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Abstract

While data sharing is crucial for knowledge development, privacy concerns and strict regu

lation (e.g., European General Data Protection Regulation (GDPR)) unfortunately limit its

full effectiveness. Synthetic tabular data emerges as an alternative to enable data sharing

while fulfilling regulatory and privacy constraints. The stateoftheart tabular data synthe

sizers drawmethodologies from Generative Adversarial Networks (GAN). In this thesis, we

develop CTABGAN, a novel conditional table GAN architecture that can effectively model

diverse data types with complex distributions. CTABGAN is extensively evaluated with the

state of the art GANs that generate synthetic tables, in terms of data similarity and analysis

utility. The results on five datasets show that the synthetic data of CTABGAN remarkably

resembles the real data for all three types of variables and results into higher accuracy for

five machine learning algorithms, by up to 17%.

Additionally, to ensure greater security for training tabular GANs against malicious privacy

attacks, differential privacy (DP) is studied and used to train CTABGAN with strict privacy

guarantees. DPCTABGAN is rigorously evaluated using stateoftheart DPtabular GANs

in terms of data utility and privacy robustness against membership and attribute inference

attacks. Our results on three datasets indicate that strict theoretical differential privacy

guarantees come only after severely affecting data utility. However, it is shown empirically

that these guarantees help provide a stronger defence against privacy attacks. Overall, it is

found that DPCTABGAN is capable of being robust to privacy attacks while maintaining

the highest data utility as compared to prior work, by up to 18% in terms of the average

precision score.

Aditya Kunar

Delft, August 2021
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Preface

My thesis builds upon a background in adversarial machine learning with a focus on tabular

data generation and it’s use as both an imminent and eminent privacy preserving technol

ogy. The research begins by attempting to improve stateofart GAN based tabular data

synthesizers by understanding their fundamental strengths and weaknesses in chapter 3.

Based on the conclusions drawn from this study existing weaknesses are addressed and the

strengths of various methodologies are combined to enhance performance, giving rise to a

novel tabular data generator, CTABGAN, in chapter 4. Additionally, privacy concerns for

synthetic tabular data generation are addressed by studying the use of differential privacy.

And, an empirical investigation of privacy exposure is carried out using membership and

attribute inference based attacks in chapter 5.

This research is a product of the wonderful guidance of my supervisor Dr. Lydia Chen and

my daily supervisor Dr. Zilong Zhao. I owe a great sense of gratitude to both of them for

their extensive knowledge which they willfully provided throughout the period of my mas

ter’s thesis. Finally, I offer my thanks to my family and friends who have been a pillar of

support.

Iwould also like to expressmygratitude towardsMr. Hiek Scheer andMr. JamesGnanasekaran,

who graciously accepted to be a part of the defence committee.

Aditya Kunar

Delft, August 2020
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1
Introduction

“Data is the new oil” is a quote that goes back to 2006, which is credited to mathematician Clive Humby.
It has recently picked up more steam after The Economist published a 2017 report [35] titled “The
world’s most valuable resource is no longer oil, but data”. This thesis focuses on tabular data, the most
popular type of data to be used for analysis in the industry [33].

Unfortunately, extracting insights from tabular data risks losing personal privacy and results in an
unjustified analysis [23]. Thus, strict privacy regulations enforced via the European General Data Pro
tection Regulation (GDPR) prevent the misuse of personal data. This calls for innovative technologies
that can enable datausage without breaching privacy. Hence, privacy preserving data solutions have
become increasingly important and have the potential to push the contribution of the data economy to
the EU GDP by up to 4% [9].

One such emerging solution is to leverage Generative Adversarial Networks (GAN) [15]. GANs are
first trained on a real dataset and are then subsequently used to generate synthetic data resembling the
original data distribution. Beyond successfully generating images, GANs have recently been applied
to generate high quality tabular datasets [26, 42].

Currently, the stateoftheart tabular generators [42] use the conditional GAN architecture and deal
with only on two types of variables, namely continuous and categorical. However, an important class
of ”mixed” datatypes is overlooked. In addition, existing solutions cannot effectively handle highly
skewed continuous variables. And finally, the empirical robustness of existing methods to withstand
malicious privacy attacks remains unexplored.

In this thesis, we design a tabular data synthesizer that addresses the limitations of the prior work
by: (i) efficiently encoding ”mixed” datatypes consisting of both continuous and categorical variables,
(ii) efficiently modeling skewed continuous variables and (iii) enhancing robustness against privacy
attacks. Therefore, we propose a novel conditional tabular generative adversarial network, CTAB
GAN, that is further extended to be trained with strict privacy guarantees.

Thus, this chapter begins with Sec. 1.1 elaborating on the necessity of synthetic data with robust
privacy guarantees along with beneficial usecases in the industry. Next, Sec. 1.2 specifies the key sci
entific motivations for this research. This is followed by the main research questions posed in Sec. 1.3
along with the contributions of this thesis in Sec. 1.4. Finally, Sec. 1.5 ends with an outline of how this
research is organised.

1



2 1. Introduction

1.1. Privacy Preserving Synthetic Tabular Data
Tabular data plays a key role in a widerange of industries for gaining valuable insights andmaking data
driven decisions. For e.g., consider the recommendation systems employed on our favourite websites
such as Netflix or Bol.com. Or, the corona patient risk models developed by our healthcare providers.
These all intimately rely on tabular data.

But unfortunately, using the real tabular data may be perilous because: (i) the privacy of real data
may be comprised (ii) the standard of real data may be poor due to rows with incomplete information
and (iii) the amount of real data representing anomalous events (e.g., datarows representing ”fraud”)
may be heavily imbalanced as compared to normal events (e.g., datarows representing ”no fraud”).

These factors necessitate the use of synthetic tabular data to ensure that the data doesn’t contain
any real usersensitive information compromising privacy, missing values degrading quality and con
tains a balanced quantity of class labels (e.g., equal number of datarows representing ”fraud” vs ”no
fraud”, respectively).

Additionally, due to the recent rise in machine learning solutions that rely on real userdata, there
has been an equally important demand for ensuring greater data security against malicious privacy
attacks targeted towards machine learning algorithms.

In light of this, privacypreserving techniques such as differential privacy[11] serve as an effec
tive framework to limit the influence of individual data points and to provide strict privacy guarantees
preventing the loss of personal information. In recent times, tech giants such as Apple[34] have suc
cessfully used this technique to effectively deal with privacy leaks.

Thus, synthetic tabular data generated using strict differential privacy guarantees serves datadriven
industries with the following gains:

• Collaboration across stakeholders Synthetic data with reliable privacy guarantees serves to
enable efficient and safe datadisclosure. This boosts collaboration among different parties and
fosters innovation. For e.g., for building a stronger fraudulent insurance claim detector, a multi
national insurance company can benefit from information stored between divisions located across
the world. However, privacy restrictions do not allow the real data to be shared. Thus, synthetic
data can be used instead, to capture the shared characteristics of fraudulent insurance claims
across the world.

• Data Optimization Synthetic data generators can effectively learn the distribution of the real data
thereby enabling endusers to encapsulate the real information in a more compressed form. This
enables easily storing and generating large amounts of data more efficiently. Moreover, synthetic
data generators can generate datasets based on userspecified constraints and do not contain
missing values by design [42].

• Model Optimization To improve the performance of machine learning algorithms, synthetic data
can be used for performing dataaugmentation to effectively rebalance datasets with imbalanced
class labels [13]. Moreover, the synthetic data can be used as a proxy validationdataset to tweak
and validate the most optimal hyperparameters thereby allowing a more efficient usage of the
real data for training machine learning models [14].



1.2. Motivation 3

1.2. Motivation
The industrial datasets (at stakeholders like banks, insurance companies, and health care) present
multifold challenges. First of all, such datasets are organized in tables and populated with both con
tinuous and categorical variables, or a mix of the two, e.g., missing values can be considered to be
categorical elements embedded in continuous variables as they are clearly separate from the con
tinuous variable’s original distribution. Here, such type of variables are termed as ”mixed” variables.
Secondly numeric data variables often have a wide range of values as well as a skewed distributions,
e.g., the statistic of the transaction amount for a credit card. Most transactions should be within 0 and
500 bucks (i.e. daily shopping for food and clothes), but exceptions of a high transaction amount surely
exist. And last but not least, training tabular GANs with sensitive datasets risks leaking privacy through
malicious privacy attacks.

In summary, dealing with the following challenges formed the main motivations of research:

• Tabular data comprises of ”mixed” variables that consist of both a continuous and a categorical
component.

• Continuous variables exhibit heavily skewed distributions which are difficult to model and repro
duce authentically.

• Tabular GANs comprise the privacy of the original dataset used for training.

1.3. Research Questions
Building on the motivations established for the thesis in Sec. 1.2, the thesis revolves around three main
research question as follows:

• What are the performance capabilities of existing tabular GANs?

• How to improve upon the tabular generation quality of stateoftheart tabular GANs?

• How to train tabular GANs in a privacypreserving manner?

The main research questions are then further divided into the following subquestions:

1. What are the performance capabilities of existing tabular GANs?

(a) What is the statistical similarity, ML utility and privacy risk concerning synthetically produced
datasets in terms of their corresponding original datasets?

(b) What are the challenges faced by existing tabular GANs?

2. How to improve upon the tabular generation quality of stateoftheart tabular GANs?

(a) How to handle ”mixed” variables in tabular data?

(b) How to deal with skewed continuous variables?

3. How to prevent privacy leakage for tabular GANs?

(a) How can differential privacy guarantees be instilled for synthetic tabular data generation?

(b) Do the theoretical privacy guarantees successfully prevent privacy leakage?
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1.4. Contribution of thesis
Our primary contributions of this thesis have been the following:

• An extensive benchmarking of 4 stateoftheart tabular GANs in terms of statistical similarity,
ML utility and privacy. And, emphasizing important issues faced by existing methods.

• A novel conditional generative adversarial network, CTABGAN, that can effectively handle ”mixed”
datatypes and skewed continuous variables.

• Differential private training of CTABGANand rigorous privacy risk evaluation against membership
and attribute inference attacks.

1.5. Report Outline
The thesis has the following outline, in chapter 2, the relevant related work and core concepts pertain
ing to generating privacypreserving synthetic data is highlighted. In chapter 3, an exploratory study
quantitatively evaluating 4 stateoftheart tabular GAN approaches is elucidated. Moreover, the chap
ter highlights challenges faced by existing methods. In chapter 4, a novel conditional table generative
adversarial network, CTABGAN, is proposed to improve on challenges faced by the stateoftheart.
In chapter 5, the application of differential privacy in the context of tabular GANs is examined and the
empirical robustness against privacy attacks is studied. Lastly, in chapter 6, we finally summarise this
thesis by reviewing the research questions established in this chapter and by identifying limitations of
CTABGAN and defining avenues of research for future work.





2
Related Work & Preliminaries

This chapter begins with Sec. 2.1 discussing the relevant literature for tabular GANs and their differential
private variants. And, Sec. 2.2 provides a brief primer on generative adversarial networks (GANs) and
differential privacy (DP) in the context of tabular data.

2.1. Related Work
GAN

Tabular GAN

Nonconditional GAN

MedGAN[8] TableGAN[26]

Conditional GAN

CTGAN[42] CWGAN[13]

DPGAN

PATE[25]

PATEGAN[18]

DPSGD[1]

Generator

GSWGAN[5]

Discriminator

DPWGAN[41]

2.1.1. Tabular GANs
In this section, the focus is on GANbased methods that deal with tabular data generation. These meth
ods are featured extensively in the work done in chapter 3 and chapter 4. Tab. 2.1 details key features
for each method.

MedGAN In the work done by [8] (2017), the authors propose a novel mechanism to synthetically
generate Electronic Health Records (EHR) consisting of high dimensional categorical variables. Their
model consists of using a combination of an autoencoder and a generative adversarial network. They
show that their model is capable of producing realistic synthetic patient records as evaluated via a

5



6 2. Related Work & Preliminaries

qualitative medical expert review. Additionally, they empirically analyze the risk of violating privacy via
identity and attribute disclosure attacks and conclude that the risk is manageable.

However, the MedGAN model cannot generate synthetic datasets outside the medical domain of
Electronic Health Records which contain only categorical variables.

TableGAN In the work done by [26] (2018), the authors develop a tabular data synthesizer that is based
on the DCGAN architecture (refer to Sec. 2.2.1). Their approach utilizes a separate classifier module in
addition to the discriminator and generator modules commonly used in GANbased frameworks. More
over, their method relies on additional loss objective for the generator known as the classification &
information losses, respectively (refer to Sec. 2.2.2).

However, TableGAN doesn’t deal with generating categorical variables in a principled manner. This
is because their approach involves mapping categorical variables to integers and treating them purely
numerically.

CTGAN In the work done by [42] (2019), they introduce a novel conditional tabular GAN architec
ture as well as the trainingbysampling method (refer to Sec. 2.2.1). These improvements allow the
generator to more efficiently produce realistic samples for the minority categories found in discrete
columns thereby producing synthetic records which match the real data distribution more closely. In
addition, they introduce the modespecificnormalization technique (refer to Sec. 2.2.3) for learning
complex numerical distributions. Lastly, their discriminator network is trained with WGAN loss with
gradient penalty [16] (refer to Sec. 2.2.2) for improved training of GANs.

However, the CTGAN model is incapable of dealing with missing values. This limits it’s applicability
in realworld scenarios where the data is often impure and contains a large number of missing values.
Moreover, the authors also convey that learning from small training sets severely affects performance
as well.

Conditional Wasserstein GAN In the work done by [13] (2020), they propose the conditional Wasser
stein GAN primarily for the purposes of data augmentation. Similar to TableGAN, they exploit the clas
sification loss and augment it to the generator’s loss objective. Moreover, their model also integrates
crosslayers [39] in both the discriminator and generator networks.

However, in their work, they do not make use of any activation functions for generating samples for
numerical attributes. This makes it inherently difficult to constrain the generator’s output to a meaningful
range of values. Moreover, it can also lead to severely destabilizing the training process.

Table 2.1: StateoftheArt Blueprint1.

Method Data format Training method Privacy analysis Designated output
MedGAN Categorical Only Autoencoder + GAN Yes No
TableGAN Categorical & Continuous GAN + Classifier Yes No
CTGAN Categorical & Continuous ConditionalWGAN No Yes
CWGAN Categorical & Continuous ConditionalWGAN + Classifier No Yes

2.1.2. Differential Private GANs
In this section, relevant differential private GAN models are reviewed in relation to the work done in
chapter 5. Tab. 2.2 highlights key details of each model.

1Note that the designated output column is used to identify models which have the capacity to sample datainstances with
userdefined categorical attributes.
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PATEGAN In the work done by [18] (2019), the authors devise a technique for integrating DP guaran
tees in tabular GANs via the Private Aggregation of Teacher Ensembles (PATE) framework [25]. In their
approach, multiple teacher discriminators are trained using disjoint subsets of the training data along
with a student discriminator where the aggregation of the teacher ensemble is done after perturbing
the predictions of teacher discriminators using Laplacian noise.

However, PATEGAN suffers from the following limitations: (i) the student discriminator is trained
solely using generated samples and does not see any real samples. This is problematic because if the
student discriminator only has access to the unrealistic samples generated by the generator, it won’t
provide reliable feedback to the generator so that it can improve it’s sample quality (refer to Sec. 5.3.3
for experimental evidence) and (ii) The PATEGAN framework requires careful hyperparameter tuning
to select the number of teacher discriminators.

DPWGAN In the work done by [41] (2018), the authors incorporate differential privacy guarantees for
wasserstein GANs wherein DPSGD[1] is applied for training the discriminator. Moreover, they make
use of weight clipping to enforce the Lipschitz constraint on the discriminator so as to be compatible
with the wasserstein loss.

However, the challenges with this approach lies in the fact that calibrating the DP specific hyper
parameters (i.e gradient norm clipping value) varies drastically based on differences in network archi
tectures and training procedures. Additionally, clipping the weights of the discriminator has been found
to cause convergence issues[16].

GSWGAN In the work done by [5] (2020), the authors work towards training image GANs in a pri
vacy preserving manner. Their novel contributions include utilising the wasserstein loss with gradient
penalty[16] to avoid hyperparameter tuning of the clipping parameter and employing DP guarantees
using DPSGD[1] for the generator network rather than the discriminator network. This is motivated
by the fact that only the generator network is made publicly available after training the GAN model.
Moreover, they propose a more precise approach for perturbing gradients of the generator by only
manipulating those that are computed with respect to the training data so as to minimize the loss of
gradient information. And lastly, they make use of the subsampled Rényi Differential Privacy (RDP)
Accountant[40] to compute the privacy loss during training.

However, their work focuses only on DP training of the generator and offers no experimental analysis
against privacy attacks.

Table 2.2: Outline of all methodologies in this work.

Model Loss DP Site Noise Accountant Data Format
PATEGAN KL Divergence Loss Discriminator Laplacian PATE Accountant Table
DPWGAN Wasserstein Loss + Weight Clipping Discriminator Gaussian RDP Accountant Image & Table
GSWGAN Wasserstein Loss + Gradient Penalty Generator Gaussian RDPAccountant Image

2.2. Background
2.2.1. GAN Designs
GANGANs are a relatively recent breakthrough in machine learning and generative modelling. Unlike
conventional machine learning algorithms that learn a conditional distribution of a class variable given
the predictor variables (e.g., to solve a binary classification problem), the main purpose of GANs is to
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learn the joint distribution of the entire input data. In this way, using the learned joint distribution, the
generated samples can be drawn to resemble the original input data.

GANs make use of two neural networks: the generator and the discriminator networks. The gen
erator takes as input a random noise vector to synthesize data that closely resembles the real data.
Whereas, the discriminator takes as input real/generated samples and acts a teacher assessing the
output of the generator judging whether the generated samples are real or fake. Much like a supervisor
providing feedback to a student about his/her work. The two models are trained together via an adver
sarial minmax game minimizing the loss of the generator while maximizing the loss of the discriminator
expressed below [15]:

min
𝒢

max
𝒟
𝑉(𝒢,𝒟) = 𝔼[𝑙𝑜𝑔𝒟(𝑥)]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝔼[𝑙𝑜𝑔(1 − 𝒟(𝒢(𝑧)))]𝑧∼𝑝(𝑧) (2.1)

where 𝑝𝑑𝑎𝑡𝑎 denotes the real data distribution, 𝑝(𝑧) denotes a prior distribution (i.e𝒩(0, 𝐼)) with latent
vector 𝑧 and 𝒟 outputs a scalar in the range [0,1].

Tabular GANs are simply GANs that are used to generate tabular formatted datasets. As an exam
ple, consider an SQL table used to store employee information. In this setting, each entry in the table
is an independent sample obtained from the joint distribution of all the employees. The goal of tabular
GANs is to learn such a joint distribution to subsequently synthesize data that matches the original.
Fig. 2.1 illustrates this process.

Figure 2.1: Synthetic Tabular Data Generation via GANs

DCGAN[27] TheDCGAN architecture is an extension of the standard GAN architecture which makes
use of convolutional and convolutionaltranspose layers in the discriminator and generator, respec
tively. It is a widely used stable GAN architecture that has proven to be useful for generating images
as well as tabular data [26].

The generator network of DCGAN consists of stacks of strided 2D convolutional transpose layers
followed by a 2d batch norm layer and a ReLU activation function. The final output of the generator
is passed through a Tanh activation function to bring the values in the original range of [−1, 1] (for
representing images). The generator takes as input a random noise vector of arbitrary length and
returns an image with the same spatial dimensions as the original dataset.

Whereas, the discriminator network is composed of stacks of 2d convolutional layers, 2d batch norm
and LeakyReLU layers with a leaky ratio of 0.20 with the final output being passed through a sigmoid
activation function. The discriminator takes as input real/fake images and outputs the probability of any
particular sample being real or synthetic.

Lastly, it is worth noting that the presence of batch normalisation in both the generator and discrim
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inator networks is a key contribution of the authors that leads to a stable flow of gradients for training
DCGAN reliably.

Conditional GAN & TrainingbySampling[42] To address the problem of imbalanced categorical
variables in realworld datasets, the conditional generator, generator loss and trainingbysampling are
introduced in the work of [42]. The main idea behind these techniques stems from the use an additional
vector, termed as the conditional vector, to represent the classes of categorical variables. This vector
is both fed to the generator and used to bound the sampling of the real training samples to subsets sat
isfying the condition. Moreover, the conditions are sampled in such a way so as to give higher chances
to minority classes while training the model. These concepts are explained in greater detail below.

The Conditional GAN features a conditional generator whose generated samples come from a con
ditional probability distribution �̂� ∼ ℙ𝒢(𝑟𝑜𝑤|𝐶𝑖∗ = 𝑐∗) where, 𝑐∗ is a particular class within the 𝑖𝑡ℎ cate
gorical variable 𝐶𝑖∗ . Intuitively, this corresponds to generating a row given a chosen class for a selected
categorical variable. To represent this condition (i.e., 𝐶𝑖∗ = 𝑐∗), the conditional vector is used.

To construct the conditional vector, [42] treats all categorical variables 𝐶1, ..., 𝐶𝑁𝑐 as onehot vec
tors 𝑐1, ..., 𝑐𝑁𝑐 where 𝑁𝑐 represents the total number of categorical variables. Let the 𝑖𝑡ℎ onehot vector
and it’s corresponding 𝑚𝑎𝑠𝑘 vector be denoted as 𝑐𝑖 = [𝑐(𝑘)𝑖 ], for 𝑘 = 1, ..., |𝐶𝑖| & 𝑚𝑖 = [𝑚(𝑘)𝑖 ], for
𝑘 = 1, ..., |𝐶𝑖|, respectively. The condition is then expressed using the 𝑚𝑎𝑠𝑘𝑠 for each onehot vector
as: 𝑚(𝑘)𝑖 = {1, if 𝑖 = 𝑖∗ & 𝑘 = 𝑘∗, else 0} where 𝑖∗ is a chosen categorical variable and 𝑘∗ is the selected
class within variable 𝑖∗. Thus, the conditional vector is represented as: 𝑐𝑜𝑛𝑑 = 𝑚1⊕ ... ⊕ 𝑚𝑁𝑐 where
⊕ is the concatenation operator. As an example, consider two categorical variables 𝐶1 = [0, 1] and
𝐶2 = [0, 1], if the condition is 𝐶1 = 0, the corresponding𝑚𝑎𝑠𝑘𝑠 will be𝑚1 = [1, 0] & 𝑚2 = [0, 0] to result
in a conditional vector i.e., 𝑐𝑜𝑛𝑑 = [1, 0, 0, 0].

Next, [42] uses the generator loss to ensure that the conditional generator generates samples that
match the constraint provided by the conditional vector. As an example, consider the 𝑚𝑎𝑠𝑘 𝑚𝑖 = [1, 0]
for a particular categorical variable 𝑖. Given this condition, the conditional generator should ideally
similarly output a data row where the 0𝑡ℎ class for the 𝑖𝑡ℎ categorical variable is produced leading to
a matching generated 𝑚𝑎𝑠𝑘 �̂�𝑖 = [1, 0]. Thus, if 𝑚𝑖 represents the conditional 𝑚𝑎𝑠𝑘 for the selected
onehotencoded variable 𝑖 associated for a given data row and �̂�𝑖 denotes the corresponding gen
erated 𝑚𝑎𝑠𝑘, the generator loss denoted as ℒ𝐺𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 is formally represented as: 𝐻(𝑚𝑖 , �̂�𝑖) where
𝐻(.) is the crossentropy loss. Therefore, in this manner, the added loss acts as a soft constraint for
enforcing that the generated samples are aligned with their corresponding conditional vectors.

Finally, the trainingbysampling method is used to sample the conditional vector in such a way so
that the model can explore all possible classes present in categorical variables evenly during training.
Thus, the sampling procedure for generating a condition is as follows:

1. Out of 𝑁𝑐 categorical variables, a column 𝐶𝑖∗ is uniformly chosen at random with probability 1/𝑁𝑐.

2. Based on the chosen column 𝐶𝑖∗ , a probability mass function (PMF) is created after applying a log
transformation to the frequency of individual classes within column 𝐶𝑖∗ where the logtransform
naturally leads to an oversampling of minority classes.

3. On the basis of the constructed PMF described above, a class 𝑐∗ is sampled for the selected
column 𝐶𝑖∗ . Thus the condition 𝐶𝑖∗ = 𝑐∗ and it’s corresponding conditional vector 𝑐𝑜𝑛𝑑 is formed.
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2.2.2. GAN Loss Objectives
Wasserstein Loss with Gradient Penalty[16] The wasserstein loss first proposed in the work of [2]
(2017) provides greater stability for training GANs as compared to the classical KL divergence loss (as
shown in Eq. 2.1). In contrast to the KL divergence loss, the proposed loss function remains continuous
and differentiable for measuring the similarity of probability distributions with nonoverlapping support.
Therefore, it is capable of providing more meaningful gradients for training the generator especially for
cases where the probability distribution of generated samples is highly dissimilar to the real probability
distribution. Formally, the wasserstein loss may be expressed as minimizing the integral probability
metrics (IPMs) 𝑠𝑢𝑝𝑓∈ℱ| ∫𝑀 𝑓𝑑ℙ𝑟 − ∫𝑀 𝑓𝑑ℙ𝑔| between real(ℙ𝑟) and generated (ℙ𝑔) data distributions,
where ℱ = {𝑓 ∶ ||𝑓||𝐿 ≤ 1} enforces the discriminator function 𝑓 to be 1Lipschitz continuous. In prac
tice, [2] proposed weight clipping to enforce the Lipschitz constraint on the discriminator by clamping
the weights of the discriminator to lie within a compact space [−𝑐, 𝑐] where 𝑐 is the clipping threshold.

However, [16] proposed the gradient penalty term as an alternative to weight clipping. As they
found that weight clipping may lead to convergence issues by biasing the discriminator towards simpler
functions or causing exploding/vanishing gradients. Motivated by their theoretical proof illustrating that
an optimal discriminator naturally possesses a gradient norm of 1 almost everywhere under real and
generated distributions, ℙ𝑟 and ℙ𝑔 respectively, the authors define the discriminator to be 1Lipschitz
continuous if and only if, it has gradients with norm at most 1 everywhere. They then enforce 1Lipschitz
continuity of the discriminator by adding a soft constraint during training to constrain the gradient norm
of the discriminator’s output with respect to it’s input. Originally the authors define the input (i.e random
samples �̂� ∼ ℙ�̂�) as sampling along the straight lines between pair of points sampled from the original
data distribution ℙ𝑟 and the generator distribution ℙ𝑔. Thus, the training objectives ℒ𝐷 & ℒ𝐺 for the
discriminator and generator are expressed as:

ℒ𝐷 = 𝔼�̃�∼ℙ𝑔[𝐷(�̃�)] − 𝔼𝑥∼ℙ𝑟[𝐷(𝑥)]⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Wasserstein loss

+𝜏𝔼�̂�∼ℙ�̂�[(||∇�̂�𝐷(�̂�)||2 − 1)2]⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Gradient penalty

(2.2)

ℒ𝐺 = −𝔼�̃�∼ℙ𝑔[𝐷(𝐺(�̃�))] (2.3)

where 𝐷 is the set of 1Lipschitz functions defining the discriminator network, 𝐺 represents the gen
erator network and 𝜏 is the penalty coefficient.

Classification & Information Losses[26] The classification loss requires to add to the GAN ar
chitecture an auxiliary classifier in parallel to the discriminator. Moreover, the auxiliary classifier is
trained alongside the discriminator and generator and usually features the same neural architecture as
the discriminator [24]. It’s primarily used to output predicted class labels for each synthesized record.

The classification loss quantifies the discrepancy between the synthesized and predicted class la
bels. This helps to increase the semantic integrity of synthetic records. For instance, (sex=female,
disease=prostate cancer) is not a semantically correct record as women do not have a prostate, and
no such record should appear in the original data and is hence not learnt by the classifier[26]. Therefore,
it provides the generator a useful signal to generate valid class labels for synthetic data records.

ℒ𝐶𝑐𝑙𝑎𝑠𝑠 = 𝔼[|𝑙(𝑥) − 𝒞(𝑓𝑒(𝑥))|]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) & ℒ𝐺𝑐𝑙𝑎𝑠𝑠 = 𝔼[|𝑙(𝐺(𝑧)) − 𝒞(𝑓𝑒(𝐺(𝑧)))|]𝑧∼𝑝(𝑧) correspond to
training the classifier (i.e., 𝒞) and generator (i.e., 𝒢), respectively, where 𝑙(.) is a function that returns
the class label of any given data row and 𝑓𝑒(.) deletes the class feature of that data row.
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The information loss penalizes the discrepancy between statistics of the generated data and the real
data. This helps to generate data which is statistically closer to the real one. Moreover, the information
loss stabilizes the training of the generator by providing a new objective for the generator that prevents
it from overtraining on the current discriminator [29].

For computing the information loss, let 𝑓𝑥 and 𝑓𝒢(𝑧) denote the resulting features obtained from
the penultimate layer of a discriminator denoted as 𝒟 for a real and generated sample, respectively.
Thus, the information loss for the generator (i.e., 𝒢) is expressed as: ℒ𝐺𝑖𝑛𝑓𝑜 = ℒ𝑚𝑒𝑎𝑛 + ℒ𝑠𝑑 where
ℒ𝑚𝑒𝑎𝑛 = ||𝔼[𝑓𝑥]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) − 𝔼[𝑓𝒢(𝑧)]𝑧∼𝑝(𝑧)||2 and ℒ𝑠𝑑 = ||𝕊𝔻[𝑓𝑥]𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) − 𝕊𝔻[𝑓𝒢(𝑧)]𝑧∼𝑝(𝑧)||2. And, 𝔼
and 𝕊𝔻 denote the mean and standard deviations of the features, respectively.

Note that for all the above loss equations, 𝑝𝑑𝑎𝑡𝑎 is used to denote the real data distribution and 𝑝(𝑧)
is a prior distribution over the latent noise vector 𝑧 that is fed to the generator.

2.2.3. Data Transformation
ModeSpecific Normalisation The modespecific normalization (MSN) [42] technique developed
in the work of [42] is invented to deal with multiple peaks in multimodal continuous variables. The
MSN acts as a reversible transformation that helps to represent complicated numerical distributions
and generate synthetic data with greater fidelity.

(a) Fitting VGM on a
continuous variable

(b) Selecting a mode for a
single value in a continuous

variable

Figure 2.2: MSN encoding for continuous variables

A continuous variable is processed using a variational Gaussian mixture model (VGM) [4] to esti
mate the number of modes 𝑘, e.g., 𝑘 = 2 in the example provided(see Fig. 2.2(a)), and fits a Gaussian
mixturemodel. The learnedGaussianmixturemodel can be formally expressed as: ℙ = ∑2𝑘=1𝜔𝑘𝒩(𝜇𝑘 , 𝜎𝑘),
where 𝒩 is the normal distribution and 𝜔𝑘, 𝜇𝑘 and 𝜎𝑘 are the weight, mean and standard deviation of
each mode, respectively.

To encode values of a continuous variable, each value is associated and normalized based on the
mode for which it has highest probability to belong to (see Fig. 2.2(b)). Given 𝜌1 and 𝜌2 being the
probability density from the two modes in correspondence of the value 𝜏 to encode, the mode with the
highest probability is selected. In the provided example 𝜌1 is higher and so mode 1 is used to normalize
𝜏. The normalized value 𝛼 is: 𝛼 = 𝜏−𝜇1

4𝜎1
. Moreover the mode used to encode 𝜏 is tracked via onehot

encoding 𝛽, e.g. 𝛽 = [1, 0] in the given example. The final encoding is giving by the concatenation of
𝛼 and 𝛽: 𝛼⨁𝛽, where ⨁ is the vector concatenation operator.

2.2.4. Differential Privacy
This section presents formal definitions and theorems pertaining to differential privacy that are relevant
for this work.
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Definition 2.2.1 (Differential Privacy[11]) A randomized mechanismℳ with range ℛ is (𝜖, 𝛿)DP, if

𝑃[ℳ(𝑆) ∈ 𝒪] ≤ 𝑒𝜖 .𝑃[ℳ(𝑆′) ∈ 𝒪] + 𝛿 (2.4)

holds for any subset of outputs 𝒪 ⊆ ℛ and for any adjacent datasets S and S’, where S and S’ differ
from each other with only one training example.

Note that,ℳ, for the purposes of this work corresponds to a tabular GAN model and (𝜖, 𝛿) repre
sents the privacy budget. Intuitively, DP tries to minimize the influence of any individual data point on
the training of tabular GANs with lower values of (𝜖, 𝛿) providing greater privacy protection.

Definition 2.2.2 (Rényi Differential Privacy (RDP)[22]) A randomized mechanismℳ is (𝜆, 𝜖)RDP with
order 𝜆, if

𝐷𝜆(ℳ(𝑆)||ℳ(𝑆′)) = 1
𝜆 − 1𝑙𝑜𝑔𝔼𝑥∼ℳ(𝑆) [(

𝑃[ℳ(𝑆) = 𝑥]
𝑃[ℳ(𝑆′) = 𝑥])]

𝜆−1
≤ 𝜖 (2.5)

holds for any adjacent datasets S and S’, where 𝐷𝜆(𝑃||𝑄) =
1
𝜆−1 𝑙𝑜𝑔𝔼𝑥∼𝑄[(𝑃(𝑥)/𝑄(𝑥))

𝜆] represents the
Rényi divergence. In addition, a (𝜆, 𝜖)RDP mechanismℳ can be expressed as (𝜖 + 𝑙𝑜𝑔1/𝛿

𝜆−1 , 𝛿)DP.
RDP was proposed to alleviate the shortcomings of DP while dealing with the composition of ran

domized mechanisms that rely on the application of gaussian noise. RDP is a strictly stronger pri
vacy definition than DP as it provides tighter bounds for tracking the cumulative privacy loss over a
sequence of mechanisms such as differential private stochastic gradient descent which is performed
multiple times during training.

Theorem 2.2.1 (Composition[22]) For a sequence of mechanisms ℳ1, ...,ℳ𝑘 such that ℳ𝑖 is (𝜆, 𝜖𝑖)
RDP ∀𝑖, the compositionℳ1 ∘ ... ∘ ℳ𝑘 is (𝜆, ∑𝑖 𝜖𝑖)RDP.

Definition 2.2.3 (Gaussian Mechanism[12, 22]) Let 𝑓 ∶ 𝑋 → ℝ𝑑 be an arbitrary ddimensional func
tion with sensitivity being:

Δ2𝑓 =max
𝑆,𝑆′

||𝑓(𝑆) − 𝑓(𝑆′)||2 (2.6)

over all adjacent datasets S and S’. The Gaussian Mechanismℳ𝜎, parameterized by 𝜎, adds into the
output, i.e.,

ℳ𝜎(𝑥) = 𝑓(𝑥) +𝒩(0, 𝜎2𝐼) (2.7)

where𝒩 denotes a Gaussian distribution with mean 0 and covariance 𝜎2𝐼. Thus,ℳ is considered to
be (𝜆, 𝜆Δ2𝑓

2

2𝜎2 )RDP.
The Gaussian mechanism described above forms the basis on which differential privacy is inte

grated for training tabular GANs in this work.

Theorem 2.2.2 (Post Processing[12]) Ifℳ satisfies (𝜖, 𝛿)DP, 𝐹∘ℳ will satisfy (𝜖, 𝛿)DP for any function
F with ∘ denoting the composition operator.

As a result of the post processing theorem, it suffices to ensure that one of the networks for tabular
GANs (i.e., either the discriminator or the generator network) is trained with DP guarantees to guaran
tee that the overall algorithm is compatible with differential privacy.

Theorem 2.2.3 (RDP for Subsampled Mechanisms[40]) Given a dataset containing 𝑛 data points with
domain𝒳 and a randomized mechanismℳ that takes an input from𝒳𝑚 for𝑚 ≥ 𝑛, let the randomized
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algorithmℳ∘subsample be defined as: (i) subsample: subsample without replacement𝑚 data points
of the database (with subsampling rate 𝛾 = 𝑚/𝑛); (ii) applyℳ: a randomized algorithm taking the sub
sampled dataset as the input. Thus, for all integers 𝜆 ≥ 2, ifℳ is (𝜆, 𝜖(𝜆))RDP, thenℳ ∘ subsample
is (𝜆, 𝜖′(𝜆))RDP where

𝜖′(𝜆) ≤ 1
𝜆 − 1𝑙𝑜𝑔(1 + 𝛾

2(𝜆2)min {4(𝑒𝜖(2) − 1), 𝑒𝜖(2)min{2, (𝑒𝜖(∞) − 1)2}}

+
𝜆

∑
𝑗=3
𝛾𝑗(𝜆𝑗)𝑒

(𝑗−1)𝜖(𝑗)min{2, (𝑒𝜖(∞)−1)𝑗)})
(2.8)

Subsampling is a useful technique to strengthen the privacy guarantees offered by a randomized
mechanismℳ.

2.2.5. DP via Differential Private SGD[1]
The DPSGD technique enables training neural networks with differential privacy guarantees and uses
noisy stochastic gradient descent as a means to limit the influence of individual training samples. Algo
rithm 1 specifies how this technique is used for training a network with parameters 𝜃 by minimizing the
empirical loss function ℒ(𝜃). For every iteration of SGD, the gradients Δℒ(𝜃; 𝑥𝑖) are calculated for some
random subset of real data points. After which the L2 norm of the gradients are clipped. Finally noise
is added to the gradients to preserve privacy and the parameters 𝜃 are updated via gradient descent.

Algorithm 1: Differential Private SGD[1]
Input: Data points {𝑥1, ..., 𝑥𝑁}, loss function ℒ(𝜃) = 1

𝑁
∑𝑖 ℒ(𝜃, 𝑥𝑖). Hyperparameters: learning rate

𝜂𝑡, noise scale 𝜎, batch size 𝐵, gradient norm bound 𝐶.
Initialize 𝜃0 randomly;
for 𝑡 ∈ [𝑇] do

Take a random sample 𝐵𝑡 with sampling probability 𝐵/𝑁;
Compute Gradient
For each 𝑖 ∈ 𝐵𝑡, compute 𝑔𝑡(𝑥𝑖) ← ∇𝜃𝑡ℒ(𝜃𝑡 , 𝑥𝑖)
Clip gradient
�̄�𝑡 ← 𝑔𝑡(𝑥𝑖)/max(1, ||𝑔𝑡(𝑥𝑖)||2𝐶 )
Add noise
�̃�𝑡 ←

1
𝐿 (∑𝑖 �̄�𝑡(𝑥𝑖) +𝒩(0, 𝜎

2𝐶2𝐼))
Descent
𝜃𝑡+1 ← 𝜃𝑡 − 𝜂𝑡�̃�𝑡

Output:𝜃𝑇 and final privacy cost (𝜖, 𝛿) computed using a privacy accountant.





3
Exploratory Study of Related Work

3.1. Introduction
This chapter tackles the first research question introduced in Sec. 1.3. Thus, Sec. 3.2 elicits an empirical
quantitative analysis of four stateoftheart tabular GANs with respect to three core evaluation criteria
as follows:

• Statistical similarity with original data

• Utility for Machine Learning (ML) applications

• Privacy preservability

And, Sec. 3.3 introduces major challenges faced by current stateoftheart methods. Finally, Sec. 3.4
ends the chapter with a brief summary.

3.2. Empirical Comparison
3.2.1. Datasets
Five commonly used machine learning datasets were used to perform this experimental study,. Three
of them – Adult, Covertype and Intrusion – are from the UCI machine learning repository [10]. The other
two –Credit and Loan – are from Kaggle1. All five tabular datasets have a target variable, for which the
rest of the variables are used to perform classification. Due to computing resource limitations, 50K rows
of data are sampled randomly in a stratified manner with respect to the target variable for Covertype,
Credit and Intrusion datasets.

However, the Adult and Loan datasets are not sampled. The details of each dataset are shown in
Tab. 3.1. One thing to notice here is that we assume that the user already knows the data type of each
variable for every dataset before training. [42] holds the same assumptions.

1https://www.kaggle.com/datasets
2Refer to Sec. 4.2.2 & Sec. 4.2.4 for details for Mixedtype and Longtail, respectively. Note that these datatypes are simply
treated as continuous with respect to the baselines evaluated in this chapter.
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http://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/covertype
http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/itsmesunil/bank-loan-modelling
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Table 3.1: Description of Datasets2.

Dataset Train/Test Split Target Variable Continuous Binary Multiclass Mixedtype Longtail
Adult 39k/9k ’income’ 3 2 7 2 0

Covertype 45k/5k ’Cover_Type’ 10 44 1 0 0
Credit 40k/10k ’Class’ 30 1 0 0 1
Intrusion 45k/5k ’Class’ 22 6 14 0 2
Loan 4k/1k ’PersonalLoan’ 5 5 2 1 0

3.2.2. Baselines
We evaluate 4 stateoftheart GANbased tabular data generators: CTGAN, TableGAN, CWGAN &
MedGAN. Tab. 2.1 stresses on the key features of each baseline.

To have a fair comparison, all algorithms are implemented in Pytorch, with the generator and dis
criminator structures matching the descriptions provided in their respective papers with the exception
of the MedGAN model which was extended to deal with continuous variables as well.3 All algorithms
are trained using a batch size of 500 rows for 150 epochs for Adult, Covertype, Credit and Intrusion
datasets, whereas the algorithms are trained for 300 epochs on Loan dataset. This is because, the
Loan dataset is significantly smaller than the others containing only 5000 rows and requires a longer
training time to converge. Lastly, each experiment is repeated 3 times.

3.2.3. Environment
Experiments are run under Ubuntu 20.04 on a machine equipped with 32 GB memory, a GeForce RTX
2080 Ti GPU and a 10core Intel i9 CPU.

3.2.4. Evaluation metrics
The evaluation is conducted on three dimensions: (1) machine learning (ML) utility, (2) statistical simi
larity and (3) privacy preservability. The first two are used to evaluate if the synthetic data can be used
as a good proxy of the original data. The third criterion sheds light on the nearest neighbour distances
within and between the original and synthetic datasets, respectively.

1. Machine learning (ML) utility To quantify the ML utility, we compare the performance achieved
by 5 widely used machine learning algorithms on real versus synthetic data: decision tree classi
fier, linear supportvectormachine (SVM), random forest classifier, multinomial logistic regression
and MLP. We use Python and scikitlearn 0.24.2. We set maxdepth to 28 for decision tree and
random forest models. MLP uses one 128 neuron hidden layer. All other hyperparameters use
their default value. For a fair compassion, all hyperparameters and ML models are fixed across
all datasets. Due to this our results can differ slightly from [42] where the authors use different
ML models and hyperparameters for each dataset.

First we split the original data into training and test sets (see Fig. 3.1). The training set is used as
real data to train the GAN models. Once the training is finished, we use it to synthesize data with
the same size as the training set. The synthetic and real training datasets are then used to train
two separate instances of the 5 machine learning models from above. The ML utility is measured
via difference in accuracy, F1score and area under the ROC between model pairs trained on the
real and synthetic data. The aim of this design is to test how close the ML utility is when we train
a machine learning model using the synthetic data vs the real data.

2. Statistical Similarity Three metrics are used to quantitatively measure the statistical similarity
3Note that the codebase for all the models was found here https://github.com/sdvdev/SDGym

https://github.com/sdv-dev/SDGym
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Figure 3.1: Evaluation flows for ML utility

between the real and synthetic data.

JensenShannon divergence (JSD) [19] The JSD provides a measure to quantify the difference
between the probability mass distributions of individual categorical variables belonging to the real
and synthetic datasets, respectively. Moreover, this metric is bounded between 0 and 1 and is
symmetric allowing for an easy interpretation of results.

Wasserstein distance (WD) [28] In similar vein, the Wasserstein distance is used to capture
how well the distributions of individual continuous/mixed variables are emulated by synthetically
produced datasets in correspondence to real datasets. We use WD because we found that the
JSD metric was numerically unstable for evaluating the quality of continuous variables, especially
when there is no overlap between the synthetic and original dataset. Hence, we resorted to utilize
the more stable Wasserstein distance.

Difference in pairwise correlation (Diff. Corr.) To evaluate how well feature interactions are pre
served in the synthetic datasets, we first compute the pairwise correlation matrix for the columns
within real and synthetic datasets individually. Tomeasure the correlation between any two contin
uous features, the Pearson correlation coefficient is used. It ranges between [−1,+1]. Similarly,
the Theil uncertainty coefficient is used to measure the correlation between any two categorical
features. It ranges between [0, 1]. Lastly, the correlation ratio between categorical and contin
uous variables is used. It also ranges between [0, 1]. Note that the dython4 library is used to
compute these metrics. Finally, the differences between the pairwise correlation matrices for
the real and synthetic datasets is computed.

3. Privacy preservability To quantify the privacy preservability, we resort to distance metrics (in
stead of differential privacy [18]) as they are intuitive and easy to understand by data science
practitioners. Specifically, the following two metrics are used to evaluate the privacy risk associ
ated with synthetic datasets.

Distance to Closest Record (DCR) The DCR is used to measure the Euclidean distance between
any synthetic record and its closest corresponding real neighbour. Ideally, the higher the DCR
the lesser the risk of privacy breach. Furthermore, the 5𝑡ℎ percentile of this metric is computed
to provide a robust estimate of the privacy risk.

4http://shakedzy.xyz/dython/modules/nominal/#compute_associations

http://shakedzy.xyz/dython/modules/nominal/#compute_associations
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Nearest Neighbour Distance Ratio (NNDR) [21] Instead of only measuring the closest neighbour,
the NNDR measures the ratio between the Euclidean distance for the closest and second closest
real neighbour to any corresponding synthetic record. This ratio is within [0, 1]. Higher values
indicate better privacy. Low NNDR values between synthetic and real data may reveal sensitive
information from the closest real data record. Fig. 3.2 illustrates the case. Hence, this ratio helps
to evaluate the privacy risk with greater depth and better certainty. Note that the 5𝑡ℎ percentile is
computed here as well.

Figure 3.2: Illustration of NNDR metric with its privacy risk implications

3.2.5. Results
In this subsection, the experimental results for each datasynthesizer are shown based on the afore
mentioned evaluation criteria.

1. ML Utility Tab. 3.2 shows that the TableGAN model outperforms the other models by achieving
the least differences in all three metrics used to measure ML utility (i.e Accuracy, F1score and
AUC). This surprising result shows that it can even outperform the more recent conditional GAN
architectures such as CTGAN and CWGAN. The results shown here suggests that the deep
convolution architecture employed in the TableGAN model achieves the most formidable results.
Therefore, it is worth exploring the benefits of utilising this type of architecture to further improve
the performance of other models such as CTGAN.

Table 3.2: Difference of ML accuracy (%), F1score, and AUC between original and synthetic data: average over 5 different
datasets and 3 replications.

Method Accuracy F1score AUC
CTGAN 21.51% 0.274 0.253
TableGAN 11.40% 0.130 0.169
MedGAN 14.11% 0.282 0.285
CWGAN 20.06% 0.354 0.299

2. Statistical similarity Tab. 3.3 shows that the CTGAN datasynthesizer achieves the best aver
age JSD for categorical columns along with the the best average wasserstein distance for con
tinuous columns. This highlights that a conditional architecture accompanied by the training
bysampling method along with mode specific normalisation for continuous variables is directly
beneficial for improving statistical similarity of synthetically produced datasets. However, it should
be noted the TableGANmodel performs best in terms of maintaining the least correlation distance
with the CTGAN model performing slightly worse at second place. This slight difference could yet
again be attributed towards the DCGAN neural network architecture that makes use of strided
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convolutions which enables the receptive field to grow larger after each layer thereby extracting
useful global correlations in the data.

Table 3.3: Statistical similarity: three measures averaged over 5 datasets and three repetitions.

Method Avg JSD Avg WD Diff. Corr.
CTGAN 0.0704 1769 2.73
TableGAN 0.0796 2117 2.30
MedGAN 0.2135 46257 5.48
CWGAN 0.1318 238155 5.82

3. Privacy Impact Tab. 3.4 highlights that the CWGAN and MedGAN models maintain the safest
distance in terms of the DCR and NNDR metrics between real and synthetic datasets. Further
more, by analyzing the DCR and NNDR metrics within synthetic data, we see that the CWGAN
model produces the most diverse samples whereas the MedGAN model produces the least di
verse samples among all the datasynthesizers suggesting that it most likely suffers from mode
collapse. Lastly, it is worth mentioning that the results also show that privacy and ML utility are
fundamentally inversely related as models such as CTGAN and TableGAN which perform well in
terms of ML utility are naturally worse in terms of privacy.

Table 3.4: Privacy impact: between real and synthetic data (R&S) and within real data (R) and synthetic data (S).

Model DCR NNDR
R&S R S R&S R S

CTGAN 1.517 0.428 1.026 0.763 0.414 0.624
TableGAN 0.988 0.428 0.920 0.681 0.414 0.632
MedGAN 1.918 0.428 0.254 0.871 0.414 0.393
CWGAN 2.197 0.428 1.124 0.847 0.414 0.675

3.3. Challenges faced by Existing Solutions
In this section, we empirically demonstrate how the prior stateoftheart methods fall short in solving
challenges in industrial data sets.

1. Mixed data type variables To the best of our knowledge, existing GANbased tabular generators
only consider data variables as either categorical or continuous. However, in reality, a variable
can be a mix of these two types, and often variables have missing values. TheMortgage variable
from the Loan dataset is a good example of a mixed variable. Fig. 3.3a shows the distribution of
the original and synthetic data generated by 4 stateoftheart algorithms for this variable.

According to the data description, a loan holder can either have no mortgage (0 value) or a
mortgage (any positive value). In appearance this variable is not a categorical type due to the
numeric nature of the data. So all 4 stateoftheart algorithms treat this variables as a continuous
type without capturing the special meaning of the value, zero. Hence, all 4 algorithms generate a
value around 0 instead of exact 0. And the negative values for Mortgage have no/wrong meaning
in the real world.

2. Long tail distributions Many real world datasets can have long tail distributions where most
of the occurrences happen near the initial value of the distribution, and rare cases towards the
end. As an example, Fig. 3.3b plots the cumulative frequency for the original (top) and synthetic
(bottom) data generated by 4 stateoftheart algorithms for the Amount variable in the Credit
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dataset. This variable represents the transaction amount when using credit cards. One can
imagine that most transactions have small amounts, ranging from few bucks to thousands of
dollars. However, there definitely exists a very small number of transactions with large amounts.
Note that for ease of comparison both plots use the same xaxis, but the real data has no negative
values.

Thus, the real data clearly has 99% of occurrences happening at the start of the range, but the
distribution extends until around 25000. In comparison none of the synthetic data generators are
able to learn and imitate this behavior.

3. Skewed multimodal continuous variablesThe term multimode is extended from Variational
Gaussian Mixtures (VGM) [4] (refer to Sec. 2.2.3). These are used to model Gaussian distribu
tions with multiple peaks. The intuition behind using multiple modes can be easily captured from
Fig. 3.3c. The figure plots in each row the distribution of the working Hoursperweek variable
from the Adult dataset. This is not a typical Gaussian distribution. There is an obvious peak at
40 hours but with several other lower peaks, e.g. at 50, 20 and 45. Also the number of people
working 20 hours per week is higher than those working 10 or 30 hours per week.

This behavior is difficult to capture for the stateoftheart data generators (see subsequent rows in
Fig.3.3c). The closest results are obtained by CTGANwhich usesGaussianmixture estimation for
continuous variables. However, CTGAN loses some modes compared to the original distribution.

(a) Mortgage in Loan dataset [17] (b) Amount in Credit dataset[38] (c) Hoursperweek in Adult dataset [10]

Figure 3.3: Challenges of modeling industrial datasets using existing Tabular GANs: (a) Mixed datatype, (b) Long tail
distribution, and (c) Skewed multimodal continuous variable

3.4. Conclusion
In this exploratory study, we were able to shed some light on some of the latest works on GANbased
tabular datasynthesizers. Additionally, we executed an indepth empirical evaluation to benchmark
their performance. Based on our findings, we summarize some important key points as follows:

• Firstly, the TableGAN model outperforms stateoftheart approaches with respect to the utility for
ML applications as it maintains the least difference in all ML metrics.
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• Secondly, it is observed that the best average JSD for categorical variables and the best average
wasserstein distance for continuous variables is achieved by CTGAN.

• Thirdly, in terms of the privacy risk, all datasynthesizers produce datasets with a greater DCR
and NNDR metric for between real and synthetic datasets as compared to both within real and
synthetic datasets. This suggests that the privacy risk for all datasynthesizers as measured via
these metrics are limited.

• Lastly, current techniques fail to account for mixed datatypes, heavy longtailed distributions and
skewed multimodal numerical distributions.





4
CTABGAN: Effective Tabular Data

Synthesizing

4.1. Introduction
CTABGAN is a novel tabular data generator designed to overcome the challenges outlined in Sec. 3.3.
In CTABGAN we invent a Mixedtype Encoder based on the modespecific normalization (MSN) in
troduced in the work of [42]. The Mixedtype Encoder can better represent a mix of categorical and
continuous variables as well as deal with missing values. Moreover, CTABGAN is based on a con
ditional GAN (CGAN) and utilizes trainingbysampling to efficiently treat imbalanced data variables.
Additionally, it features the classification, information and generator losses [26, 42] for training the gen
erator to improve semantic integrity and training stability, respectively. Furthermore, CTABGANmakes
use of the underlying DCGAN architecture [27] for enhancing the quality of generated samples. Lastly,
CTABGAN utilizes a lightweight logtransformation to overcome the mode collapse problem for heavy
longtailed numerical variables.

Hence, in section Sec. 4.2, the novel design aspects of CTABGAN are highlighted and Sec. 4.3
provides an experimental analysis comparing CTABGAN with the stateoftheart methods introduced
in Sec. 3.2.2. Lastly, Sec. 4.4 ends with a short conclusion of the chapter.

4.2. Design of CTABGAN
4.2.1. Network Structure
The structure of CTABGAN comprises of three blocks: Generator 𝒢, Discriminator 𝒟 and an auxiliary
Classifier 𝒞. Moreover, since our algorithm is based on conditional GAN, the generator requires a noise
vector plus a conditional vector as input (refer to Sec. 2.2.1). Additionally, the discriminator is fed both
the real and synthetic data after concatenating them with their corresponding conditional vectors as
input (see Fig. 4.1).

𝒢 and 𝒟 are implemented using the DCGAN neural network architecture [27] (refer to section 2.2.1)
inspired from the work of [26]. This architecture has shown promising results in terms of generating
synthetic data with highML utility and was found to most optimally capture the correlations in the original

23
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data (refer to Sec. 3.2.5). Therefore, it is used as the underlying neural network architecture for training
CTABGAN.

𝒞 (refer to section 2.2.2) consists of 4 fully connected layers with 256 nodes each which are all
followed by a LeakyReLU layer with a leaky ratio of 0.20 and are trained using dropout regularization
with a probability parameter of 0.5. Note that the last and 5𝑡ℎ layer of the classifier is adapted to deal
with both binary & multiclass classification problems.

An important distinction concerning the classification loss as presented in the work of [26] is that,
this work utilizes an MLP neural architecture1 for the auxiliary classifier and caters to both binary and
multiclass classification problems. Whereas, TableGAN features an auxiliary classifier with the same
neural architecture as the discriminator and can only deal with binary classification problems.

Figure 4.1: Synthetic Tabular Data Generation via CTABGAN

4.2.2. Data Representation

Figure 4.2: Mixed type variable distribution with VGM estimation

The original tabular training data is encoded variable by variable. This work distinguish between
three types of variables: categorical, continuous & mixed.

Mixed variables are those that contain both categorical and continuous values, an example is a
continuous variable with missing values. The missing values clearly do not belong to the continuous
domain. Thus, they are treated separately as a categorical component of a mixed variable.

The novel mixedtype encoder is proposed to deal with such a variable. With this encoder, values
of mixed variables are seen as concatenated valuemode pairs based on the MSN technique(refer
to Sec. 2.2.3) introduced by [42]. The encoding is illustrated via the exemplary distribution of a mixed
variable shown in red in Fig. 4.2. One can see that values can either be exactly 𝜇0 or 𝜇3 (the categorical
1The MLP architecture was chosen as it led to superior performance in preliminary experiments.
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part) or distributed around two peaks in 𝜇1 and 𝜇2 (the continuous part). The continuous part has been
explained in Sec. 2.2.3.

The categorical part (e.g., 𝜇0 or 𝜇3) in Fig. 4.2 is treated similarly, except 𝛼 is directly set to 0 as
the category is determined only by the onehot encoding representing the modes. For example, for a
value in 𝜇3, the final encoding is given by 0⨁[0, 0, 0, 1].

Finally, categorical variables are encoded via a onehot vector 𝛾. missing values in this case are
simply treated as a separate unique class and an extra bit is added to the onehot vector to account for
it.

Thus, a row with [1, … , 𝑁] variables is encoded by concatenation of the encoding of all variables,
i.e. either (𝛼⨁𝛽) for continuous & mixed variables or 𝛾 for categorical variables. Having 𝑛 contin
uous/mixed variables and 𝑚 categorical variables (𝑛 + 𝑚 = 𝑁) the final encoding can be expressed
as:

𝑛

⨁
𝑖=1

𝛼𝑖⨁𝛽𝑖
𝑁

⨁
𝑗=𝑛+1

𝛾𝑗 (4.1)

4.2.3. Counter Imbalanced Variables
In CTABGAN, the conditional GAN with trainingbysampling (refer to Sec. 2.2.1) inspired from the
work of [42] is used. However, in contrast to their work, the conditional vector of CTABGAN is further
extended to include the onehotvectors corresponding to the modes used to represent continuous and
mixed columns (refer to Sec. 4.2.2). Thus, the extended conditional vector 𝑒𝑥_𝑐𝑜𝑛𝑑 is a bit vector
given by the concatenation of all onehot encodings 𝛽 (for continuous & mixed variables) along with all
categorical onehot encodings 𝛾 for all variables present in Eq. (4.1). For example, 𝑒𝑥_𝑐𝑜𝑛𝑑 is shown
in Fig. 4.3 with three variables, one continuous (𝐶1), one mixed (𝐶2) and one categorical (𝐶3), with class
2 selected for 𝐶3.

Extending the conditional vector to include the continuous & mixed variables helps deal with imbal
ance in the frequency of modes used to represent them. Moreover, the generator is conditioned on all
datatypes during training enhancing the learned correlation between all variables (refer to Sec. 4.3.1
& Sec. 4.3.3).

Figure 4.3: Conditional vector: example selects class 2 from third variable out of three

4.2.4. Treat Long Tails
To encode continuous values, a variational Gaussianmixturemodel is used (as explained in Sec. 2.2.3).
However, Gaussian mixtures can not deal with all types of data distributions, notably distributions with
a long tail where few rare points are far from the bulk of the data. VGM especially face great difficulties
to encode the values towards the tail.

To counter this issue, we preprocess continuous variables with long tail distributions with a log
transform. For such a variable having values with lower bound 𝑙, we replace each value 𝜏 with com
pressed 𝜏𝑐:

𝜏𝑐 = { log(𝜏) if 𝑙 >0
log(𝜏  𝑙+𝜖) if 𝑙 ⩽0, where 𝜖 >0 } (4.2)
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The logtransform allows to compress and reduce the distance between the tail and bulk datamaking
it easier for VGM to encode all values, including those values present towards the end of the long tail.
We show the impact of this simple yet effective method in Sec. 4.3.3.

4.2.5. Training Procedure
To train CTABGAN, one must overcome 2 major difficulties both caused by the use of a convolution
based GAN architecture (i.e., DCGAN[27]). The first is to be data compatible with the DCGAN archi
tecture that expects a square matrix commonly used to represent images. The second is to account
for the presence of multiple data types as the proposed DCGAN is not designed to handle categori
cal variables. This subsection explains how to overcome these issues in detail. Additionally it briefly
covers the training objectives used to train CTABGAN.

First, each row belonging to the original dataset is transformed as explained in Sec. 4.2.2. Let the
size of such a transformed row 𝑟 be defined as 1×𝑇 where 𝑇 is the length of each transformed datarow.
Next, the novel extended conditional vector (i.e., 𝑒𝑥_𝑐𝑜𝑛𝑑) is sampled as illustrated in section 4.2.3.
Let the size of 𝑒𝑥_𝑐𝑜𝑛𝑑 be 1×𝐸. The extended conditional vector and it’s corresponding real datarow
are further concatenated to form a vector (i.e., 𝑟 ⊕ 𝑒𝑥_𝑐𝑜𝑛𝑑) of size 1 × (𝑇 + 𝐸).

To deal with data compatibility, each datarow and it’s condition vector stored as a vector of size
1 × (𝑇 + 𝐸) is wrapped into the closest square matrix of dimensions, i.e. 1 × 𝑑 × 𝑑 such that 𝑑 is the
ceiled square root of the datarow dimensionality (i.e., 𝑇+𝐸). And, unfilled entries of the square matrix
are padded with zeros. For example, for a data row with 8 variables, it is converted into a square matrix
of dimension 3× 3 where the last missing entry corresponding to an additional 9𝑡ℎ column is filled with
a zero.

This square shaped imagelike format is then used to define the input layer dimensions of 𝒟 to take
as input of shape i.e., 1 × 𝑑 × 𝑑 where 1 is the number of channels and 𝑑 is the height and width, re
spectively. The generator on the other hand is initialized to take in as input a random noise vector 𝑧 of
arbitrary size 𝑠 coupled with it’s corresponding conditional vector 𝑒𝑥_𝑐𝑜𝑛𝑑 of size 𝐸 (i.e., 𝑧⊕ 𝑒𝑥_𝑐𝑜𝑛𝑑
of size (𝑠+𝐸)×1×1) to output a square matrix of shape 1×𝑔×𝑔 where 𝑔 is calculated as ceiled square
root of 𝑇 (i.e., the generator is not required to generate data concatenated with conditional vectors).

To account formultiple datatypes, the output of the generator is converted back into the shape of the
original tabular encoding 1 × 𝑇 after discarding the additional columns gained as a result of converting
to a square matrix. Subsequently, the final activation is applied. For the scalar values 𝛼 for mixed &
continuous variables, a Tanh final activation is used. And for onehotencodings used for representing
the modes (i.e., 𝛽) and the categorical variables (i.e., 𝛾) (refer to Sec. 4.2.2), the gumbel softmax acti
vation function with a temperature parameter of 0.20 is used. This is based on the work of [42] where
the different activations accounts for the difference in datatypes (a nonissue for generating images).

The resulting generated tabular datarow �̂� of size 1 × 𝑇 is concatenated with it’s corresponding
conditional vector 𝑒𝑥_𝑐𝑜𝑛𝑑 of size 1 × 𝐸 (i.e., �̂� ⊕ 𝑒𝑥_𝑐𝑜𝑛𝑑 of size 1 × (𝑇 + 𝐸)). And, this is similarly
converted back to a square shape of size 1 × 𝑑 × 𝑑 to be passed to the discriminator.

Finally, to account for the training objectives, let ℒ𝐷𝑜𝑟𝑖𝑔 and ℒ𝐺𝑜𝑟𝑖𝑔 denote the original GAN loss functions
from [15] described in Sec. 2.2.1 to train the discriminator 𝒟 and generator 𝒢, respectively. Further
more, for the generator (i.e., 𝒢) the complete training objective is the combination of the classification,
information and generator losses ( refer to Sec. 2.2.1). Thus, the training objective can be formally
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expressed as: ℒ𝐺 = ℒ𝐺𝑜𝑟𝑖𝑔 + ℒ𝐺𝑐𝑙𝑎𝑠𝑠 + ℒ𝐺𝑖𝑛𝑓𝑜 + ℒ𝐺𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟, while for 𝒟 it remains unchanged, i.e. ℒ𝐷𝑜𝑟𝑖𝑔.

Lastly, it is important to note that for utilising the classifier module, the conditional vectors are not
concatenated to either real or generated samples. Furthermore, the generated data is not converted
back into a square form after applying the final activation and is used as is. In this way, the classifier
takes as input the tabular encoded data representation of real/synthetic data expressed in Sec. 4.2.2.

4.3. Experimental Analysis
To show the efficacy of the proposed CTABGAN model, the experimental analysis introduced in Sec.
3.2 is extended to include CTABGAN. Hence the same experimental setup is used to compare the
performance of CTABGAN with respect to the baselines set by the four stateoftheart GAN gener
ators introduced therein in terms of the resulting ML utility, statistical similarity to the real data, and
privacy distance. Additionally, we provide an ablation analysis to highlight the efficacy of the unique
components of CTABGAN.

4.3.1. Results analysis

(a) Adult (b) Covertype (c) Credit

(d) Intrusion (e) Loan

Figure 4.4: ML utilities difference (i.e., AUC and F1score) for five algorithms using five synthetic data generators on all 5 datasets

1. ML Utility Tab. 4.1 shows the averaged ML utility differences between real and synthetic data
in terms of accuracy, F1 score, and AUC. A better synthetic dataset is expected to have low
differences. It can be seen that CTABGAN outperforms all other stateoftheart methods in
terms of Accuracy, F1score and AUC. Accuracy is the most commonly used classification metric,
but to account for imbalanced target variables, the F1score and AUC are more reliable metrics
to evaluate performance. CTABGAN largely shortens the AUC difference from 0.169 (best in
stateoftheart) to 0.094.

To obtain a better understanding, Fig. 4.4 plots the (F1scorex axis, AUCyaxis) for all 5 ML
models for all datasets.

Fig. 4.4(a,b & c) show that for Adult, Covtype and Credit datasets, the results of CTABGAN and
TableGAN are largely similar and clearly better than the rest. This is due to a more stable DCGAN
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Table 4.1: Difference of ML accuracy (%), F1score, and AUC between original and synthetic data: average over 5 different
datasets and 3 replications.

Method Accuracy F1score AUC
CTABGAN 8.90% 0.107 0.094
CTGAN 21.51% 0.274 0.253
TableGAN 11.40% 0.130 0.169
MedGAN 14.11% 0.282 0.285
CWGAN 20.06% 0.354 0.299

architecture that trains reliably and therefore generates high utility datasets.

Fig. 4.4(d) shows that for the Intrusion dataset, CTABGAN largely outperforms all others across
all ML models used for evaluation. This can be explained by the use of the conditional GAN ar
chitecture that helps deal with imbalanced variables and the added information loss which greatly
helps stabilize training (refer to Sec. 4.3.2).

Fig. 4.4(e) however shows that TableGAN outperforms CTABGAN on the loan dataset. The
Loan dataset is significantly smaller than the other four. Therefore, we find that the encoding
method in CTABGAN which works well for complex cases also increases the dimensionality of
the input data. This results in a failure to converge to a better optimum for smaller datasets.
Whereas TableGAN’s encoding doesn’t lead to an increase in the dimensionality of the raw data
as categorical variables are simply treated as continuous and no MSN (refer to Sec. 2.2.3) is
used. Thus, this leads to a simpler representation making it easier for the TableGAN model to
learn effectively from smaller datasets.

2. Statistical similarity Statistical similarity results are reported in Tab. 4.2. CTABGAN stands out
again across all comparisons.

For categorical variables (i.e. average JSD), CTABGAN outperforms CTGAN and TableGAN by
13.5% and 28.4%. Although both CTGAN and CTABGAN rely on conditional GAN and training
bysampling to deal with categorical imbalance, the addition of a superior DCGAN neural network
architecture and the additional loss terms for the generator such as the classification and infor
mation losses enable CTABGAN to outperform it’s predecessor.

For continuous variables (i.e. average WD), CTABGAN benefits from the design of the mixed
encoder to deal with mixed data variables. Moreover, the use of an extended conditional vector
helps to better produce skewed multimodal numerical distributions. And, the use of the log
transform allows to better capture longtailed distributions (refer to Sec. 4.3.3). It is worth pointing
out that the average WD column shows some extreme numbers such as 46257 and 238155
comparing to 1197 of CTABGAN due to these algorithms generating extremely large values for
long tail variables.

Besides divergence and distance, CTABGAN’s synthetic data alsomaintains the best correlation.
The extended conditional vector allows the generator to produce samples conditioned even on
a given VGM mode for continuous variables. This increases the capacity to learn the conditional
distribution for continuous variables and hence leads to an improvement in the overall feature
interactions captured by the model.

3. Privacy preservability The privacy results are shown in Tab. 4.3. It can be seen that the DCR
and NNDR between real and synthetic data all indicate that generation from TableGAN has the
shortest distance to real data (highest privacy risk).
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Table 4.2: Statistical similarity: three measures averaged over 5 datasets and three repetitions.

Method Avg JSD Avg WD Diff. Corr.
CTABGAN 0.062 1197 2.09
CTGAN 0.0704 1769 2.73
TableGAN 0.0796 2117 2.30
MedGAN 0.2135 46257 5.48
CWGAN 0.1318 238155 5.82

Moreover, as we use distancebased algorithms to give an overview on privacy, the evaluation
of privacy is relative to the utility. This is because, on the one hand, if the distance between real
and synthetic data is too large, it simply means that the quality of generated data is poor. On the
other hand, if the distance between real and synthetic data is too small, it simply means that there
is a risk to reveal sensitive information from the training data.

Thus, the algorithm which allows for greater distances between real and synthetic data under
equivalent ML utility and statistical similarity data should be considered. In that case, CTAB
GAN not only outperforms TableGAN in ML utility and statistic similarity, but also in all privacy
preservability metrics by 11.6% and 4.5% for DCR and NNDR, respectively.

Table 4.3: Privacy impact: between real and synthetic data (R&S) and within real data (R) and synthetic data (S).

Model DCR NNDR
R&S R S R&S R S

CTABGAN 1.118 0.428 0.937 0.713 0.414 0.591
CTGAN 1.517 0.428 1.026 0.763 0.414 0.624
TableGAN 0.988 0.428 0.920 0.681 0.414 0.632
MedGAN 1.918 0.428 0.254 0.871 0.414 0.393
CWGAN 2.197 0.428 1.124 0.847 0.414 0.675

4.3.2. Ablation analysis
To illustrate the efficiency of each strategy we implement an ablation study which cuts off the different
components of CTABGAN one by one:

1. w/o 𝒞 In this experiment, Classifier 𝒞 and the corresponding classification loss for Generator 𝒢
are taken away from CTABGAN

2. w/o I. loss (information loss) In this experiment, we remove information loss from CTABGAN

3. w/o MSN In this case, we substitute the mode specific normalization based on VGM for con
tinuous variables with minmax normalization and use simple onehot encoding for categorical
variables. Here the conditional vector is the same as for CTGAN

4. w/o LT (long tail). In this experiment, long tail treatment is no longer applied. This only affects
datasets with long tailed columns, i.e. Credit and Intrusion.

The results are compared with the baseline implementing all strategies. All experiments are re
peated 3 times, and results are evaluated on the same 5 machine learning algorithms introduced in
Sec. 1. We report the F1score difference between CTABGAN and each abovementioned experi
ments where the test datasets and evaluation flow are the same as shown in Sec. 3.2 and Sec. 3.2.4.
Tab. 4.4 shows the results.

Each part of CTABGAN has different impacts on different datasets as follows:
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Table 4.4: F1score difference to CTABGAN. CTABGAN column reports the absolute averaged F1score as baseline.

CTABGAN w/o 𝒞 w/o I. Loss w/o MSN w/o LT
Adult 0.704 0.01 0.037 0.05 

Covertype 0.532 0.018 0.184 0.118 
Credit 0.710 +0.011 0.177 +0.06 0.00
Intrusion 0.842 0.031 0.437 +0.003 0.074
Loan 0.803 0.044 +0.028 +0.013 

1. w/o 𝒞 has a negative impact for all datasets except Credit. Since Credit has only 30 continuous
variables and one target variable, the semantic check can not be very effective.

2. w/o I. loss has a positive impact for Loan, but results degenerate for all other datasets. It can
even make the model especially unusable for Intrusion. This shows that the information loss is
worse for smaller datasets and beneficial for larger datasets.

3. w/o MSN performs worse for Covertype and Adult, has little impact for Intrusion and provides
better results for the Credit and Loan datasets than the original CTABGAN. This is because out
of 30 continuous variables in the Credit dataset, 28 are nearly single mode Gaussian distributed.
Thus, the initialized high number of modes, i.e. 10, for each continuous variable (same setting as
in CTGAN) degrades the estimation quality. Likewise, for the Loan dataset, the MSN encoding
increases the input data dimensionality greatly thereby increasing the difficulty of learning from
smaller sized dataset such as Loan.

4. w/o LT has the biggest impact on Intrusion, since it contains 2 long tail columns which are seem
ingly important predictors for the target column. For Credit, the influence is limited. Even if the
long tail treatment fits the amount column well (see Sec. 4.3.3), this variable doesn’t seem to be
a strong predictor for the target column.

In general, averaging the column values across all ablation tests results in a negative impact for the
performance which justifies our design choices for CTABGAN.

4.3.3. Results for Motivation Cases
After reviewing all the metrics, let us recall the three motivation cases from Sec. 3.3.

1. Mixed data type variables Fig. 4.5(a) compares the real and CTABGAN generated data for
variable Mortgage in the Loan dataset. CTABGAN encodes this variable as mixed datatype.
We can see that CTABGAN generates clear 0 values and the frequency is similar as in real
distribution. Therefore, this is a result of using the mixed encoder combined with the extended
conditional vector to control the sampling of the categorical component to correspond to the orig
inal data with greater similarity.

2. Long tail distributions Fig. 4.5(b) compares the cumulative frequency graph for the Amount
variable in Credit. This variable is a typical long tail distribution. One can see that CTABGAN
perfectly recovers the real distribution. Due to logtransform data preprocesssing, CTABGAN
learns this structure significantly better than the stateoftheart methods shown in Fig. 3.3(b).

3. Skewed multimode continuous variablesFig. 4.5(c) compares the frequency distribution for
the continuous variable Hoursperweek from Adult. Except the dominant peak at 40, there are
many side peaks. Fig. 3.3(c), shows that TableGAN, CWGAN and MedGAN struggle since they
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can learn only a simple Gaussian distribution due to the lack of any special treatment for contin
uous variables. CTGAN, which also use VGM, can detect other modes. However, CTGAN is not
as good as CTABGAN. The reason is that CTGAN lacks the mode of continuous variables in the
conditional vector. By incorporating the mode of continuous variables into conditional vector, we
can apply the trainingbysample and logarithm frequency also to modes. This gives the mode
with less weight more chance to appear in the training and avoids the mode collapse.

(a) Mortgage in Loan dataset [17] (b) Amount in Credit dataset [38] (c) Hoursperweek in Adult dataset [10]

Figure 4.5: Challenges of modeling industrial dataset using existing GANbased table generator: (a) Mixed data type, (b) long
tail distribution, and (c) Skewed multimodal data

4.4. Conclusion
Motivated by the importance of data sharing and fulfillment of governmental regulations, we propose
CTABGAN – a novel conditional GAN based tabular data generator. CTABGAN advances beyond the
prior stateoftheart methods by modeling mixed datatype variables and provides strong generation
capabilities for longtailed continuous variables and continuous variables with complex distributions.

To such ends, the core features of CTABGAN include (i) introduction of the classification and infor
mation loss into the conditional DCGAN, (ii) effective data encoding for mixed datatype variables, and
(iii) a novel construction of conditional vectors.

We exhaustively evaluate CTABGAN against four tabular data generators on a wide range of met
rics, namely ML utilities, statistical similarity and privacy preservation. The results show that the syn
thetic data of CTABGAN results into high utilities, high similarity and reasonable privacy guarantee,
compared to existing stateoftheart techniques. The improvement on complex datasets is up to 17%
in accuracy comparing to all stateoftheart algorithms.





5
Differential Privacy for Tabular Data

Generators

5.1. Introduction
The previous chapters illustrated the efficacy of tabular GANs for learning the training data distributions
and generating high utility synthetic datasets. However, utilising privacy sensitive real datasets to train
tabular GANs poses a range of privacy issues. Recent studies have shown that GANs may fall prey to
membership and attribute inference attacks which greatly endanger the personal information present
in the real training data [7, 32]. Therefore, it is imperative to safeguard the training of tabular GANs
such that it remains protected against malicious privacy attacks to ensure that synthetic data can be
stored and shared across different parties without harm.

The limited existing work [18, 20, 36, 37] rely on Differential Privacy (DP) [11] for training tabular
GANs in a privacy preserving manner. DP is a mathematical framework that provides theoretical guar
antees bounding the statistical difference between any resulting tabular GAN model trained regardless
of the existence of any particular individual’s information in the original training dataset. Typically, this
is achieved by (i) clipping the gradients for bounding the sensitivity and (ii) injecting noise while up
dating the parameters of a network during backpropagation [30]. However, the main challenge found
in prior work is to calibrate the training of differential private tabular GANs so as to maintain the utility
of synthetic datasets for analysis while providing strict theoretical privacy guarantees. Moreover, the
existing literature rarely investigates the empirical robustness of their differential private GANs against
privacy attacks.

In this chapter, two variants of differential private CTABGAN are proposed based on the ideas pre
sented in prior work, most notably, the work done by the authors of DPWGAN [41] and GSWGAN [5].
Furthermore, a rigorous empirical evaluation is conducted to investigate the usefulness of differential
private tabular GANs in terms of their utility for analysis given their constraints to preserve privacy
especially against malicious privacy attacks such as the membership and attribute inference attacks.

The rest of this chapter is organized as follows: the two main approaches used to employ differential
privacy in CTABGAN are elucidated in Sec. 5.2. Then in Sec. 5.3, a rigorous empirical examination of
DPCTABGAN is provided. Finally, Sec. 5.4 ends the chapter with a succinct summary of the results
and provides directions for further research.

33
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5.2. DPCTABGAN
DPCTABGAN is a novel approach to generate tabular datasets with strong DP guarantees. It utilizes
the DPSGD [1] framework introduced by [1] and the subsampled RDP moments accountant tech
nique [22, 40] to preserve privacy and account for the cost, respectively. In addition, it makes use of
the wasserstein loss with gradient penalty [16] to effectively bound the gradient norms with an ana
lytically derived optimal clipping value as shown in the work of [6]. Therefore, the rest of this section
is organised as follows: First, Sec. 5.2.1 highlights the updated training objective of DPCTABGAN.
Next, Sec. 5.2.2 & Sec. 5.2.3 presents two variants of DPCTABGAN. Sec. 5.2.2 details the imple
mentation and privacy analysis for training the discriminator network with DP guarantees whereas in
Sec. 5.2.3, the generator network is described. Both approaches are studied to obtain the most optimal
configuration for training DPCTABGAN.

5.2.1. Wasserstein Loss with Gradient Penalty [16]
One of the biggest challenges with using DPSGD is tuning the clipping parameter, 𝐶, for bounding
the gradient norms. Since clipping greatly degrades the information stored in the original gradients [5],
choosing an optimal clipping value that does not significantly impact utility is crucial.

However, tuning the clipping parameter is laborious as the optimal value fluctuates depending on
network hyperparameters (i.e model architecture, learning rate) [1]. Therefore, inspired by the work
of [5], the wasserstein loss with gradient penalty [16] (refer to Sec. 2.2.2) is chosen as a suitable loss
function for training both variants of DPCTABGAN.

The gradient penalty term is especially useful as it ensures that the discriminator generates bounded
gradient norms which are close to 1 under real and generated distributions. Therefore, an optimal clip
ping threshold of 𝐶 = 1 is obtained analytically avoiding an intensive hyperparameter search thereby
better preserving the information stored in gradients after clipping.

Note that the prior implementation of CTABGAN made use of batch normalization to help improve
the flow of gradients in both the generator and the discriminator network. However, with the updated
gradient penalty training objective which penalizes the gradients for each input data point indepen
dently, it is no longer valid. Therefore, [16] recommends utilising layer normalization [3] as a dropin
replacement for batch normalisation as it doesn’t induce any correlations between data points. And, it
was found that layer normalisation significantly improved the flow of gradient information during training
based on preliminary experiments.

Additionally, utilising a simple linear interpolation between real and synthetic data points for com
puting the gradient penalty relies on the assumption that data points form a uniformly distributed hy
percube. Since this assumption may not always hold in practice, spherical interpolates [31] are used
in this work for accounting the possible curvature of the latent space. And, it was found to yield better
data utility in preliminary experiments.

5.2.2. DPDiscriminator
In the first variant, DPCTABGAN trains the discriminator using differential privateSGD as outlined in
algorithm 1 where the total number of iterations 𝑇 is determined based on the total privacy budget
(𝜖,𝛿). Thus, to compute the number of iterations, the privacy budget spent for every iteration must
be bounded and accumulated over training iterations 𝑇. The subsampled RDP analytical moments
accountant technique [40] is used for this purpose. The theoretical analysis of the privacy cost is pre
sented below:
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Theorem 5.2.1 Each discriminator update satisfies (𝜆, 2𝐵𝜆/𝜎2)RDP where B is the batch size.
Proof. Let 𝑓 = 𝑐𝑙𝑖𝑝(�̄�𝐷 , 𝐶) be the clipped gradient of the discriminator before adding noise. The sensi
tivity is derived via the triangle inequality:

Δ2𝑓 =max
𝑆,𝑆′

||𝑓(𝑆) − 𝑓(𝑆′)||2 ≤ 2𝐶 (5.1)

Since 𝐶 = 1 as a consequence of the wasserstein loss with gradient penalty [16] and by using
definition 2.2.3 in Sec. 2.2.4, the DPSGD procedure denoted asℳ𝜎,𝐶 parameterized by noise scale 𝜎
and clipping parameter 𝐶 may be represented as being (𝜆, 2𝜆/𝜎2)RDP.

Furthermore, each discriminator update for a batch of real data points {𝑥𝑖 , .., 𝑥𝐵} can be represented
as

�̃�𝐷 =
1
𝐵

𝐵

∑
𝑖=1
ℳ𝜎,𝐶(∇𝜃𝐷ℒ𝐷(𝜃𝐷 , 𝑥𝑖)) (5.2)

where �̃�𝐷 and 𝜃𝐷 represents the perturbed gradients and the weights of the discriminator network,
respectively. This may be regarded as a composition of B Gaussian mechanisms. And so, by using
theorem 2.2.1 in Sec. 2.2.4, the privacy cost for a single gradient update step for the discriminator can
be expressed as (𝜆, ∑𝐵𝑖=1 2𝜆/𝜎2) or equivalently (𝜆, 2𝐵𝜆/𝜎2). ■

Note thatℳ𝜎,𝐶 is only applied for those gradients that are computed with respect to the real training
dataset [1, 43]. Hence, the gradients computed with respect to the synthetic data and the gradient
penalty term are left undisturbed.

Next, to further amplify the privacy protection of the discriminator, theorem 2.2.3 defined in Sec. 2.2.4
is used where the subsampling rate is defined as 𝛾 = 𝐵/𝑁 where 𝐵 is the batch size and 𝑁 is the size of
the training dataset. Intuitively, subsampling adds another layer of randomness and enhances privacy
by decreasing the chances of leaking information about particular individuals who are not included in
any given subsample of the dataset.

Lastly, it is worth mentioning that the wasserstein loss with gradient penalty [16] training objective
has one major pitfall with respect to the privacy cost. This is because, it encourages the use of a
stronger discriminator network to provide more meaningful gradient updates to the generator. This re
quires performing multiple updates to the discriminator for each corresponding update to the generator
leading to a faster consumption of the overall privacy budget.

5.2.3. DPGenerator
In the second variant, DPCTABGAN trains the generator network with DP guarantees. To do so, the
gradients flowing from the discriminator and classifier networks (i.e., 𝑔𝐷𝑖𝑠𝑐𝐺 & 𝑔𝐶𝑙𝑎𝑠𝑠𝐺 ) which interact
with the original training data are selectively perturbed (i.e., �̃�𝐷𝑖𝑠𝑐𝐺 & �̃�𝐶𝑙𝑎𝑠𝑠𝐺 ) via the familiar DPSGD
procedure represented as a randomized mechanismℳ𝜎,𝐶 parameterized by noise scale 𝜎 and clipping
parameter 𝐶 for updating the generator’s weights (i.e., 𝜃𝐺), as shown in the Fig 5.1 below. The selective
perturbation of the gradients is necessary as the combined training objective of the generator i.e.,
classification, information loss and generator losses (refer to Sec. 4.2.5) doesn’t entirely depend on the
original training data. As an example, consider the generator loss which is only used to ensure that
the generated data exactly matches the constraint given by the conditional vector sampled randomly
during training and as a result, is independent of the real training data, itself.

With this in mind, the privacy analysis for training the generator via DPSGD [1] utilizing the afore



36 5. Differential Privacy for Tabular Data Generators

Figure 5.1: Privacy Preserving Generator Training where 𝐺,𝐷 and 𝒞 denote the generator, discriminator and classifier networks
with weights 𝜃𝐺, 𝜃𝐷 and 𝜃𝒞 , respectively.

mentioned subsampled RDP moments accountant [40] is presented.

Theorem 5.2.2 Each generator update satisfies (𝜆, 6𝐵𝜆/𝜎2)RDP where B is the batch size.
Proof Let 𝑓𝐷𝑖𝑠𝑐 = 𝑐𝑙𝑖𝑝(�̄�𝐷𝑖𝑠𝑐𝐺 , 𝐶) be the clipped gradient of the generator computed with respect to ℒ𝐺
before adding noise. The sensitivity is derived via the triangle inequality:

Δ2𝑓𝐷𝑖𝑠𝑐 =max
𝑆,𝑆′

||𝑓𝐷𝑖𝑠𝑐(𝑆) − 𝑓𝐷𝑖𝑠𝑐(𝑆′)||2 ≤ 2𝐶 (5.3)

Since 𝐶 = 1 as before and by using definition 2.2.3 in Sec. 2.2.4, the randomized mechanismℳ𝜎,𝐶
may similarly be represented as being (𝜆, 2𝜆/𝜎2)RDP.

However, due to the addition of the information loss denoted as ℒ𝐼, the generator requires an ad
ditional fetch of gradients from the discriminator (i.e., 𝑔𝐷𝑖𝑠𝑐𝐺 ) computed with respect to ℒ𝐼 which in turn
doubles the number of timesℳ𝜎,𝐶 is applied. Note that the sensitivity remains the same leading to an
identical privacy cost (i.e., (𝜆, 2𝜆/𝜎2)RDP).

Likewise for the classifier loss expressed as ℒ𝐶, let 𝑓𝐶𝑙𝑎𝑠𝑠 = 𝑐𝑙𝑖𝑝(�̄�𝐶𝑙𝑎𝑠𝑠𝐺 , 𝐶) be the clipped gradient
of the generator backpropagated from the classifier before adding noise. The sensitivity is similarly
derived via the triangle inequality:

Δ2𝑓𝐶𝑙𝑎𝑠𝑠 =max
𝑆,𝑆′

||𝑓𝐶𝑙𝑎𝑠𝑠(𝑆) − 𝑓𝐶𝑙𝑎𝑠𝑠(𝑆′)||2 ≤ 2𝐶 (5.4)

For ease of derivation, the clipping parameter for the classifier module is also, 𝐶 = 1. Thus, by
using definition 2.2.3 in Sec. 2.2.4 once again,ℳ𝜎,𝐶 is (𝜆, 2𝜆/𝜎2)RDP.

Thus, to do a single update of the generator’s weights 𝜃𝐺, the randomized mechanismℳ𝜎,𝐶 is first
applied twice for the discriminator network and once more for the classifier network with a fixed privacy
cost of (𝜆, 2𝜆/𝜎2)RDP. Formally, this can be expressed as

�̃�𝐺 =
𝐿

∑
𝑖=1
ℳ𝜎,𝐶(∇𝜃𝐺ℒ𝑖(𝜃𝐺)) (5.5)

where 𝐿 represents the set of losses for which the gradients are computed (i.e., {ℒ𝐺 , ℒ𝐼 , ℒ𝐶}) and
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�̃�𝐺 & 𝜃𝐺 represents the perturbed gradients and the weights of the generator network, respectively.
This sequence can once again be interpreted as a composition of Gaussian mechanisms which allows
the use of theorem 2.2.1 defined in Sec. 2.2.4, to express the cost for an individual data point as
(𝜆, ∑3𝑖=1 2𝜆/𝜎2)RDP. And, the privacy cost for a batch of data points {𝑥𝑖 , .., 𝑥𝐵} can be similarly extended
to be (𝜆, ∑𝐵𝑖=1 ∑

3
𝑖=1 2𝜆/𝜎2) or equivalently (𝜆, 6𝐵𝜆/𝜎2). ■

Next, to amplify the privacy protection for the generator, theorem 2.2.3 defined in Sec. 2.2.4 is anal
ogously used. However, in this case, the original training dataset is divided into disjoint subsets of equal
size where a unique discriminator is trained for each subset independently. The size of each subsam
pled data is defined as 𝑁𝑑/𝑁 where 𝑁𝑑 is the total number of discriminators and 𝑁 is the size of the
full training dataset. Thus, during training, one out of the total number of discriminators is chosen ran
domly for every iteration to provide gradient updates to the generator on the basis of it’s corresponding
subsampled dataset. In this way, the subsampling rate for the generator is defined to be 𝛾 = 1/𝑁𝑑.

Unfortunately, training multiple discriminators on smaller subsamples is problematic due to the lack
of enough training iterations for any given discriminator in comparison to the generator. Moreover, re
ducing the number of samples via subsampling increases the potential of overfitting the discriminators
on it’s respective subsample. [5] recommends to alleviate the first problem by pretraining the multiple
discriminator networks with a standard generator without DP. Since, pretraining the discriminators re
liably doesn’t breach the DP guarantees for the generator. However, in practice, the results were not
found to be affected by the presence of pretrained discriminators in preliminary experiments.

Lastly, definition 2.2.2 defined in Sec.2.2.4 is used to convert the overall cumulative privacy cost
computed in terms of RDP back to (𝜖, 𝛿)DP for both approaches. Practically, these computations are
performed via the official implementation1 provided by [40].

5.3. Experimental Analysis
5.3.1. Experimental Setup
Datasets To evaluate DPCTABGAN, 3 out of the 5 datasets introduced in Sec. 3.2.1 are used i.e.,
Adult [10], Credit [38] and Loan [17]. Refer to Tab. 3.1 detailing each dataset.
Baselines Both variants of DPCTABGAN are compared with 2 stateoftheart architectures: PATE
GAN [18]2 and DPWGAN [41]3. Additionally, to present a fair comparison between DPWGAN and
PATEGAN, a common network architecture for the both the generator and discriminator is used (refer
to Sec. A.1). Tab. 2.2. outlines the salient features of all methods used in this evaluation.

Lastly, it is important to note that for DPWGAN, the authors originally derive the privacy cost using
the moment accountant technique [1]. However, in this work, to compare fairly across different ap
proaches that all making use of DPSGD with gaussian mechanisms, the more optimal subsampled
RDP accountant [22, 40] is used. This is because, the RDPaccountant allows for even tighter bounds
on the privacy budget than the moment accountant enabling less noise to be added during training for
ensuring similar privacy guarantees.

5.3.2. Evaluation Metrics
Statistical Similarity & ML Utility The evaluation metrics concerning the statistical similarity and ML
utility is borrowed from Sec. 3.2.4. However, there are a few notable differences worth mentioning.

Firstly, with respect to the statistical similarity, unlike previous chapters, the WD is calculated after

1https://github.com/yuxiangw/autodp
2https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/pategan
3https://github.com/BorealisAI/privatedatageneration/blob/master/models/dp_wgan.py

https://github.com/yuxiangw/autodp
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/pategan
https://github.com/BorealisAI/private-data-generation/blob/master/models/dp_wgan.py
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performing a minmax normalisation4 for both the real and synthetic values using the real maximum
and minimum values corresponding to a particular column. This is done for averaging the wasserstein
distances across columns with drastically varying scales more reliably.

Secondly, for evaluating the ML utility, the average precision score (APR)5 is introduced to provide a
reliable source of performance in comparison to the AUC given the imbalance in datasets used. More
over, the SVM model is eliminated from the study due to practical limitations with outputting predicted
probabilities in a timeefficient manner. Lastly, the MinMax normalisation is used as a preprocessing
step before training of ML models as used in the evaluation done by [18].

Inference Attacks This chapter introduces two new metrics for evaluating the empirical robustness
of GANs against malicious privacy attacks. More specifically, the membership and attribute inference
attacks are launched against each model to expose the risk of privacy loss based on the rigorous frame
work provided by [32].

The membership inference attack [6] is a binary classification problem in which an attacker tries
to predict if a particular target data point 𝑡 has been used to train a victim generative model. This work
assumes that the attacker only needs access to a blackbox tabular GAN model, a reference dataset
ℛ and 𝑡 for which the inference must be made [32].

Figure 5.2: Membership Inference Attack Pipeline

As illustrated in Fig. 5.2, to launch an attack, the attacker prepares two training datasets with and
without the target record 𝑡 using the reference dataset ℛ (i.e., ℛ, ℛ ⊕ 𝑡). Next, the attacker uses
blackbox access to the model for training two separate models on each dataset. The attacker then
uses these to generate 𝑠 batches of synthetic data each consisting of 𝑟 rows, represented as 𝒮𝑠𝑟 . The
synthetic batches are assigned a label of 0 and 1, respectively, based on the presence of 𝑡 in the
training dataset.

Thereafter, each batch of synthetic data is processed by a feature extraction method summariz
ing the information contained in each batch into a single vector. This is done in two ways: (i) naive
extraction computes the mean, median, and variance of every continuous column and the length of
unique categories as well as the most and least frequently occurring category for every categorical
column (ii) correlation extraction computes the pairwise correlations between all columns where the
categorical columns are dummyencoded.
4https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
5https://scikitlearn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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This leads to the creation of a final dataset, containing an equal number of processed samples.
This is split into train and test datasets. An attack model is trained on the training dataset and used to
compute the privacy gain as 𝑃𝐺𝑎𝑖𝑛 =

(𝑃𝑅𝑒𝑎𝑙−𝑃𝐹𝑎𝑘𝑒)
2 where 𝑃𝐹𝑎𝑘𝑒 is the attack model’s average probability

of successfully predicting the correct label in the testset and 𝑃𝑅𝑒𝑎𝑙 = 1 since having access to the
original training data ensures full knowledge of 𝑡’s presence [32].

To conduct the membership inference evaluation, 4000 rows of real data were sampled from each
dataset to form the reference dataset (i.e., ℛ) to train the synthetic models. Each batch for feature
extraction was chosen to be of size 𝑟 = 400. And, 𝑠 = 1200 batches were generated such that the
training dataset was of size 1000 with balanced number of classes. And, the test set contained 200
samples with balanced classes. To train the attack model, the RandomForestClassifier6 was used.
The experiments were repeated 5 times with 5 different target records 𝑡 for each dataset and the results
were averaged.

An attribute inference attack [32] is defined as a regression problem where the attacker attempts
to predict the values of a sensitive target column provided he/she has blackbox access to a generative
model.

Figure 5.3: Attribute Inference Attack Pipeline

To launch an attribute inference attack and evaluate the privacy risk (refer to Fig. 5.3), a dataset ℛ
sampled from the real distribution is split into train and test datasets, respectively (i.e., ℛ𝑇𝑟𝑎𝑖𝑛 & ℛ𝑇𝑒𝑠𝑡).
ℛ𝑇𝑟𝑎𝑖𝑛 is fed into a generative model for generating a corresponding synthetic training dataset (i.e.,
𝒢𝑇𝑟𝑎𝑖𝑛).

A linear regression model7 is then used for estimating the relationship between the independent
variables known to the attacker and the dependent sensitive variable for both ℛ𝑇𝑟𝑎𝑖𝑛 and 𝒢𝑇𝑟𝑎𝑖𝑛. Then,
to evaluate the privacy risk, the privacy gain is computed similarly as: 𝑃𝐺𝑎𝑖𝑛 =

(𝑃𝑅𝑒𝑎𝑙−𝑃𝐹𝑎𝑘𝑒)
2 , where 𝑃𝑅𝑒𝑎𝑙

& 𝑃𝐹𝑎𝑘𝑒 denote the average posterior probabilities of correctly predicting the sensitive attribute on the
real testset given the linear models fitted on ℛ𝑇𝑟𝑎𝑖𝑛 and 𝒢𝑇𝑟𝑎𝑖𝑛, respectively [32].

For performing the attribute inference evaluation, 5000 real samples (i.e.,ℛ) were sampled from
each dataset where 4900 samples were used for creating the training dataset (i.e., ℛ𝑇𝑟𝑎𝑖𝑛) and 100 for
the testing dataset (i.e.,ℛ𝑇𝑒𝑠𝑡). Moreover, the sensitive attribute for the datasets Adult, Loan and Credit
were chosen to be ”Age”,”Age” and ”Amount”, respectively. The experiment was repeated 5 times and
the average results are presented.
6https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
7https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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5.3.3. Results
This section presents the results for all baselines based on the criteria established previously. Note
that for measuring the statistical similarity and ML efficacy, the privacy budget 𝜖 is varied between 1
and 100 to study the influence of a strong vs weak privacy constraint, respectively.

However, for evaluating the risk of privacy loss via membership and attribute inference attacks, a
strict privacy budget of 𝜖 = 1 is chosen as commonly used in prior work [18]. This is done to thoroughly
test the effectiveness of DP techniques offering strong theoretical guarantees empirically. Refer to
Sec. A.2 of the appendix for details concerning hyperparameters used to generate samples from all
baselines for conducting the experiments.

Lastly, all result tables feature DPCTABGAN with no privacy budget (i.e.,𝜖 = ∞) simply denoted as
CTABGAN to be used as a reference point for examining the influence of differential privacy for training
CTABGAN. Note that 𝛿 = 1𝑒 −5 is fixed across all experiments and the best results are highlighted in
bold among only those models that are trained with finite privacy budgets.

Statistical Similarity & ML Utility

1. Statistical Similarity As shown in Tab. 5.1 and Tab. 5.2, among all baseline models, DDP
CTABGAN is the onlymodel which consistently improves across all threemetrics when the privacy
budget is increased.

Similarly, GDPCTABGAN sees an improvement across both the AvgJSD and AvgWD. How
ever, PATEGAN and DPWGAN do not show signs of improvement consistently across any of
the metrics. Moreover, they perform worse than both variants of DPCTABGAN at both levels of
epsilon.

This highlights their inability to capture the statistical distributions during training despite a loose
privacy budget purely due to the lack of an effective training framework.

Lastly, it is worth noting that GDPCTABGAN features the best correlation distance at 𝜖 = 1
and 𝜖 = 100 showcasing that training the discriminator reliably is hugely beneficial for capturing
correlations in the data as compared to DDPCTABGAN. Naturally, there is still a huge perfor
mance gap between CTABGAN and both variants of DPCTABGAN due to the application of DP.

Table 5.1: Statistical similarity: 3 measures averaged over 3 datasets with a privacy budget of 𝜖 = 1

Method Avg JSD Avg WD Diff. Corr.
PATEGAN 0.487 0.259 3.982
DPWGAN 0.299 0.232 3.834

DDPCTABGAN 0.246 0.063 4.168
GDPCTABGAN 0.376 0.189 3.065

CTABGAN 0.028 0.01 1.607

Table 5.2: Statistical similarity: 3 measures averaged over 3 datasets with a privacy budget of 𝜖 = 100

Method Avg JSD Avg WD Diff. Corr.
PATEGAN 0.358 0.259 4.837
DPWGAN 0.304 0.222 4.57

DDPCTABGAN 0.127 0.047 3.648
GDPCTABGAN 0.389 0.174 3.21

CTABGAN 0.028 0.01 1.607
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2. ML Efficacy From the results presented in Tab. 5.3 and Tab. 5.4, surprisingly PATEGAN per
forms worse in terms of ML utility with a looser privacy budget. This is mainly because the stu
dent discriminator is trained solely with generated samples of poor statistical similarity as found
in Tab. 5.2.

Moreover, it is found similar as before that only the DDPCTABGANmodel consistently improves
across all metrics with a looser privacy budget. And, showcases the best performance for both
the f1score and APR metrics with different privacy budgets across all baselines. This finding
suggests that the based on the implementations of DDPCTABGAN and GDPCTABGAN used
in this work, training the discriminator with DP guarantees is more optimal. This is in line with the
challenges faced by GDPCTABGAN due to subsampling which hugely degrades performance
by training multiple discriminators each using a smaller number of samples.

Finally, the performance increase of DDPCTABGAN in comparison to other baselines can be
explained by it’s sophisticated neural network architecture (i.e., conditional GAN) and improved
training objective (i.e., wasserstein loss with gradient penalty). However, as a consequence of
the application of DP, the performance decrease in comparison to CTABGAN is noticeably large.

Table 5.3: Difference of ML accuracy (%), F1score, AUC and APR between original and synthetic data: average over 3
different datasets and a privacy budget 𝜖 = 1

Method Accuracy AUC APR F1Score
PATEGAN 10.8% 0.246 0.576 0.367
DPWGAN 8.2% 0.408 0.58 0.368

DDPCTABGAN 16.1% 0.302 0.483 0.34
GDPCTABGAN 32.3% 0.377 0.604 0.454

CTABGAN 2.6% 0.042 0.143 0.097

Table 5.4: Difference of ML accuracy (%), F1score, AUC and APR between original and synthetic data: average over 3
different datasets and a privacy budget 𝜖 = 100

Method Accuracy AUC APR F1Score
PATEGAN 37.4% 0.416 0.566 0.412
DPWGAN 10.8% 0.373 0.592 0.364

DDPCTABGAN 13% 0.265 0.475 0.262
GDPCTABGAN 13.7% 0.387 0.565 0.374

CTABGAN 2.6% 0.042 0.143 0.097

Privacy Impact Against Inference Attacks

1. Membership Inference Attack From the results shown in Tab. 5.5, it is found that all DP base
lines provide an empirical privacy gain close to 0.25 for both feature extraction methods. This in
dicates that differential private methods provide a strong privacy protection against membership
attacks. And ensures that the average probability of success for any attack is close to the at
tacker’s original prior i.e 0.5. Furthermore, it is found that DDPCTABGAN and GDPCTABGAN
provide the highest security against a membership attack with naive and correlation feature ex
traction methods, respectively.

Moreover, there is a clear decrease in the privacy gain achieved by CTABGAN showcasing that
DP is needed to provide a stronger defense against membership inference attacks.
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2. Attribute Inference Attack Tab. 5.5 shows that PATEGAN provides the greatest security. More
over, both versions of DPCTABGAN provide a lesser privacy protection than other baselines.
And, CTABGAN provides the worst security. This is due to the superior quality of the synthetic
data offered by CTABGAN and it’s DP variants which enhances the attacker’s probability of suc
cessfully inferring sensitive information. These results highlight the inherent tradeoff between
privacy and data utility i.e., increasing the utility directly worsens the privacy and vice versa.

It is worth noting that the privacy gain for attribute inference attack for all baselines is close to 0
suggesting that the overall privacy protection offered against attribute inference attacks is quite
low. However, it should be noted that the privacy gain is computed with respect to the real data.
Thus, in case the real data itself provides a low probability of successfully inferring the correct
target values for a sensitive attribute, then the synthetic dataset will perform in a similar manner
resulting in a privacy gain close to 0.

Table 5.5: Empirical privacy gain against membership attack with naive & correlation feature extraction and attribute inference
attack: average over 3 different datasets with a privacy budget 𝜖 = 1

Method Naive Privacy Gain Correlation Privacy Gain Attribute Inference Privacy Gain
PATEGAN 0.25 0.25 0.042
DPWGAN 0.255 0.256 0.04

DDPCTABGAN 0.266 0.248 0.037
GDPCTABGAN 0.245 0.26 0.038

CTABGAN 0.238 0.233 2e4

5.4. Conclusion
In this chapter, two variants of DPCTABGAN were proposed and their corresponding privacy analyses
were underlined. Based on theoretical derivations and empirical results, DDPCTABGAN resulted in
a superior configuration for integrating DP guarantees into CTABGAN. Moreover, DDPCTABGAN
consistently outperformed existing stateoftheart baselines concerning generated sample quality in
terms of both statistical similarity and ML utility metrics.

Additionally, both variants of DPCTABGAN were found to be resilient towards membership and
attribute inference attacks. Therefore, this work showcases the effectiveness of DP for protecting the
privacy of sensitive datasets being used for training tabular GANs.

However, further enhancement of the quality of synthetic data at strict privacy budgets (i.e., 𝜖 ≤ 1)
is still needed. Ultimately, there is an inherent tradeoff between privacy and utility and obtaining the
most optimal balance between both is left for future work.





6
Conclusion

Tabular data is a key asset for datadriven industries that are fueled by modern advancements in the
field of machine learning. However, utilising real tabular data risks leaking private information about
individuals. Therefore, tabular GANs have gained vital importance as a viable solution to utilise tabular
data without breaching privacy.
This thesis dealt with three main research questions pertaining to tabular GANs:

• ”What are the performance capabilities of existing tabular GANs?” To answer this research ques
tion, 4 stateoftheart tabular GAN models were extensively evaluated on 5 datasets in terms of
their ML utility, statistical similarity and privacy. And their major strengths and weaknesses were
highlighted.

• ”How to improve upon the tabular generation quality of stateoftheart tabular GANs?” Based
on the exposed difficulties of existing methods, this work developed a novel conditional tabular
GAN architecture, CTABGAN. CTABGAN was shown to effectively handle ”mixed” data types
and skewed variables. And, improved upon prior work in data utility for ML applications by up to
17% in accuracy for 5 ML models on complex datasets while maintaining a safer privacy distance
than priorwork.

• ”How to prevent privacy leakage for tabular GANs?” The use of differential privacy for enhancing
the privacy of tabular GAN training was examined. Moreover, CTABGANwith DP guarantees was
rigorously tested along side stateoftheart DPGANs with respect to generation quality and pri
vacy protection against membership and attribute inference attacks. Our results using 3 datasets
and 4 ML models showed that DPCTABGAN maintains the highest data utility by up to 18% in
terms of the average precision score as compared to prior work while reliably withstanding privacy
attacks.

To conclude the thesis, a few important limitations of this work and corresponding future directions
are highlighted:

• CTABGANmakes use of convolution operations that rely on a squarematrix representation of the
input data. This requires additional padding that adds useless information to the data. Therefore,
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the use of rectangular kernel operations that can be executed directly on rectangular shaped input
data can be further looked into.

• CTABGAN’s suffers from poor convergence on small sized datasets. Therefore, effectively re
ducing the training complexity of CTABGAN for smaller datasets is needed. And so, simpler data
transforms that can allow to learn dependencies between variables without increasing the input
dimensionality needs further exploration.

• There is large gap between the data utility of synthetic data generated with and without using strict
privacy guarantees. Moreover, determining the most optimal privacy budget 𝜖 that best balances
the privacy/utility trade off requires future consideration.





A
Differential Privacy Experimental Setup

The supplementary material highlights the network architecture shared between PATEGAN [18] and
DPWGAN [41] as mentioned in Sec. 5.3.1. Additionally, it provides hyperparameters used for con
ducting the data utility (i.e., statistical similarity & ML utility) as well as the membership and attribute
inference attack experiments.

A.1. Network Architecture
The network architecture for training PATEGAN is used identically to their original implementation
provided on github1. And, the network structure of DPWGAN2 used in the experiments has been
modified from the original to have the exact neural network architecture for the discriminator and gen
erator networks as that of PATEGAN. This is done to study the performance of DPWGAN in relation
to PATEGAN.

The generator network of PATEGAN comprises of a shallow neural network with 3 fully connected
layers that each comprise of 4∗𝑙 nodes where 𝑙 is the length of each row in the original data. The first 2
fully connected layers are followed by a Tanh activation whereas for the last layer a Sigmoid activation
is used. This is done to bring the values generated in the range of [0,1] which is the same range as the
normalised data used for training.

The student discriminator network of PATEGAN comprises of a shallow neural network with 2 fully
connected layers with 𝑙 nodes. The first layer is followed by a ReLU activation function whereas the
output of the second layer is used directly for computing the KL divergence loss of the discriminator as
shown in Eq. 2.1.

A.2. Network Hyperparameters
Across all baselines, the batch size was set to 64. Moreover, for PATEGAN and DPWGAN, default
hyperparameters as found in the codebases were utilized. Thus, PATEGAN uses 10 as the default
number of teacher discriminators for all experiments. And DPWGAN, uses [0.01,0.01] to clamp the
weights of the discriminator and 0.1 as the gradient norm bound 𝐶.
1https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/pategan
2https://github.com/BorealisAI/privatedatageneration/blob/master/models/dp_wgan.py
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Additionally, Tab. A.1 and Tab. A.2 provide details concerning the differentialprivate hyperparameters
such as the noise scale used and the number of training epochs3 required for generating synthetic tab
ular data with the corresponding privacy budget epsilon (i.e., 𝜖) to conduct the data utility experiments
and privacy attack experiments in Sec. 5.3.1.

Table A.1: Differential privacy hyperparameters for conducting statistical similarity and ML utility experiments.

Model Dataset No. of Discriminators Noise Scale Epochs Epsilon
PATEGAN Adult 1 1 1 1
PATEGAN Credit 1 1 1 1
PATEGAN Loan 1 1 1 1
DPWGAN Adult 1 1.012 1 1
DPWGAN Credit 1 1.012 1 1
DPWGAN Loan 1 1.33 1 1

DDPCTABGAN Adult 1 1.06 1 1
DDPCTABGAN Credit 1 1.06 1 1
DDPCTABGAN Loan 1 1.58 1 1
GDPCTABGAN Adult 1000 3.518 1 1
GDPCTABGAN Credit 1000 3.53 1 1
GDPCTABGAN Loan 1000 1.28 1 1

PATEGAN Adult 1 1 795 100
PATEGAN Credit 1 1 795 100
PATEGAN Loan 1 1 795 100
DPWGAN Adult 1 0.33 6 100
DPWGAN Credit 1 0.33 6 100
DPWGAN Loan 1 0.38 7 100

DDPCTABGAN Adult 1 0.36 5 100
DDPCTABGAN Credit 1 0.36 5 100
DDPCTABGAN Loan 1 0.42 4 100
GDPCTABGAN Adult 50 0.867 1 100
GDPCTABGAN Credit 100 0.874 1 100
GDPCTABGAN Loan 100 1.089 4 100

Table A.2: Differential privacy hyperparameters for conducting membership and attribute inference attacks.

Model Dataset No of Discriminators Noise Scale (Membership) Noise Scale (Attribute) Epochs Epsilon
PATEGAN Adult 1 1 1 1 1
PATEGAN Credit 1 1 1 1 1
PATEGAN Loan 1 1 1 1 1
DPWGAN Adult 1 1.33 1.25 1 1
DPWGAN Credit 1 1.33 1.25 1 1
DPWGAN Loan 1 1.33 1.25 1 1

DDPCTABGAN Adult 1 1.67 1.56 1 1
DDPCTABGAN Credit 1 1.67 1.56 1 1
DDPCTABGAN Loan 1 1.67 1.56 1 1
GDPCTABGAN Adult 1000 1.28 1.37 1 1
GDPCTABGAN Credit 1000 1.28 1.37 1 1
GDPCTABGAN Loan 1000 1.28 1.37 1 1

3Note that in the original implementation of PATEGAN, the privacy budget 𝜖 = 1 is expended with just one iteration over a single
batch. Therefore, in the epochs columns, the number of iterations over a single batch is displayed.
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