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The use of the nuclear spins surrounding electron spin qubits as quantum registers and long-lived memories
opens the way to new applications in quantum information and biological sensing. Hence, there is a need
for generic and robust forms of control of the nuclear registers. Although adiabatic gates are widely used
in quantum information, they can become too slow to outpace decoherence. Here, we introduce a technique
whereby adiabatic gates arise from the dynamical decoupling protocols that simultaneously extend coherence.
We illustrate this pulse-based adiabatic control for nuclear spins around NV centers in diamond. We obtain
a closed-form expression from Landau-Zener theory and show that it reliably describes the dynamics. By
identifying robust Floquet states, we show that the technique enables polarization, one-shot flips, and state
storage for nuclear spins. These results introduce a control paradigm that combines dynamical decoupling with
adiabatic evolution.

DOI: 10.1103/PhysRevResearch.4.013214

I. INTRODUCTION

There is enormous interest in the development of quan-
tum technologies based on spins in the solid state. Optically
active defects, such as the nitrogen vacancy (NV) center in
diamond, offer well-isolated individual electronic spins with
long coherence times, optical addressability, and operation
from cryogenic to room temperatures [1–7]. In combination
with nearby coupled nuclear spins, these systems provide a
multiqubit platform with a wide range of applications includ-
ing detection, imaging, and atomic-scale characterization of
the spin samples [8–12], quantum computation, and quantum
networks [13–15].

Both sensing and quantum information applications typ-
ically rely, for control of the central electronic spin, on
sequences of periodically repeated microwave pulses, known
as dynamical decoupling (DD). Although DD was initially
employed to decouple the central electron spin qubit from the
decohering effect of the surrounding spin bath [16], it was
soon recognized that the same sequences could also be used
to sense individual nuclear spins [17,18]. For the case of the
NV center in diamond, the entanglement generated between
the electron spin and the I = 1/2 13C nuclear spins is being
explored as a tool for control, with nuclear spins as multiqubit
registers and quantum memories [19,20]. Furthermore, state
storage in nuclear spins has been used to augment proto-
cols for quantum sensing and nanoscale Nuclear Magnetic
Resonance (NMR) [21]. Adiabatic quantum gates are well-
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established in quantum information but, as adiabaticity entails
slow parameter sweeps, outpacing decoherence represents a
problem [22]. Proposals employing DD to extend coherence
alongside the adiabatic gates have been investigated [23,24].

However, to our knowledge, the gates exploiting adiabatic
passage in eigenstates intrinsic to the common pulse-DD
protocols have not previously been considered: this may be
surprising as they offer the additional advantage that coher-
ence protection from pulse-DD comes for free. So here we
introduce and investigate a technique that combines adiabatic
passage (thus enabling nuclear qubit gates) with coherence
protection (of the central electronic qubit) through DD. We
name this method ad-Pulse.

We show that this type of control is quite generic and,
for various applications, does not require knowledge of the
individual resonances. ad-Pulse can also be applied to a many-
spin bath and we show some applications are insensitive to the
number of spins. We illustrate ad-Pulse using the example of
an NV center and surrounding nuclear registers. We show also
that it may polarize and initialize small nuclear clusters and
investigate possibilities for quantum state storage and readout.

In Sec. II, we briefly review pulse-based DD, including
polarization protocols. We discuss key differences with stan-
dard DD and describe the implementation of ad-Pulse. Since
ad-Pulse is most clearly understood as adiabatic passage, but
in the underlying Floquet eigenspectra, in Sec. III, we review
Floquet theory applied to dynamical decoupling. We illustrate
ad-Pulse by showing how adiabatic passage along a Floquet
state allows a one-sweep flip of the entire nuclear bath. In
Sec. IV, we apply Landau-Zener (LZ) theory to ad-Pulse, but
in the space of Floquet eigenstates. We derive a closed form
expression that accurately matches exact numerics. Equa-
tion (4) is a central result of this paper: It offers an independent
check on the robustness of the adiabatic analysis, fully con-
taining dependence on all experimentally chosen parameters;
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FIG. 1. Adiabatic dynamical decoupling (ad-Pulse) illustrated
for an NV spin surrounded by nuclear spins. Top panel: The com-
mon CPMG-2 pulse sequence. For typical pulse-based control, the
sequence is reapplied over Np cycles, at a pulse spacing τr ∼ π/ωL

fixed for each initialization of the NV spin state. For ad-Pulse, τ is
instead swept slowly from cycle to cycle, through the region τ ∼ τr .
Lower panel: For an NV spin prepared in a coherent |X +〉 state
and spin bath initially in the |↓(5)〉 state (five spin example chosen,
but effect is generic), the sweep flips the entire bath to the |↑(5)〉
state (red line) while the NV qubit passes through an entangled state
for τ ∼ τr ≈ 1.15 μs then recovers coherence at the endpoint (black
line). Middle panel: The corresponding Floquet eigenphases E (τ )
and shows one may visualize the process as adiabatic passage, albeit
in the associated Floquet eigenphase spectrum. Other applications,
starting even from initial mixed thermal nuclear states, are also
investigated here.

it enables one to determine what step sizes optimize the trade-
off between a slow sweep (required for adiabatic passage) and
high speed gates (to protect coherence). Detailed derivations
are presented in the Appendix. In Sec. V, we consider the
application of ad-Pulse to nuclear polarization and present
comparisons with LZ theory [Eq. (4)]. We investigate ini-
tialization of surrounding nuclear registers. In Sec. VI, we
consider the application to qubit gates based on adiabatic pas-
sage. Finally, in Sec. VII, we discuss the results and conclude.

II. DYNAMICAL DECOUPLING

An NV electron spin system surrounded by Nnuc nuclear
spins is described by the Hamiltonian

Ĥ (t ) = Ĥp(t ) + ωL

∑
n

Î (n)
z + Ŝz

∑
n

A(n) · Î(n). (1)

Ĥp(t ) = �(t )Ŝx is the pulse control Hamiltonian (in a
frame rotating at the frequency of the microwave pulse). �(t )
is the microwave drive strength which is nonzero only during
the pulses. For the CPMG-2 protocol, microwave π pulses are
applied along the x axis at regular equally spaced intervals,
τ . This is illustrated in Fig. 1. The pulse duration for a π flip
of the electron spin is denoted Tπ . ωL is the nuclear Larmor
frequency; the hyperfine field A(n) felt by the nuclear spin has

components A(n)
⊥ , A(n)

z relative to the z axis. We take A(n)
⊥ ≡

A(n)
x . Other protocols can involve more intricate combinations

of pulses, but we can illustrate the general behavior using the
simple CPMG protocol.

Np cycles of the chosen protocol are applied. An insightful
semiclassical model considers the effect of a DD protocol
as a filter function F (ω), peaked near ω = π/τ . The width
of F (ω) in frequency ∝ 1

Npτ
, hence as Np increases, the fil-

ter function becomes sharply peaked about an ever narrower
range of frequencies centered at a resonant τ 
 τr . The central
qubit is insensitive to magnetic noises at frequencies outside
this range. Nuclear spins surrounding the central NV are a
source of magnetic dephasing noise at ω 
 ωL 
 π/τr . Away
from τ ≈ τr , the NV coherence time T2 is greatly enhanced.
In a corresponding quantum bath picture, if the chosen pulse
interval corresponds to τ 
 π/τr , the central qubit and nuclei
interact and entangle, leading to decoherence.

For CPMG-2, the resonant pulse spacing is τr = jπ/(ωL +
A(n)

z /2), where j is an odd integer (below we omit the n super-
script when discussing a single-nuclear spin case and unless
specified discuss the lowest harmonic j = 1). Notably, the
dependence on Az means that, in fact, different nuclear spins
have different τr and are not all at the Larmor frequency ωL.
Hence, the observed comb of resolved coherence dips repre-
sents a resource for sensing and characterization of the nuclear
spins. In addition, the electronic -nuclear entanglement at τr

has recently even turned DD into an invaluable toolbox for
efficient control and manipulation of nuclear qubits, mediated
by the central NV spin.

A. Pulse-based polarization protocols

Recently proposed pulse protocols with resonances that are
state selective represent an interesting offshoot of DD. Typi-
cally, they yield a pair of resonances τr ≡ τ±

r that are resonant
only with either an up or down nuclear spin state. For instance,
PulsePol [25], proposed in 2018, is a robust multipulse se-
quence combining π and π/2 pulses, [πy

2 − τ − π−x − τ −
πy

2
πx
2 − τ − πy − τ − πx

2 ]2Np repeated over 2Np cycles. For
pulse spacings τr 
 jπ/(2ωI ), where j = 1, 3... it yields an
effective flip-flop Hamiltonian ĤPP = gI±S∓. Hence, each of
the components flips only one nuclear spin state.

PolCPMG [26,27], also proposed in 2018, is a variant
of CPMG, obtained by applying an over-/underrotation to
the pulses, i.e., θ = (1 + δθ )π where δθ = 0 corresponds
to CPMG. It was also shown experimentally to hyperpo-
larize a nuclear bath [27] for δθ 
 0.05 − 0.25π . Another
polarization protocol, TOP-DNP, proposed and investigated
experimentally in Ref. [28] for NMR considers small angles
θ = δθ � π as qubit coherence protection is not the aim.

Further details including respective values of τr are given
in the Appendix but both PulsePol and PolCPMG have been
experimentally investigated using NV centres. If the objective
is polarization of the nuclear bath, it is advantageous to reini-
tialize the NV qubit and repeatedly apply the Np cycles. Nr is
the number of repetitions at a given τ . The coherence time T2

of the NV is only of interest over the Np cycle run, since for
each repetition r = 1, 2, 3...Nr there is optical reinitialization:
the NV state (e.g., |X ±〉 for PolCPMG) is prepared anew.
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Full understanding of DD resonance behavior benefits
from a full quantum bath analysis. While there are several
approaches, it has been shown that the loss of coherence
identified in DD studies at resonances correspond to avoided
crossings of the underlying Floquet eigenstates [26,27,29,30]
and such Floquet spectroscopy offers an insightful pictorial
description. ad-Pulse, as we will see, may be viewed simply as
adiabatic passage over one or more of these avoided crossing
regions. We now describe specifically how to implement ad-
Pulse.

B. Implementation of adiabatic DD: ad-Pulse

In standard DD, the pulse spacing is set at τ and then Np cy-
cles of the protocol are applied. The duration of each protocol
is T = mpτ , with mp = 2 for CPMG-2, mp = 4 PulsePol (for
simplicity, pulse duration is included in τ ). The NV is then
reinitialized optically before the next value of τ . Hence, each
different τ corresponds to a different, completely independent
experiment.

In contrast, ad-Pulse instead sweeps over a range �τ of
pulse spacings without reinitialization, in k = 1, ...Ns steps.
Thus, τk+1 = τk + δτ where δτ is the step size. Starting from
an initial τ = τini, τk = τini + (k − 1)δτ . The actual sequence
time up to step k is tk = ∑l=k

l=1 mpτl , hence

tk =
l=k∑
l=1

mpτl = mpk[τini + (k − 1)δτ/2]. (2)

For an estimate of the sweep time, we can take tk=Ns ∼ mpNsτ

with τ = τini + Nsδτ/2. To understand the resulting dynam-
ics, we now consider Floquet theory.

III. FLOQUET PICTURE

Floquet theory is well-established in many fields in
physics, mostly relating to continuous driving, including ap-
plications in NMR [31]. However, the term covers a wide
range of scenarios: The Floquet theorem is applicable to any
temporally periodic system. For a system with a temporally
periodic Hamiltonian, Ĥ (t + T ) = Ĥ (t ), Floquet’s theorem
allows one to write solutions of the Schrödinger equation in
terms of quasienergy states |ψl (t )〉 = exp (−iεl t )|�l〉, where
εl is the quasienergy, |�l (t )〉 = |�l (t + T )〉, T is the period,
and l = 1, .., D (D is the dimension of the state space).

If we require only stroboscopic knowledge of our sys-
tem at times t = t + kT , one may obtain eigenstates of the
one-period unitary evolution operator Û (T ) ≡ Û (T, 0) for the
joint electron-nuclear spin bath system under pulse-DD. The
Floquet states |�l〉 obey the eigenvalue equation

Û (T )|�l〉 = λl |�l〉 ≡ exp (−iEl )|�l〉, (3)

where El ≡ tan−1 Im λl/ Re λl is the eigenphase (the Floquet
phase).

One important application is so-called Floquet engineering
(FE) [32], where a system continuously driven by a typically
strong or high-frequency field can be shown to correspond to
an effective, static Hamiltonian with renormalized parameters
by averaging over the period of the driving. By varying the
amplitude of the off-resonant drive, one may tune over the

effective Hamiltonian. This approach has been proposed the-
oretically for polarization of a nuclear spin bath [33] using
an adiabatic sweep of the energy eigenvalues of an effective
static Hamiltonian.

The ad-Pulse proposed here is quite distinct from FE: there
is no period averaging and in fact its unique characteristic is
that one sweeps coherently over period T of the pulse proto-
col, within a range containing the characteristic resonances of
the nuclear spins of interest. In contrast, FE methods modulate
the amplitude of the drive. We emphasise that for ad-Pulse,
the microwave frequency ωmw during the short pulses plays
no role in determining adiabaticity. The pulses are not altered,
and by working in the rotating frame, dependence on ωmw

has been eliminated. The timescale of interest is far slower,
∼2π/T � ωmw, than for studies of the microwave driving.

Previously, it has been shown that the loss of coherence
identified in DD studies at resonances correspond to avoided
crossings of the underlying Floquet eigenphases [29,30]. Rec-
ognizing this, ad-Pulse sweeps adiabatically over the Floquet
eigenphases instead: If sufficiently slow, the sweep follows
a Floquet eigenstate adiabatically and coherently, in a process
analogous to adiabatic passage using usual energy eigenstates.
An example is presented below.

A. Example: Whole bath flip by ad-Pulse

In Fig. 1, we illustrate an application of ad-Pulse using
CPMG-2. We consider a bath of five nuclear spins, C1,C2...C5
(couplings tabulated in the Appendix) from a cluster em-
ployed as registers in recent experiments in Ref. [20], with
Ax/(2π ) within the range [20 : 60] kHz.

The Floquet eigenphases El ≡ El (τ ) are obtained numer-
ically by diagonalizing the matrix Û (T ) for the full spin
cluster. The eigenvalues El , are plotted over a range centered
around τ = π/ωL for B0 = 0.0403 T. We plot El ∈ [−π : π ],
noting the spectra are multiply degenerate under the shift
El → El + 2πn, for integer n [30].

We find that an interesting and useful feature of the Floquet
spectra of CPMG-2, for arbitrary number of of nuclei Nnuc, is
the existence of a gap between either of the extremal states
(those that asymptotically tend to maximal/minimal polarized
states Mz = ±Nnuc/2) and all remaining Mz manifolds. Each
and every one of the states in the adjoining Mz = ±(Nnuc/2 −
1) manifolds experiences a coupling A(n)

x Î (n)
x Ŝz associated with

an anticrossing [30]—and level repulsion—with the extremal
states. Hence there is always a gap with the adjoining man-
ifolds. This makes the extremal states generically robust for
adiabatic passage.

The lower panel of Fig. 1 shows the NV spin coherence
L(τ ) = 〈Ŝx〉 and nuclear bath polarization P (τ ) =

1
Nnuc

∑
n

2
h̄ 〈Î n

z 〉 as an adiabatic sweep over τ is carried out,
using the common CPMG protocol.

The sweep inverts the entire nuclear bath: an initial down-
polarized bath state |X± ↓(Nnuc )〉 follows the Floquet state
trajectory to a fully up-polarized state |X∓ ↑(Nnuc )〉. Provided
ttot � T2, a coherent NV state evolves into another coherent
NV state (from |X+〉 to |X−〉). This represents a type of gate,
employing adiabatic passage, but on the underlying Floquet
states.
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FIG. 2. Comparison of standard DD with ad-Pulse DD, exemplified by the PolCPMG polarization protocol, applied to an NV center
electron coupled to one or more nuclear spins. In PolCPMG experiments [27], a slight under-/overrotation of the π pulses splits the normal
CPMG resonance into two τr ≡ τ± resonances that are nuclear-state selective. The initial state is |X ±〉〈X ±|NV ⊗ ρn: The nuclei are initially
in a mixed state and |X ±〉 ≡ 1√

2
[|0〉 ± |1〉]. (a) Single spin case: DD resonances correspond to avoided crossings of the Floquet eigenphases

(upper panel). For the standard case, Np cycles of PolCPMG are applied at a single τ = τ− or τ+; this polarizes the nuclei (lower panel). If
a different τ is used, the NV is reinitialized. In contrast, for the corresponding ad-PolCPMG adiabatic protocol, one sweeps slowly over the
range τ = τ± ± �τ/2 without reinitialization of the NV. As the step size, δτ , is reduced, the sweep becomes adiabatic and full polarization
is achieved: The behavior is well described by Eq. (4), based on Landau-Zener theory (red curves). (b) Multispin cluster: The Floquet level
structure is illustrated for the case of Nnuc = 5 nuclei. Although Mz is not a good quantum number during the ad-Pulse, for clarity, states are
colored according to the asymptotic Mz at τ = 0. Polarization can be achieved even by subadiabatic sweeps �0 < 1 [see Eq. (4)], provided
they are combined with repetitions where the NV state is reinitialized. For each repetition (r = 1, 2...Nr = 15 here), the polarization of the
bath increases monotonically from zero initially. Full polarization is achieved for τ− (lower panel), but for τ+ the sweep saturates, possibly
because the end points are not asymptotic. Ns = 500 and δτ = 1 ns. Similar results are obtained for any subset of the Nnuc = 7 spin cluster
investigated here (further comparisons and coupling strengths are given in Table I in the Appendix).

IV. LANDAU-ZENER MODEL FOR AD-PULSE

We can apply LZ theory to analyze the adiabatic sweep, but
need to adapt it to the Floquet eigenstate spectra. The sweep
ranges from initial τ = τini to a final τfin and τ (t ) must vary—
in real time t—sufficiently slowly for adiabatic passage along
El (τ ).

The range τini : τfin contains the anticrossing region near
τ 
 τr , but τini, τfin must both lie outside the anticrossing re-
gion. For a single nuclear spin, for any value of τ ∈ [τini : τfin],
we find the probability of losses from the eigenstate trajectory
are given by e−�LZ (τ (t )), where

�LZ(τ (t )) = 2A2
xτ

2
r Tr

β2δτ
F (τini, τ ) ≡ �0F (τini, τ ), where

F (τini, τ ) = 1

π
[arctan (�τ ) − arctan (�τini )] (4)

and �0 is the well-known LZ exponent (see Appendix for
further details). Tr = 4τr for PulsePol, Tr = 2τr for CPMG
or PolCPMG. �τ = 4π (τ−τr )

τ

√
Tr/δτ . As τ → τfin, then

F (τini, τ ) → 1 and �LZ(τ (t )) → �0. We can readily relate
Eq. (4) to a corresponding nuclear polarization:

Ppol(t ) 
 ±(1 − e−�LZ(t ) )/2, (5)

here obtained as a closed-form expression in terms of the cou-
plings Az, Ax, sweep parameters and applied magnetic field,

that are shown to be in good agreement with exact quantum
numerics [see next section and Fig. 2(a)].

For adiabaticity (no losses), �0 � 1; this requirement
constrains ttot. However, the sweep range �τ = τfin − τini

required is another important consideration; i.e., although
�0 ∝ A2

x , since �τ ∼ Ax, we find the total time required in-
creases linearly ttot ∝ A−1

x (see Appendix for derivation). For
optimized ad-Pulse, from Eq. (2), we can take τ1 ≡ τini and
τfin ≡ τNs .

For adiabaticity, we also require a sufficiently small step-
size δτ . For �0 > 1 (see Appendix), we require

δτ � 2A2
xτ

2
r Tr

β2
. (6)

β is a protocol dependent parameter. β = (π + δθ ) for ad-
PolCPMG/CPMG while β = 6π/(2 + √

2) for ad-PulsePol.
A smaller step size may be achieved increasing Np since
effective step size δτ → δτ/Np includes number of cycles.
For ad-Pulse, in general Np = 1, where Np denotes the num-
ber of protocol cycles applied with the same τ , whereas the
k = 1, 2, ...Ns steps of the sweep all have a different τ . How-
ever, the sweep may be made slower or more adiabatic by
increasing Np.

V. AD-PULSE: NUCLEAR POLARIZATION

We now consider another application of ad-Pulse. In Fig. 1,
it was assumed that the nuclei start from a pure, polarized
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initial state. Generally, the nuclear bath is in a mixture;
initializing the NV spin can be achieved optically and is com-
paratively straightforward. In Fig. 2, we show how ad-Pulse
adiabatic sweeps with PolCPMG or PulsePol may also be
used to prepare a pure initial nuclear state from a mixture. We
show results for ad-PolCPMG, but ad-PulsePol yields similar
behaviours.

Figure 2(a) (left panels) shows the Floquet spectrum for
PolCPMG for a single spin with δθ = 0.25π . The degeneracy
of the level anticrossings in CPMG is lifted into two distinct
crossings at τ±, and hence there are two coherence dips in
the NV’s trace. Applying PolCPMG at τ− (τ+) will target the
|↑〉 (|↓〉) nuclear state and evolve it into the |↓〉 (|↑〉) state,
polarizing the spin.

Figure 2(a) (right panels) shows the application of ad-
PolCPMG to initialize a single spin and shows the polarization
is well-described by Eq. (4): Full polarization is achieved
when the sweep is adiabatic. In fact, if we allow repeated
sweeps and/or reinitialization of the NV electron spin, we find
the spin bath polarization is robust to a degree of nonadiabatic-
ity. Furthermore, detailed comparisons with both ad-PulsePol
and ad-PolCPMG are presented in the Appendix and show
excellent agreement for all parameters.

Figure 2(b) examines the case of multiple nuclear spins.
The right panel shows the multispin Floquet spectra. The lev-
els group into manifolds of different Mz (for the five-spin case,
Mz = −5/2,−3/2... + 5/2, and there are six manifolds). Hy-
perfine coupling only allows couplings (or avoided crossings)
between neighboring Mz and Mz ± 1 manifolds.

For the multispin ad-PolCPMG and the τ = τ− resonance,
we find that about Nr = 10−15 repetitions is sufficient to
fully polarize (>99.5%), whereas standard PolCPMG re-
quires 100’s of repeated sequences and NV reinitialization.
For τ+, a limit corresponding to about 95% polarization is
reached, possibly because the initial and end states do not
correspond to the asymptotic |X ±〉|Mz〉 basis. A sweep from
τ = 0 avoids these issues. Numerical tests were performed for
clusters with Nnuc � 7 and reasonable coupling strength Ax �
10 kHz, and showed broadly similar behavior. It is possible to
investigate larger clusters, but the system dimensionality and
computational cost increases rapidly with Nnuc.

VI. AD-PULSE: QUANTUM GATES

We investigate ad-PulsePol for quantum state storage. The
Floquet spectrum corresponding to the cluster of three nu-
clei C1-C3 is shown in Fig. 3, either as independent spins
(top panel) or for the three-spin cluster (lower panel) for
B0 = 0.0403 T. For ad-PulsePol, plotting the eigenphases
El ∈ [−π/2 : π/2] is most insightful, as it shows that the
important crossings come in pairs. They are labeled for spin
C2 (blue) for the third harmonic ( j = 3 for τr) corresponding
to ĤPP = gI+S−. They show that an initial state |1↓〉 ↔ |0↑〉,
while |1↑〉 → |1↑〉 and |0 ↓〉 → |0↓〉.

We can show that an adiabatic sweep passing through such
a pair of crossings would map an arbitrary initial NV state
onto the nuclear spin state:

[a|0〉 + b|1〉]NV⊗ |↓〉nuc → |0〉NV ⊗ [a|↓〉 + b|↑〉]nuc,
(7)

[a|0〉 + b|1〉]NV⊗ |↑〉nuc → |0〉NV ⊗ [a|↓〉 + b|↑〉]nuc,

FIG. 3. Illustration of state storage and readout using the ad-
PulsePol protocol. (a) The top panel shows the Floquet spectra for the
three independent spins C1–C3. For this protocol, it is insightful to
show eigenphases El ∈ [−π/2 : π/2] as the spectra show three pairs
of crossings: Each of these corresponds to a true crossing superposed
on an avoided crossing. (b) Spectra for the full three-nuclear spin dy-
namics. Each pair of crossings in (a) is now associated with a family
of four anticrossings. A single ad-sweep over one of the crossings
(we investigate the τ = 0.7 − 1.0 μs range), transfers an arbitrary
NV state |ψ〉NV ⊗ |↓ / ↑〉 to a pure nuclear state, |0/1〉NV ⊗ |ψ〉n,
within Larmor phases. (c) Shows the fidelity for transferring the NV
state to nuclear spin C1 (Ax = 26.6 × 2π kHz) for the case where C1
is isolated (red line) and embedded in a three-spin cluster (maroon
line).

noting that for the second line, the adiabatic sweep leaves the
NV in the |1〉 state, so optical reinitialization to |0〉 is assumed.
As usual for state storage in nuclear registers, since the relative
nuclear phases rotate continuously as e±iωLt , required values
are selected by timing the Larmor precession.

We test this for an adiabatic sweep over �τ centered on τr

for spin C1 (Ax/(2π ) 
 20 kHz), starting with the test state
|�0〉 = [ 1√

3
|0〉 + 2√

3
|1〉]NV ⊗ |↓〉nuc and testing the fidelity of

the overlap F (τ ) = |〈�0|�T 〉| where |�T 〉 = |0〉NV ⊗ [ 1√
3
|↓〉

+ 2√
3
|↑〉]nuc, but disregarding phases between the nuclear

states for convenience (by taking modulus of the coefficients
of �T ). Figure 3 (lower panel) shows that the partial overlap
between avoided crossings reduces the fidelity appreciably,
indicating that although this technique may be used, it is
restricted to very well isolated (well-resolved in τr) nuclear
spins. ad-PolCPMG can equally achieve an equivalent state
storage gate.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we introduced the technique of adiabatic
pulse-based DD control (ad-Pulse). We show it has a broad
range of potential applications that opens several avenues for
experimental studies, ranging from polarization and initializa-
tion of nuclear mixtures to control of single multispin pure
states for state storage and preparation.
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To motivate ad-Pulse, it is legitimate to ask what advan-
tages it might add to the family of standard DD control
protocols already available? We investigated two scenarios:

First, as Fig. 1 illustrates, ad-Pulse opens the possibility
of control of pure states via adiabatic passage, showing the
effects are readily visualized as a trajectory in the eigenphase
spectra. While two specific illustrations are presented here
(Figs. 1 and 3), the possibilities are far from exhausted as
protocols other than CPMG may have gapped states that are
robust to adiabatic passage or isolated spins (for state storage
illustrated in Fig. 3). For an adiabatic gate, both the NV and
nuclei have been prepared in an initial pure state, that ad-Pulse
evolves and/or steers by adiabatic passage to another pure
state of interest. This will introduce an additional challenge.
As the adiabatic passage would not use repetitions, for good
fidelities, it must be concluded within the coherence time T2 ∼
ms.

Second, there are applications such as polarization of nu-
clear mixtures. Here, the ability to use repetitions, where one
reinitializes the NV in a coherent state, while the long-lived
nuclear bath starts in an already partially polarized state in
subsequent sweeps, renders the requirement to complete the
sweep within the T2 time less onerous.

One motivator for new techniques is that recent studies
on nuclear registers involve clusters of multiple nuclei where,
even in the absence of significant many-body nuclear-nuclear
coupling, there is the challenge of dealing with a scenario of
multiple overlapping resonances (even more so in the pro-
tocols that split the resonances for nuclear state selectivity).
Polarization protocols using single τ 
 π/ωL will necessarily
drive some of the spins off-resonance, and previous studies
have identified the formation of dark states that can cause
hyperpolarization to saturate well below the maximum. As
a result, imperfect polarization results. While of less signifi-
cance where NMR signal enhancement is the goal, imperfect
polarization 90−99% may be inadequate for state storage and
quantum information.

ad-Pulse sweeps gradually over the entire resonance region
containing multiple resonant spacings τ1, τ2...τNnuc . Numerical
simulations indicate that it can yield better polarization satu-
rations. However, there are constraints: ad-Pulse works less
well for weaker coupled nuclei Ax � 10 kHz as the adia-
batic sweep time becomes slow compared with T2. Another
constraint is that the adiabatic sweep must begin at initial
and final τ far from any avoided crossing: In Fig. 2(b), this
effect is already apparent in the τ+ sweep as that yields lower
saturation polarizations. In terms of a comparison for the time
taken, PolCPMG or PulsePol will use Np ∼ 10−100, while
Nr ∼ 100−1000. In contrast, ad-CPMG (in Fig. 2) employed
Ns ∼ 1000, while Nr ∼ 10. Thus the total time to achieve
polarization saturation is comparable. Future experimental
studies will be required to undertake more definitive compar-
isons, including the decohering effect of the distant bath of
weakly coupled nuclei.
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APPENDIX

1. Adiabatic DD dynamics: single spin analysis

Under common DD control sequences, the joint NV
electronic-nuclear spin system is associated with resonant fre-
quencies, ωr = π/τr , where τr are resonant pulse spacings at
which the electron-nuclear spins entangle. The ωr are charac-
teristic to each nucleus: For example, CPMG has resonances
at τr = π/ωI , where ωI = ωL + Az/2 and Az is the parallel
hyperfine coupling strength for a particular nucleus while ωL

is the Larmor frequency. There is often a sharp dip in the
measured coherence of the NV, at τ = τr , that forms the basis
of DD-based nuclear sensing.

For the polarization protocols PolCPMG and PulsePol
[25,27], there is instead a pair of resonant τ±

r on either site of
τ = π/ωI where the entanglement dynamics affects either the
up or down nuclear states specifically. PolCPMG is a compar-
atively minor variation on the well-known CPMG protocol.
CPMG is a two-π -pulse sequence, [ τ

2 − πx − τ − πx − τ
2 ]Np ,

where Np represents the number of times the cycle is ap-
plied. For PolCPMG, a small pulse over-/underrotation is
introduced. Hence, instead of employing a θ = π pulse, one
employs θ = π + δθ . This may be implemented experimen-
tally by slightly lengthening/shortening the pulse duration Tp,
yielding resonances at

τ±
r = π ± δθ

ωI
and δθ = π

Tp − Tπ

Tπ

, (A1)

as well as odd multiples of τr . Here Tπ is the duration of a π

pulse. The total protocol period is T = 2τ + 2Tp. However,
as the spin-selective dynamics depend only on δθ , in our
calculations, we assume very short pulses Tp → 0 and thus
T = 2τ . Finite duration pulses are also of interest as these can
give rise to new types of resonances at even-integer multiples
of τr [30], but such effects are not considered here.

PulsePol involves a more complex sequence of pulses
[25] of the form [πy

2 − τ − π−x − τ − πy

2
πx
2 − τ − πy − τ −

πx
2 ]2Np . The sequence was shown in Ref. [25] to yield effec-

tive flip-flop Hamiltonians ĤPP = gI±S∓ at τ±
r respectively.

Although resonances occur at all odd harmonics, the strongest
is at pulse interval τr = τ+ = 3π

2ωI
. The total period of the

PulsePol protocol sequence is T = 4τ .
The polarization time tpol, i.e., the time needed to rotate an

up nuclear state into a down nuclear state, or vice versa, was
obtained in previous studies [25,27],

tpol = π (π + δθ )

Ax cos δθ/2
(PolCPMG),

tpol = 2π

Axα
, α = 2(2 + √

2)

3π
; (PulsePol), (A2)
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where Ax is the perpendicular component of the hyperfine
coupling. In Refs. [26,27], it was shown that on resonance,
at pulse intervals τ = τ±

r , there are avoided crossing in the
underlying Floquet eigenspectra, involving two specific eigen-
states. They are associated with Rabi oscillations of frequency
� between the up/down nuclear spin states, where � =
π/tpol. Thus, applying DD at τ = τ±

r polarizes a nucleus ini-
tially in a spin mixture. For CPMG, τ+

r = τ−
r , both crossings

are degenerate so no polarization is obtained.
For their adiabatic-DD counterparts, knowledge of the Flo-

quet eigenstates on either side of the crossings enables one to
guide eigenstates adiabatically along the desired state trajec-
tory. ad-PulsePol or ad-PolCPMG/CPMG were analyzed in
detail in this paper, but other protocols can be treated simi-
larly. For the adiabatic-pulse (ad-Pulse) sweeps, the sweep is
over a τ region that contains the interaction region i.e., the
avoided crossing region surrounding the τr of interest. The
initial points τini and final point τfin, however, should lie out-
side, and on either side of, the interaction region: The width of
the sweep �τ = |τfin − τini|, should considerably exceed the
width of the avoided crossing.

We define a detuning from resonance:

�D(τ ) = ωr − ω(τ ) ≡ π

τr
− π

τ
, (A3)

noting that �D(τ ) ≡ �D(τ (t )) as τ is swept in time, we also
define a rate of the sweep or level velocity:

�̇D(τ (t )) = π

τ 2

dτ

dt
, hence

(A4)

�̇D(τr ) = πδτ

Npτ 2
r Tr

,

since dτ
dt |τr 
 δτ/(NpTr ) and the protocol period at resonance

Tr = 2τr for ad-PolCPMG but Tr = 4τr for ad-PulsePol. Np

is the number of cycles of the protocol at each value of
τ , while δτ is the step size in τ . The experimental sweep
employs discrete time steps where Ns = �τ/δτ � 1 as δτ is
small. We note that if the chosen δτ becomes too small for
experimental electronics, one can in general adopt an effective
step size δτ → δτ/Np. Below we set Np = 1 and assume that
the number of cycles is incorporated in the step size δτ .

The polarization process starts with a nucleus in a mixed
state so 〈Îz〉 = 0. If we wish to polarize into, say, the down
state, we sweep over the region near τ = τ−

r , where initial
states with 〈Îz〉 = −1/2 remain unperturbed, while those for
which initially 〈Îz〉 = +1/2 are involved in the avoided cross-
ing. One can apply LZ theory to analyze the dynamics and
compare with full quantum numerics for the sweep over this
avoided crossing.

In LZ theory [34], the probability P0 of remaining in the
initial state in a given infinitesimal time interval δt depends
on the transition rate �(t ) out of that state, thus

P0(t + δt ) = (1 − �(t ))P0(t ) 
 e−�(t )P0(t ). (A5)

The state dynamics is characterized by an equation that takes
P0(t = tini ) = 1 to P0(t ) � 0 at some final time tfin so the
transition rates are integrated in time:

P0(t ) = e− ∫ t
tini

�(t )dt = e−�LZ(t ). (A6)

In Ref. [34], a simple model adopts the Lorentzian form for
the transition rate �(t ) = �2 γ

�2
D+γ 2 . The parameter γ was

analyzed in Ref. [34]: γ −1 ∼ Td represents the characteristic
dephasing time Td of the sweep, i.e., the time to accumulate a
phase difference of 2π between neighboring segments (in τ ).
A heuristic analysis resulted in the form γ ∼

√
�̇D/(4π ). We

adopt this form and found it to be remarkably effective, hence
we use

γ /2 =
√

�̇D(τr )

(4π )
= 1

2

√
δτ

4Trτ 2
r

. (A7)

�(t ) may be analytically integrated up to some arbitrary
final time t , so

�LZ(t ) = 2�2

�̇D(τr )

[
arctan

�D(τ )

γ /2
− arctan

�D(τ0)

γ /2

]
. (A8)

The function �LZ(t ) may be written in the form

�LZ(t ) = �0F (tini, t ), with

�0 = 2π�2

�̇D(τr )
(A9)

and where

F (tini, t ) = 1

π

[
arctan

�D(τ (t ))

γ /2
− arctan

�D(τ0)

γ /2

]
(A10)

interpolates from F = 0 at t = tini to F = 1 as t → ∞.
We note that when �D(τ = τfin) � γ � �D(τini ), the res-

onant region around τr is well contained within the range
τ ∈ [τini : τfin], then

�LZ(t ) → �0, (A11)

and thus the probability of remaining in the initial state is
P0 = e−�0 , is independent of γ , and is given only by �0, the
LZ exponent. The probability of adiabatically following the
trajectory is 1 − P0: conversely, P0 denotes the probability of
losses from the adiabatic trajectory. �0 quantifies the degree
of adiabaticity of a parameter sweep along an eigenstate tra-
jectory.

For our present example of an initial spin in mI = +1/2, if
�0 � 1, then P0 
 0 and no probability remains in the initial
state; the spin has flipped to mI = −1/2 and is fully polarized
as the sweep is adiabatic. The calculated polarization is given
by Ppol(t ) = ±(1 − e−�LZ (t ) )/2 (depending on whether we are
using τ+

r or τ−
r ). We use P to denote the polarization of the

initial nuclear mixture, so in Fig. 4 we compare P0(t ) calcu-
lated analytically (red lines) with full numerical calculations
of 1 + 2P for τ−

r (PolCPMG) or 1 − 2P for τ+
r (PulsePol) .

We can substitute Eqs. (A2) and (A4) into Eq. (A9) to
obtain

P0(t ) = e−�LZ (τ (t )), where
(A12)

�LZ(τ (t )) = �0F (t0, t ) = 2A2
xτ

2
r Tr

β2δτ
F (t0, t ),

where β = (π + δθ ) for PolCPMG while β = 6π/(2 + √
2)

for PulsePol. The time dependence of the polarization,
F (t0, t f ), is readily evaluated using Eqs. (A7) and Eq. (A4).
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FIG. 4. Shows that the Landau-Zener theory Eq. (4) in the main
text reproduces the spin-flip behavior of adiabatic sweeps for differ-
ent spin coupling, magnetic field strengths, and different protocols.
B0 = 0.0403 T. The colored lines represent quantum calculations for
different step sizes δτ : As the Landau-Zener exponent �0 increases,
the fidelity of the adiabatic trajectory increases. The red lines over-
laid correspond to P0 = exp[−�LZ(τ )] given by Eq. (4) in the main
text or Eq. ((A13)) here. Agreement for ad-PolCPMG is excellent;
for the ad-PulsePol protocol, as the magnetic field increases, the
Landau-Zener theory acquires an asymptotic offset from the quantum
results of 10–20%, but still predicts quite reliably which step sizes
will yield an adiabatic, high fidelity sweep (thus P0 → 0 at the end
of the sweep).

Finally, we substitute Eqs. (A7) and (A3) into the form of
F (t0, t f ) to obtain

�LZ(τ ) = 2A2
xτ

2
r Tr

β2δτ

1

π
[arctan �τ − arctan �τini ], (A13)

with �τ = 4π (τ−τr )
τ

√
Tr/δτ which corresponds to the form of

�LZ(τ (t )) Eq. (4) in the main text.
In Fig. 4, we test the LZ theory for different magnetic

fields, coupling strengths, and protocols, and show it reliably
quantifies adiabaticity for a wide range of parameters.

2. Adiabatic gate time ttot

From the above, we see that an adiabatic sweep that will
transfer an initial state to the final state along an eigenstate
requires that

�0 = 2A2
xτ

2
r Tr

β2δτ
� 1; (A14)

hence for a given magnetic field strength and hyperfine cou-
pling, we require that the step size be smaller than

δτmax = 2A2
xτ

2
r Tr

β2
. (A15)

The total number of steps needed is thus Nsteps = (τfin −
τini )/δτ = �τ/δτmax and the total gate time needed is

ttot = �τ

δτmax
Tr (A16)

TABLE I. Nuclear spins: Hyperfine coupling strengths.

Spin Az/(2π ) (kHz) Ax/(2π ) (kHz)

C1 −36.308 26.62
C2 20.569 41.51
C3 −11.346 59.21
C4 8.029 21.0
C5 24.399 24.81
C6 −48.58 9.0
C7 −20.72 12.0

(we recall the effective step δτ → δτ/Np includes number of
cycles).

3. Estimate range of the adiabatic sweep: �τ

To obtain an estimate of �τ , we employ a sweep that
contains the resonance thus ranges from an initial τini ≈ τr −
�τ/2 to a final τfin ≈ τr + �τ/2.

The parameter γ may be used to estimate the width of
the interaction region. The time-dependence envelope ranges
from a value F (t0, t ) = 0 at τ = τini to F (t0, t ) = 1 at τ = τfin.
We can define a representative middle region bounded by

arctan (�D(τ )/(γ /2)) ∼ ±π/4. (A17)

Hence

�D(τ ) = π
τ − τr

ττr

 γ =

√
δτ

4Trτ 2
r

(A18)

or

�D(τ ) = π
τ − τr

ττr

 π�τm/τ 2

r , (A19)

using δτ ≡ δτmax, we obtain

�τm 
 τ 2
r Ax

√
2

βπ
. (A20)

However, the width of the adiabatic sweep has to considerably
exceed the inner width of the resonance to ensure that the
states start and end at their asymptotic values, hence �τ �
�τm.

We find that a good value is to take

�τ/2 = C�

τ 2
r Ax

β
, (A21)

with C� ∼ 6. The τ sweep should be as wide as possible;
however, if it is too wide, the τ ∈ [τini : τfin] region may begin
to overlap with neighboring crossings, even for a well-isolated
spin. In addition, since the gate time ttot scales as �τ , if pos-
sible, the lowest value required to ensure the required fidelity
should be chosen.

Combining Eq. (A16) with Eqs. (A21) and (A15), we
obtain

ttot 
 β/Ax. (A22)

In other words, if the sweep range can be optimized and
scaled appropriately for different magnetic fields, the gate
time varies as A−1

x . However, for a spin cluster covering a

013214-8



ADIABATIC DYNAMICAL-DECOUPLING-BASED CONTROL … PHYSICAL REVIEW RESEARCH 4, 013214 (2022)

range of Ax this may not be possible to a full extent. Neverthe-
less, interestingly, one may adjust the sweep range to make the
gate time independent of the magnetic field strength as there
is no dependence on τr .

The total time taken for the gate is found by taking the
summation over all time steps to obtain

ttot = Tr

(
�τ

δτ
+ 1

)

 Tr

�τ

δτ
. (A23)

Assuming that for a highly adiabatic sweep �0 ∼ 5 − 7 ≡
C−1

δ , then

δτ = Cδ

2A2
xτ

2
r Tr

β2
. (A24)

For this case, then the total gate time is

ttot = C�

Cδ

β

Ax
. (A25)

In Fig. 5, for a highly adiabatic sweep (small Cδ), we compare
the effect of varying the sweep range �τ , showing that C� ∼
4 − 6 yields converged results.

Although the LZ approach is remarkably reliable in de-
scribing the transition to adiabaticity 0 � �0 � 10, once the
sweep is at the adiabatic limit, the full quantum dynamics
saturates: There is a perfect evolution from the initial to the
final quantum state. The LZ exponentiation e−�0 , however, be-
haves unphysically for large �0. Adiabatic methods may also

FIG. 5. Upper panel: An adiabatic sweep of the single spin, C1,
under a static magnetic field of B0 = 0.0403 T for different values of
C� and hence a range of �τ ’s. To indicate where the sweep starts
in relation to the Floquet spectrum, the lower panel displays the
single-spin Floquet phases for C1 with the range of �τ ’s highlighted
as colored dotted lines. A larger C� leads to a smoother adiabatic
sweep, but this linearly increases the total sweep time, ttot. We take
Cδ = 1/7 and very good results are obtained already for C� = 4 with
reasonable results achieved for C� � 2.

be investigated in combination with pulse-based Hamiltonians
designed for many-body spin systems [35].
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