
Strain tests
in low
dimensional
materials:
Geometrical
Phase Analysis
Patricia Arens

Strain tests in low
dimensional materials:

Geometrical Phase Analysis

by Patricia Arens

to obtain the degree of Bachelor of Science

at the Delft University of Technology,

to be defended publicly on Monday August 29, 2022 at 12:00 PM.

Student number: 5072353
Project duration: March 1, 2022 – August 29, 2022
Thesis committee: Prof. dr. Sonia Conesa-Boj, TU Delft, supervisor

Prof. dr. Paul M. Visser, TU Delft, supervisor
Prof. dr. Yaroslav Blanter, TU Delft
Prof. dr. Bas Janssens, TU Delft

Abstract

In the last decades there has been an increasing interest in computing the local strain at the atomic
scale of materials. By knowing aspects of the local strain in a lattice, one has information about mea-
surements of distortions of lattice parameters concerning shifts, deformations and defects computed
with respect to a smooth, defect-free reference region. Multiple methods have been implemented so
far in order to map the strain of two-dimensional lattice patterns, which are obtained through means of
a High Resolution Electron Microscope (HRTEM). The functioning of a HRTEM is based on the same
principles as an optical microscope, but it uses a beam of electrons instead of visible light.

One of the computational methods which then processes the obtained two-dimensional images is called
the Geometrical Phase Analysis (GPA) and makes use of a very important mathematical tool, the
Fourier transform. The GPA method lies at the center of this project and consists of several steps.
First, the Fourier transform of the lattice image is plotted and two Bragg peaks corresponding to two
linearly independent frequency vectors in the power spectrum are chosen. Next, a mask is applied
around these peaks, separately. In my project I have chosen to apply the Hann smoothing filter. Then,
the inverse Fourier transform is applied to the masked image and the phase (also called the raw phase)
is plotted. The next step is to compute the reduced phase, which is defined at a local pixel as being the
raw phase from which the following product is subtracted: 2𝜋�⃗� ⋅ 𝑟, where 𝑟 is the vector correspond-
ing to a pixel in the real space and �⃗� the frequency vector corresponding to the Bragg peak around
which one has applied the mask. At this point the reference region is computed by choosing a smooth,
homogeneous area in the reduced phase image. In order to obtain the strain, one needs an optimal fre-
quency vector �⃗� defined at every pixel of lattice. In order to do so, a minimization process defined in the
context of a computer algorithm in the programming language Python has been implemented. These
computations should lead to obtaining the lattice strain, which is calculated by taking the symmetric part
of the derivation of the displacement obtained from the two linearly independent Fourier components,
which is in turn called the distortion. The antisymmetric part of the distortion is the rotation component
and serves as a check for the correctness of the computational method.

The goal of my project is not only to provide a solid theoretical background for the GPA method and
to discuss the strain at atomic level in several lattice patterns, but to also provide a rigorous computer
algorithm that makes these computations reality. This algorithm, opposed to pre-existing software,
facilitates the reader’s process immensely by the large amount of detail which is given at every step,
detail which easily motivates and supports the reader in potential side-steps they would want to take
in order to make the method their own. Unfortunately, at the moment of the discussion of this thesis I
have not yet been able to solve an issue which does not allow the correct output of optimal values for
�⃗� at every point of the lattice.
I want to take upon me the task of fixing my computer algorithm in the context of my future Master
thesis, in order to give the reader more flexibility and more additional features than most computer
algorithms and software which already exist do (concerning the use of the GPA method to calculate the
strain).

iii

Contents

Abstract iii

1 Introduction 1

2 Theory 5
2.1 Geometry of solids . 5

2.1.1 Lattices . 5
2.1.2 High Resolution Transmission Electron Microscopy (HRTEM). 5

2.2 Fourier transform . 6
2.3 Inverse Fourier transform . 7

2.3.1 Reciprocal lattices . 7
2.4 Bragg peaks . 8
2.5 Geometrical Phase Analysis method (GPA). 8
2.6 Lattice strain . 9

3 Computational method 11
3.1 Defining the lattice patterns . 11
3.2 Fourier transform of lattice patterns . 14
3.3 Peak selection and estimating the g-vectors . 14
3.4 Masking the Fourier transform . 16
3.5 Raw phase . 17
3.6 Reduced phase calculation and reference selection . 19
3.7 Accurate computation of g-vector . 21
3.8 Strain computation . 24

4 Results and Discussion 27
4.1 Discussion of results for sections 3.1-3.6 . 27
4.2 Discussion and results for sections 3.7 and 3.8 . 28
4.3 Expected strain images and discussion . 30
4.4 Results for additional lattice patterns and filters . 33

5 Conclusions 37

A Appendix 39
A.1 Tables with symbols and variables. 39

A.1.1 Table containing the important mathematical symbols and their meaning 39
A.1.2 Table containing important variables defined in the computational and coding

space, respectively. The term ”(used in method)” means that the variable in ques-
tion also appears in the computational method. 40

A.2 Code availability . 40

v

1
Introduction

High-Resolution Transmission Electron Microscopy (also known as HRTEM) yields direct images of
crystallographic structure of materials taken at an atomic structure. It is an extremely powerful tool to
obtain several kinds of information of the atomic structure and properties of materials, at a nanoscale
[5]. The principle on which the creation of images is based is the phenomenon of interference [5]. The
high resolution of the images which one gets through this technique is a very elegant and indispensable
tool which can be used to investigate properties of atoms, crystal structures, defects in materials which
find their root at the atomic scale, but also crystallographic quantities such as lattice strain. Local lattice
strain is defined as being the symmetrical part of the local distortion field, obtained by differentiating
the displacement field (the displacement between the pixel which one is performing the calculations at
with respect to a previously chosen reference region in the lattice)[18]. In the context of this project it
is useful to be able to visualise the strain. I therefore also introduce the concept of strain mapping, a
numerical image processing technique that measures the local shifts of image details around a crystal
defect with respect to the ideal, defect-free, positions in the bulk [7]. The fact that one is able to identify
these displacements in a dot-like image. Moreover, in two-dimensional HRTEM images, the local lat-
tice is characterized by the tangent planes of two geometrical phase images, which, as will be shown
later throughout the project, is an important step of the method used to compute the strain. Therefore,
HRTEM is without a doubt the tool one needs in order to obtain the lattice images and to later compute
the strain.

It is highly important to be able to quantify the strain in a material, due to several reasons, all related to
the fact that being able to have a correct quantitative measurement of strain on the nanometre scale
is significant for many studies of materials. For instance, a crucial element in diode-laser fabrication
is matching the atomic spacing of successive layers. Semiconductors can accommodate small differ-
ences in their atomic spacing, which leads to the producing of strain at the level of the lattice of the
crystal [11]. For the correct functioning of the semiconductor, one must be able to quantify this strain
in order to make sure that it is not too large to cause damage. Another application could be the com-
putation of a limit in this case: what is the highest possible strain which a semiconductor can support
at lattice level in order to not malfunction?

This project is centered around obtaining the strain in certain lattice patterns representing single-layered
materials. The reason for this choice is the fact that in the last few decades there has been an increas-
ing significance in performing strain measurements at the atomic scale. The 2D images which are
normally obtained through HRTEM are simulated in this project with the help of coding tools in the
programming language called Python [20]. The method which is applied in order to compute the strain
in the considered lattices is called the Geometrical Phase Analysis Method (GPA) [18], a very elegant
series of mathematical steps of digital signal processing. The GPA method works in Fourier space
(also called reciprocal space). If one takes the Fourier transform of a HRTEM image and applies a filter
to it centered on one of the Bragg peaks and performs the inverse Fourier transform subsequently an-

1

2 1. Introduction

alyzing the phase image of this transform (which will later offer information on the displacement fields)
they have described in big lines the first steps of the GPA methodology [18]. The elegance of the GPA
method lies in the fact that it is able to identify with precision the location Bragg peaks (in other words
the length of the Bragg-vectors in reciprocal space), a very important aspect which allows an accurate
computation of the strain in a certain pixel with respect to a chosen reference region. The later is com-
puted by taking the derivative of the displacement with respect to the corresponding lattice coordinate.
It is important to note that in order to obtain the displacement in 2D images one needs two non-colinear
vectors from the reciprocal space. After having computed the strain in one point one can then proceed
to constructing a matrix of the entire strain field and plot it [18], [14].

The scope of this project is to analyze the previously mentioned steps of which the Geometrical Phase
Analysis consists, apply them to several lattice patterns in order to eventually obtain the strain at the
subatomic level of these materials, all of this computed with the aid of an original computer program in
Python created by me, with the goal of facilitating the reader in the process of understanding by adding
not only physical, mathematical and computer science support, but also to clarify the main steps of
GPA method. The main computational path follows the outline of [18]. The motivation of the project
rises primarily from the desire of having a clear version of steps of which the GPA consists, starting by
rigorously explaining how the lattice simulations are obtained and how they are made in order to closely
resemble a HRTEM image. Moreover, systematic explanations are added to several steps which are
not clear enough from a mathematical or computational point of view. Furthermore, this project offers
the complete code which was used in order to obtain the desired results. Challenges which were en-
countered along the way are thoroughly explained in order to help the reader not only with the potential
issues which arise along the way, but also with how to solve them.

After having read the thesis and by using the presented code, the reader will not only be able to repro-
duce the calculations, but also to create their own desired lattice pattern and to apply the GPA method
to it, in order to obtain the wanted strain field, and gather information on the properties of the atomic
scale of the material in question. Unfortunately, at the time of the discussion of the thesis I have not yet
managed to solve some of the issues in my code, which therefore does not yet fully express its interest-
ing potential. This is because of a discordance between a mathematical function and its corresponding
version used in the computer algorithm that lies at the basis of the computational method. Neverthe-
less, the strain that one should obtain through means of the defined lattice patterns is calculated and
shown in images obtained with the aid of a computer algorithm previously implemented in C++ [13].
I am planning on implementing an updated version of my code in the context of my Master thesis in
order to make it fully operational. Nevertheless, the elegance of my code, even at this moment, lies not
only in its originality, but also in the fact that the methods regarding the intermediary steps are not set
in stone, as generally is the case with already implemented GPA software. Therefore, the reader can
choose the preferred technique while computing specific intermediary steps, while still being guided by
the main lines of my code.

It important to note that even though the GPA method is very efficient in quantifying the strain, there
are several other techniques, one of which is worth introducing in the context of my project: the Peak
Pairs algorithm (PP) [8]. The peak-finding method, opposite to the GPA method, works in real space by
superimposing the reference lattice to the experimental lattice. The experimental lattice is constructed
from the intensity images present in the HRTEM image. One then proceeds to calculate the local
displacement field at each node of the superimposed image, from which, just as is done in the context
of my project, one obtain the strain field. One can see that these two techniques, while being similar,
also have their differences. For instance, seeing as the PP method does not involve the computation of
a two-dimensional Fourier transform, it presents much less memory requirement than the GPAmethod.
If one, however, is not interested in the performance of the computer algorithm, then the GPA method
might be more suitable for them seeing as this one has been proven to be more precise in determining
strain fields corresponding to lattice defects. Applying the PP algorithm to the HRTEM images which I
have simulated with my Python code and confronting the results obtained through the GPA method is
a project plan for the near future, in order to test the previously stated claims [8].

3

Chapter 1 shines some light on the state of the art regarding GPA and local strain, the motivation and
the context in which this project has come to exist. As stated before, in order to compute the strain,
I implemented a Python code following the theoretical steps outlined in literature [18]. In the code I
have also used pre-implemented functions, introduced in the Github repository corresponding to [14].
Chapter 2 contains information regarding mathematical and physical tools needed to perform the com-
putations, the later being outlined in Chapter 3. In Chapter 4 I add my own partial results and I argue
where I expect the error to be. The computer code can be found in A, alongside a table of symbols
and variables. Chapter 5 gives the final remarks on the results, the computational method and future
projects.

2
Theory

This chapter is dedicated to introducing the necessary theory on which my project is based. It contains
information on mathematical and physical tools, presented in different sections.

2.1. Geometry of solids
In this section several notions regarding the geometry of solids are introduced. Taking into account the
fact that in this project the simulated materials can be approximated as being two-dimensional (because
in one direction I consider the specimen in question to be monoatomic), it is enough to give only the
definitions corresponding to two dimensions.

2.1.1. Lattices
By definition, a lattice is an infinite set of points defined by integer sums of a set of linearly independent
lattice vectors, which in turn are the vectors that span the lattice [19]. In order to properly define a two-
dimensional lattice, one needs two lattice vectors which are linearly independent [9]. The condition of
linear independence refers to the fact that one vector cannot be a multiple of the other. In other words,
no vector can be written as a linear combination of the other one. Lattices are found in the so-called
real (or direct) space seeing as it is a concept of describing material’s structures directly [19], [9]. Later
in this chapter the term reciprocal space will also be introduced. During the entire project there are
many references to these two space, therefore it is important to distinguish amongst them.

In equation 2.1 one can see the way the lattice points are defined, as a function of a couple of integers
𝑛1 and 𝑛2 and of the lattice vectors 𝑎1 and 𝑎2. These vectors are not uniquely defined.

�⃗� = 𝑛1 ⋅ 𝑎1 + 𝑛2 ⋅ 𝑎2 (2.1)

Next I am introducing the square lattice, one of the main focuses of this project, which has the prop-
erty of being translationally symmetric. The symmetry reason, the compactness of the lattice and the
convenient geometry that lies at its basis are some of the reasons why the square lattice is such an
elegant and stable structure and is found in nature in many chemical elements and components, by
taking a monoatomic layer of structures such as Iron [12], Scandium Nitride [15], some transition metal
oxides such as Titanium Oxide (TiO), Vanadium Oxide (VO) and Manganese Oxide (MnO) [10].

The use and investigation of square lattices in this project are hereby also justified.

2.1.2. High Resolution Transmission Electron Microscopy (HRTEM)
Now that the concept of a lattice has been clarified, the following question might rise: how can one
observe then with a high resolution? High resolution transmission electron microscopes have the scope
of forming images by using an electron beam, in a very similar way to how optical microscopes form
images, by means of visible light. Firstly, the beam of electrons is transmitted through a thin specimen
[3]. This is very important specification seeing as in the case of this project the specimen is always a

5

6 2. Theory

Figure 2.1: Adapted from [5]. (a) Bright-field TEM image revealing the axial and radial silicon growth on a GaAs core, as well as
the presence of the Si crystalline grains on the sidewalls of the core−shell system. (b) High-resolution TEM image of the region
marked with a blue square in (a)

two-dimensional material. The system of lenses then focuses and magnifies the beam of electrons in
order to then project the final image which is then saved. The magnifications which are used in the
process are high enough for one to easily be able to see the lattice spacing of inorganic materials.
These dimensions can typically be as low as a fewÅ (in the order of 10−10m) [3]. An image taken with
a HRTEM can be seen in figure 2.1 [5]. This project simulates similar images to this one (see Chapter
3 for more details). It is of high importance to also note the fact that an HRTEM image is a discrete
periodic image.

2.2. Fourier transform
This operation lies at the basis of every computation performed in this project, therefore it is one of the
most important concepts introduced in this chapter.

By definition [2], the Fourier Transform’s role is that of converting functions which depend on spacial
variables into functions that depend on spacial frequencies. With other words, one converts between
the real space and the reciprocal space through the Fourier transform. In case of a signal, the Fourier
transform decomposes its waveform into peaks, which in turn contain information on the specific fre-
quencies that make up the original signal.

Suppose one has a one dimensional signal described by 𝑓(𝑥) (x being a spacial variable and 𝑓 an
arbitrary function), then its continuous Fourier transform has the form:

𝐹(𝜔) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖2𝜋𝜔𝑥𝑑𝑥 (2.2)

In equation 𝜔 refers to the spacial frequency variable corresponding to the Fourier space, 𝑖 is the
imaginary unit (in the complex plane), 𝐹 refers to the Fourier function which is obtained after applying
the Fourier transform to the spacial variable 𝑥. In the case of an image, however, one has 2 dimensions
and therefore also 2 variables. Let’s denote the frequency corresponding to the 𝑥 variable in the real
space with ℎ and the one corresponding to the 𝑦 variable with 𝑘. Therefore, in the Fourier space,
each pixel has the following coordinates: (ℎ, 𝑘). For example, figure 2.2 one can see the Fourier
transformation of the second subplot of figure 2.1. Therefore, the Fourier transform for this later case
(where 𝑥 and 𝑦 are the spacial variables) is also defined, for an arbitrary function 𝑓(𝑥, 𝑦):

𝐹(ℎ, 𝑘) = ∫
∞

−∞
∫
∞

−∞
𝑓(𝑥, 𝑦)𝑒−𝑖2𝜋(ℎ𝑥+𝑘𝑦)𝑑𝑥𝑑𝑦 (2.3)

In equation 2.3 𝐹 is once again the transformation of the arbitrary function 𝑓 in the real space to its
corresponding value in the frequency space. Now the integral must be taken over two dimensions,

2.3. Inverse Fourier transform 7

Figure 2.2: Adapted from [5]. Fourier transform corresponding to figure 2.1 (a). The bright Bragg peaks are noticeable and
correspond to the bright spots indicating a high value of intensity

leading to the appearance of a double integral in the equation. As mentioned before, ℎ and 𝑘 are the
frequencies corresponding to the Fourier space (also called the power spectrum). It is clear that the
Fourier space of a two dimensional image is also a two dimensional image. It is important to note
that one refers to the Fourier space also as the power spectrum or k-space. These namings are used
interchangeably throughout the report when referring to the result which one obtains after performing
the Fourier transform

2.3. Inverse Fourier transform
The inverse Fourier transform, as the name suggest, is the inverse operation to the mathematical tool
defined in the previous section: the Fourier transform. In the context of this project it is applied to an
image in the Fourier space in order to transform it back to the real space and is defined by the following
formula:

𝑓(𝑥, 𝑦) = 1
4𝜋2 ∫

∞

−∞
∫
∞

−∞
𝐹(𝑥, 𝑦)𝑒𝑖2𝜋(ℎ𝑥+𝑘𝑦)𝑑ℎ𝑑𝑘 (2.4)

It is important to note that in order to get the discrete Fourier transform and inverse Fourier transform it
is enough to replace the integration and double integration, respectively by a double sum. With other
words, one changes the infinite summation with a finite summation. This is done for equations 2.3 and
2.4.

2.3.1. Reciprocal lattices
The reciprocal space is a mathematical construct which immensely facilitates several computations in
the domain of Physics. It is generally used in order to describe wavelike phenomena in crystals. For
example, a very well-know phenomena which makes use of the reciprocal space is X-ray diffraction, a
technique which allows the observation of material at an atomic level.

By definition, the reciprocal lattice is the Fourier transform of the real (or direct) lattice [19]. Similar to
equation 2.1, one can also define an equation which describes the lattice points of the reciprocal lattice:

�⃗� = 𝑚1 ⋅ 𝑏1 +𝑚2 ⋅ 𝑏2 (2.5)

In equation 2.5𝑚1 and𝑚2 are integers, 𝑏1 and 𝑏2 are the vectors describing the points in the reciprocal
lattice.

There is an important relation between real and reciprocal lattices: 𝑒𝑖�⃗�⋅�⃗� = 1 (in this exponential function
𝑖 is the complex unit number), or 𝑎𝑖 ⋅ 𝑏𝑗 = 𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the Kronecker Delta function and has value

8 2. Theory

1 when 𝑖 = 𝑗 and value 0 when 𝑖 ≠ 𝑗. (see 2.1.1 and 3.5 for explanations regarding �⃗� and �⃗�)

2.4. Bragg peaks
As seen in the previous section, the GPA method relies heavily on the selection of Bragg peaks (which
so far have been called g-vectors), I believe it is important to shine some more light on this topic as well.
A Bragg peak, which has already been introduced as a high intensity peak in the reciprocal (Fourier)
space, is also a particular set of sinusoidal lattice fringes [4]. This g-vector has has a length which is
equal to to the reciprocal of the lattice fringe spacing (which corresponds to the the lattice plane). A
lattice fringe is a periodic fringe in a (high resolution) transmission electron microscope image and is
formed by two waves: a wave which is transmitted through the crystal and a wave diffracted by one
lattice plane of the crystal. A lattice plane is a plane whose intersections with the lattice are periodic.[1].

2.5. Geometrical Phase Analysis method (GPA)
The Geometrical phase analysis is a powerful mathematical tool (consisting of a series of operations)
which allows the computation of distortion, strain and rotation in lattices visible in images obtained
through means of a HRTEM. As the name suggests, rotation is the amount with which certain atoms are
rotated with respect to a certain reference region. Lattice distortion (also called microstrain) represents
the departure of the atom position from an ideal structure (also called reference region in my case). I
will continue this section by introducing the main steps of which the GPA method consists and some
necessary theory needed to understand them. These steps are followed chronologically in the next
chapter and are the basis of the computational method. Therefore, the next chapter also provides
additional information which are presented succinctly below as an overview.

1. Fourier transform: After the lattice has been obtained, the Fourier transform is applied to it. Ac-
cording to which lattice is being used as the object in real space, a number of peaks corresponding
to high intensities will appear in the Fourier image. These peaks are high-valued frequencies from
the power spectrum. The idea is to obtain the coordinates of these peaks. These coordinates,
defined by pixels (h,k), can also be written in a more compact what in the form of vectors, which
are going to be called throughout this report g-vectors. For convenience, I will however only take
the real part of these values and use the following definition: �⃗� = ℎ ⋅ ℎ̂ + 𝑘 ⋅ �̂�, where ℎ̂ and �̂� are,
respectively, the unit vector corresponding to the axis of the Fourier image.

2. Peak selection: Seeing as I am working with two dimensional spaces, in order to define an ap-
propriate basis, two g-vectors which are linearly independent must be selected. These peaks are
also referred to as Bragg peaks (see next section for more detail)

3. Masking around one peak: A mask is applied to the Fourier image centered around the previ-
ously chosen peak. The mask could be a Gaussian Lorentzian, Hanning, or other (smoothening)
functions.

4. Inverse Fourier transform and raw phase plot: of the previously masked image in the Fourier
space the inverse Fourier transform is taken and its raw phase (angle) is plotted

5. Second peak: The process is repeated for the other selected peak

6. Reduced phase: The reduced phase for both images corresponding to the raw phase images are
calculated (see formula 3.4 for further detail on what the reduced phase and how it is defined)

7. Reference selection: Seeing as the strain must always be computed with respect to a reference,
one must be selected. This is done by observing the reduced phase image and choosing a
homogeneous area.

8. Computation of optimal value of g: in step 2, the peak selection has been performed more or less
in an approximate manner. However, the GPA method offers the possibility of computing optimal
g-vectors corresponding to each pixel of the image. This is done through a minimization process
(see section 3.7 for more detail)

9. Strain computation: Through means of the previously computed g-vectors and other operations
the strain is computed (see section 3.8), as well as distortion and rotation.

2.6. Lattice strain 9

2.6. Lattice strain
Computing the lattice strain in between layers of different materials is the goal of this project, therefore,
it is of high importance to introduce the concept of lattice strain, which I will refer to throughout this
project as simply strain, for convenience. One can define the strain, often denoted by , a two by two
matrix, as being a measure of the distribution of lattice constants arising from crystal imperfections,
such as lattice dislocations [21].

There is an important relation which is established between the phase of at a certain pixel 𝑟, the g-vector
and the displacement found at a particular pixel of the lattice: 𝑃�⃗�(𝑟) = −2𝜋�⃗��⃗�(𝑟). In this equation 𝑃�⃗�(𝑟)
is the phase at 𝑟 calculated by taking the mask around a vector . �⃗�(𝑟) is called the displacement of
a certain pixel (𝑟) of the lattice with respect to a chosen reference region. By computing the optimal
value of through the GPA algorithm and the phase value (see previous section), one can then deter-
mine the displacement vector, and in turn the strain. Further information on how the strain is defined
mathematically using these parameters and applied in the case of this project can be found in section
3.8.

3
Computational method

This chapter is dedicated to presenting the steps in chronological order of which the computational
method consists.

3.1. Defining the lattice patterns
The first step in computing the strain for several virtual materials is constructing the respective desired
lattices. These lattices are the virtual representation of the HRTEM images which have been introduced
in Chapter 2. There are various patterns which are being analysed, as it is listed below. All these virtual
lattices have been created with the aid of a computer program written in Python in the form of a Jupiter
notebook. The variables introduced in this chapter, as well as the formulas, are all similar (and in some
cases identical) to the ones used in the writing of the code (see appendix A).

1. The first and most simple pattern is a 500 by 500 pixels image, consisting of a single layer of
a square pattern of atoms, as can be seen in figure 3.1. The coordinates span from 0 to 499
pixels (horizontally, as well as vertically) and the simple square lattice is generated by rotating
with 90∘ four k-vectors (see Chapter 2). The function which is used to create the lattice in figure
3.1 depends on the following parameters:

• 𝑟𝑘, the length of the lattice vectors in the k-space (𝑟𝑘). Larger values for 𝑟𝑘 automatically
imply smaller real space lattice constants.

• 𝜃, the angle which the first lattice vector makes with the positive horizontal
• 𝑠𝑖𝑧𝑒, the length of the side of the square lattice
• 𝑠ℎ𝑖𝑓𝑡, the shift which can be introduced in the positions of the atoms, horizontal, vertical or
both. In figure 3.3 one can see a Gaussian shift performed in the vertical direction, given by
formula 3.1, which is used to obtain another type of lattice pattern.

In this case 𝑟𝑘 is the number of atoms on one row (or column), divided by the number of pixels
on that respective row (or column). Therefore, choosing 𝑟𝑘 = 0.1 in this first simple pattern, leads
to the existence of 50 atoms on each row and column, leading to 2500 atoms in total. Moreover,
𝜃 = 0 for this simple lattice, 𝑠𝑖𝑧𝑒 = 500 pixels, 𝑠ℎ𝑖𝑓𝑡 = 0. Seeing as this pattern consists of only
one layer with atoms arranged perfectly, one does not expect for there to be any strain in this
particular case.

2. In the second pattern another layer of atoms is introduced. The new lattice consists for the left
half, in other words for the first layer (seen on the horizontal axis in the region 0-249 pixels) of the
simple square lattice and for the right half, in other words the second layer (seen on the horizontal
axis in the region 250-499 pixels) of the same simple square lattice, but rotated to the right by 6∘.
The right half therefore consists of the previously introduced lattice, with the only difference being
that 𝜃 = 6∘. Now, seeing as there are two layers, one expects for there to be a nonzero strain

11

12 3. Computational method

in between the layers, which is later checked in Chapter 4. Moreover, 𝑠𝑖𝑧𝑒=500 and 𝑠ℎ𝑖𝑓𝑡 = 0.
This second pattern can be seen in figure 3.2.

3. The third pattern which is analysed, similar to the second one, also consists of two layers and is
created in the following way: image 3.2 is taken and in the tilted part of the image (right vertical
half) the atoms are shifted vertically with the amount given by the quantity ”𝑥𝑠ℎ𝑖𝑓𝑡”, defined in
formula 3.1. With other words, it is identical to the second pattern, but now 𝑠ℎ𝑖𝑓𝑡 = 𝑥𝑠ℎ𝑖𝑓𝑡 ≠ 0.

𝑥𝑠ℎ𝑖𝑓𝑡 = 0.5 ⋅ 𝑥𝑐 ⋅ 𝑒
−0.5⋅((𝑥𝑐𝑆

4
)
2
+1.2⋅(𝑦𝑐𝑆

3
)
2
)

(3.1)

In equation 3.1 ”𝑥𝑐” and ”𝑦𝑐” are, respectively, the 𝑥 and 𝑦 coordinates of the particular atom in the
pattern which is being shifted (stretched or compressed). The variable ”S” represents half of the
length of the whole image (in the case of this report it always holds that 𝑆 = 500/2 = 250). This
third pattern is visible in figure 3.4. Formula 3.1 has been chosen, amongst other reasons, for the
fact that it is a 2 dimensional Gaussian function, with the property of being smooth. Moreover,
the parameters are chosen such that the displacement becomes 0 near the edges. Furthermore,
anticipating the second step of which the GPA method consists (computing the Fourier transform
for the lattices) another interesting property of the Gaussian function which led to it being used is
the fact that the Gaussian function is an eigenfunction of the continuous Fourier transform.

4. Especially after having performed more steps of the GPA method (see Chapter 2), one can see
that for the previous three patterns (figure 3.1, figure 3.2 and figure 3.4) several discontinuities
and abrupt decays occur at the edges of the lattices. In order to avoid this, the forth pattern which
I am introducing in this section is similar to the one presented in figure 3.4, with the addition of a
window spanning several pixels from each edge.

The window which is applied is subject to the following function:

𝑤𝑖𝑛𝑑𝑜𝑤(𝑥, 𝛿) = { 𝑠𝑖𝑛(
𝜋⋅𝑥
2𝛿)

2
, if |x| < 𝛿 or |x| > 500 − 𝛿

1, else
(3.2)

In equation 3.2, 𝑥 refers to the spacial coordinate and 𝛿 is the amount of pixels from the edge on
which the window is applied. In order to apply it, it is sufficient to multiply the function 𝑤𝑖𝑛𝑑𝑜𝑤 in
both the 𝑥 and 𝑦 directions with the pattern which one wants to transform. This fourth pattern with
smooth edges is portrayed in figure 3.6. This particular image has a window spanning 10 pixels
away from each edge towards the center of the lattice. (In other words in figure 3.6: 𝛿 = 10)

3.1. Defining the lattice patterns 13

Figure 3.1: Original square lattice, defined with a size of
500 by 500 pixels, depicting 50 by 50 atoms, correspond-
ing to 𝑟𝑘 = 0.1One can see the 𝑥 axis pointing downwards
and the 𝑦 axis pointing to the right. This lattice presents
no noise, no shift and no tilt. Defining this lattice is very
important, since all the future patterns are computed by
slightly adapting this particular image. Moreover, this lat-
tice is a very important benchmark test in the later com-
putation of the strain, because, seeing as it is made out a
a perfect pattern, no strain is to be expected at its level

Figure 3.2: Lattice composed out of two layers whichmeet
at the boundary defined at the center of the large lattice.
The right layer is rotated with 𝜃 = 6∘ with respect tot the
left layer. This image contains 500 by 500 pixels , corre-
sponding to 𝑟𝑘 = 0.1. The introduction of this pattern is of
high importance to the project, seeing as it is the first and
simplest pattern to present strain at the boundary where
the two layers meet. The difference between this figure
and a real HRTEM is that this one contains half-atoms,
fact which is not possible outside the simulation; 𝑟𝑘 = 0.1

Figure 3.3: The Gaussian shift defined earlier in this chap-
ter. It introduces a shift in the position of the atoms which
has the property of smoothening out towards the edges.
This shift is applied to the already tilted right image. One
does so because they might want to think ahead towards
the end goal and keep their reference region on the left,
in an area as smooth as possible, in order to be able to
properly understanding the mapping. The dimensions are
500 by 500 pixels

Figure 3.4: A 500 by 500 pixel lattice formed half by a
straight lattice and half by a tilted and shifted pattern. The
shift is Gaussian and plotted in figure 3.3. This is the rea-
son why, at the center of the lattice, one observes this
large deformation in the atom positions. This particular
image simulates very well an image with one might ob-
tain of a real deformed crystal by means of the HRTEM.
Therefore, defining it is of high interest; In this case 𝑟𝑘 is
still 0.1

14 3. Computational method

Figure 3.5: Lattice which represents a mathematical con-
cept: it contains 500 by 500 pixels, 𝑟𝑘 = 0.1 and it is
formed out of two layers: the left layer resembles the
straight lattice the right layer represents a tilted lattice with
an angle of 𝜃 = 6∘ with respect to the left layer. More-
over, the window function defined earlier in this chapter is
applied to it, in order to smoothen the boundaries and be
able to get rid of potential discontinuities which occur at the
edges and potentially facilitate the computations. This is
particularly useful when the lattice is part of a larger crys-
tal structure

Figure 3.6: Lattice which represents a mathematical con-
cept: it contains 500 by 500 pixels, 𝑟𝑘 = 0.1 and it is
formed out of two layers: the left layer resembles the
straight lattice the right layer represents a tilted lattice with
Gaussian shift and an angle of 𝜃 = 6∘ with respect to the
left layer. Moreover, the window function defined earlier
in this chapter is applied to it, in order to smoothen the
boundaries and be able to get rid of potential discontinu-
ities which occur at the edges and potentially facilitate the
computations. This is particularly useful when the lattice
is part of a larger crystal structure

3.2. Fourier transform of lattice patterns
As has been illustrated in Chapter 2, with the aid of the Fourier transform, one can easily convert
between the spacial variables (in this case the real space lattice vectors) and the spacial frequencies,
respectively. Following conventions used throughout the report, one can also call the Fourier transform
and the inverse Fourier transform the functions which convert between real space and g-space and the
other way around, respectively.

Once the patterns are introduced, the next step of the GPA method that leads to computing the desired
strain in between the layers of atoms is performing the Fourier transform on the lattices.

The Fourier transform is applied using a function implemented in the Python program. As expected
from literature (see Chapter 2), in this power spectrum several peaks corresponding to the highest
intensities of the spacial frequencies are visible. The Fourier transform images allow the selection of
the frequency given by the g-vector 𝑔1, which is consistent with the peak location which one chooses
to mask around. (Here the notation 𝑔1 has been chosen in order to emphasize the fact that it refers to
the first g-vector being selected)

Figures 3.7, 3.8, 3.9 and 3.10 portray the Fourier transforms of the original simple square lattice (figure
3.1), the simple square lattice tilted by 𝜃 = 6∘, the Fourier transform of figure 3.5 and the Fourier
transform of figure 3.6, respectively.

3.3. Peak selection and estimating the g-vectors
The next step is choosing the peak(s) to be masked. As is stated in Chapter 2, in order to be able
to later obtain the strain of a two-dimensional image, one also needs a second frequency vector, 𝑔2,
linearly independent from 𝑔1 to form a basis. For each of the 4 Fourier transforms which have been
performed, 2 non-parallel and non-collinear vectors are chosen. In order to convert between the length
of a certain vector and the location of the peak in pixel coordinates the following formula is used, which
can be applied to either of the components of the vectors:

3.3. Peak selection and estimating the g-vectors 15

Figure 3.7: Fourier transform applied to figure 3.1, depict-
ing a 500 by 500 pixels image defined in the g-space. This
Fourier transform depicts the presence of 4 bright peaks,
which correspond to high intensities values of the spacial
frequency. Out of this transformation 2 linearly indepen-
dent vectors must be chosen in order to mask around.
This image is very important to the whole project, as it
lies at the basis of the GPA method

Figure 3.8: Fourier transform applied to the tilted version
of figure 3.1, depicting a 500 by 500 pixels image defined
in the g-space. This Fourier transform depicts the pres-
ence of 4 bright peaks, which correspond to high intensi-
ties values of the spacial frequency. Out of this transfor-
mation 2 linearly independent vectors must be chosen in
order to mask around. This image is very important to the
whole project, as it lies at the basis of the GPA method

Figure 3.9: Fourier transform applied to figure 3.5, depict-
ing a 500 by 500 pixels image defined in the g-space. This
Fourier transform depicts the presence of 8 bright peaks,
which correspond to high intensities values of the spacial
frequency. Out of this transformation 2 linearly indepen-
dent vectors must be chosen in order to mask around.
This image is very important to the whole project, as it
lies at the basis of the GPA method

Figure 3.10: Fourier transform applied to figure 3.6, de-
picting a 500 by 500 pixels image defined in the g-space.
This Fourier transform depicts the presence of 8 bright
peaks, which correspond to high intensities values of the
spacial frequency. Out of this transformation 2 linearly
independent vectors must be chosen in order to mask
around. This image is very important to the whole project,
as it lies at the basis of the GPA method

16 3. Computational method

𝑔𝑥,𝑦 =
𝑝𝑒𝑎𝑘𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑥,𝑦 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑥,𝑦

500 (3.3)

In equation 3.3 the difference in between the coordinates is divided by 500 because that is the length
of one side of the square lattice and 𝑔𝑥 and 𝑔𝑦 are, respectively, the 𝑥 and 𝑦 components of generic
vector �⃗�, therefore in equation 3.3 the vector sign is left out. Due to the way the axis are defined,
the coordinates of the center of the lattice are: (249, 249). The coordinates of the peaks are at first
approximated visually. The elegance of the GPA method lies, amongst others,in the fact that it returns
the optimal g-vectors which one needs in order to compute the strain. For now, however, it is enough
to have the approximation done in equation 3.3.

It is more convenient and computationally correct, however, to do the peak selection through a func-
tion[14] performed in the computer algorithm, which has the properties of returning a certain number
of peak vectors that the user needs. For instance, since I am looking to compute the strain of a two-
dimensional lattice, I need two non-collinear vectors to form a basis, for two regions (the reference
region and the region I am looking to compute the strain at), which means four in total. Of course, there
are eight Bragg peaks visible, but due to symmetry they do not offer additional information. Therefore,
in this particular case, I would run the function in such a way that that it returns four sets of g-vectors.
This function, as one expects, facilitates the identification of the peak locations. In table 3.1 one can
see characteristics of the four vectors obtained computationally through peak selection. As I have said
in the previous lines, I have chosen to return four sets of g-vectors in the Fourier space. Concretely,
they are: two for the Fourier image corresponding to the straight lattice (𝜃 = 0∘) and two for the Fourier
image corresponding to the tilted lattice (𝜃 = 6∘) because the other four sets are, respectively, collinear
to the first four and do not offer any additional information. Moreover, due to the perfect lattice pattern
which is created, the values of the later four sets can be established in a symmetric way. Suppose these
vectors were collinear, then they would fail to make a basis which is later needed for the computation
of the strain.

In order to distinguish between the naming of the peaks which I have talked about until now in this
chapter and in Chapter 2, from this point on the naming of the 4 peaks will be as follows:

• 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 will be the g-vector corresponding to location 1 in figure 3.22 and it depicts the peak
extracted with the use of the Python function, corresponding to the straight lattice (figure 3.1).
This will be the first peak corresponding to the straight lattice. The vector arrow is left out in this
case in order not to make the parameter less uncluttered, thus it is important to note that this
parameter, as well as the three other ones which are yet to be defined, are vectors.

• 𝑔2𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 will be the length of the g-vector corresponding to location 2 in figure 3.22 and it will
depict the peak extracted with the use of the Python function, corresponding to the straight lattice
(figure 3.1). This will be the second peak corresponding to the straight lattice.

• 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 will be the length of the g-vector corresponding to location 3 in figure 3.22 and it will
depict the peak extracted with the use of the Python function, corresponding to the tilted lattice
(figure 3.2). This will be the first peak corresponding to the tilted lattice.

• 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 will be the length of the g-vector corresponding to location 4 in figure 3.22 and it will
depict the peak extracted with the use of the Python function, corresponding to the tilted lattice
(figure 3.2). This will be the second peak corresponding to the tilted lattice.

In table 3.1 is presented an additional overview of the respective peaks, their naming, their location,
and the corresponding g-vector lengths.

3.4. Masking the Fourier transform
Once the peaks are determined and clearly listed, one can proceed to the next step in the GPA method
which is filtering (also called masking) the Fourier transform previously obtained.

3.5. Raw phase 17

Table 3.1: Table depicting the naming of the 4 selected g-vectors, their 𝑥 and 𝑦 coordinates and their respective coordinates

Vector in question 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑔2𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑥-component 0 -0.1 -0.1 0.01
𝑦-component 0.1 0 0.01 0.1
𝑥-coordinate 249 199 199 254
𝑦-coordinate 299 249 254 299

Figure 3.11: Fourier transform applied to figure 3.5, depicting a 500 by 500 pixels image defined in the g-space. This Fourier
transform depicts the presence of 8 bright peaks, which correspond to high intensities values of the spacial frequency. Out of
this transformation 2 linearly independent vectors must be chosen in order to mask around. This image is very important to the
whole project, as it lies at the basis of the GPA method. This particular image is representative because it indicates, by white
arrows corresponding to numbers 1 through 4, where each of the 4 selected g-vectors lies.

The mask which I have chosen in the context of this project is a Hanning filter and is centered around
the selected peak. This function has been chosen due to its smoothing properties. The Hanning filter,
also called the ”Cosine Bell” has the scope of smoothing discontinuities at the beginning and end of
sampled signals [6].
The Hanning filter is applied, firstly, around vector 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and has a radius of ten pixels, in order to
also include vector 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, the peak corresponding to the tilted lattice. Secondly, the Hanning filter
is applied around vector 𝑔2𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, also with a radius of 10 pixels, in order to include vector 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,
the peak corresponding to the tilted lattice.

3.5. Raw phase
. The next step in the GPA method is performing the inverse Fourier transform on the filtered image
computed in the previous section with means of the Hanning filter and then plotting its raw geometrical
phase, 𝑃𝑀(𝑟). The𝑀 is used as an index in order to emphasize the fact that the raw phase is obtained
after having masked the Fourier transform. These operations are done in the Python program using
specific functions. The function which computes the phase has the property of reducing it to the interval
[−𝜋, 𝜋] (due to the lack of information which can be extracted from the periodicity of the phase and the
inconvenience of working with high numbers). The raw phase images which are obtained by masking
vectors 𝑔1 and 𝑔2 are portrayed in figures 3.12 and 3.13.

For figure 3.6 the raw phase images for vectors 𝑔1 and 𝑔2 are, respectively: images 3.14 and 3.15.

18 3. Computational method

Figure 3.12: Raw phase image obtained by taking the
phase of the inverse Fourier transform of the Fourier trans-
form of figure 3.5 which was masked around 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.13: Raw phase image obtained by taking the
phase of the inverse Fourier transform of the Fourier trans-
form of figure 3.5 which was masked around 𝑔2𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.14: Raw phase image obtained by taking the
phase of the inverse Fourier transform of the Fourier trans-
form of figure 3.6 which was masked around 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.15: Raw phase image obtained by taking the
phase of the inverse Fourier transform of the Fourier trans-
form of figure 3.6 which was masked around 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡

3.6. Reduced phase calculation and reference selection 19

3.6. Reduced phase calculation and reference selection
Once the raw phase is computed, one starts to anticipate and think more towards the end goal: ob-
taining the strain. It is crucial to select a reference region in order to be able to compute the strain with
respect to it. Ideally, the reference region must be chosen as a smooth surface and having close to no
discontinuities. In order to achieve this, the reduced phase is plotted and the reference area is selected
according to the obtained figure and to where the smooth areas are located.

By definition, the reduced phase 𝑃𝑟𝑀(𝑟) is equal to:

𝑃𝑟𝑀(𝑟) = 𝑃𝑀(𝑟) − 2𝜋�⃗� ⋅ 𝑟 (3.4)

In equation 3.4 the 𝑟 in the superscript of 𝑃𝑟𝑀 refers to the fact that the phase is reduced. The vector 𝑟
refers to the coordinate of the pixel of the image at which one is computing the reduced phase. �⃗� is, as
always, the vector corresponding to the spacial frequency in Fourier space. In this particular case of
equation 3.4 it is the vector corresponding to the peak which was used to mask around, or the second
one close to it, which is not exactly the center, but part of the mask due to the radius of 10 pixels.

For instance, if one chooses to compute the reduced phase image corresponding to the mask made
around 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (figure 3.12), then either 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 itself must be used in equation 3.4, or 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑.
If 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is chosen, then one expects for the smooth region to be found on the left side. This is
intuitive, seeing as the left side corresponds to the simple straight lattice, just as 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 does. On
the other hand, if 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is used to compute the reduced phase in equation 3.4, then one expects
for the smooth region to be found on the right side, since the right side corresponds to the tilted lattice,
just as 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 does. Checking whether this holds is a very important step in the process, seeing as
this is the optimal verification to see the following:

• whether the right non-colinear peaks have been selected to form the reduced phase image

• whether one has correctly used the correlations amongst the peaks, their coordinates and their
lengths

• whether all the steps performed so far (constructing the lattices, performing the Fourier trans-
forms, masking the Fourier transforms and taking the) work appropriately

Getting back to equation 3.4, the reduced phase is calculated by subtracting from the previously de-
termined raw phase a term given by 2𝜋�⃗� ⋅ 𝑟. As said before, 𝑟 depicts the location of one specific pixel
at which the previously mentioned equation is defined. In order to obtain the sought for image pattern
one must apply the equation for every pixel, using an iterative loop (performed in Python in the context
of this project).

The main challenge in doing so lies in transforming the vectorial product �⃗� ⋅ 𝑟 into a phase image with
values which are also found in the interval [−𝜋, 𝜋], just as the raw phase.

Therefore, the following modification is applied to equation 3.4:

𝑃𝑟𝑀(𝑟) = 𝑃𝑀(𝑟) − ((2𝜋�⃗� ⋅ 𝑟 + 𝜋)𝑚𝑜𝑑(2𝜋) − 𝜋) (3.5)

Equation 3.5 makes sure of the fact that the values for the reduced phase image remain in the interval
[−𝜋, 𝜋].
To conclude the clarification regarding how to obtain the reduced phase image, one can see in figure
3.16 the reduced phase image corresponding to vector 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and in figure 3.17 the reduced phase
image corresponding to vector 𝑔2𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑. In order to perform the checks mentioned above regarding
the choice of g-vectors the reduced phase images obtained by using vectors 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
are also portrayed in images 3.19 and 3.18, respectively. One can now see that the g-vectors in ta-
ble 3.1 have been defined correctly and that the steps performed so far are fitting. In figure 3.19 one
observe in the right half that there is a completely smooth pattern.This is normal, since the masking
has been done around 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, not around 𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑. Therefore, subtracting the term containing

20 3. Computational method

Figure 3.16: Reduced phase image corresponding to fig-
ure 3.12 and using the subtract term corresponding to vec-
tor ⃗𝑔1𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.17: Reduced phase image corresponding to fig-
ure 3.12 and using the subtract term corresponding to vec-
tor ⃗𝑔2𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.18: Reduced phase image corresponding to fig-
ure 3.12 and using the subtract term corresponding to vec-
tor ⃗𝑔3𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.19: Reduced phase image corresponding to fig-
ure 3.12 and using the subtract term corresponding to vec-
tor ⃗𝑔4𝑠𝑒𝑙𝑒𝑐𝑡

𝑔4𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 leads to the possible presence of a few extra wave vectors. This is exactly the case in fig-
ure 3.19. This possibility depends on the distance between the peaks which are masked together, the
amount of pixels over which they span and the sharpness of the peaks. This also explains why in figure
3.18 one observes a homogeneous pattern on the entire right side: perhaps the peak corresponding
to 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is defined better, more towards a high sharpness region, or perhaps this peak is spanned
over fewer pixels. One must also keep in mind that the establishing the peak positions has still been
done through visualisation, the use of a Python function which returns a number that only roughly in-
dicates the length of the g-vector, or perhaps by trial and error using the checks of the reduced phase
image, depending on the reader’s choice.

Now that the reduced phase images have been established, one can define the reference region. It
is important, as stated previously, to select a smooth region, away from the edges of the lattice in
order to avoid discontinuities. As long as these conditions are met, the choice of the reference region

3.7. Accurate computation of g-vector 21

Figure 3.20: Reduced phase image corresponding to fig-
ure 3.14 and using the subtract term corresponding to vec-
tor ⃗𝑔1𝑠𝑒𝑙𝑒𝑐𝑡

Figure 3.21: Reduced phase image corresponding to fig-
ure 3.14 and using the subtract term corresponding to vec-
tor ⃗𝑔2𝑠𝑒𝑙𝑒𝑐𝑡.

is completely arbitrary and left to the reader. I have chosen the rectangle with the following points,
with coordinates: (50, 149),(50, 149) and it can be visualised in image 3.22. Then reason to do so is
because the left region is homogeneous, perfect and straight, without any shifts. Therefore, calculating
the strain with respect to it is more intuitive and easy to visualise. From now on this region will be called
𝒪 .

3.7. Accurate computation of g-vector
As has been stated before, the elegance of the GPA method lies, amongst others, in the fact that it
gives as output an accurate and optimal value of the g-vector. This section is dedicated towards show-
ing the mathematical steps which lead to obtaining this vector.

The main idea is that one must find the value for �⃗� for which the following function is minimised:

𝑓(�⃗�, 𝑐) = ∑
𝑟∈𝒪

||𝑃𝑀(𝑟) − 2𝜋(�⃗� ⋅ 𝑟 − 𝑐)||
2 (3.6)

In equation 3.6 the summation over all pixels in the previously chosen region 𝒪 is performed over the
absolute values of the term 𝑃𝑀(𝑟) − 2𝜋(�⃗� ⋅ 𝑟 − 𝑐) and then taken to the power of 2. The corresponding
values of the components of the vector �⃗� (the 𝑥 and 𝑦 components, respectively) and the constant 𝑐
for which the function in equation 3.6 has a minimal value are the sought for answers. Moreover, all of
the terms in equation 3.6 are real, which means that the absolute value can be left out in all the future
computations.

Solving the previously stated minimisation problem can be performed in two ways: ”by hand”, with a
process which involves partial differential equations, or through the computer algorithm which uses
built-in functions. The results presented in this project are obtained by using the later method, but for
mathematical completeness I am also presenting in this section the steps which one would perform ”by
hand” to solve the minimisation problem. At the start of the project I have attempted using this later
method. However, this gave an error regarding the output of the optimal g-vectors.

Assuming that a solution exists, it means that by taking the partial derivatives of 3.6 with respect to the
𝑥 component of �⃗� (called 𝑔𝑥), the 𝑦 component of �⃗� (called 𝑔𝑦) and the constant 𝑐 are all equal to 0. In
other words:

22 3. Computational method

Figure 3.22: Here figure 3.16 is represented again, depicting the reduced phase image corresponding to figure 3.12 and using
the subtract term corresponding to vector ⃗𝑔1𝑠𝑒𝑙𝑒𝑐𝑡. This figure is used in order to properly portray the reference region labeled
𝒪 by a square with red border. The coordinates of the square are (50, 149) in both directions: alongside the 𝑥 axis, as well as
alongside the 𝑦 axis. This is part of one of the steps of the GPA method

𝜕𝑓(�⃗�, 𝑐)
𝜕𝑔𝑥

= 0, (3.7)

𝜕𝑓(�⃗�, 𝑐)
𝜕𝑔𝑦

= 0, (3.8)

𝜕𝑓(�⃗�, 𝑐)
𝜕𝑐 = 0 (3.9)

Solving the left members of equations 3.7, 3.8, 3.9, using the compact vectorial writing, eliminating the
multiplication constants that appear after the differentiation (which have no influence seeing as the right
hand side is 0), one gets the following equations for 𝑐 and 𝑟, respectively:

∑
𝑟
𝑃𝑀(𝑟) − 2𝜋(�⃗� ⋅ 𝑟 − 𝑐) = 0 (3.10)

∑
𝑟
(𝑃𝑀(𝑟) − 2𝜋(�⃗� ⋅ 𝑟 − 𝑐))𝑟 = 0⃗ (3.11)

Splitting equation 3.11 into the 𝑥 and 𝑦 components and rearranging the systems of equations into a
matrix equation one gets:

∑
(𝑥,𝑦)

(
2𝜋 −2𝜋𝑥 −2𝜋𝑦
2𝜋𝑥 −2𝜋𝑥2 −2𝜋𝑥𝑦
−2𝜋𝑦 −2𝜋𝑥𝑦 −2𝜋𝑦2

) ⋅ (
𝑐
𝑔𝑥
𝑔𝑦
) = ∑

(𝑥,𝑦)
(
−𝑃𝑀(𝑟)
−𝑃𝑀(𝑟) ⋅ 𝑥
−𝑃𝑀(𝑟) ⋅ 𝑦

) (3.12)

Equation 3.12 can then be solved using a computer algorithm. The raw phase 𝑃𝑀 is known at each
point (𝑥, 𝑦) (shown in figure 3.12), each point with coordinates (𝑥, 𝑦) is known, therefore, with the above
three components of the equation one can easily compute the corresponding values for 𝑐, 𝑔𝑥 and 𝑔𝑦.

3.7. Accurate computation of g-vector 23

All these operations have thus been performed on a chosen region of reference 𝒪. As stated before,
equation 3.12 was ultimately not used in the computational method, due to the cumbersome layout of
formulas in the code, which made it difficult for the error to be found, but also due to the fact that the
code did not give the right g-vector as output.

Next, it must be specified that for any pixel 𝑟 of the lattice (in real space), there is always the possibility
of defining a region 𝑅 centered around it. It is important, however, for this region 𝑅 to contain at least
three atoms. If not, the local lattice vectors are undefined. In order to obtain the strain, the g-vectors
must be computed in each pixel of the lattice. The computer algorithm, therefore, making use of a
recursive method, computes the optimal value of �⃗� in each region 𝑅. The code lets the user vary this
the dimensions 𝑅. However, seeing as the line of code responsible with computing the minimum is
quite demanding with respect to the running time, I have chosen it 20 by 20 pixels. In such a region
there can be at most 4 atoms.

Seeing as this method did not work for me, I then tried another approach: creating a function to be
minimised [16]. This function was the right member of equation 3.5, taken to the power of 2. It was
clear, however, that after performing a benchmark test the output of the g-vectors did not correspond
with what one expected. Moreover, since this operation must be performed in order to compute the
g-vectors corresponding to each pixel of the matrix, one quickly realises that the running time of the
algorithm is of the order of a few hours, which can be cumbersome and inconvenient. I believe that
the implemented minimisation function in the Python algorithm gives the wrong results when applied
to this particular saw-tooth function,

A third method to try and compute the minimum g-vectors was then implemented: using the built-in
function in Pyhton of performing the curve-fit [17]. The output, in this case, should then have been the
optimal array formed out of optimal values for 𝑔𝑥, 𝑔𝑦 and 𝑐, respectively. Unfortunately, this method
does not return the expected results either, probably also due to the discontinuities present in the func-
tion which must be fitted. In this case I chose to fit the function given by (2𝜋�⃗� ⋅ 𝑟+𝜋)𝑚𝑜𝑑(2𝜋)−𝜋, onto
the raw phase values for each pixel given by 𝑟.

It is important to mention that all the methods presented above compiled in Python and what I believe
that one needs to do at this point is to do some deep research regarding the minimisation of this type of
discontinuous function which this project demands to be used. Unfortunately, due to the strict timeline
of the project, at the moment of the discussion of the thesis I have not yet had time to do. However, it
is also particular that the Python built-in functions are not able to return the parameters corresponding
to the minimum value of this particular function. At a certain point, the pure mathematical operations
and the built-in numerical methods in Python stop agreeing and that is where the error occurs. Why
this exactly happens, is, unfortunately, still a mystery.

Assuming that one has succeeded in obtaining the sought-for optimal g-vectors, I am going to introduce
the following notations: 𝐺(𝑅), which is a 2 by 2 matrix, defined in a certain pixel 𝑟 which in turn is the
center of a certain region R. 𝐺(𝒪) is also a 2 y 2 matrix defined in a certain pixel 𝑟𝒪 which indicates the
center of the region 𝒪. By definition, the previously defined matrices are equal to:

𝐺(𝑅) = (𝑔𝑥1(𝑟) 𝑔𝑥2(𝑟)
𝑔𝑦1(𝑟) 𝑔𝑦2(𝑟)

) (3.13)

In equation 3.13 𝑟 is the center of the region 𝑅. 𝑔𝑥1 and 𝑔𝑦1 are, respectively, the 𝑥 and 𝑦 components
of the g-vector corresponding to

An analogue computation is performed for the case of 𝑃𝑀2 (shown in figure 3.12). One now has found
optimal values for the following variables: 𝑐1, 𝑔𝑥1 , 𝑔𝑦1 , 𝑐2, 𝑔𝑥2 and 𝑔𝑦2 . In the computer program all
these values are stored, for each pixel (x,y) in a dictionary and can easily be accessed. From this
dictionary all the matrices and vectors defined and used in section 3.8 can be computed. A disclaimer,
however must be added: due to the fact that at the boundaries of the lattices abrupt discontinuities
occur, one must stay away from them. This is done by leaving all the values corresponding to any of
the boundary pixels equal to zero (such as �⃗�, �⃗�, c and so on), 15 pixels away from each side.

24 3. Computational method

3.8. Strain computation
Once the optimal values for 𝑐1, 𝑔𝑥1 , 𝑔𝑦1 , 𝑐2, 𝑔𝑥2 and 𝑔𝑦2 are found, one has all the necessary parameters
and variables in order to compute the desired strain. For this, however, I need to introduce a few more
notions before proceeding.

From literature (see Chapter 2), to each vector in the reciprocal space of the form �⃗� corresponds a
direct lattice vector of the form �⃗�. In order to give a better overview of the computations, seeing as one
is working with two non-parallel vectors �⃗�, each having two components, I will introduce once again
matrix notation. Therefore, at a particular pixel given by the vector 𝑟 with components (x,y), one has
the following relation:

𝐴(𝑟) = (𝑎𝑥1(𝑟) 𝑎𝑥2(𝑟)
𝑎𝑦1(𝑟) 𝑎𝑦2(𝑟)

) = (𝐺(𝑟)−1)𝑇 = ((𝑔𝑥1(𝑟) 𝑔𝑥2(𝑟)
𝑔𝑦1(𝑟) 𝑔𝑦2(𝑟)

)
−1
)
𝑇

(3.14)

Equation 3.14 can be used only if 𝐺(𝑟) is a non-singular matrix, in other words if det(𝐺(𝑟)) ≠ 0. In
case this doesn’t occur, for the regions where 𝐺(𝑟) is a singular matrix I set the value of 𝐴(𝑟) = (0 0

0 0).
Furthermore, the symbols 𝑇 and −1 in the exponent in equation 3.14 refer to the transpose and inverse
operations, respectively.

In particular, for any pixel in a certain region 𝑅 one can write the following relation between the positions
of the atoms and the local lattice vectors (in real space):

𝑟𝛼𝛽(𝑅) = (𝑐1(𝑅) + 𝛼) ⋅ 𝑎1(𝑅) + (𝑐2(𝑅) + 𝛽) ⋅ 𝑎2(𝑅) (3.15)

In equation 3.15 𝛼 and 𝛽 are integers which describe one particular lattice atom found at any position
𝑟 in region R. Rewriting this equation into matrix form one gets:

(𝑥(𝑅)𝑦(𝑅)) = (
𝑎𝑥1(𝑅) 𝑎𝑥2(𝑅)
𝑎𝑦1(𝑅) 𝑎𝑦2(𝑅)

) (𝑐1(𝑅) + 𝛼𝑐2(𝑅) + 𝛽) (3.16)

I define now 𝐴𝑂 as being the 𝐴 matrix defined in the center of region 𝑂. The coordinates of this partic-
ular pixel are named: 𝑥𝑂 and 𝑦𝑂. In the case where the center is float, the computer program selects
the rounded number and transforms it in an integer, seeing as the pixels 𝑟 are only defined as integers
in the interval [0, 499]. In addition, I also define the constants 𝑐1(𝑂) and 𝑐1(𝑂) as being the 𝑐1 and 𝑐2
values in point (𝑥𝑂 , 𝑦𝑂), respectively.

A similar equation to equation 3.16 can be thus written for the coordinate (𝑥𝑂 , 𝑦𝑂):

(𝑥(𝑂)𝑦(𝑂)) = (
𝑎𝑥1(𝑂) 𝑎𝑥2(𝑂)
𝑎𝑦1(𝑂) 𝑎𝑦2(𝑂)

) (𝑐1(𝑂) + 𝛼𝑐2(𝑂) + 𝛽) (3.17)

Equations 3.16 3.17 are needed in order to be able to establish a relation between (𝑥(𝑅), 𝑦(𝑅)) and
(𝑥(𝑅), 𝑦(𝑅)). Eliminating 𝛼 and 𝛽 one gets the desired relation:

(𝑥(𝑅)𝑦(𝑅)) = 𝐴(𝑅)𝐴(𝑂)
−1 (𝑥(𝑂)𝑦(𝑂)) + 𝐴(𝑅) (

𝑐1(𝑅) − 𝑐1(𝑂)
𝑐2(𝑅) − 𝑐2(𝑂)) (3.18)

Using amore compact notation, 𝐴 = 𝐴(𝑅),(𝑥𝑂 , 𝑦0) = 𝑟𝑂, 𝐴(𝑂) = 𝐴𝑂, (𝑐1(𝑅), 𝑐2(𝑅)) = 𝑐 and (𝑐1(𝑂), 𝑐2(𝑂)) =
𝑐𝑂 one eventually obtains:

𝑟 = 𝐴𝐴𝑂−1𝑟𝑂 + 𝐴(𝑐 − 𝑐𝑂) (3.19)

3.8. Strain computation 25

The difference between 𝑟 and 𝑟𝑂 is the displacement in the GPA. In other words, 𝑟 − 𝑟𝑂 = �⃗�. Assuming
that this displacement is infinitesimal, the local distortion matrix can now be introduced as having the
following components: 𝑒(𝑅)𝑖𝑗 =

𝜕𝑢𝑖
𝜕𝑥𝑗

. Computing in detail the right hand side of the previous equation,
one obtains the following equation:

𝑒(𝑅) = 𝐼 − 𝐴𝑂𝐴−1 (3.20)

It is important to note that since each component of the displacement vector is being differentiated with
respect to two variables, the strain matrix, as well as the rotation matrix will each have 2x2 elements.
In case of an infinitesimal distortion, the strain (𝜖) is defined as the symmetrical part of the distortion
matrix. The rotational matrix (𝑅𝑀), on the other hand, is equal to the anti-symmetric part. In other
words:

𝜖 = 1
2(𝑒(𝑅) + 𝑒(𝑅)

𝑇) = (𝜖𝑥𝑥(𝑅) 𝜖𝑥𝑦(𝑅)
𝜖𝑦𝑥(𝑅) 𝜖𝑦𝑦(𝑅)) (3.21)

𝑅𝑀 = 𝐼 +
1
2(𝑒(𝑅) − 𝑒(𝑅)

𝑇) = (𝑅𝑥𝑥(𝑅) 𝑅𝑥𝑦(𝑅)
𝑅𝑦𝑥(𝑅) 𝑅𝑦𝑦(𝑅)) (3.22)

The strain image and rotation have been plotted, for the sake of testing and discussing the desired
outcome with the already implemented computer algorithm for GPA [13]. More on this can be seen in
Chapter 4.

4
Results and Discussion

This chapter is dedicated to presenting and discussing the obtained results through the computational
method performed in Chapter 3. I start by examining some of the images in the previous chapter, then
I introduce new results regarding the strain computation which have not yet been made visible. I then
proceed by discussing the strain results one would obtain by using the software ”Strain++ measure
strain in TEM images”, an algorithm implemented in C++ by J. J. P. Peters and detailed in [13], and
argue why these are the images one should expect. The last part of this chapter is dedicated to the
presentation of part of my own results which does not lead to the desired effect and why this might
be. Moreover, advice for how to improve and bring future addition to the Python code is presented
throughout this chapter.

4.1. Discussion of results for sections 3.1-3.6
Up to and including the computation of the reduced phase pattern (section 3.6) one obtains patterns
which completely coincide with what the literature suggests [18].

With other words, the creation of the desired lattice patterns, as one can see in section 3.1, is performed
as wanted. This can be checked by several means such as:

• counting the atoms by hand (as the resolution of the images in this section is quite high): however,
this can be quite cumbersome and inefficient

• changing lattice parameters: for instance, one could set 𝑟𝑘 = 0.05, which is half of the value used
in creating all the latices in section 3.1. Seeing as 𝑟𝑘 is defined in reciprocal space, one expects
for the new lattices to contain atoms that are twice as large. This can indeed be checked in figure
4.1 and its Fourier transform, figure 4.2. The Bragg peaks, which one would expect, are also
located at half the distance with respect to the center (249,249) of the lattice of what they were
before, with the use of the initial value of 𝑟𝑘.

• checking the rotation of the tilted lattice: in the Python program, the tilt has been performed with
an angle of 𝜃 = 6∘ ≈ 1 rad. This can be visualised in the lattices which contain a tilted layer, but a
better check is to verify the concrete values of the rotation matrix defined in equation 3.22. This
check is broadly discussed in the next sections and I can already state that it agrees with what
one would expect.

The initial selection of the four Bragg peaks (see table 3.1) is also done correctly. First of all, the GPA
method states that it is not mandatory, especially in the early stages, to select an optimal peak location.
Moreover, the reduced phase image must contain a smooth region on the side of the lattice correspond-
ing to a particular g-vector. Seeing as one is still working in these sections with no additional shift in
the positions of the atoms, just with the presence of tilt of the whole lattice, the expected homogeneous
region is (almost) one of the sides of the lattice (left or right) itself. Some inhomogeneity (figure 3.19)
can still be expected (in the form of an addition waves), but this has already been verified and explained
in the previous chapter.

27

28 4. Results and Discussion

Figure 4.1: Original square lattice, defined with a size of
500 by 500 pixels, corresponding to 𝑟𝑘 = 0.05. One can
see the 𝑥 axis pointing downwards and the 𝑦 axis point-
ing to the right. This lattice presents no noise, no shift
and no tilt. The number of atoms in this image is 25x25.
This lattice serves to check whether the defined lattices in
Chapter 3 are correctly computed and plotted. One would
expect that by making the k-vector in the reciprocal space
twice as small, the dimensions of the atoms in the real
space image become twice as large. This is indeed the
case in this figure, which confirms the correctness of the
implementation of the lattices in the code

Figure 4.2: Fourier transform of figure 4.1. This image
is defined in the Fourier domain and contains 500 by 500
pixels. It is used to verify whether the Fourier transform in-
troduced in Chapter 3 has as output the correct expected
values. One can see the expected 4 Bragg spots, which,
however, now have a different coordinate- than before
when 𝑟𝑘 = 0.1: the distance between each peak and the
center (249, 29) has halved with respect to the way it was
in the case of the Fourier transform of a lattice with 𝑟𝑘−0.1
This is indeed the case in this figure, which confirms the
correctness of the implementation of the Fourier transform
in the code

The raw phase image also corresponds to what one would expect (see literature [18]). The abrupt
jumps in the phase gradient (portrayed by the jump from red to blue) is to be expected since the phase
is forced to lie in the interval [−𝜋, 𝜋]. With other words, the discontinuities in the raw phase have no
correlation at all with possible discontinuities in the original lattice. However, the abrupt change in the
orientation of the phase from one side to the other is due to the fact that that is the layer boundary
which is, indeed, a discontinuity in the crystal and also the place where one would later on expect to
see peaks in the value of the strain.

4.2. Discussion and results for sections 3.7 and 3.8
The step corresponding to the computation of accurate g-vectors is, unfortunately, the place where my
code does not return the expected results and which prohibits me from displaying a correct strain image
at this moment in time.

As I have explained in Chapter 3, I have so far attempted three main methods of computing the optimal
g-vectors corresponding to:

• the ”by hand” approach in which I have performed the minimisation myself and the Python code
just needs to solve a system of equations

• using the minimisation function already implemented in Python. Since this function uses a Sim-
plex algorithm, I think that, amongst other reasons, the reason for which the output of the optimal
g-vectors is mistaken, is the possible incompatibility of the Simplex algorithm with the function
one desires to minimize

• using the curve-fit function, which is also implemented in Python and which, just as the previous
two methods, gives a wrong result

Further in this section I will present and discuss some of my outputs by using the curve-fit algorithm.
I have chosen to give more details on this particular method because it takes less amount of time to

4.2. Discussion and results for sections 3.7 and 3.8 29

compile than the minimisation function and because it avoids the possibility of human error to hide itself
in the process (as is the case with the ”by hand” method). The second two methods, are of course also
available in the code.

In order to shine some light on this particular section of the code, I want to break down the lines of which
it is composed and explain in better detail the method used to compute the optimal values through
means of the curve-fit. For this part of the report especially it can be helpful for the reader to also
consult with the appendix while reading (see A).

The function to be fitted is defined as:

𝑓𝑢𝑛𝑐(𝑔𝑥 , 𝑔𝑦 , 𝑐) = (2 ⋅ 𝜋 ⋅ (𝑔𝑥 ⋅ 𝑥 + 𝑔𝑦 ⋅ 𝑦 − 𝑐 − 𝜋))𝑚𝑜𝑑(2𝜋) + 𝜋 (4.1)

In equation 4.1 𝑔𝑥, 𝑔𝑦 and 𝑐 are the respective optimal values which need to be given as output by
the curve-fit. Before trying to calculate the matrix 𝐺(𝑅) (see equation 3.14) for all values of possible
regions 𝑅, a test code is performed which I am going to discuss now (the operations are then redone
in the context for a recursive loop in order to compute what is done in the test code for one 𝑅, for all
𝑅’s of the lattice).

Since strain is computed with respect to a reference region, first the above mentioned minimisation is
done for for the reference region 𝒪. The 𝑥 and the 𝑦 data given to the fit function are, respectively, the 𝑥
and 𝑦 coordinates of pixel in region 𝒪. A variable 𝑍 is defined as the phase values corresponding to the
specific part of the lattice one is looking at (left or right or in another words raw phase image obtained
through masking a vector corresponding to the straight half of the lattice or the vector corresponding
to the tilted half). This is done because one would like to fit 𝑓𝑢𝑛𝑐 on 𝑍 in every pixel in the desired
pre-selected region. In any case, the fitting must be performed twice, in order to obtain two sets of
optimal values for �⃗� and 𝑐. The initial guesses needed by the algorithm are the selected peaks in table
3.1. By running the code, one can see that the closer the initial guess is to the optimal value which one
expects, the better the result is. Unfortunately, having to depend on this condition is incorrect, seeing
as the algorithm should be able to compute the optimal values regardless of the input values. This
dependency on needing to insert already optimal values as first guesses in the fitting function is bound
to result into wrong results.

The process is then repeated for an arbitrary area 𝑅. For the sake of testing the code, I defined it in
the right side of the lattice (where one expects the strain to be seeing as the origin is chosen on the left
side, which is uniform and smooth throughout).

In order to check the above made statements, I have plotted three figures which depict the following
images, defined on a 21 by 21 pixels. The vertices of this region , which I will call ℛ, have the following
coordinates: (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (270, 290, 270, 290)

1. figure 4.3 and figure 4.3 depict 𝑍 at every point in the defined region,

2. figure 4.4 depicts the value of 𝑓𝑢𝑛𝑐 in the defined region, by plugging in the optimal values for
𝑔𝑥, 𝑔𝑦, 𝑐 when the initial guess is 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡. The optimal values are supposed to be close to the
values of 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡

3. figure 4.5 depicts the value of 𝑓𝑢𝑛𝑐 in the defined region, by plugging in the optimal values for
𝑔𝑥, 𝑔𝑦, 𝑐 when the initial guess is 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡. The optimal values are supposed to be close to the
values of 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡

As one can see from figures 4.3, 4.4 and 4.5, for the particular region ℛ which has been used in this
test, the obtained values are very accurate. However, as soon as the initial guesses start changing,
one notices that the image 4.5 drastically changes for the worse. From figures 4.4 and 4.5 it is clear
that the output is exactly the initial guess: 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡 and 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡, respectively. The error in the code lies
in this section corresponding to the curve-fitting: the fact that the optimal values, regardless of the used
method, depend on the initial guesses used in the minimisation algorithms.

30 4. Results and Discussion

Figure 4.3: Raw phase image plotted
for the region ℛ. With other words,
this is a 21 by 21 pixels snapshot from
a raw phase figure similar to 3.12,
but which one would have to obtain
through masking the peak 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡 in-
stead of 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡

Figure 4.4: Mapping of the values from
region ℛ of function 𝑓𝑢𝑛𝑐 by plug-
ging in the optimal values for 𝑔𝑥, 𝑔𝑦,
𝑐 when the initial guess is 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡.
The optimal values are supposed to be
close to the values of 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡. This is
indeed the case

Figure 4.5: Mapping of the values from
region ℛ of function 𝑓𝑢𝑛𝑐 by plug-
ging in the optimal values for 𝑔𝑥, 𝑔𝑦,
𝑐 when the initial guess is 𝑔1𝑠𝑒𝑙𝑒𝑐𝑡.
The optimal values are supposed to be
close to the values of 𝑔3𝑠𝑒𝑙𝑒𝑐𝑡. Here
lies the error of the code

4.3. Expected strain images and discussion
As has been mentioned at the start of this chapter, it is of interest to check and analyse what one should
obtain through means of my Python code. I do so by using the algorithm implemented in C++ by J. J.
P. Peters detailed in [13]. In this section I will not only explain how to obtain the strain, but also a short
description of the steps.

The algorithm requires the upload of a grayscaled image of the lattice. In my Python code one can easily
obtain these images through simply changing the coloring of the figures already obtained in section 3.1.
The next step is to select the g-vectors and to mask around them. This is done almost identically to
what I have explained in section 3.3, with a slight modification: the axes and their orientation (𝑥 and 𝑦)
are defined differently from the way it is done in this project. Therefore, in order to identify the location of
the g-vectors with what my project suggests, one must use the respective g-vectors mentioned in table
3.1, but rotated with 90∘ counterclockwise. It is important to mention that this is also the reason why
the components of the strain matrix 3.21 differ from the ones I introduced in this current chapter. The
𝑥𝑦 component is actually the 𝑦𝑥 component and the other way around. The 𝑥𝑥 component is actually
the 𝑦𝑦 component and other way around. In this section have therefore re-named the strain images
according to this later definition, which the C++ algorithm also implements [13].

Next, I will enumerate some of the lattice patterns introduced in section 3.1 and show the respective
plots for strain and rotation. I have chosen the lattice patterns which I believe to be illustrative for a
complete discussion regarding the lattice strain. In the first case (of a simple straight lattice) I also
inserted the intermediate Fourier transform plot performed with the algorithm implemented in C++. In
the other presented patterns I have left out the images corresponding to the Fourier transform, but
inserted the rotation matrices and the strain matrices, since the later is the main focus of the project
and the rotation matrix is a measure of checking the results. I want to point out the fact that in order
to be able to nicely analyse the rotation and strain plots, I have chosen a color gradient which has the
role of emphasizing the fact that color light green corresponds with a value of zero.

1. Figure 4.6 is the simple straight lattice: This lattice is the grayscaled version of image 3.1 and
represents the benchmark test in order to see whether the results concerning the obtained are
correct. Since in this case one has a perfect straight square lattice, it is clear that the strain
matrices and the rotation matrices should all be equal to zero. Indeed, this is visible in figures
4.8, 4.9 and 4.10, as the values of all the numbers of which these three matrices are made of are
(almost) zero. All the other components of the strain and rotation (𝑦𝑦, 𝑦𝑥) are left out since they
all are equal to the zero matrix and introducing them would be redundant.
In reality, there is a very small imperfection, as the color which is indicated is a bit darker/lighter
than the reference in some cases, but this can be due to the approximation errors lying in the
C++ algorithm and in the fact that the created lattice in Python is not entirely perfect, also due to

4.3. Expected strain images and discussion 31

Figure 4.6: Grayscaled version of im-
age 3.1

Figure 4.7: Fourier transform of image
3.1

Figure 4.8: Image portraying
𝜖𝑥𝑥, the 𝑥𝑥 component of the
strain matrix corresponding to
image 4.6 which has only zero
values due to the fact that the
lattice in question has a perfect
crystal structure

Figure 4.9: Image portraying
𝜖𝑥𝑦, the 𝑥𝑦 component of the
strain matrix corresponding to
image 4.6 which has only zero
values due to the fact that the
lattice in question has a perfect
crystal structure

Figure 4.10: Image portraying the pa-
rameter 𝑤𝑥𝑦, which is the 𝑥𝑦 com-
ponent of the rotation matrix corre-
sponding to image 4.6 which has only
zero values due to the fact that the
lattice in question has a perfect crys-
tal structure

small approximation errors. Moreover, it is important to state the fact that since this lattice is finite,
it cannot be completely perfect, by default. Nevertheless, this benchmark test clearly states the
fact that the used algorithm gave correct results as output. In figure 4.7 one can see the Fourier
transform (together with the selected peaks) of figure 4.6.

2. Figure 4.11 depicts a lattice containing one layer corresponding to a simple straight lattice and
one layer corresponding to a tilted lattice: this is the grayscaled image of the pattern shown in
3.2. Figures 4.12-4.14 are the 𝑥𝑥, 𝑥𝑦 and 𝑦𝑦 components of the corresponding strain, figures
4.15 and 4.16 are the 𝑥𝑦 and 𝑦𝑥 components of the corresponding rotation matrix. By looking
at these figures, one can notice that they get what they expect: peaks corresponding to extreme
values of the strain at the boundary of the two layers. The series of peaks which can be observed
in some of the pictures close to the right side of the images might correspond to the fact that the
algorithm interprets the inputted lattice as being part of a period structure. Intuitively, seeing as
other layers might be present on the boundaries of the lattice, the appearance of peaks at the
edges is completely justified and will not be mentioned again, not even in images similar to this
one. The rotation value seen in figure 4.21 is approximately equal to 0.1, which the amount of 6∘
in radians. Therefore, one can confirm that the righter half is rotated with 6∘ with respect to the
left one, while also displaying strain peak values at the boundary. All these aspects lead to the
correctness of the used algorithm. The rotation corresponding to the 𝑦𝑥 component is the one of
the 𝑥𝑦 component, but with a minus sign. This occurs due to the definition the algorithm in C++
uses. In the case of my code 𝑅𝑀 is defined in equation 3.22. This formula dictates the fact that
the 𝑥𝑦 and 𝑦𝑥 components of the rotation should be equal to each other. However, in the C++
algorithm, they leave the identity matrix out of the formula, fact which only influences the sign,
not the absolute value. The other matrix components 𝑥𝑥 and 𝑦𝑦 are equal to zero. Moreover, in
over to avoid being redundant, the plot corresponding to the 𝑦𝑥 of the strain matrix is left out by

32 4. Results and Discussion

Figure 4.11: Grayscaled im-
age of the pattern shown in 3.2
needed as input for the C++ al-
gorithm.

Figure 4.12: 𝜖𝑥𝑥, the 𝑥𝑥 com-
ponent of the strain matrix com-
puted for figure 4.11 through the
C++ algorithm

Figure 4.13: 𝜖𝑥𝑦, the 𝑥𝑦 component
of the strain matrix which is computed
for figure 4.11 through the C++ algo-
rithm

Figure 4.14: 𝜖𝑦𝑦, the 𝑦𝑦 com-
ponent of the strain matrix which
is computed for figure 4.11
through the C++ algorithm

Figure 4.15: 𝑤𝑥𝑦, the 𝑥𝑦 com-
ponent of the rotation matrix
which is computed for figure
4.11 through the C++ algorithm

Figure 4.16: 𝑤𝑦𝑥, the 𝑦𝑥 component
of the strain matrix which is computed
for figure 4.11 through the C++ algo-
rithm

Figure 4.17: Grayscaled im-
age of the pattern shown in 3.5
needed as input for the C++ al-
gorithm.

Figure 4.18: 𝜖𝑥𝑥, the 𝑥𝑥 compo-
nent of the strain matrix which
is computed for figure 4.17
through the C++ algorithm

Figure 4.19: 𝜖𝑥𝑦, the 𝑥𝑦 component
of the strain matrix which is computed
for figure 4.17 through the C++ algo-
rithm

the algorithm, due to symmetry.

3. Figure 4.17 consists of one layer corresponding to the simple straight lattice and one layer to
the tilted lattice, with the window function (introduced in equation 3.2) around the entire lattice.
This is the grasycaled version of the pattern shown in figure 3.5. Figures 4.18 and 4.20 are the
𝑥𝑥, 𝑥𝑦 and 𝑦𝑦 components of the corresponding strain, figures 4.21 and 4.22 are the 𝑥𝑦 and
𝑦𝑥 components of the corresponding rotation matrix. The rotation and the strain matrices do not
differ significantly from the previous case which analysed. This is acceptable, since attaching a
smoothening window to the outside of the layers should not significantly influence the strain felt
at the boundary in between the layers.

4.4. Results for additional lattice patterns and filters 33

Figure 4.20: 𝜖𝑦𝑦, the 𝑦𝑦 com-
ponent of the strain matrix which
is computed for figure 4.17
through the C++ algorithm

Figure 4.21: 𝑤𝑥𝑦, the 𝑥𝑦 com-
ponent of the rotation matrix
which is computed for figure
4.17 through the C++ algorithm

Figure 4.22: 𝑤𝑦𝑥, the 𝑦𝑥 component
of the rotation matrix which is com-
puted for figure 4.17 through the C++
algorithm

Figure 4.23: Greyscaled lat-
tice corresponding of (left) per-
fect square layer, right shifted
through Gaussian displacement

Figure 4.24: 𝜖𝑥𝑥, the 𝑥𝑥 compo-
nent of the strain matrix which
is computed for figure 4.23
through the C++ algorithm

Figure 4.25: 𝜖𝑥𝑦, the 𝑥𝑦 component
of the strain matrix which is computed
for figure 4.23 through the C++ algo-
rithm

4.4. Results for additional lattice patterns and filters
In this section I have introduced the lattice which have a shift different from zero in their components.
Due to this shift, one already expects for the rotation and strain images to look different than the ones
in the previous section.

1. Figure 4.23: This particular lattice has not been introduced in section 3.1 in order to avoid rep-
etition, but I am stating in this section that it is formed out of two straight layers of lattices (both
have 𝜃 = 0∘), the atoms in the right half being shifted with the amount given in equation 3.1. It
is important to keep in the back of one’s head the different axes notation and the fact that this is
not a 𝑥 shift anymore, but a 𝑦 shift seeing as 𝑦 is the vertical axis in the definition of [13]. From
the strain figures one can see that now there peaks not only at the boundary between the layers,
but also at coordinates where the shift of an atom is extreme. The rotation, outside of the shift,
is also zero and this verifies what one expects, seeing as the right half as a whole is not rotated
with respect to the left one. Just local rotation belonging to the shift in atoms is visible. Concern-
ing the strain, once can observe that the peaks are located toward the center of the vertical axis
which is the boundary of the two layers, since that is where the shift seems to have a high value.
The images corresponding to the components of the strain and rotation matrices are depicted in
figures 4.24 and 4.28, respectively. This is a very important lattice to test the strain: seeing as
the displacements are defined only in the vertical region, the 𝑥𝑥 component of the strain matrix
must the equal to zero, which is indeed clearly visible in figure 4.24.

2. Figure 4.29 is the grayscaled version of figure 3.4. It represents a lattice formed by two layers:
the left half is a straight lattice, while the right half corresponds to a tilted lattice in which shift has
been added as well. Seeing as, with respect to the last lattice which I introduced, this one has
also rotation present globally. Again, the values of the rotation identify with the ones suggested
by the initial tilt of the right layers (as always, 𝜃 = 6∘) One can see in the center of figure 4.27 how
the local shift in atoms can annihilate the global rotation of the entire right layer and therefore

34 4. Results and Discussion

Figure 4.26: 𝜖𝑦𝑦, the 𝑦𝑦 com-
ponent of the strain matrix which
is computed for figure 4.23
through the C++ algorithm

Figure 4.27: 𝑤𝑥𝑦, the 𝑥𝑦 com-
ponent of the rotation matrix
which is computed for figure
4.23 through the C++ algorithm

Figure 4.28: 𝑤𝑦𝑥, the 𝑦𝑥 component
of the rotation matrix which is com-
puted for figure 4.23 through the C++
algorithm

Figure 4.29: Grayscaled im-
age of the pattern shown in 3.4
needed as input for the C++ al-
gorithm.

Figure 4.30: 𝜖𝑥𝑥, the 𝑥𝑥 compo-
nent of the strain matrix which
is computed for figure 4.29
through the C++ algorithm

Figure 4.31: 𝜖𝑥𝑦, the 𝑥𝑦 component
of the strain matrix which is computed
for figure 4.29 through the C++ algo-
rithm

Figure 4.32: 𝜖𝑦𝑦, the 𝑦𝑦 com-
ponent of the strain matrix which
is computed for figure 4.29
through the C++ algorithm

Figure 4.33: 𝑤𝑥𝑦, the 𝑥𝑦 com-
ponent of the rotation matrix
which is computed for figure
4.29 through the C++ algorithm

Figure 4.34: 𝑤𝑦𝑥, the 𝑦𝑥 component
of the rotation matrix which is com-
puted for figure 4.29 through the C++
algorithm

created a rotation close to zero in that region. However, looking at the corresponding area in
one of the strain components (see figure 4.26) one notices that in that region the strain has an
extreme value, due to the fact that the contributions of the two operations (shift and tilt) add up in
case of the strain. In figure 4.24 and 4.28 one can see the components of the strain matrix and
the rotation matrix corresponding to figure 4.29.

3. Figure 4.35 is figure 4.29 with the smoothing window applied around its edges. This particular
image is the grayscale version of the lattice pattern shown in figure 3.6. The corresponding strain
and rotation values and figures (4.36 4.40) are almost identical to the ones obtained for figure
4.29. This is also to be expected, since adding a window to a lattice should not (significantly)
change the strain which is felt at the boundary between the layers. The only influence it can have
is related to the strain at the edges, with adjacent lattice patterns, of the same type, or different,
depending on the analysed material.

4.4. Results for additional lattice patterns and filters 35

Figure 4.35: Grayscaled im-
age of the pattern shown in 3.6
needed as input for the C++ al-
gorithm

Figure 4.36: 𝜖𝑥𝑥, the 𝑥𝑥 compo-
nent of the strain matrix which
is computed for figure 4.35
through the C++ algorithm

Figure 4.37: 𝜖𝑥𝑦, the 𝑥𝑦 component
of the strain matrix which is computed
for figure 4.35 through the C++ algo-
rithm

Figure 4.38: 𝜖𝑦𝑦, the 𝑦𝑦 com-
ponent of the strain matrix which
is computed for figure 4.35
through the C++ algorithm

Figure 4.39: 𝑤𝑥𝑦, the 𝑥𝑦 com-
ponent of the strain matrix which
is computed for figure 4.35
through the C++ algorithm

Figure 4.40: 𝑤𝑦𝑥, the 𝑦𝑥 component
of the strain matrix which is computed
for figure 4.35 through the C++ algo-
rithm

5
Conclusions

The main work that has been presented within this project revolves around computing the strain which
arises at the atomic level of two-dimensional HRTEM images of several lattice patterns, due to local
distortion or defects present in the crystal structure of the material in question. Having information
about the strain is very important for an accurate understanding of the composition of the nanoscale of
certain materials, with a wide range of application in the context of semiconductors, and it is computed
by following steps outlined by the GPA method, a computational tool which requires the use of a com-
puter algorithm and operations applied in the Fourier domain.
Within this project the HRTEM images are virtually simulated, together with the rest of the results,
through a code written in the programming language Python. The steps of which the GPA method con-
sists have been carefully introduced and explained in the context of my chosen lattice patterns, which
vary from being perfect square lattices which contain no strain, to being lattices formed through shifting
the atoms and/or rotating part of the lattice itself.

Once the lattice patterns are defined, the Bragg peak selection is explained in depth, followed by the
process of masking around the selected peak. The masked image in the Fourier space is then con-
verted into the real space. The phase of the latter is taken and the called raw phase image, which is
followed by the computation of the reduced phase image, that is used to define the smooth reference
region in the lattice pattern with respect to which the strain must be later computed. The step at which
my Python code stops producing the desired and expected results is the one concerning the calcula-
tion of the optimal spacial frequencies (also called g-vectors) which must be done at every pixel of the
lattice, in order to later be able to compute and map the strain at every pixel with respect to the chosen
reference region. I expect, due to various reasons which have been introduced in the body of the thesis,
that the explanation why my code does not return the desired output has to do with the incompatibility
between the mathematical function which needs to be minimised or fitted and the minimisation or curve
fit functions used in Python, respectively. This belief takes root in the fact that if not given as initial guess
to the Python fitting function the exact desired output as initial guess, the code returns wrong g-vectors.

Even though the results which I have presented so far through means of my code have not yet been
expanded to their maximal capacity, I still proceeded to analysing the strain mapping of my defined
lattices through means of a pre-existing algorithm written in C++. In this way I am able to obtain the
desired results and to discuss the outputs which my code should also provide. The peaks which one
expects to obtain at the boundary between the two layers forming the lattice corresponding to extreme
values of the strain are perfectly visible. Moreover, it turns out that by applying both a local shift in the
positions of the atoms and a rotation of a whole part of the lattice one can obtain zero total rotation in
some parts of the lattice, but which correspond to an extreme value of the strain. This can be explained
due to the fact that, by definition, strain is the symmetric part of the local distortion, while the rotation
is the antisymmetric part.

37

38 5. Conclusions

With the detailed background of theoretical information and discussions on strain, lattices and the GPA
method, accompanied by concrete examples and applications which the reader cannot only use, but
also modify according to their preferences, I consider that the goal of my project has been fulfilled,
so far. The next steps regarding future projects involve not only creating a fully-functioning algorithm
implemented in Python which analyses lattice strain through the GPA method and contains plenty of
details and the possibility of being adapted at free will by the user, but also one which investigates
alternative methods, such as the Peak Pair Algorithm and compares them amongst each other. This
is not only a very exciting academic challenge which I am looking forward to, but also a computational
application opportunity not to be missed.

A
Appendix

A.1. Tables with symbols and variables
A.1.1. Table containing the important mathematical symbols and their meaning

Mathematical symbol Meaning
𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ⋅ 𝑏, 𝑎𝑏 , 𝑎 = 𝑎 Basic operators: summation, subtraction, multiplication, division, identity

𝑎𝑏 a to the power b
𝑎 > 𝑏, 𝑎 < 𝑏, 𝑎 ≤ 𝑏, 𝑎 ≥ 𝑏 a greater, less, less or equal, greater or equal to b

�⃗� Vector notation
�⃗� ⋅ �⃗� scalar product of vectors
∑ Summation sign
∞ Infinity
𝑒 The Euler’s number
𝑖 The unit imaginary number
∫ Integral
𝜋 Pi Greek
𝜔 Omega Greek,
𝛼 Alpha Greek
𝛽 Beta Greek

𝑓(𝑥, 𝑦) Function which depends on variables 𝑥 and 𝑦
𝜕𝑓
𝜕𝑥 Derivative of f with respect to x (partial differential equation)
(𝑥, 𝑦) 𝑥 and 𝑦, Coordinates of a vector
𝑚𝑜𝑑 Modulo
||𝑟|| Absolute value of a two-dimensional vector height

39

40 A. Appendix

A.1.2. Table containing important variables defined in the computational and
coding space, respectively. The term ”(used in method)” means that the
variable in question also appears in the computational method.
Code variable Meaning

S half size of square side lattice (used in method)
r Value of vector in reciprocal space (used in method)
𝜃 Angle of tilt for lattice (used in method)

xshift Value of shift of atoms vertically (used in method)
original Name of the original straight simple lattice

fourier_original FT original lattice
tilted Original and tilted lattice with 𝜃

left_half_original Takes left vertical half of original lattice
right_half _original Takes right vertical half of original lattice
fourier_combined FT concatenated halves from layers

fourier_combined_edges FT concatenated halves and windows
pks The 4 peaks returned by the python function (also in code of form 𝑔𝑠𝑒𝑙𝑒𝑐𝑡)

fourier_combined_filtered The masked FT around a selected peak
fourier_combined_filtered_new Masked FT around the second selected peak
angle_fourier_combined_iift The raw phase image for first peak
angle_fourier_combined_iift _ The raw phase image second peak

reduced Reduced phase image corresponding to first peak
reduced_new Reduced phase image corresponding to second peak
f_summation Definition of summation function for minimisation

O_left Reference region (also used in method)
func Function to be curve-fitted
r_G Dictionary which contains optimal values of �⃗� and 𝑐

coord_list The region R on which min is performed (taking values in all lattice pixels)
G_all_pixels Matrix containing only �⃗� values for all pixels
A_all_pixels Matrix containing only �⃗� values for all pixels
c_all_pixels Matrix containing only 𝑐 values for all pixels

u_E Displacement vector in all pixels (also in method)
u_L Displacement vector in all pixels (also in method)
e_E Displacement vector in all pixels (also in method)
e_L Displacement vector in all pixels (also in method)
x_0 x coordinate center reference region (also in method)
y_O x coordinate center reference region (also in method)
A_O A matrix for center of region O (also in method)
G_O G matrix for center of region O (also in method)

e_x, e_y x and y components of distortion vector (also in method)
R_xx, R_xy, R_yx, R_yy components of rotation matrix (also in method)

𝜖𝑥𝑥, 𝜖𝑥𝑦, 𝜖𝑦𝑥, 𝜖𝑦𝑦 components of strain matrix (also in method)

A.2. Code availability

A.2. Code availability 41

[]: #here I import the used libraries, but also the pre-existing Pyhton�
↪functions cited in my report

import dask.array as da
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
#import cv2
from PIL import Image, ImageEnhance
import colorcet

import cmath
import scipy
from skimage.feature import peak_local_max
from skimage.io import imread, imshow
from skimage.color import rgb2hsv, rgb2gray, rgb2yuv
from skimage import color, exposure, transform
from skimage.exposure import equalize_hist

import scipy.ndimage as ndi

from dask.distributed import Client, LocalCluster

from moisan2011 import per
from pyGPA.phase_unwrap import phase_unwrap
from pyGPA.imagetools import fftplot, gauss_homogenize2,�

↪gauss_homogenize3
from pyGPA.mathtools import wrapToPi, standardize_ks
import pyGPA.geometric_phase_analysis as GPA
from copy import deepcopy

from latticegen import combine_ks, squarelattice_gen
%matplotlib inline
from turtle import Screen, Turtle
#import test_geometric_phase_analysis.py as test_GPA
#from .imagetools import gauss_homogenize2, fftbounds, fftplot, trim_nans2

from scipy.ndimage.filters import gaussian_filter

[]: #this function adds nice arrows on axis due to the peculiar way Pyhton�
↪defines them

def arrowed_spines(fig, ax):

xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_ylim()

get width and height of axes object to compute
matching arrowhead length and width
dps = fig.dpi_scale_trans.inverted()
bbox = ax.get_window_extent().transformed(dps)
width, height = bbox.width, bbox.height

42 A. Appendix

manual arrowhead width and length
hw = 1./20.*(ymax-ymin)
hl = 1./20.*(xmax-xmin)
lw = 1. # axis line width
ohg = 0.3 # arrow overhang

compute matching arrowhead length and width
yhw = hw/(ymax-ymin)*(xmax-xmin)* height/width
yhl = hl/(xmax-xmin)*(ymax-ymin)* width/height

draw x and y axis
ax.arrow(xmin, 0, xmax-xmin, 0., fc=’k’, ec=’k’, lw = lw,

head_width=hw, head_length=hl, overhang = ohg,
length_includes_head= True, clip_on = False, color=”gray”)

ax.arrow(0, 0,0, 500, fc=’k’, ec=’k’, lw = lw,
head_width=yhw, head_length=-yhl, overhang = ohg,
length_includes_head= True, clip_on = False, color=”gray”)

[]: #this function changes the color gradiant of a particular image
def plot_color_gradients(category, cmap_list):

Create figure and adjust figure height to number of colormaps
nrows = len(cmap_list)
figh = 0.35 + 0.15 + (nrows + (nrows - 1) * 0.1) * 0.22
fig, axs = plt.subplots(nrows=nrows + 1, figsize=(6.4, figh))
fig.subplots_adjust(top=1 - 0.35 / figh, bottom=0.15 / figh,

left=0.2, right=0.99)
axs[0].set_title(f’{category} colormaps’, fontsize=14)

for ax, name in zip(axs, cmap_list):
ax.imshow(gradient, aspect=’auto’, cmap=plt.get_cmap(name))
ax.text(-0.01, 0.5, name, va=’center’, ha=’right’, fontsize=10,

transform=ax.transAxes)

Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axs:

ax.set_axis_off()

Save colormap list for later.
cmaps[category] = cmap_list

[]: #This section has been commented out since it serves as the series of�
↪commands used to plot nice figures with nice axis, size etc

#plt.figure(figsize=(10,10))
#plt.xticks(fontsize=20)
#plt.yticks(fontsize=20)

#plt.imshow((angle_fourier_combined_new_iift), cmap=’rainbow’)
#fig = plt.gcf()
#fig.set_facecolor(’white’)
#ax = plt.gca()

#arrowed_spines(fig, ax)

This first section of the code is dedicated towards modelling the lattice, computing its Fourier Transform.

A.2. Code availability 43

[]: S = 250 #half of the size of the suqare lattice side
r_k = 0.1 #length of reciprocal lattice vector
theta1=0 #angle of rotation of lattice, which can take multiple values
theta2=6
theta2_prime=-6
psi= 0.00 #these are parameters which are not important in�

↪the definition of the square lattice, they have more
#importance in cases such as the hexagonal lattice

shift=np.array((0, 0))
kappa=1
a_0 = 0.246

order = 1

original = squarelattice_gen(r_k, theta1, order, size=2*S, kappa=kappa,�
↪shift=shift).compute()

original_prime = squarelattice_gen(r_k, theta1, order, size=2*S,�
↪kappa=kappa, shift=shift).compute()

#Gaussian blurring:
#original = gaussian_filter(original_perfect_lattice, sigma=2)

#adding distortion in the y direction:

xp, yp = da.meshgrid(np.arange(-S,S), np.arange(-S,S), indexing=’ij’)
xshift = 0.5*xp*np.exp(-0.5 * ((xp/(2*S/8))**2 + 1.2*(yp/(2*S/6))**2))
plt.imshow(abs(xshift))
noise = np.stack((xshift,np.zeros_like(xshift)), axis=0)

#original = squarelattice_gen(r_k, theta1, order, size=2*S, kappa=kappa,�
↪shift=noise).compute()

c=plt.imshow(original.T,
cmap=’cet_fire_r’,

extent=[-S*r_k*a_0, S*r_k*a_0, S*r_k*a_0, -S*r_k*a_0])

[]: #computing the Fourier transform of the original lattice

fourier_original = np.fft.fftshift(np.fft.fft2(original))
plt.figure(num=None, figsize=(8, 6), dpi=80)
plt.imshow((abs(fourier_original)), cmap=’gray’);

[]: #plotting different tilted matrices, with or without noise
tilted = squarelattice_gen(r_k, theta2_prime, order, size=2*S,�

↪kappa=kappa, shift=noise).compute()
d2=plt.imshow(tilted,

cmap=’cet_fire_r’,
extent=[-S*r_k*a_0, S*r_k*a_0, S*r_k*a_0, -S*r_k*a_0])

tilted_simple= squarelattice_gen(r_k, theta2_prime, order, size=2*S,�
↪kappa=kappa, shift=shift).compute()

44 A. Appendix

[]: #taking halves of lattices
left_half_original = original[:,:250]
right_half = original[:,250:]
plt.imshow(left_half_original)

[]: left_half_tilted= tilted[:,:250]
right_half_tilted = tilted[:,250:]
plt.imshow(right_half_tilted)

left_half_simple=tilted_simple[:,:250]

[]: #defining the combined lattices by combining the two halves
combined=[]
combined=np.concatenate((left_half_original,left_half_simple),axis=1)
plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow((combined))
plt.axis(’off’)

[]: #defining the window function
def window_function(x,delta):

if np.abs(x)<delta or np.abs(x)>500-delta :
return (np.sin(np.pi*x/(2*delta)))**2

else:
return 1

[]: Delta=10
combined_edges=np.zeros((500,500))

for i in range (np.shape(combined)[1]):
for j in range (np.shape(combined)[0]):

combined_edges[i][j]=combined[i][j]*window_function(i,�
↪Delta)*window_function(j, Delta)

[]: #defining the ft of the final combined lattices, window applied to lattice

fourier_combined_edges = np.fft.fftshift(np.fft.fft2(combined_edges))
plt.figure(num=None, figsize=(8, 6), dpi=80)
plt.imshow((abs(fourier_combined_edges)), cmap=’gray’);

plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow(abs(fourier_combined_edges), cmap=”gray”)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

arrowed_spines(fig, ax)

A.2. Code availability 45

[]: #some more ft of lattices
fourier_combined = np.fft.fftshift(np.fft.fft2(combined))
plt.figure(num=None, figsize=(8, 6), dpi=80)
plt.imshow((abs(fourier_combined)), cmap=’gray’);

The second section of the code is dedicated towards finding the peaks in the Fourier Transform.

[]: h1, w1 = np.shape(fourier_combined) #the lattice environment is divided�
↪into rows and columns components

Y1, X1 = np.ogrid[:h1, :w1]
row1,col1 = np.unravel_index(np.argsort(fourier_combined.

↪ravel()),fourier_combined.shape)

fig_a, ax = plt.subplots()
draw_circle = plt.Circle(tuple(reversed((250, 300))), 10, alpha = 0.3)�

↪#a circle is drawn around the given coordinates
ax.add_artist(draw_circle)
ax.imshow((abs(fourier_combined)), cmap=’gray’);
import pyGPA.geometric_phase_analysis as GPA
from pyGPA.geometric_phase_analysis import fftbounds, peak_local_max,�

↪remove_negative_duplicates, fftplot,�
↪_decrease_threshold,select_closest_to_triangle

#importing the function from the Github repository
def extract_primary_ks(image, plot=False, threshold=0.7,�

↪pix_norm_range=(2, 200),
sigma=1, NMPERPIXEL=1., DoG=True):

”””Attempt to extract primary k-vectors from an image from a smoothed
version of the Fourier transform.

Recursively adapts parameters until a satisfactory solution is found.

Parameters

image : ndarray

The realspoace input image
plot : bool

Whether to plot a debug plot containing the FFT, the detected peaks
and the selected peaks. Also prints more debug info

threshold : float, default: 0.7
relative threshold for peak height.

pix_norm_range : 2-tuple of int, default: (2, 200)
sigma : float, default = 1

width of the gaussian smoothing of the FFT before peaks are�
↪extracted.

NMPERPIXEL : float
DoG : bool

(Difference of Gaussians)
Whether to divide the smoothed FFT by a sigma=50 smoothed version

Returns

primary_ks : ndarray (N, 2)

list of main k-vectors
all_ks : ndarray (N+M, 2)

46 A. Appendix

list of all found k-vectors
”””
image = image - image.mean()
pd, _ = per(image, inverse_dft=False)
fftim = np.abs(np.fft.fftshift(pd))
kxs, kys = [fftbounds(n) for n in fftim.shape]
smooth = ndi.filters.gaussian_filter(fftim, sigma=sigma)
if DoG:

smooth -= ndi.filters.gaussian_filter(fftim, sigma=50)

center = np.array(smooth.shape)//2
min_distance=5, threshold_rel=np.quantile(smooth, threshold))
cindices = peak_local_max(smooth, threshold_rel=threshold)
coords = cindices - center
selection = np.logical_and((np.linalg.norm(coords, axis=1) <�

↪pix_norm_range[1]),
(np.linalg.norm(coords, axis=1) >�

↪pix_norm_range[0]))
cindices = cindices[selection]
coords = coords[selection] # exclude low intensity edge area and�

↪center stigmated dirt spots

coords = np.vstack((coords, [0,0])) # reinclude center spot
all_ks = np.array([kys[cindices.T[0]], kxs[cindices.T[1]]]).T
Select only one direction for each pair of k,-k
all_ks = remove_negative_duplicates(all_ks)
newparams = False
if len(all_ks) < 4:

newparams = True
if len(all_ks) == 0:

print(f”no ks at: {threshold:.4f}”)
if threshold > _decrease_threshold(threshold):

threshold = _decrease_threshold(threshold)
else:

print(”No ks found at minimum threshold!”)
newparams = False

else:
coordsminlength = np.linalg.norm(coords, axis=1).min()
if coordsminlength < 5 * sigma:

sigma = coordsminlength / 6
elif threshold > 0.2*np.max([smooth[cindex[0], cindex[1]] for�

↪cindex in cindices]):
threshold = 0.2*np.max([smooth[cindex[0], cindex[1]] for�

↪cindex in cindices])
elif threshold > _decrease_threshold(threshold):

threshold = _decrease_threshold(threshold)
else:

print(”Can’t find enough ks!”)
newparams = False

if newparams:
primary_ks, all_ks = extract_primary_ks(image, plot=False,

threshold=threshold,
sigma=sigma,
�

↪pix_norm_range=pix_norm_range)

A.2. Code availability 47

else:
primary_ks = all_ks.copy()

knorms = np.linalg.norm(all_ks, axis=1)
if not newparams:

primary_ks = all_ks.copy()

if len(primary_ks) != 4:
if len(primary_ks) > 4:

print(f”Too many primary ks {len(primary_ks)}”)
primary_ks = select_closest_to_triangle(all_ks)

elif len(all_ks) > 8:
print(”all_ks > 3, selecting 3 with most similar length”)
primary_ks = all_ks[np.argpartition(np.abs(knorms-knorms.

↪mean()), 3)[:3]]
if plot:

print(”all_ks > 3 but not enough primary_ks, selecting�
↪closest to triangle”)

primary_ks = select_closest_to_triangle(all_ks)
elif threshold > _decrease_threshold(threshold) and not newparams:

if plot:
print(f”pks<3, all_ks < 6, decreasing threshold�

↪{threshold:.3f}”)
threshold = _decrease_threshold(threshold)
primary_ks, all_ks = extract_primary_ks(image, plot=False,

threshold=threshold,
sigma=sigma,

�
↪pix_norm_range=pix_norm_range)

else:
if plot:

print(”pks < aks=3”, len(all_ks), len(primary_ks))
primary_ks = all_ks.copy()

if plot:
fig, ax = plt.subplots(ncols=2, figsize=[12, 8])
fftplot(np.transpose(smooth), d=NMPERPIXEL, ax=ax[0],

levels=[smooth.max()*threshold*0.8],
contour=False, pcolormesh=False, origin=’upper’)

ax[0].set_xlabel(’k (periods / nm)’)
ax[0].set_ylabel(’k (periods / nm)’)
ax[0].scatter(*(all_ks/NMPERPIXEL).T, color=’red’,

alpha=0.2, s=50)
ax[0].scatter(*(primary_ks/NMPERPIXEL).T, color=’black’,

alpha=0.7, s=50, marker=’x’)

circle = plt.Circle((0, 0), 2.*knorms.min()/NMPERPIXEL,
edgecolor=’y’, fill=False, alpha=0.6)

ax[0].add_artist(circle)
axlim = kxs[min(center[0] + pix_norm_range[1], len(kxs)-1)]
ax[0].set_xlim(-axlim, axlim)
ax[0].set_ylim(-axlim, axlim)
ax[1].imshow(image, origin=’upper’)
for r in [kxs[center[0]+s] for s in pix_norm_range]:

circle = plt.Circle((0, 0), r/NMPERPIXEL,
edgecolor=’w’, fill=False, alpha=0.6)

48 A. Appendix

ax[0].add_artist(circle)
plt.title(plot)

return primary_ks, all_ks

pks,_ = extract_primary_ks(combined, pix_norm_range=(2,70), plot=True,)

[]: print(pks)

[]: #to check whether the right peaks have been chosen
fig_a, ax = plt.subplots()
draw_circle = plt.Circle(tuple(reversed((250, 300))), 10, alpha = 0.3)
ax.add_artist(draw_circle)
ax.imshow((abs(fourier_combined)), cmap=’gray’);

This third section is dedicated towards plotting masks around the selected peaks

[]: #h1, w1 = np.shape(fourier_combined_bounds)
#Y1, X1 = np.ogrid[:h1, :w1]
#row1,col1 = np.unravel_index(np.argsort(fourier_combined_bounds.

↪ravel()),fourier_combined_bounds.shape)

center = [249, 249]
peak1=[250,300]
peak2=[199, 254]
dist_from_peak1 = np.sqrt((X1 - peak1[1])**2 + (Y1 - peak1[0])**2) �

↪#Y1-corresponds to row coordinate here
#! changed row and col line above, influences mask

dist_from_peak2 = np.sqrt((X1 - peak2[1])**2 + (Y1 - peak2[0])**2)
g1y_test=(peak1[1]-center[0])/500 #we hereby define the values of the x�

↪and y components of the g vector computed by hand
g1x_test=(peak1[0]-center[1])/500

g1_test=[g1x_test, g1y_test] #the vector composed of the previous 2�
↪components of g1

g2y_test=(peak2[1]-center[0])/500
g2x_test=(-center[1]+peak2[0])/500

g2_test=[g2x_test, g2y_test]
mask1 = (dist_from_peak1 <= 10)
mask2 = (dist_from_peak2 <= 10)

fourier_combined_edges_masked1 = deepcopy(fourier_combined_edges)
fourier_combined_edges_masked2 = deepcopy(fourier_combined_edges)
fourier_combined_edges_masked1[~mask1] = 0
fourier_combined_edges_masked2[~mask2] = 0

wc1 = np.hanning(500)
wr1 = np.hanning(500)
wc1, wr1 = np.meshgrid(wc1,wr1)
mask = [wc1,wr1]
window1 = mask[0]*mask[1]

A.2. Code availability 49

#applying mask on ft
fourier_combined_filtered= fourier_combined_edges_masked1*window1
#getting the ift of the masked ft
fourier_combined_iift = np.fft.ifft2(np.fft.

↪ifftshift(fourier_combined_filtered))

#applying mask on ft
fourier_combined_filtered_new = fourier_combined_edges_masked2*window1
#getting the ift of the masked ft
fourier_combined_new_iift = np.fft.ifft2(np.fft.

↪ifftshift(fourier_combined_filtered_new))

[]: plt.imshow(abs(fourier_combined_filtered))
plt.imshow(abs(fourier_combined_filtered_new))

[]: plt.imshow(abs(fourier_combined_filtered_new))

[]: #computing the first raw phase image
angle_fourier_combined_iift=np.angle(fourier_combined_iift)

plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow((angle_fourier_combined_iift), cmap=”rainbow”)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

arrowed_spines(fig, ax)
#abs(angle_fourier_combined_iift)
#print(np.min(angle_fourier_combined_iift))

print(np.max(angle_fourier_combined_iift))
print(np.min(angle_fourier_combined_iift))

[]: #computing the second raw phase image
angle_fourier_combined_new_iift=np.angle(fourier_combined_new_iift)

plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow((angle_fourier_combined_new_iift), cmap=”rainbow”)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

arrowed_spines(fig, ax)

Peak 1 and g1, peak 2 and g2:

[]: #computin the images needed to be subtracted in order to obtain reduced�
↪phases

50 A. Appendix

g_1_select = pks[3]
g_2_select = -pks[0]

g_3_select=[-0.1, 0.01]
g_4_select=[0.01, 0.1]
subtract=np.

↪zeros((len(angle_fourier_combined_iift),len(angle_fourier_combined_iift[0])))

plt.figure(figsize=(15,15))

for i in range (len(angle_fourier_combined_iift)):
for j in range (len(angle_fourier_combined_iift[0])):

subtract[i][j]=((2*np.pi*np.matmul(g_4_select,[i,j]))+np.
↪pi)%(2*np.pi)-np.pi #here we use the by hand computated vector g

plt.imshow(subtract, cmap=’rainbow’)

print(subtract)

[]: subtract_new=np.
↪zeros((len(angle_fourier_combined_iift),len(angle_fourier_combined_iift[0])))

plt.figure(figsize=(15,15))

for i in range (len(angle_fourier_combined_iift)):
for j in range (len(angle_fourier_combined_iift[0])):

subtract_new[i][j]=((2*np.pi*np.matmul(g_3_select,[i,j]))+np.
↪pi)%(2*np.pi)-np.pi #here we use the by hand computated vector g

plt.imshow(subtract_new, cmap=’rainbow’)

print(subtract)

[]: #plotting the two reduced phases
reduced=(angle_fourier_combined_iift-subtract +np.pi)%(2*np.pi)-np.pi
plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow((reduced), cmap=”rainbow”)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

arrowed_spines(fig, ax)

reduced_filtered=(angle_fourier_combined_iift-subtract +np.pi)%(2*np.pi)-
np.pi

[]: reduced_new=(angle_fourier_combined_new_iift-subtract_new +np.pi)%(2*np.
↪pi)-np.pi

plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

A.2. Code availability 51

plt.imshow((reduced_new), cmap=”rainbow”)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

arrowed_spines(fig, ax)

reduced_filtered=(angle_fourier_combined_iift-subtract +np.pi)%(2*np.pi)-
np.pi

[]: #defyning region for testing O:

O=[]
O=reduced[50:70,50:70]

#manually introduce the boundaries of defined region O
Ox_1=0
Ox_2=499
Oy_1=0
Oy_2=499

#c1_test=angle_fourier_combined_iift[324][]

print(np.max(O))
print(np.min(O))

c1_test=-(np.max(O)+np.min(O))/(2*np.pi) #c1 computed by hand as�
↪weighted sum of max and min values in defined origin

[]: O_new=[]
O_new=reduced_new[50:70,50:70]

#manually introduce the boundaries of defined region O
Ox_new_1=50
Ox_new_2=150
Oy_new_1=50
Oy_new_2=150

#c1_test=angle_fourier_combined_iift[324][]

print(np.max(O_new))
print(np.min(O_new))

c2_test=-(np.max(O_new)+np.min(O_new))/(2*np.pi) #c2 computed by hand�
↪as weighted sum of max and min values in defined origin

[]: O_prime=O+2*np.pi*c1_test

print(np.sum(O_prime*O_prime))

52 A. Appendix

print(np.shape(O_prime*O_prime))

[]: O_prime_new=O+2*np.pi*c2_test

print(np.sum(O_prime_new*O_prime_new))

print(np.shape(O_prime_new*O_prime_new))

[]: #attampt to obtain minimum through summation
def f_summation (x, pattern, O_b):

g_x, g_y, c = x
sum_value = 0

for i in range (O_list[1]-O_list[0]):
for x_c in np.arange(O_b[0],O_b[1] + 1):

for y_c in np.arange(O_b[2],O_b[3] + 1):

#print(”[”, pattern[x_c][y_c],image[x_c][y_c] ,”]”)
sum_value += (pattern[x_c][y_c] - np.angle(np.exp(np.

↪complex(0,(2 * np.pi * ((g_x*x_c + g_y * y_c) - c))))))**2
return sum_value

[]: O_list_new = [Ox_new_1, Ox_new_2,Oy_new_1,Oy_new_2]
O_list = [Ox_1, Ox_2, Oy_1, Oy_2]

[]: #attempt to obtain minimum through summation
O_right=[350,450, 350,450]
from scipy.optimize import fmin

min_parameters = fmin(func = f_summation, x0 = [g_4_select[0],�
↪g_4_select[1], c1_test], args = (angle_fourier_combined_iift,�
↪O_right), xtol = 1e-1, ftol = 1e-1, disp = False)

g1_x_min, g1_y_min, c_min = min_parameters
print(min_parameters)
print(g1_x_min)
print(g1_y_min)
print(c_min)
print(f_summation([g1_x_min, g1_y_min, c_min],�

↪angle_fourier_combined_iift, O_right))
print(f_summation([g_1_select[0], g_1_select[1], c1_test],�

↪angle_fourier_combined_iift, O_right))
g_matrix_test=np.zeros((500,500))
g_difference=np.zeros((500,500))
g_sum_squares=0
for x_c in range (0,500):

for y_c in range (0,500):
g_matrix_test[x_c][y_c]=np.angle(np.exp(np.complex(0,(2 * np.pi *�

↪((g1_x_min*x_c + g1_y_min * y_c) - c_min)))))
g_difference[x_c][y_c]=angle_fourier_combined_new_iift[x_c][y_c]�

↪- g_matrix_test[x_c][y_c]

for i in range (O_right[0],O_right[1]+1):

A.2. Code availability 53

for j in range (O_right[2],O_right[3]+1):
g_sum_squares+=g_difference[i][j]**2

print(”this is the sum of squares”, g_sum_squares)

plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.imshow(g_difference, cmap=’RdBu’, vmin=-2*np.pi, vmax=2*np.pi)
#plt.imshow((g_matrix_test), cmap=’RdBu’, vmin=-np.pi, vmax=np.pi)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

arrowed_spines(fig, ax)
print(np.min(g_difference))
print(np.max(g_difference))

[]: O_left=[100,450,50,200] #reference
O_right=[270,290,270,290] #region R for testing strain wrt O_left�

↪(reference)
print(g_1_select)

[]: #attempt to compute minimum through means of a curve fit
%%time
from scipy.optimize import curve_fit
def func(var, g_x,g_y,c):

x,y=var
return (2*np.pi*(g_x*x + g_y*y - c -np.pi))%(2*np.pi) + np.pi

x_O=np.linspace(O_left[0], O_left[1], O_left[1]- O_left[0]+1, dtype=int)
y_O=np.linspace(O_left[2], O_left[3], O_left[3]- O_left[2]+1, dtype=int)

XO,YO=np.meshgrid(x_O,y_O)
dataO=np.vstack((XO.ravel(), YO.ravel()))
#print(X1.shape)
#print(data1)

Z1_O = np.zeros(XO.shape)

Z1_O=angle_fourier_combined_iift[O_left[0]:O_left[1]+1, O_left[2]:
↪O_left[3]+1]

Z2_O = np.zeros(XO.shape)

Z2_O=angle_fourier_combined_new_iift[O_left[0]:O_left[1]+1, O_left[2]:
↪O_left[3]+1]

p0_1=2*np.pi*g_1_select[0],2*np.pi*g_1_select[1], c1_test
p0_2=g_2_select[0],g_2_select[1], c2_test
popt1_O, pcov1_O = curve_fit(func, dataO, Z1_O.ravel(), p0_1)
popt2_O, pcov2_O = curve_fit(func, dataO, Z2_O.ravel(), p0_2)

x_R=np.linspace(O_right[0], O_right[1], O_right[1]- O_right[0]+1,�
↪dtype=int)

y_R=np.linspace(O_right[2], O_right[3], O_right[3]- O_right[2]+1,�
↪dtype=int)

54 A. Appendix

XR,YR=np.meshgrid(x_R,y_R)
dataR=np.vstack((XR.ravel(), YR.ravel()))
Z1_R = np.zeros(XR.shape)
Z1_R=angle_fourier_combined_iift[O_right[0]:O_right[1]+1, O_right[2]:

↪O_right[3]+1]

Z2_R = np.zeros(XR.shape)
Z2_R=angle_fourier_combined_new_iift[O_right[0]:O_right[1]+1, O_right[2]:

↪O_right[3]+1]

pR_1=g_4_select[0],g_4_select[1], c1_test
pR_2=g_3_select[0],g_3_select[1], c2_test

popt1_R, pcov1_R = curve_fit(func, dataR, Z1_R.ravel(), pR_1)
popt2_R, pcov2_R = curve_fit(func, dataR, Z2_R.ravel(), pR_2)
#print(Z1.shape)
#print(Z1)
#print(x_w)
#print(popt1_O)
#print(popt2_O)
#print(popt1_R)
print(popt2_R)

plt.imshow(Z2_R)

#p0_2=g_3_select[0],g_3_select[1], c2_test
#print(curve_fit(func, (x1_w, y1_w),z_1,p0_1))
#print(curve_fit(func, (x2_w, y2_w),z_2,p0_2))
print(c1_test)
print(c2_test)

image_test=np.zeros((O_right[1]- O_right[0]+1,O_right[1]- O_right[0]+1))
for x_c in range (O_right[1]- O_right[0]+1):

for y_c in range (O_right[1]- O_right[0]+1):
image_test[x_c][y_c]= func((x_R[x_c], x_R[y_c]),�

↪g_3_select[0],g_3_select[1],c2_test)
plt.imshow(image_test)

image_test1=np.zeros((O_right[1]- O_right[0]+1,O_right[1]- O_right[0]+1))
for x_c in range (O_right[1]- O_right[0]+1):

for y_c in range (O_right[1]- O_right[0]+1):
image_test1[x_c][y_c]= func((x_R[x_c], x_R[y_c]),�

↪popt2_R[0],popt2_R[1],popt2_R[2])

[]: #testing intermediary operations to see where the error lies
#plt.imshow(image_test1)
plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow((image_test1), cmap=’rainbow’)
fig = plt.gcf()

A.2. Code availability 55

fig.set_facecolor(’white’)
ax = plt.gca()

[]: plt.figure(figsize=(10,10))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)

plt.imshow((Z2_R), cmap=’rainbow’)
fig = plt.gcf()
fig.set_facecolor(’white’)
ax = plt.gca()

[]: #constructing a dictionary where to store the optimal values for gx1,�
↪gx2, gy1,gy2,c1,c2

square_length = 500
dictionary_square_length = 480
r_G = [[{1:0, 2:0, 3:0, 4: 0, 5:0, 6:0} for x in range(square_length)]�

↪for y in range(square_length)]

[]: #creating a for loop to compute the needed parameters for all the pixels�
↪15 pixels away from the edges

#the same I attempted to do through using the minimisation function, but�
↪that did not work either

for x_c in range (15, 486):
for y_c in range (15, 486):

coord_list=[x_c-10, x_c+10, y_c-10, y_c+10]
xnew_R=np.linspace(coord_list[0], coord_list[1], coord_list[1]-�

↪coord_list[0]+1, dtype=int)
ynew_R=np.linspace(coord_list[2], coord_list[3], coord_list[3]-�

↪coord_list[2]+1, dtype=int)
XRnew,YRnew=np.meshgrid(xnew_R,ynew_R)
dataR=np.vstack((XRnew.ravel(), YRnew.ravel()))
Z1new_R = np.zeros(XRnew.shape)
Z1new_R=angle_fourier_combined_iift[coord_list[0]:

↪coord_list[1]+1, coord_list[2]:coord_list[3]+1]
Z2new_R = np.zeros(XR.shape)
Z2new_R=angle_fourier_combined_new_iift[coord_list[0]:

↪coord_list[1]+1, coord_list[2]:coord_list[3]+1]

pRnew_1=g_4_select[0],g_4_select[1], c1_test
pRnew_2=g_3_select[0],g_3_select[1], c2_test

poptim1_R, pcovnew1_R = curve_fit(func, dataR, Z1new_R.ravel(),�
↪pRnew_1)

poptim2_R, pcovnew2_R = curve_fit(func, dataR, Z2new_R.ravel(),�
↪pRnew_2)

#print(curve_fit(func, (x1_w, y1_w),z_1,p0_1))
#print(curve_fit(func, (x1_w, y1_w),z_2,p0_2))
r_G[x_c][y_c]={1:poptim1_R[0],2:poptim2_R[0], 3:poptim1_R[1], 4:

↪poptim2_R[1], 5:poptim1_R[2], 6:poptim2_R[2]}

[]: #printing some test values
print(r_G[10][11])
print(r_G[12][13])

56 A. Appendix

print(r_G[470][470])

[]: #making for each pixel a G matrix with the corresponding g-vectors
G_all_pixels = np.zeros((500,500,2,2))
#Defining the A matrix as the inverse of the G matrix, for every pixel of�

↪the lattice
A_all_pixels=np.zeros((500,500,2,2))
A_all_pixels_plain=np.zeros((500,500,2,2))
for x_c in range (15, 486):

for y_c in range (15, 486):
G_all_pixels[x_c][y_c][0][0]=r_G[x_c][y_c][1]
G_all_pixels[x_c][y_c][0][1]=r_G[x_c][y_c][2]
G_all_pixels[x_c][y_c][1][0]=r_G[x_c][y_c][3]
G_all_pixels[x_c][y_c][1][1]=r_G[x_c][y_c][4]
A_all_pixels_plain[x_c][y_c]= np.linalg.

↪inv(G_all_pixels[x_c][y_c])
A_all_pixels[x_c][y_c]=np.transpose(A_all_pixels_plain[x_c][y_c])

print(G_all_pixels[300][300])
print(A_all_pixels[300][300]) #next to be transposed!!!

[]: #defining the c vector containing the optimal c values, again for each�
↪pixel of the lattice

c_all_pixels=np.zeros((500,500,2))
for x_c in range (15, 486):

for y_c in range (15, 486):
c_all_pixels[x_c][y_c][0]=r_G[x_c][y_c][5]
c_all_pixels[x_c][y_c][1]=r_G[x_c][y_c][6]

print(c_all_pixels[20][30])

[]: #defining the displacement vector , the distortion, the strain, the�
↪reference matrix A_O, G_O

u_E=np.zeros((500,500,2,2))
u_L=np.zeros((500,500,2,2))
e_E=np.zeros((500,500,2,2))
e_L=np.zeros((500,500,2,2))
eps=np.zeros((500,500,2,2))
R=np.zeros((500,500,2,2))

A_1_x=np.zeros((500,500))
G_1_x=np.zeros((500,500))
G_1_y=np.zeros((500,500))
A_1_y=np.zeros((500,500))
A_2_x=np.zeros((500,500))
A_2_y=np.zeros((500,500))
a_1_x=np.zeros((500,500))
a_1_y=np.zeros((500,500))
A_product_1=np.zeros((500,500,2,2))
A_product_2=np.zeros((500,500,2,2))
A_O=np.zeros((2,2))
c_O=np.zeros((2,2))

A.2. Code availability 57

x_O=(50+150)//2
print(x_O)

y_O=(50+150)//2
print(y_O)

A_O=np.linalg.inv(G_O)
c_O=c_all_pixels[x_O][y_O]

for x_c in range (15, 486):
for y_c in range (15, 486):

A_1_x[x_c][y_c]=A_all_pixels[x_c][y_c][0][0]
A_1_y[x_c][y_c]=A_all_pixels[x_c][y_c][1][0]
A_2_x[x_c][y_c]=A_all_pixels[x_c][y_c][0][1]
A_2_y[x_c][y_c]=A_all_pixels[x_c][y_c][1][1]
G_1_y[x_c][y_c]=r_G[x_c][y_c][3]
G_1_x[x_c][y_c]=r_G[x_c][y_c][1]

#plt.imshow(a_1_x, cmap=”RdBu”, vmin=-0.1, vmax=0.1)
#plt.colorbar(extend=”max”,cmap=’RdBu’)
#print (np.max(a_1_x))
#print (np.min(a_1_x))
#plt.imshow(A_O)
#print(A_O)

[]: #plotting g1y for testing, must be zero left side and -0.1 right side
plt.figure(figsize=(10,10))

plt.imshow(G_1_y, cmap=”RdBu”, vmin=-0.1, vmax=0.1)
plt.colorbar(extend=”max”,cmap=’RdBu’)
print (np.max(G_1_y))
print (np.min(G_1_y))

[]: plt.figure(figsize=(10,10))

plt.imshow(G_1_x, cmap=”RdBu”, vmin=-0.03, vmax=0.03)
plt.colorbar(extend=”max”,cmap=’RdBu’)
print (np.max(G_1_x))
print (np.min(G_1_x))

[]: #plotting a1x for testing
plt.figure(figsize=(10,10))
plt.imshow(A_1_x, cmap=”RdBu”, vmin=-0.5, vmax=0.5)
plt.colorbar(extend=”max”,cmap=’RdBu’)
print (np.max(A_1_x))
print (np.min(A_1_x))

[]: #plotting a1y for testing
plt.figure(figsize=(10,10))
plt.imshow(A_1_y, cmap=”RdBu”, vmin=-10, vmax=10)
plt.colorbar(extend=”max”,cmap=’RdBu’)
print (np.max(A_1_y))
print (np.min(A_1_y))

58 A. Appendix

[]: #filling in the values for the rotation matrix, strain, displacement at�
↪each point

for x_c in range (15, 486):
for y_c in range (15, 486):

A_product_1[x_c][y_c]=np.dot(A_O, np.linalg.
↪inv(A_all_pixels[x_c][y_c]))

A_product_2[x_c][y_c]=np.dot(A_all_pixels[x_c][y_c],np.linalg.
↪inv(A_O))

u_E[x_c][y_c]=np.dot((np.identity(2)-
A_product_1[x_c][y_c]),[x_c,y_c])+ np.dot(A_O, (c_all_pixels[x_c][y_c]-
c_O))

#u_L[x_c][y_c]=np.dot(np.dot(A_product_2[x_c][y_c],np.
↪identity(2)),[x_O,y_O]+np.
↪dot(A_all_pixels[x_c][y_c],(c_all_pixels[x_c][y_c]-c_O)))

e_E[x_c][y_c]=np.identity(2)-A_product_1[x_c][y_c]
e_L[x_c][y_c]=A_product_2[x_c][y_c]-np.identity(2)
eps[x_c][y_c]=(e_E[x_c][y_c]+np.transpose(e_E[x_c][y_c]))/2
R[x_c][y_c]=np.identity(2)+ 0.5*(e_L[x_c][y_c]-(e_L[x_c][y_c]).T)

[]: #plotting a2x
plt.imshow(A_2_x, cmap=”RdBu”, vmin=-344, vmax=344)
plt.colorbar(extend=”max”,cmap=’RdBu’)
print (np.max(A_2_x))
print (np.min(A_2_x))

[]: #plotting a2y
plt.imshow(A_2_y, cmap=”RdBu”, vmin=-1, vmax=1)
plt.colorbar(extend=”max”,cmap=’RdBu’)
print (np.max(A_2_y))
print (np.min(A_2_y))

[]: #testing part of the code to see whether they work to find the bug
np.dot((np.identity(2)-A_product_1[x_c][y_c]),(np.array([x_c,y_c])))[1]

[]: #testing again
np.dot(A_O, (c_all_pixels[x_c][y_c]-c_O))[0]

[]: #testing some values of displacement
print(u_E[25][34])

[]: #displacement=np.zeros((500,500))

[]: #plotting components of strain matrix (which is 2x2 but each term in�
↪itself is a matrix)

displacement=np.zeros((500,500))
e_xx=np.zeros((500,500))
e_xy=np.zeros((500,500))
e_yx=np.zeros((500,500))
e_yy=np.zeros((500,500))
R_yx=np.zeros((500,500))
for x_c in range (15, 486):

for y_c in range (15, 486):
e_xx[x_c][y_c]=eps[x_c][y_c][0][0]

A.2. Code availability 59

e_xy[x_c][y_c]=eps[x_c][y_c][1][0]
e_yx[x_c][y_c]=eps[x_c][y_c][0][1]
e_yy[x_c][y_c]=eps[x_c][y_c][1][1]
R_yx[x_c][y_c]=R[x_c][y_c][0][1]

[]: #plotting e_xx
plt.imshow(e_xx, cmap=’RdBu’, vmin=-2.3, vmax=2.3)

#print(count(np.min(e_xx)))
plt.colorbar(extend=”max”,cmap=’RdBu’)
print(np.max(e_xx))
print(np.min(e_xx))

[]: ##plotting R_yx
plt.imshow(R_yx, cmap=’RdBu’, vmin=-0.3, vmax=0.3)

#print(count(np.min(e_xx)))
plt.colorbar(extend=”max”,cmap=’RdBu’)
print(np.max(R_yx))
print(np.min(R_yx))

[]: #plotting e_xy
plt.imshow(e_xy, cmap=’RdBu’, vmin=-1, vmax=1)
print(e_xy)

[]: #plotting e_yx
plt.imshow(e_yx)

[]: ##plotting e_yy
plt.imshow(e_yy)

[]: #checking some strain values
print(np.max(e_yy))
print(np.min(e_yy))

Bibliography

[1] N. David Mermin A. Neil W. Ashcroft, ed. Solid State Physics. 1976.
[2] S. Hamid Nawab Alan V. Oppenheim Alan S. Willsky, ed. Systems Signals. Prentice-Hall, Inc,

1997, pp. xxx+948. ISBN: 0-13-814757-4.
[3] J. Cowley L. Eyring P. Buseck, ed. High-Resolution Transmission Electron Microscopy and As-

sociated Technique. Oxford University Press, 1989. ISBN: 0-19-504275-1.
[4] W. Chang. “Determination of strain fields on two-dimensional images using the STC method”. In:

Computational Materials Science (2019). DOI: 10.1103/PhysRevB.99.161117.
[5] S. Conesa-Boj. “Plastic and Elastic Strain Fields in GaAs/Si Core−Shell Nanowires”. In: NANO

letters (2014). DOI: 10.1021/nl4046312.
[6] O. M. Essenwanger. Elements of statistical analysis. Elsevier, 1986.
[7] Pedro L. Galindo. “Strain mapping from HRTEM images”. In: ().
[8] Pedro L. Galindo. “The Peak Pairs algorithm for strain mapping from HRTEM images”. In: ().
[9] D. C. Gijswijt, ed. Algebra 1. Delft University of Technology, 2021.
[10] van Gog. “Thermal stability and electronic andmagnetic properties of atomically thin 2D transition

metal oxides”. In: npj 2dmaterials and applications (2019). DOI: 10.1038/s41699-019-0100-
z.

[11] Jeff Hecht, ed. Understanding Lasers: An Entry Level Guide. 2018.
[12] Hu and Hau. “S4 Symmetric Microscopic Model for Iron-Based Superconductors”. In: Physical

review (2012). DOI: 10.1103/PhysRevX.2.021009. URL: https://doi.org/10.1103/
PhysRevX.2.021009.

[13] M.J. Hÿtch. “Quantitative measurement of displacement and strain fields from HREM micro-
graphs”. In: Ultramicroscopy (1998). DOI: 10.1016/S0304-3991(98)00035-7.

[14] et al. de Jong T.A. “Imaging moiré deformation and dynamics in twisted bilayer graphene.” In:
Nature Communication 13.70 (2022). DOI: doi.org/10.1038/s41467-021-27646-1.
URL: https://doi.org/10.1038/s41467-021-27646-1.

[15] Nayak. “Rigid-band electronic structure of scandium nitride across the n-type to p-type carrier
transition regime”. In: Physical review (2019). DOI: 10.1103/PhysRevB.99.161117.

[16] Optimize.CurveFit. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.curve_fit.html.

[17] Optimize.Minimize. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.minimize.html?highlight=minimize.

[18] J.L. Rouvière and E. Sarigiannidou. “Theoretical discussions on the geometrical phase analysis”.
In: Ultramicroscopy 106.1 (2005), pp. 1–17. ISSN: 0304-3991. DOI: https://doi.org/10.
1016/j.ultramic.2005.06.001. URL: https://www.sciencedirect.com/science/
article/pii/S0304399105001038.

[19] Steven H. Simon. The Oxford Solid States Basics. First. Oxford University Press, 2013,
pp. xiii+290. ISBN: 978–0–19–968077–1.

[20] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

[21] A. K. Zak. “X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods”.
In: Solid State Science (2019). DOI: 10.1038/s41699-019-0100-z.

61

https://doi.org/10.1103/PhysRevB.99.161117
https://doi.org/10.1021/nl4046312
https://doi.org/10.1038/s41699-019-0100-z
https://doi.org/10.1038/s41699-019-0100-z
https://doi.org/10.1103/PhysRevX.2.021009
https://doi.org/10.1103/PhysRevX.2.021009
https://doi.org/10.1103/PhysRevX.2.021009
https://doi.org/10.1016/S0304-3991(98)00035-7
https://doi.org/doi.org/10.1038/s41467-021-27646-1
https://doi.org/10.1038/s41467-021-27646-1
https://doi.org/10.1103/PhysRevB.99.161117
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html?highlight=minimize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html?highlight=minimize
https://doi.org/https://doi.org/10.1016/j.ultramic.2005.06.001
https://doi.org/https://doi.org/10.1016/j.ultramic.2005.06.001
https://www.sciencedirect.com/science/article/pii/S0304399105001038
https://www.sciencedirect.com/science/article/pii/S0304399105001038
https://doi.org/10.1038/s41699-019-0100-z

	Abstract
	Introduction
	Theory
	Geometry of solids
	Lattices
	High Resolution Transmission Electron Microscopy (HRTEM)

	Fourier transform
	Inverse Fourier transform
	Reciprocal lattices

	Bragg peaks
	Geometrical Phase Analysis method (GPA)
	Lattice strain

	Computational method
	Defining the lattice patterns
	Fourier transform of lattice patterns
	Peak selection and estimating the g-vectors
	Masking the Fourier transform
	Raw phase
	Reduced phase calculation and reference selection
	Accurate computation of g-vector
	Strain computation

	Results and Discussion
	Discussion of results for sections 3.1-3.6
	Discussion and results for sections 3.7 and 3.8
	Expected strain images and discussion
	Results for additional lattice patterns and filters

	Conclusions
	Appendix
	Tables with symbols and variables
	Table containing the important mathematical symbols and their meaning
	Table containing important variables defined in the computational and coding space, respectively. The term "(used in method)" means that the variable in question also appears in the computational method.

	Code availability

