS AND

RECOMMENDATIONS

This chapter summarizes the research findings, by first discussing how the proposed

methods address the research questions posed in Chapter 1. Then, the main contribu-

tions are presented to draw final conclusions of the entire dissertation. Lastly, several

suggestions and recommendations are proposed for future work.

7.1. DISCUSSION

This dissertation started with three challenges of applying current Reinforcement

Learning (RL) controllers to aerospace systems without knowing the model of the

system or the environment. The challenge of efficiency is posed to the control of

unknown, nonlinear aerospace systems, especially when the system is time-varying and

partially observable. When applied to more general nonlinear systems and tasks, the RL

controller must adapt in real-time also for systems without representative simulation

models and for faulty systems. The high-level guidance and navigation problems, with

multiple objectives, face the challenge of designing systematic and transferable RL

methods with explicit rules. These three challenges are reflected in the main research

question:

Main Research Question

How can aerospace systems exploit RL methods to improve the autonomy and

online learning with respect to the a priori unknown system and environment,

dynamical uncertainties, and partial observability?

This main research question is addressed in three parts, for three specific RL methods

and applications: Approximate Dynamic Programming (ADP) for control problems with

an approximately convex true cost-to-go, Adaptive Critic Designs (ACDs) for general

133

7

134 7. CONCLUSIONS AND RECOMMENDATIONS

nonlinear control problems, and Hierarchical Reinforcement Learning (HRL) for high-

level guidance and navigation.

7.1.1. INCREMENTAL APPROXIMATE DYNAMIC PROGRAMMING

Linear Approximate Dynamic Programming (LADP) methods have successfully com-

bined RL methods and optimal control for unknown linear time-invariant systems.

These methods allow for numerically approximating the convex true cost-to-go without

knowing the system model, and keep the control algorithm efficient and mathematically

explicit. However, most aerospace systems are nonlinear and may involve dynamical

uncertainties and partial observability, and cannot use LADP methods. Part I of this

dissertation, therefore, aimed at answering the following research question:

RQ1: How to generalize LADP to deal with nonlinear and/or time-varying sys-

tems, model mismatch, and partial observations, while retaining the efficiency

and mathematical explicitness?

This research question is answered through the development of incremental Approx-

imate Dynamic Programming (iADP) methods. Instead of using nonlinear approxima-

tors to approximate the true cost-to-go, iADP methods use an (extended) incremental

model to deal with the nonlinearity of unknown systems and uncertainties of the envi-

ronment. These methods can still apply a quadratic cost function to generate an efficient

and mathematically explicit optimal control algorithm. These methods do not need any

a priori knowledge of the system dynamics, online identification of the global model,

nor even an assumption of the time scale separation, but only an online identified (ex-

tended) incremental model.

Chapter 2 introduces the iADP method to solve regulation problems for nonlinear

systems. When the direct measurement of the full state is available, the incremental

model can be identified to predict the next state. With this prediction, the optimal con-

trol increment can be calculated with the iADP algorithm based on Full State feedback

(iADP-FS). When the only measurements are the input and the output of the dynamical

system, the iADP algorithm based on OutPut feedback (iADP-OP) is developed, to op-

timize the control increment by reconstructing an extended incremental model. Both

algorithms are applied to an unknown missile model, with nonlinear aerodynamic un-

certainties, to optimize the flight controller iteratively. The presented results demon-

strate that the proposed method improves the closed-loop performance of the nonlinear

system, while keeping the design process simple and systematic.

The concept of iADP is further expanded in Chapter 3 to tracking problems for

Multiple-Input Multiple-Output (MIMO) nonlinear systems and to partial observable

control problems. Because iADP methods have a separate structure to represent the

local system dynamics, the cost function can be less dependent on the system or the

reference, and only needs to be a rough approximation of the cost-to-go. This approxi-

mation is a quadratic function only of the current tracking error, without expanding the

dimension of the state space for the cost function to an augmented one.

Two observability conditions are considered in this tracking control problem. When

7.1. DISCUSSION

7

135

the direct measurement of the full state is available, the incremental model can be online

identified to design the optimal control increment. In addition, when the only measure-

ment is the output tracking error, which is the result of tracking a stochastic dynamical

reference, the system becomes partially observable. The observations are used to iden-

tify the extended incremental model and to predict the next output tracking error for

the optimal tracking control. For each observability condition, an off-line learning algo-

rithm is applied to improve the policy iteratively until it is accurate enough, and here-

after an online algorithm is applied to update the policy recursively at each time step.

The recursive algorithms can also be used online in real systems, which may be different

from the system model used in the iterative learning stage. These algorithms are applied

to an attitude control problem of a simulated satellite disturbed by liquid sloshing. The

results demonstrate that the proposed algorithms accurately and adaptively deal with

time-varying internal dynamics while retaining efficient control, especially for unknown

nonlinear systems with only partial observability.

Part I of this dissertation illustrates two aerospace control problems where the sys-

tem does not have enough information to infer its full state: 1) the regulation of deter-

ministic systems, which belongs to output feedback methods, and 2) the tracking prob-

lems involving stochastic, time-varying dynamics in reference signals, which are referred

to as POMDPs. In these cases, both the system output in Chapter 2 and the output track-

ing error in Chapter 3 are mathematically proven to be predictable with extended incre-

mental models, instead of reconstructing the full model or estimating the full state. The

necessary conditions of extended incremental models are presented for generating the

optimal control increment efficiently and explicitly.

7.1.2. ONLINE ADAPTIVE CRITIC DESIGNS BASED ON THE INCREMENTAL

MODEL

Although the proposed methods in Part I are beneficial for most tracking control prob-

lems with approximately convex cost-to-go, the quadratic function may not be suitable

for more general nonlinear systems and tasks. ACDs can be used to control nonlinear

systems by exploiting nonlinear function approximators. In ACDs, an accurate global

system model still plays an important role. This model is, however, identified off-line

using representative simulation models, which may be difficult to obtain and are often

not accurate themselves. In addition, the online adaptation of the global system model

also needs to be sufficiently quick and smooth, to deal with unforeseen dynamics in

the system, uncertainties in the environment, and unexpected changes due to failures.

Therefore, the research question in Part II is formulated as follows:

RQ2: How to devise online ACDs and improve the online adaptability, to cope

with internal uncertainties, external disturbances, and even sudden faults?

This research question is answered through the development of online ACDs based

on the incremental model. ACDs can generally be categorized into three groups: 1)

Heuristic Dynamic Programming (HDP), 2) Dual Heuristic Programming (DHP), and 3)

Globalized Dual Heuristic Programming (GDHP). Besides, AD variations of these three

7

136 7. CONCLUSIONS AND RECOMMENDATIONS

original versions have been developed by directly connecting the output of the actor to

the input of the critic. The AD forms may reduce the dependency on the system model.

However, from a theoretical point of view, the actor output is not necessarily an input to

the critic; and from a practical perspective, the extra input will increase the complexity

of the critic. Furthermore, previous studies comparing ACDs and their AD forms have

reported that ACDs have higher success rates and online adaptability [51, 54]. Therefore,

this dissertation focuses on action independent ACDs, specifically HDP and DHP.

Chapter 4 proposes an online HDP method based on an incremental model, called

IHDP, to design adaptive controllers without a priori knowledge of the system dynam-

ics. This method replaces the global system model approximator with an incremental

model. This approach, therefore, does not need off-line training stage and may acceler-

ate online learning. The IHDP method is compared with conventional HDP in an online

tracking control of the unknown nonlinear missile model. The results show that the pre-

sented IHDP method speeds up the online learning, has a higher precision, and can deal

with a wider range of initial states than the conventional HDP method. In addition, the

IHDP method is also applied to the MIMO satellite attitude tracking control disturbed

by liquid sloshing and with sudden external disturbances. The simulation results also

demonstrate that the IHDP method is adaptive and robust to internal uncertainties and

external disturbances.

Chapter 5 further combines the advantages of DHP and incremental model to de-

velop an online DHP method, called IDHP. The IDHP method uses a Recursive Least

Square (RLS) approach to identify in real-time the incremental model instead of the

global system model. In addition to the online reference tracking problem, a Fault-

Tolerant Control (FTC) task is performed using IDHP and conventional DHP, in the pres-

ence of sudden changes of the original system dynamics, which could be caused by sud-

den faults. The results demonstrate that the IDHP method can successfully control a new

and unstable system adaptively before the states diverge, where DHP fails. To further val-

idate the robustness of the proposed IDHP method, high-frequency measurement noise

is superimposed to the measurements of system states. The simulation results indicate

that the IDHP method is not sensitive to the measurement noise.

To accelerate the online learning is of great practical value, especially when a priori

knowledge is unknown, the system is initially unstable, or the system or environment

changes suddenly. Part II proposes to use an incremental model to replace the global

system model in conventional ACDs. This linear model, identified from a series of most

recent measurements, provides more accurate local system dynamics and state predic-

tion with less computation. In addition, the adaptation of the critic and/or the actor is

also simplified with directly identified local derivatives of the next state. The proposed

online ACD methods relieve the off-line learning phases and are validated to be online

efficient with internal uncertainties, external disturbances, and even sudden faults.

7.1.3. HYBRID HIERARCHICAL REINFORCEMENT LEARNING FOR HIGH-

LEVEL GUIDANCE AND NAVIGATION

High-level guidance and navigation problems often have high-dimensional spaces,

multiple objectives, and consequently a large number of states and actions, which is

known as the ‘curse of dimensionality’. In addition, aerospace systems often have partial

7.2. FINAL CONCLUSIONS

7

137

observability instead of a perfect perception of their environment. Recent research

has sought to deal with these problems by using HRL. However, the explicit rules of

establishing the hierarchies often need expert knowledge, and the learned results in one

application cannot be directly used in other applications. Part III of this dissertation,

therefore, aimed at answering the following research question:

RQ3: How to establish a systematic HRL controller that deals with multiple ob-

jectives and partial observability, possesses transfer learning ability, and utilizes

diverse RL methods?

To answer this question, Chapter 6 proposes a systematic hybrid Hierarchical Rein-

forcement Learning (hHRL) method for guidance and navigation problems with multi-

ple objectives and partial observability. This method consists of several hierarchical lev-

els, where each level uses different methods to optimize the learning with different types

of information and objectives. The chapter formulates the explicit rules of establishing

the hierarchies, decomposing the tasks, and assigning the rewards. Detailed implemen-

tations of the proposed hHRL method are presented for an online, multi-objective guid-

ance and navigation task: approaching a target area while avoiding obstacles.

The proposed method is first applied to a benchmark maze, to prevent collision on-

line and to episodically improve the performance of approaching the target. The result is

compared to a ‘flat’ Q-learning and a hierarchical Q-learning method [131] and indicates

that the proposed hHRL method is more efficient in dealing with the ‘curse of dimen-

sionality’ and in reducing the uncertainty or ambiguity in a higher level. The learned

results are then applied to a different, expanded maze, which validates that learning re-

sults can be transferred across tasks to speed up learning in new tasks or environments.

Lastly, the same method is applied to a non-stationary environment with modified sen-

sors and a partial map. The hHRL method, using relative micro states and absolute

macro states in different hierarchical levels, allows for learning in non-stationary en-

vironments without loss of efficiency. These results indicate that the proposed hHRL

method can help to accelerate learning, to alleviate the ‘curse of dimensionality’ in com-

plex decision-making tasks, to naturally reduce the uncertainty or ambiguity at higher

levels, to transfer the learned results within and across tasks efficiently, and to be ap-

plied to non-stationary environments. This proposed method can potentially yield a

near-optimal policy hierarchically for autonomous guidance and navigation, without a

priori knowledge of the environment.

7.2. FINAL CONCLUSIONS

In this dissertation, several methods are proposed to improve the intelligence and au-

tonomy of aerospace systems, mainly from the following three perspectives:

1. Enhance the adaptability and efficiency of low-level control

The low-level control ability is the foundation of high-level guidance and navi-

gation, and limits the performance of the whole autonomous control system, es-

pecially for aerospace systems. The unknown nonlinear dynamics, internal uncer-

7

138 7. CONCLUSIONS AND RECOMMENDATIONS

tainties, and unpredictable changes are all in need of adaptive and efficient control

methods. This dissertation proposes to use incremental techniques in several con-

ventional RL methods to improve their adaptability and efficiency. These methods

maintain the mathematical explicitness and/or generalization of conventional RL

methods that are applied to a priori unknown systems, and take advantage of an

incremental model to cope with system nonlinearities, uncertainties, and even

system faults.

This dissertation uses an extended incremental model to deal with partial observ-

ability of continuous systems. This extended incremental model is identified on-

line from the partial observations, and can be directly used to generate an optimal

control. Compared to estimating the full state or reconstructing the full model, the

proposed method is more efficient and can reduce computation time delays.

2. Improve the intelligence and online learning ability of guidance, navigation, and

control

Reinforcement learning is inspired by behaviors of human beings and animals.

They learn from the rewards, penalties, and even failures, and these processes are

always ‘online’. Similarly, the online learning ability is of paramount importance

in intelligent control systems, and particularly RL controllers. In this dissertation,

the proposed iterative learning algorithms are called off-line to be distinguished

from the step-by-step online learning. Nevertheless, from an RL perspective, they

are also online learning because they start learning without a priori information

of the system and the environment. The proposed methods and algorithms in this

dissertation fulfill different degrees of online learning ability requirements.

IADP belongs to critic-only methods, which only have state value functions and

rely on the optimality principle to generate an action. The control policy is closely

dependent on the value function. These methods, therefore, keep the policy un-

changed during each iteration, and evaluate and improve the policy iteratively

until converged. The converged policy can be used as an initial policy for mis-

matched systems and similar control tasks with further online, recursive adapta-

tion. Online ACDs, on the other hand, are actor-critic methods, which separate the

policy evaluation and improvement into different memory structures. Although

these two approximations update alternatively based on each other, their adapta-

tion is not necessarily synchronized. In other words, the critic adaptation usually

happens earlier than the actor. This time difference also provides a chance for the

critic to evaluate a relatively consistent policy and makes it possible to prevent the

iterative learning stage. For guidance and navigation problems, the hHRL method

involves both iterative and step-by-step online adaptation for different value func-

tions, according to the desired behaviors and reward assignments. The system re-

ceives penalties after each collision, with which the related value functions can be

updated immediately. For approaching the target, the system only receives a fi-

nal reward after reaching this goal, and then updates the related value functions

iteratively.

3. Create a well-organized hierarchy to ensure coordination between each level

7.3. RECOMMENDATIONS

7

139

The last part of this dissertation proposes a hHRL method consisting of several lev-

els, where each level uses different methods to optimize the learning with various

types of information and objectives. The explicit rules of establishing the hierar-

chies are presented, based on the state abstraction levels. These rules have a clear

and well-organized hierarchy and ensure the coordination between each level by

properly assimilating independent, diverse learning processes. In addition, the

proposed hHRL is open to being expanded both upwards, to tackle more complex,

multiple-objective tasks, and downwards, to control more complex, nonlinear, or

continuous systems, and allows for human involvement, such as setting reference

values or rules, at all levels.

7.3. RECOMMENDATIONS

The proposed methods and results in this dissertation provide the following insights for

further research:

• This dissertation focused on the method development, theoretical analysis, and

simulation experiments. Further research should, therefore, concentrate on the

validation of the proposed methods on more complex and higher degree-of-

freedom aerospace models and then on real systems. Therefore, practical issues,

such as reducing noise and time delay in the measurement, using elaborate fault

detection and isolation methods, and improving the accuracy and real-time ca-

pability of the incremental model identification methods, need to be taken into

account.

• In aerospace applications, partial observability often occurs when the system

does not have enough information to infer all of its states. This dissertation pro-

poses several algorithms for partially observable conditions by directly using rel-

ative states. These methods are worth to be further investigated on more realistic

aerospace applications, such as spacecraft rendezvous/docking problems, missile

guidance, UAV swarm flight control, and aircraft formation flying.

• The proposed iADP method uses a quadratic cost function for control problems

with an approximately convex true cost-to-go. This type of state value function

is the essential element of generating an mathematically explicit optimal control

solution. When applied to more complex nonlinear systems and tasks, the use of

general nonlinear function approximators, such as artificial neural networks and

radial basis functions, will end up with an implicit solution. Therefore, to general-

ize iADP to more complex control problems, research on using mathematically ex-

plicit, nonlinear approximators, such as piecewise quadratic value functions and

multivariate splines [152], is highly recommended.

• The proposed online ACD methods can be used not only in low-level control

tasks, as presented in this dissertation, but also in high-level guidance and nav-

igation tasks with highly nonlinear value functions. Further experimental inves-

tigations into different tasks are recommended to validate the generalization of

online ACDs.

140 7. CONCLUSIONS AND RECOMMENDATIONS

• This dissertation investigated the online HDP and DHP methods based on an in-

cremental model. Another ACD method, GDHP, combines the advantages of HDP

and DHP, from a theoretical point of view. However, its computational complex-

ity is much higher than the other two types of ACDs because it needs to calculate

second derivative terms. It would be interesting to use an incremental model in

GDHP to reduce the computational burden.

• The incremental model is based on the first order Taylor series, hence involves a

linear approximation around the current system state. This linear model works

well for the examples included in this dissertation, but may work less well for sys-

tems with high nonlinearities or fast-changing control inputs. A future investi-

gation into Volterra series [153, 154] as a possible nonlinear incremental model,

would be useful, especially for time-delayed measurements, low-frequency mea-

surements, and internal/actuator dynamics.

• Learning in non-stationary environments attracts increasing attention in RL and

aerospace systems due to its importance for practical applications. This disserta-

tion applies hHRL to learn in a non-stationary environment with modified sensors

and a partial map. However, the sensors are not always able to measure if an ob-

stacle is stationary or non-stationary. Therefore, future research will need to use

limited sensor information to distinguish non-stationary and stationary obstacles,

such as by using a probability map instead of a fixed (partial) map. In addition, the

non-stationary environments changing over time instead of over episodes are also

worth to be investigated.

• The hHRL method is a systematic, multiple-level method. It is applied to a simpli-

fied discrete system in a discrete guidance and navigation environment in this dis-

sertation. Further research is recommended in more realistic environments and

aerospace systems in continuous state spaces, by expanding downwards with a

control level or by directly replacing the discrete micro-state level RL method with

the ADP methods proposed in this dissertation.

REFERENCES

[1] P. J. Antsaklis, K. M.Passino, and S. J. Wang, An introduction to autonomous control

systems, IEEE Control Systems 11, 5 (1991).

[2] D. D. Woods, The risks of autonomy: Doyleś catch, Journal of Cognitive Engineering

and Decision Making 10, 131 (2016).

[3] M. Keennon, K. Klingebiel, H. Won, and A. Andriukov, Development of the nano

hummingbird: A tailless flapping wing micro air vehicle, in AIAA aerospace sciences

meeting (AIAA Reston, VA, 2012) pp. 1–24.

[4] R. J. Wood, The first takeoff of a biologically inspired at-scale robotic insect, IEEE

transactions on robotics 24, 341 (2008).

[5] B. M. Finio, J. K. Shang, and R. J. Wood, Body torque modulation for a microrobotic

fly, in 2009 IEEE International Conference on Robotics and Automation, ICRA’09.

(IEEE, 2009) pp. 3449–3456.

[6] G. C. H. E. de Croon, K. M. E. De Clercq, R. Ruijsink, B. Remes, and C. De Wagter,

Design, aerodynamics, and vision-based control of the delfly, International Journal

of Micro Air Vehicles 1, 71 (2009).

[7] G. De Croon, M. Perçin, B. D. Remes, R. Ruijsink, and C. De Wagter, The DelFly:

design, aerodynamics, and artificial intelligence of a flapping wing robot (Springer,

2015).

[8] T. Lombaerts, E. V. Oort, Q. P. Chu, J. A. Mulder, and D. Joosten, Online aerody-

namic model structure selection and parameter estimation for fault tolerant con-

trol, Journal of Guidance, Control, and Dynamics 33, 707 (2010).

[9] M. Sghairi, A. De Bonneval, Y. Crouzet, J. Aubert, and P. Brot, Challenges in build-

ing fault-tolerant flight control system for a civil aircraft, IAENG International Jour-

nal of Computer Science 35, 495 (2008).

[10] E. de Weerdt, E. van Kampen, D. van Gemert, Q. P. Chu, and J. A. Mulder, Adaptive

nonlinear dynamic inversion for spacecraft attitude control with fuel sloshing, in

AIAA Guidance, Navigation and Control Conference and Exhibit (2008).

[11] L. C. G. de Souza and A. G. de Souza, Satellite attitude control system design con-

sidering the fuel slosh dynamics, Shock and Vibration 2014 (2014).

[12] H. Zhang and Z. Wang, Attitude control and sloshing suppression for liquid-filled

spacecraft in the presence of sinusoidal disturbance, Journal of Sound and Vibra-

tion 383, 64 (2016).

141

142 REFERENCES

[13] P. A. Mason and S. R. Starin, Propellant slosh analysis for the solar dynamics obser-

vatory, NASA technical report (2005).

[14] International space station, https://www.nasa.gov/mission_pages/

station/main/index.html, photo taken in 2010.

[15] A. S. Saeed, A. B. Younes, S. Islam, J. Dias, L. Seneviratne, and G. Cai, A review

on the platform design, dynamic modeling and control of hybrid uavs, in 2015 In-

ternational Conference on Unmanned Aircraft Systems (ICUAS), (IEEE, 2015) pp.

806–815.

[16] T. A. Weisshaar, Morphing aircraft systems: historical perspectives and future chal-

lenges, Journal of Aircraft (2013).

[17] R. M. Ajaj, C. S. Beaverstock, and M. I. Friswell, Morphing aircraft: the need for a

new design philosophy, Aerospace Science and Technology 49, 154 (2016).

[18] G. N. Saridis and H. E. Stephanou, A hierarchical approach to the control of a pros-

thetic arm, IEEE Transactions on Systems, Man, and Cybernetics 7, 407 (1977).

[19] G. N. Saridis, Analytic formulation of the principle of increasing precision with de-

creasing intelligence for intelligent machines, Automatica 25, 461 (1989).

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement learning: A survey,

Journal of Artificial Intelligence Research 4, 237 (1996).

[21] J. Kober, J. A. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey,

The International Journal of Robotics Research 32, 1238 (2013).

[22] X. Xu, L. Zuo, and Z. Huang, Reinforcement learning algorithms with function

approximation: Recent advances and applications, Information Sciences 261, 1

(2014).

[23] L. Tang, M. Roemer, J. Ge, A. Crassidis, J. Prasad, and C. Belcastro, Methodologies

for adaptive flight envelope estimation and protection, in AIAA Guidance, Naviga-

tion, and Control Conference (2009) p. 6260.

[24] E. R. Van Oort, L. Sonneveldt, Q. P. Chu, and J. A. Mulder, Full-envelope modu-

lar adaptive control of a fighter aircraft using orthogonal least squares, Journal of

Guidance, Control, and Dynamics 33, 1461 (2010).

[25] L. Sonneveldt, E. R. Van Oort, Q. P. Chu, and J. A. Mulder, Nonlinear adaptive tra-

jectory control applied to an F-16 model, Journal of Guidance, Control, and Dy-

namics 32, 25 (2009).

[26] J. Farrell, M. Sharma, and M. Polycarpou, Backstepping-based flight control with

adaptive function approximation, Journal of Guidance, Control, and Dynamics 28,

1089 (2005).

REFERENCES 143

[27] L. Sonneveldt, E. R. Van Oort, Q. P. Chu, and J. A. Mulder, Comparison of inverse

optimal and tuning functions designs for adaptive missile control, Journal of Guid-

ance, Control, and Dynamics 31, 1176 (2008).

[28] L. Sonneveldt, Q. P. Chu, and J. A. Mulder, Nonlinear flight control design using

constrained adaptive backstepping, Journal of Guidance, Control, and Dynamics

30, 322 (2007).

[29] R. Bellman, Dynamic Programming (Princeton University Press, 1957).

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., Human-level control through

deep reinforcement learning, Nature 518, 529 (2015).

[31] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning (MIT Press,

1998).

[32] J. Si, Handbook of learning and approximate dynamic programming, Vol. 2 (John

Wiley & Sons, 2004).

[33] F. L. Lewis and K. G. Vamvoudakis, Reinforcement learning for partially observable

dynamic processes: Adaptive dynamic programming using measured output data,

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41, 14

(2011).

[34] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish, Reinforcement

learning and optimal adaptive control: An overview and implementation exam-

ples, Annual Reviews in Control 36, 42 (2012).

[35] S. Mahadevan and J. Connell, Automatic programming of behavior-based robots

using reinforcement learning, Artificial Intelligencen 55, 311 (1992).

[36] A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte, Parametric POMDPs

for planning in continuous state spaces, Robotics and Autonomous Systems 54, 887

(2006).

[37] A. Foka and P. Trahanias, Real-time hierarchical pomdps for autonomous robot

navigation, Robotics and Autonomous Systems 55, 561 (2007).

[38] A.-M. Zou and K. D. Kumar, Quaternion-based distributed output feedback attitude

coordination control for spacecraft formation flying, Journal of Guidance, Control,

and Dynamics 36, 548 (2013).

[39] W. B. Powell, Approximate dynamic programming: solving the curses of dimension-

ality (John Wiley & Sons, 2007).

[40] V. R. Konda and J. N. Tsitsiklis, Actor-critic algorithms, in Advances in Neural Infor-

mation Processing Systems (2000) pp. 1008–1014.

144 REFERENCES

[41] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, A survey of actor-critic

reinforcement learning: Standard and natural policy gradients, IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 1291

(2012).

[42] D. P. Bertsekas, Approximate policy iteration: A survey and some new methods,

Journal of Control Theory and Applications 9, 310 (2011).

[43] F. L. Lewis and D. Vrabie, Reinforcement learning and adaptive dynamic program-

ming for feedback control, IEEE Circuits and Systems Magazine 9 (2009).

[44] A. Keshavarz and S. Boyd, Quadratic approximate dynamic programming for

input-affine systems, International Journal of Robust and Nonlinear Control 24,

432 (2014).

[45] O. Sigaud and O. Buffet, Markov decision processes in artificial intelligence (John

Wiley & Sons, 2013).

[46] Y. Zhou, E. van Kampen, and Q. P. Chu, Nonlinear adaptive flight con-

trol using incremental approximate dynamic programming and output feed-

back, Journal of Guidance, Control, and Dynamics 40, 493 (2017), doi:

http://arc.aiaa.org/doi/abs/10.2514/1.G001762.

[47] N. Szanto, V. Narayanan, and S. Jagannathan, Event-sampled direct adaptive nn

output-and state-feedback control of uncertain strict-feedback system, IEEE Trans-

actions on Neural Networks and Learning Systems (2017).

[48] Z. A. H. Scott A. Miller and E. K. P. Chong, A POMDP framework for coordinated

guidance of autonomous uavs for multitarget tracking, EURASIP Journal on Ad-

vances in Signal Processing (2009).

[49] S. Ragi and E. K. P. Chong, UAV path planning in a dynamic environment via par-

tially observable markov decision process, IEEE Transactions on Aerospace and

Electronic Systems 49, 2397 (2013).

[50] S. Ferrari and R. F. Stengel, Online adaptive critic flight control, Journal of Guid-

ance, Control, and Dynamics 27, 777 (2004).

[51] D. V. Prokhorov and D. C. Wunsch, Adaptive critic designs, IEEE Transactions on

Neural Networks 8, 997 (1997).

[52] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, Comparison of heuristic

dynamic programming and dual heuristic programming adaptive critics for neuro-

control of a turbogenerator, IEEE Transactions on Neural Networks 13, 764 (2002).

[53] R. Enns and J. Si, Helicopter trimming and tracking control using direct neural dy-

namic programming, IEEE Transactions on Neural Networks 14, 929 (2003).

[54] E. van Kampen, Q. P. Chu, and J. A. Mulder, Continuous adaptive critic flight con-

trol aided with approximated plant dynamics, in AIAA Guidance, Navigation, and

Control Conference, Vol. 5 (2006) pp. 2989–3016.

REFERENCES 145

[55] J. Si and Y.-T. Wang, Online learning control by association and reinforcement, IEEE

Transactions on Neural Networks 12, 264 (2001).

[56] Z. Ni, H. He, X. Zhong, and D. V. Prokhorov, Model-free dual heuristic dynamic

programming, IEEE Transactions on Neural Networks and Learning Systems 26,

1834 (2015).

[57] Y. Wen, J. Si, X. Gao, S. Huang, and H. H. Huang, A new powered lower limb prosthe-

sis control framework based on adaptive dynamic programming, IEEE transactions

on neural networks and learning systems 28, 2215 (2017).

[58] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE

Transactions on Evolutionary Computation 1, 67 (1997).

[59] S. Takamuku and R. C. Arkin, Multi-method learning and assimilation, Robotics

and Autonomous Systems 55, 618 (2007).

[60] R. He, E. Brunskill, and N. Roy, Efficient planning under uncertainty with macro-

actions, Journal of Artificial Intelligence Research 40, 523 (2011).

[61] A. G. Barto and S. Mahadevan, Recent advances in hierarchical reinforcement

learning, Discrete Event Dynamic Systems 13, 41 (2003).

[62] M. Botvinick and A. Weinstein, Model-based hierarchical reinforcement learning

and human action control, Philosophical Transactions of the Royal Society B 369,

20130480 (2014).

[63] S. Sieberling, Q. P. Chu, and J. A. Mulder, Robust flight control using incremental

nonlinear dynamic inversion and angular acceleration prediction, Journal of Guid-

ance, Control, and Dynamics 33, 1732 (2010).

[64] P. Acquatella, W. Falkena, E. van Kampen, and Q. P. Chu, Robust nonlinear space-

craft attitude control using incremental nonlinear dynamic inversion, in AIAA

Guidance, Navigation, and Control Conference (2012).

[65] P. Simplício, M. D. Pavel, E. van Kampen, and Q. P. Chu, An acceleration

measurements-based approach for helicopter nonlinear flight control using in-

cremental nonlinear dynamic inversion, Control Engineering Practice 21, 1065

(2013).

[66] P. Lu, E. van Kampen, C. de Visser, and Q. P. Chu, Aircraft fault-tolerant trajec-

tory control using incremental nonlinear dynamic inversion, Control Engineering

Practice 57, 126 (2016).

[67] P. Acquatella, E. van Kampen, and Q. P. Chu, Incremental backstepping for robust

nonlinear flight control, in Proceedings of the EuroGNC 2013 (2013).

[68] L. Sonneveldt, Adaptive backstepping flight control for modern fighter aircraft

(Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010).

146 REFERENCES

[69] S. H. Kim, Y. S. Kim, and C. Song, A robust adaptive nonlinear control approach to

missile autopilot design, Control engineering practice 12, 149 (2004).

[70] E. Todorov and W. Li, A generalized iterative lqg method for locally-optimal feed-

back control of constrained nonlinear stochastic systems, in Proceedings of the 2005,

American Control Conference, 2005. (IEEE, 2005) pp. 300–306.

[71] D. Vrabie and F. Lewis, Integral reinforcement learning for online computation of

feedback nash strategies of nonzero-sum differential games, in 49th IEEE Confer-

ence on Decision and Control (CDC) (IEEE, 2010) pp. 3066–3071.

[72] J. Morimoto and C. G. Atkeson, Minimax differential dynamic programming: An

application to robust biped walking, Advances in Neural Information Processing

Systems 15 , 1539 (edited by Becker, S., Thrun, S., and Obermayer, K., MIT Press,

Cambridge, MA, 2003).

[73] E. Bakolas and P. Tsiotras, Feedback navigation in an uncertain flowfield and con-

nections with pursuit strategies, Journal of Guidance, Control, and Dynamics 35,

1268 (2012).

[74] R. P. Anderson, E. Bakolas, D. Milutinović, and P. Tsiotras, Optimal feedback guid-

ance of a small aerial vehicle in a stochastic wind, Journal of Guidance, Control,

and Dynamics 36, 975 (2013).

[75] Q. Hu, B. Jiang, and M. I. Friswell, Robust saturated finite time output feedback atti-

tude stabilization for rigid spacecraft, Journal of Guidance, Control, and Dynamics

37, 1914 (2014).

[76] S. Ulrich, J. Z. Sasiadek, and I. Barkana, Nonlinear adaptive output feedback con-

trol of flexible-joint space manipulators with joint stiffness uncertainties, Journal

of Guidance, Control, and Dynamics 37, 1961 (2014).

[77] F. Mazenc and O. Bernard, Interval observers for linear time-invariant systems with

disturbances, Automatica 47, 140 (2011).

[78] D. Efimov, T. Raïssi, S. Chebotarev, and A. Zolghadri, Interval state observer for

nonlinear time varying systems, Automatica 49, 200 (2013).

[79] M. R. Akella, D. Thakur, and F. Mazenc, Partial lyapunov strictification: Smooth

angular velocity observers for attitude tracking control, Journal of Guidance, Con-

trol, and Dynamics 38, 442 (2015).

[80] Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental approximate dynamic pro-

gramming for nonlinear flight control design, in Proceedings of the 3rd CEAS Eu-

roGNC: Specialist Conference on Guidance, Navigation and Control, Toulouse,

France, 13-15 April 2015 (2015).

[81] Y. Zhou, E. van Kampen, and Q. P. Chu, An incremental approximate dynamic pro-

gramming flight controller based on output feedback, in AIAA Guidance, Naviga-

tion, and Control Conference (2016) https://arc.aiaa.org/doi/abs/10.2514/6.2016-

0360.

REFERENCES 147

[82] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods

(Courier Corporation, 2007).

[83] M. Laban, On-line aircraft aerodynamic model identification (Ph.D. Thesis, Delft

University of Technology, Delft, The Netherlands, 1994).

[84] Y. Zhou, E. van Kampen, and Q. P. Chu, Adaptive spacecraft attitude control with

incremental approximate dynamic programming, in Proceedings of the IAC 2017

(2017).

[85] D. Seo and M. R. Akella, High-performance spacecraft adaptive attitude-tracking

control through attracting-manifold design, Journal of Guidance Control and Dy-

namics 31, 884 (2008).

[86] A. Das, F. Lewis, and K. Subbarao, Backstepping approach for controlling a quadro-

tor using lagrange form dynamics, Journal of Intelligent and Robotic Systems 56,

127 (2009).

[87] M. D. Tandale and J. Valasek, Adaptive dynamic inversion control with actuator

saturation constraints applied to tracking spacecraft maneuvers, Journal of the As-

tronautical Sciences 52, 517 (2004).

[88] K. A. Wise, E. Lavretsky, and N. Hovakimyan, Adaptive control of flight: theory, ap-

plications, and open problems, in American Control Conference, 2006 (IEEE, 2006)

pp. 6–pp.

[89] B. Kiumarsi, F. L. Lewis, M.-B. Naghibi-Sistani, and A. Karimpour, Optimal track-

ing control of unknown discrete-time linear systems using input-output measured

data, IEEE transactions on cybernetics 45, 2770 (2015).

[90] B. Açıkmeşe and S. R. Ploen, Convex programming approach to powered descent

guidance for mars landing, Journal of Guidance, Control, and Dynamics 30, 1353

(2007).

[91] Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental model based heuristic dynamic

programming for nonlinear adaptive flight control, in Proceedings of the Interna-

tional Micro Air Vehicles Conference and Competition 2016, Beijing, China (2016).

[92] R. Enns and J. Si, Apache helicopter stabilization using neural dynamic program-

ming, Journal of Guidance Control and Dynamics 25, 19 (2002).

[93] P. Singla, K. Subbarao, and J. L. Junkins, Adaptive output feedback control for space-

craft rendezvous and docking under measurement uncertainty, Journal of Guid-

ance Control and Dynamics 29, 892 (2006).

[94] S. D’Amico, J. S. Ardaens, G. Gaias, H. Benninghoff, B. Schlepp, and J. L. Jør-

gensen, Noncooperative rendezvous using angles-only optical navigation: system

design and flight results, Journal of Guidance, Control, and Dynamics (2013).

148 REFERENCES

[95] B. Dachwald, H. Boehnhardt, U. Broj, U. R. Geppert, J.-T. Grundmann, W. Seboldt,

P. Seefeldt, P. Spietz, L. Johnson, E. Kührt, et al., Gossamer roadmap technology

reference study for a multiple neo rendezvous mission, in Advances in Solar Sailing

(Springer, 2014) pp. 211–226.

[96] Automated transfer vehicle, https://en.wikipedia.org/wiki/Automated_

Transfer_Vehicle (Acessed: 2017-11-19).

[97] Automated transfer vehicle, https://www.nasa.gov/mission_pages/

station/structure/atv.html (Acessed: 2017-11-10).

[98] B. Luo, D. Liu, T. Huang, and D. Wang, Model-free optimal tracking control via

critic-only q-learning, IEEE transactions on neural networks and learning systems

27, 2134 (2016).

[99] S. Haykin, Adaptive filter theory (Prentice Hall, 2002).

[100] Y. Zhou, E. van Kampen, and Q. P. Chu, Launch vehicle adaptive flight control with

incremental model based heuristic dynamic programming, in Proceedings of the

IAC 2017 (2017).

[101] T. Hanselmann, L. Noakes, and A. Zaknich, Continuous-time adaptive critics, IEEE

Transactions on Neural Networks 18, 631 (2007).

[102] V. Yadav, R. Padhi, and S. Balakrishnan, Robust/optimal temperature profile con-

trol of a high-speed aerospace vehicle using neural networks, IEEE Transactions on

Neural Networks 18, 1115 (2007).

[103] F. Y. Wang, H. Zhang, and D. Liu, Adaptive dynamic programming: an introduc-

tion, Computational Intelligence Magazine, IEEE 4, 39 (2009).

[104] L. Dong, X. Zhong, C. Sun, and H. He, Adaptive event-triggered control based on

heuristic dynamic programming for nonlinear discrete-time systems, IEEE transac-

tions on neural networks and learning systems (2017).

[105] S. Haykin, Neural networks: a comprehensive foundation (Prentice Hall Interna-

tional, Inc., 1999).

[106] Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental model based online dual

heuristic programming for nonlinear adaptive control, Control Engineering Prac-

tice 73, 13 (2018), https://doi.org/10.1016/j.conengprac.2017.12.011.

[107] D. Wang, H. He, and D. Liu, Adaptive critic nonlinear robust control: A survey, IEEE

Transactions on Cybernetics 47, 3429 (2017).

[108] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, Optimal control of unknown non-

affine nonlinear discrete-time systems based on adaptive dynamic programming,

Automatica 48, 1825 (2012).

REFERENCES 149

[109] I. E. Putro and F. Holzapfel, Robust flight control design using incremental adaptive

sliding mode control, in 2016 International Conference on Instrumentation, Con-

trol and Automation (ICA) (IEEE, 2016) pp. 114–119.

[110] G. Looye and H.-D. Joos, Design of robust dynamic inversion control laws using

multi-objective optimization, in Proceedings of the AIAA Guidance, Navigation and

Control Conference (2001).

[111] P. Lu, L. Van Eykeren, E. van Kampen, C. de Visser, and Q. Chu, Double-model

adaptive fault detection and diagnosis applied to real flight data, Control Engineer-

ing Practice 36, 39 (2015).

[112] T. Lombaerts, G. Looye, Q. P. Chu, and J. A. Mulder, Design and simulation of fault

tolerant flight control based on a physical approach, Aerospace Science and Tech-

nology 23, 151 (2012).

[113] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, A survey of multi-

objective sequential decision-making, Journal of Artificial Intelligence Research 48,

67 (2013).

[114] C. Liu, X. Xu, and D. Hu, Multiobjective reinforcement learning: A comprehensive

overview, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 385

(2015).

[115] K. Van Moffaert and A. Nowé, Multi-objective reinforcement learning using sets of

pareto dominating policies, The Journal of Machine Learning Research 15, 3483

(2014).

[116] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker, Empirical evaluation

methods for multiobjective reinforcement learning algorithms, Machine learning

84, 51 (2011).

[117] I. Y. Kim and O. De Weck, Adaptive weighted sum method for multiobjective op-

timization: a new method for pareto front generation, Structural and multidisci-

plinary optimization 31, 105 (2006).

[118] J. G. Lin, On min-norm and min-max methods of multi-objective optimization,

Mathematical programming 103, 1 (2005).

[119] W. S. Lovejoy, A survey of algorithmic methods for partially observed markov deci-

sion processes, Annals of Operations Research 28, 47 (1991).

[120] J. Hoey, T. Schröder, and A. Alhothali, Affect control processes: Intelligent affective

interaction using a partially observable markov decision process, Artificial Intelli-

gence 230, 134 (2016).

[121] G. Baldassarre and M. Mirolli, eds., Computational and robotic models of the hier-

archical organization of behavior (Springer, 2013).

150 REFERENCES

[122] R. E. Parr and S. Russell, Hierarchical control and learning for markov decision pro-

cesses (University of California, Berkeley Berkeley, CA, 1998).

[123] R. Parr and S. Russell, Reinforcement learning with hierarchies of machines, Ad-

vances in neural information processing systems , 1043 (1998).

[124] R. S. Sutton, D. Precup, and S. Singh, Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning, Artificial intelligence 112, 181

(1999).

[125] T. G. Dietterich, Hierarchical reinforcement learning with the maxq value function

decomposition, Journal of Artificial Intelligence Research (JAIR) 13, 227 (2000).

[126] M. Ghavamzadeh, S. Mahadevan, and R. Makar, Hierarchical multi-agent rein-

forcement learning, Autonomous Agents and Multi-Agent Systems 13, 197 (2006).

[127] B. Hengst, Discovering hierarchy in reinforcement learning with hexq, in Interna-

tional Conference on Machine Learning (ICML), Vol. 2 (2002) pp. 243–250.

[128] G. Theocharous, K. Rohanimanesh, and S. Maharlevan, Learning hierarchical ob-

servable markov decision process models for robot navigation, in IEEE International

Conference on Robotics and Automation, ICRA’01, Vol. 1 (IEEE, 2001) pp. 511–516.

[129] G. Theocharous and S. Mahadevan, Approximate planning with hierarchical par-

tially observable markov decision process models for robot navigation, in IEEE In-

ternational Conference on Robotics and Automation, ICRA’02., Vol. 2 (IEEE, 2002)

pp. 1347–1352.

[130] M. Sridharan, J. Wyatt, and R. Dearden, Planning to see: A hierarchical approach

to planning visual actions on a robot using pomdps, Artificial Intelligence 174, 704

(2010).

[131] Y. Zhou, E. van Kampen, and Q. P. Chu, Autonomous navigation in partially ob-

servable environments using hierarchical q-learning, in Proceedings of the Interna-

tional Micro Air Vehicles Conference and Competition 2016, Beijing, China (2016).

[132] S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on knowl-

edge and data engineering 22, 1345 (2010).

[133] R. Caruana, Multitask learning, in Learning to learn (Springer, 1998) pp. 95–133.

[134] M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and

prospects, Science 349, 255 (2015).

[135] L. Shao, F. Zhu, and X. Li, Transfer learning for visual categorization: A survey, IEEE

transactions on neural networks and learning systems 26, 1019 (2015).

[136] H. H. Zhuo and Q. Yang, Action-model acquisition for planning via transfer learn-

ing, Artificial intelligence 212, 80 (2014).

REFERENCES 151

[137] M. E. Taylor, P. Stone, and Y. Liu, Transfer learning via inter-task mappings for

temporal difference learning, Journal of Machine Learning Research 8, 2125 (2007).

[138] M. E. Taylor and P. Stone, Transfer learning for reinforcement learning domains: A

survey, Journal of Machine Learning Research 10, 1633 (2009).

[139] A. Lazaric, Transfer in reinforcement learning: a framework and a survey, Rein-

forcement Learning - State of the art 12, 143 (2012), springer.

[140] B. Fernandez-Gauna, J. M. Lopez-Guede, and M. Graña, Transfer learning with

partially constrained models: application to reinforcement learning of linked mul-

ticomponent robot system control, Robotics and Autonomous Systems 61, 694

(2013).

[141] D. Rasmussen, A. Voelker, and C. Eliasmith, A neural model of hierarchical rein-

forcement learning, PLOS one 12(7), e0180234 (2017).

[142] M. Abdoos, N. Mozayani, and A. L. Bazzan, Traffic light control in non-stationary

environments based on multi agent q-learning, in 14th International IEEE Confer-

ence on Intelligent Transportation Systems (ITSC) (IEEE, 2011) pp. 1580–1585.

[143] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, Learning in nonstationary environ-

ments: A survey, IEEE Computational Intelligence Magazine 10, 12 (2015).

[144] M. Leonetti, L. Iocchi, and P. Stone, A synthesis of automated planning and rein-

forcement learning for efficient, robust decision-making, Artificial Intelligence 241,

103 (2016).

[145] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, Simultaneous localization and map-

ping: A survey of current trends in autonomous driving, IEEE Transactions on In-

telligent Vehicles 2, 194 (2017).

[146] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, Simultane-

ous localization, mapping and moving object tracking, The International Journal

of Robotics Research 26, 889 (2007).

[147] A. Kawewong, N. Tongprasit, S. Tangruamsub, and O. Hasegawa, Online and in-

cremental appearance-based slam in highly dynamic environments, The Interna-

tional Journal of Robotics Research 30, 33 (2011).

[148] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard, Dynamic pose

graph slam: Long-term mapping in low dynamic environments, in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012) pp.

1871–1878.

[149] M. Rida, H. Mouncif, and A. Boulmakoul, Application of markov decision processes

for modeling and optimization of decision-making within a container port, in Soft

Computing in Industrial Applications (Springer, 2011) pp. 349–358.

[150] C. J. Watkins and P. Dayan, Q-learning, Machine learning 8, 279 (1992).

152 REFERENCES

[151] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, 1st ed. (Athena

Scientific, 1996).

[152] C. C. De Visser, Q. P. Chu, and J. A. Mulder, A new approach to linear regression

with multivariate splines, Automatica 45, 2903 (2009).

[153] C. Lesiak and A. Krener, The existence and uniqueness of volterra series for nonlin-

ear systems, IEEE transactions on automatic control 23, 1090 (1978).

[154] W. Guo, J. Si, F. Liu, and S. Mei, Policy approximation in policy iteration approx-

imate dynamic programming for discrete-time nonlinear systems, IEEE Transac-

tions on Neural Networks and Learning Systems (2017).

SAMENVATTING

ONLINE REINFORCEMENT LEARNING VOOR
LUCHT- EN RUIMTEVAARTSYSTEMEN

Ye ZHOU

Recente technologische ontwikkelingen hebben geleid tot ontwikkeling van innova-

tieve en geavanceerde lucht- en ruimtevaartsystemen. De toename van complexiteit van

deze systemen is de grootste uitdaging geworden voor het ontwerp van regelsystemen

in de lucht- en ruimtevaart. Multidisciplinaire taken in toepassingen variërend van het

luchtvaartdomein tot het ruimtevaartdomein, van commerciëel tot militair, vergroten

de complexiteit en de eisen die gesteld worden aan automatische besturingssystemen.

Bovendien hebben onzekerheden in lucht- en ruimtevaartsystemen, zoals in vliegtuigen

met aanpasbare vleugelvorm, alsook onzekerheden in de omgeving, zoals plotselinge

windstoten, complex luchtverkeer en de impact van ruimtepuin, de noodzaak tot het

zichzelf online aanpassen van regelsystemen vergroot. Om overweg te kunnen met deze

groeiende complexiteit van systeemdynamica, met de toename van moeilijkheidsgraad

van besturingstaken en met de eis tot aanpasbaarheid, is er voor lucht- en ruimtevaart-

systemen een dringende noodzaak voor hogere niveaus van autonomie.

De complexiteit en diversiteit van lucht- en ruimtevaartsystemen en autonome be-

sturingstaken hebben onderzoekers gemotiveerd tot het onderzoeken van intelligente

methodes. Intelligente autonome lucht- en ruimtevaartsystemen dienen aan de ene

kant de huidige systeemdynamica en omgeving online te leren om zichzelf daarop aan te

passen en om dit nauwkeurig te besturen. Aan de ander kant moeten deze systemen ook

een afweging kunnen maken tussen meerdere doelen en de veiligheid waarborgen. Om

deze reden hebben intelligente systemen vaak een hiërarchische besturingsstructuur.

Low-level besturing is de basis voor de hogere besturingsniveaus en limiteert de pres-

taties van het gehele autonome besturingssysteem. Deze beperking is de belangrijkste

reden dat veel van de bestaande high-level algoritmes nog niet succesvol geïmplemen-

teerd kunnen worden op echte lucht- en ruimtevaartsystemen. Bovendien moet de intel-

ligentie en autonomie van high-level besturingssystemen verbeterd worden om nieuwe

uitdagingen aan te gaan in lucht- en ruimtevaartsystemen, zoals deep-space onderzoek,

navigatie van drones binnen gebouwen of zichzelf organiserende zwermen van onbe-

mande voertuigen.

153

154 SAMENVATTING

Reinforcement Learning (RL) is een intelligente, zelf-lerende methode die toegepast

kan worden op verschillende niveaus van autonome operaties. Het linkt op de na-

tuur geïnspireerde kunstmatige intelligentie met het vakgebied van regeltheorie. RL

technieken kunnen voor low-level besturing worden gebruikt om de efficiëntie en zelf-

aanpasbaarheid van het regelsysteem te vergroten wanneer het dynamische model on-

zeker of onbekend is. Low-level besturingstaken, zoals stabilisatie en volgtaken, worden

vaak gemodelleerd in het domein van continue acties en toestandsvariabelen. Op een

hoger niveau kan RL gebruikt worden om de intelligentie van beslissingen en planning

te vergroten en om coördinatie met de lagere besturingsniveaus te waarborgen. Op dit

hogere niveau kunnen de acties en toestandsvariabelen discreet of continue zijn, of zelfs

een hybride mix van deze twee.

RL methodes zijn relatief nieuw in het gebied van besturing en navigatie van lucht-

en ruimtevaartsystemen. Ze hebben bij toepassing in dit gebied veel voordelen, maar

ook enkele beperkingen. Dit proefschrift heeft als doel om de volgende onderzoeksvraag

te beantwoorden:

Hoe kan een lucht- en ruimtevaartsysteem RL methodes toepassen om de

autonomie van het online leren te verbeteren wanneer de omgeving initiëel

onbekend is, er onzekerheden zijn in het dynamische model en wanneer het

systeem niet volledig observeerbaar is?

Deze hoofdvraag wordt behandeld in drie delen, voor drie specifieke RL methodes en

toepassingen: (i) Approximate Dynamic Programming (ADP) voor besturingstaken met

een bij benadering convexe cost-to-go functie, (ii) Adaptive Critic Designs (ACDs) voor

algemene niet-lineaire regelproblemen, en (iii) Hierarchical Reinforcement Learning

(HRL) voor high-level navigatie. Dit leidt tot de volgende drie onderzoeksvragen:

1. Hoe kan Linear Approximate Dynamic Programming (LADP) gegeneraliseerd wor-

den om overweg te kunnen met niet-lineaire en/of tijd-variërende systemen, mo-

delfouten en onvolledige observeerbaarheid, terwijl de efficiëntie en de expliciete

mathematische uitdrukking behouden blijft?

2. Hoe moeten Adaptive Critic Designs ontworpen worden om de online zelf-

leerbaarheid te verbeteren onder invloed van interne onzekerheden, externe ver-

storingen en zelfs plotselinge fouten in het systeem?

3. Hoe kan op een systematische wijze een Hierarchical Reinforcement Learning re-

gelaar ontwikkeld worden die werkt met meerdere doelen, onvolledige observeer-

baarheid van het systeem, die de mogelijkheid heeft om geleerd gedrag over te

dragen en die meerdere RL technieken toepast?

Om de eerste vraag te beantwoorden worden in dit proefschrift incremental Approxi-

mate Dynamic Programming (iADP) methodes voorgesteld. In plaats van niet-lineaire

functie-benaderingen voor de cost-to-go gebruiken iADP methodes een incrementeel

model om om te gaan met onbekende niet-lineaire systemen en onzekerheden in de

omgeving. Deze methodes kunnen nog steeds een kwadratische kostfunctie toepassen

om een efficiënt en mathematisch expliciet optimal control algoritme te genereren. Ze

SAMENVATTING 155

hebben geen a-priori kennis van de systeemdynamica nodig, geen online identificatie

van het globale model, noch een aanname over tijdschaal separatie, maar slechts een

online geïdentificeerd incrementeel model.

Als eerste wordt voorgesteld om een regulerings-probleem voor niet-lineaire syste-

men op te lossen met iADP’s. Als de meting van de volledige toestand van het systeem

bekend is, dan kan een incrementeel model geïdentificeerd worden om de volgende toe-

stand van het systeem te voorspellen. Met deze voorspelling en een kwadratische kost-

functie kan een incrementele toename van de uitvoer van de regelaar berekend worden

die voldoet aan de principes van optimal control. Als alleen in invoer en uitvoer van

het dynamische systeem bekend zijn, dan wordt de optimale incrementele toename van

de regelaar berekend met een output-feedback algoritme en een incrementeel model.

Deze methode is toegepast om iteratief de vliegbesturing van een niet-lineair raketmo-

del te optimaliseren, zowel met volledige toestandskennis als met metingen van de sys-

teemuitvoer. Simulatieresultaten tonen aan dat de iADP methode de prestaties van de

regelaar voor het niet-lineaire systeem verbeteren, terwijl het ontwerpproces simpel en

systematisch is.

Het concept van iADP is verder uitgebreid naar volgtaken voor niet-lineaire Multiple-

Input Multiple-Output (MIMO) systemen en voor systemen met onvolledige observeer-

baarheid. Omdat iADP methodes een aparte structuur hebben om de lokale systeemdy-

namica te representeren, kan de kostfunctie minder afhankelijk zijn van het systeem of

de referentie-invoer en hoeft deze slechts een ruwe benadering van de cost-to-go te zijn.

Deze benadering is een kwadratische functie van alleen de huidige volgfout, zonder de

dimensie van de systeemtoestand voor de kostfunctie aan te passen naar een aangevulde

versie.

Voor de volgtaak worden twee condities in acht genomen voor de observeerbaarheid

van het systeem. Wanneer een directe meting van de gehele toestand van het systeem

beschikbaar is, dan wordt het incrementele model online geïdentificeerd om zo de opti-

male incrementele toename van de uitvoer van de regelaar te ontwerpen. Als de volgfout

voor het volgen van een stochastische dynamische referentie de enige meting is, dan

wordt het systeem voor een deel onobserveerbaar. De observaties worden gebruikt om

het incrementele model te identificeren en om de opvolgende volgfout van de systeem-

uitvoer te schatten voor de optimal-control volgtaak.

Voor beide condities van observeerbaarheid is een offline algoritme toegepast om

de regelaar iteratief te verbeteren totdat de nauwkeurigheid groot genoeg is. Vervolgens

wordt een online algoritme gebruikt om de regelaar recursief verder te trainen. Deze re-

cursieve algoritmes kunnen ook online gebruikt worden in echte systemen die mogelijk

verschillen van het systeemmodel dat gebruikt was in de iteratieve offline leerfase. Deze

algoritmes zijn toegepast op een standsbesturingstaak van een gesimuleerde satelliet die

verstoord wordt door het klotsen van interne vloeistof. De resultaten laten zien dat het

voorgestelde algoritme nauwkeurig en adaptief omgaat met tijdsvariërende interne dy-

namica, terwijl de besturing efficiënt blijft, in het bijzonder voor onbekende niet-lineaire

systemen met onvolledige observeerbaarheid.

Om de tweede onderzoeksvraag te beantwoorden ontwikkelt dit proefschrift online

ACD’s gebaseerd op het incrementele model. ACD’s kunnen in het algemeen gecategori-

156 SAMENVATTING

seerd worden in drie groepen: 1) Heuristic Dynamic Programming (HDP), 2) Dual Heu-

ristic Programming (DHP), en 3) Globalized Dual Heuristic Programming (GDHP). Van

deze drie versies zijn ook actie-afhankelijke versies ontwikkeld door middel van een di-

recte connectie tussen de uitvoer van de Actor met de invoer van de Critic. Dit proef-

schrift richt zich op actie-onafhankelijke ACD’s, specifiek HDP en DHP.

Een HDP methode gebaseerd op een incrementeel model wordt geïntroduceerd,

IHDP, om online en adaptief onbekende lucht- en ruimtevaartsystemen te besturen.

Hierbij wordt de benadering van het globale model vervangen door een icrementeel mo-

del. Deze aanpak heeft daardoor geen offline trainingsfase nodig en kan het online leren

versnellen. De IHDP methode wordt vergeleken met de conventionele HDP methode

voor een online volgtaak van een onbekend niet-lineair raketmodel. De resultaten la-

ten zien dat de voorgestelde IHDP methode het online leren versneld, dat er een hogere

nauwkeurigheid is in de volgtaak en dat er omgegaan kan worden met een grotere va-

riatie in initiële condities dan de conventionele HDP methode. Daarnaast is de IHDP

methode toegepast op een MIMO standsregelaar voor een satelliet die verstoord wordt

door klotsen van interne vloeistof en die externe verstoringen heeft. De simulatieresul-

taten demonstreren dat de IHDP methode adaptief en robuust is voor interne onzeker-

heden en externe verstoringen.

Om de prestaties van de regelaar verder te verbeteren en om het online leren te ver-

snellen is een Dual Heuristic Programming methode ontwikkeld gebaseerd op een incre-

menteel model: IDHP. IDHP gebruikt een recursieve kleinste-kwadraten methode (RLS)

om realtime het incrementele model te identificeren in plaats van het globale model.

Naast een online volgtaak wordt ook een Fault-Tolerant Control (FTC) taak uitgevoerd,

zowel met IDHP als met de conventionele DHP. De resultaten demonstreren dat de IDHP

methode met succes een instabiel systeem met fouten kan besturen voordat de toestand

van het systeem divergeert, terwijl DHP hierin faalt. Om de robuustheid van de voorge-

stelde IDHP methode verder te valideren is hoogfrequente meetruis toegevoegd aan de

metingen van de toestandsvariabelen. De simulatieresultaten tonen dat de IDHP me-

thode niet gevoelig is voor deze meetruis.

De derde onderzoeksvraag is beantwoord door de ontwikkeling van een hybride

Hierarchical Reinforcement Learning (hHRL) methode voor navigatieproblemen. Deze

methode bestaat uit een aantal hiërarchische niveaus, waarbij elk niveau een andere

methode kan gebruiken om te leren, met verschillende soorten van informatie en ver-

schillende doelen. Er worden expliciete regels geformuleerd voor het opzetten van de

hiërarchie, voor het opsplitsen van de taken en voor het toekennen van de beloningen.

Gedetailleerde implementaties van de voorgestelde hHRL methode zijn gepresenteerd

voor een online navigatie taak met onvolledige observeerbaarheid en meerdere doelen

(bijv. het naderen van een doel terwijl obstakels ontweken moeten worden).

De voorgestelde methode is ten eerste toegepast op een doolhof-probleem uit de li-

teratuur, waarbij botsingen voorkomen moeten worden en de prestatie van het bereiken

van de doelstaat online en per episode verbeterd worden. Het resultaat wordt vergeleken

met een ’platte’ RL implementatie en met een HRL implementatie die slechts een enkele

leervorm gebruikt. De resultaten tonen dat hHRL efficiënter omgaat met de ‘curse of

dimensionality’ en dat onzekerheid en ambiguïteit verkleind worden.

SAMENVATTING 157

De geleerde resultaten worden daarna toegepast op een groter doolhof, wat valideert

dat de geleerde resultaten overgebracht kunnen worden naar nieuwe taken waardoor het

leren van nieuwe taken of in nieuwe omgevingen sneller wordt. Tot slot wordt dezelfde

methode toegepast op een niet-stationaire omgeving met aangepaste sensoren en een

gedeeltelijke plattegrond. De hHRL methode kan, zonder verlies van efficiëntie, leren

in niet-stationaire omgevingen door relatieve micro-toestandsvariabelen te gebruiken

en absolute macro-toestandsvariabelen. Deze resultaten laten zien dat de voorgestelde

hHRL methode kan helpen bij het versnellen van leren, bij het verminderen van het ef-

fect van de ‘curse of dimensionality’ in complexe taken, bij het verminderen van de onze-

kerheid en ambiguïteit, bij het efficiënt overzetten van geleerd gedrag naar nieuwe taken

en bij implementatie in niet-stationaire omgevingen. De voorgestelde methode heeft de

potentie om een bijna optimaal hiërarchisch gedrag te leren voor een navigatietaak met

een onbekend systeem in een onbekende omgeving.

Concluderend kan gesteld worden dat dit proefschrift een bijdrage levert met ver-

schillende methodes die de intelligentie en autonomie van lucht- en ruimtevaartsyste-

men verbeteren. Deze verbeteringen komen voort uit drie perspectieven: 1) het verbete-

ren van de aanpasbaarheid en efficiëntie van low-level besturing, 2) het verbeteren van

intelligentie en het online leren van besturing en navigatie methodes, 3) het creëren van

een goed georganiseerde hiërarchie om coördinatie tussen de verschillende niveaus te

waarborgen. De voorgestelde methodes bieden nieuwe inzichten voor zowel de Reinfor-

cement Learning gemeenschap als voor ontwikkelaars van automatische besturingssys-

temen in de lucht- en ruimtevaart.

ACKNOWLEDGEMENTS

This dissertation is the result of my four and a half years of research in Control and Sim-

ulation (C&S) division at the Faculty of Aerospace Engineering, Delft University of Tech-

nology. It would not be possible to finish this work without the support of many people

that I met here in Delft. At the end of this dissertation and also of my PhD journey, I

would like to thank all of these people and to mention some of them in more detail.

First of all, I would like to thank my promoter, Prof. Max Mulder, for your guidance

and also support from other aspects. I am impressed by your kindness to people, con-

scientiousness to work, and efficiency in giving me feedback. Without any of these, my

dissertation would not be here as what it is.

To Dr. Qi Ping Chu, my second promoter, I feel deep gratitude and respect, not only

for your academic insights, valuable suggestions, and enthusiastic encouragement dur-

ing my research, but also for your kind help and concern for me and my family during

our most difficult period. You encouraged me to work on my own ideas and guided me

with valuable advice to make them feasible.

To Dr. Erik-Jan van Kampen, my co-promoter and daily supervisor, I would like to ex-

press my very sincere gratitude and admiration for your patient guidance and effective

supervision. You are always willing to offer me valuable and constructive suggestions

and to share knowledge with me so generously during my research work. Every discus-

sion with you is beneficial for me. On the other hand, you give me enough freedom to

pursue my research and provide me a relaxed research experience, which is very much

appreciated.

Many thanks to Dr. Coen de Visser, who was the first person I met in C&S and treated

me an unforgettable Dutch-style lunch. My special thanks to Dr. Daan Pool, who offered

me and my family generous help during our stay in the Netherlands. Bertine Markus

offered her valuable support in all the administrative works and also in other aspects,

which I really appreciate.

My thanks also goes out to all the colleagues in C&S. Tommaso Mannucci, Jaime

Junell, Kirk Scheper, and Erik-Jan van Kampen, thank you for making our IFC group

meetings very great and pleasant for exchanging our knowledge and ideas. I learned a

lot from you. My former and current 0.04 roommates, Dyah Jatiningrum, João Caetano,

Tommaso Mannucci, Emmanuel Sunil, Peng Lu, Jan Smisek, Annemarie Landman, Sihao

Sun, Shuo Li, Shushuai Li, Ying Yu, and Tom van Dijk, thank you for making this room so

nice and special to me. I would like to express my very warm thanks to Dyah Jatiningrum,

Marilena Pavel, Junzi Sun&Marie Kummerlowe, Ye Zhang&Yingzhi Huang, Sherry Wang,

Sihao Sun for your support for me and my family. My gratitude are extended to Bob

Mulder, Jacco Hoekstra, René van Paassen, Guido de Croon, Olaf Stroosma, Clark Borst,

Alexander in ’t Veld, Hans Mulder, Joost Ellerbroek, Bart Remes, Christophe de Wagter,

Erik van der Horst, Ferdinand Postema, Andries Muis, Harold Thung, Alwin Damman,

Menno Klaassen, Matěj Karásek, Maarten Tielrooij, Rolf Klomp, Gustavo Mercado Ve-

159

160 SAMENVATTING

lasco, Jan Comans, Deniz Yilmaz, Jia Wan, Liguo Sun, Laurens van Eykeren, Yazdi Jenie,

Sjoerd Tijmons, Sophie Armanini, Wei Fu, Lei Yang, Tao Lu, Henry Tol, Ewoud Smeur,

Tim Visser, Ivan Miletovic, Kasper van der El, Jerom Maas, Isabel Metz, Julia Rudnyk,

Dirk van Baelen, Sarah Barendswaard, Kimberly Mcguire, Kevin van Hecke, Elisabeth

van der Sman, Roland Meertens, Mario Coppola, Daniel Friesen, Ezgi Akel, and all other

colleagues I met in C&S. Thank you all for making C&S such a nice place.

Many people outside C&S have been also very important to me during the last few

years. I would like to thank my former supervisor, Prof. Wei Zhang, who brought me

to the world of Aerospace Engineering. My special thanks to Mrs. Jianying Zhang for

all your support and kind help to me and to my family. My gratitude are extended to

Xiaoxia Yang, Jie Zhou, Changjie Zhan, Zhipei Chen, Yannian Yang, Peijian Lv, Zaoxu

Zhu, Fengnian Tian, Shuanghou Deng, Wei Yu, Jing Dong, Duo Zou, Xu Ma, and all other

friends I met in the Netherlands. I am so glad to have met you.

I gratefully acknowledge the China Scholarship Council for their four-year funding

and all the other support.

My profound gratitude goes out to my parents, Xu He and Kai Zhou, for your un-

conditional love and support for me and for my present family. You raised me to be

happy, healthy, and loved. No matter what path I choose, you always give me liberty,

believe in me, and support me throughout my life. I would also like to thank my great-

grandmother, my grandparents, my uncle and aunt, and all my families for your support

and love. My thanks also extended to my family-in-law, which gave me a chance to enjoy

a warm atmosphere in a very big family.

Finally, my deepest gratitude goes to my beloved husband, Hann Woei Ho, for your

continued support, understanding, encouragement, and unfailing love. You were always

there whenever I need you. I greatly appreciate your contribution and your belief in me.

I also appreciate my little girl, Zi Xuan Ho, for giving me so much happiness and abiding

my ignorance when I am busy. I hope I have been a good mother and will be better. I feel

so grateful to have both of you.

CURRICULUM VITÆ

Ye ZHOU

13-10-1988 Born in Hefei, Anhui, China.

EDUCATION

2006–2009 Honors College

Northwestern Polytechnical University (NPU), China

2009–2010 BSc, School of Mechanical & Electrical Engineering

Northwestern Polytechnical University (NPU), China

2010–2013 MSc, School of Mechanical & Electrical Engineering

Northwestern Polytechnical University (NPU), China

2012–2013 School of Aeronautics

Northwestern Polytechnical University (NPU), China

2013–2018 Ph.D., Faculty of Aerospace Engineering

Delft University of Technology (TU Delft), the Netherlands

Thesis: Online Reinforcement Learning Control for

Aerospace Systems

Promotor: Prof. dr. ir. M. Mulder and dr. Q. P. Chu

AWARDS

2007 Distinguished Bachelor student (in NPU)

2010 Distinguished Bachelor graduation project in industrial design (national)

2010 Distinguished Bachelor degree dissertation (in NPU)

2011 Distinguished Master student (in NPU)

2013 Distinguished Master degree dissertation (in NPU)

161

162 CURRICULUM VITÆ

PUBLICATIONS DURING MASTER STAGE

1. B. Gou, Y. Zhou, S. Yu, et al., Research on Semantic-driven Intelligent Color Design

based on DNN, International Proceedings of Computer Science and Information

Technology (IPCSIT),2011.

2. Z. Ma, W. Zhang, Y. Zhou, et al., The Glare Evaluation Method Using Digital Camera

for Civil Airplane Flight Deck, Engineering Psychology and Cognitive Ergonomics.

Applications and Services, Springer Berlin Heidelberg, 2013, 184-192.

3. Y. Zhou, W. Zhang, B. Li, et al., A coherent assessment of visual ergonomics in flight

deck impacted by color and luminance, Engineering Psychology and Cognitive Er-

gonomics. Applications and Services, Springer Berlin Heidelberg, 2013, 222-230.

4. Y. Zhou, S. Yu, J. Chu, Research on Semantic-driven Intelligent Color Design based

on Dynamic Fuzzy Neural Network, Computer Engineering and Application, 50 (3),

2014, in Chinese

SOFTWARE COPYRIGHT

1. Y. Zhou, S. Yu, Semantic-driven Intelligent Color Design System, P. R. China Soft-

ware Copyright 2011SR043559, filed June 2010 and issued July 2011.

2. W. Wang, J. Chu, Y. Zhou, Design and Assessment Software of Human-machine Sys-

tem, P. R. China Software Copyright 2011SR043478, filed June 2010 and issued July

2011.

LIST OF PUBLICATIONS

JOURNALS

5. Y. Zhou, E. van Kampen, and Q. P. Chu, Hybrid hierarchical reinforcement learning with

partial observability, Artificial Intelligence (submitted).

4. Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental approximate dynamic programming for

nonlinear adaptive tracking control with partial observability, Journal of Guidance, Control,

and Dynamics, (under review).

3. Y. Zhou, E. van Kampen, and Q. P. Chu, Launch vehicle adaptive flight control with incre-

mental model based heuristic dynamic programming, Acta Astronautica, (under review).

2. Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental model based online dual heuristic pro-

gramming for nonlinear adaptive control, Control Engineering Practice, Vol. 73, p. 13-25,

2018. https://doi.org/10.1016/j.conengprac.2017.12.011

1. Y. Zhou, E. van Kampen, and Q. P. Chu, Nonlinear adaptive flight control using incremen-

tal approximate dynamic programming and output feedback, Journal of Guidance, Control,

and Dynamics, Vol. 40, No. 2, p. 493-500, 2017. https://doi.org/10.2514/1.G001762

CONFERENCE PROCEEDINGS

7. Y. Zhou, E. van Kampen, and Q. P. Chu, Adaptive spacecraft attitude control with incremen-

tal approximate dynamic programming, in 68th International Astronautical Congress (IAC)

(Adelaide, Australia, 2017).

6. Y. Zhou, E. van Kampen, and Q. P. Chu, Launch vehicle adaptive flight control with incre-

mental model based heuristic dynamic programming, in 68th International Astronautical

Congress (IAC) (Adelaide, Australia, 2017).

5. Y. Zhou, E. van Kampen, and Q. P. Chu, Autonomous navigation in partially observable envi-

ronments using hierarchical Q-Learning, in International Micro Air Vehicle Conference and

Competition 2016 (IMAV 2016) (Beijing, PR of China, 2016) p. 70-76.

4. Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental model based heuristic dynamic pro-

gramming for nonlinear adaptive flight control, in International Micro Air Vehicle Confer-

ence and Competition 2016 (IMAV 2016) (Beijing, PR of China, 2016) p. 173-180.

3. Y. Zhou, E. van Kampen, and Q. P. Chu, An incremental approximate dynamic programming

flight controller based on output feedback, AIAA Guidance, Navigation, and Control Confer-

ence (San Diego, California, USA, 2016) (AIAA 2016-0360). https://doi.org/10.2514/6.2016-

0360

163

164 LIST OF PUBLICATIONS

2. J. Junell, T. Mannucci, Y. Zhou, and E. van Kampen, Self-tuning Gains of a Quadrotor

using a Simple Model for Policy Gradient Reinforcement Learning, AIAA Guidance, Nav-

igation, and Control Conference (San Diego, California, USA, 2016) (AIAA 2016-1387).

https://doi.org/10.2514/6.2016-1387

1. Y. Zhou, E. van Kampen, and Q. P. Chu, Incremental approximate dynamic programming for

nonlinear flight control design, in 3rd CEAS EuroGNC conference (Toulouse, France, 2015)

