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Self-supervised graph neural networks for
polymer property prediction†

Qinghe Gao,‡a Tammo Dukker,‡a

Artur M. Schweidtmann a and Jana M. Weber *b

The estimation of polymer properties is of crucial importance in many domains such as energy, healthcare,

and packaging. Recently, graph neural networks (GNNs) have shown promising results for the prediction of

polymer properties based on supervised learning. However, the training of GNNs in a supervised learning

task demands a huge amount of polymer property data that is time-consuming and computationally/

experimentally expensive to obtain. Self-supervised learning offers great potential to reduce this data

demand through pre-training the GNNs on polymer structure data only. These pre-trained GNNs can then

be fine-tuned on the supervised property prediction task using a much smaller labeled dataset. We propose

to leverage self-supervised learning techniques in GNNs for the prediction of polymer properties. We

employ a recent polymer graph representation that includes essential features of polymers, such as

monomer combinations, stochastic chain architecture, and monomer stoichiometry, and process the

polymer graphs through a tailored GNN architecture. We investigate three self-supervised learning setups:

(i) node- and edge-level pre-training, (ii) graph-level pre-training, and (iii) ensembled node-, edge- &

graph-level pre-training. We additionally explore three different transfer strategies of fully connected layers

with the GNN architecture. Our results indicate that the ensemble node-, edge- & graph-level self-

supervised learning with all layers transferred depicts the best performance across dataset size. In scarce

data scenarios, it decreases the root mean square errors by 28.39% and 19.09% for the prediction of

electron affinity and ionization potential compared to supervised learning without the pre-training task.

1 Introduction

The rise of many novel technologies demands the
development of innovative polymers, with applications such
as polymer-based organic batteries,1 polymer photocatalysts

that aid hydrogen generation,2 or more sustainable plastics.3

However, navigating the vast chemical space to identify
polymers with optimal properties poses a considerable
challenge. Consequently, various computational methods
have been proposed to assist preliminary screening tasks.

One widely recognized class of methods is quantitative
structure–property relationships (QSPR),4 which link
molecules' physical or chemical properties to their structural
information through the use of predefined molecular
descriptors and linear or nonlinear regression techniques.
Nonetheless, QSPR models carry intrinsic limitations. For
instance, significant domain expertise is required to select
appropriate molecular descriptors and potentially sub-
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Design, System, Application

Our manuscript on “Self-supervised graph neural networks for polymer property prediction” is a graph-based machine learning method to improve
molecular property prediction in scarce data domains. We develop node-level, edge-level, and graph-level self-supervised learning strategies for weighted
directed message passing graph neural networks. We show how our method improves the performance of a state-of-the art property predictor when limited
data is available. Thus, the method is useful for screening and design efforts in scarce data domains. The molecular systems are co-polymers based on
combinations of almost 700 distinct monomer chemistries, varying monomer stoichiometries (1 : 1, 1 : 3, 3 : 1), and three distinct chain-architectures. The
properties of interest are electron affinity and ionisation potential. The immediate application potential of the work is to improve photocatalyst design for
the production of green hydrogen. Ultimately, our work can be further employed for any co-polymer property prediction task which can be modelled
through GNNs.
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optimal choices impact their prediction capacity.
Additionally, the feature selection process needs to be
repeated for each target property. These limitations are
addressed by end-to-end learning methods in machine
learning (ML), bypassing the need for manual selection of
descriptors and enabling the models to discern relevant
features autonomously. Here, the algorithms learn a
molecular fingerprint directly from the molecular
representation without the need for descriptor selection.
Graph neural networks (GNNs) have recently emerged as a
key end-to-end learning technique for molecular property
prediction tasks, as they leverage the graphical representation
of molecules.5 Particularly, atoms are represented as nodes,
and bonds are represented as edges. GNNs have shown to be
very successful in a broad range of molecular prediction
tasks, such as predicting combustion-related properties,6

predicting the growth of Escherichia coli for new antibiotic
discovery,7 and protein function8 or protein–protein
interaction tasks.9

Despite the success of GNNs in molecular machine
learning, extending them to polymer property prediction
remains challenging. The reasons for that are twofold. Firstly,
polymer structures are difficult to model accurately. They
exhibit an inherent hierarchical complexity and they are not
one uniquely defined molecular structure but are composed
of an ensemble of similar molecules.10 Secondly, unlike in
the domains of small molecules and ordered materials,
where numerous large (>100K) and open-source databases
exist,11,12 there is an absence of accessible polymer property
data.13–15 The recent work by Aldeghi et al.,10 has represented
polymers with selected higher-order structural information as
a stochastic graph, making them applicable for GNNs.
However, the second obstacle, the lack of sufficient polymer
property data is still challenging. The measurements of
polymer properties in the community rely highly on the
instruments in the experiments. However, those instruments
have few open interfaces and data models, hindering further
developments of large property databasets.16–18

To address the scarcity of labeled data, several strategies
have been proposed, including transfer learning19,20 and
multi-task learning.21,22 For instance, Zhang et al.19 pre-
trained a transformer model on a dataset of 1 billion small
molecules and subsequently fine-tuned the model with a
small amount of labeled polymer property data (ranging from
300 to 3000 samples). The resulting accuracies were
comparable to those achieved by the TransPolymer23 and
polyBERT24 models, without the expensive generation and
pretraining on large-scale augmented polymer datasets.
Furthermore, the objective of a multi-task training approach
is to enhance the performance and generalization of a model
by concurrently training it on multiple related tasks, thereby
leveraging shared information and representations. Gurnani
et al.21 introduced multi-task GNNs for predicting 34 polymer
properties. Their results indicated that, for datasets with
fewer than 300 samples, the proposed models generally
outperform the benchmark models.

Self-supervised learning (SSL) is another method for
learning from limited data and currently helps solve data
scarcity challenges in many fields like computer vision25,26

and natural language processing.27 SSL first designs a
predictive learning task within the unlabelled data itself
such that the model learns universal features and
semantics, which subsequently contribute to the
downstream supervised task with less labeled training data.
A common SSL technique, for example, is to create a
pseudo label from the unlabelled data structure. Unlike
other training strategies that incorporate pseudo-labels into
the input to enhance performance,28 SSL pre-trains the
model using pseudo-labels to extract initial semantic
information from unlabeled data. This approach reduces
the amount of labeled data needed for subsequent fine-
tuning tasks. Taking computer vision as an example,29 one
can rotate an image and task the model with predicting the
rotation angle. Thereby the model learns certain features
from images and their orientation in space; semantics that
are useful for the downstream task of interest. In the field
of graph-based molecular property prediction, such tasks
are commonly designed according to the structure of the
molecular graph. For example, Zhang et al.30 leveraged node
and edge masking as an SSL technique to pre-train GNNs,
which improves the performance of predicting properties of
organic semiconductors. Zang et al.31 implemented a
hierarchical molecular graph neural network (HMGNN) with
multi-level SSL techniques to achieve superior molecular
property prediction results on both classification and
regression tasks. With various successful applications in
small molecular property prediction30–32 and proteins,33,34

SSL is a promising technique for prediction tasks in the
sparse data domain of polymer informatics. Several
studies19,23,24,33 have leveraged large language models
(LLMs) for polymer property prediction tasks in an SSL
manner. For example, polyBERT is pre-trained using masked
language modeling (MLM) on approximately 80 million
polymer strings, generated from about 13 800 original
polymers. During fine-tuning, the pre-trained transformer
weights are frozen and employed to provide polymer
embeddings, which serve as inputs to a multi-layer
perceptron for multitask property prediction. While these
studies achieve similar performance, they are limited by
using the PSMILES language, which only specifies the
repeating unit and neglects important structural
information such as chain architecture, stoichiometry, and
monomer bonding, crucial for determining polymer
properties.

We propose self-supervised GNNs for polymer property
prediction. In particular, we utilize the state-of-the-art
polymer graph representation and tailored GNN model from
Aldeghi et al.10 as foundation, and investigate three self-
supervised learning setups: (i) pre-training with node- and
edge-level pseudo tasks, (ii) pre-training with graph-level
pseudo tasks, and (iii) ensembled node-, edge-, and graph-
level pre training. Additionally, we investigate various
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strategies for transferring the model architecture to augment
the predictive accuracy, providing a novel perspective in the
realm of polymer property prediction.

2 Methods

This section introduces the methodologies employed
throughout our work. First, the graph representation of
polymers is introduced in section 2.1 and the GNN
architecture with tailored message-passing layers is
illustrated in section 2.2 (adapted from Aldeghi et al.10).
Then, three different strategies of self-supervised learning are
explained: node- and edge-level, graph-level task, and node-
and edge- and graph-level task consecutively. Moreover, we
outline our weight transferal strategies. Finally, we introduce
the details of the polymer datasets and the training
procedure.

2.1 Polymer graphs

We make use of a polymer representation that combines the
graph representation of monomers with stochastic edges
according to linking probabilities. We denote the graph
representation of a polymer p with nodes as atoms v ∈ N and

edges as bonds evu ∈ E connecting two nodes v and u.
Specifically, there are two directed bonds between nodes v
and u: bond evu and bond euv. Two directed edges allow for a
wider variety of polymer structures. For example, as Fig. 1
shows, they can capture the impact of terminal ends when
required such as oligomer with termini, and different
possibilities of two atoms being adjacent to one another such
as graft copolymers. Moreover, a feature vector and a
stochastic weight are assigned to each node and each
directed edge. We denote the feature vector and the
stochastic weight of node v with f v ∈ FN and wv ∈ WN,
respectively. f v contains specific information for atoms such
as the atom type and wv represents the stochiometric ratio of
the corresponding monomer. Similarly, for the directed edge
from node v to node u, a feature vector f evu ∈ FE and a
stochastic weight wvu ∈ WE are attached. f evu contains specific
information for bonds such as the bond type. wv ∈ (0, 1] is
an associated weight value reflecting the probability of that
bond occurring within the respective polymer topologies.
Notably, within the monomer, the edge weight is set to 1.
While for the directed edges connecting different monomers,
the weights vary as shown in Fig. 1. Typical features are given
in Table 1 for atoms and in Table 2 for bonds. The feature-

Fig. 1 Overview of polymer topologies (adapted from Aldeghi et al.10). The red dashed lines represent the direct edges which are assigned to
corresponding weights between zero and one. The weights of incoming edges indicate the possibility that the originating node (atom) is adjacent
to the target node (atom). For instance, in the case of graft copolymers, there is a 40% chance that the atoms on monomer A will be neighboring
atoms on monomer B (two of five monomers A are connected to monomers B), whereas the atoms on monomer B have a 50% chance of being
adjacent to atoms on monomer A (two out of four monomers B are connected to the monomers A). The text underneath of each topology
represents an example of the corresponding polymer sequence, where A and B are different monomers. The polymer sequence depicts a tail-to-
head orientation, e.g., –A–B– represents the tail of monomer A links to the head of monomer B, and –A′–B– indicates the head of monomer A
connects to the head of monomer B.
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enriched graph of a polymer p is then denoted by G(p) = {V,
E, FN, FE, WN, WE}.

2.2 Graph neural networks

GNNs can learn desired target predictions from a featured
graph representation. Fig. 2 shows an example of the GNN
architecture that is used in this work for supervised learning-
only training. GNNs consist of two phases: the message
passing phase, which contains convolutional operations, and
the readout phase, which forms the fingerprint and predicts
the target task. In the following subsection, we will introduce
these two phases separately.

In the message passing phase, graph convolution is
utilized to extract the structural information from the
polymer graph. Importantly, the weighted direct message
passing neural network (wD-MPNN) is used as the graph
convolutional layer. Fig. 3 shows the four steps in wD-
MPNN to extract structural information from polymers. In
the first step, taking node v as an example, the edge
feature f evu from node v to node u is updated into h0

vu as
eqn (1) shows.

h0
vu ¼ τ Wi fv‖ fevuð Þð Þ (1)

where || denotes concatenation, Wi is a learnable weight
matrix, and τ is an activation function. In the next step,
namely edge-centered message passing, the hidden edge
feature h0

vu is further updated by L graph convolutional
layers. Specifically, within l ∈ L, the new hidden edge
feature hl=1

vu is obtained by incoming edges to node v except
the one from node u as eqn (2).

hlþ1
vu ¼ τ h0

vu þWh

X
k∈ V vð Þ=uf g

wkvh
l
kv

0
@

1
A (2)

where Wi is a learnable weight matrix, and τ is an
activation function. Furthermore, after L layers of edge-
centered message passing, the updated node feature hv is
acquired by taking the concatenation of the original node
feature vector f v, with the weighted sum of the hidden edge
feature vectors hL

kv incoming to node v and passing this
through a single fully connected layer. eqn (3) shows all
steps where W0 is a learnable weight matrix, and τ is an
activation function. Notably, the edge-centered message
passing as introduced by Aldeghi et al.10 differentiates from
node-centered message passing by previous works.35,36

Table 1 Atom features for initial node feature vector.10 Features are
encoded as one-hot vectors except for atom mass

Feature Description

Atom type Type of atom
Chiral tag Type of chirality
Degree Number of bonded neighbors in the graph
Is aromatic Whether the atom is part of an aromatic system
Hybridization Type of hybridization such as sp, sp2

Charge Formal charge of the atom
#Hs Number of bonded hydrogen atoms
Mass Atom mass

Table 2 Bond features for all initial edge feature vector.10 Features are
encoded as one-hot vectors

Feature Description

Bond type Single, double, triple, or aromatic
Conjugated Whether the bond is conjugated
Is in a ring Whether the bond is part of a ring
Stereo None, any, E/Z, or cis/trans

Fig. 2 Overview of a GNN architecture for polymer property predictions.
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hv ¼ τ Wo fv‖
X

k∈V vð Þ
wkvh

L
kv

0
@

1
A

0
@

1
A (3)

In the readout phase, the learned information from the
previous steps in the hidden nodes is aggregated into a
polymer fingerprint by taking the weighted average/sum as
eqn (4) shows, where N is the number of nodes in the graph,
wv are the associated stochastic weights of each node.

h ¼ 1
N

XN
v¼1

wvhv or ¼
XN
v¼1

wvhv

 !
(4)

Finally, the polymer fingerprint h is mapped into the
property of interest. For GNNs, a multi-layer perception
(MLP) is used to compute the property: p̂ = MLP(h).

2.3 Self-supervised learning

Fig. 4 illustrates the general framework of SSL: the pre-
training phase where pseudo-tasks are designed for larger,
yet unlabelled, datasets and the fine-tuning phase where
the actual target labels are used for training purposes.
During the pre-training phase, the encoder (message-
passing layers in our case) is trained by polymer graphs

Fig. 3 Four steps visualization of wD-MPNN.10 First, the hidden edge features are initialized by concatenating originating atom features with
edge features and then passing through a single fully connected layer. Second, hidden edge features are updated through L steps of edge-
centered message passing. Within l ∈ L steps, the neighboring hidden edge features are combined by the weighted sum, and then the results
are added to the center hidden edge features h0

vu and passed through a fully connected layer. Third, the center atom features fv are updated
through the concatenation of the weighted sum of incoming hidden edge features and the original atom features. The results are then passed
through a single fully connected layer. Finally, a polymer fingerprint is obtained by taking the weighted average or sum of the updated atom
feature vectors.

Fig. 4 General framework of SSL.37 The message passing layers are first trained with SSL tasks. Then the trained message passing layers are
transferred with/partially with a new readout training (e.g., new fully connected layers) to train with target labels for downstream tasks.
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with pseudo labels. These pseudo labels are obtained from
the featured polymer graph topology. The aim is to design
tasks for which no labeled data, i.e., physical properties,
are needed to calculate these pseudo labels. Then, the pre-
trained message-passing layers (including steps 1–4 in
Fig. 3) are further fine-tuned with or partially with an
additional new readout training (e.g., new fully connected
layers) by the downstream task with a small amount of
labeled data in the second phase. Three SSL techniques are
used in this work: (i) node- and edge-level, (ii) graph-level
task, and (iii) node- and edge-level with consecutive graph-
level tasks.

2.3.1 Node- and edge-level task. We deploy node and
edge masking at this level which refers to the practice of
intentionally hiding a subset of node or edge information
from the model. The model is trained to predict the
missing information (pseudo label) from the masked
graphs. This approach allows the model to learn the
intrinsic structural information associated with
surrounding nodes and edges, potentially grasping
elementary chemical principles such as valence, and
possibly more advanced concepts like functional group
configurations. Fig. 5 illustrates the workflow of node-
and edge-level SSL and pseudo label prediction during
training. Specifically, two node and two edge feature
vectors are randomly selected and masked by nullifying
their feature vectors. Then, we leverage wD-MPNN
(including steps 1–3 in Fig. 3) to learn the structural
information from the polymer graph, thereby obtaining
learned node- and edge-level embeddings. Note that the
prediction involves no pooling step as the pseudo labels
are predicted from node- and edge-level information and
not from graph-level information. Finally, taking the node-
and edge-level embeddings as input, we use fully
connected layers to predict the values of originally masked

nodes and edges. We utilized the root mean square error
(RMSE) to evaluate the performance. Finally, the pre-
trained encoder together with the new fully connected
layers is fine-tuned with target labels for the downstream
task. The extent of layer transferal will be discussed in
section 2.3.4.

2.3.2 Graph-level task. The graph-level task aims at
predicting a relevant pseudo label from graph-level
information. As before with the node- and edge-level tasks
the purpose is to pre-train the model with unlabelled data.
The aim is that the graph-level pre-training can foster an
understanding of overarching patterns, structural motifs, and
inter-node relationships. Importantly, the aim is that through
pre-training, the model can generalize better across various
graph configurations and perform better in predicting target
properties with less data. Fig. 6 shows the overview of the
graph-level SSL task. We propose to use an ensemble polymer
molecular weight that averages the molecular weight of the
monomers (Mmono) with the corresponding stoichiometric
ratio (wmono) as eqn (5) shows.

Mensemble ¼ wmono1Mmono1 þ wmono2Mmono2 (5)

Specifically, we calculate the ensemble polymer weight for
each data sample and then train the GNN with this new
pseudo label as a predictive task. We utilize sum pooling
layers to map the updated polymer graphs into a vector,
i.e., the polymer fingerprint, which is then further mapped
into the prediction of the pseudo graph label through
fully connected layers. After the pre-training phase, as in
the node- and edge-level pre-training, the pre-trained
encoder together with the new fully connected layers is
fine-tuned with the target labels for the downstream
prediction task. The extent of layer transferal will be
discussed in section 2.3.4.

Fig. 5 Overview of node/edge masking task. Randomly selected node and edge feature vectors are masked, then new embeddings are learned
through the message passing phase, and finally, the originally masked vectors are predicted from the learned embeddings.
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2.3.3 Node-, edge- & graph-level task. Our third strategy
combines all the node-, edge-, and graph-level tasks
consecutively. The encoder is first trained with the node- and
edge-level task. Then, the encoder is transferred to perform
the graph-level task with new fully connected layers.
Ultimately, we transfer the encoder to predict the property of
interest with new fully connected layers as the prediction
head.

2.3.4 Transfer of weights. Finally, we explore the impacts
of transferring the fully connected layers of the readout phase
from the pre-training phase to the fine-tuning stage for the
graph-level task and the combined approach of node-, edge-,
and graph-level tasks. In particular, we examined three
distinct transfer strategies: exclusive transfer of message-
passing layers (strategy a), transfer of both message-passing
and two fully connected layers (strategy b), and message-
passing and all fully connected layers (strategy c).

2.4 Polymer dataset

We develop our method on the polymer dataset presented by
Aldeghi et al.,10 encompassing 42 966 polymers, composed of
nine A monomers and 862 B monomers. These polymers are
categorized based on three distinct chain architectures:
alternating, random, and block, and are further characterized
by three stoichiometric ratios, namely 1 : 1, 1 : 3, and 3 : 1.
Furthermore, the dataset contains electron affinity (EA) and
ionization potential (IP) as molecular properties, i.e., target
labels. Both properties were derived through density
functional theory (DFT) simulations.

2.5 Training procedure

First, we trained two GNN models via a supervised learning
paradigm, targeting both the EA and IP labels (in the
following referred to as baseline training). Subsequently, we

perform three SSL techniques: (i) node- and edge-level, (ii)
graph-level task, (iii) node-, edge-, and graph-level tasks. The
polymer dataset is randomly shuffled and 40% of the dataset
is used for SSL pre-training tasks. We then transferred the
message-passing layers and subsequently conducted
exploratory analyses across varying dataset sizes for fine-
tuning, spanning 0.08%, 0.16%, 0.24%, 0.32%, 0.4%, 0.8%,
1.6%, 2.4%, 3.2%, 4%, 8%, 16%, 24%, 32%, and up to 40%,
allowing us to explore the performance of SSL under varying
label availability scenarios. The baseline models are only
trained with the same fine-tuning datasets ranging from
0.08% to 40% in a supervised-only manner. Finally, the
evaluation of the GNN models is conducted on the remaining
20% of the dataset. The Adam optimizer is used with a 10−3

learning rate and a batch size of 64 across 100 training epochs
is used. The GNN architectures incorporate three edge-
focused message passing layers with a hidden dimension
calibrated at 300. Additionally, three fully connected layers
are used to map the fingerprints to the prediction task.

3 Results and discussion

In this section, we present the results from our three SSL
techniques: (i) node- and edge-level, (ii) graph level task, and
(iii) a sequential application of node- and edge-level followed
by the graph-level task. We also outline the results with
different layer transferal strategies.

3.1 SSL results

Fig. 7, Tables 3 and 4 illustrate the model performance
metrics R2 and RMSE regarding electron affinity and
ionization potential. The corresponding values and 95%
confidence interval values are also detailed in the ESI.† In the
small labeled data regimes (e.g., <0.4%), node and edge-level
SSL, as well as node-, edge- & graph-level SSL, demonstrate

Fig. 6 Overview of the graph-level task. Per co-polymer graph, the ensemble polymer molecular weight is calculated as a label, and then the
message passing and readout phases take place to predict the pseudo label.
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similar performance across all evaluated models for both EA
and IP according to the R2 and RMSE. For instance, for node-,
edge- & graph-level SSL, an increase of 32.21% and 23.21% in
R2 is observed for both EA and IP, respectively, compared

with baseline models in the smallest fine-tuning dataset
(0.08%). Similarly, for node- and edge-level SSL, R2 is
improved by 38.66% and 38.04%, respectively, followed by
graph-level SSL in the smallest fine-tuning dataset. Therefore,

Fig. 7 R2 and RMSE results for EA and IP for supervised learning only, node- and edge-level, graph-level task, and node-, edge- & graph-level,
respectively. Each line is the mean from 10 individual runs and the shaded area is the 95% confidence interval.

Table 3 R2 of predicting the EA and IP labels using different sizes of datasets for the fine-tuning part and the corresponding standard deviation can be
found in ESI.† Specifically, we use baseline for representing baseline models, NE for representing node- & edge-level SSL, G for representing graph-level
SSL, and NEG for representing node-, edge-, & graph-level SSL

Dataset
size

R2 of EA R2 of IP

Baseline NE G NEG Baseline NE G NEG

0.08% 0.357 0.495 0.413 0.472 0.418 0.577 0.511 0.515
0.16% 0.383 0.413 0.418 0.461 0.417 0.533 0.522 0.508
0.24% 0.583 0.616 0.619 0.695 0.541 0.793 0.619 0.759
0.32% 0.555 0.644 0.585 0.706 0.546 0.800 0.645 0.744
0.4% 0.631 0.704 0.643 0.744 0.646 0.813 0.695 0.812
0.8% 0.664 0.779 0.709 0.805 0.762 0.850 0.791 0.869
1.6% 0.789 0.878 0.824 0.883 0.868 0.920 0.894 0.926
2.4% 0.867 0.912 0.867 0.919 0.927 0.947 0.924 0.943
3.2% 0.918 0.949 0.912 0.946 0.955 0.967 0.942 0.960
4% 0.949 0.969 0.939 0.961 0.968 0.976 0.963 0.968
8% 0.982 0.987 0.979 0.983 0.985 0.989 0.987 0.988
16% 0.991 0.992 0.989 0.991 0.992 0.994 0.993 0.993
24% 0.993 0.995 0.993 0.994 0.994 0.995 0.995 0.995
32% 0.994 0.995 0.995 0.995 0.994 0.996 0.995 0.996
40% 0.995 0.996 0.995 0.996 0.996 0.997 0.996 0.997
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in the small labeled data regimes, SSL significantly enhances
the prediction performance.

In the data regimes from 0.4% to 4%, node- and edge-
level SSL, as well as node-, edge- & graph-level SSL, still boost
the performance for both R2 and RMSE compared with

baseline models. However, graph-level SSL exhibits less
significant improvements and even negative contributions
compared with baseline models. A potential reason is that
the chosen pseudo label (ensemble molecular weight) has a
discrepancy with target labels EA and IP.

Table 4 RMSE of predicting the EA and IP labels using different sizes of datasets for the fine-tuning part and the corresponding standard deviation can
be found in ESI.† Specifically, we use baseline for representing baseline models, NE for representing node- & edge-level SSL, G for representing graph-
level SSL, and NEG for representing node-, edge-, & graph-level SSL

Dataset
size

RMSE of EA RMSE of IP

Baseline NE G NEG Baseline NE G NEG

0.08% 0.479 0.424 0.457 0.433 0.372 0.317 0.341 0.340
0.16% 0.469 0.456 0.455 0.436 0.372 0.332 0.337 0.342
0.24% 0.386 0.370 0.369 0.329 0.330 0.222 0.299 0.239
0.32% 0.398 0.356 0.385 0.323 0.329 0.218 0.290 0.247
0.4% 0.362 0.324 0.357 0.302 0.290 0.211 0.269 0.211
0.8% 0.346 0.280 0.322 0.263 0.238 0.189 0.223 0.177
1.6% 0.273 0.208 0.250 0.204 0.177 0.138 0.159 0.133
2.4% 0.217 0.177 0.217 0.169 0.132 0.112 0.134 0.116
3.2% 0.170 0.134 0.177 0.138 0.103 0.089 0.116 0.098
4% 0.134 0.105 0.146 0.117 0.086 0.075 0.094 0.087
8% 0.080 0.069 0.085 0.077 0.060 0.051 0.057 0.054
16% 0.057 0.052 0.063 0.056 0.044 0.037 0.042 0.040
24% 0.051 0.044 0.049 0.047 0.036 0.033 0.035 0.033
32% 0.045 0.042 0.044 0.042 0.031 0.029 0.031 0.029
40% 0.042 0.037 0.041 0.038 0.030 0.028 0.027 0.027

Fig. 8 Error distribution for EA and IP with fine-tuning dataset 0.08% and 24%, respectively.

MSDE Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 9
/9

/2
02

4 
2:

32
:2

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4me00088a


Mol. Syst. Des. Eng. This journal is © The Royal Society of Chemistry and IChemE 2024

As for larger labeled data regimes (e.g., >4%), the
differences between the models become smaller (potentially
neglectable) regarding both performance metrics and
property labels. A plausible explanation is that with larger
fine-tuning dataset availability, the graph semantics can be
learned directly through the target label in the supervised
fine-tuning phase, which improves the final prediction
together with the pre-training SSL phase.

We further analyzed the error distribution of all four models
for predicting EA and IP (see Fig. 8). First, it is evident that all
error distributions follow a long-tail pattern, indicating that
while the majority of predictions are accurate (low RMSE), there
are a few significant outliers. In the smallest labeled data regime
(0.08%), both for EA and IP, graph-level pre-training contributes
minimally to performance improvement, as indicated by error
distributions close to those of the baseline models. In contrast,
the node-, edge-level, and combined node-, edge-, and graph-
level SSL models demonstrate superior performance, with error
distributions peaking over 500 with slightly lower RMSE and
being narrower for both EA and IP. Notably, for EA, all models
struggle to predict polymers containing pyromellitic
dianhydride (PMDA) as Fig. 8 shows. This difficulty likely arises

from PMDA's strong electron-withdrawing properties due to the
presence of anhydride groups, complicating EA predictions.
Additionally, only 63 out of 42966 samples contain PMDA, and
this data scarcity contributes to poor generalization. Conversely,
for IP, there is no common failure pattern in the predictions for
specific polymers. In the larger labeled data regime (24%),
significant improvements are observed for both EA and IP, with
RMSE distributions becoming narrower. For both properties,
SSL models continue to outperform baseline models,
demonstrated by higher peaks with slightly lower RMSE and
narrower error distributions. Overall, node- and edge-level SSL,
as well as node-, edge- & graph-level SSL, exhibit consistently
better performance than the baseline supervised-learning
results even in the biggest labeled data regime. For example, the
R2 still increases by 0.1% and 0.1% for both EA and IP for
node-, edge- & graph-level SSL.

3.2 Transferring fully connected layers

In this section, we present and discuss the impact of the
layer transfer strategy within SSL for both graph-level
SSL and node-, edge- & graph-level, respectively. Fig. 9,

Fig. 9 Graph-level and node-, edge- & graph-level SSL of RMSE results for both EA and IP. The results are from supervised-only, transferring only
message-passing layers (strategy a) indicated in green in all four subplots, transferring message-passing & two fully connected layers (strategy b)
indicated in blue in all four subplots, and transferring all layers (strategy c) indicated in red in all four subplots. Each line is the mean from 10
individual runs and the shaded area is the 95% confidence interval.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 9
/9

/2
02

4 
2:

32
:2

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4me00088a


Mol. Syst. Des. Eng.This journal is © The Royal Society of Chemistry and IChemE 2024

Tables 5 and 6 show the RMSE results with our three
different transfer strategies for both EA and IP. Here we
only show the RMSE results as the R2 renounces in the
same trend. In the labeled data regimes <4%, we observe a
pronounced difference when transferring all layers (strategy
c) for the prediction of the label EA in contrast to the
baseline model and the two other strategies where fewer
layers are transferred. This holds both for graph-level SSL
and node-, edge- & graph-level SSL. For example, the RMSE
significantly decreases by 15.10% and 20.79% compared to
strategy a, where only message-passing layers are
transferred, for both graph-level SSL and node-, edge- &
graph-level SSL, respectively. Strategy a and b also
outperform the baseline models in all low data availability
scenarios, yet less significantly than strategy c. On the other

hand, when predicting the IP, the three strategies for graph-
level SSL have a similar performance in terms of RMSE and
show a less significant improvement over the baseline
model. For node-, edge-, and graph-level SSL, all three
strategies still exhibit a similar performance but improve
the prediction significantly compared to the baseline model.
For example, the RMSE of strategy c decreases by 19.09%
compared to the baseline model in the smallest data
scenario (0.08%). This indicates that during the node- &
edge-level SSL pre-training, the learned semantics are
additionally embedded in the message passing layers, which
significantly contributes to predicting the target labels in
the downstream tasks.

In the labeled data regime (e.g., >4%), the impact of
transferring fully connected layers becomes less significant:

Table 5 RMSE of predicting the EA and IP labels using different sizes of datasets for transferring different fully connected layers in graph-level SSL and
the corresponding standard deviation can be found in ESI.† Specifically, we use baseline for representing baseline models, G for representing graph-level
SSL without transferring fully connected layers, G2 for representing graph-level SSL without transferring two fully connected layers, and G3 for
representing graph-level SSL without transferring all fully connected layers

Dataset
size

RMSE of EA RMSE of IP

Baseline G G2 G3 Baseline G G2 G3

0.08% 0.479 0.457 0.426 0.388 0.372 0.341 0.338 0.341
0.16% 0.469 0.455 0.439 0.388 0.372 0.337 0.340 0.343
0.24% 0.386 0.369 0.359 0.348 0.330 0.299 0.287 0.285
0.32% 0.398 0.385 0.366 0.353 0.329 0.290 0.294 0.287
0.4% 0.362 0.357 0.347 0.320 0.290 0.269 0.264 0.267
0.8% 0.346 0.322 0.314 0.268 0.238 0.223 0.231 0.214
1.6% 0.273 0.250 0.253 0.187 0.177 0.159 0.154 0.151
2.4% 0.217 0.217 0.198 0.152 0.132 0.134 0.118 0.124
3.2% 0.170 0.177 0.158 0.139 0.103 0.116 0.104 0.102
4% 0.134 0.146 0.135 0.116 0.086 0.094 0.087 0.094
8% 0.080 0.085 0.080 0.079 0.060 0.057 0.063 0.058
16% 0.057 0.063 0.058 0.059 0.044 0.042 0.043 0.047
24% 0.051 0.049 0.051 0.048 0.036 0.035 0.039 0.039
32% 0.045 0.049 0.044 0.043 0.031 0.031 0.033 0.033
40% 0.042 0.041 0.040 0.040 0.030 0.027 0.030 0.030

Table 6 RMSE of predicting the EA and IP labels using different sizes of datasets for transferring different fully connected layers in node-, edge- &
graph-level SSL and the corresponding standard deviation can be found in ESI.† Specifically, we use baseline for representing baseline models, NEG for
representing node-, edge- & graph-level SSL without transferring fully connected layers, NEG2 for representing node-, edge- & graph-level SSL without
transferring two fully connected layers, and NEG3 for representing node-, edge- & graph-level SSL without transferring all fully connected layers

Dataset
size

RMSE of EA RMSE of IP

Baseline NEG NEG2 NEG3 Baseline NEG NEG2 NEG3

0.08% 0.479 0.433 0.395 0.343 0.372 0.340 0.333 0.301
0.16% 0.469 0.436 0.389 0.338 0.372 0.342 0.320 0.289
0.24% 0.386 0.329 0.325 0.277 0.330 0.239 0.235 0.222
0.32% 0.398 0.323 0.311 0.270 0.329 0.247 0.245 0.226
0.4% 0.362 0.302 0.311 0.253 0.290 0.211 0.211 0.200
0.8% 0.346 0.263 0.258 0.225 0.238 0.177 0.185 0.171
1.6% 0.273 0.204 0.204 0.166 0.177 0.133 0.133 0.129
2.4% 0.217 0.169 0.160 0.133 0.132 0.108 0.107 0.110
3.2% 0.170 0.138 0.136 0.112 0.103 0.093 0.093 0.090
4% 0.134 0.117 0.115 0.098 0.086 0.087 0.084 0.080
8% 0.080 0.077 0.076 0.072 0.060 0.054 0.053 0.055
16% 0.057 0.056 0.052 0.054 0.044 0.039 0.039 0.042
24% 0.051 0.047 0.046 0.045 0.036 0.033 0.033 0.034
32% 0.045 0.042 0.041 0.041 0.031 0.029 0.029 0.030
40% 0.042 0.038 0.038 0.039 0.030 0.028 0.028 0.028
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the importance of SSL decreases as shown by the
performance curves approaching each other. For node-,
edge- & graph-level SSL, strategy c is still consistently better
than the baseline models for both EA and IP. However, for
IP, we do observe a slightly negative contribution (4%) from
strategy c compared to the baseline model for graph-level
SSL. A plausible explanation is that graph-level SSL indeed
has a negative contribution in the larger labeled data
regime as we observed before. The chosen pseudo label
from the pre-training phase is not sufficiently informative
for the target label IP, and the learned semantics stored in
the fully connected layer introduce extra bias during the
pre-training and thereby hinder further learning in fine-
tuning.

To sum it up, the extent of transferred weights impacts
the overall performance of SSL in the two case studies
investigated in our work. In small fine-tuning dataset
scenarios (e.g., <0.4%), all transferal strategies perform
better than the baseline models in both prediction tasks
and both SSL scenarios. For both EA and IP, strategy c
where most layers were transferred demonstrates the best
performance, which decreases the RMSE by 28.39% and
19.09% respectively, compared to the baseline models for
node-, edge- & graph-level SSL. In larger fine-tuning dataset
scenarios, the differences become less pronounced as the
impact of SSL decreases. Here, scenario c, where most
layers are transferred, also showed to perform slightly
worse than the baseline model for IP. Thus, we showed
that next to the design of the molecular-topology based
pseudo-tasks, additional design decisions on the extent of
layer transfer are important for designing best performing
SSL pipelines.

4 Conclusions

We propose a first SSL framework using GNNs for
polymer property prediction to address the challenge of
improved learning from small polymer datasets. We
employ a state-of-the-art polymer graph representation and
a wD-MPNN architecture to process polymer graphs. Our
contribution investigates three different SSL techniques: (i)
node- and edge-level SSL, (ii) graph-level SSL (iii) node-,
edge- & graph-level SSL. Furthermore, we explore the
impacts of different weight transfer strategies for the fully
connected layers. The results show that SSL indeed boosts
R2 32.21% and 23.21% for EA and IP respectively,
especially when labeled data is extremely limited (0.08%)
for the fine-tuning phase (our two smallest data size
scenarios). Additionally, SSL can still contribute to
augmenting the R2 by 0.1% and 0.1% for EA and IP, even
in the largest labeled data regime. Moreover, we
highlighted the impact of layer transferal during SSL,
where transferring all fully connected layers was
advantageous in small data scenarios. Overall, the
ensemble node-, edge- & graph-level SSL with all
transferred layers depicts the best performance. It

decreases the RMSE by 28.39% and 19.09% for EA and
IP, respectively. Our results contribute to well-reasoned
and improved SSL pipelines in the field of polymer
property prediction. Our current study introduces a single
graph pseudo label and one node/edge masking strategy.
Future research could explore the extension to multiple
graph pseudo labels and diverse node/edge masking
strategies. Additionally, subsequent work may consider
integrating various datasets to evaluate the robustness of
the proposed SSL framework. Moreover, a promising
future investigation is the integration of SSL with
quantitative structure–activity relationship (QSAR) or QSPR
modeling for predicting polymer properties. For instance,
one approach could involve masking a specific property
within the descriptors and predicting the masked property
during the pre-training phase. This pre-trained model
could then be fine-tuned using the target property dataset.

Data availability

This study was carried out using publicly available data
(dataset with electron affinity and ionization potential values
for 42 966 copolymers) from polymer-chemprop-data at
https://github.com/coleygroup/polymer-chemprop-data. The
data supporting this article have been included as part of the
ESI.†
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