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Abstract
A random field generator based on Local Average Subdivision (LAS) method is proposed in this
study in order to achieve probabilistic soil classification and quantify the uncertainty of the
generated most probable geological cross section. CPT data and Robertson’s soil classification
chart (1990) are adopted to classify the soil. The sole application of LAS makes the random field
unconditional, which has been improved to conditional random field generator by using Kriging
interpolation. Both unconditional and conditional generator are tested in an illustrative example
and the results indicate that the improvement from unconditional to conditional random field
reduces the uncertainty of the most probable result of classifications and the classifications in the
unconditional random field will converge if there are enough realizations. Additionally, the
conditional random field generator is further applied in a case with three conducted CPTs, which
build up a domain with very large scale of fluctuations. It’s found that the uncertainty of the
generated most probable result of classifications is pretty low so it’s speculated that the proposed
generator can be best applied in a large scale of fluctuation scenario. Another finding in the case
study is that the proposed random field generator can be used to verify the reliability of
conducted CPTs.



5

1. Introduction
1.1 General background

The subsurface soil stratigraphy, which constitutes a part of site characterization, plays an
important role in the construction works and geotechnical structures (Wang, Wang & Liang,
2017; Clayton, 2001). As for how to develop a underground geological cross-section,
traditionally people simply draw straight lines to connect the boundaries of the same soil types
between two adjacent site investigation (e.g. CPT, borehole, etc.). This traditional method has
been used for a long time but it can only be applied when site has relatively simple geology or
when extensive ground investigations are available (Shi & Wang, 2021) because it actually
ignores the possible inconsistency of the soil boundaries and reduces the uncertainty of soil
classifications arbitrarily. The application of such a method in real engineering cases may lead to
many problems. So how to obtain a geological cross section approaching to the real in-situ
condition under the circumstance that the site investigations are sparse and the underground
geological situation is complicated becomes the research question for this project.

The solution, also the research objectivity of this project, to the aforementioned problem is to
carry on probabilistic soil classifications and find the geological cross section in a stochastic way.
This method offers a great opportunity to capture the soil inherent variability by random field
and infer the most probable result of classifications, especially the classifications at unsampled
locations. Moreover the uncertainty can be quantified, which means that the uncertainty of the
most probable result can also be obtained. In all, in this way the geological cross section can be
inferred in a stochastic way instead of a deterministic way.

Many probabilistic approaches have been developed such as random field and machine learning
methods (Shi & Wang, 2021a; Shi & Wang, 2021b; Hu & Wang, 2020; Chessa, 2006).
Specifically in this study, how to achieve the probabilistic analysis has been divided into two
parts: the soil classifications based on CPT data and the random field generator based on Local
Average Subdivision method and Kriging interpolation.

1.2 Scope of this study

In order to deal with stochastic soil stratigraphy, there are two key parts: soil classification model
and random field generator. In this study, for the former one, Robertson’s CPT classification
method (Robertson, 1990) is adopted and it will elaborated in Section 3.1. For the latter one,
conditional random filed generator based on Local Average Subdivision and Kriging
Interpolation is adopted, which will be elaborated in Section 3.2.1 (LAS) and Section 3.2.2
(Kriging interpolation). The most probable results for classifications and their uncertainties, as
well as some other post-analysis will be elaborated in Chapter 4 and Chapter 5, respectively for
an illustrative example and a real case.

There are many other methods to achieve soil classification besides CPT classification and there
are many other methods to generate random field no matter it is stationary or non-stationary.
This study can function as a contrast example for researchers who want to investigate in and find
out the most accurate and convenient way to achieve probabilistic soil classifications.
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2. Literature Review
2.1 Cone Penetration Test

The site investigation method used on this study is Cone Penetration Test (CPT). The test
method consists of pushing an instrumented cone, with the tip facing down, into the ground at a
controlled rate (controlled between 1.5 -2.5 cm/s accepted) ("Cone penetration test - Wikipedia",
2022). It is a widely used in-situ test to identify soil types. There are a couple of advantages of
such a test: providing accurate and continuous profiles (Ramsey, 2010), being fast, repeatable
and economical (Robertson, 2010); the data obtained from CPT being able to interpret soil
properties based on some empirical relations (e.g. shear wave velocity, undrained shear strength,
particle size and hydraulic conductivity; McGann, Bradley, Taylor, Wotherspoon & Cubrinovski,
2015; Anagnostopoulos, Koukis, Sabatakakis, & Tsiambaos, 2003; Tillmann et al., 2008). The
disadvantage exists in terms of only being applicable for shallow subsurface, not considering
cyclic loading conditions, etc. (Ramsey, 2010). What is obtained from CPT and how to use
specifically in this study will be elaborated in Section 3.1.

2.2 Soil Classification Method

Soil classification has been important in geotechnical engineering field for a long time and there
are many methods well developed. In the following there are some classical soil classification
methods chosen to display: American Association of State Highway and Transportation Officials
(AASHTO) soil classification system which applies sieve analysis, plastic limit and liquid limit
to classify; Unified Soil Classification System (USCS) which applies texture and grain size to
classify; The United States Department of Agriculture (USDA) method textural soil
classification method which also applies soil textures to classify; soil behavior type (Robertson,
1990) and soil behavior type index Ic (Robertson & Wride, 1998) which applies normalized cone
resistance and friction ratio to classify.

In order to obtain necessary parameters for those classification methods, there are various in-situ
tests and experimental tests developed. For AASHTO soil classification, sieve analysis and
Atterberg Limit Test are needed. For soil behavior type and soil behavior type index Ic, CPT or
flat plate dilatometer test (Robertson, 2015) are needed. In addition, some methods only require
people to identify visually, like UCSC and USDA method, needing people to classify the soils by
observing soils’ texture.

2.3 Random field

Random field originates from mathematics and physics and it has a wide range of applications.
Generally it can be defined as the representation of the joint probability distribution for a set of
random variables (Hernández-Lemus, 2021). In this study, the random field can be simply
understood as a domain where there are random variables generated in each element for each
realization. One realization means the generation of a random property field and subsequent
analysis of the problem (Hicks, 2009).
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As for how to generate random field, there are various ways. In general it can be divided into two
types: stationary (Gaussian) random field, which is commonly used and non-stationary (non-
Gaussian) random field. For stationary method, there are Fast Fourier Method, Turning Bands
Method, Spectral method, Matrix decomposition method, Karhunen-Loeve expansion, Moving
average, Sequential simulation and Local Average Subdivision method (Liu, Li, Sun & Yu,
2019). Compared to other methods, the Local Average Subdivision, which is adopted in this
study, has the advantage that it is straightforward and fast (Fenton & Griffiths, 2007). Detailed
information about LAS will be shown in Section 3.2.1. In non-stationary random field, the
statistics of data points (e.g. mean, standard deviation) change in temporal dimension or in space
dimension. This may be an advantage, especially when analyzing CPT data because CPT data is
strictly non-stationary (Jamshidi & Kamyab, 2015). It has an inherent depth trend. In non-
stationary random field all the data doesn’t have to be detrended which conforms with reality and
avoid potential inaccuracies. Nowadays, there are a large number of investigations in non-
stationary random field (Griffiths, Huang & Fenton, 2015; Montoya-Noguera, Zhao, Hu, Wang,
& Phoon, 2019; Hu & Wang, 2020), which shows the potential to become a trending topic.

There is an overview of a non-stationary generator, Bayesian compressive sampling Karhunen-
Loève (BCS-KL) generator, proposed by Hu & Wang (2020), which may be helpful for
researchers who are interested in it. This generator is based on a novel sampling concept called
compressive sampling/sensing (CS): A certain signal or image (like the qt and Fr which are
investigated in this study) can be reconstructed from sparse measurements on that signal or
image. The reconstruction is based on the fact that many natural signals are compressible. In
other words, a signal/image can be estimated by a limited number of weight coefficients
multiplied by respective basis functions like wavelet functions and cosine functions. Specifically
it is achieved by the following equations:
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where F is the 2D signal/image to be reconstructed, 2D
tB is the t-th 2D basis function; 2D

tw is the

weight coefficients corresponding to 2D
tB ; Y is a sub-matrix of F constituted by spare

measurements. In this case, Y can be simply understood as a 2D matrix which consists of 1D
conducted CPTs. Detailed mathematical derivation can be viewed in Hu and Wang’s paper. One
highlight can be seen in those equations that this generator bypasses the difficulty to connect the
conducted CPT to the input parameters used in the random field. The measurements are directly
used as input for reconstruction. How to solve such a difficulty in this study is shown in Section
3.3 but no matter how subtle the solution is, it is not as direct as the BCS-KL generator and more
procedures mean more inaccuracies. So that’s the most valuable point worth researching. In
addition, the 2D matrix F can automatically remain the anisotropic/isotropic trait.
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3. Methodology
3.1 Soil Classification method based on CPT

In this study, Robertson’s CPT classification chart (1990) is adopted. There are some empirical
relations between the soil behavior types and normalized friction ratio (Fr) and normalized cone
resistance (Qt), which can be seen in Fig. 1. The number 1 to 9 in Fig. 1 refers to the soil
behavior type, and Fig. 2 illustrates detailed descriptions. It’s worthy noticing that Fr and Qt can
not be directly measured from CPT but can be indirectly calculated by some parameters
measured by CPT. The relationship is shown below.
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Where,

2 (1 )t cq q u a    is the corrected tip resistance (MPa) (Campanella, Gillespie & Robertson,
1982), cq is the tip resistance measured from CPT (MPa), 2u is the measured pore pressure

behind the cone tip, N

T

Aa
A

 is the net area ratio, NA and TA are respectively load transfer area

behind the cone tip and cross-sectional area at the base of cone tip, 0v is the vertical total stress
(MPa), 0 0 0'v v u   is the vertical effective stress(MPa), 0u is the in-situ pore water pressure
(MPa) and sf is the sleeve friction ratio (MPa).

Fig. 1. Robertson’s soil classification chart based on CPT with normalized friction ratio and
cone resistance (1990)
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Fig. 2. Soil behaviour type description based on Robertson’s chart (1990)

In Netherlands, there is a website (https://www.dinoloket.nl/en) which offers open-source CPT
profiles with a .GEF format and in Chapter 5, for the real case study, three CPTs are acquired
from the website. Those .GEF files can be read by a CPT processing script built up by Guido de
Zeeuw and it will classify the CPT data automatically based on the aforementioned chart. This
script can be divided into two part: reading CPT and classifying based on Robertson’s chart. The
classifying part is extracted and used individually in Chapter 4 because there are no real CPTs to
be read. The exemplary processing result by using this script is shown in Fig. 3.

Fig. 3. An example to the result of CPT processing script

As it can be seen, the result of this script is in logarithmic scale. So actually Fig. 1 is used in the
way as shown in Fig. 4.
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Fig. 4. Robertson’s soil classification chart based on CPT with logarithmic normalized
friction ratio and cone resistance (1990)

3.2 Conditional random field generator based on LAS and Kriging
3.2.1 Random field generator based on Local Average Subdivision

The random field generator used in this study is based on Local Average Subdivision (LAS)
method, which was first proposed by Fenton (1990). The procedures of this method can be
conceptually viewed in Fig. 5. From the stage 0 to stage 3, this is the process to subdivide the
random field, which will continue until the needed maximal subdivisions. As for how to
calculate the values in each cell, for example, in stage 3, the values of B1, B2 and B3 are
determined by a random number generator and parent cell values. For the former one, it is built
up based on the mean (μ), standard deviation (σ), scale of fluctuation (θ) as well as anisotropy of
heterogeneity (ξ, the ratio between the horizontal and vertical scale of fluctuation) of the
investigated material property. For the latter one, not only the cell P, but also the cells
surrounding P are parent cells. Then for the value of A, upward averaging is taken, which means
(A + B1 + B2+ B3)/4 = P. Pay attention the initial global mean (Z10) here is NOT equivalent to
the mean of the system. Instead it will be determined by the scale of fluctuation and the problem
domain, which won’t be elaborated in this study. Additionally, if the field is anisotropic (the
scale of fluctuation is different in horizontal and vertical direction), it will be squashed as it can
be seen in the right part of Fig. 5. Taking ξ = 2 for example, the vertical direction size is reduced
by a factor of 2, later the cell size will go back to the original size by taking average of the two
small cells. This is the basic method used in this research.
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Fig. 5. Local Average Subdivision process

The LAS generator is mainly built up in Fortran by Divya Varkey and there is a pseudo code to
show how to achieve step by step in Fig. 6.
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Fig. 6. Pseudo code for building random filed generator based on LAS in Fortran
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3.2.2 Condition random field generator based on LAS and Kriging interpolation

Furthermore, the model can be improved to be more realistic and precise by adopting conditional
random field (also implemented by Divya Varkey). This can be achieved by using Kriging
interpolation method. Basically this method can be explained in the following equations (Lloret-
Cabot, Hicks & van den Eijnden, 2012).

*
0
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( ) ( )
n

Z x Z x 
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

 (6)

*
0( )Z x is a material property at a location x0, which can be obtained from a linear combination

of the known values of Z at various measured points (i.e. ( )Z x ).  are n unknown weights, to
be determined so as to find the best estimate for Z at x0.

It is worthy noticing that the Kriging interpolation cannot be directly applied to conditional
random field analysis because there actually are no random variations over realizations. Instead,
a superposition algorithm is adopted (Fenton & Griffiths, 2008):

( ) ( ) ( ) ( )c u m sX z X z X z X z   (7)

where z = (z1, z2) is the location along which z1 and z2 are sampled and unsampled; Xc is the
conditional simulation; Xu is the unconditional simulation (In this study Xu is the results
generated by the unconditional random filed generator mentioned in Section 3.2.1); Xm is the
Kriging prediction based on measured values; Xs is the Kriging prediction based on
unconditional simulation.

Similarly, there is a pseudo code in Fortran in Fig. 7. One thing deserves noticing is that when
there is no real CPT data as input, the program will take realization 1 as the CPT input. It will be
elaborated later in Section 4.2.2.
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Fig. 7. Pseudo code for building conditional random field generator based on LAS and
Kriging interpolation in Fortran

3.3 Input parameter identification

For the random field generator, there must be input for the mean, standard deviation and scale of
fluctuation of the value to be generated. In this study, there are two proposals how to determine
those input. Proposal one is to use mean and standard deviation which can cover all
classifications in Robertson’s chart. This proposal departures from the idea that because of the
inherent variability of the soils, any type of soil possibly exists in between two adjacent CPTs.
So it is reasonable to use the mean and standard deviation, which can cover all possibilities
(classifications). Specifically, the mean and standard deviation for logarithmic normalized cone
resistance and friction ratio for this proposal is shown in Table 1.

Table 1.Mean and standard deviation used in the first proposal

mean
standard
deviation

ln(nQt) [MPa] 3.5 1
ln(nFr) [%] 0 0.7

Another proposal is to use the average value of measured data (tip resistance and friction ratio)
over all CPT profiles as the input mean and use the average of standard deviation for each CPT
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profile as the input standard deviation (Lloret-Cabot, Hicks & van den Eijnden, 2012). For scale
of fluctuations, the vertical scale of fluctuation is determined by correlation function fit method,
which compares the experimental correlation function plot and theoretical Markov correlation
function to see which value of θv fits best. The horizontal scale of fluctuation is determined by
the principle that the natural deposit has a ξ more than 25.

3.4 Automatic data processing

Countless data will be generated by the conditional random field generator, so a series of scripts
must be made to process the data automatically and produce the meaningful results. Those
scripts are mainly created in Python. Fig. 8 is the pseudo code which illustrates the main process.
After running enough realizations, the results for all realizations are store in a res file. Here the
results mean the generated logarithmic normalized tip resistance and friction ratio. Subsequently
the aforementioned CPT classification script will be applied. So now the classifications for all
realizations have been obtained, which later will be split into classifications for each realization
and written in separate .vtk file. The .vtk file can be shown in Paraview to achieve the data
visualization.

Fig. 8. Pseudo code for the main process to process generated random values

There is one remaining demand to successfully run the above script: determining how many
realizations are enough. The way to figure out how many realizations are enough is to add ten
more realizations to the current number of realizations and compare the change of a certain result.
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If the change of such a result is less than the tolerance, the number of realizations is enough.
Specifically, the result used to compare is the uncertainty of the most probable classifications
and the tolerance is 0.05% (Shi & Wang, 2021b). The pseudo code is shown in Fig. 9.

Fig. 9. Pseudo code for determination of the number of realizations

There is a subsequent demand to successfully run script shown in Fig. 9: how to find the
uncertainty of the most probable result. Actually the prior demand is to determine what the most
probable result is. It is not a certain realization but a comprehensive result which reflects the
classification that appears most frequently over realizations at each cell. For example, for a
certain cell, after 5 realizations, the classifications are respectively 3, 4, 5, 5, 5. Then type 5 is the
most probable classification for this cell. The most probable classifications for all cells can be
determined in the same way. Thus the most probable result can be obtained. The uncertainty of
the most probable result is the average uncertainty of each cell. The uncertainty of each cell is to
calculate ratio between the classifications which are different from the most probable
classification and the number of realizations. Using the same example early in this paragraph, the
uncertainty of the cell is 40%. This uncertainty is also known as dispersion (Shi & Wang, 2021b).
The dispersion can be calculated by the following formula:
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where ( )Dp x is dispersion at location x; Zr(x) is the categorical variable of rth realization at
location x; Zmp(x) represents the most probable classification value at location x; Nr denotes the
total number of realizations. The pseudo codes for those two demands are shown in Fig. 10 and
Fig. 11.

Fig. 10. Pseudo code for determination of the most probable result

Fig. 11. Pseudo code for determination of the uncertainty of the most probable result



18

There is a lastly remaining demand: extracting the classification results for each cell over
realizations. The pseudo is shown in Fig. 12. The code implementation for pseudo codes from
Fig. 8 to Fig. 12 is shown in Appendix A to Appendix C.

Fig. 12. Pseudo code for extraction of the classifications at the same cell over realizations
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4. Illustrative example
4.1 Input determination

In this part, there is an example to show what can be obtained from the generator and accessary
scripts. How to determine the input for the generator is firstly described. Fig. 13 shows the input
file. The number of realizations is left to be determined after determining all the rest of input.
The domain size is 20m by 10m. The mean, std are values which can cover all the classifications
in the Robertson’s chart, which correspond to Table 1. The vertical scale of fluctuation in this
example cannot be calculated by the correlation function fit method because there are no
available real CPTs. So θv is assumed to be a reasonable value (e.g. 1m) and the horizontal one
is assumed to be 30m (for natural soil ξ > 25). The element size then can be calculated as θv/4 =
0.25m (Hicks, 2009).

Notice in this generator there is only one integration point in an element so the cell size is equal
to the element size. Since there are no available CPTs, after switching to conditional random
field generator, the program will automatically choosing realization 1 as the input CPT which
will be used for Kriging interpolation and won’t be changed in the following realizations. Notice
not all columns are be taken as the input CPT but the columns where the user set to have
conducted CPTs. In this example, as can be seen in raw 9 in Fig. 13, there are three columns to
have CPTs, respectively corresponding to column 0, column 40 and column 79 (the numbering
starts from 0). The unconditional results are also generated from the program, which can be used
for the comparison between conditional and unconditional scenarios.

Now moving backing towards the number of realizations, it is determined by the script shown in
Appendix B. Other inputs remain the same for different numbers of realizations. It can be seen in
Fig. 14, when the number of realizations is equal to 100, the percent of change is around 0.01%,
which is smaller than the tolerance (0.05%). So it is logical to run for 100 realizations.

Fig. 13. Input for the illustrative example
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Fig. 14. Percent change in the uncertainty of the most probable result over realizations

4.2 Results and analysis

Subsequently, the generated data is processed by the aforementioned Python scripts from
Appendix A to Appendix C and Fig. 15 to Fig. 20 show the final results.

4.2.1 Most probable result for classifications and its uncertainty

The most probable result is shown in Fig. 15 and it can be seen that the main soil type is 5. This
is because the middle part of Robertson’s chart is chosen as the mean, so type5, which locates in
the middle of the chart, appears most frequently. The uncertainty is shown in Fig. 16 and the
average uncertainty is 17.2%. It can be seen that the uncertainty decreases as the cell approaches
to any side of the adjacent CPTs. In other words, the uncertainty is the highest in the middle part
of two adjacent CPTs while the uncertainty is the lowest (actually 0%) in the conducted CPT
positions. This phenomenon is in alignment with the reality.

Fig. 15. The most probable result of classifications in the illustrative example
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Fig. 16. The uncertainty of the most probable result of classifications in the illustrative example
with an average uncertainty of 17.2%

4.2.2 Comparison between conditional and unconditional random field generator

The first comparison is to show what the difference between conditional and unconditional
random field generator is. For conditional scenario, as mentioned earlier, in all realizations the
classifications at conducted CPT positions don’t change, while for unconditional scenario, there
is no such a constrain. This phenomenon can be seen in Fig. 17 and Fig. 18. For simplicity, only
column 0 is compared. In addition, no matter it is conditional or unconditional scenario, the 1st
realization is always the same as shown in Fig. 19.

Fig. 17. The classifications in the first and second realization in conditional random field,
comparing the first column on the left side



22

Fig. 18. The classifications in the first and second realization in unconditional random field,
comparing the first column on the left side

Fig. 19. The classifications of the first realization in conditional random field (left) and
unconditional random field (right)

Moreover, the average uncertainty of the conditional and unconditional random field generator
can be compared. It is shown in Fig. 20. It is evident that the average uncertainty is higher in
unconditional scenario, which is logical because for the conditional generator, based on Kriging
interpolation, there is more information extracted from the real CPTs or there are more
constrains from the real CPTs for the random field. So definitely the uncertainty is reduced in
conditional random field.
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Fig. 20. The average uncertainty comparison between the conditional random field (17.2%,
upper) and the unconditional random field (48.2%, lower)

4.2.3 Convergence in the unconditional random field

Since in the unconditional random field, the generation of random values doesn’t take Kriging
interpolation into consideration, there is one speculation that with the increase of realizations, the
most probable classifications for each cell will converge to a certain type. Additionally, because
the generation conforms with Gaussian distribution shown in Fig. 21, the convergence type is
speculated to be type 5.

Fig. 21. The normal distribution of soil behaviour type
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The method is similar to the method to determine how many realizations are enough.
Specifically, the current most probable result and the most probable result with ten more
realizations are compared but this time the focus is on the classifications instead of the average
uncertainty. The result is plotted in Fig. 22. The difference refers to the difference between two
most probable results of classifications. For each cell, if the classification is different when the
number of realizations is n and when the number of realizations is n+10, the counter will be
added by 1. After looping for all cells, counter will be divided by the total number of cells and
that is the difference. It can be found that as the increase of realizations, the difference tend to be
0. So it proves the speculation that in unconditional random field, the classification for each cell
tends to converge when there are enough realizations.

Fig. 22. The difference between the most probable result of classifications of n realizations
and n+10 realizations in unconditional random field

Additionally, the most probable result for 100 and 110 realizations can be viewed in Paraview to
have a more direct comparison. They are shown respectively in Fig. 23 and Fig. 24. It can be also
seen that the convergence type is type 5, which conforms with the second speculation.

Fig. 23. The most probable result (r = 100)
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Fig. 24. The most probable result (r = 110)

Finally, with the increase of the number of realizations, actually the average uncertainty has
no big changes. It is also logical because the mean can only contain around 50% reliability.
It’s shown in Fig. 25.

Fig. 25. The average uncertainty in the unconditional random field over realizations

Whereas in the conditional field, because the existence of Kriging interpolation, the
classifications in each cell cannot converge no matter how many realizations are. The difference
exists permanently, which is shown in Fig. 26.
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Fig. 26. The difference between the most probable result of classifications of n realizations
and n+10 realizations in conditional random field
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5. Case Study
5.1 Background

In this part, the proposed conditional random field generator is applied to a real case, which aims
to achieve probabilistic soil classifications using three conducted CPTs. Those three CPTs are
obtained from https://www.dinoloket.nl/en, respectively named as CPT000000161781,
CPT000000161782 and CPT000000161785. Their relative positions are shown in Fig. 27. For
simplicity, their names are changed to CPT1, CPT2 and CPT5. All of them are projected to x
axis and based on their coordinates, it can be calculated that the spacings are 22 m and 25 m. So
in the random field, CPT1 can be approximately regarded as exactly in the middle of CPT2 and
CPT5. What those three CPTs look like in the random field is shown in Fig. 28.

Fig. 27. The real locations of the three CPTs used in case study

Fig. 28. The schematic diagram for the locations of the three CPTs in the random field
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It’s worthy noticing that because there are some differences of those CPTs in terms of the initial
depth and CPT length, some data has to be deleted in order to make those three profiles uniform.
After some adjustments, all CPTs start from one meter below the ground and have a depth of 28
meters. The horizontal size is 47 meters. In all, it is a 47m by 28m domain locating at one meter
below the ground.

5.2 Input data

The input mean and standard deviation for this case adopt the second proposal in Section 3.3.
The mean is the average values for all CPT profiles. The standard deviation is the average of the
standard deviation for each CPT. Those two parameters for both cone resistance and friction
ratio are calculated by Python script, which can be seen in Appendix D1. The results are shown
in Table 2.

Table 2.Mean and standard deviation calculated from the three CPTs (the second proposal)

mean
standard
deviation

ln(nQt) [MPa] 3.81 1
ln(nFr) [%] 0.36 0.76

Additionally, as for the vertical scale of fluctuation, it is calculated by trying to find value which
fits the Markov correlation function to the experimental correlation function. Those two
functions are shown in Eq. (9) and Eq. (10) respectively:

( ) exp( 2 )zz
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where ( )iU z and ( )iU z z  are a pair of detrended random field data points at relative distance
z , zn is the number of pairs available in the data at a distance z and  is the vertical scale

of fluctuation.

How to implement the calculation of vertical scale of fluctuation can be seen in Appendix D2.
Fig. 29 and Fig. 30 show the conceptual process. For the horizontal scale of fluctuation, a
reasonable anisotropy of heterogeneity is assumed to calculate h v    .
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Fig. 29. Pseudo code for calculating the normalized cone resistance or friction ratio with a
uniform distribution

Fig. 30. Pseudo code for calculating the vertical scale of fluctuation of normalized cone
resistance and friction ratio

The results of those correlation functions are shown in Fig. 31 and Fig. 32. There is a
phenomenon that the latter part of those two experimental correlation function curves reach some
negative values. This is the because in the real CPT profile there are many variations. Thus when
the relative distance is large, two points in a pair are likely to locate separately in weak zone and
strong zone. Moreover, it is also caused by relatively little data and short CPT profiles. Still it
can be approximately estimated that when θv = 2 m, Markov correlation function fits best for
normalized friction ratio and when θv = 3 m, Markov correlation function fits best for
normalized cone resistance. Eventually, the vertical scale of fluctuation used in the conditional
random field generator is the average of these two values, 2.5m. Additionally,  is set to be 30,
so the horizontal scale of fluctuation is 75m.
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Fig. 31. The correlation function fit for normalized friction ratio

Fig. 32. The correlation function fit for normalized cone resistance
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Finally, the cell size is determined by principle that the maximal cell size is no bigger than a
quarter of minimal scale of fluctuation, so the cell size is chosen to be 0.5m. All the input is
shown in Fig. 33.

Fig. 33. The input for the case study

5.3 Results and analysis

Similarly, the generated data is processed by the aforementioned Python scripts from Appendix
A to Appendix C and Fig. 34 to Fig. 36 show the final results.

5.3.1 Most probable result for classifications and its uncertainty

Fig. 34 illustrates the most probable result for classifications in this case study and it can be seen
that type 5 is no longer predominant. This is because with the participation of Kriging
interpolation and the real CPTs, the distribution for each cell doesn’t conform with Gaussian
distribution but is subject to the conducted CPT data. Fig. 35 shows the uncertainty of the most
probable result and the average uncertainty is 4.58%. The phenomenon that, the uncertainty is
the highest in the middle part of two adjacent CPTs while the uncertainty is the lowest (actually
0%) in the conducted CPT positions, can be also seen in Fig. 35.

Fig. 34. The most probable result of classifications in the case study
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Fig. 35. The uncertainty of the most probable result of classifications in the case study, with an
average uncertainty of 4.58%

5.3.2 Comparison between conditional and unconditional random field generator

It has been shown that the column where to set CPT doesn’t change over realizations in the
conditional random filed in Chapter 4, so it’s not repeated here. Only the average uncertainty is
compared between conditional and unconditional random. Fig. 36 also illustrates that the
uncertainty of unconditional scenario is higher than conditional scenario.

Fig. 36. The average uncertainty comparison between the conditional random field (4.58%,
upper) and the unconditional random field (53.9%, lower) in the case study
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5.4 Influence of one less CPT

Further study can be done within adjacent CPTs. Specifically, the central CPT (CPT1) is
removed from input and other input keep the same. A few analyses are done subsequently to
investigate in the influence in terms of: a) the uncertainty change after removing CPT1; b) the
distribution of random values in the central column; c) the classifications of the simulated central
column. The script to implement analysis b and c is shown in Appendix E.

a) The uncertainty change after removing CPT1

The most probable result of classifications and its uncertainty can be obtained by using the
similar code as Appendix C. It can be observed in Fig. 38 that with only two known CPTs, the
uncertainty of the classifications is 7.58% which is higher than the uncertainty of three known
CPT case 4.58% shown in Fig. 35.

Fig. 37. The most probable result of classifications with CPT2 and CPT5

Fig. 38. The uncertainty of the most probable result of classifications with CPT2 and CPT5, with
an average uncertainty of 7.58%
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b) The distribution of random values in the central column

After running the conditional random field generator with 2 CPTs, the random values in the
central column can be extracted over realizations. Based on those values, two post processes are
taken. Both of these processes are applied to normalized friction ratio and cone resistance
respectively. The first is to find the minimal and maximal value for each cell in the column over
realizations. After doing this for all cells, the minimal and maximal boundary of CPT profiles
can be obtained, which can be seen in Fig. 39 and Fig. 41. It’s observed that the conducted CPT1
is within those two boundaries. The second process is the calculate the point statistics (mean and
standard deviation) for each cell. Subsequently the representative point statistics can be
calculated by taking the average of point statistics for each cell. It’s worthy noticing that indeed
the point statistics can vary a lot among different cells, but the coefficient of variance (COV,
standard deviation / mean) doesn’t vary a lot. So still it’s meaningful to take such an average.
Moreover, because the generation of the random values is subject to normal distribution, the
probability density function can be drawn based on the point statistics and normal distribution,
which is shown in Fig. 40 and Fig. 42.

Fig. 39. The simulated boundaries of normalized friction ratio
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Fig. 40. The pdf of normalized friction ratio in the middle column

Fig. 41. The simulated boundaries of normalized cone resistance
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Fig. 42. The pdf of normalized cone resistance in the middle column

c) The classifications of the simulated central column

The random values generated with two CPTs input can be also applied to do classifications and
the middle column is extracted to compare with CPT1 classifications. Fig. 43 illustrated the
difference is 41.07%.

Fig. 43. The comparison between the most probable classifications in the middle column and
CPT1
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6. Limitation and optimization
6.1 Uncertainty in soil classification model

The proposed method to achieve probabilistic classification doesn’t consider the uncertainty in
classification model. Actually when using the CPT processing script to generate CPT profiles, it
is in a deterministic way, which may ignore the uncertainty in CPT-based soil classification
using Robertson’s chart. Actually this uncertainty can be explicitly modeled in Bayesian
approaches (Wang, Huang & Cao, 2013). Although this investigation is out of the scope of this
study, there is an alternative and simper way to include the consideration of uncertainty in soil
classification model proposed by Hu & Wang (2020). How to calculate soil behavior type index
and how to use SBT index Ic to achieve soil classifications were proposed by Robertson &
Wride (1998).

The function is defined as:

2 2(3.47 log ) (log 1.22)c t rI Q F    (11)

where Qt and Fr are normalized cone resistance and friction ratio. Soil classifications based on
SBT index Ic is shown in Table 3.

Table 3. Soil classifications based on SBT index, Ic (Robertson & Wride, 1998)

Range of SBT index
Ic

SBT
ID SBT description

Ic < 1.31 7 Gravelly sand to dense sand
1.31 < Ic < 2.05 6 Sands: clean sand to silty sand

2.05 < Ic < 2.60 5
Sand mixtures: silty sand to
sandy silt

2.60 < Ic < 2.95 4
Silt mixtures: clayey silt to silty
clay

2.95 < Ic < 3.60 3 Clays: silty clay to clay
Ic > 3.60 2 Organic soil: peats

It can be seen that there are some boundaries for Ic respectively: 1.31, 2.05, 2.60, 2.95, 3.60.
Means and standard deviations can be given to them in order to carry on the stochastic approach,
which is shown in Table 4.

Table 4. Probabilistic boundaries of SBT index, Ic (Hu & Wang, 2020)

Statistics B1 B2 B3 B4 B5
Mean 1.31 2.05 2.6 2.95 3.6

Standard
deviation 0.1 0.1 0.05 0.05 0.1

Range [1.01, 1.61] [1.75, 2.35] [2.45, 2.75] [2.8, 3.1] [3.3, 3.9]
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As for how to use it specifically, for example, there are 100 realizations for normalized cone
resistance and friction ratio, which later are applied to Eq. (11) to obtain Ic, from the proposed
conditional random field generator based on LAS. At the mean time, there can be 100 sets of
boundary values for Ic from a simple probabilistic model based on Table 4. Those 100
realizations are classified by corresponding 100 sets of boundaries. As a result, there are 100
probabilistic soil geographies which simultaneously incorporate uncertainties in the soil
classification model as well as the uncertainties in the classification result.

6.2 Combination with boundary based model

The generator used in this study is basically category-based but actually it is more precise and
realistic to carry on boundary analysis before the conditional random field category analysis. So
the proposed method can be optimized by adding a boundary-based model in the random field.
This can be achieved by a heuristic model (Xiao, Zhang, Li, & Li, 2017). First, the boundaries at
conducted CPT positions can be determined, which will be used as known values for Kriging
interpolation and unconditional random field simulation for boundaries in between adjacent
CPTs. Notice Kriging interpolation cannot be solely applied because it actually has no random
variations. Subsequently those simulated boundaries as well as the real boundaries measured by
CPTs are used as constrains for the category based random field analysis. This is to say, with this
method, the constrains of the conditional LAS random field generator come from both the
boundaries and the conducted 1D CPT data.

There is another method according to the claim that the locations of high uncertainty are
generally consistent with the underlying true soil layer boundaries (Hu & Wang, 2020). So a
conceptual process is proposed in this study which is shown in Fig. 44.

Fig. 44. Pseudo code for adding boundary based model

Notice when connecting boundary cells, it may be assisted manually. The most probable result is
only one image so it is feasible and in this way prior knowledge and profession knowledge can
be utilized.
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7. Conclusion
A random field generator based on Local Average Subdivision (LAS) is proposed in this study
which aims to achieve probabilistic soil classifications and consider the uncertainty of the
geological cross section. Moreover, it has been improved to a conditional random field generator
by using Kriging interpolation which exerts more constrains to the random field. The
unconditional and conditional generator are tested by an illustrative example and the conditional
generator is applied to a case study with three real conducted CPTs. There are a few conclusions
can be drawn:

a) It can be evidently seen that the uncertainty of the most probable result of classifications
generated by the conditional random field generator (17.2%) is lower than that of the
unconditional random field generator (48.2%). The uncertainty is truly reduced by
improving the generator and the generation of the classifications are more realistic and
meaningful.

b) With enough realizations, the classifications in the unconditional random field converge.
In the most probable result, because Gaussian distribution is the only factor considered in
the unconditional generation, all classifications become type 5 which is the mean used in
the unconditional random field. It proves the sole application of LAS based generator is
useless.

c) The uncertainty of the most probable result has been largely reduced to 4.58% in the case
study, which may reflect that the proposed generator can be best applied in a large scale
of fluctuation scenario.

d) The conditional random field generator can simulate the range of a CPT profile. For
example, with two conducted CPTs respectively on the two sides of a problem domain,
the maximal and minimal boundary of the CPT profile at the central position within this
domain can be simulated. The real profile must be inside those two boundaries, which
can be used to verify the reliability of conducted CPTs. In particular, the distribution of
the profile of the normalized friction ratio has a COV of 0.235 and the distribution of the
profile of the normalized cone resistance has a COV of 0.313.
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Appendices: Python Codes
Appendix A: Main process

1. import numpy as np
2. import matplotlib.pyplot as plt
3. import robertson_new as Frob_new
4. import Additional_subroutines as subs
5. from shutil import copyfile
6. import pandas as pd
7. from numpy.ma import sin, cos, exp, log
8. from scipy.stats import norm
9.
10. '------Process the result file including fr and qc to classify--------'
11. #Read the fr and qc for all realizations in the feild.RES file
12. list1 = []
13. list2 = []
14. with open("field_co.RES", "r") as f:
15. lines = f.readlines()
16. for line in lines:
17. a = line.split()
18. x = a[0]
19. y = a[1]
20. list1.append(x)
21. list2.append(y)
22.
23. for i in range(len(list1)):
24. list1[i] = float(list1[i])
25. for i in range(len(list2)):
26. list2[i] = float(list2[i])
27.
28. nfr = np.array(list1).reshape(-1, 1) #Generated log normalized friction ratio
29. nqt = np.array(list2).reshape(-1, 1) #Generated log normalized tip resistance
30.
31.
32. #Read the number and size of cells in both directions
33. lines = open('input.DAT').read().splitlines()
34. no_cell = lines[1].split()
35. no_cell_h = float(no_cell[0])
36. no_cell_v = float(no_cell[1])
37. cell_size = lines[2].split()
38. cell_size_vh = float(cell_size[1])
39. cell_oneR = int(no_cell_h * no_cell_v)
40. realizations = int(lines[0])
41.
42. thickness = np.ones(nfr.shape) * cell_size_vh #Actually useless and it won't effect the result
43. matrix_generalized = np.hstack((thickness, nqt, nfr))
44.
45. polygons = Frob_new.plot_Robertson(matrix_generalized)
46. matrix_final = Frob_new.deterministic(matrix_generalized, polygons)
47. classification_final = matrix_final[:, 1]
48. classification_eachR = np.array_split(classification_final, realizations)
49.
50. '---------Create .VTK files which can be shown in Paraview---------------'
51. name = 1
52.
53. for i in range(int(realizations)):
54. i_str = str(name)
55. filename = 'realization' + i_str + '.vtk'
56. file = open(filename, 'a')
57. copyfile('Example.vtk', filename)
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58. file.write('\r')
59.
60. for ii in classification_eachR[i]:
61. file.write(str(ii)+'\r')
62. file.close()
63. name = name + 1
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Appendix B: Determination of the number of realizations
1. import numpy as np
2. import Additional_subroutines as subs
3. import os
4. import robertson_new as Frob_new
5. import matplotlib.pyplot as plt
6.
7. realizations = np.linspace(10, 100, 5)
8. realizations_additional = realizations + 10
9.
10. unce_ave1 = np.zeros(realizations.shape)
11. unce_ave2 = np.zeros(realizations_additional.shape)
12.
13. for ii, r in enumerate(realizations):
14. # Create a temporary .dat file to store modified values
15. lines = open('input.dat').read().splitlines()
16. lines[0] = '%6.0f'%(r)
17. open('input.dat', 'w').write('\n'.join(lines))
18. #Run analysis
19. os.system(r'@echo | ConditionalRandomFieldGenerator.exe')
20.
21. #open the result file and read the generated qc and rf
22. list1 = []
23. list2 = []
24. with open("field_co.RES", "r") as f:
25. lines = f.readlines()
26. for line in lines:
27. a = line.split()
28. x = a[0]
29. y = a[1]
30. list1.append(x)
31. list2.append(y)
32.
33. for i in range(len(list1)):
34. list1[i] = float(list1[i])
35. for i in range(len(list2)):
36. list2[i] = float(list2[i])
37.
38. nfr = np.array(list1).reshape(-1, 1) #Generated log normalized friction ratio
39. nqt = np.array(list2).reshape(-1, 1) #Generated log normalized tip resistance
40.
41. #Read the number and size of cells in both directions
42. lines = open('input.DAT').read().splitlines()
43. no_cell = lines[1].split()
44. no_cell_h = float(no_cell[0])
45. no_cell_v = float(no_cell[1])
46. cell_size = lines[2].split()
47. cell_size_vh = float(cell_size[1])
48.
49. thickness = np.ones(nfr.shape) * cell_size_vh #Actually useless and it won't effect the result
50. matrix_generalized = np.hstack((thickness, nqt, nfr))
51.
52. polygons = Frob_new.plot_Robertson(matrix_generalized)
53. matrix_final = Frob_new.deterministic(matrix_generalized, polygons)
54. classification_final = matrix_final[:, 1]
55.
56. cell_oneR = int(no_cell_h * no_cell_v)
57. r_changing = int(len(classification_final)/cell_oneR)
58. unce_ave1[ii] = subs.FindAveUnce(classification_final, cell_oneR, r_changing)
59.
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60.
61. for ii, r in enumerate(realizations_additional):
62. # Create a temporary .dat file to store modified values
63. lines = open('input.dat').read().splitlines()
64. lines[0] = '%6.0f'%(r)
65. open('input.dat', 'w').write('\n'.join(lines))
66. #Run analysis
67. os.system(r'@echo | ConditionalRandomFieldGenerator.exe')
68.
69. #open the result file and read the generated qc and rf
70. list1 = []
71. list2 = []
72. with open("field_co.RES", "r") as f:
73. lines = f.readlines()
74. for line in lines:
75. a = line.split()
76. x = a[0]
77. y = a[1]
78. list1.append(x)
79. list2.append(y)
80.
81. for i in range(len(list1)):
82. list1[i] = float(list1[i])
83. for i in range(len(list2)):
84. list2[i] = float(list2[i])
85.
86. nfr = np.array(list1).reshape(-1, 1) #Generated log normalized friction ratio
87. nqt = np.array(list2).reshape(-1, 1) #Generated log normalized tip resistance
88.
89. #Read the number and size of cells in both directions
90. lines = open('input.DAT').read().splitlines()
91. no_cell = lines[1].split()
92. no_cell_h = float(no_cell[0])
93. no_cell_v = float(no_cell[1])
94. cell_size = lines[2].split()
95. cell_size_vh = float(cell_size[1])
96.
97. thickness = np.ones(nfr.shape) * cell_size_vh #Actually useless and it won't effect the result
98. matrix_generalized = np.hstack((thickness, nqt, nfr))
99.
100. polygons = Frob_new.plot_Robertson(matrix_generalized)
101. matrix_final = Frob_new.deterministic(matrix_generalized, polygons)
102. classification_final = matrix_final[:, 1]
103.
104. cell_oneR = int(no_cell_h * no_cell_v)
105. r_changing = int(len(classification_final)/cell_oneR)
106. unce_ave2[ii] = subs.FindAveUnce(classification_final, cell_oneR, r_changing)
107.
108. Change_over_realizations = abs(unce_ave1 - unce_ave2) / unce_ave1
109. plt.figure()
110. plt.plot(realizations, Change_over_realizations)
111. plt.xlabel('The number of realizations')
112. plt.ylabel('Percent change in the uncertainty of the most probable result')
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Appendix C1: Determination of the most probable result and its uncertainty
1. import Additional_subroutines as subs
2.
3. '---------------Most probable result for classifcations and its uncertainty-------'
4. #To get the most probable result
5. most_probable = subs.MostProbableResult(classification_final, cell_oneR, realizations, 'example.vtk')
6.
7. #To get the uncertainty of the most probable result
8. prob_most_probable = subs.FindUncertainty(classification_final, cell_oneR, realizations, 'example.vtk')
9.
10. #To get the average uncertainty
11. ave_uncertainty = subs.FindAveUnce(classification_final, cell_oneR, realizations)
12. print(ave_uncertainty)
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Appendix C2: Determination of the most probable result and its uncertainty
(Additional subroutines)

1. import numpy as np
2. from collections import Counter
3. from shutil import copyfile
4.
5. def Classification_SameCell(classification_allR, no_cell_oneR, no_realization):
6. period = no_cell_oneR
7. length = no_realization
8. list_class_SameCell = []
9.
10. for i in range(period):
11. position = i
12. extract = np.zeros(length)
13. for ii in range(length):
14. extract[ii] = classification_allR[position]
15. position += period
16.
17. list_class_SameCell.append(extract)
18.
19. return list_class_SameCell
20.
21. #To get the probability of the most probable classification in each cell
22. def FindUncertainty(classification_allR, no_cell_oneR, no_realization, exampleVTK):
23. class_SameCell = Classification_SameCell(classification_allR, no_cell_oneR, no_realization)
24. prob_eachcell = []
25.
26. for i in range(len(class_SameCell)):
27. a = Counter(class_SameCell[i]).most_common(1)[0][0]
28. #print(a)
29. n = 0
30.
31. for ii in range(len(class_SameCell[i])):
32. if class_SameCell[i][ii] == a:
33. n += 1
34. prob = n/len(class_SameCell[i])
35.
36. prob_eachcell.append(prob)
37.
38. uncertainty_eachcell = 1 - np.array(prob_eachcell)
39.
40. filename = 'The uncertainty of the most probable result.vtk'
41.
42. file = open(filename, 'a')
43. copyfile(exampleVTK, filename)
44. file.write('\r')
45.
46. for ii in uncertainty_eachcell:
47. file.write(str(ii)+'\r')
48. file.close()
49. return uncertainty_eachcell
50.
51. def MostProbableResult(classification_allR, no_cell_oneR, no_realization, exampleVTK):
52. class_SameCell = Classification_SameCell(classification_allR, no_cell_oneR, no_realization)
53. mostprobable = np.zeros(no_cell_oneR)
54. for i in range(len(class_SameCell)):
55. a = Counter(class_SameCell[i]).most_common(1)[0][0]
56. mostprobable[i] = a
57.
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58. filename = 'Most probable result.vtk'
59.
60. file = open(filename, 'a')
61. copyfile(exampleVTK, filename)
62. file.write('\r')
63.
64. for ii in mostprobable:
65. file.write(str(ii)+'\r')
66. file.close()
67.
68. return mostprobable
69.
70. def MostProbableResult_Array(classification_allR, no_cell_oneR, no_realization):
71. class_SameCell = Classification_SameCell(classification_allR, no_cell_oneR, no_realization)
72. mostprobable_array = np.zeros(no_cell_oneR)
73. for i in range(len(class_SameCell)):
74. a = Counter(class_SameCell[i]).most_common(1)[0][0]
75. mostprobable_array[i] = a
76. return mostprobable_array
77.
78. def FindAveUnce(classification_allR, no_cell_oneR, no_realization):
79. class_SameCell = Classification_SameCell(classification_allR, no_cell_oneR, no_realization)
80. prob_eachcell = []
81.
82. for i in range(len(class_SameCell)):
83. a = Counter(class_SameCell[i]).most_common(1)[0][0]
84. #print(a)
85. n = 0
86.
87. for ii in range(len(class_SameCell[i])):
88. if class_SameCell[i][ii] == a:
89. n += 1
90. prob = n/len(class_SameCell[i])
91.
92. prob_eachcell.append(prob)
93.
94. uncertainty_eachcell = 1 - np.array(prob_eachcell)
95.
96. unce_ave = np.mean(uncertainty_eachcell)
97.
98. return unce_ave
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Appendix D1: Determination of statistics of case study (mean and standard
deviation)

1. import numpy as np
2. import pandas as pd
3. import matplotlib.pyplot as plt
4. from shutil import copyfile
5. from numpy import polyfit, poly1d
6. from numpy.ma import sin, cos, exp, log
7.
8. '---------------Read the results after using the CPT reading scirpt--------'
9. df81 = pd.read_excel('CPT81_FindStatistics.xlsx')
10. depth81 = -df81.values[:, 0]
11. qt81 = df81.values[0:, 1]
12. fs81 = df81.values[:, 2]
13. sigv81 = df81.values[:, 5]
14. sigv_eff81 = df81.values[:, 6]
15. nqt81 = (qt81 - sigv81)/sigv_eff81
16. nfr81 = (fs81*100)/(qt81 - sigv81)
17. log_nqt81 = np.log(nqt81)
18. log_nfr81 = np.log(nfr81)
19.
20. df82 = pd.read_excel('CPT82_FindStatistics.xlsx')
21. depth82 = -df82.values[:, 0]
22. qt82 = df82.values[0:, 1]
23. fs82 = df82.values[:, 2]
24. sigv82 = df82.values[:, 5]
25. sigv_eff82 = df82.values[:, 6]
26. nqt82 = (qt82 - sigv82)/sigv_eff82
27. nfr82 = (fs82*100)/(qt82 - sigv82)
28. log_nqt82 = np.log(nqt82)
29. log_nfr82 = np.log(nfr82)
30.
31. df85 = pd.read_excel('CPT85_FindStatistics.xlsx')
32. depth85 = -df85.values[:, 0]
33. qt85 = df85.values[0:, 1]
34. fs85 = df85.values[:, 2]
35. sigv85 = df85.values[:, 5]
36. sigv_eff85 = df85.values[:, 6]
37. nqt85 = (qt85 - sigv85)/sigv_eff85
38. nfr85 = (fs85*100)/(qt85 - sigv85)
39. log_nqt85 = np.log(nqt85)
40. log_nfr85 = np.log(nfr85)
41.
42. log_nfr81 = np.round(log_nfr81, 3)
43. log_nfr82 = np.round(log_nfr82, 3)
44. log_nfr85 = np.round(log_nfr85, 3)
45.
46. log_nqt81 = np.round(log_nqt81, 3)
47. log_nqt82 = np.round(log_nqt82, 3)
48. log_nqt85 = np.round(log_nqt85, 3)
49.
50. '--------To get the mean, std and scale of fluctuation for the input of random field-------------'
51. 'To get the mean'
52. meanfr_log_norm = np.mean((log_nfr81, log_nfr82, log_nfr85))
53. meanqt_log_norm = np.mean((log_nqt81, log_nqt82, log_nqt85))
54.
55. 'To get the std'
56. stdfr_81 = np.std(log_nfr81)
57. stdfr_82 = np.std(log_nfr82)
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58. stdfr_85 = np.std(log_nfr85)
59. stdfr = (stdfr_81 + stdfr_82 + stdfr_85) / 3
60.
61. stdqt_81 = np.std(log_nqt81)
62. stdqt_82 = np.std(log_nqt82)
63. stdqt_85 = np.std(log_nqt85)
64. stdqt = (stdqt_81 + stdqt_82 + stdqt_85) / 3
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Appendix D2: Determination of statistics of case study (scale of fluctuation)
1. 'To get the scale of fluctuation'
2. #Remove some abnormal values
3. nqt81 = nqt81[9:-1]
4. nfr81 = nfr81[9:-1]
5. nqt82 = nqt82[9:-1]
6. nfr82 = nfr82[9:-1]
7. nqt85 = nqt85[9:-1]
8. nfr85 = nfr85[9:-1]
9.
10. depth81 = depth81[9:-1]
11. depth82 = depth82[9:-1]
12. depth85 = depth85[9:-1]
13.
14. '-----------------Get theta from normalized cone resistance-----------------'
15. ##-------------For normalized qt-----------------------------
16. ####Remove the trend first
17. ##To get the regression function of the fr/qc
18. depth_total = np.hstack((depth81,depth82, depth85)) #the depth now is negative
19. nqt_total = np.hstack((nqt81, nqt82, nqt85))
20.
21. plt.figure()
22. plt.plot(nqt_total , depth_total, 'rx', label = 'data')
23. plt.xlabel('fr [-]')
24. plt.ylabel('depth [m]')
25.
26. coeff = polyfit(-depth_total, nqt_total, 1)
27. x = -depth81
28. y = coeff[0]*x + coeff[1]
29. plt.plot(y, -x, label = 'regression')
30. plt.legend()
31. plt.show()
32.
33. nqt_regression = y
34.
35. ##Get the standard devaition from the detrended values
36. eps81 = nqt81 - nqt_regression
37. eps82 = nqt82 - nqt_regression
38. eps85 = nqt85 - nqt_regression
39. eps_total = np.hstack((eps81, eps82, eps85))
40. n_std_square = 0.0
41.
42. plt.figure()
43. plt.plot(eps82, -depth82)
44.
45. ##The detrended nqt
46. nqt_detrended = (eps81 + eps82 + eps85)/3
47. print('mean(nqt_detrended):', np.mean(nqt_detrended))##Show the detrended values have a mean of 0
48.
49. for eps in eps_total:
50. n_std_square += (eps - np.mean(nqt_detrended))**2
51. std_detrended_nqt = (n_std_square/len(eps_total))**0.5
52.
53. print('std_detrended_nqt:', std_detrended_nqt)
54.
55. ##Convert the detrended values to uniform distribution
56. nqt_unifrom = nqt_detrended/std_detrended_nqt
57. test_std = np.std(nqt_unifrom)
58. print('test_std:', test_std) ##Show that now nqt is uniform distribution and std is 1
59. ## Plot the experimental correlation function
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60. ##There are two key points for the correlation function
61. ##1. The minimal deltaz is chosen as the minimal thickness in the CPT reading script.

The following deltazs are the interger multiples of minimal deltaz
62. ##2. In order to extract all the available pairs in the profile, the initila depth can be all depths in the profile.
63. standard_depth = -depth81
64. standard_depth = np.round(standard_depth, 2)
65. qt_toGetTheta = nqt_unifrom
66.
67. list_rho_all = [1]
68. deltaz_index = np.linspace(0, 50, 51)
69.
70. for i in deltaz_index:
71.
72. deltaz = (i + 1)*0.12
73. ndeltaz = 0
74. z_sum_deltaz = deltaz
75.
76. list_qt_z = []
77. list_qt_z_sum_deltaz = []
78. list_z = []
79. list_z_sum_deltaz = []
80.
81. for ii in standard_depth:
82. initial_depth = ii
83. z_sum_deltaz = (initial_depth + deltaz).round(2)
84.
85. z_sum_deltaz_GETd = z_sum_deltaz
86.
87. for iii in range(300):
88. if z_sum_deltaz_GETd <= max(standard_depth) and z_sum_deltaz_GETd not in list_z_sum_deltaz:
89. ndeltaz += 1
90. list_z_sum_deltaz.append(z_sum_deltaz_GETd.round(2))
91.
92. z_sum_deltaz_GETd += deltaz
93. z_sum_deltaz_GETd = z_sum_deltaz_GETd.round(2)
94.
95. for iv in range(len(list_z_sum_deltaz)):
96.
97. #To get the index of z+deltaz and the corresponding fr
98. index_z_sum_deltaz = np.where(standard_depth == list_z_sum_deltaz[iv])
99. list_qt_z_sum_deltaz.append(qt_toGetTheta[index_z_sum_deltaz])
100.
101. #To get the index for the z and the corresponding fr
102. array_z_sum_deltaz = np.array(list_z_sum_deltaz)
103. array_z = array_z_sum_deltaz - deltaz
104. array_z = np.round(array_z, 2)
105. list_z = list(array_z)
106.
107. index_z = np.where(standard_depth == list_z[iv])
108. list_qt_z.append(qt_toGetTheta[index_z])
109.
110. rho_deltaz = sum(np.array(list_qt_z) * np.array(list_qt_z_sum_deltaz))/ ndeltaz
111. #rho_deltaz = rho_deltaz[0]
112.
113. list_rho_all.append(rho_deltaz)
114. array_deltaz_all = np.linspace(0, 51*0.12, 52)
115. list_deltaz_all = list(array_deltaz_all)
116.
117. plt.figure()
118. plt.plot(list_deltaz_all, list_rho_all, linestyle = '--', label = 'rho(deltaz)')
119. plt.xlabel('deltaz [m]')
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120. plt.ylabel('experimental correlation function rho_qt [-]')
121. plt.title('Correlation function to find thetav')
122.
123.
124. #Fit a theoretical Markov correlation function
125. theta = np.array([0.1, 1/4, 1/2, 1, 2, 3, 4])
126. deltaz_markov = np.linspace(0, 6, 100)
127. for i in range(len(theta)):
128. roum = exp(-2*deltaz_markov/theta[i])
129. plt.plot(deltaz_markov, roum, label = f'theta = {theta[i]}')
130. plt.legend()
131. plt.show()
132. '---------------Do the same thing to friction ratio----------------'
133. depth_total = np.hstack((depth81,depth82, depth85)) #the depth now is negative
134. nfr_total = np.hstack((nfr81, nfr82, nfr85)) #the fr has been detrended
135.
136. plt.figure()
137. plt.plot(nfr_total , depth_total, 'rx', label = 'data')
138. plt.xlabel('fr [-]')
139. plt.ylabel('depth [m]')
140.
141. coeff = polyfit(-depth_total, nfr_total, 1)
142. x = -depth81
143. y = coeff[0]*x + coeff[1]
144. plt.plot(y, -x, label = 'regression')
145. plt.legend()
146. plt.show()
147.
148. nfr_regression = y
149.
150. ##Get the standard devaition from the detrended values
151. eps81 = nfr81 - nfr_regression
152. eps82 = nfr82 - nfr_regression
153. eps85 = nfr85 - nfr_regression
154. eps_total = np.hstack((eps81, eps82, eps85))
155. n_std_square = 0.0
156.
157. plt.figure()
158. plt.plot(eps82, -depth82)
159.
160. ##The detrended nfr
161. nfr_detrended = (eps81 + eps82 + eps85)/3
162. print('mean(nfr_detrended):', np.mean(nfr_detrended))##Show the detrended values have a mean of 1
163.
164. for eps in eps_total:
165. n_std_square += (eps - 0)**2
166. std_detrended_nfr = (n_std_square/len(eps_total))**0.5
167.
168. print('std_detrended_nfr:', std_detrended_nfr)
169.
170. ##Convert the detrended values to uniform distribution
171. nfr_unifrom = nfr_detrended/std_detrended_nfr
172. test_std = np.std(nfr_unifrom)
173. print('test_std:', test_std)
174.
175.
176. # Plot the experimental correlation function
177. standard_depth = -depth81
178. standard_depth = np.round(standard_depth, 2)
179. fr_toGetTheta = nfr_unifrom
180.
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181. list_rho_all = [1]
182. deltaz_index = np.linspace(0, 50, 51)
183.
184. for i in deltaz_index:
185.
186. deltaz = (i + 1)*0.12
187. ndeltaz = 0
188. z_sum_deltaz = deltaz
189.
190. list_fr_z = []
191. list_fr_z_sum_deltaz = []
192. list_z = []
193. list_z_sum_deltaz = []
194.
195. for ii in standard_depth:
196. initial_depth = ii
197. z_sum_deltaz = (initial_depth + deltaz).round(2)
198.
199. z_sum_deltaz_GETd = z_sum_deltaz
200.
201. for iii in range(300):
202. if z_sum_deltaz_GETd <= max(standard_depth) and z_sum_deltaz_GETd not in list_z_sum_deltaz:
203. ndeltaz += 1
204. list_z_sum_deltaz.append(z_sum_deltaz_GETd.round(2))
205.
206. z_sum_deltaz_GETd += deltaz
207. z_sum_deltaz_GETd = z_sum_deltaz_GETd.round(2)
208.
209. for iv in range(len(list_z_sum_deltaz)):
210.
211. #To get the index of z+deltaz and the corresponding fr
212. index_z_sum_deltaz = np.where(standard_depth == list_z_sum_deltaz[iv])
213. list_fr_z_sum_deltaz.append(fr_toGetTheta[index_z_sum_deltaz])
214.
215. #To get the index for the z and the corresponding fr
216. array_z_sum_deltaz = np.array(list_z_sum_deltaz)
217. array_z = array_z_sum_deltaz - deltaz
218. array_z = np.round(array_z, 2)
219. list_z = list(array_z)
220.
221. index_z = np.where(standard_depth == list_z[iv])
222. list_fr_z.append(fr_toGetTheta[index_z])
223.
224. rho_deltaz = sum(np.array(list_fr_z) * np.array(list_fr_z_sum_deltaz))/ ndeltaz
225. #rho_deltaz = rho_deltaz[0]
226.
227. list_rho_all.append(rho_deltaz)
228.
229. array_deltaz_all = np.linspace(0, 51*0.12, 52)
230. list_deltaz_all = list(array_deltaz_all)
231.
232. plt.figure()
233. plt.plot(list_deltaz_all, list_rho_all, linestyle = '--', label = 'rho(deltaz)')
234. plt.xlabel('deltaz [m]')
235. plt.ylabel('experimental correlation function rho_fr [-]')
236. plt.title('Correlation function to find thetav')
237.
238.
239. #Fit a theoretical Markov correlation function
240. theta = np.array([0.1, 1/4, 1/2, 1, 2, 3, 4])
241. deltaz_markov = np.linspace(0, 6, 100)
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242. for i in range(len(theta)):
243. roum = exp(-2*deltaz_markov/theta[i])
244. plt.plot(deltaz_markov, roum, label = f'theta = {theta[i')
245. plt.legend()
246. plt.show()
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Appendix E: Investigation in one less CPT situation
1. import numpy as np
2. import matplotlib.pyplot as plt
3. import robertson_new as Frob_new
4. import Additional_subroutines as subs
5. from shutil import copyfile
6. import pandas as pd
7. from numpy.ma import sin, cos, exp, log
8. from scipy.stats import norm
9.
10. '------Process the result file including fr and qc to classify--------'
11. #Read the fr and qc for all realizations in the feild.RES file
12. list1 = []
13. list2 = []
14. with open("field_co.RES", "r") as f:
15. lines = f.readlines()
16. for line in lines:
17. a = line.split()
18. x = a[0]
19. y = a[1]
20. list1.append(x)
21. list2.append(y)
22.
23. for i in range(len(list1)):
24. list1[i] = float(list1[i])
25. for i in range(len(list2)):
26. list2[i] = float(list2[i])
27.
28. nfr = np.array(list1).reshape(-1, 1) #Generated log normalized friction ratio
29. nqt = np.array(list2).reshape(-1, 1) #Generated log normalized tip resistance
30.
31.
32. #Read the number and size of cells in both directions
33. lines = open('input.DAT').read().splitlines()
34. no_cell = lines[1].split()
35. no_cell_h = float(no_cell[0])
36. no_cell_v = float(no_cell[1])
37. cell_size = lines[2].split()
38. cell_size_vh = float(cell_size[1])
39. cell_oneR = int(no_cell_h * no_cell_v)
40. realizations = int(lines[0])
41. '-----------Compare the middle column in terms of classifications--------'
42. ##Extract the middle column and compare
43. mostprobable_array = subs.MostProbableResult_Array(classification_final, cell_oneR, realizations)
44. middlecolumn = []
45.
46. middle_index = 48
47. for i in range(int(no_cell_v)):
48. middlecolumn.append(mostprobable_array[int(middle_index)])
49. middle_index += no_cell_h
50.
51. ##write in VTK file to visualize
52. filename = 'middlecolumn.vtk'
53. file = open(filename, 'a')
54. copyfile('ClassificationExample.vtk', filename)
55. file.write('\r')
56.
57. for i in middlecolumn:
58. file.write(str(i)+'\r')
59. file.close()
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60.
61. ##read the actual CPT1 and compare the difference
62. real_CPT = []
63. with open('CPT81_classification.dat', 'r') as f:
64. lines = f.readlines()
65. for line in lines:
66. CPT1_classification = float(line)
67. real_CPT.append(CPT1_classification)
68.
69. n = 0
70. for ii in range(len(real_CPT)):
71. if middlecolumn[ii] != real_CPT[ii]:
72. n += 1
73. Percent_diff = n/len(real_CPT)
74.
75. '-----------Compare the middle column in terms of fr and qt--------'
76. ##Get the log_nqt and log_nfr for each realization
77. log_nqt_eachR = np.array_split(nqt, realizations)
78. log_nfr_eachR = np.array_split(nfr, realizations)
79. ##Get the middle column for each realization, stored in list
80. middlecolumn_lognqt = []
81. middlecolumn_lognfr = []
82.
83. ##First for log_nqt
84. for i in range(realizations):
85. middlecolumn_qtcontainer = np.zeros(int(no_cell_v))
86. middle_index = 48
87. for ii in range(int(no_cell_v)):
88. middlecolumn_qtcontainer[ii] = log_nqt_eachR[i][int(middle_index)]
89. middle_index += no_cell_h
90. middlecolumn_lognqt.append(middlecolumn_qtcontainer)
91.
92. ##Second for log_nfr
93. for i in range(realizations):
94. middlecolumn_frcontainer = np.zeros(int(no_cell_v))
95. middle_index = 48
96. for ii in range(int(no_cell_v)):
97. middlecolumn_frcontainer[ii] = log_nfr_eachR[i][int(middle_index)]
98. middle_index += no_cell_h
99. middlecolumn_lognfr.append(middlecolumn_frcontainer)
100.
101. ##Get normalized qt and normalized fr at the same cell for each realization
102. middleC_nqt_eachR = []
103. middleC_nfr_eachR = []
104.
105. for i in range(int(no_cell_v)):
106. nqtcontainer_realizations = np.zeros(realizations)
107. for ii in range(realizations):
108. nqtcontainer_realizations[ii] = exp(middlecolumn_lognqt[ii][i]) ##Notice the expotential Func
109. middleC_nqt_eachR.append(nqtcontainer_realizations)
110.
111. for i in range(int(no_cell_v)):
112. nfrcontainer_realizations = np.zeros(realizations)
113. for ii in range(realizations):
114. nfrcontainer_realizations[ii] = exp(middlecolumn_lognfr[ii][i]) ##Notice the expotential Func
115. middleC_nfr_eachR.append(nfrcontainer_realizations)
116.
117. ##mean for nqt and nfr
118. mean_eachC_nqt = []
119. for i in range(int(no_cell_v)):
120. mean_tem = np.mean(middleC_nqt_eachR[i])
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121. mean_eachC_nqt.append(mean_tem)
122.
123. mean_eachC_nfr = []
124. for i in range(int(no_cell_v)):
125. mean_tem = np.mean(middleC_nfr_eachR[i])
126. mean_eachC_nfr.append(mean_tem)
127.
128. #std for nqt and nfr
129. std_eachC_nqt = []
130. for i in range(int(no_cell_v)):
131. std_tem = np.std(middleC_nqt_eachR[i])
132. std_eachC_nqt.append(std_tem)
133.
134. std_eachC_nfr = []
135. for i in range(int(no_cell_v)):
136. std_tem = np.std(middleC_nfr_eachR[i])
137. std_eachC_nfr.append(std_tem)
138.
139. ##The final version of the mean and std are the average values over depth
140. final_mean_middleC_nqt = sum(mean_eachC_nqt)/(len(mean_eachC_nqt))
141. final_mean_middleC_nfr = sum(mean_eachC_nfr)/(len(mean_eachC_nfr))
142.
143. final_std_middleC_nqt = sum(std_eachC_nqt)/(len(std_eachC_nqt))
144. final_std_middleC_nfr = sum(std_eachC_nfr)/(len(std_eachC_nfr))
145.
146.
147. ##--------Plot the simulated range and measured CPT---------##
148.
149. ##Get the max and min values to get the range plot
150. max_middleC_nqt = []
151. for i in range(int(no_cell_v)):
152. max_tem = np.max(middleC_nqt_eachR[i])
153. max_middleC_nqt.append(max_tem)
154.
155. max_middleC_nfr = []
156. for i in range(int(no_cell_v)):
157. max_tem = np.max(middleC_nfr_eachR[i])
158. max_middleC_nfr.append(max_tem)
159.
160.
161. min_middleC_nqt = []
162. for i in range(int(no_cell_v)):
163. min_tem = np.min(middleC_nqt_eachR[i])
164. min_middleC_nqt.append(min_tem)
165.
166. min_middleC_nfr = []
167. for i in range(int(no_cell_v)):
168. min_tem = np.min(middleC_nfr_eachR[i])
169. min_middleC_nfr.append(min_tem)
170.
171. ###########The pdf based on the above mean and standard deviation########
172. plt.figure()
173. x_axis_nqt = np.linspace(min(min_middleC_nqt), max(max_middleC_nqt), 100)
174. plt.plot(x_axis_nqt, norm.pdf(x_axis_nqt, final_mean_middleC_nqt, final_std_middleC_nqt))
175. plt.xlim(0, 200)
176. plt.xlabel('Normalized cone resistance nqt [-]')
177. plt.ylabel('pdf-normal distribution')
178. plt.title('The pdf of nqt in the middle column after removing the central CPT')
179.
180. plt.figure()
181. x_axis_nfr = np.linspace(min(min_middleC_nfr), max(max_middleC_nfr), 100)
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182. plt.plot(x_axis_nfr, norm.pdf(x_axis_nfr, final_mean_middleC_nfr, final_std_middleC_nfr))
183. plt.xlim(0, 4)
184. plt.xlabel('Normalized frcition ratio nfr [-]')
185. plt.ylabel('pdf-normal distribution')
186. plt.title('The pdf of nfr in the middle column after removing the central CPT')
187.
188. ##Read CPT81 which is the conducted CPT in the middle and compare
189. df81 = pd.read_excel('CPT81.xlsx')
190. depth81 = -df81.values[:, 0]
191. qt81 = df81.values[0:, 1]
192. fs81 = df81.values[:, 2]
193. sigv81 = df81.values[:, 5]
194. sigv_eff81 = df81.values[:, 6]
195. nqt81 = (qt81 - sigv81)/sigv_eff81
196. nfr81 = (fs81*100)/(qt81 - sigv81)
197. log_nqt81 = np.log(nqt81)
198. log_nfr81 = np.log(nfr81)
199. ##Remove some abnormal values
200. # nqt81 = nqt81[9:-1]
201. # nfr81 = nfr81[9:-1]
202. # depth81 = depth81[9:-1]
203.
204. ###########The range of simulated results and real condition########
205. plt.figure()
206. plt.plot(nqt81, depth81, label = 'measured')
207. plt.plot(max_middleC_nqt, depth81, label = 'max')
208. plt.plot(min_middleC_nqt, depth81, label = 'min')
209. plt.xlabel('normalized qt [-]')
210. plt.ylabel('depth [m]')
211. plt.legend()
212. plt.title('The measured CPT nqt and simulated boundaries')
213.
214. plt.figure()
215. plt.plot(nfr81, depth81, label = 'measured')
216. plt.plot(max_middleC_nfr, depth81, label = 'max')
217. plt.plot(min_middleC_nfr, depth81, label = 'min')
218. plt.xlabel('normalized fr [-]')
219. plt.ylabel('depth [m]')
220. plt.legend()
221. plt.title('The measured CPT nfr and simulated boundaries')


