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Abstract—Cossembler (co-simulation assembler) is a rapid
prototyping tool for co-simulation. The tool is created to expe-
dite the process of co-simulation development for power and
energy system studies targeting user groups of power engineers,
energy consultants and grid operators. Instead of focusing
on message encoding, transportation and synchronization, as
many other co-simulation tools do, Cossembler emphasizes
application-level functionalities which are of interest to the
intended users (such as power flow studies, stability simulations,
market simulations, etc.). Cossembler is a block modeling tool
whose blocks reflect these main functionalities in power and
energy sector. In this paper, we show the main characteristics
of Cossembler architecture, discuss some of its advantages and
disadvantages, and finally, show examples of its use.

I. INTRODUCTION

Co-simulation stands for combined simulation and typ-
ically involves combination of two or more simulators or
software tools. The purpose of this simulation modeling
methodology is to extend the capabilities of existing tools
and simulators in order to increase the scope of their
modeling range and enlarge the set of potential applications
that could be addressed using off-the-shelf products. The
need for such greater capabilities is elicited by challenges
of energy transition, from enabling flexibility in other forms
of energy, to deployment of new technologies described by
specialized models.

The main benefit of co-simulation is that it relies on
simulation tools and models developed by domain experts,
and hence, it expands on the existing knowledge and exper-
tise. A plenty of specific examples exist. References [1],
[2] use co-simulation for multi-domain modeling of EV
charging infrastructure and hybrid energy grids, respectively.
In [3], a summary of communication networks and power
systems co-simulation is given. Another domain where co-
simulation comes handy is for integration of converter-
based technologies with the grid, as described in references
on EMT and RMS co-simulation [4]. Finally, it is shown
that it can be used for laboratory coupling [5], [6] and
as an alternative to model exchange for dynamic stability
studies [7].

Although co-simulation can provide many opportunities,
yet many challenges exist until it can be easily and widely
deployed to address energy-transition questions. As notable
in the above examples, co-simulations are often custom
designed targeting a particular application domain (ICT and
power system simulation, multi-energy system simulation,
etc.) and tailored for specific tools (e.g. PowerFactory, NS3,

etc.). The main challenge to develop such co-simulation
is that it requires high level of expertise by the modeler
in simulation coupling concepts, such as simulator execu-
tion synchronization and message exchange. For a typical
user from energy domain (such as power engineers, energy
consultants, etc.) it is a steep learning curve to develop
such intuition. Even if the modeler is proficient in co-
simulation concepts, they still on average need quite some
time to develop the co-simulation, including design process
and programming. Finally, such custom solutions are often
insufficiently flexible to the change in study objectives.

Another challenge in developing a co-simulation comes
from the variety of simulators and their interfacing capabil-
ities. Simulators sometimes have poorly documented API
which is not always provided for all platforms. Further
difficulties arise if the tools do not support all operating
systems (e.g. PowerFactory is available only for Windows).
Hence, even with a highly experience modeler, the co-
simulation solutions end-up custom-tailored for a few tools
of interest.

Cossembler simplifies these difficulties by enabling rapid
prototyping of co-simulations. As the rapid prototyping tool,
Cossembler is intended to have a gentle learning curve for
its user. In addition, its modular architecture allows easy
deployment for different types of energy co-simulations. In
this paper, we review its architectural design and highlight
its current capabilities.

The rest of the paper is organized as follows. Sec-
tion II briefly reviews existing co-simulation architectures
which inspired Cossembler and outlines the added value of
Cossembler with respect to these architectures. In Section III
we introduce Cossembler architecture and explain some
of its main design choices. Section IV gives examples of
Cossembler usage, while Section V provides a summary
discussion.

II. PRELIMINARIES

The approaches to co-simulation design can be roughly
divided into two groups: those whose execution is governed
by a co-simulation master, and those who operate without
a dedicated master (i.e. masterless). A co-simulation master
is a functional piece of code that handles synchronization
among simulators and takes care of message propagation.
In some instances, it is also responsible for scenario design,
configuration and logging of simulation results.
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In masterless architectures, one simulator assumes the role
of a co-simulation master while other simulators synchronize
with respect to it. Some examples are already mentioned ref-
erences [1], [2]. Such approach typically makes development
of simulator adapters easier, yet unstandardized. Simulator
adapter is a piece of code that serves as an interface between
the simulator API and the rest of the co-simulation. Since
in this case a simulator acts as a master in addition to
performing domain simulations, the scalability and flexibility
of such approach are limited.

On the other hand, architectures based on a co-simulation
master provide much higher scalability and flexibility. Do-
main agnostic co-simulation masters have been researched,
starting with DEVS [8], primarily for use by the defense,
automotive and airspace industries. Today, the energy simu-
lation community is mostly centered around three solutions:
HLA, Mosaik and FMU.

In order to show the added value of Cossembler, we
briefly review these three approaches to co-simulation. In
addition, each of these approaches served as an inspiration
in respective ways when creating Cossembler.

HLA - High Level Architecture (HLA) is a general
purpose architecture for distributed simulations developed
with a particular intention to enable co-simulation in dif-
ferent application domains [9]. It originated as a natural
extension of DEVS [8], and hence, it kept DEVS ideology
regarding highly distributed implementation. HLA master,
implemented as a Real-Time Infrastructure (RTI), offers an
extensive set of services which are at the disposal to the user.
This makes HLA highly flexible for various configurations,
allowing the user precise control over the co-simulation
execution.

Mosaik - Mosaik is a co-simulation framework partic-
ularly designed for simulations of cyber-physical energy
systems and smart grids [10]. The special focus of Mosaik
is on creation of large-scale system configurations which
involve many smart grid controllers. Its minimalistic user
interface makes its deployment easy when compared to
HLA.

FMU - Functional Mockup Unit (FMU) is a standard
firstly developed as Functional Mockup Interface (FMI) for
model exchange for continuous time simulations [11]. In
contrast to HLA and Mosaik who are agnostic to message
content, FMU standard describes the semantics of the shared
variables for co-simulation of time-domain models. Yet,
FMU does not provide rules for synchronization or message
exchange. Hence, FMU is complementary to HLA and
Mosaik in its purpose. As it will be shown next, it is also
complementary to Cossembler.

A. Added value of Cossembler

Figure 1 illustrates the main focus of each of the pre-
viously described co-simulation solutions. HLA provides
an abundance of typical co-simulation services, while re-
maining application agnostic. Mosaik provides only essential
co-simulation services while focusing instead on scenario
scripting and simulator integration. FMU, as a standard for
simulator interfacing, does not provide any co-simulation
services, but instead introduces taxonomy for message ex-
change for continuous time simulations.

Fig. 1. Cossembler in relationship to other co-simulation architectures.

Cossembler can be viewed as a complement to HLA, Mo-
saik, and FMU, since its focus is placed on the exploration
of the application domain. In its current version, Cossembler
allows integration with HLA and FMU. Integration with
Mosaik is planned as a part of future work.

III. COSSEMBLER ARCHITECTURE

The first premise of Cossembler architecture is a dis-
tributed ideology to co-simulation prototyping, as it is the
case with HLA. Since the architectures such as HLA and
Mosaik already exist, and are excellent in solving challenges
of message propagation and synchronization, Cossembler
directs attention to application domain co-simulation pro-
totyping. In this regard, we focus on solving challenges
that relate to coupling of energy domain models rather than
simulators (see next sections for examples).

The second premise is the ease of use. Hence, Cossembler
is developed as a block modeling tool in order to allow users
who are less experienced with script programming to easily
deploy it in their studies.

The third premise is deemphasize of performance. Al-
though Cossembler does not intentionally sacrifice perfor-
mance, it neither does actively try to improve it. As its
name says, Cossembler is intended for rapid prototyping, and
hence usability is given a higher priority to performance.

Fig. 2. Sketch of the Cossembler architecture including key components
of the Power system operations application domain.

Figure 2 shows a conceptual illustration of Cossembler
architecture. There are two basic categories of elements
within Cossembler. The first one is Canvas and the second
one is Element. Since Cossembler is object oriented and
follows the rules of inheritance, Canvas is also an incarnation
of Element.

Elements are used for two purposes. First, they are used to
represent simulators. To accomplish this, a simulator adapter
is created for each simulator as an Element of Cossembler.
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Hence, we have a Matlab Element for example. Second pur-
pose of Elements is to represent many basic data processing
functionalities which could be needed when creating a co-
simulation. For example, one might wish to extract only
a part of the result returned by the simulator Element, or
one might wish to plot the result or do other type of post-
processing. These elements are called linking elements since
their purpose is to link the simulator elements.

Canvas acts as a workspace in which prototyping takes
place. A user creates Elements, adds them to a Canvas and
connects them in desired configuration. Besides acting as
a container for Elements, Canvas also makes sure that the
data propagates from one Element to another in a form of
a message. A more detailed representation of the canvas
architecture is given in Figure 3.

Fig. 3. Canvases and Elements in relation to each other.

It is important to emphasize that Cossembler can use its
own local master or an external co-simulation master. In
many simpler co-simulation prototypes, local master could
be perfectly sufficient, while the external co-simulation
master is particularly useful for large-scale co-simulations
and for inter-process co-simulations, if and when these are
needed.

With such minimalistic representation, the use of Cossem-
bler becomes simple to master (see Figure 4 for a code
snippet). In the next subsection, we discuss some of the
specific design choices and characteristics of Cossembler.
These are more important from developers’ perspective than
from users’ perspective.

A. Discussion of some important architectural choices

Each Cossembler message contains a value that can either
take one of the Python native types (Integer, Real, Boolean,
String) or two types created for handling larger amounts
of data: Vector which is implemented as a Python list,
and Matrix which is implemented as a list of Python lists.
Although there are more computationally efficient ways
to represent vectors and matrices in Python (e.g. numpy),
we intentionally opt in for lists since this choice eases
the usage, avoids dependencies to third-party libraries, and
discourages the user to implement computationally-heavy
code using Cossembler environment. Cossembler is meant
to ease interconnectivity of simulators and not to replace the
functionality of these simulators. Since lists in Python are

Fig. 4. Pseudo code showing the example of connecting two elements in
Cossembler

copied by reference (and not by value), this design choice
is perfectly suitable. The messages in Cossembler are time-
stamped, and the user can choose if they wish to use this
information.

Fig. 5. Example of creation of a ForLoop element. The element is
initialized with another element whose execution is to be repeated N number
of times (N=100 in this example).

Cossembler also contains Elements for easy creation of
loops and conditions. These Elements are essential for
control of co-simulation execution. For example, loops with
conditions can be used for iterative engagement of one
tool until a particular result is reached (see Figure 5 for a
code sample for loop creation). Once such result is reached,
the message is propagated to another tool and that tool is
engaged in execution. Running an N-1 reliability assessment
using an ordinary power flow tool is one such example.
The power flow tool would be executed iteratively until all
possible contingencies are checked. If the assessment returns
unfavorable result, another tool can be engaged to compute
new generation set-points.

To accomplish message propagation within a Canvas,
each Canvas contains an Orchestrator that sets the rules for
message propagation. This design choice was inspired by
Ptolemy II [12]. Ptolemy II is a simulation tool developed
for modeling of the heterogeneous mixture of models of
computation. Although its intended application domain is
embedded and computer architecture systems, its design is
highly modular separating the simulation execution rules
from its connectivity. Currently, Cossembler supports only
one type of orchestrator. This is a Prioritized Discrete Event
Scheduler (PDES) which aligns the execution of Elements
according to their priority.

The nesting of Canvases is also supported, allowing more
complex element creation and co-simulation design. One
such element is the Dynamic simulation element, illustrated
in Figure 6. This element uses an FMU adapter which en-
gages Modelica OpenIPSL library to run dynamic (transient
stability) simulations. The FMU adapter, implemented as a
simulator element, is then interconnected with other linking
elements and nested into two canvases in order to ensure
accurate execution.
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Fig. 6. Example of the dynamic simulation element that consists of other
linking elements (buffers and demultiplexers) and the simulator adapter
element (FMU adapter in this case running OpenIPSL elements in the
background). Note that the input signals can be vectors (e.g. X1(t0), u1(t),
u2(t)) and scalars (e.g. X2(t0)). The difference between X1(t0) and u1(t) is
that the former is a vector of variables at a single point in time, while the
latter is a vector of a single variable over the period of dynamic simulation.

B. Simulators and co-simulation masters

Thus far, the adapters for Matlab (Matpower) and FMUs
are available. FMU adapter is particularly handy since it
provides inclusion of many power and energy related models.
For example, IPSL-Tesla project has given birth to many
power system models in Modelica modeling language, all
of which are now available through the use of the FMU
adapter. In addition, Modelica language is quite popular in
other energy domains, such as heat, building and transporta-
tion modeling whose availability is particularly suitable for
modeling of multi-energy systems.

On the side of co-simulation masters, an adapter for HLA
is created and HLA is currently used as an external co-
simulation master. In theory, any Run-Time Infrastructure
(RTI) with Python API should be deployable through this
adapter. However, the adapter has only been tested so far
with CERTI RTI. CERTI is an open source RTI for HLA.

In addition to the external master, a local (internal) master
is created as a PDES. This master is acts as the orchestrator
of the main Canvas. To use such master, all simulators must
be connected to one instance of Cossembler which would
then act as the overall co-simulation master.

C. Application domains

Since the number and scope of elements of the tool could
be quite large covering a wide and heterogeneous breadth,
we establish the notion of application domains to confine
elements to potential application domains. In other words,
application domains are libraries of modeling blocks which
could cover sufficient number of cases within a sub-area
of power and energy field. The first application domain
developed with Cossembler is the domain of Power System
Operations. This domain contains the blocks typically used
in power system operations, such as power flow, optimal
power flow, SCUC, economic dispatch (with and without
grid constraints), dynamic simulation (in particular transient
stability simulation), and the blocks representing renewable
generation including their uncertainty.

The block structure in Figure 7 is provided as a general
template for use cases within power system operations
domain. The blocks are arranged in its typical relative

positioning within the power system operations cycle. This
template can be changed by the user to match the exact case
for illustration.

Fig. 7. Illustration of power system operations represented by Cossembler
blocks. The day-ahead operations are represented using SCUC and DSA,
while the real-time operations are represented using Economic Dispatch
(ED) and grid dynamics simulations. In this sketch, DSA is composed of
two blocks, while ED can be implemented in two common variants. Finally,
both DSA and real-time operations are implemented in cycles to capture
their repetitiveness.

The elements which use external simulators for execution
are marked in green in Figure 7. These elements are at the
moment provided by deploying Matpower (for steady-state
computations) and Modelica OpenIPSL library (for dynamic
simulations). Other popular legacy tools are to be added in
the future. The blue blocks are created directly in Python as
Cossembler elements. Note that an external co-simulation
master is not used in the setup in Figure 7. The execution
of co-simulation is controlled by the local master of the
overarching Canvas.

IV. USE CASES

We illustrate the use of Cossembler in a use case of
Dynamic Security Assessment (DSA). The first purpose of
this use case is to show that Cossembler can be used to model
existing or operational procedures under consideration. The
blocks from the Power System Operations application do-
main are used in this use case.

The DSA model under simulation is illustrated in the
left hand side of Figure 7. The power system is modeled
as the IEEE 9 Bus system with an addition of one wind
farm connected to the load Bus 9. In this use case, a grid
operator runs a SCUC solver to create schedules for the
next day. After the schedules have been created, a set of
power flow and dynamic simulations are started assuming
different levels of forecast errors and different realizations
of wind fluctuations. The SCUC block engages Matpower for
its computations while the dynamic simulation is performed
using the model from the OpenIPSL library of Modelica.
This model has been compiled into FMU by OpenModelica,
and hence, Cossembler engages the model using the rules of
the FMU standard.

The first part of analysis aims to investigate system fre-
quency excursion for different realization of wind power. We
use Monte Carlo simulation while sampling the probability
density function of wind to generate different scenarios.
The probability density function captures the distribution
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of inter-hour wind fluctuations. If it is observed that the
electrical grid frequency exceeds the allotted reliability band,
the grid operator has to schedule sufficient level of frequency
regulation reserves.

Figure 8 shows the histogram of frequency deviation
obtained as the result of the simulation runs. If the band of
49.8Hz-50.2Hz is taken as the frequency regulation band in
Continental Europe, we observe that the frequency excursion
stays within the acceptable range.

Fig. 8. Histogram of the frequency deviation for different realizations of
wind power in the IEEE 9 bus system.

Next, we observe the dynamic behavior of the system
frequency in response to the complete loss of wind gen-
eration. Figure 9 shows the path of grid frequency. We
observe that the frequency nadir is 49.73Hz and that primary
control restores the frequency to an acceptable range. Since
our IEEE 9 bus model does not have secondary frequency
control, the frequency remains wobbling around 49.91Hz.

Fig. 9. Time response of grid frequency in the case of complete loss of
wind generation.

V. DISCUSSION

Use case flexibility - The use case presented in this paper
is only an illustration. Other examples using these particular

tools could also be explored, particularly in the direction of
operations and market modeling (such as N-x reliability, co-
optimization of day-ahead markets and frequency regulation
markets, etc.). In the future, we plan to extend the set
of models and simulators in the direction of multi-energy
system modeling and in the direction of prosumer modeling
(including EVs, DRES, heat pumps, home ESS, etc.).

Co-simulating two or more time-domain models -
Although provided example does not model the coupling of
the time-domain simulations, such coupling is possible since
Cossembler propagates time-stamped messages. However,
many practical challenges for such coupling still exist, rang-
ing from stability and error propagation to scalability [13].
A proper choice of interface variables could improve any
of these aspects [14]. Yet, further research and interface
development is needed.

Real-time simulation - Cossembler was built with the
focus on non-real-time co-simulations. The integration with
real-time processes, which could be enabled through time-
stamping as in [6], is a part of the future work.

Orchestrator variants - PDES is chosen as the default
orchestrator implementation, due to its high flexibility and
common usage (even many HLA RTIs use one). However,
as seen on the example of Ptolomy II, there are many
other variants for its implementation. Cossembler provides
sufficient flexibility to implement different variations.

Configuration of simulation runs - This area requires
particular attention going forward. Automatic configuration
and scripting of simulation runs is increasingly important
as the use cases grow in scale. As Cossembler has a neat
programming structure, in terms of block models, such
scripting should be possible to develop.

Interpretation and analysis of results - For now,
Cossembler does not provide capabilities for post-processing
of simulation results (besides saving of these results as CSV
files). Stronger result analysis and visualization capabilities
will be developed in the future.

VI. CONCLUSIONS

In this paper, we presented Cossembler - a rapid proto-
typing tool for co-simulations of power and energy systems.
The main advantages of the tool are its high usability and
potentially large set of application domains that could be
covered, while the learning curve is rather light. Cossembler
connects legacy tools and hence leverages on the existing
domain expertise.

Yet, several aspects are to be improved in the future.
First, block models for other application domains should be
developed while including adapters for other legacy tools in-
cluding commercial and open source software. Next, script-
ing and result post-processing capabilities will be improved
to allow scalable deployment. Finally, further testing and
example development will follow to ensure wide deployment
of the tool.
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