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ABSTRACT
The ageing European population and the expected increasing num-
ber of medical emergencies put pressure on the medical sector and
existing emergency infrastructures, which calls for new innovative
digital solutions. In parallel, the increasing utilization of the Internet
of Things (IoT) has enabled the collection of real-time data, allow-
ing for the autonomous detection of acute medical emergencies.
In this context, this paper presents two distinct machine learning
(ML) models that leverage electrocardiogram (ECG) sensor data to
autonomously detect Myocardial Infarctions (MI), a leading cause
of emergencies. These models are intended to be integrated into an
IoT-enabled next-generation emergency communications system
(NG112) capable of detecting emergencies, initiating emergency
calls (eCalls), and providing relevant information to emergency call
takers, which reduces response time. To realize this, two disparate
models working on fundamentally different data structures are
proposed and compared: A one-dimensional convolutional neural
network (CNN) operating on the raw ECG signals and a GoogLeNet-
based model trained on ECG images. The PTB-XL dataset is used to
evaluate the proposed models, and the results indicate the 1D CNN
exhibits a favourable trade-off between precision and recall for the
eCall use case. Finally, the paper also discusses applying eXplain-
able AI (XAI) methods to achieve explainability for the ML models,
paving the way for an accountable and reliable implementation in
safety-critical systems.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Applied
computing→ Health informatics; • Social and professional top-
ics→Medical technologies.
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1 INTRODUCTION
The pervasive and consistently increasing adoption of the Internet
of Things has enabled the collection of large amounts of real-time
data at the Edge. Environmental and near-body sensors such as
smartwatches, cameras, accelerometers, or wearable ECG sensors,
facilitate accumulating and monitoring an accurate and temporally
updated representation of users’ ambient conditions and body vitals.
This creates the opportunity to leverage the available IoT data
to automatically detect patterns and anomalies that may indicate
emergencies such as fires, falls, or even acute cardiac issues.

At the same time, the constantly ageing European society [7]
poses challenges to the medical system and emergency infrastruc-
ture, and calls for innovative and automated digital solutions. Pre-
cisely, the prompt detection of medical emergencies and immediate
initiation of medical assistance are becoming increasingly impor-
tant in light of the rising number of elderly patients [7]. In this
context, the advancing digitalization and the increased availability
of IoT sensor data can significantly contribute to the automated
detection of emergencies, leading to an early response.

Therefore, in this paper, we present an IoT-enabled and IP-based
next-generation emergency communications system capable of
automatically detecting acute medical emergencies with the help
of ML-based models. Precisely, we present two disparate ML-based
models to automatically detect myocardial infarctions based on
(ECG) sensor data. MI is a type of cardiovascular disease, one of the
leading causes of mortality worldwide [21], where early detection
is crucial in saving lives and reducing mortality rates. Further, we
aim to integrate the ML models into an existing NG112 system
that is capable of (1) automatically detecting emergencies at the
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Figure 1: Integration of the ML-based emergency detection into the NG112 emergency e-calling system EMYNOS.

patient side based on IoT sensor data, (2) automatically initiating
emergency calls in case emergencies are detected, and (3) providing
the emergency call taker with relevant information and reasoning
behind the decision making.

Given that the automated ML-based detection of MIs and the
autonomous establishment of emergency calls represent a safety-
critical application, the accountability of the discussed ML-based
system is of utmost importance. Explanations of AI systems can help
enhance the accountability of the system if they are interpretable
to the decision makers [3]. We will therefore give an outlook on
how to apply and compare different explainable AI (XAI) methods
to the proposed MI detection models. This is also the motivation for
the two disparate methods discussed in our work. Our first method
uses the ECG as a waveform time series data. However, due to
the availability of a number of XAI methods for image classifiers,
in our second method, we use ECGs as images for MI detection.
The envisioned results are supposed to provide the patient and
emergency call taker with reasonable explanations about decisions
of the ML models.

In summary, we contribute to the field of accountable ML in
safety-critical systems by:

• Proposing and comparing two ML models for MI detection on
ECG data in IoT-based NG112 systems,

• Demonstrating the application of XAI methods to enhance the
models’ accountability,

• Recommending future research directions for evaluating the
accountability of the proposed models.

To achieve this, we start with presenting the NG112 system and
related work in Section 2, followed by a description of the method-
ology (Section 3) and evaluation results (Section 4). An outlook
on applying XAI methods is provided in Section 5, followed by a
conclusion in Section 5.

2 BACKGROUND
In this section, we discuss the NG112 emergency communication
system, which serves as the application basis for the work provided

in this paper, and also highlight the most relevant work in the
context of MI detection using ML.

2.1 The NG112 Emergency Communication
System

For the above-mentioned IoT-enabled emergency communication
system, we build on the results of the EU-funded H2020 project
EMYNOS (nExt generation eMergencY commuNicatiOnS)1. In the
course of this project, Rebahi et al. [19] specified an NG112 emer-
gency communication system that allows (1) to integrate various
eHealth sensors to implement appropriate monitoring and (2) to
establish VoIP-based emergency calls that provide the functional-
ity to transmit sensor data between the caller and callee. Figure 1
visualizes a simplified version of a corresponding testbed of the
EMYNOS framework, which was developed and tested by Barakat
et al. [4] and Kumar Subudhi et al. [13].

We aim to enhance the EMYNOS platform by implementing anAI
system that accurately recognizes emergencies and autonomously
initiates eCalls while being accountable and effective. In addition
to the automated emergency recognition, we want to provide XAI
explanations to the patient and emergency call taker. These should
help the latter better assess the emergency situation, estimate nec-
essary medical resources, instruct potentially available first respon-
ders, and even recognize and reject hoax calls.

To explain our emergency e-calling system depicted in Figure 1,
the Medical Analysis Module (MAM) provides access to the models
and XAI methods. When a user at the Caller Side receives new ECG
readings from connected IoT devices, the data is forwarded to the
MAM. The MAM then analyzes the ECG, provides a classification
score, and delivers XAI explanations to the patient. If an emergency
is detected, an eCall is automatically initiated, and the sensor data
is transmitted to the emergency call taker, who can also utilize
the MAM to obtain relevant explanations. Additionally, we grant
access to the Enhanced Interpretablity Module, a WebApp that offers

1H2020 EMYNOS: https://www.emynos.eu/, as of date 27.07.2023
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Figure 2: Overview of the methodology pipeline.

an interactive GUI interface to enhance the interpretability of the
explanations provided.

2.2 Related Work
Recently, there have been a growing number of studies for the
detection of heart-related diseases from ECG data. The two most
commonly used open ECG databases are called PTB [9] and PTB-XL
[29]. The two databases are disjoint, with PTB-XL being larger and
with broader annotations. Some of these works also extend their
work from the MI detection towards explaining their models for
increased transparency.

As the PTB-XL dataset is relatively new, there are only a few
studies using it in their work. Hammad et al. [10] uses a CNN com-
bined with an SVM for the classification of four cardiovascular
pathologies available in the PTB-XL dataset, and achieved an accu-
racy of 98.9%. A similar study by Chen et al. [6] used the PTB-XL
dataset for training and validation, but used a dataset from Chap-
man university and Shaoxing People’s Hospital [31] for testing.
They used a residual network for MI detection and achieved an
AUC of 97.7%, specificity of 95.1%, and sensitivity of 95.1%. An-
other study by Martin et al. [17] preprocessed the signal by using
single lead information aligned in time, and achieved an accuracy
of around 84.1%, by using deep LSTM. On the other hand, Ma et al.
[15] focused on simplifying the model to reduce the prediction time
of MI and used a convolutional dendrite net, achieving a decent ac-
curacy of 96.80%. Contrary to all these studies with time series data
as the input data type, Fang et al. [8] proposed a novel method by
generating 3D images with the 12-lead ECG data, and and achieved
an accuracy of 97.23% by training a multi-VGG deep neural network.
They also explained their AI outputs by using Grad-CAM++ on
these images. Anand et al. [1], on the other hand used variations
of Spatio-Temporal CNNs, and used SHAP to explain their model
along with the medically relevant information.

In addition, the studies using the PTB database achieved even
better performance results. Zhang et al. [30] extracted single heart-
beats for MI detection and MI localization, and achieved an ac-
curacy, sensitivity, and specificity of 99.88%, 99.98% and 99.39%
respectively. Rai and Chatterjee [18] and Han and Shi [11] com-
pared deep learning methods like CNN, hybrid CNN-LSTM, and
ensemble techniques for MI detection and achieved accuracy as
high as 99.8% [18]. In addition to the CNN architecture, Jahmunah
et al. [12] also used Grad-CAM for explanations and Strodthoff and
Strodthoff [25] used LRP. On the other hand, Cao et al. [5] used
SENet for classification of ten types of MI localization, and visu-
alized the important leads by using the weight information from
the SENet structure. A few other studies used ECG-plotted images
from the PTB dataset as input data and used CNN for classification

Makimoto et al. [16], Uchiyama et al. [28]. [16] also used Grad-CAM
for explanations.

In our study, we aim to enhance the accountability of MI detec-
tion. Hence, we adopt disparate classification methods that allow
us to derive distinct explanations: one working on time series data
and the other on ECG image data.

3 METHODOLOGY FOR ML-BASED MI
DETECTION

Figure 2 shows an overview of our approach to obtain and com-
pare two disparate ML models capable of detecting MIs in provided
ECG input data. As stated in Section 1, we compare two models
that operate on different data structures, to investigate different
available XAI methods with distinct capabilities (see Section 5).
As illustrated in Figure 2, the first investigated model represents
a one-dimensional CNN trained on multivariate ECG time series
data. In contrast, the second model is based on the GoogLeNet
[27] and is trained on images showing the ECG signals. Both ap-
proaches obtain the data from the PTB-XL benchmarking dataset
[29]. Before evaluating and comparing both disparate approaches,
we describe the PTB-XL dataset, the applied data preprocessing,
and both mentioned models in the following sections.

3.1 Data Analysis & Preprocessing
The PTB-XL benchmarking dataset comprises the largest publicly
available collection of ECG data, consisting of 21799 12-lead ECG
records of ten seconds from a diverse cohort of 18869 patients [29].
The ECGs are accompanied by diagnostic labels provided by two
cardiologists. Each ECG is labelled with possibly multiple super-
classes, including myocardial infarction (MI), normal ECG (NORM),
ST/T change (STTC), conduction disturbance (CD) and hypertrophy
(HYP). There is also given a likelihood for each label being correct.
We only make use of those ECG records that are labelled with MI or
NORM (and possibly other superclasses) with a probability of 80%
or more. We call this first preprocessing step filtering. This step is
followed by an aggregation of labels into NORM and MI as we aim
for a model that is capable to distinguish between these two classes.
In the next step, we split the dataset into training (80%), validation
(10%) and test (10%) as suggested and defined by Wagner et al. [29].
As illustrated in Figure 3, the resulting classes MI and NORM are
unbalanced (1 : 3) in the training set. To address this imbalance

2544 
(26%)

7097 
(74%)

291 
(25%)

896 
(75%)

MI NORM

15264
(52%)

14194 
(48%)

Train set distribution 
a) after filtering b) after balancing & augmentation

Test set distribution 

Figure 3: Class distribution of train and test sets after differ-
ent steps of preprocessing.
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Figure 4: Architecture of the 1D CNN showing convolutional (blue), dropout (yellow), pooling (green) and dense (grey) layers.

issue and allow the models to learn more of the rare but targeted MI
cases during training, we make use of a sliding window approach
similar to that proposed by Strodthoff et al. [26]. As can be inferred
from Figure 3, we obtain an almost balanced training set with ECGs
of 2.5 seconds length. To be more precise, we oversample the mi-
nority class by selecting three subsequences of length 2.5s from
each ECG with MI for each subsequence that we take from an ECG
classified as NORM. As we additionally want to augment the whole
training set to increase the ML models’ learning capability, we use
two distinct subsequences from each ECG classified as NORM and
six overlapping subsequences evenly distributed over the whole
ECG sequence from each MI sample. The resulting data distribution
and number of samples per class before and after preprocessing
of the training set is depicted in Figure 3. As we can also see in
this figure, we do not apply any balancing or augmentation on the
test set as it has to represent the original data distribution to be
expected in operation environments in order to derive reliable con-
clusions about the generalizability of the models. However, we also
selected (random) subsequences of 2.5s to match the expected input
dimension implied by the windowing approach. In this process, we
ensured that no samples from individual patients were mixed in the
individual data splits to avoid inter-patient learning of the models.

3.2 Approach 1: Using CNNs to Analyse ECG
Signals

In our first approach, we use the preprocessed ECG signals as input
to train a CNNwith one-dimensional convolutional layers operating
on the original multivariate time series data. This CNN is an adapted
version of the one proposed by Hammad et al. [10], which they
used as a tool for extracting deep features of ECG signals. The
architecture of our adapted CNN version is illustrated in Figure 4. It
consists of four convolutional layers, two max pooling layers, one
global average pooling layer that is followed by a dense layer and
a probabilistic output given by the sigmoid function. For all other
layers, we use ReLU activations. We incorporated dropout layers
after each of the convolutional layers as a regularization technique
to reduce overfitting [24]. Additionally, we applied early stopping
in order to avoid overfitting. To be more precise, we monitored
the loss on the validation set and ended training the model after
30 iterations of no decrease. In order to obtain a model of high
performance, we tuned the hyperparameters kernel sizes, dropout
rates, batch size and learning rate for the Adam optimizer used
during training. We thereby applied grid search resulting in kernel
sizes of 7, 5, 5 and 5 for the four convolutional layers, dropout rates

of 0.5, 0.4, 0.3 and 0.2 for the four dropout layers, a batch size of 64
and a learning rate of 0.001.

3.3 Approach 2: Using GoogLeNet to Analyse
ECG Images

In this approach, we use images of ECG signals instead of the raw
ECG signals, and use the GoogLeNet [27] for the classification task.
GoogLeNet is a CNN with 22 layers using repetitive components
of multi-sized filters at the same level. As an input to this model,
we use images generated from the preprocessed data as described
in Section 3.1. Thus, we ensure similar training data for both ap-
proaches. As GoogLeNet requires input images of size (224, 224, 3),
we resize the images before feeding them into the network. In
addition, as the classification task is different from the original
GoogLeNet classification, we modified it to be retrained for the
MI detection task. We removed the last ’loss-3-classifier’ layer and
added a ’fully-connected layer’, a ’softmax layer’, and a ’classifica-
tion layer’ specific to our task. The rest of the network remained
unchanged. We used a stochastic gradient descent optimizer with a
momentum of 0.9 for optimization, an initial learning rate of 3 ·10−4
and batch size of 10. To avoid overfitting, we used the validation
set as in approach 1.

4 RESULTS AND DISCUSSION
We evaluated our two models on the recommended PTB-XL test
set consisting of 291MI and 896 NORM samples (see Figure 3). The
results for both proposed models are shown in Table 1. They are
based on a random 2.5s long subsequence for each of the ECGs
from the test set. Our analysis shows that the choice of the 2.5s

Table 1: Performance comparison of the proposed models

Metric 1D CNN
(Approach 1)

GoogLeNet
(Approach 2)

Accuracy 96.21% 95.53%
Precision 91.55% 88.14%
Recall 93.13% 94.50%

Specificity 97.21% 95.87%
AUROC 98.91% 99.09%

TP 271 275
FP 25 37
TN 871 859
FN 20 16

53



Exploring CNN and XAI-based approaches for accountable MI detection IoT 2023, November 07–10, 2023, Nagoya, Japan

subsequence does not have a great impact on the performance
metrics accuracy, recall and precision. Figure 5 depicts the box plots
of these metrics for both the models based on the test set. For this
analysis, we used sliding windows over the 10 sec ECG data, with
a stride of 10 ms for the 1D CNN, and 500 ms for the GoogLeNet
due to the computational complexity of generating images.

As we can deduce from Table 1, the accuracy of the 1D CNN
model is 96.21%, slightly higher than that of the GoogLeNet, which
manifests an accuracy of 95.53%. However, this metric should be
used with caution as the test set is imbalanced. Therefore, our main
focus is on the two performance metrics, precision and recall. On
the one hand, we aim for models with high precision identifying
what proportion of ECGs classified as MI was actually correct. More
specifically, we want the model not causing too many false alarms
when incorporated in the eCall system. On the other hand, we
aim for models with high recall, meaning the proportion of actual
MIs being identified as such should be high. This is of high im-
portance for our application as every non-identified MI endangers
somebody’s life. Whereas the precision of the 1D CNN with 91.55%
is higher than that of GoogLeNet with 88.14%, the recall of the
GoogLeNet is higher than that of the 1D CNN with 94.50% and
93.13%, respectively. For the sake of completeness, we also included
other performance metrics in Table 1. Specificity, for example, is
often used together with recall (sensitivity) in the clinical context.
Regarding the performance metrics, we conclude that the 1D CNN
manifests a slightly better trade-off between precision and recall
than the GoogLeNet for the eCall use case. However, performance
is not the only aspect that we take into account for our application.
We additionally aim for an accountable model providing reasoning
behind its decisions. An outlook on this aspect is given in Section 5.

4.1 Selecting Different ECGWindows At
Inference Time

As described above, our proposed models expect ECG inputs of 2.5s
length. However, ECGs with longer sequences are often available in
real-world scenarios. Therefore, longer ECGs could be fragmented
into consecutive 2.5s windows, on which the MI detection models

Figure 5: Accuracy, precision and recall for 1DCNN andGoog-
LeNet for slidingwindows of 2.5 seconds. The boxes represent
the 25th to 75th percentile of the samples; red lines represent
the median, extended black lines represent the minimum
and maximum, and red crosses represent the outliers.

Table 2: Comparison of test performance with different frag-
mentation approaches for the proposed 1D CNN model (A1)
and the GoogLeNet-based model (A2).

Metric Random
window

Average
windows

Max
window

A1 A2 A1 A2 A1 A2

Accuracy (%) 96.08 95.59 96.54 95.87 95.28 93.93
Precision (%) 91.03 88.37 92.23 89.03 85.71 81.19
Recall (%) 93.23 94.46 93.81 94.84 96.91 97.93

TP 271 275 273 276 282 285
FP 27 36 23 34 47 66
TN 869 860 873 862 849 830
FN 20 16 18 15 9 6

are applied continuously. For the presented emergency detection
use case, this concept raises the question of when a fragmented
ECG should be classified as MI and an emergency call should be
triggered. To investigate and clarify this question, we examine and
compare three fragmentation approaches on the PTB-XL test set.
In the first approach, only a single random 2.5s window is selected
from the 10s original ECG, and then used for MI detection. In the
second approach, the ECG data is split into four consecutive 2.5s
windows, and the final classification is based on averaging the
prediction results of the individual windows. The third approach is
similar to the second one, except that the ECG is classified as MI,
and an alarm is issued if at least one window is classified as MI.

Table 2 lists the results for the three discussed fragmentation
approaches for both proposed models. For the first approach in
which a random subwindow is chosen, we provide the average
metrics over all possible selections of windows (stride length of 10
ms) as depicted in Figure 5. As we can deduce from Table 2, the
performance metrics accuracy, precision, recall, TP, FP, TN and
FN are all slightly better for the averaging approach than for the
random window approach. However, the models will be integrated
in a time-critical emergency system and evaluating four sequences
instead of one would increase the classification time. The third
approach (max window), in which the final classification is also
based on analysing four windows, shows a possibility on how to
increase the recall with the cost of decreasing the precision. The
accuracy for this third approach is slightly smaller than that of the
other two approaches. In conclusion, there is a trade-off between
time and performance as well as between recall and precision that
both need to be taken into account when integrating the models
into the eCall system.

5 TOWARDS ACCOUNTABLE ML-BASED
ECALLS

For our safety-critical application of automated emergency detec-
tion, the end-to-end accountability of the entire AI-based system is
of utmost importance. We pave our way towards accountability by
explaining the AI predictions in a way that they are understandable
by the emergency call takers. In our MI detection use case, we want
to provide visual explanations highlighting the relevant segments
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Main Findings of this Paper:

• CNN-based MI detection on time series and image ECGs
show comparable performance results.

• Selecting the most suitable approach depends on the appli-
cation’s performance trade-off to satisfy.

• Both the 1D CNN time series and the GoogLeNet image
classifier show promising accountability potential when
applying XAI methods.

• XAI explanations of the 1D CNN are fine-grained and iden-
tify individual ECG segments as relevant.

• In contrast, explanations of the GoogLeNet are coarse-
grained by marking broader segments or leads.

• A thorough quantitative and qualitative accountability anal-
ysis of MI detection models is an open research area and is
currently investigated by the authors.

in the ECG signal that indicate an MI classification. Therefore, we
focus on those XAI methods that return an importance score for
each point in time for each of the 12 leads, or, for images, for each
pixel. This importance score represents the relevance of each in-
put feature for the model’s decision for detecting MI, allowing to
present explanations as heatmaps superimposing the ECG being
explained. In the following section, we aim to present the initial
results and findings of our XAI methods under investigation. A
complete and systematic study of the models’ accountability is sub-
ject to the current research activities of the authors and will be
presented in future work.

5.1 Utilizing XAI Methods for Time Series ECGs
The PTB-XL dataset that we use is a set of multivariate time series.
However, most research and available XAImethods have focused on
text, image, and tabular data [22]. Although univariate time series
data can be interpreted as tabular data and, therefore, XAI methods
for tabular data can be transferred to them, this is not straight-
forward in the case of multivariate time series data. A dataset of
multivariate time series has three dimensions: one for the number of
time series present in the dataset, one for the number of timesteps,
and one for the number of records per timestep. In contrast to that,
tabular data only has two dimensions. There is the possibility to
reduce one dimension of the multivariate time series dataset by
flattening each time series but this comes with the cost of losing
explicit time dependencies of features, which is why we decided
against this approach. At this point, we want to remind the reader
that this XAI limitation of multivariate time series classifiers is
the reason for presenting two models working on different data
structures.

For the proposed 1D CNN model discussed in Section 3.2, we
encountered LRP [2] and SHAP [14] to be applicable to explain the
model’s decisions on the multivariate time series. Figure 6 illus-
trates exemplary explanations for an ECG of one patient for which
the 1D CNN model correctly predicted an MI with a classification
score of 99.99%. We scaled each of the importance scores to be in

the range [−1, 1] by dividing with the highest absolute value of
all importance scores per explanation in order to have comparable
scores across XAI methods while keeping the sign. The sign is im-
portant as negative values in LRP denote negative evidence for a
class [2], i.e. evidence for the respective ECG being normal in our
case. The two explanations given in Figure 6 highlight segments en-
countered as most relevant regarding the 1D CNN model’s decision
for predicting MI in red colour. As illustrated, there seems to exist
some consistency of red highlighted segments across heart beats
and some of the leads. Additionally, some of the 12 leads have been
highlighted more, suggesting to be more relevant for detecting MI.

5.2 Utilizing XAI Methods for Image ECGs
For the proposed GoogLeNet-based model presented in Section 3.3,
we used ECG images as the inputs to this model to perform the
MI detection task. For the presented model, we found Grad-CAM
[23], and LIME [20] as the most promising approaches, and the
explanations generated by these two XAI methods are depicted in
Figure 7. Further, the relevance values in the image are scaled to
the range [0, 1], as Grad-CAM and LIME only had positive scores.
Here, 0 indicates no influence, while 1 indicates the most relevance
towards classifying MI. For consistency purposes, we used the same
patient data as used in Section 5.1, and for this example, GoogLeNet
correctly predicted the image as MI with a confidence score of
99.61%. As observed in Figure 7, Grad-CAM highlights a larger area
and is not able to highlight specific parts of the image. For various
other ECG images, Grad-CAM was able to provide more specific
areas than in this example. However, LIME highlights specific leads
and segments of the ECG image, providing more specific parts that
may be relevant. Although the explanations from the two methods
highlight similar leads, it is difficult to visually conclude this, as the
methods have varying granularity of explanations.

5.3 Outlook: Evaluate Model Accountability
When comparing the results illustrated in Figures 6 and 7, we can
conclude that the two explanations for the 1DCNNmodel’s decision

Figure 6: Explanations from SHAP (left) and LRP-epsilon
(right) for the output of the 1D CNN (approach 1) on the
same ECG. The horizontal axis represents time in 10ms and
the vertical axis represents voltage in mV. Red represents
positive, whereas blue represents negative relevance for MI.
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Figure 7: Explanations from Grad-CAM (left) and LIME
(right) for the output of GoogLeNet (approach 2). The red
colour represents the most relevant parts of the ECG image.

on detecting MI are fine-grained, whereas those for the GoogLeNet
model’s decision are more coarse-grained. The explanations given
for the 1D CNN mark individual ECG segments as relevant. On the
contrary, the explanations of the GoogLeNet highlights broader
segments or whole leads. However, there also seems to exist some
consistency of highlighted segments across these XAI methods.

So far, we have shown the capability to provide explanations
for each of the models, but a thorough quantitative and qualitative
analysis and comparison of both approaches and the generated
explanations is yet open and currently conducted by the authors.
However, the findings presented in this section already highlight
several research questions that remain open and will be investi-
gated in future work: 1) Which of the XAI methods applicable to
one model provides the best explanations? 2) Which of the two
proposed models is more accountable, i.e. provides better explana-
tions? 3) Which of the models and methods generates stable and
consistent explanations? While the first two research questions
describe a qualitative analysis for which domain experts need to be
included, the third question corresponds to a quantitative analysis
for which suitable metrics to measure stability and consistency
need to be defined.

6 CONCLUSION
In this paper, we proposed two disparate ML models capable of
identifying indications for MIs from ECG sensor data in the context
of IoT-enabled emergency communication systems. While both
models reliably detect MIs, we found that the presented 1D CNN
operating on time series data shows a better trade-off between preci-
sion and recall for the discussed eCall use case than the GoogLeNet-
basedmodel working on the ECG images. Furthermore, we analyzed
three ECG fragmentation approaches for consecutively applying
the MI detection models in real-world scenarios. Our findings indi-
cate that no approach outperforms the others. Instead, a trade-off
between classification time and performance needs to be found
when integrating the models into safety-critical systems. Finally,
we presented the initial results of applying XAI methods to the
proposed models for providing explanations that elucidate their
decision-making. These preliminary experiments suggest that the
CNN model’s explanations for detecting MIs are more fine-grained
in comparison to the GoogLeNet-based model. In future work, we
aim to investigate the last aspect in more detail by analysing how to

approach accountability for the proposedmodels by improving their
explainability. Precisely, we want to systematically evaluate the
application of XAI methods to the proposed models by performing
quantitative and qualitative analysis of the provided explanations
as described in Section 5.
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