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SUMMARY

Many seismic imaging methods use wavefield extrapolation operators to redatum sources and
receivers from the surface into the subsurface. We discuss wavefield extrapolation operators
that account for internal multiple reflections, in particular propagator matrices, transfer matri-
ces and Marchenko focusing functions. A propagator matrix is a square matrix that ‘propagates’
a wavefield vector from one depth level to another. It accounts for primaries and multiples and
holds for propagating and evanescent waves. A Marchenko focusing function is a wavefield
that focuses at a designated point in space at zero time. Marchenko focusing functions are
useful for retrieving the wavefield inside a heterogeneous medium from the reflection response
at its surface. By expressing these focusing functions in terms of the propagator matrix, the
usual approximations (such as ignoring evanescent waves) are avoided. While a propagator
matrix acts on the full wavefield vector, a transfer matrix (according to the definition used
in this paper) ‘transfers’ a decomposed wavefield vector (containing downgoing and upgoing
waves) from one depth level to another. It can be expressed in terms of decomposed Marchenko
focusing functions. We present propagator matrices, transfer matrices and Marchenko focusing
functions in a consistent way and discuss their mutual relations. In the main text we consider
the acoustic situation and in the appendices we discuss other wave phenomena. Understand-
ing these mutual connections may lead to new developments of Marchenko theory and its
applications in wavefield focusing, Green’s function retrieval and imaging.

Key words: Controlled source seismology; Theoretical seismology; Wave propagation; Wave
scattering and diffraction.

1 INTRODUCTION

In many seismic imaging methods, wavefield extrapolation is used
to redatum sources and receivers from the surface to a depth level
in the subsurface. In most cases the redatuming process is based on
one-way wavefield extrapolation operators, which only account for
primaries. To account for internal multiple reflections in redatum-
ing, more advanced wavefield extrapolation operators are required.
This paper is not about the redatuming process itself, but about
wavefield extrapolation operators that account for internal multi-
ples. In particular, we discuss propagator and transfer matrices,
Marchenko focusing functions and their mutual relations.

In elastodynamic wave theory, a propagator matrix is a square
matrix that ‘propagates’ a wavefield vector from one depth level to
another. It was originally introduced in geophysics for horizontally
layered media (Thomson 1950; Haskell 1953; Gilbert & Backus
1966) and later extended for laterally varying media (Kennett 1972).
It has been used for modelling surface waves (Woodhouse 1974)
and reflection and transmission responses of heterogeneous media

(Haines 1988; Kennett ef al. 1990; Koketsu ef al. 1991; Takenaka
et al. 1993). It has also been proposed as an operator for accurate
seismic imaging schemes, accounting for high propagation angles
(Kosloff & Baysal 1983) and internal multiple reflections (Wapenaar
& Berkhout 1986). The wavefield vector that the propagator matrix
acts on contains components of the full wavefield (e.g. particle
velocity and stress). Here ‘full’ means that the wavefield implicitly
consists of downgoing and upgoing, propagating and evanescent
waves.

A Marchenko focusing function is a wavefield that focuses at a
designated point in space at zero time, accounting for primaries and
multiples. Marchenko focusing functions were originally introduced
to retrieve the wavefield inside a horizontally layered medium from
the reflection response at the boundary of that medium (Rose 2001,
2002; Broggini & Snieder 2012; Slob et al. 2014). This has been
extended for laterally varying media (Wapenaar et al. 2013), under
the assumption that the wavefield inside the medium can be decom-
posed into downgoing and upgoing components and that evanes-
cent waves can be neglected. It has recently been shown that the
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propagator matrix can be expressed in terms of Marchenko focus-
ing functions and vice versa (Wapenaar & de Ridder 2022). Via this
relation, the usual assumptions underlying the focusing functions
(such as ignoring evanescent waves) are circumvented.

In this paper, we define a transfer matrix as a square matrix
that ‘transfers” decomposed wavefield vectors (explicitly contain-
ing downgoing and upgoing waves) from one depth level to another
(Born & Wolf 1965; Katsidis & Siapkas 2002). It is different from
the propagator matrix, which acts on full wavefield vectors (but
please note that in the literature there is not a clear distinction be-
tween the use of the terminologies ‘propagator matrix” and ‘transfer
matrix’). It has recently been shown that the transfer matrix can be
expressed in terms of decomposed Marchenko focusing functions
(Dukalski et al. 2022a, b), an insight that is expected to be useful in
further analysis of the minimum-phase property of elastodynamic
focusing functions (Reinicke ef al. 2023) and beyond.

The aim of this paper is to present propagator matrices, transfer
matrices and Marchenko focusing functions in a consistent way and
to discuss their mutual relations. We aim to set up the theory as
general as possible, accounting for lateral and vertical variations
of the medium parameters, accounting for evanescent waves and
taking dissipation into account. Whereas in the main text we con-
sider acoustic waves, in the appendices we generalize the theory for
other wave phenomena. The numerical examples, which are meant
as illustrations of the different quantities and their relations, are
restricted to oblique acoustic plane waves in a lossless horizontally
layered medium.

We hope that this consistent treatment will contribute to the
understanding of the mutual connections and provide insight in
the assumptions and approximations that underlie Marchenko-type
wavefield retrieval schemes and how to cope with them (Slob 2016;
Dukalski et al. 2019, 2022b; Reinicke et al. 2020, 2023; Elison
et al. 2020; Diekmann & Vasconcelos 2021; Wapenaar ef al. 2021;
Kiraz et al. 2023). Moreover, we hope to stimulate new research
directions.

The setup of this paper is as follows. In Section 2, we discuss
the 2 x 2 propagator matrix for acoustic wavefields and its rela-
tion with acoustic Marchenko focusing functions. The advantage
of concentrating on the acoustic situation is that all expressions are
relatively simple and yet contain all essential aspects. In Section 3,
we discuss the 2 x 2 transfer matrix for acoustic wavefields and its
relation with decomposed acoustic Marchenko focusing functions.
In Section 4, we present some conclusions.

Appendices A and B are generalisations of Sections 2 and 3 for
other wave phenomena. Here, the propagator and transfer matrices
are N x N matrices, with N ranging from 2 for acoustic waves
to 12 for seismoelectric waves; the Marchenko focusing functions
are % X % matrices. We derive their mutual relations by exploiting
general symmetry properties, which are derived in Appendix C.
The appendices not only cover classical waves, but also quantum
mechanical waves obeying the Schrodinger equation (N = 2) and
the Dirac equation (N = 4).

2 ACOUSTIC PROPAGATOR MATRIX
AND FOCUSING FUNCTIONS
2.1 Acoustic matrix—vector wave equation

Our starting point is the following matrix—vector wave equation in
the space—frequency domain

(Woodhouse 1974; Corones 1975; Ursin 1983; Kosloff & Baysal
1983; Fishman & McCoy 1984; Wapenaar & Berkhout 1986; de
Hoop 1996). In Appendix A, we discuss this equation for a range of
wave phenomena. Here we consider acoustic waves. For this situa-
tion, q is a vector containing the wavefield components p (acoustic
pressure) and v; (vertical component of the particle velocity), both
as a function of the space coordinate vector x = (xj, X2, x3) (With
positive x3 denoting depth) and the angular frequency w, hence,

a(x.0) = (f )(x, ®). )
3

Operator 93 stands for the partial differential operator d/dx3. The

space- and frequency-dependent operator matrix A is defined as

A(X» (1)) = < 9 80( i((l))IO)(Xs w)? (3)

. a1
1wk waap

i
where (X, w) is the compressibility, p(X, w) the mass density and
i the imaginary unit. Operator d, stands for the partial differential
operator d/dx,. Greek subscripts take on the values 1 and 2 and
Einstein’s summation convention applies to repeated subscripts,
unless otherwise noted. In general the medium may be dissipative,
meaning that x and p may be frequency-dependent and complex-
valued, with (for positive w) (k) > 0 and J(p) > 0, where J denotes
the imaginary part. For later convenience we rewrite the operator
matrix as follows:

0 iwp
Ax, w) = ( 1 1 )(X, ). 4)
- ia)\/ﬁer ﬁ 0
Here H,(x, w) is the Helmholtz operator, defined as
HZ(xs w) = k2(X, (1)) + aaaa, (5)

with wavenumber k(x, w) defined via
3(0p) (0 0y 0y
_ 3(80)(3ap) n (02:02.0) ©)
4p2 2p

(Brekhovskikh 1960; Wapenaar et al. 2001). Finally, vector d in
eq. (1) contains source terms, according to

“(""”)z(.la G
iw %\ p) a

(x, ) = 0*kp

)(X, ). )

Here f +(X, w) and f ;(X, w) are the horizontal and vertical compo-
nents, respectively, of the external force density (the hats are used
to distinguish external force components from focusing functions),
and ¢(x, w) is the volume injection-rate density (where ¢ is to be
distinguished from the wavefield vector q). From here onward we
simplify the notation by not explicitly mentioning the frequency-
dependency in the argument lists.

2.2 Acoustic propagator matrix

We define a boundary 0Dy at depth level x3 = x3 . We define
a coordinate vector X at this boundary as xp = (x1,r, X2, F, X3, )
(with fixed x3, r). We introduce the propagator matrix W(X, xr) as a
solution of wave eq. (1) for the source-free situation, according to

3W(x, xp) = AX)W(X, Xf), 8)
with boundary condition
W(X7 XF)|X3:x3.F = Ia(xH - XH,F)7 (9)

where I is the identity matrix and x; and Xy, » denote the horizontal
coordinates of x and xr, respectively, hence x; = (x;, x,) and Xy, F
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= (x1,Fp, X2, r). Since eqs (1) and (8) are both linear, Huygens’
superposition principle can be applied to get a representation for
q(x) in terms of W(X, xr). For a given depth level x3, assuming there
are no sources for q(x) between x3 5 and x3, we obtain

) = /a W(x, xr)a(xr)d>x s (10)
Dp

(Gilbert & Backus 1966; Kennett 1972; Woodhouse 1974). Note
that eq. (10) expresses the ‘propagation’ of q from depth level x3 g
to depth level x3, which is why W(x, xr) is called the propagator
matrix. It is partitioned as follows:

Wp-p WP
W(X7 XF) = (Wv,p Wv,v)(x7 XF)’ (11)

where Wr-r, WV W"P and W'V are the scalar components of
the propagator matrix. For each of these components, the second
superscript refers to the wavefield component (p or v3) it acts on at
xr, whereas the first superscript refers to the wavefield component
it contributes to at x. Eq. (10) is illustrated in the upper-left frame
of Fig. 1. The solid line at x5 » denotes the boundary 0Dy (not
necessarily a physical boundary). The medium below 9D may be
inhomogeneous and dissipative. The dashed line at x; indicates an
arbitrary depth level inside the inhomogeneous medium.

By applying eq. (10) recursively, it follows that W obeys the
following recursive expression

WX, xr) :/ W, x)W(x, x7)d’x, (12)
aD

where 9D is a horizontal boundary at a constant depth level x;. By
taking x§ = x3 5, we obtain from eqs (9) and (12)

18(x), — Xy r) = / W}, x3 7, X)W(X, Xp)d>x, (13)
aD

from which it follows that W(xg, x) is the inverse of W(X, Xx).

The propagator matrix W(X, Xr) accounts for primaries and multi-
ples between x5 _r and x3 and it holds for propagating and evanescent
waves (for example, Woodhouse 1974, uses the elastodynamic ver-
sion of the propagator matrix to analyse surface waves). Evanescent
field components may lead to instability and should be handled
with care (Kennett & Kerry 1979). Since the underlying wave equa-
tion is based on the explicit Helmholtz operator #, (rather than on
its square-root, appearing in one-way wave equations), Kosloft &
Baysal (1983) argue that the numerical evaluation of eq. (10) con-
verges much faster and for higher propagation angles than schemes
based on one-way wave equations. They exploit this property in
wide-angle imaging of seismic reflection responses. They use filters
to eliminate evanescent and downgoing waves, so they do not exploit
the fact that the propagator matrix can handle multiply reflected and
evanescent waves. Wapenaar & Berkhout (1986) propose a seismic
imaging scheme based on the propagator matrix that handles inter-
nal multiple reflections. Since their scheme is very sensitive to the
chosen background model it has not found broad applications. In
Section 2.3, we show that the propagator matrix can be expressed
in terms of Marchenko focusing functions. For a lossless medium,
these focusing functions can be derived from seismic reflection data
and a smooth background model (Section 2.4). Hence, this leads
to a propagator matrix that can be used for seismic imaging, which
properly handles internal multiple reflections without being highly
sensitive to the background model.

We conclude this section with a numerical illustration of the
propagator matrix for the horizontally layered lossless medium of
Fig. 2(a). In each layer the propagation velocity ¢ = 1/,/kp is
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shown (in ms~!). We define the spatial Fourier transformation of a
function u(x, w) along the horizontal coordinate x;; for constant x;
as

(s, x3, ®) :/ exp{—iws-xH}u(xH,xg,w)dsz, (14)
Rr2

where s = (51, 57) is the horizontal slowness vector and R is the set
of real numbers. For a horizontally layered medium, this transfor-
mation decomposes u(X, w) into independent plane waves, with
propagation angle 6 (with respect to the vertical axis) obeying
sinf = c|s|. We apply this transformation to the propagator ma-
trix W(X, Xxp), choosing xr = (0, 0, x3 ). This yields the trans-
formed propagator matrix W(s, x3, x3_r), with boundary condition
W(s, X35, x3.+) = L. Analogous to eq. (12) it obeys the recursive
expression

W(s, x5, x3.1) = W(s, x5, x3)W(s, X3, X3 5). (15)

Next, we define the inverse temporal Fourier transformation for
constant s and x3 as

1 o0
u(s,x3, 7) = ;fﬁ/ (s, x3, w)exp{—iwt}dw, (16)
0

where R denotes the real part and t is the intercept time (Stoffa
1989). Applying this transformation to W(s, x3, x3 ) we obtain
W(s, x3, X3 F, T), with boundary condition W(s, x3 r, X3 F, T) =
I8(7) and with W(s, x3, x5, T) obeying the recursive expression

W(s, x5, X3 7, T) = W(s, x5, x3, T) * W(s, X3, X35, T), (17)

where the inline asterisk denotes temporal convolution. Although
the numerical modelling is most efficiently done in the slowness-
frequency domain (using eq. 15), the results are more conveniently
interpreted when displayed in the slowness intercept-time domain.
Setting s, = 0, the components W7-?(sy, x3, X3 g, T) and W"(sy,
X3, X3, F, T), With boundary conditions W77 (s, x3, p, X3, 5, T) = 8(7T)
and WP"(sy, X3 p, x3,5, T) = 0, are shown in Figs 2(b) and (c)
for fixed s; = 1/3500 sm™!, as a function of intercept time T and
depth x3. To get a smooth display, at each depth the components are
convolved with a Ricker wavelet with a central frequency of 50 Hz.
The upper traces at x3 = x3_r = 0 m represent the aforementioned
boundary conditions. Note that W77 and W"? are, for each depth
x3, even and odd functions, respectively, of intercept time t. The
recursive character, described by eq. (17), is manifest in Figs 2(b)
and (c). The propagation velocity in the layer between x; = 760 m
and x3 = 800 m equals 3600 m s~!, which implies that for the chosen
horizontal slowness s; = 1/3500 sm™! we have sinf =cs; > 1 (i.e.
6 is complex-valued). Hence, waves become ‘evanescent’ in this
layer. The wavefield tunnels through this layer and the amplitudes
below this layer are higher than above it. In general, evanescent
field components of the propagator matrix should be handled with
care, because next to exponentially decaying terms they contain
exponentially growing terms that may cause numerical inaccuracies
(Kennett & Kerry 1979). In practice this means that beyond a certain
horizontal slowness the wavefield should be tapered to zero.

2.3 Relation between acoustic propagator matrix and
Marchenko focusing functions

From here onward we assume that the medium at and above 0D«
is homogeneous and may be dissipative, with mass density p, and
propagation velocity ¢y. The medium below 0D may be inhomo-
geneous and dissipative, and it is source free.
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a(xr)
]

L(xF)

I 1 J 1
p(xr) o ovs(xr) ¢ T (xr)g 2P (xr)
Z3.F s ax: Dy 7Dy H T3, F

wep  Wew
W (x,xr) :@(Wu,p WU.U)

Z3,F XF D
~~

W (x,xr)L(XF) |

E_I(X)Y(X, XF)

Figure 1. Relations between the propagator matrix W(x, Xr), the transfer matrix 7 (x, xr) and the Marchenko focusing functions F”(x, xr) and F(x,
Xr) [right-hand column of Y(x, xr)]. The green and yellow double-sided arrows indicate full wavefields (implicitly consisting of downgoing and upgoing
components), whereas the red and blue single-sided arrows indicate decomposed downgoing and upgoing wavefields, respectively.

In preparation for defining the focusing functions, we decompose
operator matrix A (in the space—frequency domain) as follows:

A=LAL", (18)
with
_(iH1 0 _ 1244172 _—1)2
A_< 0 —i?-h)’ Hi=p ' "H,)"p 5, (19)
1 1 11 wH'p
= = = 2
£ <aflp7‘l1 —ﬁﬂl)’ £ 2(1 —a)”Hflp (20)

(Corones 1975; Fishman & McCoy 1984; Wapenaar & Berkhout
1986; de Hoop 1996). The square-root operator ’H;/ s symmetric
in the following sense:

/ (H g V(i) xyy = / g0 |1 x| dxis 21)
R2 R2

(Wapenaar ef al. 2001), where g(xy) and /i(xy) are test functions
in the horizontal plane with ‘sufficient decay at infinity’. Operator
‘H,, as defined in eq. (19) is not symmetric, but operator %’H. and
its inverse, both appearing in eq. (20), are symmetric. We use the
operator matrix £ to express the wavefield vector q(x) in terms of
downgoing and upgoing waves p™(x) and p~(x) via

q(x) = L(x)p(x), (22)
with
P = <§f>(x). 23)

Note that these equations imply
p(x) = p(x) +p(x), 24

hence, the downgoing and upgoing waves p™ and p~ are pressure-
normalized. An advantage of pressure-normalized (or, more gener-
ally, field-normalized) decomposition is that the decomposed quan-
tities simply add up to a field quantity [acoustic pressure in the
case of eq. (24)]. This property does not apply to flux-normalized

decomposed wavefields (Frasier 1970; Kennett et al. 1978; Ursin
1983). On the other hand, an advantage of flux-normalized decom-
position is that the underlying equations obey more simple symme-
try properties. For a comprehensive discussion on field-normalized
versus flux-normalized decomposition in inhomogeneous media,
see de Hoop (1996) and Wapenaar (2020). In this paper, we use
field-normalized decomposition. In the remainder of Section 2, we
apply decomposition only at and above dDf, where the medium is
assumed to be homogeneous. In Section 3, we will apply decompo-
sition also inside the inhomogeneous medium.

We use eq. (22) at 9D to derive focusing functions and express
them in the components of the propagator matrix and vice versa.
Substituting eq. (22), with x replaced by X, into the right-hand side
of'eq. (10) gives

a0 = f Y(x, x)p(xr)dxs 25)
aDp

for x3 > X3, Fs with

Y(x. %) = WK xp)L(x0), (26)

or

we.r JWp-v 1
Y(X! XF) = <Wv,p Wv,v)(x’ XF)(LH

wpy

1
_%m%)(xn. @7

The operators :I:a%m'H.(xp) in eq. (27) act, via eq. (25), on p*(xx).
However, since these operators are symmetric [in the sense of
eq. (21)], we may replace the actions of these operators on p*(xr)
by actions on the elements W7-V(x, xr) and W""(x, Xr). To be more
specific, if we partition Y(X, Xr) as follows:

yrt yr-
Y(X, XF) = (Yv.Jr Yv,—)(xv XF)7 (28)
we obtain from eq. (27) for the elements of this matrix

YPE(x xp) = WPP(x, xp) % wim%(xF)Wp*%x, ). (29)
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i
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Figure 2. (a) Horizontally layered medium. (b) Propagator matrix compo-
nent W7P(sy, x3, x3, , T) (for fixed s; = 1/3500 ms~!). (c) Propagator
matrix component W7 Y(s1, x3, X3, F, T).

1
YUEX, xp) = WUP(X, Xp) £ o Hi(xp) WU (X, Xp). (30)
wPo

We analyse these expressions one by one. First, we consider the
element Y7-~. From eqs (25) and (28) it can be seen that the super-
script p refers to the acoustic pressure p(x) contained in q(x) and
superscript — refers to the upgoing wavefield component p~ (Xr) in

Propagator and transfer matrices 1407

p(xr). Using eqs (9), (11) and (29) we obtain

YP 7 (X, Xp) |y =xy p = 86Xy — Xp F), (€29)]

which is a focusing condition. Hence, we define
PG = FPO0x) = PP = ) o), (32)
wpo

with F7(x, xr) denoting a focusing function for the acoustic pressure
p, which focuses as an upgoing field at x = x and continues as an
upgoing field in the homogeneous upper half-space, see the lower
frame of Fig. 1. Next, we consider the element Y ~. Superscript
v refers to the vertical particle velocity v;(x) contained in q(x)
and superscript — refers again to the upgoing wavefield component
p~(xp) in p(xr). Using eqs (9), (11) and (30) we obtain

1
Y m (X Xp) =y p = —wT)()Hl(XF)S(XH — Xp,F), (33)

which is also a focusing condition, but somewhat more compli-
cated than eq. (31) because of the mix of the involved wavefield
components v3(X) and p~ (xr). Hence, we define

1
YUT(x,xp) = FY(X, Xp) = WP (X, Xp) — JHI(XF)W“'”(X, Xr),
0
(34)

with F(x, xr) denoting the particle velocity counterpart of the fo-
cusing function F7(x, xr) (note that the definition of F'(x, Xr) is
different from that in Wapenaar (2022), to facilitate the derivations
below). The focusing functions F7(x, xr) and F"(X, Xr), which to-
gether form the right-hand column of matrix Y(x, xr), are illustrated
in the lower frame of Fig. 1. They resemble the focusing function
/> introduced in previous work (Wapenaar et al. 2013; Slob et al.
2014), which also focuses at the upper boundary (as opposed to the
focusing function f;, which focuses inside the medium). However,
there are also some notable differences. First, f>(X, Xr) is defined in
a truncated version of the actual medium and is obtained from a su-
perposition of downgoing and upgoing components, f,' (x, xr) and
/5 (x, xp) respectively, at x inside the medium (at the lower bound-
ary of the truncated medium). Moreover, representations involving
f; and f; ignore evanescent waves at x3  and x3. In contrast,
FP(x, xr) and F"(x, Xr) are defined in the actual (i.e. untruncated)
medium and represent the full pressure and vertical particle velocity
at x of a field that focuses at x5 at the upper boundary. Since they
are derived from the propagator matrix, these focusing functions ac-
count for evanescent waves (this will be demonstrated below with
a numerical example). The only decomposition takes place at the
boundary 9Dy, where the medium is homogeneous. This decom-
position, formulated by eqs (32) and (34), accounts for evanescent
waves. Last but not least, /7 and F"* hold for dissipative media and
they are normalized differently from f.

Before we analyse the elements in the left-hand column of matrix
Y(x, xr), we introduce an adjoint medium, with parameters < (X) =
k*(x) and p(x) = p*(x). The bar denotes the adjoint medium and
the superscript asterisk denotes complex conjugation. When the
original medium is dissipative, the adjoint medium is effectual,
with (for positive w) J(k) < 0 and J(p) < 0. Waves propagating
through an effectual medium gain energy (Bojarski 1983; de Hoop
1988). Adjoint media are usually associated to a computational
state. The operator matrix .A and the Helmholtz operator H, of the
adjoint medium are defined similarly as A and #, in egs (4) and
(5), respectively, but with «(x) and p(x) replaced by «(x) and p(x),
respectively. Hence, H, = 3. Analogous to eqs (8) and (9), we
define the propagator matrix W(x, xr) of the adjoint medium as the
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solution of 3; W(x, xr) = A(X)W(x, x), with boundary condition
W(X, XF)|xy=x; » = 18(Xyy — Xpz.r). In Appendix C we derive

Wpp P WPspx T psvx
<V_Vv,p V_Vv,v)(xv XF) = (_ Wv-px vk )(X’ XF) (35)
(eq. C4). For the square-root operator we have, similar as for the
Helmholtz operator,
Hy =H; (36)

(Wapenaar et al. 2001). Using eqs (35) and (36) in eqs (29)
and (30), we find Y7+(x, xz) = Y”*(x, xz) and YV (x, xp) =
—Y"7*(x, xr). Hence, using eqs (32) and (34), we find for the
elements in the left-hand column of matrix Y(x, xr)

_ 1
Y?H(x, xp) = FP*(x,Xp) = WPP(x, Xp) + J’HKXF)W"’”(X, Xr),
0

(37

_ 1
YN (X, xp) = —F"™(x,xp) = WYP(X, Xp) + JHl(XF)WU’U(X’ XF£).
0

(38)
For matrix Y(x, xr) we thus obtain
Fre FP
Y(x,xp) = (_FU* F”>(X’ Xr). (39)

Note that F?, F?, FP* and F* are expressed in terms of the com-
ponents of the propagator matrix W(X, Xr) via equations (32), (34),
(37) and (38). Conversely, we can express the components of the
propagator matrix W(X, Xr) in terms of the focusing functions F7,
FV, FP* and F'*. Inverting eq. (26) yields

W(x, xr) = Y(x, X)L (xF), (40)
with £7! defined in eq. (20). Since operator %7—[1 is symmetric,
its inverse Hl’lp is symmetric as well. Hence, in eq. (40) these

operators can be taken to act on the elements of matrix Y(x, xr).
This yields

WPP(x, Xp) = %(FP* + FP)(x, Xp), (41)
WPU(x, ) = %"OH;I(XF)(FP* — FP)(x, Xp), 42)
W) = 5 (<F 4 FY) ), “3)
WY(x, Xp) = —%‘)"H;‘(XF)(F”* + FY)(X, Xp). (44)

Note that up to this point the medium may be dissipative (and its
adjoint effectual), and evanescent wave modes are accounted for,
inside the medium as well as at the boundary dDy. Hence, the
expressions in this section are more general than their counterparts
in Wapenaar (2022), which were derived for a lossless medium,
under the assumption that evanescent waves can be ignored at 0D .
If we make the same assumptions here, we can omit the bars on 7
and F. For this situation eqs (41)—(44) simplify to

WP (x, xXp) = RAFP (X, Xp)}, (45)
WP (x, xp) = —iopeH;  (xp)I(FP (%, xp)), (46)
WP (x, Xp) = iS{F"(x, Xp)}, 47)
WU (x, Xp) = —wpoH i (Xp)R{F (X, X)) (48)

(a) focus&(T)l | 235 =0m
_______________ £ ’
e e e
-------------- ™
—_— | 400m
fo— —= = !
_— | 600m
60m
| 4 £ tunnellin,
l i NS00
= e 11000 m
1200 m
() el ] zop = 0m
—_— —
S 200 m

Figure 3. (a) Focusing function FP(sy, x3, x3 r, 7) (for fixed s =
1/3500 m 5*1). (b) Time-reversed focusing function F”(s1, x3, x3, p, —T).

We illustrate the focusing function and its relation with the prop-
agator matrix with a numerical example. Applying the transforma-
tions of eqs (14) and (16) to eq. (32) (assuming a laterally invariant
medium), taking x = (0, 0, x3, r) and 5, = 0, we obtain

53.0
FP(s1,x3,%3,p,7) = WPP(s1,x3, %35, 7) — TWplv(SlsXSsx3,b‘x 7),
0

(49)

with vertical slowness s3 9 = ,/1/c2 — s? being the spatial Fourier

transform of i’H] at x3_p for the laterally invariant medium (here we
assumed s7 < 1/c2). Eq. (49) shows how a weighted superposition
of the even component W77 of Fig. 2(b) and the odd component
WPV of Fig. 2(c) yields the focusing function F7(sy, x3, X3, F, T).
This focusing function is shown in Fig. 3(a) for s; = 1/3500 ms~"'.
The upper trace at x; = x5, = 0 m represents the focusing condition
FP(s1,x3, 5, X3, F, T) = 8(7). At and above x3 r the focusing function
is an upgoing field. Note that, similar as in Fig. 2, the wavefield
tunnels through the high-velocity layer between x; = 760 m and x;3
= 800 m, which confirms that this focusing function accounts for
evanescent waves inside the medium. The time-reversed focusing
function F”(sy, x3, X3 r, —7) is shown in Fig. 3(b). The focusing
function of Fig. 3(a) and its time-reversed version of Fig. 3(b) can
be combined to give components of the propagator matrix. To this
end, eqs (45) and (46) are transformed to (assuming s7 < 1/c3)
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1
WPP(sy, x3,x3,7,7) = 5 <Fp(—S1>X3, X35, —T) + FP(s1, X3, X3, 7, T)>, (50)

Lo
2530

WPP(s1, X3, X35, T) = (Fp(—thstz,F, —7) = FP(s1, X3, %3, 1’)>~

(51

For the acoustic case all components are symmetric in sy, that is
FP(—s1,x3,x3 p, —T) = FP(s1,x3, X3, F, —T), etc. Hence, eqs (50)
and (51) show how the even and odd components W77 (s;, x3, X3, p,
7) and WP (s}, x3, x3,F, T) of Figs 2(b) and (c) are obtained from
the focusing function F”(sy, x3, X3, r, T) and its time-reversal F'7(sy,
X3, X3, —7) of Fig. 3.

2.4 Representations with acoustic Marchenko focusing
functions

Substituting the expressions for q(x), p(xr) and Y(x, xr) (eqs 2, 23
and 39) into eq. (25), gives the following representations for the
acoustic pressure p(x) and the vertical particle velocity vs(x) inside
the inhomogeneous medium

FP(x,xp)p~ (Xp)d’xp,

(52)

p(x) = /a PP e+ /

D

va(x) = — fa PO (e /3

Dp

for x3 > x3 . These expressions are exact and hold for dissipative
media. Eq. (52) is a generalisation of eq. (17) of Wapenaar & de
Ridder (2022) for dissipative media.

We use eqs (52) and (53) to derive representations for Green’s
functions between the boundary 0D and any position x inside the
medium. To this end, we define a unit point source of vertical force
at Xg just above 0Dx. For the downgoing field at 0Dy (i.e. just
below the source), we then have p*(xr) = %E(XH_F — Xp.5), where
Xy, s denotes the horizontal coordinates of xs. The upgoing field
at oDy is the reflection response to this downgoing source field,
hence p~(xr) = %R(xp, Xs). The field at x inside the medium is
the Green’s response to the source at xg, hence p(x) = G”/(x, Xg)
and v3(x) = GV/(x, Xg). Here the second superscript (f) refers to
the vertical force source at xg, whereas the first superscripts (p and
v) refer to the observed quantities (pressure and vertical particle
velocity) at x. Substitution of these expressions for p*(xr), p(x) and
v3(x) into eqs (52) and (53) gives

2677 (x, xg) = /

aDp

FP(x, Xp)R(Xp, Xs)d*Xr + FP*(x,Xs), (54)

26"/ (x, xs) = / F*(x xp)R(xr. xs)dxr — F¥(x, x5), (59)

aDF
for x3 > x3 p. Slob (2016) derived similar representations for de-
composed wavefields in dissipative media. In the present derivation
we only used decomposition at the boundary 0D, [similar as Diek-
mann & Vasconcelos (2021, 2023) and Wapenaar et al. (2021)].
This implies that inside the medium the wavefield does not need
to be decomposed into downgoing and upgoing waves and that
evanescent waves can be present.

When the medium is lossless and evanescent waves are neglected
at 0D, the bars on F” and F"” in representations (54) and (55) can
be omitted. Using the Marchenko method, these focusing functions
can then be retrieved from the reflection response R(xr, Xs) and

FU(X, xp)p~ (Xp)d*Xp,

(53)
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a smooth background model (Wapenaar et al. 2013; Elison et al.
2020). Since representations (54) and (55) account for evanescent
waves inside the medium, the retrieved focusing functions poten-
tially also account for evanescent waves inside the medium (this is
subject of current research [Brackenhoff & Wapenaar 2023)]. Once
the focusing functions are found, they can be used to retrieve the
Green’s functions G?/(x, x5) and G'/(x, Xs) [from eqs (54) and
(55)] and all components of the propagator matrix W(x, xr) [from
eqs (45) to (48)].

3 ACOUSTIC TRANSFER MATRIX AND
DECOMPOSED FOCUSING FUNCTIONS

3.1 Acoustic transfer matrix

We introduce the transfer matrix as follows. Given the downgoing
and upgoing fields p*(xz) and p~(xr) at the boundary dDx, we
‘transfer’ these fields to downgoing and upgoing fields p*(x) and
p~(x) at any depth level x; inside the medium using the following
expression:

p(x) = /a TR (56)

for x5 > x3 r. Vectors p(xr) and p(x) contain the downgoing and
upgoing fields at depth levels x; » and x5 (eq. 23). We call T(x, Xr)
the transfer matrix, which we partition as follows:

T(xxp) = (;fji ;ff)(x, x). (57)

For each component of this matrix, the superscripts refer to the prop-
agation direction at x and at Xz, respectively. Eq. (56) is illustrated
in the upper-right frame of Fig. 1.

For horizontally layered media, the transfer matrix is usually built
up recursively from interface to interface (Born & Wolf 1965; Kat-
sidis & Siapkas 2002; Elison 2020; Dukalski ez al. 2022a, b). Here
we follow a different approach to derive an expression for 7 (X, Xr)
for laterally varying media. Substituting eq. (22) into eq. (10) we
obtain eq. (56), with

T(x xp) = L7 W, Xp) LX), (58)

with £(x) and its inverse defined in eq. (20). Eq. (58), which relates
the transfer matrix 7 (x, Xr) to the propagator matrix W(X, X), is
illustrated in the upper half of Fig. 1. In the next section we show
that the transfer matrix can be expressed in terms of decomposed
Marchenko focusing functions.

3.2 Relation between acoustic transfer matrix and
decomposed Marchenko focusing functions

From eqs (26) and (58) we find
T(x xp) = L7 X)Y(X, Xp). (59)

According to eq. (39), the right-hand column of Y(x, xr) contains
FP(x, xr) and FY(x, Xr), that is, the pressure and vertical particle
velocity components at x of the focusing function. Hence, analo-
gous to p(x) = £~ (x)q(x), we obtain for the right-hand column of
T(x,xr)

Frxxp)) _ 1 (1 oH (0e(x0) ) (FP(x, xp) (60)
Frx.x)) ~ 2\1 =M 0o\ Frx xp) )
with Ft(x, xF) and F~ (X, xr) being the downgoing and upgoing
parts at x of the focusing function F?(X, Xr).
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According to eq. (39), the left-hand column of Y(x, Xr) contains
FP(x,xp) and —F"*(x, xz). Hence, for the left-hand column of
T (x, xr) we obtain

2\ —oH; (0px) ) \~F(x.xr))"

or, using H; = 7-_11‘ (eq. 36) and p = p*,

L1 =R 00\ (F7(xxp))’ ©)
2\l o' 0p(x) ) \F'(x,xp))

Comparing this with eq. (60) we find that this gives a vector
with F~*(x, xr) and F™*(x, xr). This is the left-hand column of
T (x, x;). Hence, we have obtained

B F*(x, xp) FT(x,Xp)
T(X, XF) = <F+*(X, Xi) F_(X, Xi)) ’

see the upper-right frame of Fig. 1. Hence, the transfer matrix for an
inhomogeneous dissipative acoustic medium is expressed in terms
of decomposed focusing functions of the medium and its adjoint.

We consider the special case of a horizontally layered medium.
Applying the transformations of eqs (14) and (16) to eq. (63), taking
xr = (0, 0, x3, F), we obtain

EP(—S, X3, %30, —T) F1(s,x3, X35, T)
Fr(—s,x3,x3p, —T7) F(8,x3,x37,7))°

(63)

T(s, X3, X35, 7) = (
(64)

Dukalski et al. (2022a, b) used a recursive approach and obtained
an expression similar to eq. (64). In their derivation they used a
path-reversal operator P, which is equivalent with (i) taking the
adjoint medium, (ii) taking the complex conjugate (or in the time
domain taking the time-reversal) and (iii) changing the sign of the
horizontal slowness. Hence, P{F*(s, x3, X3 r, T)} is equivalent with
Fi(—s, X3, X35, —T).

For the lossless medium of Fig. 2(a), the decomposed focus-
ing functions F~(s1, x3, x3,r, 7) and F'(sy, x3, x3. 5, 7) for s; =
1/3500 ms~! and s, = 0 are shown in Figs 4(a) and (b), respec-
tively. For each x3, the function F~(sy, x3, X3 p, T) can be seen as
the intricate field that needs to be emitted upward from x; to ar-
rive as a single upward propagating pulse at the focal depth x;
at T = 0. For the same x3, the function F'(sy, x3, X3, 5, T) is the
downward reflected response to F~ (s, x3, X3, F, T). Figs 4(b) and
(a) together form the right-hand column of the transformed trans-
fer matrix 7 (sy, x3, x3.r, 7). Their superposition gives the focusing
function F”(sy, x3, X3, F, T), shown in Fig. 3(a).

3.3 Representations with decomposed acoustic
Marchenko focusing functions

Substituting the expressions for p(x) and T (x, xr) (egqs 23 and 63)
into eq. (56), gives the following representations for the downgoing
and upgoing components of the acoustic pressure, p™(x) and p~(x),
respectively, inside the inhomogeneous medium

prx) = / F7*(x, xp)p T (xp)d*xp + / FY(x,xp)p~ (xp)d*xp,
aDf k)

Dr

(65)

p(x) = /a FH(x, xp)p* (k) + /d F(x, xp)p~ (0 ),

Dr

(66)

for x3 > x3 . These expressions are exact and hold for dissipative
media. Making similar substitutions as in Section 2.4 we obtain

(a), T Tfocuso(n)}

(b)

z3Fp =0m

200 m

400 m

600 m

760 m
t8unnelling

m

F et §§ ;; = § ~ EE 11200 m

-0.4 -0.2 0.0 0.2 T (S) 0.4

Figure 4. (a) Decomposed focusing function F~(sy, x3, x3, r, 7) (for fixed
s1 = 1/3500 ms~1). (b) Decomposed focusing function F*(sy, x3, X3,F, T).

26 (x,x5) = / FH(x, xp)R(Xp, Xg)d*xr + F7*(x, x5), (67)

aDp

267 (x, x5) = / F~ (X, Xp)R(Xr, Xs)d* X + F(x, xs), (68)
D
for x3 > x3 5. Here G=/(x, Xy) stands for the downgoing (+) and
upgoing (—) part of the Green’s function G#/(x, Xg).

When the medium is lossless and when evanescent waves are
neglected at 0D and at depth level x; inside the medium, the
bars on /" and F~ in representations (67) and (68) can be omitted.
Using the Marchenko method, these decomposed focusing functions
can then be retrieved from the reflection response R(Xr, Xs) and
a smooth background model (Wapenaar et al. 2013; Slob et al.
2014). Once the focusing functions are found, they can be used to
retrieve the decomposed Green’s functions G*/(x, xg) and G™/(x,
Xs) [from eqs (67) and (68)] and all components of the transfer
matrix 7 (x, xr) [from eq. (63)].

4 CONCLUSIONS

We have derived relations between acoustic propagator matrices,
transfer matrices and Marchenko focusing functions. In the appen-
dices we generalize the expressions for other wave phenomena.
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All relations hold for a heterogeneous dissipative medium below
a homogeneous upper half-space and account for propagating and
evanescent waves. Only for the transfer matrix beyond the acoustic
approach (Appendix B) we assume that there are no lateral vari-
ations at the depth level inside the medium where decomposition
takes place.

The derived relations provide insight in the connections between
the propagator matrices, transfer matrices and Marchenko focus-
ing functions and may lead to new modelling algorithms for these
quantities. Moreover, several of the derived relations may be useful
to develop improved Marchenko-type wavefield retrieval and imag-
ing schemes for different wave phenomena, possibly accounting for
evanescent waves inside the medium.
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APPENDIX A: UNIFIED PROPAGATOR MATRIX AND FOCUSING FUNCTIONS

In this appendix, we extend the theory of Section 2 to unified wave fields.

A1 Unified matrix-vector wave equation

Consider matrix-vector wave eq. (1). We partition the N x 1 wave field vector q, the N x 1 source vector d and the N x N operator matrix A
as follows

q d A Alz)
= , d= , A= . Al
d (q2> (dz) (AZI Ay (AT)
This includes the acoustic situation (for N = 2) discussed in Section 2. The vectors and operator matrix for other wave phenomena can be
found in various references (Woodhouse 1974; Ursin 1983; Van Stralen 1997; Gelinsky & Shapiro 1997; Haartsen & Pride 1997; White &
Zhou 2006; Leseth & Ursin 2007). A comprehensive overview is given by Wapenaar (2019) for acoustic waves (N = 2), quantum mechanical
waves obeying the Schrodinger equation (N = 2), electromagnetic waves (N = 4), elastodynamic waves (N = 6), poroelastodynamic waves

(N = ), piezoelectric waves (N = 10) and seismoelectric waves (N = 12). For all these wave phenomena, the operator matrix A obeys the
following symmetry properties

A = —-NAN, (A2)
Al = —KAK™!, (A3)
A =JAJ, (A4)
with

O1 O1 IO

N_(—IO>’K_<I 0)""(0 —I)’ (A9)
where O and I are zero and identity matrices of appropriate size. Superscript ¢ denotes transposition of the matrix and the operators contained
in it, with 8, = —d,. Superscript { denotes transposition and complex conjugation. The bar on an operator denotes that it is defined in the
adjoint medium. For further details we refer to the aforementioned references.

We show that, with some modifications, eqs (A1) — (A4) also hold for the matrix-vector form of the Dirac equation for the 4 x 1 spinor ¥.
The Dirac equation is given by (Sakurai 1967)
mc

h

(summation over p from 1 to 4), with the Dirac spinor partitioned as

(2

Yuou¥+—v =0 (A6)
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and with

Vi= (igk _8”‘) (k=1,2,3), (A8)
ri=(09): (49)
8 = ia, + % h= % (A10)

with V(x) the space-dependent potential, # Planck’s constant, ¢ the speed of light, e the electron charge and o, 0, and o3 the Pauli matrices,
defined as

01:<(1)(1)>, azz(? _()i), 03:<(l) _01>. (All)

Assuming a time-dependence exp ( — iEt/h), we replace 04 by —(E — eV)/hc. Eq. (A6) can be rewritten as follows

0 —io ¥ I O\/E—eV\(vy me (Y \
(6 ")2 ()~ (6 S)G) - 7 () = w2

or
E —eV —mc?
100, + (7) ¥, =0, (A13)
he
E —eV +mc?
i0.W, + <7> ¥, =0. (Al4)
he
Pre-multiplying all terms by —i¢ 3 and bringing the d3-operators to the left-hand side, using 6301 = ig,, 030, = —io; and 0303 = L, yields

a set of equations which can be recast in the form of eq. (1), with 4 x 1 vectors q and d and 4 x 4 operator matrix .4 partitioned as in
eq. (Al), with

Q=Y Q@=9%, d=d=0, (A15)
A= Ay =i(010, — 0,0), (Al6)
E—eV 2
Ap =io; (ei—krnc)’ (A17)
he
E —eV —mc?
Ay = io; <ﬂ> (A18)
he
With these definitions of the operator submatrices, matrix A obeys symmetry relations (A2) — (A4), with N, K and J defined as
_ (0] io _ (0] 03 _ (02 (0]
M= (2 ) k= (0%).a=(50) .

Although there are no direct applications for geophysics, the Schrédinger and Dirac equations are included in all derivations below, since this
comes almost for free. When we speak of the ‘medium’, for the Schrédinger and Dirac equations it should be understood as the ‘potential’.

A2 Unified propagator matrix

We define the unified N x N propagator matrix W(X, Xr) as the solution of wave eq. (8), with boundary condition (9) and with the operator
matrix A being the unified operator matrix discussed in Appendix Al. Using eq. (10), the unified wave field vector q(x) can be propagated
from x3_r to any depth level x3, assuming there are no sources between these depth levels. We partition W(x, xr) as

w]l wl2
W(x, xp) = X, Xr), A20
xoxe) = (W e Jose) (A20)
where Wy, Wi, Wy, and Wy, are % X % submatrices of W. For each of these submatrices, the second subscript refers to the wave field
component (q; or ) it acts on at Xy, whereas the first subscript refers to the wave field component it contributes to at x. W(x, Xz) obeys the
recursive relation (12), and from eq. (13) it follows that W(xp, x) is the inverse of W(X, xr).

A3 Relation between unified propagator matrix and Marchenko focusing functions

We assume again that the medium at and above 0D is homogeneous and may be dissipative. The medium below 0D may be inhomogeneous
and dissipative, and it is source-free. In preparation for defining the focusing functions, in the upper half-space (i.e., at and above dD ) we
apply eigenvalue decomposition to matrix A (the spatial Fourier transform of operator matrix .A), as follows

A=LAL™", (A21)
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with

~  [(ioST O - (LT Ly

A= ( 0 —iws;>’ L= (L; i,) (A22)

with ST and S; being diagonal matrices containing vertical slownesses for downgoing and upgoing waves, respectively. We express the
Fourier transformed wave field vector (s, x3) in terms of downgoing and upgoing waves p*(s, x3) and p~(s, x3) via

d(s, x3) = L(s, x3)p(s, x3), (A23)
with
Bls. x3) = (Ef)(s, %2). (A24)

Note that these equations imply q; = I:Tffr —+ Izl’f)*. Similar as in Section 2.3, eq. (24), we continue with downgoing and upgoing waves q;
and §, which are field-normalized such that §; = ;" + §; . To this end, we define §& = Lp* and we replace eq. (A23) by

q(sv X3) = ]~)(S, X3)B(S, X3), (A25)

where

B(s, x:) = (DK b- )(s ), (A26)
P

B(Sv X3) = (gl—>(sv X:‘,), (A27)

1
with
Dy =Ly@H " (A28)

Whereas there is ambiguity in the normalization of the matrices Li and in, the matrix D,i is unlquely defined (for each wave phenomenon).
Note that for the acoustic situation we have L1 =1, hence D1 =L 5 = %530/ po. Consequently, D = L and b = p. Some other examples of
matrix D (for electromagnetic and elastodynamic waves) are given by Wapenaar (2022). In Appendix C we derive for any wave phenomenon

D (S X3) = Jzz{Dq:( S, X})} J“ s (A29)
with Jy; and Jy, being the % X % submatrices of N x N matrix J. From eq. (AS) we have for all wave phenomena except for the Dirac
equation J;; = —J, =1, and from eq. (A19) we have for the Dirac equation J;; = J,, = 05.

We use eq. (A25) at dDf and the properties of matrix l_)li(s, X3) to derive unified focusing functions and express them in the components
of the unified propagator matrix and vice-versa. First we aim to substitute eq. (A25) for x3 = x; r into a transformed version of eq. (10).
This equation contains the propagator matrix W(X, Xz). For a function of two space variables, u(x, Xr) (with xz at D), we define the spatial
Fourier transformation along the horizontal components of the second space variable as

(X, s, x3 ) = / u(X, Xy, x3.p) explios - Xp p}d* Xy ¢ (A30)
]RZ
and its inverse as
2

= /2 (X, s, X3.5) eXp{—iws - X7 }d°s. (A31)
R

u(X, Xy g, X3 5) =

Note that the sign in the exponential of eq. (A30) is opposite to that in eq. (14). Using these definitions and Parseval’s theorem, we rewrite
eq. (10) as

w? < 5
a0 = — / WG s 25, 0)(s, x3,p)d’s, (A32)
R

with W(x, s, x3 ;) obeying the boundary condition

W(x, s, X3 7). =Texpliws - Xy} (A33)

=X3,F
Substitution of eq. (A25) into eq. (A32) gives

2
1 = 1 ORI (A34)

for x3 > X3, F> with
Y(x, 8, x3.7) = W(X, s, x3.7)D(s, X3.5). (A35)
We partition matrix Y(x, s, x3,r) as follows

Y(x,8, x5 5) = (; z )(x S, X3.5). (A36)
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Using equation (A26) and the spatial Fourier transform of eq. (A20), we obtain
Yli(X, S, X3 5) = V~V11(X, S, x3,5) + V~V12(X, S, X3,F)]~)1i(57 X3,r), (A37)

?;k(xv S, X3 5) = Wai(x, s, X3.r) + Wa(x, s, X3,F)]~)1i(s» X3,F). (A38)

We analyse these expressions one by one. First consider Yl_(x, s, X3 r). Via eq. (A34) it can be seen that subscript 1 refers to wavefield
component q; at x and superscript — refers to the upgoing wavefield component q; at x3 . Moreover, for x3 = x3 » we obtain, using equation
(A33), \?l’(x, S, X3,7)|xs=v; » = lexpliws - Xy}, or, applying the inverse spatial Fourier transformation defined ineq. (A31), Y (X, X¢)|x;=x; , =
18(xy — Xy, F), which is a focusing condition. Hence, we define

Yi(x,8,x37) = Fi(x, 8,33 7) = Wii(x, 8, %3 ) + Wia(x, 8, x3 7)D7 (5, x3.7), (A39)

with F(x, s, x3 r) denoting the spatial Fourier transform of the focusing function F,(x, xr) for wavefield component q;, which focuses as an
upgoing field at x = x; and continues as an upgoing field in the homogeneous upper half-space. Note that the focusing function is a ¥ x %
matrix. Next, we consider Y (X, s, x3, 7). Subscript 2 refers to wavefield component ¢ at X and superscrlpt — refers again to the upgomg
wavefield component q, at x3 . For x3 = x3 » we obtain, using eq. (A33), Y (X, 8, X3 F)xy=ns p = D (s, x5 p)expl{iws - X}, which is a
focusing condition, but somewhat more complicated than for Yf (X, s, x3 ) because of the mix of Waveﬁeld components q, and q; . Hence,

we define
Y;(& S, X3,5) = Fa(x, s, X3,p) = Wai(x, s, X3,F) + Wa(x, s, x},F)ﬁ;(sv X3,F), (A40)

with Fy(x, s, x3,r) denoting the spatial Fourier transform of the focusing function F,(x, xr) for wavefield component q,, which focuses as
an upgoing field at x = x; and continues as an upgoing field in the homogeneous upper half-space (note that the definition of F, is different
from that in Wapenaar (2022), to facilitate the derivations below). The focusing functions Fl(x, s, x3,r) and Fz(x, s, x3 r) together form the
right-hand column of matrix Y(x, S, X3.F).

For the analysis of the submatrices in the left-hand column of Y(x, s, x3 ), we use symmetry relation (A29) and we need a similar relation
for the submatrices of W(x, s, x3 ). In Appendix C we derive

W(x, x7) = JW*(x, xz)J . (A41)

From the spatial Fourier transform of this equation we obtain for the submatrices of W(X, s, x3_r)

Wos (X, 8, 63, 5) = Jua Wig (X, =5, X3 )50 (A42)
(no summation for repeated subscripts). Substituting eqs (A29) and (A42) into eqs (A37) and (A38) yields

Y (x,s, x3F)—J1I (X -s, x3F)J11, (A43)
‘:{;(X, s.x3.7) = I Y5 (x, —s, x3 p)d7 ) (A44)
Hence, using eqgs (A39) and (A40), we find for the submatrices in the left-hand column of Y(x, s, x3_r)

YT(X, S, )C3qp) = J“l:*“l(x, —S, X3,F)J1711, (A45)
Vi(x 8,303 1) = InF5 (%, —s, x5 1)) (A46)

Hence, matrix Y(X, s, x3 ) becomes

?(X, s, X3,F) _ J“FI(X —S, X3, F)J” FI(X S, X3, F) (A47)
J22F2(X —S, X3, F)J” Fz(X S, X3, F)
or, using the inverse Fourier transformation defined in eq. (A31),
InFi(x xp)I! Fi(x, XF))
Y(x, xp) = 1 1 . A48
(x, x) <J22F§(X, xe)I! Fa(x, xr) (A48)

This is a generalisation of eq. (39). Note that F, F,, 127* and }:?‘* are expressed in terms of the submatrices of the propagator matrix W(X, s, x3 )
via eqs (A37) — (A40), (A45) and (A46) Conversely, we can express the submatrices of the propagator matrix W(x, s, x3 ) in terms of the

focusing functions F, F,, F and F To this end, we start with inverting eq. (A35), according to

W(x, s, x3r) = Y(x, 8, x3 p){D(s, x3,1)} ", (A49)
with

= L (—(A)TDy (A7
s = (T iy (G Jox 30
A, =D/ -D;. (A51)

Using eqs (A47) and (A50), we obtain
Wi(X, s, X3 ) = —Jaaﬁ‘a(X, —s, X3.F)J1_11{A1(S, X},F)}flf)l_(& x3.r) + Fa(x, s, XB,F){AI(S, X},F)}flf)T(S, X3,r), (A52)
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Waa(X, 8, %3 1) = Jaa o (X, =8, X3 W HAL(S, X300} = FolX, 8, %3 ) (A4 (5, x5 5)} ! (A53)

(no summation for repeated subscripts). These expressions are a generalisation of eqs (41) — (44). Those equations follow as a special case
from eqs (A52) and (A53) by substituting J;; = —J»n =1, Dli(s, X3.7) = £53.0/ 00> {A1(S, X3.7)} ! = po/253.0, and applying an inverse spatial
Fourier transformation, which involves replacing s3 ( by operator i?—[ 1(XF).

A4 Representations with unified Marchenko focusing functions

Applying Parseval’s theorem to eq. (A34) and substituting the expressions for q(x), b(xr) and Y(X, xr) (eqs (A1), (A27) and (A48)), gives
the following representation for the quantities q; (x) and q,(x) inside the inhomogeneous medium

() = / TP (%, X005 qF ()P / Fo (%, X)) (X)X (AS4)
oDF :

aDp

(no summation for repeated subscripts) for x3 > x3 . This is a generalisation of eqs (52) and (53).

We use eq. (A54) to derive representations for Green’s functions between the boundary 9Dy and any position x inside the medium. We
define a unit d,-type source (see eq. (Al)) at xg just above 0Dx. The % X % Green’s matrix G,(X, Xg) stands for the q;-type field observed
at x, in response to this source. The spatial Fourier transform of the downgoing component at 0D (i.e., just below the source) is proportional
to the upper-right submatrix of the decomposition operator of eq. (A50), according to

GhH(xr.8.x035) = {As(s.x3.0)} " explios - xp ) (ASS)
(Wapenaar 2022). To compensate for the effects of the inverse matrix {A (s, x3.7)} ", we define a modified Green’s matrix as

Fia(x s, x35) = Gia(x, 5, x3,5)A (5, x3 1), (A56)
such that its downgoing component at dD is given by

F(xr. 8, x35) = Lexplios - Xp ), (A57)
or, after applying an inverse spatial Fourier transformation

T (xp, Xs) = 18Xy, r — Xpy,9). (AS8)
The upgoing response at dDf to this downgoing source field is by definition the reflection response, hence

IL(xr, x5) = R(xp, X5). (A59)

The field at x inside the medium consists of I'15(X, Xs) and ' (X, Xs), where fzz(x, S, X35) = Gzz(x, s, x3_g)51(s, X3,r), With sz(x, S, X3.5)
being the Green’s function for the q,-type field observed at x. Substituting q,(x) = I',2(X, Xs) and qli(x F)= l"liz(x F» Xs) into eq. (A54), using
eqs (A58) and (A59), we obtain

(X, x5) = / Fo(x, Xp)R(XF, X5)d*Xr + Joo Fi(x, XS)Jfll, (A60)
aDg

(no summation for repeated subscripts) for x3 > x3 . This is a generalisation of eqs (54) and (55) and a starting point for developing a unified
Marchenko method for full wave fields, accounting for evanescent waves inside the medium. Once the focusing functions are found, they can
be used to retrieve the Green’s matrices I',2(X, Xs) for @ = 1, 2 (from eq. (A60)) and all components of the propagator matrix W(x, x5) (from
eqs (A52) and (A53)).

APPENDIX B: UNIFIED TRANSFER MATRIX AND DECOMPOSED FOCUSING
FUNCTIONS

In this appendix, we extend the theory of Section 3 to unified wave fields.

B1 Unified transfer matrix

We introduce the unified transfer matrix as follows. Given the downgoing and upgoing fields q*(xr) and q~(xr) contained in vector b(xr) at
the boundary dDr, we transfer these fields to depth level x; via

bx) = |  T(x, xp)b(xp)d’xr, (B1)
aDp
for x3 > x5, p. The unified transfer matrix 7 (x, Xr) is partitioned as follows

L
T(Xv XF) = (;*.Jr ;717>(X’ XF)’ (Bz)
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\yith T** being % X % submatrices. Analogous to eq. (58), matrix 7 (x, x) is related to the unified propagator matrix W(x, x) of eq. (A20)
via

T(x, xr) = D 'X)W(x, xp)D(xF), (B3)

with D(xr) and D~'(x) being the inverse spatial Fourier transforms of D(s, x3 ») and {D(s, x3)}~"!, defined in eqs (A26) and (A50),
respectively. Unlike in the acoustic situation, where £(xz) and £7'(x) in eq. (58) account for lateral variations of the medium param-
eters, the unified matrices D(s, x3,7) and {D(s, x3)}~" are defined for laterally invariant medium parameters at depths x3; s and x3. For
D(s, x3.r) this is not a restriction, since x3 r is the depth of the boundary 9Dy between the inhomogeneous medium and the homoge-
neous upper half-space. However, for {D(s, x3)}~! it implies that this operator can only be applied at depths where no lateral variations
occur.

B2 Relation between unified transfer matrix and decomposed Marchenko focusing functions

Assuming there are no lateral variations at a specific depth level x3, we use the spatial Fourier transformation defined in eq. (14) along the
horizontal components of the first space variable to express the transfer matrix (analogous to eq. (59)) as

T (s, x5, xr) = {D(s, x3)} 'Y (s, x5, Xp), (B4)

with {D(s, x3)}~! defined in eq. (A50) ar~1d Y(s, x3, X5) being the Fourier transform of Y(x, xz) defined in eq. (A48). Analogous to eq. (60),
we obtain for the right-hand column of T (s, x3, Xr)

F(s,x3,xp)\ _ (—(A)7'Dy (A)~! Fi(s, x3,xF)
(F7(57 X3, XF)) B ( (&1)71]3;rl —(Al)fl)(s’)@)(f?z(& X3, XF)>’ (B5)

with (s, x3, xz) and F~(s, x3, x) being the downgoing and upgoing parts at x; of F,(s, x3, Xz). For the left-hand column of F(s, x3, Xr)
we analyse the following expression

—(A)'D; (A ) I E (=, x5, X))
~ ~ ~ S, X ~ % . B6
( (Al)71D1+ _(Al)71 ( 3) J22F2(—S, X3, XF)JIII ( )
Using eqs (A29) and (C16) in eq. (B6) gives
~ ok ~ + =k =k
(JH(AJ;;'(D~1 I —JH(NA*I)-‘J;;> s x})(JnfL(—s,xLxF)Ja'). ®7)
—Jn(A)T' DI In(A)1IG I ¥, (=8, x5, xp)J7
By comparing this with eq. (B5) we find that the expression in eq. (B7) is equal to
e _ *y—1
<Jn{§+< .33, xp)}*Jl_ll). (BS)
Ji{F (=s, x3,xp)} Ji

Combining the right-hand column (eq. B5) and the left-hand column (eq. B8), we obtain the following expression for the unified transfer
matrix

~ P _ =71 I+
F(s. x5, xp) = (Jn{l;( S, X3, Xp)} J1711 lj (s, X3,XF)>’ (B9)
Ji{E (=s, x3, xp)}* 37 F7(s, x3, XF)
or, in the space domain,
T (F~(x, xp)) Ty FH(x, xF)>
T(x,xp) = £ o : B10
(. xr) (JH{F+(x, xp)} I F(x, xp) (B10)

This is the generalisation of eq. (63).

B3 Representations with decomposed unified Marchenko focusing functions

Substituting the expressions for b(x) and 7 (x, xr) into eq. (B1) gives the following representations for the downgoing and upgoing fields,
q; (x) and q; (x) respectively, inside the inhomogeneous medium

q; (x) =/ I {F(x, XF)}*JEIQT(XF)G'ZXF‘F/ FH (X, Xp)q; (xp)d’xp, (B11)
aDp a

Dp
G0 = [ IulF eIl + [ F oxea cedxe, (B12)
aDfp D
for x3 > x3_p. These expressions are exact and hold for dissipative media. Making similar substitutions as in Section A4 we obtain

I'L(x, xs) =/ F(x, x)R(Xp, X5)d*xp + I3 {F(x, x5)) "I}, (B13)

aDp
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I'(x xs) = f F(x, xR, X)d2Xr + 1 (F* (%, xs)P 0 (B14)
aDp

for x; > x3 . Here l'frz(x, xg) and I'}, (X, Xg) stand for the downgoing and upgoing part of the Green’s function I' (X, X;). These equations are
generalisations of eqs (67) and (68) and form a starting point for developing a unified Marchenko method for decomposed wave fields.
Once the focusing functions are found, they can be used to retrieve the decomposed Green’s functions I'},(x, Xs) and T'5(x, Xs) (from
eqs (B13) and (B14)) and all components of the transfer matrix 7 (x, Xxz) (from eq. (B10)). Versions of the Marchenko method based
on expressions similar to eqs (B13) and (B14) have already been implemented for the retrieval of decomposed elastodynamic Green’s
functions in lossless media, ignoring evanescent waves (Wapenaar & Slob 2014; da Costa Filho et al. 2014; Reinicke & Wapenaar 2019;
Reinicke et al. 2020).

APPENDIX C: SYMMETRY PROPERTIES OF THE PROPAGATOR AND
DECOMPOSITION MATRICES

Let N x N propagator matrices W(X, x4) and W(x, xgz) be two independent solutions of eq. (8) (with unified operator matrix
A(x) defined in eq. (Al)), with boundary condition (9), modified for coordinate vectors x, and xz. We show that the quantity
f]RZ W' (xz, X3, X )NW(xy, X3, X B)dzx u 18 a ‘propagation invariant’, meaning that it is independent of x; (Haines 1988; Kennett e al. 1990;
Koketsu et al. 1991; Takenaka et al. 1993). To this end we take the derivative in the x;-direction, apply the product rule for differentiation,
use eq. (8) and symmetry relation (A2), according to

33/ W (x, x,))NW(x, X3)d"Xp7 =f W (x, x) (AN + NAW(x, x5)d’x;; = O. (C1)
R2 R2 T

This confirms that the integral is a propagation invariant. In a similar way, using symmetry relation (A3), it can be shown that
fRZ Wi(xy, x3, X )KW(Xy, X3, X5)d*Xxy; is also a propagation invariant. Using boundary condition (9), modified for x; = X3, 4 and x3 =
X3, g, we find from the first propagation invariant

Wi(xp, X4) = NW(x,, x5)N ! (C2)
and from the second propagation invariant

Wixg, x4) = KW(x,, x;)K . (C3)
From eqs (C2) and (C3), using KN~! = J, we find

W(xz, X)) = JW* (xp, x)J " (C4)

This equation is used in Section 2.3 and Appendix A3 in the derivation of the relation between the propagator matrix and the Marchenko
focusing functions.

To derive a symmetry property for DF = LF(LF)! (eq. (A28)), we start by Fourier transforming symmetry relations (A2) — (A4), assuming
the medium is laterally invariant at the depth level where the transformation is applied. This gives

Al(—s, x3) = —NA(s, x3)N7, (C5)
Al(s, x3) = —KA(s, x:)K ™', (C6)
A*(=s,x3) = JA(s, x3)d L. (C7)

The eigenvalue decomposition of matrix A is defined in eq. (A21), with the partitioning of A and L defined in eq. (A22). For all wave
phenomena mentioned in Appendix Al, the eigenvalue matrix A obeys the following symmetry relations

]\t(—s, X3) = —N]\(s, x3)N71, (C8)
A5, x5) = —JA(s, x3)J " (C9)
Given egs (A21) and (C5) — (C9), matrix L can be normalized such that

L/(=s,x3) = —=NL™'(s, x3)N ', (C10)
~ ~—1

Li(s,x3) = JL (s, x3)K™\. (C11)

From the latter two equations, we obtain
L7(s, x3) = JL(—s, 2K, (C12)
or, using the partitioning of L as defined in eq. (A22),

~ * ~
{Lli(S, X3)} = JuL; (=s, x3)Kup, (C13)
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g * =F
{in(& xs)} = InL, (=8, x3)Kj2, (C14)

with J;; and J,; being the upper-left and lower-right submatrices of matrix J, and K, being the upper-right (= lower-left) submatrix of matrix
K. From eqs (C13) and (C14) it follows that l~)li as defined in eq. (A28) obeys the following symmetry relation

~+ ~
D, (s, x3) = I {DT(—s, x3)}* I}/ (C15)

Finally, using A = ]N)?r — l~)1_ (equation A51), we obtain

{Z](s, x3)}_1 -, {A’[(—s, x3)}_l 3. (C16)
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