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Abstract: This study explores how drivers of an automated vehicle distribute their attention as a
function of environmental events and driving task instructions. Twenty participants were asked to
monitor pre-recorded videos of a simulated driving trip while their eye movements were recorded
using an eye-tracker. The results showed that eye movements are strongly situation-dependent, with
areas of interest (windshield, mirrors, and dashboard) attracting attention when events (e.g., passing
vehicles) occurred in those areas. Furthermore, the task instructions provided to participants (i.e.,
speed monitoring or hazard monitoring) affected their attention distribution in an interpretable
manner. It is concluded that eye movements while supervising an automated vehicle are strongly ‘top-
down’, i.e., based on an expected value. The results are discussed in the context of the development
of driver availability monitoring systems.

Keywords: driving; eye-tracking; attention

1. Introduction

Driver availability monitoring systems (DAMS) are finding their way into consumer
vehicles and will soon become mandatory for newly sold cars [1]. DAMS do not only have
utility in manual driving but also in automated driving [2,3]. In particular, SAE Level 2
automated driving requires drivers to focus on the driving task, which can be verified
using eye- and head-tracking [4,5] and hands-on-wheel detection technology [6,7].

One point of importance in the development of DAMS is what the driver should
look at. Lappi et al. [8] noted that a vital regularity in eye movements in driving is that
drivers’ “gaze is focused on task-relevant objects and locations . . . rather than the visually
most salient ones . . . ”. Research into hazard perception shows that more experienced
drivers are better able to detect and respond to hazards and precursors of hazards [9,10].
Additionally, more experienced drivers have a larger horizontal variance of gaze and
are less likely to look at the road center, which may be explained by their superior skills
in identifying hazards or their higher spare mental capacity [11–14]. In short, a DAMS
that merely measures whether the driver looks towards the forward roadway may not be
optimal as drivers acquire situational awareness by perceiving various elements of the task
environment. Furthermore, safe driving involves more than looking at relevant features.
For example, previous research into highway hypnosis [15,16] and the looked-but-failed-to-
see phenomenon [17] showed that looking does not imply that the driver comprehends
the situation.

Another factor concerns the driving task itself. It can be expected that a driver’s
attention distribution depends on whether the driver is driving manually or whether he
or she is tasked to supervise an automated driving system. Previous research indicates
that drivers of automated vehicles are less likely to glance at the forward roadway than
manual drivers, which can be explained by the visual demands associated with manual
lane-keeping [18–23].
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When drivers supervise their automated vehicles, they still need to be situationally
aware in order to be able to make an appropriate evasive maneuver after reclaiming
control [24]. For example, the supervisor of the (SAE-2-level) automated vehicle may have
to keep track of the speed of the vehicle and will need to be vigilant to other vehicles in the
vicinity as these vehicles may have to be avoided after taking over control [25]. The extent
to which drivers of automated vehicles should focus on the speedometer or hazards in the
driving environment depends on the expected capabilities of the automated driving system.
That is, relatively unreliable automated vehicles may require a higher level of alertness
than others. In summary, there is no single definition of driving, but the goals the driver
pursues may depend on the tasks the driver has. These statements resonate with classical
research by Yarbus [26], which demonstrated that the task given to an observer affects eye
movements to a great extent, although replication studies suggest that this finding is still
contentious (see [27–30], for replication studies with mixed success).

The current study, conducted with a desktop-based eye tracker, aimed to explore
how participants distribute attention while monitoring an automated car on a highway.
Attentional distribution was investigated in three tasks: no extra task, an additional speed
monitoring task, and an additional hazard detection task. Participants viewed the same
non-interactive videos for the three tasks, allowing us to examine viewing behavior in a
controlled and contextualized manner—that is, we examined how events in the environ-
ment, such as the proximity of other vehicles, affect viewing behavior. We end this work
with a discussion of our findings, limitations, and recommendations for the development
of DAMS.

2. Methods
2.1. Participants

Twenty students (seventeen males and three females) from the Delft University of
Technology participated in the experiment. The participants had a mean age of 24.8 years
(SD = 2.1) and were all in possession of a driver’s license. They held their license for an
average of 5.8 years (SD = 3.2). The participants’ yearly driving distance was 3530 km per
year (SD = 2621). All participants provided written informed consent before partaking in
the experiment.

2.2. Experimental Setup

The experiment was performed on a 24-inch monitor with a resolution of 1920 × 1080 pixels
(display area 531 × 298 mm). A head support was used to minimize participant head
movements. The monitor was positioned at a distance of approximately 0.9 m from the head
support; see Figure 1 for a photo of the experimental setup. Eye-tracking was performed
using the SR Research EyeLink 1000 Plus eye-tracker, which recorded the right eye.
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vehicle drove on a two-lane highway with a speed that varied between 80 and 130 km/h. 
The videos had a frame rate of 60 fps. 
• In Video 1, the ego-vehicle overtook six vehicles and was overtaken by one vehicle. 

The speed of the ego-vehicle crossed the 100 km/h mark six times, and the vehicle 
changed lanes six times. 

• In Video 2, the ego-vehicle overtook two vehicles and was overtaken by five vehicles. 
The speed of the ego-vehicle crossed the 100 km/h mark 13 times, and the vehicle 
changed lanes four times. 

• In Video 3, the ego-vehicle overtook eight vehicles and was overtaken by two vehi-
cles. The 100 km/h mark was crossed six times, and six lane changes occurred. 

2.4. Experimental Task and Procedures 
Participants were presented with instructions in written form on the computer mon-

itor. It was mentioned that participants should act as if they were in a vehicle that drove 
itself and which they had to monitor. It was also mentioned that they should be able to 
take over control at any time. It was mentioned that the experiment comprised three dif-
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1. Baseline: You do not have any secondary tasks to perform. 
2. Speed Task: You should shortly press the spacebar every time the speed dial crosses 

the 100 km/h mark. This works two ways around, i.e., when the car is braking or 
accelerating. As soon as the dial is on the 100 km/h mark, you should press; as soon 
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Figure 1. Experimental setup. Shown from back to front is the monitor for displaying the videos, the
eye-tracker camera with infrared illuminator, the keyboard used for pressing the spacebar and arrow
keys, and the head support.
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2.3. Stimuli

Videos were created in the Euro Truck Simulator 2, a virtual environment that offers
realistically looking roads, environments, and road users (e.g., cars and trucks). The
driving speed and lane position of other road users was simulated by the AI of the Euro
Truck Simulator.

A total of three 120-s videos were used. In each of the pre-recorded videos, the
experimenter drove the ego-vehicle by means of the keyboard. In all three videos, the ego-
vehicle drove on a two-lane highway with a speed that varied between 80 and 130 km/h.
The videos had a frame rate of 60 fps.

• In Video 1, the ego-vehicle overtook six vehicles and was overtaken by one vehicle.
The speed of the ego-vehicle crossed the 100 km/h mark six times, and the vehicle
changed lanes six times.

• In Video 2, the ego-vehicle overtook two vehicles and was overtaken by five vehicles.
The speed of the ego-vehicle crossed the 100 km/h mark 13 times, and the vehicle
changed lanes four times.

• In Video 3, the ego-vehicle overtook eight vehicles and was overtaken by two vehicles.
The 100 km/h mark was crossed six times, and six lane changes occurred.

2.4. Experimental Task and Procedures

Participants were presented with instructions in written form on the computer monitor.
It was mentioned that participants should act as if they were in a vehicle that drove itself
and which they had to monitor. It was also mentioned that they should be able to take over
control at any time. It was mentioned that the experiment comprised three different tasks:

1. Baseline: You do not have any secondary tasks to perform.
2. Speed Task: You should shortly press the spacebar every time the speed dial crosses

the 100 km/h mark. This works two ways around, i.e., when the car is braking or
accelerating. As soon as the dial is on the 100 km/h mark, you should press; as soon
as the pointer has passed the mark, you should release the spacebar.

3. Hazard Task: You will have to indicate whether a car or truck is driving in the lane
next to you. As long as this is the case, you have to press the arrow key. Press the right
arrow key when someone is driving on your right side and the left arrow key when
someone is driving on your left. When there is nothing on your left or right, you have
to release the arrow key.

Although the Speed Task and Hazard Task can reliably be performed by automation
technology (namely through cruise control and blind-spot monitoring systems, respec-
tively), supervisors of automated vehicles will still need to perform these tasks in order to
stay situationally aware.

Next, the participants were shown a short (13 s) example video to give them an idea of
the driving environment. Then, calibration of the eye-tracker was performed. Before each
trial, the task for the upcoming trial was shown on the monitor. It was repeated that the
primary task was to monitor the self-driving car, to stay aware of the state of the vehicles
and traffic signs, and to be able to take over steering at any time. Furthermore, before the
Speed Task trial, it was mentioned that the secondary task was to press the spacebar every
time the speed crossed 100 km/h. Before the Hazard Task trial, it was mentioned that the
secondary task was to hold the left/right arrow key as long as a vehicle was driving next
to them.

Each participant performed eighteen 120-s trials. These trials comprised three different
videos and three different task instructions, as specified above. Furthermore, half of the
videos contained gaze-contingent visual feedback in the form of a red outline of the front
windshield, speed dial, left mirror, or right mirror (for a similar approach, see [31]). The
gaze-contingent feedback was based on an algorithm that kept track of the participants’
previous eye movements and accordingly aimed to guide their eye movements to relevant
areas. The order of the 18 trials was randomized and different for each participant.
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For this paper, results from nine of eighteen trials were used. The nine videos with
gaze-contingent feedback were not analyzed because the onset and offset of the gaze-
contingent feedback showed large individual differences, and preliminary analyses did not
provide insights that contribute to the present paper’s purpose.

2.5. Data Processing

First, data gaps (e.g., due to blinks) in the horizontal and vertical gaze coordinates
were filled through linear interpolation. Next, the horizontal and vertical gaze coordinates
were filtered using a median filter with a time interval of 100 ms.

The attention distribution was determined by analyzing whether a participant’s gaze
point fell within one of four areas of interest (AOIs): windshield, left mirror, right mirror,
and dashboard (note that the rear-view mirror was not included in the animated video
clips of this experiment). The AOIs for the left mirror, right mirror, and dashboard were
pragmatically defined as rectangular shapes. All other gaze points were labeled as the
windshield. Because of the aforementioned linear interpolation, there were no missing
data—that is, for each frame, the percentage of participants looking at the left mirror, right
mirror, dashboard, and windshield adds to 100%.

The number of participants who had their eyes in one of these four AOIs was counted
for each time sample and moving-average-filtered with a time interval of 500 ms. Sub-
sequently, the participants’ attention to the AOIs was graphically associated with events
in the scenario, such as ego-vehicle lane changes, ego-vehicle speed, and vehicle size in
the mirrors.

The driving simulator we used for creating the videos did not record the state of other
vehicles (nor the view the ego-driver had of those vehicles). Additionally, future automated
vehicles will likely rely on cameras to obtain information about surrounding traffic [32]
and to replace the outside mirrors with screens [33]. Therefore, the size (~closeness) of
vehicles visible in the left and right mirrors was obtained using a pre-trained YoloV4
model [34] (obtained from [35]). YoloV4 can detect 80 different object types. From these,
we extracted the cars, trucks, and buses. The width of the object in the mirror that yielded
the highest classification score was used as an index of vehicle size. Only objects yielding
classification scores greater than 0.8 were taken into consideration, to exclude false-positive
and low-quality detections (such as opposing traffic on the other side of the road).

3. Results

Figure 2 shows the heatmap for the three task conditions. It can be seen that the
attention of participants was highly concentrated on either the left mirror, right mirror, the
road ahead, or the speedometer. Participants also occasionally looked at the navigation
display, which was ignored in the present analysis and grouped with the dashboard AOI.
In summary, the heatmaps confirm that the use of four AOIs (windshield, left mirror, right
mirror, dashboard) is appropriate.

Figure 3 shows the attention distribution across the four AOIs for Videos 1, 2, and 3
in the Baseline condition, i.e., without a secondary task. It is noticeable that the attention
distribution strongly fluctuated with elapsed time. In an attempt to elucidate the causes of
these fluctuations, Figures 4–7 show the moments in Video 3 when a maximal proportion
of participants focused their attention on the windshield (t = 94.1 s), left mirror (t = 24.8 s),
right mirror (t = 84.0 s), and dashboard (t = 17.0 s), respectively.
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• The windshield attracted attention when events (e.g., car in front, curve, road signs)
were happening in that AOI (Figure 4).

• The left mirror attracted attention right before a lane change to the left lane and while a
vehicle was visible in the left mirror (Figure 5). The participants may have anticipated
that a lane change was about to happen based on the proximity of other vehicles as
well as the turn indicator usage visible on the dashboard.

• The right mirror attracted attention right before changing lanes to the right after having
overtaken another vehicle (Figure 6).

• Finally, the speedometer attracted attention in otherwise uneventful conditions while
the road was relatively empty (Figure 7).
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Figure 8 illustrates that vehicles in the mirror attracted attention—that is, when an-
other vehicle was driving in the left lane to overtake the ego-vehicle, participants were
increasingly likely to focus on the left mirror as this vehicle got closer.
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gray) or left lane (light gray).

The effects of the three task-instruction conditions are shown in Table 1. The Speed
Task caused attention to be focused on the dashboard (~40% vs. ~14% in the Baseline Task).
In the Hazard Task, attention was directed away from the dashboard and towards the left
mirror (13–21% vs. 10–17% in the Baseline Task).

Table 1. Attention distribution to the four Areas of Interest (AOIs) for the nine trials.

Video
Number Task Windshield

(% of Time)
Left Mirror
(% of Time)

Right Mirror
(% of Time)

Dashboard
(% of Time)

1 Baseline 67 10 8 15

2 Baseline 65 17 5 14

3 Baseline 68 11 8 13

1 Speed Task 50 8 5 37

2 Speed Task 43 12 3 43

3 Speed Task 46 8 5 42

1 Hazard Task 67 13 8 11

2 Hazard Task 62 21 5 12

3 Hazard Task 72 13 8 7

The focus on the dashboard during the Speed Task fluctuated over time, with the
peaks in attention to the dashboard corresponding to moments when the speed was close
to 100 km/h (Figures 9 and 10). In the same vein, in the Hazard Task, participants were
relatively likely to attend to the mirrors when objects were visible in those mirrors (see
Figure 11 for an illustration). Thus, this again shows that attention distribution is a function
of the situation and task.
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Figure 11. Percentage of participants with their eyes on the left mirror when another vehicle overtook
the ego-vehicle in the left lane (left panel) and with their eyes on the right mirror when the ego-vehicle
overtook another vehicle in the right lane (right panel) (Videos 1–3 combined, 8 and 15 overtakes,
respectively). The vertical line at t = 0 s represents the first moment when part of the overtaking car
became visible in the left side window (left panel) or the last moment when part of the overtaken car
was visible in the front window (right panel).

4. Discussion

This study examined participants’ viewing behavior when presented with videos
depicting a simulated automated car. The use of videos enabled us to evaluate participants’
viewing behavior for three different task instructions under identical traffic conditions for
all participants.

The results indicated that viewing behavior in driving is strongly top-down. More pre-
cisely, top-down attention refers to attention that is governed by task-related expectancies
and the value of task components (i.e., expected value), as opposed to bottom-up attention,
which is governed by salient stimuli and head/eye-movement effort [36]. In particular, the
task given to drivers determined their attention distribution (speedometer, hazards), and
the drivers’ eyes were directed towards task-relevant elements (e.g., overtaking cars) in a
highly time-varying manner.

A relatively novel aspect of our work is that it focused on eye movements in relation
to tasks and events in the environment. In comparison, research about eye movements
in driving seems most developed in regard to curve driving on relatively uneventful
roads (see [37] for a review). For example, there is research that reports that on curved
roads, drivers focus on the tangent point [38,39], a future path [40,41], or the vanishing
point [42]. That said, there is a growing body of research that examines eye movements in
relation to the driving context [43] and specific driving events, such as overtaking and lane-
changing [44,45], approaching road crossings and roundabouts [46], processing feedback
and advice on the dashboard [47], responding to warnings [48,49], and reclaiming control
from an automated vehicle (e.g., [50–52]). Especially noteworthy is research by Kircher
and Ahlstrom [53], which provide similar figures as our Figure 11 but obtained in real
traffic with the help of manual annotations of driving maneuvers. The participants’ eye
movements in our study seemed aimed at predicting the behaviors of other road users, a
finding consistent with earlier hazard perception research (e.g., [54]). For example, viewing
behavior was forward-facing when events occurred that could be relevant to the driver,
such as vehicles approaching or possibly planning to perform a lateral maneuver.

The present study also revealed indications of task prioritization. For example, partici-
pants were more inclined to look at less critical elements such as the speedometer when
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no hazards were present in the vicinity. In the Speed Task, participants looked at the
speedometer considerably more often than in the Baseline task, but still in a functional
manner—that is, attention seemed to be focused on the speedometer when there was a high
probability that the threshold speed would be exceeded. This latter finding is in line with
Senders’s [55] notion of conditional sampling and with Eisma et al. [56], who observed
similar results when participants had to detect threshold crossings while watching an
instrument panel of moving dials.

The current study revealed a congruence between environmental events and atten-
tion distribution. Future research could use more formal models, such as the Salience,
Effort, Expectancy, Value (SEEV) model, which has been used before in various trans-
portation research studies. Horrey et al. [57], for example, studied the SEEV model in a
driving simulator, where participants had to maintain lane position while performing an
in-vehicle technology task. Their results showed a high correlation between predicted and
observed percentage dwell time. Other studies also showed high correlations between
SEEV-predictive and observed dwell time percentages in various types of human–machine
interaction tasks [58–63].

A limitation of this work is the small horizontal field of view of 30 degrees, which
prevents the use of peripheral vision—an important component of driving [64,65]. In
comparison, the human visual field is about 200 degrees [66], meaning that drivers could
infer moving objects from, e.g., the side windows [67]. The participants also could not
turn their heads—something that drivers normally do [68]. At the same time, there is
ample research that claims valid results for movie clips. For example, there are studies
on hazard perception (with and without eye-tracking) that use a small field of view and
provide discriminative validity between beginner and expert drivers [69,70]. Additionally,
our findings for lane changes resemble the findings of an on-road study by Kircher and
Ahlstrom [53]. More classically, Hughes and Cole [71] claimed that “visual information
presented by the movie film is sufficient to generate attentive processes characteristic of
driving” (p. 377).

The use of short 2-min highway-driving trips only and the lack of a rear-view mirror
are other limitations of the present study. Additionally, the participants were young
engineering students, who can be expected to have fast response times and strong visual-
spatial ability [72,73]. The current work could be replicated with older drivers. Finally, no
sound, motion, or tactile cues were produced during the experiment. Future research into
predicting eye movements in driving should be conducted in real vehicles (e.g., [43,74]).

What do the current findings mean for the development of DAMS? One interpretation
of the results is that drivers’ attention should be distributed. For example, a DAMS could
assess whether drivers look in the left or right mirrors when another car is passing or
when they pass another car. This observation corresponds to earlier work on a gaze-based
DAMS that was built on the assumption “that glances to the mirror and the speedometer
are necessary for safe driving” [75] (p. 967). However, their DAMS was not contextualized;
that is, it did not consider whether meaningful objects were present in the front view
or mirrors. The present results may hold promise for object recognition in combination
with eye-tracking. It is expected that future cars and trucks will be equipped with camera
systems as a replacement for exterior mirrors in cars and trucks [76]. Object recognition
on these camera images (such as using YoloV4 in this study) may prove useful input
for DAMS.
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