]
TUDelft

Shining a Light on Material Appearance

Computing visibility functions using polygon intersection algorithms

Marc Ruijs

Supervisors: Ricardo Marroquim, Yang Chen

June 25, 2023

A Thesis Submitted to EEMCS Faculty Delft University of Technology, In Partial Fulfilment of the
Requirements For the Bachelor of Computer Science and Engineering


m.j.a.ruijs@student.tudelft.nl

Shining a Light on Material Appearance

Abstract

Creating photorealistic images is one of the ultimate goals of computer graphics. Previous work has
shown that a material’s microstructure plays a crucial role when trying to achieve photorealism. This is
because a material’s appearance depends on the roughness of its microstructure. Due to this dependence,
effects such as masking and shadowing have to be taken into account, as these are capable of altering
the effective reflectance of a material. Render engines typically use a mathematical expression, known as
a visibility function, that aims to calculate the impact of these effects. However, even the best visibility
function known is still an approximation; an exact solution doesn’t exist. In order to evaluate the accu-
racy of visibility functions, an algorithm can be created that computes the correct output, such that the
output of a given visibility function can be compared against it. Such an algorithm can be one of two
types: approximative or exact. In this paper, we show that approximative algorithms are very capable and
come close to their exact counterparts. However, there is still a non-negligible difference between them,
meaning they aren’t suitable for applications that demand very high levels of accuracy.

1. Introduction The fact that the normal distribution of a surface

“If it looks like computer graphics, it is not good  affects the way it looks has other consequences.

computer graphics” This quote by Jeremy Birn is
perhaps the best way to summarize the goal of
computer graphics: to make it look so realistic that
users feel like they are looking at the real world
through a window, rather than a computer screen.
One theory that aims to work towards this goal is
called microfacet theory, which assumes surfaces
to be made up of microscopically small triangles
called microfacets. These microfacets each have
their own normal and can point in a direction that
is different from the overall surface normal. The
distribution of these normals models the rough-
ness of the surface, and therefore, influences the
appearance of the material [1], as can be seen in
Figure 1, which is the result of previous work [2].

Figure 1: Aluminum disks and their surface scans.
The right disk is polished only, the left disk has also
been sandblasted. The difference in appearance
comes solely from the difference in roughness.
Image from [2]. Licensed under CC BY-NC-ND 4.0

Imagine, for example, that we are looking at a
surface such as in Figure 2. On the left, we see
that our line of sight of the rightmost microfacet
is obstructed; it is masked. Because of this, the
normal that belongs to that rightmost microfacet
no longer affects how the material appears to us.
In other words, the masking effect has effectively
changed the distribution of normals that are visi-
ble to us [1].

Figure 2: Left: masking prevents us from see-
ing the rightmost microfacet. Right: shadowing
prevents the rightmost microfacet from being lit.
Image from [3]. Licensed under CC BY-NC-ND 4.0

Similarly, the right side of Figure 2 shows a sce-
nario where we are in fact able to see the rightmost
microfacet, but in this case, our light source isn’t,
causing the facet to be in the shadow. This phe-
nomenon is appropriately called shadowing, and it
also influences the distribution of visible normals,
and in turn, the appearance.



In order to take masking and shadowing into ac-
count, physically based render engines often make
use of a mathematical expression, known as the
visibility function [1], which aims to calculate the
percentage of a surface area that is visible from a
certain viewpoint, given that the light is coming
from a certain direction. Multiple proposals of vis-
ibility functions have been made, most notably the
Smith visibility function [4], which is still used
in render engines today [1]. However, it isn’t per-
fect. In deriving his function, Smith assumed there
to be no correlation between the height of a mi-
crofacet, and the heights of its neighbors. That is,
he assumed the microfacets to be structured ran-
domly, causing the height of a microfacet to be
uncorrelated to its normal [4]. However, this leads
to the Smith function being less accurate for mate-
rials that do have a correlation between microfacet
height and normal, as is illustrated in Figure 3.
Here, the appearance of the material changes de-
pending on the angle at which the light hits it, due
to the structure of the material.

Figure 3: A structured material where higher
parts are smooth, and lower parts are rough. In the
top image, light is able to get into the rougher parts
of the material, causing it to appear rough. In the
bottom image, the shallow angle of the light causes
it to reflect off of the smooth peaks of the surface,
making it unable to reach the rough parts, which
results in the material looking smooth.

Image from [1]. Licensed under CC BY-NC-ND 4.0

In order to evaluate the accuracy of a proposed
visibility function, an algorithm can be written
that is able to calculate the correct output, given
a microsurface, view direction, and light direction.
That output can then be compared against the
output of the visibility function we wish to eval-
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uate. By comparing the visibility function against
the algorithm for a wide variety of scenarios, we
can gain insight into the general accuracy of the
visibility function. We will be able to see what sce-
narios it thrives in, and where it falls short.
Creating such an algorithm with the purpose
of comparing and evaluating visibility functions
can be done in multiple ways. The first option is
to calculate the percentage of visible surface area
in an exact way. While this sounds like an obvi-
ous choice, such an algorithm would be extremely
slow, especially compared to the second option,
which is an approximative algorithm. While these
algorithms are inherently inaccurate, they are sig-
nificantly faster. What is to be determined, is the
magnitude of the inaccuracies. Should the approx-
imated result be very close to the exact result, one
could justify using an approximated algorithm to
evaluate visibility functions. If there is a significant
difference between the two algorithms, we can-
not make this justification, and the exact method
should be used whenever accuracy is of the
essence. Answering this question of whether or
not approximative algorithms are accurate enough
is exactly the goal of this paper. We will present
an exact algorithm and compare it against a previ-
ously implemented approximative algorithm.

2. Methodology

In order to calculate the percentage of visible sur-
face area, the task has to be divided into smaller
pieces. First, the assumption is made that shadow-
ing and masking are independent. While this is not
true in reality, it allows us to handle masking and
shadowing separately. That is, we can start by only
implementing masking.

Next, we are able to start by also ignoring the
masking function, and solely focussing on filtering
out back-facing triangles. This is done by taking
the dot product between the view direction and the
normal of the triangle, which can be calculated us-
ing the triangle’s vertices.

Now that the triangles that face away from us
are no longer being considered, we turn to imple-
ment the masking function. First, the microsurface



is projected onto the camera’s view plane, result-
ing in a 2D projection of all triangles. Then we have
to determine the total area covered by these trian-
gles. This process requires three steps: combining
all projected triangles into one polygon, triangu-
lating that polygon, and finally, calculating the
total area using the result of the previous step.

2.1. Combining triangles
The process of combining all triangles into one
polygon is an iterative one. We start by combin-
ing the first two triangles into a polygon. The third
triangle is then combined with the result of the
previous step. This process repeats until all trian-
gles have been considered.

2.1.1. General case

When combining two triangles, or, more generally,
two polygons, the algorithm has to be able to deal
with multiple different types of intersections. An
algorithm [5] is used to categorize the intersection
between two edges, with four possible outcomes:
vertex-vertex, vertex-edge, edge-edge, or no inter-
section. The most general case consists only of
edge-edge intersections, of which an example is
shown in Figure 4, where AABC and APQR in-
tersect at points /; and I.

Figure 4: A common case of two triangles inter-
secting. AABC intersects with APQR at points [;
and I,.

The algorithm processes a case like this as fol-
lows. It starts by finding a vertex that is guaranteed
to be part of the resulting polygon so that we can
use that as a starting point. For example, the ver-
tex C does not satisfy that criterion, since it lies
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inside APQR, and is thus not going to be part of
the polygon. In the case of this example, we can
simply start at A. Now we analyze the edge that
goes from A to the next vertex, which is B. Clearly,
no edge intersects with AB, and so B must also
be part of the polygon. Now, when we look at the
edge from B to C, we do encounter an intersection,
namely with the edge going from P to Q. Since
this is an edge-edge intersection, we can simply
follow the intersecting edge to its endpoint; that
is, we add the intersection point I; to the polygon,
and go to Q. Since there are no edges intersecting
with the line from I; to Q, we add Q to the poly-
gon as well. Note that we cannot always blindly
follow an intersecting edge, as we will show in a
later example. Analyzing the edge QR, we again
see no intersections, so we add R. When trying to
go from R to P, we encounter an intersection with
CA. Since this is also an edge-edge intersection,
we can add the intersection point to the polygon,
and go to the endpoint of the intersecting edge,
which is A. Now we are back at our starting point.
We could technically go to B again, but there is no
point in doing that since we have already visited
that vertex. Therefore, the algorithm is done, and
it returns the polygon that consists of the points
A/ B, I,,Q,R, I,

2.1.2. Edge cases
Now we will look at a scenario where the steps
taken in the previous section won’t suffice. Look-
ing at Figure 5, we see that we now have three
intersection points: P lies on AB, Q lies on BC, and
BC intersects with RP.

Figure 5: AABC intersects with APQR such that
P and Q are intersection points.



Instead of giving a complete overview of how
the algorithm processes this situation, we will
highlight only the key aspects. Recall that, in the
case of an edge-edge intersection, we can simply
add the intersection point to the polygon, and
follow the intersecting edge to its endpoint. In
Figure 5, we encounter a type of intersection for
which that rule does not generally work: the ver-
tex-edge intersection. Consider point P, which lies
on AB. Note how “follow the intersecting edge to
its endpoint” does not apply here, since AB is not
intersecting with an edge of APQR, but rather, a
vertex. Instead, we have to look at where the next
edge of APQR, starting at P, is going. In this case,
the next vertex is Q, so we consider the edge PQ,
which goes inside of AABC, and we, therefore,
should not follow it, but go to B instead. In other
words, we completely ignore the intersection. Now
consider point Q, which lies on BC. The next edge
that starts at Q is QR, which goes outside of A
ABC, so this time we should follow it, and go to
R. We need a way to distinguish these two scenar-
ios. It might be tempting to look at whether or
not the endpoint of the edge is inside AABC. R is
outside of AABC, while Q lies on BC, which we
could count as being inside AABC. However, this
approach generally fails, since it could happen that
an edge of APQR first goes through AABC, but
has its endpoint outside of it. Imagine R being to
the left of AC, for example. Then QR goes through
AABC, so we should not follow it, but since R is
outside of AABC, we would still end up doing just
that.

We are on the right track though. Instead of us-
ing the endpoint of the edge, we want to stay at
the starting point and take a very small step in
the direction of the endpoint of the edge. Then we
check if that point is inside AABC or not. By do-
ing it this way, we practically eliminate the issue
of the previously proposed method, even though
it is technically not completely solved; if AABC
is very small we could still end up testing a point
that lies outside of it even though our edge goes
through it first. However, if our step toward the
endpoint is small enough, we will run into float-
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ing-point rounding errors before this becomes an
issue.

Now our algorithm is able to correctly handle
this type of edge case. There exist other types of
edge cases, as shown in Figure 6, which we will
briefly go over. (a) shows one more example of a
vertex-edge intersection, but here, the endpoint of
our current edge, AB, intersects with an edge of 2\
PQR. We will add the intersection point, B, to our
polygon, and go to the endpoint of the edge we in-
tersect with. That is, we will go to P. The remaining
edge cases are all vertex-vertex. The first, shown in
(b), is a simple one. Points A and P overlap, so we
have to choose between going to B and Q. Since
Q is inside AABC, we will simply go to B. Look-
ing at (c), it again might be tempting to simply say
that Q is outside of AABC, so we should go to it.
While we indeed should in this case, (d) shows why
the reasoning fails, as we definitely don’t want to
go to Q there. As described earlier, we determine
whether or not to go to Q by testing if the point
that is very close to P and in the direction of Q
is inside AABC or not. Finally, we see two cases
where AB and PQ are collinear. In (e), Q lies on AB,
while in (f), it extends past AB. This difference is
exactly how the algorithm determines its next ac-
tion. If Q is on AB, it goes to B; if B is on PQ, it goes
to Q.

@ (b)
© (d)
© (

Figure 6: Remaining edge cases that our algorithm
needs to be able to handle.



Implementing these edge cases, combined with
being able to handle the general case, the algo-
rithm is now able to combine any two polygons
into one, which can be triangulated in the next
step.

2.2. Triangulation

Triangulation algorithms are able to split a poly-
gon into triangles. Our implementation is based
on one described in previous works [6][7]. Before
describing how the algorithm works, we will ex-
plain what it means for a vertex to be an eartip.
The definition is as follows. Take any vertex of the
polygon. Then, draw a line from the vertex that
precedes the one you chose, to the vertex that suc-
ceeds it. If this edge is entirely inside the polygon,
that means that those three vertices, the one you
chose, the one that proceeds it, and the one that
succeeds it, form an ear, with the vertex you chose
being the eartip. If the edge from the preceding
vertex to the succeeding vertex at some point in-
tersects with any of the polygon edges, the vertices
don’t form an ear. We will look at examples while
explaining the algorithm. The convenient property
of eartips is that they can be removed from the
polygon without increasing its complexity, which
allows us to simplify it systematically by removing
one vertex at a time until we are left with a single
triangle.

Now we are ready to describe the algorithm, us-
ing Figure 7 as an example. Given a polygon with
more than three vertices, it starts by searching for
an ear. In order to check if A is an eartip, the line
from E, which precedes A, to B, which succeeds
A, is drawn in Figure 7(b). Since it intersects with
polygon edge CD, A is not an eartip, so we check
the next vertex. B is checked by drawing the line
AC, which shows that B isn’t an eartip either. The
next vertex, C, is an eartip since BD is entirely in-
side the polygon. Now that we have found an ear,
we first store the triangle that is formed by the
ear, ABCD. Then we remove from the polygon the
eartip and the edges that go to it and come from it.
Obviously, we cannot have a gap in our polygon,
so we connect the vertex that preceded the eartip
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with the vertex that succeeded the eartip, as shown
in Figure 7(e).

Since we have just ripped a vertex out of our
polygon, we want to check if the neighboring ver-
tices have been affected. So, we will check both
the succeeding and preceding vertices, which, in
this example, are D and B, respectively. In the case
that neither of these are eartips, the algorithm goes
back to checking all vertices in the polygon, as it
did in the first step. Figure 7(f) shows that D is not
an eartip, since BE leaves the polygon. AD does
stay entirely inside ABDE, so B is an eartip, and
the same procedure as last time is repeated: the tri-
angle that makes up the ear, AABD is stored, and
B is removed from the polygon. At this point, the
algorithm sees that there are only three vertices re-
maining, so it stores these as the last triangle, and
returns a list of all triangles it has stored. In this
case, those triangles are ABCD, AABD, and A
ADE. It is easily verified that these triangles com-
bined exactly make up the original polygon.

@ (b)
() (d
() ®
@ ()

Figure 7: Triangulation steps for polygon ABCDE

2.3. Calculating the area
This final part of the algorithm is by far the sim-
plest. We iterate over all triangles that we obtained



using triangulation, and calculate their areas using
the well-known formula for the area of a triangle:
Area = height x base X % Adding up all these
areas leads to the total area of our polygon, and
therefore, the total area of the surface that is visi-
ble to us.

3. Responsible Research

In this research, ethical issues are not to be wor-
ried about. The only data that was used while
conducting the research comes in the form of
3D scans of sandblasted aluminum disks, which
were created in previous research [2]. Theoreti-
cally, the researchers of that study could have
fabricated their results, but even if that is the
case, it doesn’t influence the integrity of this pa-
per. This is because their data is not used as
ground truth. Rather, it is solely used to verify
the behaviour of our algorithm, and to determine
how capable it is when calculating the area of a
surface. Whether that surface is real or fabricated
is not of the essence for our research. Regarding
the results of this paper, all steps our algorithm
takes in order to get to a result are described
in the paper, and anyone who wishes to repro-
duce them is very much welcome to do so. The
code is available at https://github.com/MJARuijs/
ResearchProject. The algorithms can be found in
the src/math/shapes/Intersection.h and src/math/
shapes/Polygon.cpp files.

4. Results

In order to ascertain the degree of accuracy of ap-
proximative methods, our algorithm is compared
against such a method which has been imple-
mented earlier, and will be available at https://
gitlab.tudelft.nl/ychen32/vgonio-mirror once fin-
ished at a later date. The methods are compared
using the surface as seen in Figure 8. The surface is
viewed with varying zenith angles, ranging from
90° to 10°, and an azimuth of 0°. One of these cases
is shown on the bottom half of the figure, where
the zenith is 45°. The results are shown in Table 1,
and will be discussed in the next section.
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Figure 8: The top half shows the surface used for
testing. The bottom half is one of the tested view-

points, where the zenith angle is 45°

Zenith | Our algorithm | Approximated method
90° 100% 99.1%
80° 100% 99.2%
70° 95.1% 94.7%
60° 86.8% 86.9%
50° 79.2% 79.5%
40° 38.5% 71.8%
30° 62.9% 63.9%
20° 55.4% 55.6%
10° 40.2% 49.3%

Table 1: The percentages of visible surface area
according to our algorithm and an approximation
method, for varying zenith angles.

5. Discussion

In this work, we provided an algorithm that is
able to exactly calculate the percentage of sur-
face area that is visible from a certain viewing
angle. We compared it against an algorithm that
approximates the answer, in an effort to determine
whether or not using an exact method is required
for applications that require a high level of accu-
racy.


https://github.com/MJARuijs/ResearchProject
https://github.com/MJARuijs/ResearchProject
https://gitlab.tudelft.nl/ychen32/vgonio-mirror
https://gitlab.tudelft.nl/ychen32/vgonio-mirror

The results show that the approximative algo-
rithm is very capable, and produces results that are
very close to the exact method. It still isn’t perfect,
however, as is immediately noticeable when ana-
lyzing the results for a zenith angle of 90°. In this
scenario, the surface is viewed from straight above,
meaning that all surface triangles are completely
visible, and the result should always be 100%. The
fact that the approximative method gives a result
0f99.1% is due to the inaccuracies that are inherent
to approximative algorithms.

There are two outliers in the data, namely for
zenith angles of 40° and 10°. The reason for these
outliers will be addressed in the next section.

Based on the results, the research question will
be answered as follows. Whether or not using
an approximative method is justified depends on
one’s use case. If the highest possible level of accu-
racy is required, it is best to use an exact method, as
the approximative method can be off by as much as
1 percent point. However, for applications where
a delta of 1 percent point is acceptable, approxi-
mative methods are a potent alternative, with the
added benefit of running substantially faster.

5.1. Limitations and Future Work

The biggest limiting factor of our algorithm is
floating point rounding errors. These can cause
our algorithm to make mistakes when combining
polygons, leading to an incorrect polygon of which
the area is calculated. It is therefore recommended
to visualize and inspect the resulting polygon after
running the algorithm, in order to verify that its
output is correct.

Nonetheless, the majority of the results are con-
sistent. The algorithm we provided can also be
used to calculate the shadowing function. In fu-
ture works, combining the output of the masking
function and shadowing function could be inves-
tigated, which could lead to an algorithm that is
able to calculate the output of the entire visibility
function in an exact way. At that point, we will be
able to evaluate and compare any proposed visibil-
ity functions.
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