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Abstract

Manufacturing processes often run on a schedule, because each production step takes a certain
amount of time, after which a component is transported to the next machine. Mobile robots
can be used to automate transportation of components between production steps. To do so, a
task scheduler assigns transportation tasks to robots and a path planner calculates trajectories
for robots to follow to complete their tasks.
In scientific literature, path planning and task scheduling are treated as separate problems.
Typically, path planners use initial and goal positions as a given and task schedulers consider
tasks of fixed duration. In this thesis, the integration of task scheduling and path planning is
treated, resulting in three contributions. First, a novel cost function to minimise the duration
of paths is proposed for an existing Mixed-Integer Linear Programming (MILP) formulation
of the multi-robot path planning problem. Second, a new MILP formulation is developed
for the scheduling problem of tasks with deadlines to be completed by mobile robots. Third,
two methods for integrating the path planner and task scheduler are proposed. Through
simulations these methods are compared with an integration method that uses rule-based
scheduling, which assigns tasks to robots in a predefined order.
Simulation results show that the novel path planning objective function improves upon that
from the literature by striking a balance between duration, distance, energy use and com-
putation time. Furthermore, integration methods using the MILP scheduler have trouble
outperforming a rule-based approach, caused by a practical limit on the computation time.
Moreover, compared with single-robot path planning the use of multi-robot path planning
is shown to improve performance at the cost of higher computation time. However, this
improvement is negligible for environments with a lot of free space, where robots can easily
avoid each other without making detours.
These results lead to the conclusion that the MILP path planner with the new path plan-
ning objective function performs well when integrated with a task scheduler. For restrictive
physical environments, multi-robot path planning can further improve results. On the other
hand, for practical applications a scheduling method other than the MILP scheduler should
be employed to integrate task scheduling and path planning. The scheduling method should
at least outperform rule-based scheduling with a practical limit on computation time, even if
an optimal solution is not guaranteed.
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— Douglas Adams, The Salmon of Doubt





Chapter 1

Introduction

1-1 Background

Manufacturing processes for products are often divided into stages. During each stage a
manufacturing operation is applied to a component, after which it is passed on to the next
stage. Each stage takes one or more components as inputs, and produces an output after
performing its operation. By physically separating the production stages it becomes possible
to modify individual stages or expand them without having to redesign the entire production
line. In separating production stages the need arises for transporting components between
stages.

One method for transporting components between stages is to use conveyor belts or robotic
arms, but they need to be modified when the production line changes. It would also be
necessary to place one between every production stage. Another option is to let humans
transport components between stages, but human labour is costly.

Mobile robots as devices for transportation of components between stages do not have these
disadvantages. Using them allows production lines to become more flexible, because stages
can be modified, expanded or rearranged without having to make any changes to the trans-
portation system, apart from some software changes so the robots can find the new locations
for pick-up and delivery. Another advantage is that one robot can handle transportation
between multiple stages, because it can move freely through (part of) the production envi-
ronment. Furthermore, running costs are much lower than for humans, although robots come
with an investment cost.

Production processes often run on a schedule, with each production stage requiring a certain
amount of time to complete its operation and having a certain throughput. To make sure
mobile robots pick up and deliver components on time, an automated task scheduler is used
to assign pick-up and delivery tasks to robots available in a production facility. Timely
completion of tasks also depends on the paths taken by robots, since these paths influence
on the duration of completing a task. A path planner computes a path for a robot to follow
from its initial position to its destination.
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2 Introduction

When it comes to task scheduling, many challenges exist. One is how to take varying priorities
of tasks into account in the scheduling process. Another is to determine how many tasks to
schedule for at once. For example, it could be efficient to schedule tasks up to a finite time
horizon that shifts into the future over time. Another challenge is that of determining where
robots go after completing a task. Options include defining buffer zones for robots to go to
and moving to unoccupied pick-up or delivery stations when an idling robot is blocking the
way at such a station. Finally, computation time is also factor to be taken into account to
determine the practicality of a task scheduling method.
The path planning problem also has many challenges. Planning and following paths requires
information about the locations of robots. Keeping track of these locations is called localisa-
tion, for which many methods exist. Localisation involves the use of sensors and a prediction
model to accurately determine robot locations. Besides keeping track of robot locations,
a path planner also uses information about obstacles to find paths that are collision free.
Gathering and updating this information is a procedure called mapping, i.e. representing the
physical environment as constraints for the path planner to deal with. A challenge that arises
when path planning for multiple robots is deciding between a centralised or distributed path
planning approach. With a distributed approach robots calculate their own paths individ-
ually, while a centralised approach plans paths for all robots all at once. While centralised
approaches are able to produce better global solutions because they can use more information
about the problem, they often come at a higher computational cost compared to distributed
approaches. As with task scheduling, when using mobile robots in practice, computation time
is an important factor to take into account.
This thesis is conducted in cooperation with Prodrive Technologies, a company in the Nether-
lands that develops and produces electronic and mechatronic products and systems. To assist
their production processes where flexibility is of major importance, Prodrive develops mobile
robots that can transport components. The long-term goal for Prodrive is to develop a ‘lights-
out factory’, which is a fully automated factory without any humans present, which would
theoretically allow the lights to be turned off. This objective is chosen because it is believed
that a fully automated factory would result in high efficiency and quality of manufacturing
processes, to which human error is detrimental.

1-2 Safety implications

The most important aspect of any technological solution involving humans is its safety. Since
humans can be present in production environments at Prodrive and in other places where
mobile robots are used, safety implications need to be considered.
When it comes to path planning for mobile robots, several measures can be taken to improve
safety of the system. First of all a robot needs to be able to halt at any time, if such a
command is given by a human through a stop-button for example. This is to give control
to humans in a situation where they do not trust the robot to act safely. Another measure
would be to have the robot show its intent to humans around him, with a display showing its
planned direction for example. This can help humans to navigate a space with mobile robots
safely and prevent unexpected robot behaviour to cause harm. Mobile robots should also be
equipped with a collision detection system, so that obstacles or humans of which the location
is not know to the robot do not collide with it.
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1-3 Problem statement 3

1-3 Problem statement

Task scheduling and path planning both have an effect on the performance of a production
line. After all, a particular schedule can unnecessarily cause pick-up and delivery tasks to be
started or completed too late, which can cause production to be delayed because a machine
spends time waiting for a new component. Likewise, planning paths that are longer than
necessary can also cause delays if it causes robots to arrive late. Rather than considering
the effects of task scheduling and path planning on the performance of a production line
separately, the problem that is tackled in this thesis is the evaluation of the effects of the way
task scheduling and path planning are integrated, on the performance of a production line.

Therefore, the objective of this thesis is to develop a methodology for integration of
task scheduling and path planning for multiple robots to optimise performance of
a production line. Since the mobile robots are used to assist a production line, the method-
ology should be feasible within practical computational constraints for use in a production
environment.

Given a set of mobile robots and a set of tasks, the objective of the integration methodology is
to assign tasks to robots, determine pick-up and delivery times based on constraints imposed
by the manufacturing process and plan paths for robots to perform pick-up and delivery tasks.

1-4 Research questions

The main research question follows from the problem statement and is formulated as follows:

What integrated task scheduling and path planning methodology for mobile
robots assisting a production line can be developed, considering computational
constraints, to optimise for the performance of the production line?

Three sub-questions treating aspects of the main research question are posed:

1. How can the problems of task scheduling and path planning of mobile robots be formu-
lated to allow for an integrated approach?

2. What integrated task scheduling and path planning approach for mobile robots can be
developed to optimise performance of a production line?

3. How do integrated approaches to path planning and task scheduling of mobile robots
assisting a production line compare, as measured by the performance of the production
line?

Answers to these questions are provided in Chapter 6.

1-5 Reading guide

This thesis is structured as follows. Chapter 1 provides background information to this
thesis, defines the problem statement and poses research questions. In Chapter 2 an overview
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4 Introduction

is given on the literature concerning path planning and task scheduling. Chapter 3 discusses a
Mixed-Integer Linear Programming (MILP) formulation of the path planning problem and a
novel objective function is proposed. In Chapter 4 a MILP formulation of a task scheduler is
introduced. Simulation results are reported and discussed in Chapter 5. Finally, in Chapter 6
conclusions are drawn, recommendations are made to Prodrive Technologies and suggestions
are made for future work.

All chapters can be read independently, except for Chapter 5 which assumes the reader
is familiar with the path planning and task scheduling formulations that are discussed in
Chapters 3 and 4 respectively (Figure 1-1).

Introduction

Literature survey

Multi-robot

path planning

Task scheduling

Conclusions and 

future work

1.

2.

3.

4.

6.

Integration and 

results

5.

Figure 1-1: Reading guide showing the relations between chapters
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Chapter 2

Literature survey

This literature survey is structured as follows. Section 2-1 discusses aspects of path planning
that are relevant to simple problems, with a single robot and no moving obstacles. In Sec-
tion 2-2, the scope is further expanded to planning in changing environments with moving
obstacles. Section 2-3 introduces methods for planning with multiple robots in the same
environment. Section 2-5 discusses conclusions from the literature survey.

2-1 Static environments

For a computer to plan a path in a continuous world, the physical environment first needs to be
represented in such a way that the planner can search for solutions. Path planning approaches
for static environments that are discussed can be divided into three main categories: combi-
natorial, sampling based and optimisation methods. Furthermore, kinodynamic planning are
discussed that use sampling based methods and take vehicle dynamics into account.

2-1-1 Combinatorial planning

The configuration space C is the set containing the rigid-body transformations that can be
applied to the robot [36]. It contains all configurations q of the robot A(q). The obstacle
configuration space Cobs contains all configurations at which the robot is in collision with
obstacles. What remains of C outside of Cobs is the free configuration space Cfree. Combina-
torial methods entail first creating a roadmap, which is a graph of nodes and edges. A search
algorithm searches the graph for a path connecting the initial and goal configurations using.

To create a roadmap cell decompositions divide Cfree into cells and place nodes in those
cells [9]. For non-circular robots that can rotate, collisions depend on the orientation of
the robot, adding a dimension to the configuration space. Paths can be very suboptimal,
because the roadmap is heavily dependent on the size and shapes of obstacles and open
spaces. A visibility roadmap is created by connecting vertices of obstacles and the edges of a
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6 Literature survey

maximum-clearance roadmap are equidistant to obstacles [32]. Graph search is used to find
a path on a roadmap from the initial configuration of the robot to its goal configuration.
Uninformed search methods such as Dijkstra’s algorithm do not consider prior knowledge
about the location of the goal [12]. Informed search methods such as A* use a heuristic,
such as a lower bound estimate of the cost to the goal, to guide the search [19]. Dijkstra’s
algorithm and A* both find the path with the lowest cost from the start to the goal if one
exists. For large graphs or with multiple robots computation time can become very long.

2-1-2 Sampling-based planning

Sampling based planning builds a roadmap by randomly sampling points in the workspace
and then checking if they are in the free configuration space [13]. For combinatorial methods
the complexity of the roadmap depends on the complexity of obstacles, while the complexity
of a roadmap generated by sampling based methods depends on the method of sampling and
the number of sampling points. Combinatorial methods are complete while sampling based
methods are not. An algorithm is complete if it is guaranteed to find a solution or report that
none exists. Alternative notions of resolution completeness and probabilistic completeness
are used for sampling based methods. A resolution complete planner guaranteed to find a
solution up to a certain sampling discretisation resolution of C. Probabilistic completeness
means the probability of finding a solution approaches one as the number of samples tends
to infinity [11].

The two most prevalent sampling based methods are the probabilistic roadmaps and rapidly-
exploring random trees. Probabilistic roadmaps are built during a preprocessing phase by
randomly sampling nodes in the free space [25]. The roadmap can be reused to plan multiple
paths. Rapidly-exploring random trees samples new nodes every time a new path is planned
until a path connecting the initial and goal configuration of the robot emerges [31]. The
advantage of probabilistic roadmaps is that after time is invested into generating a roadmap,
paths can quickly be planned using the roadmap [44]. This advantage ceases to hold when
a new roadmap needs to be generated regularly. Rapidly-exploring random trees have the
advantage of finding a path to the goal faster, which makes them more suitable when the
environment is too large to generate a complete roadmap or when changes occur in the envi-
ronment, necessitating a new roadmap. Both methods have been shown to be probabilistically
complete [4, 21]. The approximate cell decomposition is a sampling based variant of regular
cell decomposition and that is faster but less accurate at defining obstacle boundaries. The
method is resolution complete [7].

2-1-3 Optimisation approaches

The potential field method constructs an artificial potential field that guides the robot using
gradient descent [26]. Attractive potential attracts the robot towards the goal and repulsive
potential keeps the robot clear of obstacles. Another disadvantage is that the velocity of the
robot needs to be optimised separately. Furthermore, paths achieved with this method are
not necessarily optimal. The potential field method suffers from local minima causing the
robot to get stuck. To prevent this, measures need to be taken that result in suboptimal
and unnatural paths. Non-circular robots that can rotate require an additional dimension
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2-1 Static environments 7

to the potential field, making it harder to find a solution and more likely that local minima
are encountered [44]. Another issue with the method is its handling of narrow corridors [28].
Because both obstacles forming the corridor exert repulsive force on the robot, the entrance
to the corridor can become inaccessible to the robot.

Mixed-Integer Linear Programming (MILP) is an optimisation method for systems that are
described by linear dynamic equations and constraints with continuous and integer variables
[6]. Efficient solvers exist to optimise MILP problems, linear programming solvers are par-
ticularly optimised for performance. Disadvantageous is the fact that using many integer
variables drastically increases computation time [49]. A MILP formulation of the path plan-
ning problem is proposed in [40]. The trajectory of the robot is discretised into a finite
number of sampling instances with a finite time horizon. Obstacles are modelled using inte-
ger constraints. Local minima can occur when the time horizon is too short, which can be
remedied by extending the horizon. The method find an optimal path that minimises a cost
function calculating the distance between the robot state at sampling instances and its goal
state, whereas the potential field method follows the path of gradient descent without calcu-
lating an optimal path. Furthermore, MILP is able to find globally optimal paths for multiple
robots. Another advantage is that it takes vehicle dynamics into account, like kinodynamic
planning methods that are discussed next.

2-1-4 Kinodynamic planning

Kinodynamic planning uses sampling based methods and considers kinematics and dynamic
constraints on the robot, such as a maximum turning radius or velocity.

One approach is to ignore differential constraints in the path planning phase, and to adjust the
path afterwards to satisfy these constraints [29]. However, this could cause paths to become
very suboptimal or even infeasible. In [34], sampling is done of permissible control actions
instead of robot states. The control action that moves the robot nearest to the desired state
is used. The problem with this method is that it causes unnatural paths with varying control
actions, because they are randomly sampled. Another approach is to randomly sample a
state and a control action, however this has the same disadvantage [20]. In [16] the free state
space is divided into regular states and inevitable collision states. These are states that do
not immediately cause a collision but inevitably lead to a state of collision. By avoiding these
states future collisions can be prevented [16]. Motion primitives are precomputed motions
that satisfy kinodynamic constraints and that can be stitched together to form a path. An
advantage of using motion primitives is that it can generate natural paths within relatively
good computation time [17]. However, no systematic methods exist for designing motion
primitives that optimise planning performance, since they are very specific to a robot model
[33]. They are primarily useful for over-actuated robots, because they simplify the problem by
reducing the number of control variables. However, this also reduces the size of the solution
space.

2-1-5 Discussion

While combinatorial methods have the advantage of being complete because they capture all
information about the configuration space, they are harder to implement than sampling-based
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8 Literature survey

methods. Additionally, they can become computationally infeasible for increasing dimensions
and tightening constraints. The completeness of sampling based methods is limited to a cer-
tain resolution. Paths are suboptimal and can seem unnatural, roadmap nodes are randomly
generated. Information about obstacles is not used until after sampling so the placement of
nodes is inherently less efficient. The potential field method has a problem with getting stuck
local minima its paths follow the route of the gradient descent optimisation method. Methods
to escape such minima are limited and resulting paths can be very suboptimal. MILP can
produce paths that are optimise an objective function. It is also able to take vehicle dynam-
ics into account and to be used for multi-robot path planning. However, a sufficiently long
time horizon is necessary so that the goal can be reached, because too short a horizon can
guide te robot to local minima. Kinodynamic planning occurs under narrower constraints
than methods that do not take vehicle dynamics into account. Combinatorial methods are
incompatible with kinodynamic planning, because it is inherent to these methods that the
roadmap is unique and depends exclusively on the geometry of the configuration space and
not on robot dynamics.

2-2 Dynamic environments

Dynamic environments contain moving or unknown obstacles and need other methods to be
dealt with. The timing method and direct method use methods for static environments for
dynamic planning. Reactive methods change their representation of the free space and their
plan when a change occurs in the environment. Corridor methods reserve an area rather than
a path.

2-2-1 Static methods

The timing method assumes that trajectories of obstacles are known. Robots follow paths
calculated using a method for static environments while adjusting their speed to avoid colli-
sions. This can make paths very suboptimal since in many cases it is much faster to move
around a dynamic obstacle than to wait for it to move. The direct method adds the time
dimension to search space. Because computation time for this method increases exponentially
with the dimensions of the search space, it is slower than the timing method [45].

2-2-2 Reactive planning

With replanning a new plan is made when the environment changes. D* is an example of
a replanning method that uses the A* graph search algorithm that allows for the costs of
traversing edges to change during the search [41]. An approach for dealing with dynamic
obstacles using probabilistic roadmaps is to locally update the roadmap [22]. However, both
these methods do not take the predicted movement of obstacles into account. Reconfigurable
random forests are an implementation of rapidly exploring random trees that discard nodes
and edges of the tree as they are found to lead to collisions [35]. The result is that the
path gets separated into parts that have to be reconnected, which is a complicated procedure
because for a dynamically constrained robot it is hard to exactly connect two points that
are each other. Reactive planning uses local information about obstacles instead of a global
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2-3 Multiple robots 9

map, which is a useful property for situations where only local information is available. A
reactive planning method that uses velocity obstacles, which are first-order approximations
of the robot velocities resulting in collision, is proposed in [14]. However, this method has the
problem of getting stuck in local minima like the potential field method. Model predictive
control is a methodology to optimise control actions over a time horizon by predicting system
behaviour with a model. Every time step the optimal control law is determined that minimises
a cost function over a defined time horizon. Only the first control action is executed, after
which the procedure is repeated to determine the next control action. The Dynamic Window
Approach proposed in [15] reduces overall computation time for long paths by effectively
splitting it into parts. However, as a result no global optimum is guaranteed.

2-2-3 Corridors

Corridor planning entails planning a path that is wider than strictly necessary when only
considering the size of the robot [8]. In this way, the robot follows the general direction
of the initial plan and can solve local conflicts with obstacles without the need for major
replanning [23, 44]. However, replanning may be necessary anyway when a corridor is blocked.
Furthermore, corridors can cause other robots to take suboptimal paths when they are too
wide, while narrow corridors make the problem more constrained.

2-2-4 Discussion

Using static methods for dynamic environments leads to very suboptimal paths, because an
avoidance manoeuvre can save a lot of time compared to waiting for an obstacle to disap-
pear. Reactive methods can get stuck in local minima because only local information about
obstacles is used. Using corridors is a way of separating global path planning from local
obstacle avoidance, but their applicability depends heavily on the structure of obstacles in
the environment.

2-3 Multiple robots

Multiple robots increase of dimensions of the solution space, assuming robots have equivalent
configuration spaces. This makes many of the methods described before computationally
expensive, because worst-case computation time scales at least exponentially with the dimen-
sion of the search space [44]. Therefore, other approaches may be required for multi-robot
path planning. Planning techniques can be divided into decentralised methods that plan for
different robots independently and centralised methods that plan for multiple robots at the
same time.

2-3-1 Decentralised planning

In order to prevent collisions between robots paths can be planned for individual robots in
a fixed order [47]. Each subsequent robot treats previous robots as obstacles. The main
advantage of this approach is its simplicity. This method is neither optimal nor complete,
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as the problem can become infeasible depending on the way robots are ordered. Reciprocal
velocity obstacles are used to share the responsibility of collision avoidance between the two
robots involved, which is a decentralised planning method [46]. However, for an increasing
number of robots this methodology can result in oscillations of robot movements due to robots
using the same decision rules. Furthermore, it is a linear method that can only account
for linear robot dynamics. Optimal reciprocal collision avoidance works to eliminate these
oscillations by allowing robots to choose from a set of possible relative velocities, selecting
the one that matches its target velocity the closest [48]. However, this method is limited to
linear dynamics and to homogeneous systems, where all robots have the same equations of
motion.

2-3-2 Centralised planning

Subdimensional expansion is a method proposed to counter the exponential growth of the
configuration space with the number of robots that occurs when using regular methods,
designed for single robots, for multi-robot path planning [50]. The algorithm M* generates a
path for each robot separately using the A* graph search algorithm. Next, paths are checked
for collisions between robots. A new higher-dimensional search space is created to generate
a collision-free path for the two robots. This method combines centralised and decentralised
approaches, only using the centralised approach when a collision would occur. This has the
advantage of reduced computation time that comes with decentralised approaches, and of
being able to capture better solutions that come with centralised approaches. However, in
the worst case when each robots would collide with another the higher-dimensional search
space becomes the same size as the joint configuration space of all robots, which destroys the
benefit if using the method.

2-3-3 Discussion

Centralised approaches for multi-robot path planning quickly become infeasible as the number
of robots increases, because worst-case computation time scales exponentially with the number
of robots. A decentralised approach on the other hand covers only a small part of the solution
space, so that a globally optimal solution cannot be guaranteed. A hybrid method such as
subdimensional expansion can reduce computation time by applying both approaches, but
depending on the physical environment it can become equivalent to fully centralised approach
with long computation time.

2-4 Task scheduling

Task scheduling is used for different kinds of problems, from vehicle routing to project man-
agement. Prioritisation methods assign tasks based on their priorities. Time window methods
start with a set of deadlines and compute possible solutions to fit those deadlines. Optimisa-
tion methods minimise an objective function to generate an optimal schedule.
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2-4-1 Prioritisation

In [43], an algorithm is developed that uses prioritisation to assign tasks to robots and plan
their respective paths, so that the outcome minimises a global cost function. All robots
are interchangeable, so they are not considered to carry a specific payload. The algorithm
proceeds in four steps, starting with a set of goal configurations to be reached by the robots.
First, individual paths are planned from all robots to all goals. Second, goal configurations
are assigned to robots by minimising a cost function, such as the length of the longest path.
Third, robots are ordered by priority, using the following two rules, where R is the radius of
the circular robot. Given a set of robots, for every two robots Ai and Aj in the set:

1. Ai has priority of Aj if the path of Ai comes within 2R of the goal configuration of Aj .

2. Aj has priority of Ai if the path of Ai comes within 2R of the initial configuration of
robot Aj .

Fourth, using the previously determined priorities, speed profiles are calculated for the robots
along their trajectories, so that collisions are avoided. For prioritisation methods, the order of
the priority queue has large consequences for the algorithms performance. Several heuristics
have been proposed to order the queue effectively. One method is to order the queue by query
distance, which is the estimated time duration of following the path, if other robots would
not need to be avoided [47]. This heuristic aims to minimise the latest arrival time, given a
set of tasks, by allowing robots travelling longer distances and hence requiring more time, to
go first.

2-4-2 Time windows

In [10], algorithms are proposed for path planning with time windows consisting of departure
and arrival deadlines. A directed graph called a time window network is defined. Several
properties of nodes and edges are calculated for the graph, such as earliest arrival time and
latest departure. The resulting data on the nodes can be used to plan valid paths for a robot
under time window constraints. An algorithm is proposed that gives the most flexible path,
i.e. the path that is most robust to delays while still meeting the time window requirements.
The algorithm could be generalised to compute flexible paths for multiple robots. An auction-
based method for routing multiple robots under time window constraints is discussed in [37].
Robots bid on tasks, offering their cost of fulfilling it, based on factors such as the distance
to travel. The lowest bid wins and the task is assigned to the robot. During execution
when more information becomes available, auctions are re-run which can cause changes to
the schedule. The disadvantage of such a decentralised method is that the optimality of the
schedule depends on factors such as the order in which tasks are assigned. To prevent robots
never completing their task, a weighted cost on its duration can be used.

2-4-3 Optimisation

The travelling salesman problem is an optimisation problem, where the goal is for a salesman
to visit a set of cities at least once, and return to his city of origin, all the while minimising
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travelling costs. The problem can of course be generalised for other problems, such as robots
visiting warehouse storage racks for example. The multiple travelling salesmen problem is an
extension that allows for multiple agents to travel between cities at the same time [5]. Exact
solution methods exist that work for limited numbers of agents and nodes, using approaches
like integer linear programming [24], or the cutting-plane method [30]. In addition, heuristic
methods that do not guarantee optimal solutions but are more computationally efficient have
been proposed, based on genetic algorithms [42] or neural networks [38] for example. The
resource-constrained project scheduling problem involves activities and resources, which are
available in limited quantities. Processing an activity requires time and resources. In [27,
2], an event-based MILP formulation is proposed to assign activities to resources. Instead
of sampling time into fixed time steps, the event-based model defines a fixed number of
events, one for the start and finish of each task. The goal of the optimiser is to assign
these events to tasks and determine the time at which they occur. The resource-constrained
project scheduling problem is related to multi-robot scheduling, since robots can be considered
resources. Task scheduling and path planning are used together in [1]. A MILP formulation
based on the Travelling Salesman Problem assigns tasks to agents. The potential field method
is then used check if a robot can feasibly fulfil a task without collisions. However, collision
avoidance between robots is not taken into account. Furthermore, the potential fields can
have local minima so that paths could be rejected even though they are feasible.

2-4-4 Discussion

With prioritisation, optimising the order of priority queue can have major consequences on the
overall performance. Time windows that are used in some situations give rise to the possibility
of optimising for flexibility and robustness to delays, rather than time or distance for example.
Various solution methods for optimisation approaches exist, such as exact solutions of a
linearisation of the problem, heuristics that are not optimal but fast to compute and integer
programming. A MILP formulation uses integer and binary variables to model the on/off
behaviour characteristic to scheduling. Though linear solvers are very efficient, it can involve
a lot of additional variables and constraints to transform a problem into MILP form.

2-5 Conclusion

The literature on path planning is vast and many methods have been developed over the
years. Task scheduling is a problem that arises in various forms, such as vehicle routing or
project management. However, from the literature survey it is concluded that not enough
research is done to investigate the integration of path planning and task scheduling, treating
them as a problem with a single objective to be optimised. In this thesis, new methods are
developed with that objective in mind.
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Chapter 3

Multi-robot path planning

In this chapter the general path planning problem is formulated and a Mixed-Integer Linear
Programming (MILP) formulation from the literature is discussed [40]. Additionally, im-
plementation challenges are addressed and a new cost function is proposed to optimise the
duration of paths.
A linear formulation is used to reduce computation time. Hence, nonlinearities in the system
model need to be linearised. The main causes of nonlinearity are the following.

• In a two-dimensional plane, Euclidean distances are nonlinear functions of x and y
coordinates.

• Similarly, a maximum velocity or acceleration is a nonlinear function of x and y coor-
dinates.

• Mapping the turning radius and velocity of a vehicle to a two-dimensional Euclidean
coordinate system requires nonlinear geometric functions.

• Non-polygonal obstacles are described by nonlinear functions, therefore obstacles need
to be represented as polygonals.

Solutions to remedy these causes of nonlinearity are covered in this chapter.

3-1 Problem description

Multi-robot path planning aims to find paths for a set of robots from their initial to their goal
configurations, while avoiding obstacles. Let A be the set of P robots, where the pth robot
is denoted by Ap. The set O contains individual obstacles Om, with m = 1, . . . ,M . Time is
discretised into time instances k = 1, . . . ,K. The variables that characterise the problem are
divided into three categories, namely (i) given, (ii) state and (iii) decision variables.
Given variables are conditions on the problem describing its initial state and desired outcome.
For the path planning problem, they are the following:
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14 Multi-robot path planning

• For each robot Ap, an initial state si
p and a goal state sg

p.

• Position and geometry of obstacles in O. Assuming nonrotating rectangular obstacles
(See Section 3-4-1 for motivation), each obstacle Om can be described by its lower-
left and upper-right coordinates, {xmin

m , ymin
m , xmax

m , ymax
m }. For dynamic obstacles, these

variables depend on time, so they become {xmin
mk , y

min
mk , x

max
mk , y

max
mk }.

State variables contain information about the state of the system throughout time. Their
values are subject to the solution of the optimisation problem. They are:

• Position of each robot Ap, expressed by its coordinates {xpk, ypk}.

• Velocity of each robot, {ẋpk, ẏpk}.

Decision variables form the solution to the optimisation problem. The decision variables for
the path planning problem are:

• Control actions applied to robot p at time instance k, producing a path for each robot:
upk.

3-2 Trajectory optimisation for a single robot

A linear-quadratic regulator is a classic approach to optimal control of dynamic systems.
Control actions are calculated by minimising a quadratic cost function J . The optimisation is
constrained by the linear state space equations of the dynamic system. Its general formulation
in continuous time is [18]:

min
s,u

J = min
s,u

∫ ∞
0

(sTQs+ uTRu)dt

s.t. ṡ = Acs+Bcu
(3-1)

where s is the state vector and u is the control vector. For the example of a single robot,
the state vector could contain the position and velocity of the robot and the control vector
could contain the current to an electric motor. Ac and Bc are continuous time state space
matrices. Q and R are semi-positive definite weighting matrices for penalising the state and
control actions. An initial condition determines the state at time t = 0.

It is possible to use a 1-norm in the cost function instead of a 2-norm, resulting in a linear
optimisation. This means that only linear combinations of optimisation variables can be used
in the objective function, prohibiting the use of performance measures that are nonlinear.
However, in combination with integer variables that are used to handle collision avoidance
with obstacles, linear problems are generally faster to solve than mixed-integer quadratic
programs. The cost function using a 1-norm takes the following form:

J =
∫ ∞

0
(qT|s|+ rT|u|)dt (3-2)

where q and r are weighting vectors.
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3-3 Linear vehicle models 15

The next step is to discretise the system so the problem can be solved numerically. Time is
divided uniformly into time steps k = 0, . . . ,K− 1 over a finite time horizon of K∆t seconds,
where ∆t is the sampling time. To account for cost accumulated beyond the time horizon,
a terminal cost pTsK is added to the objective function. A large terminal cost encourages
the solver to find a path so that the goal is reached. Rather than minimising the state vector
itself, the difference between the state vector sk and the goal state sg is minimised. The cost
is minimal when the state of the robot equals the goal state, which can be a certain goal
location at zero velocity for example. This results in the following formulation [40]:

min
s,u

J = min
s,u

K−1∑
k=0

(qT|sk − sg|+ rT|uk|)∆t+ pTsK

s.t. sk+1 = Ask +Buk

(3-3)

where sk denotes the state vector at time instance k and uk is the control vector at time
instance k. Matrices A and B are the discretised state space matrices of the linear system.
To solve a MILP problem using a solver such as MATLAB or Gurobi, the problem needs to
be brought into the standard form:

min
x

cTx

s.t. Aineqx ≤ bineq

Aeqx = beq

xi ∈ Z ∀ i ∈ Xint

(3-4)

where c is the weighting vector of the solution vector x in the objective function, Aineq, bineq,
Aeq and beq are constraint matrices and Xint is the set of indices of integer elements of x.
To reach this standard form, the absolute values in the cost function are eliminated using
slack variables wk and vk, which have the same dimensions as xk and uk respectively. The
initial condition s0 and the sampling time ∆t can be omitted from the objective function of
equation (3-3), since they are constant. Finally, the weighting vectors q and r are indexed
with time. This allows to increase the penalty as time goes on, which prevents the solver
from spending a disproportionate amount of its efforts on the part of the path farthest from
the goal. The MILP formulation for trajectory optimisation of a single vehicle becomes:

min
wk,vk

K−1∑
k=1

qT
kwk +

K−1∑
k=0

rT
k vk + pTwK

s.t. sk ≤ wk + sg

−sk ≤ wk − sg

uk ≤ vk

−uk ≤ vk

sk+1 = Ask +Buk

(3-5)

3-3 Linear vehicle models

The formulation of (3-5) leaves the choice for the vehicle model open, as long as it is linear.
First, a simple linear vehicle model is introduced. Next, it is expanded to become more
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realistic for use in simulations.

3-3-1 Simple vehicle model

An example of a simple linear discrete-time vehicle model is one that produces grid-like paths.
The state consists of the x and y coordinates of the robot. Control actions are constrained
by −1 ≤ uk ≤ 1, and simply move the robot in the x or y direction by their amounts. The
discrete-time state space equation is:(

xk+1
yk+1

)
︸ ︷︷ ︸
sk+1

=
(

1 0
0 1

)
︸ ︷︷ ︸

A

(
xk

yk

)
︸ ︷︷ ︸
sk

+
(

1 0
0 1

)
︸ ︷︷ ︸

B

(
ux,k

uy,k

)
︸ ︷︷ ︸
uk

(3-6)

Unit penalty is assigned to the state, and no penalty is assigned to the control actions, both
independent of time. The initial and goal position are set to sT

0 =
(
4 7

)
and sT

g =
(
0 0

)
.

Figure 3-1 shows a solution from running the optimisation with Gurobi. Note that though
the solver returns a single solution, for this example there exist multiple solutions with the
same cost.

-1 0 1 2 3 4 5

x [m]

-1
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y
 [

m
]

Robot position

Figure 3-1: An optimal trajectory for the simple linear model, with unit weights q and r, initial
and goal states sT

0 = (4 7) and sT
g = (0 0). The blue line represents the trajectory and the

dots represent the position of the robot at sampling instances.

3-3-2 Force control robot model

A more realistic linear vehicle model is the following continuous-time second-order model that
uses force control:

mẍ+ Fx = 0
mÿ + Fy = 0

(3-7)
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where m [kg] is the vehicle mass, x and y [m] are the coordinates of the robot, and Fx and
Fy [N] are the input forces exerted on the robot.
The state space equations for this model are:

ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x
y
ẋ
ẏ

+


0 0
0 0
− 1

m 0
0 − 1

m


(
ux

uy

)
(3-8)

where ux and uy are the input forces Fx and Fy respectively. For numerical optimisation the
state matrices are transformed into their discrete-time equivalents.
The vehicle is treated as a point mass that can be accelerated in all directions. Constraints
are used to limit the force actuation and velocity of the robot. This model applies quite
well to the Prodrive robot, which can rotate in place. This means it can follow any path in
two-dimensional space.
In reality the permitted acceleration might depend on the velocity, but this is a nonlinearity
that cannot be captured by a linear model. Safe bounds on the force actuation and velocity
of the planner can be used to make sure the real robot can follow the simulated path. The
alternative of using a turning radius or angular orientation results in a nonlinear vehicle
model.
Another shortcoming of this linear model is that the constraints on the force actuation and
velocity allow the robot to move and accelerate faster in the x and y direction at the same
time, than in just the x or y direction. This is because a velocity or acceleration bound that
is equal in all directions is nonlinear:√

ẋ2 + ẏ2 ≤ vmax

√
ẍ2 + ÿ2 ≤ amax (3-9)

where Vmax is the velocity bound and Amax is the acceleration bound.
To mitigate this shortcoming, the nonlinear ‘circular’ bounds can be approximated using mul-
tiple linear constraints, as shown in Figure 3-2. More constraints can be added to approximate
the circle more accurately. The same goes for constraints on the acceleration.
Since adding constraints increases complexity and computation time, the simplest form in-
volving four constraints is used from here on, with safe bounds so no infeasible solutions are
produced. The disadvantage of this approach is that the solution space is reduced, i.e. better
solutions with velocities that fall outside of the simple bounds but are actually feasible are
not found.
An example using this vehicle model would simply result in a straight line from the starting
point of the robot to its goal. Therefore, an example is shown after the modelling of obstacles
has been introduced.

3-4 Obstacles

3-4-1 Obstacle constraints

It is intuitive to regard obstacles as constraints on the path planning problem, since they
constrain the area in which the robot is able to move. To simplify the problem formulation,

Master of Science Thesis Jeremy Aarts



18 Multi-robot path planning

ẋ

ẏ

Vmax

Figure 3-2: The dashed circle represents the most realistic, but nonlinear, maximum velocity
vmax which is equal in all directions. The red hexagon shows a linear approximation of this circle.
The dotted square shows a rectangular approximation requiring only four constraints.

the robot is treated as a point mass. To prevent collisions, obstacles are enlarged in all
directions by the radius of the robot. Doing so with the maximum radius of a noncircular
robot reduces the solution space because some robot positions are feasible depending on the
orientation of the robot. Since the base of the Prodrive robot is circular, treating it as a point
poses no problems. The base is designed to be circular for safety reasons, namely to prevent
collisions while rotating in place, but also to simplify path planning, because then collisions
due to rotation need not be considered.

Consider a rectangular obstacleOm at time instance k, with its lower left corner at (xmin
mk , y

min
mk )

and its upper right corner at (xmax
mk , y

max
mk ). For a static obstacle these coordinates are the same

for all k. At every point in time k, the position of the robot must not lie within the rectangle.
This can be formulated using four constraints, of which only one needs to be met. The
constraints are as follows:

∀k ∈ {1, . . . ,K}, ∀m ∈ {1, . . . ,M} : xk ≤ xmin
mk

or xk ≥ xmax
mk

or yk ≤ ymin
mk

or yk ≥ ymax
mk

(3-10)

These or-constraints need to be transformed into regular and-constraints for them to adhere
to the MILP standard form of (3-4). The big M method can be used to do so [6]. Because
M already denotes the number of obstacles, C will be used instead. Consider two binary
variables δ1 ∈ {0, 1} an δ2 ∈ {0, 1}. One can ensure that at most one of them is 1 by requiring
δ1 + δ2 ≤ 1.

Now consider the inequality f(x) ≤ 0 and a binary variable δ ∈ {0, 1}. It can be verified that
[f(x) ≤ 0 or δ = 1] if and only if f(x) ≤ Cδ, where C ≥ max(f(x)). An estimate of C closer
to the actual value of max(f(x)) is computationally more efficient than a larger value [51].

Combining these two notions, two or-constraints can be transformed into and-constraints.
Consider the following two constraints, of which only one needs to be met:

f(x) ≤ 0 or g(x) ≤ 0 (3-11)
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These are readily transformed into standard form using the two notions inferred above:

f(x) ≤ Cfδ1

g(x) ≤ Cgδ2

δ1 + δ2 ≤ 1
(3-12)

where Cf ≥ max(f(x)), Cg ≥ max(g(x)), δ1 ∈ {0, 1} and δ2 ∈ {0, 1}.

Applying this method to (3-10), binary variables δobs
mk1, . . . , δ

obs
mk4 ∈ {0, 1} are introduced for

all obstacles and time instances. Binary variables are implemented for a MILP solver by
designating them as integer variables and constraining them between 0 and 1. Transformed
into standard form, (3-10) becomes:

∀k ∈ {1, . . . ,K}, ∀m ∈ {1, . . . ,M} :
xk ≤ xmin

mk +Cδobs
mk1

−xk ≤ −xmax
mk +Cδobs

mk2

yk ≤ ymin
mk +Cδobs

mk3

−yk ≤ −ymax
mk +Cδobs

mk4

δobs
mk1 + δobs

mk2 + δobs
mk3 + δobs

mk4 ≤ 3

(3-13)

where C is at least two times greater than maximum values for x and y coordinates. Note that
xk and yk are variables in the state vector sk, while xmin

mk , xmax
mk , ymin

mk and ymax
mk are constants

deriving from the obstacles.

The obstacle constraints of (3-13) only apply to rectangular obstacles that are not rotated
with respect to the x and y axes. Any polygonal obstacle, i.e. with straight edges, can simi-
larly be captured by linear constraints [40]. However, more constraints are needed depending
on the shape of the obstacle. Furthermore, a binary variable is needed for every added con-
straint. To reduce complexity, only unrotated rectangular obstacles are used from here on.
Obstacles of other shapes can be approximated up to a certain resolution using smaller rect-
angles. Additionally, the layout of a typical production environment at Prodrive is adequately
captured with rectangles. In theory, regarding robots as points and enlarging obstacles would
result in round corners where the original obstacle has a square corner. Instead, obstacles are
enlarged more than strictly necessary, by the same amount in the x and y direction so that
obstacles remain rectangles.

3-4-2 Unknown obstacle trajectories

The constraints of (3-13) require the position of obstacles over the entire time horizon. For
some (moving) obstacles, this information may not be available. One solution to this problem
is to use Model Predictive Control (MPC). With MPC, a path is planned over a prediction
horizon that is shorter than the full time horizon necessary to reach the goal. The obstacle
positions then only need to be known or predicted for the duration of the prediction horizon.
After a path is calculated, the robot starts following it and in the meantime a path is planned
with a new prediction horizon. This step is repeated until the goal is reached. Another
solution that can be used in addition to MPC, is to use the constraints from (3-13) to block a
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region that is larger than the actual obstacle. The size of this region can be increased over time
to account for increasing uncertainty about the location of the obstacle [44]. Disadvantageous
about this solution is that it may render the problem infeasible.

3-4-3 Corner cutting

The obstacle constraints of (3-13) ensure that robots do not collide with obstacles at every
time instance k. However, this is not guaranteed for the line connecting these points, because
the time of the system is discrete. As a result, the robot may cut corners of obstacles
(Figure 3-4a). To prevent this, obstacles are enlarged in all directions by dgrow.

The maximum distance travelled between two states is dmax = vmaxts, where vmax is the
maximum speed of the vehicle and ts is the sampling time. To prevent corner cutting of 90◦
corners, obstacles are grown in all directions by dgrow = 1

4
√

2 · dmax, as shown in Figure 3-3.

dmax
dgrow

45◦ O

Figure 3-3: An obstacle O with 90◦corners is grown by dgrow to prevent corner cutting. The blue
line indicates the maximum distance dmax that can be travelled by the robot during one sampling
period.

Figure 3-4a shows a path using the vehicle model with force control from Section 3-3-2.
Although at all discrete time instances, denoted by points, the robot is not in collision with
obstacles, on the connecting lines it clearly is. The dashed lines in Figure 3-4b show the edges
of the virtual obstacles that have been enlarged by dgrow. The resulting path cuts no corners
of the true obstacles.

The disadvantage of this method is that it reduces the solution space, since the robot will not
approach obstacles as close as is possible in reality. In some cases this could even render the
problem infeasible, even though a solution exists in the original solution space. Furthermore,
a large sampling time can make the problem infeasible, or much harder to solve, since the
virtual enlargement of obstacles is proportional to the sampling time.

An alternative method is to use additional constraints to ensure the line connecting sampling
instances does not overlap with an obstacle [39]. However, these constraints increase com-
plexity and computation time because they introduce new binary variables for every time
step and obstacle. To save computation time, the simpler method of enlarging obstacles is
used for the remainder of this research.
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(a) (b)

Figure 3-4: The blue lines represent paths and the dots represent the position of the robot at
sampling instances. (a) A path cutting obstacle corners, from (4, 5) to (0, 0). (b) By growing the
obstacles in all directions with dgrow, the corners of the virtual obstacles (dashed lines) are cut,
but not those of the actual obstacles.

3-5 Multiple robots

Previous sections accounted for only one robot. This section treats the modifications to the
objective function and constraints that are necessary when path planning for multiple robots.

3-5-1 Objective function

To account for multiple robots, the cost function (3-5) needs to be amended. Instead of
K states sk for all time steps, there are K × P states spk for all robots p = 1, . . . , P and
time steps k = 1, . . . ,K. The same goes for the inputs upk. There are P goal states spg.
Weighting vectors qpk and rpk can take different values depending on the robot, for example
to give priority to certain robots. The cost function becomes:

J =
P∑

p=1

(
K−1∑
k=1

qT
pkwpk +

K−1∑
k=0

rT
pkvpk + pT

pwpK

)
(3-14)
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3-5-2 Constraints

The constraints governing the movement of robots according to the vehicle model can be
made dependent on the robot as well. Different state matrices Ap and Bp can be used for
robots, if they are not homogeneous. However, the remainder of this report will only consider
homogeneous robots.

∀p, ∀k : spk ≤ wpk + spg

−spk ≤ wpk − spg

upk ≤ vpk

−upk ≤ vpk

sp(k+1) = Apspk +Bpupk

(3-15)

Obstacle constraints apply to all robots in the same way, so they are simply repeated for each
robot. However, simultaneously optimising for multiple robots can also result in collisions
between robots. Therefore additional constraints are needed for collision avoidance. This can
be achieved by requiring a minimum distance between robots, using the following constraint:

∀k,∀p, q | q > p : |xpk − xqk| ≥ dx

or |ypk − yqk| ≥ dy
(3-16)

where dx and dy are the minimum distance between robots in the x and y direction. The
condition q > p ensures constraints are not duplicated.

Recall from the force control vehicle model (Section 3-3-2) that a constraint on the velocity
that is equal in all directions is nonlinear. Similarly, the absolute distance |d| between two
robots A and B is a nonlinear function of their positions:

|d| =
√

(xA − xB)2 + (yA − yB)2 (3-17)

This nonlinear relation can be approximated using linear constraints. The simplest approx-
imation involving the fewest number of constraints is used, namely that of (3-16). This
approximation is like the dotted square on the velocity constraint of Figure 3-2.

To bring (3-16) into standard form, absolute values are eliminated, and the Big M method
(using the letter C as in Section 3-4-1) is applied to transform or-constraints into regular
constraints. It is assumed that minimum distances between robots are the same in the x and
y direction, i.e. d = dx = dy:

∀k, ∀p, q | q > p : xqk − xpk − Cδcol
pqk2 ≤ −d

xpk − xqk − Cδcol
pqk1 ≤ −d

yqk − ypk − Cδcol
pqk4 ≤ −d

ypk − yqk − Cδcol
pqk3 ≤ −d

δcol
pqk1 + δcol

pqk2 + δcol
pqk3 + δcol

pqk4 ≤ 3

(3-18)

where δcol
pqk1, . . . , δ

col
pqk4 are binary variables. C must be a large number, at least two times the

largest value for x or y, plus d.
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3-5-3 Minimum distance

For circular robots with radii r, the minimum distance between robots to prevent collisions
should be:

d = 2r + dsafety (3-19)

where dsafety is an extra safety distance to have between robots.

However, this minimum distance prevents collisions at discrete sampling moments, but not in
between time steps. To ensure no collision occurs between time steps, the minimum distance
at sampling moments should be:

d = 2
√

2r + dsafety (3-20)

The 2
√

2 makes sure the most extreme case, where two robots move alongside each other at
a 45◦ angle does not result in a collision in between sampling instances.

When the sampling time is large enough, robots could seem to jump over one another if their
distance is large enough at time steps before and after the jump, similar to corner cutting
with obstacles. The simplest case of this happening is when two robots swap places between
time steps. For the Prodrive case, this behaviour is of course not possible in reality (for the
current version of the robots at least). To prevent this from happening, the minimum distance
between robots must take into account the robots maximum velocity vmax and the sampling
time ts:

d = max(2
√

2r, vmaxts) + dsafety (3-21)

3-6 Duration optimisation

The objective function (3-14) proposed in the literature uses the distance between robots and
their goal states as a cost metric. Another objective could be to minimise the time it takes
for robots to reach their goal states. The authors of [40] propose running the optimisation
multiple times with different time horizons, until the shortest time horizon resulting in a
feasible path is found. However, this method itself is very time-consuming.

A new cost function is proposed to minimise path durations with a single optimisation. To
that end, a binary variable δgoal

pk ∈ {0, 1} is defined which is 1 if and only if robot p has reached
its goal at time instance k, which is considered true when wpk equals zero with a tolerance
of ε:

∀p,∀k : wpk ≤ ε ↔ δgoal
pk = 1 (3-22)

This relation can be realised in MILP form using two additional constants, Cmin , min(wpk−
ε) and Cmax , max(wpk−ε), of which the definitions are upper and lower bounds respectively
[6]. Two constraints per robot and time instance are needed:

∀p, ∀k : wpk + Cmaxδ
goal
pk ≤ Cmax + ε

−wpk + (Cmin − ε)δgoal
pk ≤ − ε

(3-23)
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24 Multi-robot path planning

Once a robot has reached its goal, all subsequent δgoal
pk are 1, so the arrival time instance

kp,arrival of robot p can be inferred as follows:

kp,arrival =
(
2 3 · · · K

)


δgoal
p2 − δ

goal
p1

δgoal
p3 − δ

goal
p2

...
δgoal

pK − δ
goal
p(K−1)

 (3-24)

The objective is to minimise the sum of all arrival times, with an optional weighting factor
per robot Wp to be able to prioritise certain robots. A large negative weight on the last
binary variable with a large number Cg rewards reaching the goal, since otherwise the cost
would be the lowest when robots remain stationary at their initial positions. A term CgP is
added so that the objective value gives calculates the sum of durations and can be read more
intuitively.

J =
∑
p∈A

(
Wpkp,arrival − Cgδ

goal
pK + CgP

)
(3-25)

A disadvantage of this time-penalising cost function compared to the distance-penalising cost
function (3-14) is that if the time horizon is too short to reach the goal this will result in a
very bad solution. The distance-penalising cost function on the other hand produces a path
that brings the robot as close as possible to the goal. If partial paths that do not reach the
goal are deemed useful, a new cost function combining the two cost functions could be used,
penalising both distance and time.

3-6-1 Variables and constraints

The total number of variables and constraints depends on the state dimension Ds, the control
action dimension Du, the number of time steps K, the number of obstaclesM and the number
of robots P . The state and input dimension for the force control vehicle model are 4 and 2
respectively. Including auxiliary variables for the duration objective function from (3-25), the
total number of variables is:

2DsKP + 2DuKP + 4KMP + 4K 1
2P (P − 1) + 2KP (3-26)

The number of inequality constraints is:

2DsKP + 2DuKP + 5KMP + 5K 1
2P (P − 1) + 2DsKP (3-27)

The number of equality constraints is:

DsKP + P (3-28)
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3-7 Conclusion

The goal of the multi-robot path planning problem is to find paths for multiple robots while
avoiding obstacles and collisions. An approach based on a discrete-time linear regulator is
used, where the linear state equations form constraints of the optimisation. The objective
function minimises the cumulative distances between robots at sampling instances and their
goal positions.

A linear vehicle model based on force control is proposed. The state consists of two spatial
dimensions and their first order derivatives. This model is chosen because it is relatively
simple, but still captures the behaviour of the Prodrive robot well. Bounds on the velocity and
acceleration are linearised and a method for approximating more realistic nonlinear bounds
is suggested.

Linear constraints are used to model obstacles. To limit the number of additional variables
and constraints, obstacles are considered to be rectangular. To prevent robots from cutting
corners of obstacles, a minimum clearance depending on the maximum speed of robots and
the sampling time is proposed. Collision avoidance between robots is realised by requiring a
minimum distance between robots.

A new objective function is introduced to optimise paths for the arrival time of the robot,
without having to run the optimisation multiple times. This is realised using integer variables
and linear constraints to fit the MILP formulation.

In Chapter 5 this path planner formulation is employed to simultaneously schedule tasks and
plan the paths for the robots fulfilling them.
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Chapter 4

Task scheduling

The task scheduling problem comprises of assigning tasks to robots and determining the time
at which they are to be completed. To allow for a homogeneous combined approach with
path planning, the task scheduler is also formulated as a Mixed-Integer Linear Programming
(MILP) problem.

Given are a set of tasks, each of which has a departure time window and an arrival time
window. The departure time window consist of an earliest departure time and a latest de-
parture time, and the arrival time window consists of an earliest arrival time and a latest
arrival time. Figure 4-1 shows a graphical representation of a set of five tasks, where each
task is denoted by its own colour. Departure must occur during the departure time window
and arrival during the arrival time window. The horizontal axis represents time and tasks are
shown vertically. Notice how multiple robots are necessary to fulfil all these tasks on time.

4-1 Scheduling approach

The MILP path planner from the previous chapter uses variables indexed by time. This means
that for an increasing time horizon the number of variables increases linearly. An event-based
approach on the other hand has the same number of variables regardless of the scheduling
horizon, but the number of variables does increase linearly with the number of tasks. It is
called an event-based approach because it does not use a fixed sampling time but effectively
samples only at the start and finish times of tasks, called events. In [27] and [2], an event-
based MILP formulation is proposed for solving the resource-constrained project scheduling
problem. Binary variables are used for marking events as the start or finish of an activity to
be performed, where dependencies between activities are constraints on the problem. In this
chapter, the same concept is used to develop a MILP formulation for task scheduling with
multiple robots.

Assuming we have a fixed number of tasks N , a fixed number of events Ee can be defined,
with e the event number. An event occurs at the start and finish time of each task. Two
extra events are added to represent the first event and the final event and are not connected
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Figure 4-1: Tasks are shown on the vertical axis, each with its own colour and a time windows
within which departure and arrival must occur. The departure time window is shown above or to
the left of the arrival time window, with station numbers shown on the time windows.

to a specific task, so a reference time can be set and the completion time of the final task
can be determined. Therefore a total of L = 2N + 2 events are defined, with event numbers
e = 0, . . . , L− 1.

All events occur in sequential order, i.e. E0 occurs the earliest and EL−1 the latest. Initially,
events are not associated to tasks. It is the goal of the optimisation to determine in which
order tasks are fulfilled and therefore also to which events they are to be associated. The
time at which events occur is a continuous optimisation variable.

Consider three tasks T1, T2 and T3. Two events per task and two additional reference events
are defined, making eight events in total. Figure 4-2 shows an example of a schedule where
the start and finish of tasks are assigned to events. The time axis is displayed horizontally.
Note that all events occur in sequential order, even though some events occur at the same
time. When multiple robots are involved, tasks can be fulfilled at the same time, such as T1
and T2. Figure 4-2 shows how the start event of T2 occurs before the finish event of T1, which
is only possible if multiple robots are available to complete tasks in parallel. The start event
of a task need not directly be followed by its finish event, because other events may occur in
between. Furthermore, notice how the events are not evenly spaced, the time at which they
occur is part of the optimisation solution.

4-2 Problem description

Given are N tasks Tn with n = 1, . . . , N and P robots Ap with p = 1, . . . , P . A set E is
defined containing L events Ee, with e = 0, . . . , 2N + 1. In addition to a reference event E0
and a final event EL−1, an event occurs for the start and finish time of each task.
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Figure 4-2: Events occur for the start and finish of each task. Events are in sequential order, but
can function as a start of finish event of any task. The horizontal axis shows how events (e) can
be distributed nonuniformly over time (t), or even occur at the same time, since different tasks
can be started and finished at the same time (e.g. events 4 and 5, or 6 and 7).

The decision variables are:

• snep ∈ {0, 1} is 1 if and only if task n starts at event e and is fulfilled by robot p

• fnep ∈ {0, 1} is 1 if and only if task n finishes at event e and is fulfilled by robot p

• te ∈ [t0,∞) is the time at event e, where t0 is the time at the earliest reference event

4-3 Constraints

The constraints on the MILP optimisation problem are essentially the mathematical descrip-
tion of the scheduling problem. Recall the decision variables snep, fnep and te. The first
constraint sets the reference time, which by default is zero. This is done by setting the time
of the first event, which is a special event not associated to any task, to zero:

t0 = 0 (4-1)

The next constraint ensures that events occur in sequential order:

te+1 ≥ te e = 0, . . . , L− 2 (4-2)

Every task is completed only once, therefore the number of times it starts or finishes must be
limited to one also: ∑

e∈E

∑
p∈A

snep ≤ 1 ∀i ∈ T (4-3)

∑
e∈E

∑
p∈A

fnep ≤ 1 ∀i ∈ T (4-4)

A task that is started by a robot p, must be completed by the same robot:∑
e∈E

snep =
∑
e∈E

fnep ∀i ∈ T, ∀p ∈ A (4-5)
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The following constraint is to make sure that tasks are finished after they are started. In
other words, the finish event of a task must occur later event than its start event:

e∑
v=0

∑
p∈A

fnvp +
L−1∑
v=e

∑
p∈A

snvp ≤ 1 ∀n ∈ T, ∀e ∈ E (4-6)

The next constraint keeps track of time. The time at which a finish event for a task occurs
must be greater than the sum of the start time of that task and its duration. It is an
inequality constraint because it may be beneficial to the schedule to take longer than the
minimum duration of the task.

tr ≥ tq +
∑
p∈A

(snqp + fnrp)dn − dn ∀q ∈ E , r ∈ E , r > q, ∀n ∈ T (4-7)

where dn is the duration of completing task n, including loading and unloading of the delivery.

If two tasks are fulfilled by the same robot, time for reaching the starting point of the second
task from the finishing point of the first task must be accounted for:

tr ≥ tq +
∑
p∈A

(sjrp + fiqp)dij − dij ∀q ∈ E , r ∈ E , r > q, ∀i ∈ T, j ∈ T, i 6= j (4-8)

where dij is the minimum duration of driving from the finishing location of task i to the start
location of task j. Note that this duration does not involve loading and unloading time.

If a task is the first one to be completed by a robot, the time to go to the start location of
the task from the initial position of the robot must be taken into account:

te ≥ snep(dpn + tready
p )−

e−1∑
v=1

∑
n∈T

snvp(dpn + tready
p ) ∀e ∈ E , e 6= 0, ∀n ∈ T, ∀p ∈ A (4-9)

where dpn is the duration of robot p going tot the starting point of task n and tready
p is the

time at which robot p is available for starting a task, to account for robots that are occupied
until after the reference time t0.

At this point it is useful to know which events correspond to the start and end of a task.
Therefore auxiliary variables us

np and uf
np are defined, which are the start and finish event

number for task n done by robot p:

us
np =

(
sn1p . . . sn(L−2)p

) 1
...

L− 2

 ∀n ∈ T ∀p ∈ A (4-10)

uf
np =

(
fn1p . . . fn(L−2)p

) 1
...

L− 2

 ∀n ∈ T ∀p ∈ A (4-11)

Using these auxiliary variables, a constraint that ensures a robot only fulfils a single task at
a time can be applied. This is done by forcing that one out of a pair of tasks fulfilled by the
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same robot starts only after the other has finished:

∀(i, j) ∈ T, i < j, ∀p ∈ A : us
ip ≥ uf

jp + 1
or us

jp ≥ uf
ip + 1

or us
ip + us

jp ≤ 0
(4-12)

If the last or-condition is met, robot p starts nor finishes neither task n or j, so the others
need not apply.
Transforming these inequalities into MILP standard form, using the big M method as de-
scribed in Section 3-4-1:

∀(i, j) ∈ T, i < j, ∀p ∈ A : −us
ip + uf

jp − Cbijp1 ≤ −1
−us

jp + uf
ip − Cbijp2 ≤ −1

us
ip + us

jp − Cbijp3 ≤ 0
bijp1 + bijp2 + bijp3 ≤ 2

(4-13)

where bijp1 ∈ {0, 1}, bijp2 ∈ {0, 1}, bijp3 ∈ {0, 1} and M ≥ us
ip + us

jp + uf
ip + uf

jp + 1 is a large
number.
To prevent pick-up before the earliest departure time and delivery before the earliest arrival
time of a task the following constraints are applied:

∀n ∈ T : tsn ≥ tED
n

tfn ≥ tEA
n + tunload

(4-14)

where the constant tunload is the time it takes to unload a delivery. This constraint ensures
unloading cannot begin before the earliest arrival deadline. The variables tsn and tfn are the
start and finish time of task n. They must be written in terms of the decision variables:

tsn =
∑
e∈E

∑
p∈A

snepte =
∑
e∈E

∑
p∈A

zs
nep (4-15)

The multiplication of snep with te is nonlinear, so the auxiliary variable zs
nep is realised using

the following constraints:

∀n ∈ T, ∀e ∈ E , ∀p ∈ A : zs
nep ≤ Csnep

zs
nep ≥ csnep

zs
nep ≤ te − c(1− snep)
zs

nep ≥ te − C(1− snep)

(4-16)

where C is a large number and c a small number, once again applying the big M method
(Section 3-4-1). The auxiliary variable zf

nep is defined in the same way, except for that it
applies to finish events.

4-4 Objective function

The goal of the scheduler is to make sure tasks are completed on time and as soon as possible.
Several objective functions are proposed.

Master of Science Thesis Jeremy Aarts



32 Task scheduling

4-4-1 Makespan

The makespan is the duration of completing all tasks. To minimise the makespan, the objec-
tive function is the arrival time of the task that is completed the latest. Recall that events
are in sequential order, therefore the last event is the completion time of the final task.

J1 = tL−1 (4-17)

The disadvantage of this approach is that multiple solutions can result in the same cost. If one
task has time windows later than all the others, it will nearly always be the latest scheduled
task and so the assignments of all other tasks bears no effect on the objective function.

4-4-2 Start and finish times

This objective function minimises aggregate start and finish times of tasks. A weighting factor
can be used to give certain tasks higher priority.

J2 =
N∑

n=1

(
W s

nt
s
n +W f

nt
f
n

)
(4-18)

where tfn is the finish time of task n and Wn is a weighting factor for task n.

4-4-3 Lateness

This cost function minimises the total time that tasks arrive or depart after their departure
or arrival deadlines. Earliest departure and earliest arrival are enforced by constraints rather
than with the objective function, so that a delivery cannot be picked up before it is ready
(Section 4-3). Contrary to J2, this function accumulates cost only for the time tasks miss
their deadlines, being early has no effect.

J3 =
N∑

n=1

(
W s

n max(tsn − tLD
n , 0) +W f

n max(tfn − tLA
n , 0)

)
(4-19)

where tLA
n and tLD

n are the latest arrival and departure deadlines for task n.

Auxiliary variables hs
n and hf

n are used to bring the nonlinear max-operation into MILP form:

∀n ∈ T : hs
n ≥ tsn − tLD

n

hs
n ≥ 0
hf

n ≥ tfn − tLA
n

hf
n ≥ 0

(4-20)

Note that this method of representing the max-function assumes that the optimiser will
seek to minimise hs

n and hf
n, otherwise their values are not guaranteed to produce the same

outcome as the max-function. It is possible to guarantee this, but that would require defining
additional variables which is not necessary for the purpose of minimising lateness.
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The objective function finally becomes:

J3 =
N∑

n=1
(W s

nh
s
n +W f

nh
f
n) (4-21)

4-4-4 Time windows missed

The next objective function aims to minimise the percentage of departure and arrival time
windows that were missed by the schedule. Introducing binary variables δlate

sn ∈ {0, 1} to
denote whether task n was started after its latest departure deadline and δlate

fn ∈ {0, 1} to
denote whether it was finished after its latest arrival deadline, the function becomes:

J4 = 100
2N

N∑
n=1

(
δlate

sn + δlate
fn

)
(4-22)

The relations δlate
sn = 1 ↔ hs

n > 0 and δlate
fn = 1 ↔ hf

n > 0 are obtained using the following
constraints:

∀n ∈ T : −hs
n + ε ≤ C(1− δlate

sn )
hs

n − ε ≤ −cδlate
sn

(4-23)

where ε > 0 is a small number to denote the tolerance of the inequality constraint, C is a
large number and c a small number. Similar to J3, this function is not guaranteed to compute
the correct percentage of time windows missed if the solver does not optimise for hs

n and hf
n,

or δlate
sn and δlate

fn .

4-4-5 Variables and constraints

The total number of variables and constraints depends on the number of robots P , the number
of tasks N and the number of events L = 2N + 2. The number of variables is:

2NLP + L+ 2NP + 3N2P + 2NLP + 4N (4-24)

The number of inequality constraints is:

(L− 1) +NL+N

(
L(L+ 1)

2 − 1
)

+N(N − 1)
(
L(L+ 1)

2 − 1
)

+NLP + · · ·

· · · 4P
(
N(N + 1)

2 − 1
)

+ 2N + 6NLP + 6N
(4-25)

The number of equality constraints is:

1 + 2N + 5NP (4-26)
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4-5 Conclusion

This chapter introduces a scheduler for pick-up and delivery tasks to be done by multiple
robots. Like the path planner from Chapter 3, a MILP formulation is used. MILP is suitable
to the scheduling problem because integer variables allow to model the decision tree. The
decision tree arises from the fact that a finite number of solutions exists, due to the finite
number of robots and tasks.

The behaviour of the scheduler is defined by the constraints that ensure robots fulfil only a
single task at a time, that tasks are done by only one robot, that the time for moving between
tasks is taken into account etc. Four objective functions are proposed. The makespan, i.e. the
completion time of the last task, is a common optimisation goal, but it is not very suitable
when the schedule must accord to time windows. If the time windows prescribe a certain
task to be completed later than all others, the solver will only optimise for this task and
not for the rest. The second objective function aims to minimise start and finish times of
tasks, i.e. start and finish tasks as early as possible. The third cost function penalises the
total amount of time that tasks are started after their pick-up deadline or finished after their
delivery deadline. This objective is used when lateness must be avoided but the amount of
time tasks are completed before their deadline is not important. The fourth cost function
minimises the percentage of tasks missed. This objective function does not penalise the time
robots are late, only the fact that a deadline was missed. This function can be used when
there is no point completing a task at all if it is not on time.

The scheduler takes pick-up and delivery time windows for tasks, and assigns them to the
available robots in such a way that an cost function is minimised. Together with the path
planner from Chapter 3, the scheduler is used in Chapter 5 to schedule tasks as well as plan
paths for the robots.
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Chapter 5

Integration and results

In this chapter three methods for integration of path planning and task scheduling are pro-
posed: rule-based scheduling with single-robot path planning (RB-SR), MILP scheduling with
single-robot path planning (MILP-SR) and MILP scheduling with multi-robot path planning
(MILP-MR). These methods are compared using simulations and the results are reported and
discussed.

5-1 Performance criteria

The Mixed-Integer Linear Programming (MILP) path planner and MILP scheduler are dis-
tinct optimisations aiming to minimise their respective objective functions.

5-1-1 Path planner objective function

In Chapter 3 two objective functions were discussed. The objective function (3-14) minimises
control actions and distance between robots and their goal states at every discrete time step
and was introduced in [40]. A new objective function (3-25) that minimises the sum of
durations for robots reaching their goals was proposed in Section 3-6. The objective function
used by the path planner in this chapter is the sum of these two functions:

Jpp =
∑
p∈A

(
Wpkp,arrival − Cδgoal

pK + CP +
K−1∑
k=1

qT
pkwpk +

K−1∑
k=0

rT
pkvpk

)
(5-1)

where A is the set of robots, kp,arrival is the arrival time instance of robot p, δgoal
pK is a binary

variable denoting whether robot p has arrived at its goal at the final time instance K, wpk

is the absolute value of the state error of robot p at time instance k and vpk is the absolute
value of the control action of robot p at time instance k. The term CP is added so that the
objective value gives an intuitive value for the approximate sum of durations. Parameters
are chosen as follows: Wp = 1, C = 1000, qp1 = 0.001 · (1 1 0 0)T increasing linearly to
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qpK = 0.001 · (100 100 00)T and rpk = 0.0001 · (1 1)T. The variable ε from (3-23) that
determines the tolerance of δgoal

pk is set to 0.01 · (1 1 1 1)T. This means that when the robot
approaches its goal within 1 cm in the x and y direction and has a speed lower than 0.01 m/s
in both directions it is assumed to have reached the goal.

The main objective is to minimise duration of paths. However, the duration is a discrete
variable and can only take values that are a multiple of the sampling time. To further
optimise paths and to prevent excessive or oscillating control actions the distance objective
function is used with small weights qpk and rpk on the difference between the robot state and
the goal state and on the control actions respectively. A comparison of objective functions
for the path planner is made in Section 5-6-1.

5-1-2 Scheduler objective functions

Two objective functions are used for the MILP scheduler. The first is used to complete a
set of tasks without deadlines and the second to complete a set of tasks with deadlines. The
main objective for task sets without deadlines is to minimise the makespan from (4-17), which
is the completion time of the last task. However, minimising the makespan only optimises
the assignment of tasks to robots and the start and finish times of tasks that influence the
makespan. To start and finish all tasks as early as possible given a particular assignment that
optimises the makespan, (4-17) is combined with (4-18) with weights on the latter set really
small, because the makespan is the primary optimisation objective. The objective function
becomes:

Jmakespan = tL−1 +
N∑

n=1

(
W s

nt
s
n +W f

nt
f
n

)
(5-2)

where tL−1 is the time of the last event, i.e. the finish time of the last task, N is the number
of tasks, tsn is the start time of task n and tfn the finish time of task n. The weights are set as
W s

n = W f
n = 0.01.

The second objective function is used for task sets that do have deadlines, and aims to
minimise the percentage of latest departure and latest arrival deadlines missed as is done
with (4-22). Using this function produces rather discrete outcomes and penalises being 1
second late equally to being 10 seconds late. The reason for this is that being late will require
some kind of human intervention anyway to not disturb the production line. However, without
any weights on start and finish times the scheduler might schedule a task very far into the
future if it is late anyway. To remedy this, the same terms from (4-18) with small weights
W s

n = W f
n = 0.01 are added as was done with Jmakespan:

Jdeadlines = 100
2N

N∑
n=1

(
δlate

sn + δlate
fn

)
+

N∑
n=1

(
W s

nt
s
n +W f

nt
f
n

)
(5-3)

where δlate
sn is a binary variable denoting whether task n started after its departure deadline

and δlate
fn is a binary variable denoting whether task n finished after its arrival deadline.

Start and finish times are minimised in addition to the makespan or percentage of deadlines
missed so that delays caused by collision avoidance have less effect on the main objective
than they would if start times were maximised for example. Maximising start times could be
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done in an effort to make robots spend less time doing tasks and more time unoccupied. This
can be advantageous in case new tasks are added that need an unoccupied robot to complete
them.

5-1-3 Performance indicators

Performance of the integration of path planning and task scheduling is measured by the
indicators described in Table 5-1.

Performance indicator Description
Computation time (s) Total time spent by the MILP solver on path planning for a given

schedule. Scheduling time is not included in this time, because
a maximum computation time of 120 s was used as a stopping
criterion. The scheduling time is constant for simulations that use
the MILP scheduler, since it does not converge within 10 hours,
let alone 120 s.

Total distance (m) Sum of distances driven by all robots.
Energy (103 J) Total amount of energy spent by all robots, calculated using con-

trol actions of the force control model. Note that the model does
not account for friction so this is also not included in the energy
calculation.

Deadlines missed (%) Percentage of latest departure and latest arrival deadlines that
have been missed over the entire task set.

Total delays (s) Cumulative time that all robots depart or arrive after their respec-
tive deadlines.

Later than earliest (s) Cumulative time robots depart or arrive after the earliest depar-
ture or arrival time of a task. In other words, they were not
necessarily late, but it is an indicator of how much earlier they
could have been.

Makespan (s) Completion time of the last task.

Table 5-1: Performance indicators for the integration of path planning and task scheduling

5-2 Settings and parameters

All simulations are run on a HP ZBook Studio G4 with an Intel Core i7-7700HQ processor and
8GB of RAM. Constraint matrices are generated using MATLAB R2017b on a 64-bit Windows
10 operating system, from which Gurobi Optimizer 7.5.1 is called for running optimisations.
Results are processed and visualised using MATLAB.

The robot is modelled as a solid disk and the force control vehicle model is used (Section 3-
3-2). Default parameters for simulations in this chapter are shown in Table 5-2.

The maximum control action of 200 N amounts to a maximum acceleration of 1 m/s2. Loading
and unloading times are minimum durations for a robot to remain stationary at the departure
and arrival station of a task, to allow for the load to be transferred to or from the robot.
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Parameter Value
Robot mass (kg) 200
Robot radius (m) 0.5
Maximum robot speed 2
Maximum control action (N) 200
Loading time (s) 5
Unloading time (s) 5
Maximum relative gap Grel (%) 0.01

Table 5-2: Default simulation parameters

For MILP problems with many variables it is often computationally not feasible to evaluate
all integer solutions. Stopping criteria are used to terminate the optimisation and return the
best solution found until then. A common stopping criterion is computation time. Another
criterion is the relative MILP optimality gap Grel. This is the difference between the lower
bound Jlower on the objective value and the best feasible objective value that has been found
so far, called the incumbent objective value Jincumbent, relative to Jincumbent.

Grel = |Jlower − Jincumbent|
|Jincumbent|

(5-4)

The lower bound is determined by relaxing (i.e. disregarding) some integer constraints and
calculating the objective value for this likely infeasible solution. The relative gap can become
lower over time either if a feasible solution with a lower objective value is found or if the lower
bound is increased by relaxing fewer integer constraints. By using a maximum relative gap
tolerance as a stopping criterion a certain solution quality is guaranteed, but depending on
the problem it can take a long time to reach that criterion. That is why it is often used in
combination with a maximum computation time.

The MILP path planner uses a finite time horizon with a number of time steps K. The
default time horizon for single-robot path planning is set to twice the expected duration of
a task according to a pre-calculated table of durations between all stations. In case no path
to the goal is found within the default time horizon, the path planner reruns with a time
horizon increased in steps of 10 seconds until a path to the goal is found. The time horizon
is increased up to a duration that would allow to traverse the physical space from one end to
the other and back. If still no path is found, the problem is assumed infeasible and human
intervention is required, but this has not occurred during experiments in this chapter.

5-3 Maps

Two physical environments are used, of which maps are shown in Figure 5-1. The first is a
factory floor map and is shown in Figure 5-1a. The map is based on a 2D scan of a factory
floor at Prodrive Technologies (Figure B-1 in Appendix B). Obstacles from the original scan
have been simplified into 11 rectangular obstacles to reduce the number of obstacle constraints
necessary. The factory floor is 50-by-50 m area where the edges of the map are assumed to
be walls. Because robots are 1 m in diameter, they can pass each other almost everywhere.
This is not the case for the second map, which is denoted as the corridor map and is shown
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in Figure 5-1b. Robots are not able to pass each other so they must drive round obstacles
to avoid one another. Simulations with the factory floor map use a sampling time Ts = 0.5
s and those with the corridor map use Ts = 0.25 s because of the smaller distances involved.
Table A-1 and Table A-2 are pre-calculated duration tables for the two maps containing the
durations for a single robot to move between stations.
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Figure 5-1: Maps of physical environments, where obstacles are shown as grey rectangles and
pick-up and delivery stations are denoted by crosses with their respective station numbers

5-4 Task sets

Four cases are presented for comparison, each containing a set of tasks with a pick-up time
window and a delivery time window. The cases are shown in Figure 5-2 and Figure 5-3. All
station numbers, robot starting positions and deadlines are randomly generated. The goal of
the scheduler is to schedule tasks so that their start and finish times fall within the respective
time windows.

5-5 Integration methods

In previous chapters MILP formulations for path planning and task scheduling have been
introduced. Next, three methods for integrating path planning and scheduling are introduced.
The goal of these integration methods is to generate a schedule and the corresponding paths
of the robots, in order to complete a set of tasks.
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(b) Factory floor map, with deadlines

Figure 5-2: Task numbers are shown on the vertical axis, each task number corresponds to a
colour. Station numbers are shown on the time windows. Departure time windows are displayed
above or to the left of arrival time windows.
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(b) Corridor map, with deadlines

Figure 5-3: Task numbers are shown on the vertical axis, each task number corresponds to a
colour. Station numbers are shown on the time windows. Departure time windows are displayed
above or to the left of arrival time windows.
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5-5-1 Method 1: Rule-based scheduling, single-robot path planning (RB-SR)

The first method uses rule-based scheduling. This means that tasks are ordered using a
heuristic, and assigned to robots in that order. The Earliest Deadline First (EDF) scheduling
rule is used. All tasks are sorted in ascending order by their latest arrival time [3]. This is
a useful heuristic when aiming to minimise late arrivals, since priority is given to tasks with
the nearest deadline.
Path planning is done using the MILP path planner from Chapter 3. However, paths are
planned for only one robot at a time. After a path is calculated, it is saved and the robot is
treated as a dynamic obstacle by other robots that have their paths planned subsequently.
Figure 5-4 shows the process the rule-based single-robot (RB-SR) method for scheduling and
path planning. After the tasks have been ordered by their latest arrival time, the first task
on the list with the earliest deadline is selected. Next, a calculation is made for each robot
when it would be able to start the task, using state information about the robots position and
availability and a pre-calculated table of estimated travel durations between stations. The
robot that is expected to arrive at the pick-up location of the task the earliest is assigned to
the task.

Sort tasks by 

earliest deadline
Select first task

Select available 

robot

Plan path

to pick-up 

station

Robot at pick-

up station?

No Yes

Plan path to 

delivery 

station

Remove task
Stop if no 

more tasks

Figure 5-4: Process diagram for the rule-based scheduling and single-robot path planning method
(RB-SR)

If the selected robot is already at the pick-up station, the MILP path planner plans the path
from the pick-up station to the delivery station, regarding any previously planned paths of
other robots as moving obstacles. The resulting path is saved, including the robot being
stationary during loading and unloading of its delivery. Finally the task is removed from the
list and the next task on the list is selected.
If the selected robot is not yet at the pick-up station for its assigned task, a path is planned
to the starting position of the task. Afterwards, the first task on the list is selected, which
will still be the same task. But now the robot is at the pick-up station of the task, so the
process will go as described above. Once all tasks have be completed the list of tasks will be
empty and the process stops.
To facilitate the use of a durations table, robots are assumed to start at a station and remain
there after making their delivery. After a robot has unloaded, it is removed from the map
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to allow other robots to use the station. The robot is assumed to go to a buffer, the exact
manoeuvre of which is not computed because this is a complex planning problem by itself
and out of scope for this project. Once a robot is needed again, it is able to reappear at the
station it arrived last, provided no other robots are loading or unloading at the station.

5-5-2 Method 2: MILP scheduling, single-robot path planning (MILP-SR)

The second method for scheduling and path planning uses the MILP scheduler from Chapter 4
and the same single-robot path planning method as the first method. It is therefore called
MILP-SR for short.

The process for the MILP-SR method is shown in Figure 5-5. First, the MILP scheduler
generates a schedule using the set of tasks while optimising for its objective function. In
doing so it uses the same table of durations for its duration estimates as is used by the RB-
SR method. The result is a schedule with a set of tasks per robot in a particular order, with
estimated start and finish times of tasks.
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task for robot

Plan path

to pick-up 

station

Robot at pick-

up station?

No Yes

Plan path to 

delivery 

station

Remove task
Stop if no 

more tasks

Figure 5-5: Process diagram for the MILP scheduling and single-robot path planning method
(MILP-SR)

The robot is selected that has remaining tasks to complete and that has the earliest availability
after completing its previous tasks. For this robot, its next task as was determined by the
MILP scheduler is selected. Depending on whether the robot is already present at the pick-up
location, a path is planned to move to the start of the task or to complete the task using
the MILP path planner. If the task is completed it is removed from the set of tasks and the
process repeats by selecting the earliest available robot again.

5-5-3 Method 3: MILP scheduling, multi-robot path planning (MILP-MR)

The third method, called MILP-MR, uses the MILP scheduler and the MILP path planner,
planning paths for multiple robots at the same time. The process for this method is shown
in Figure 5-6. As with the second method, the MILP scheduler first generates a schedule.
However, instead of selecting one task corresponding to the earliest available robot, the first
task for each robot is selected.
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Figure 5-6: Process diagram for the MILP scheduling and multi-robot path planning method
(MILP-MR)

Next, the time horizon for the path planner is determined. If tasks for different robots do not
overlap in time, planning them with a single optimisation would require a large time horizon
without robots interacting, resulting in an unnecessarily large number of constraints and
variables, and long computation time. Therefore, starting with the robot that is available the
earliest, its time horizon is determined by doubling its estimated completion time according
to a pre-calculated duration table between stations, to account for detours. The same is done
for the robot with the next earliest availability, if its departure time falls within the time
horizon of the previous robot. If the departure time of a robot does not fall within the time
horizon of previous robots, its task is removed from the selection, to be planned for at a later
iteration.

Next, for each robot it is determined to which goal location it should move, depending on
whether it must go to the pick-up location of a task or do the task itself. Finally, paths are
planned for multiple robots simultaneously, and the completed tasks are removed from the
taskset. Once again the earliest task for each robot is selected and the process repeats itself
until all tasks are completed.

5-6 Results

Experiments are done on path planner objective functions, scheduling methods and integra-
tion methods.

5-6-1 Path planner comparison

Four objective functions for the path planner are compared. The first cost function J1 uses
(3-14) that calculates cumulative distances to the goal state and control actions at every time
instance, with the weights weights q = (1 1 0 0)T and r = (0.01 0.01)T. The terminal weight
is p = (1000 1000 0 0)T. All weights are the same for each robot and for every time instance.
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The second objective function J2 also uses (3-14) but with weights qp1 = (1 1 0 0)T to
qpK = (100 100 00)T that increase linearly over the time horizon. The weights on the control
action and the terminal cost are the same as those of J1.

The third objective function J3 minimises the cumulative durations for all robots to reach
their goal with (3-25). Robots are weighted equally with Wp = 1 and the constant C is set
to 1000 to reward robots for reaching their goal.

The fourth objective function is (5-1) with parameters Wp = 1, C = 1000, qp1 = 0.001 ·
(1 1 0 0)T increasing linearly to qpK = 0.001 · (100 100 00)T and rpk = 0.0001 · (1 1)T.

In addition to the default relative gap tolerance a maximum computation time of 120 seconds
is used as a stopping criterion. The factory floor map is used. Three cases are defined,
with 2, 3 and 4 robots respectively. The cases involve varying path lengths and interactions
between robots. All robots start at t = 0 and the time horizon is fixed to 80 time steps,
or 40 seconds, for all simulations. All cases are optimised with all four objective functions.
Table 5-3 contains the objective values for each objective function for all of the experiments.
Performance indicators are shown in Figure 5-8. Full results are found in Table A-3.

Case Objective J1 J2 J3 J4
1 J1 3556 34035 119 154.7

J2 3545 31491 112 145.5
J3 10910 150347 107 259.6
J4 3488 31205 107 139.6

2 J1 4576 48650 168 218.2
J2 4610 44800 155 202.2
J3 15387 231315 151 385.6
J4 4444 43207 151 196.3

3 J1 3540 35028 159 195.3
J2 3566 34535 159 195.3
J3 15729 227716 155 386.1
J4 3563 34915 155 191.4

Table 5-3: Objective values for all path planner cost functions while optimising paths for each
cost function for three cases

The objective function J3 stands out in Table 5-3 because of the large values for the other
objective values when optimising for J3. The first reason for this is that J3 is an integer. This
means that variables that do not have a large enough effect on the duration to change J3 can
take very large values, resulting in high cost for objective functions that do penalise these
variables. The second reason is that due to a lack of penalty the control actions are very
high and oscillate between time steps. This oscillation can be seen in Figure 5-7a. Figure 5-
7b shows the paths for J4 which does have penalties on the control actions, eliminating
oscillations.
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(a) J3 as objective function
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(b) J4 as objective function

Figure 5-7: Each coloured line represents a path of a different robot, with dots on the lines
representing sampling instances
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Figure 5-8: Performance indicators four objective functions for the path planner

Furthermore, notice how optimising for J4 obtains the same value for J3 as optimising for J3
itself. Figure 5-8 shows that J4 performs better than J3 on all performance indices, except
for the computation time. This shows that the extra time used by J4 is time well spent
on improving paths without coming at the cost of longer path durations. Both J3 and J4
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perform better than J1 and J2 on computation time. The distance cost functions J1 and J2
only perform better on energy than the J3 and J4, which is explained by the fact that J1 and
J3 have relatively larger penalties on the control action. Note that J1 and J2 do not minimise
the total distance, instead they accumulate cost for the distance to the goal at every time
step. Figure 5-8b shows that the duration cost functions produce paths with similar or even
lower total distance than the distance cost functions. All in all, J4 is a good choice when the
aim is to minimise path durations while taking computation time, total distance and energy
into consideration.

5-6-2 Scheduler comparison

Two experiments are done to compare the MILP scheduler that is used by the methods
MILP-SR and MILP-MR with rule-based scheduling that is used by the method RB-SR.
Both use the factory floor map. The first uses the task set without deadlines from Figure 5-
2a and the second uses the task set with deadlines from Figure 5-2b. A maximum computation
time of 120 s is used as stopping criterion for the MILP scheduler. This maximum time chosen
as an acceptable time for on-demand scheduling in production environment. Results for the
experiments are reported in Table A-4 and Table A-5.

The first experiment uses the scheduler objective function Jmakespan from (5-2) and the second
experiment uses Jdeadlines from (5-3). Table 5-4 lists the objective values obtained using rule-
based scheduling (RB) and using the MILP scheduler.

Jmakespan Jdeadlines
Robots RB MILP RB MILP
1 336.75 302.1 127.91 110.16
2 177.72 166.98 58.55 73.13
3 129.33 115.85 26.61 31.57
4 111.78 100.44 16.94 41.4
5 80.46 87.15 13.98 24.98
6 72.71 65.23 12.21 18.1
7 72.52 55.12
8 42.04 35.7

Table 5-4: Objective values for two experiments, one for a task set without deadlines using the
Jmakespan and one for a task set with deadlines using Jdeadlines

For the first experiment the MILP scheduler results in a better objective value and makespan
for all runs except with 5 robots, as can be seen in Table 5-4 and Figure 5-9. This is
unexpected, because the MILP scheduler optimises for the cost function, while the rule-based
scheduler does not. The reason for this result is a lack of computation time. A test with
unlimited computation time shows the MILP scheduler outperforms the rule-based scheduler
after 706 s. Another test ran for 10 hours after which it was manually stopped, at a relative
gap of 67%. Reaching a relative gap of 0.01% is therefore practically unattainable.

For the second experiment the results show worse performance of the MILP scheduler. In all
cases except with a single robot the rule-based scheduler outperforms the MILP scheduler as
becomes clear from Table 5-4 and Figure 5-10. For the test with 6 robots there are a total
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Figure 5-9: Comparison of rule-based scheduling (RB) and MILP scheduling for a task set
without deadlines optimising for Jmakespan

number of 34 002 constraints and 7 262 variables, of which 4 580 are integers, which means
there are an enormous number of possible solutions. This leads to the conclusion that the
MILP scheduler is no more suitable than a rule-based scheduler for a case with deadlines
when a limit of 2 minutes of computation time is imposed.
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Figure 5-10: Comparison of rule-based scheduling (RB) and MILP scheduling for a task set with
deadlines optimising for Jdeadlines

5-6-3 Factory floor simulations

Two experiments are done using the factory floor map, which involves relatively large distances
and a lot of free space for the robots to move in.

Without deadlines

The first experiment uses the randomly generated task set without deadlines from Figure 5-
2a. Therefore the makespan objective function (5-2) is used. Simulations are done for 1 to 7
robots comparing the three integration methods RB-SR, MILP-SR and MILP-MR. Results
are shown in Figure 5-11 and are reported in Table A-6.

Increasing the number of robots available to complete a set of tasks reduces the makespan
(Figure 5-11a) and the sum of departure and arrival times (Figure 5-11c) since tasks can
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Figure 5-11: Comparison of three path planning and scheduling integration methods using the
factory floor map and the task set without deadlines

be completed in parallel instead of serially. However, for this task set the benefit of adding
robots wears for more than 5 robots.

Conversely, a clear effect on the total distance driven does not become apparent for an in-
creasing number of robots (Figure 5-11d). This is because tasks still have the same distance.
Even if on the one hand less distance is travelled in between tasks with more robots, on the
other hand larger distances may be travelled if that means tasks can be done in parallel to
reduce the makespan.

The effect of the number of robots on computation time for methods RB-SR and MILP-SR is
also ambiguous (Figure 5-11b). Each requires roughly the same number of runs of the MILP
path planner (Table A-6), so computation time is largely dependent on collision avoidance of
previously planned paths and planning time horizons which produces some correlation with
the total distance (Figure 5-11d). For MILP-MR, the effect of increasing numbers of robots
is clear. Using more robots results in fewer runs of the path planner but for more robots
at once. Planning paths for multiple robots at once dramatically increases the number of
variables and constraints of the MILP problem, resulting in longer computation time.

The methods MILP-SR and MILP-MR outperform RB-SR in all cases, with an 11% to 36%
lower makespan. This is because the MILP scheduler can assign tasks to robots so that robots
can start a task at their own starting station, start a new task at the delivery station of a
previous task or drive shorter distances between tasks. Figure 5-12a shows the final result
after path planning according to the RB-SR method and Figure 5-12b shows the result for the
MILP-SR method. It can be seen from Figure 5-12b that less time is spent driving between
tasks with the MILP-SR method.

There is no notable difference between MILP-SR and MILP-MR, except when it comes to
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(a) Integration method RB-SR
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Figure 5-12: Scheduling and path planning results using integration methods RB-SR and
MILP-SR. Robots are shown on the vertical axis, the tasks they have completed are shown
as coloured blocks. The colours correspond to the colours from the task set in Figure 5-2b.
Numbers above the blocks denote the pick-up and delivery station of the task. Dashed blocks
represent driving from the finish station of one task to the start station of the next and grey blocks
represent loading and unloading time. When there is empty space between arrival and unloading
the robot is in the buffer of the station.

computation time. This due to the fact that in an environment with a lot of free space like the
factory floor map, using the multi-robot path planner has negligible effect on path durations
because there are plenty collision free paths with the same duration.

Optimise time windows

The second experiment with the factory floor map is done using the randomly generated
task set with deadlines from Figure 5-2b. The scheduler objective function (5-3) is used to
minimise the percentage of deadlines missed and the start and finish times of tasks to a lesser
extent. Results are shown in Figure 5-13 and are reported in Table A-7.

Contrary to the previous experiment, in this case RB-SR outperforms MILP-SR and MILP-MR
in some cases. This shows that even though MILP-SR and MILP-MR optimise their sched-
ules for a minimal percentage of deadlines missed, they are not guaranteed to perform better
than an integration method using a rule-based scheduler in this case. The reason for this is
two-fold. First, due to having a stopping criterion of 120 seconds, the MILP is not able to
find the optimal solution. This stopping criterion was decided on for practical reasons as well
as because a test of a simulation running for 10 hours showed marginal improvement of the
solution after the two-minute mark.

The second reason is that even if an optimal schedule were found by the MILP scheduler, it
still uses a heuristic in the form of a pre-calculated duration table to estimate the duration of
fulfilling tasks. These durations do not take collision avoidance between robots into account.
Therefore, once paths have been calculated by the MILP path planner, more deadlines can be
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Figure 5-13: Comparison of three path planning and scheduling integration methods using the
factory floor map and the task set with deadlines

missed than would have happened with another schedule. This is because the MILP scheduler
does not take collision avoidance between robots into account which causes path durations to
be longer.

The computation time follows the same pattern as with the experiment without deadlines.
No experiments were done for upwards of 6 robots because computation time became longer
than 30 minutes.

5-6-4 Corridor simulations

Two experiments are done with the corridor map shown in Figure 5-1b. This map features
a lot of robot interactions, since robots cannot pass each other in the corridors and have to
drive round obstacles to avoid other robots.

Optimise makespan

The first experiment with the corridor map uses the task set without deadlines from Figure 5-
3a. Since there are no deadlines, scheduling objective function (5-2) is used to optimise for
the makespan and start and finish times of tasks.

Figure 5-14a shows that MILP-MR outperforms RB-SR and MILP-SR for all numbers of
robots. Neither RB-SR nor MILP-SR outperforms the other consistently. This leads to
the conclusion that multi-robot path planning is responsible for the greater performance of
MILP-MR and not MILP scheduling, since the single-robot methods do not outperform each
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Figure 5-14: Comparison of three path planning and scheduling integration methods using the
corridor map and the task set without deadlines

other. This better performance by MILP-MR does come at the cost of computation time as
can be seen from Figure 5-14b.

Optimise time windows

The second experiment with the corridor map uses the task set with deadlines from Figure 5-
3b. Objective function (5-3) is used for the scheduler to minimise the percentage of deadlines
missed. Performance indicators are shown in Figure 5-15.

For this experiment MILP-MR misses fewer deadlines than RB-SR and MILP-SR for all
simulations except with 4 robots. Figure 5-16 shows all the paths and the robot locations at
t = 9.25 s for the simulation with method MILP-MR and 4 robots. The colours of the robots
correspond to the path colours. Robot 1 is blue, robot 2 is green, robot 3 is red and robot 4
is cyan.

An anomaly occurs with the computation time of MILP-SR for the simulation with 5 robots.
The reason for this is that in this specific case a highly constrained path planning problem
occurs due to previously planned paths that takes a long time to compute.
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Figure 5-15: Comparison of three path planning and scheduling integration methods using the
corridor map and the task set with deadlines
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Figure 5-16: Paths and robot locations at time t = 9.25 s for the simulation with method
MILP-MR and 4 robots using the corridor map
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5-7 Conclusion

Four objective functions for the MILP path planner from Chapter 3 are compared. The cost
function Jpp from (5-1) that measures path durations and has small weights on the state
error and inputs is shown to perform best when considering path durations, computation
time and a practical set of control actions. Computation time could be improved by selecting
an objective function that purely measure duration, but this comes at the cost of high control
actions and oscillating behaviour.

Two objective functions for the MILP scheduler are compared with a rule-based scheduling
that uses the Earliest Deadline First (EDF) rule. The first minimises the completion time
of the final task, also called the makespan, for a task set without deadlines and the second
minimises the percentage of deadlines missed when deadlines are imposed on the tasks. The
MILP scheduler is shown to be able to outperform rule-based scheduling in principle. However,
a major issue is that it requires many hours of computation time to find an optimal solution.
When a practical time limit of 120 s is imposed, depending on the number of robots it may
be outperformed by the EDF rule. In a case with a task set with deadlines, it was even
outperformed by EDF in nearly all tests.

Four more simulations are done comparing three integration approaches for task scheduling
and path planning, with two different physical environments and for task sets with and without
deadlines. The advantage of multi-robot path planning used by the MILP-MR method is
negligible for a factory floor map where robots have plenty of space, while it does come at
a significant cost of computation time. For a map with corridors that forces interactions
between robots multi-robot path planning does have a positive effect on the makespan and
the number of deadlines missed, though it still requires more computation time, especially
with more robots.

The inconsistent performance of the MILP scheduler under limited computation time also
becomes apparent with the integration methods MILP-SR and MILP-MR that use it. Multi-
robot path planning as used by the method MILP-MR is able to recoup some of the losses by
the MILP scheduler on the map with narrow corridors, allowing it to outperform the method
RB-SR that uses rule-based scheduling in most cases but not all cases. This leads to the
conclusion that multi-robot path planning can be beneficial in restricted environments, at the
cost of larger computation time, but that it is dependent on the task set and the number of
robots whether MILP scheduling is able to produce a better result than rule-based scheduling
within an acceptable amount of computation time.
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Chapter 6

Conclusions and future work

In this final chapter conclusions are drawn from the research of this thesis. Novel contributions
are discussed and suggestions are made for further research on this topic.

6-1 Conclusions

In Chapter 2 an evaluation was made of the current state of the art on the topics of path
planning and task scheduling. A wide body of literature exists on the path planning prob-
lem. Research was categorised into the topics of static environments, kinodynamic planning,
dynamic environments and multi-robot path planning. Task scheduling as a topic of research
is found in the fields of project management, optimisation and operations research. How-
ever, what has not received sufficient attention is an evaluation of methods to integrate task
scheduling and path planning. Typically, path planners use initial and goal states as a given
and task schedulers assume durations of tasks in advance. This research has therefore fo-
cussed on the development and evaluation of methods for integrating task scheduling and
path planning.

The contribution of this thesis is threefold. First, in Chapter 3 a novel objective function
is proposed for a path planner that uses an optimisation method called Mixed-Integer Lin-
ear Programming (MILP). The objective function from the literature is based on a linear
quadratic regulator that aims to minimise the difference between the goal state of the robots
and the state at all time instances within a finite time horizon. The new objective function
minimises the duration to reach the goal state, which is more applicable in combination with
scheduling, since to meet deadlines it is more important that tasks can be fulfilled quickly than
that distances are short for example. The path planner does have some drawbacks. Obstacles
have to be represented as polygons and produce an increasing number of constraints for more
complex shapes. The vehicle model deviates somewhat from actual robot behaviour because
it has to be linear. Linearity is also a cause for inaccuracies in distance and maximum speed
calculations. A fixed time horizon is used which means large time horizons result in large
problems. The free space around obstacles needs to be reserved to prevent the robot from
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cutting corners, reducing the total area of free space. And finally, the number of variables
and constraints scales with the number of robots, resulting in large matrices for multi-robot
path planning.

The second contribution of this thesis is a task scheduler for multiple robots using MILP
that was introduced in Chapter 4. The new scheduling formulation was adapted from a task
scheduler in the field of project management, to account for mobile robots completing tasks
concurrently and driving between stations. The task scheduling problem is suited to a MILP
approach, because a finite number of possible assignments of tasks to robots exists, mimicking
the decision tree that is solved by a MILP optimiser. The formulation uses switching variables
to relate start and finish times of tasks to a finite number of events. As a result the time
horizon has no effect on the problem size. The problem size is only dependent on the number
of robots and tasks.

The third contribution of this thesis consists of two methods for integrating task scheduling
and path planning using the path planner from Chapter 3 and the task scheduler from Chap-
ter 4. The aim of these integration methods is to generate a schedule and the corresponding
paths of the robots that complete a set of tasks. The first method is called MILP-SR and plans
paths for one robot at a time. The second method is called MILP-MR and uses multi-robot
path planning. The methods are proposed in Chapter 5 and their performance is compared
to that of a method called RB-SR that uses a rule-based scheduling approach in combination
with single-robot path planning.

Experiments to evaluate the path planner, scheduler and integrated approach were done in
Chapter 5. The novel path planning objective function was found to strike the best balance
between path durations, total distance driven, energy use and computation time. The MILP
scheduler is able to obtain a schedule with lower makespan or number of deadlines missed than
a rule-based Earliest Deadline First (EDF) approach. However, when a limit of 120 s is set on
the computation time for the practical reason of applicability in an on-demand scenario, the
scheduler is not able to consistently outperform the rule-based approach, especially for task
sets with deadlines where the objective is to minimise the number of missed deadlines. As a
result, the integration methods MILP-SR and MILP-MR are not guaranteed to deliver better
performance than the RB-SR method. However, in a narrow physical environment with many
robot interactions the multi-robot path planner used by MILP-MR is able to improve upon
the performance MILP-SR that plans paths for robots individually, regaining some of the
losses caused by the MILP scheduler.

This leads to the conclusion that a different scheduling method that converges to a better
solution than a rule-based method but in less time than the MILP scheduler proposed in this
thesis, in combination with the multi-robot MILP path planner, could be a better approach for
integrating scheduling and path planning. Since the MILP scheduler does not converge to an
optimal solution in a practical timespan anyway, a nonlinear scheduling method that does not
guarantee an optimal solution but at least outperforms EDF within a reasonable computation
time is a better choice for a scheduler. Some examples of optimisation methods that could
be used are genetic algorithms, particle swarm optimisation and ant colony optimisation.
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6-2 Research questions

In Chapter 1 the main research question for this thesis was posed, as well as sub-questions
concerning aspects of the main research topic. The main research question was formulated
as follows:

What integrated task scheduling and path planning methodology for mobile
robots assisting a production line can be developed, considering computational
constraints, to optimise for the performance of the production line?

The sub-questions are answered below after which an answer to the main research question
is given.

1. How can the problems of task scheduling and path planning of mobile robots
be formulated to allow for an integrated approach?
MILP formulations are proposed for the path planning problem and the task scheduling
problem. The path planner has the objective to minimise durations of paths for robots
completing tasks. Depending on whether deadlines are imposed on a set of tasks, the
scheduler optimises for the makespan of a task set or the number of missed deadlines.
The scheduler assigns tasks with pick-up and delivery locations to robots, while the
path planner uses these locations to plan optimal paths to complete the tasks.

2. What integrated task scheduling and path planning approach for mobile
robots can be developed to optimise performance of a production line?
Two methods integrating the MILP scheduler and with a single-robot and a multi-robot
path planner are proposed and compared with an integration method using rule-based
scheduling and single-robot path planning. Two cases are used to model the performance
of a production line. One uses a task set without deadlines, where the goal is to complete
all tasks in as little time as possible. The second uses a task set with deadlines, where
the objective is to minimise the number of missed deadlines.

3. How do integrated approaches to path planning and task scheduling of mo-
bile robots assisting a production line compare, as measured by the perfor-
mance of the production line?
Between the two methods using MILP scheduling, the method that uses multi-robot
path planning only outperforms the single robot-path planning method in an restrictive
environment where robots have to take detours to avoid collisions. The MILP scheduler
requires very long computation time to reach an optimal solution. When a practical
computation time limit is imposed, integration methods using MILP are not able to
consistently outperform the method that uses rule-based scheduling. The performance
becomes even worse for task sets with deadlines.

The main research question can therefore be answered as follows. A multi-robot MILP path
planner and MILP scheduler can be integrated to handle both task scheduling and path
planning of a set of tasks with or without deadlines. Practical limits on computation time
can cause methods integrating these path planning and scheduling optimisations to perform
worse than a method using a rule-based scheduling approach.
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6-3 Recommendations

Based on the conclusions from the research of this thesis that are drawn above, the following
recommendations are made to Prodrive Technologies:

• Before applying a multi-robot MILP path planner to a specific physical environment
and number of robots, investigate whether the case would benefit from multi-robot path
planning or if single-robot path planning would suffice. Multi-robot path planning comes
at a significant cost of computation time while the benefits are not always apparent.

• Design factory floors with enough room for robots to pass each other without drastically
having to change their route. This allows for the use of less sophisticated path planning
techniques and can help to reduce computation time for finding high-quality paths.

• Simulate the effects of collision avoidance between robots before committing to a certain
schedule. Especially in restrictive environments, detours to prevent collisions can have
a drastic effect on the feasibility and quality of a schedule.

• Evaluate rule-based and other fast scheduling methods for a possible integration with
a MILP path planner.

6-4 Future work

Many challenges and unresolved questions remain when it comes to integrating task scheduling
and path planning. An overview is made of topics for further research.

Rescheduling

The methods MILP-SR and MILP-MR generate a schedule one time, after which assignments
of tasks to robots are fixed. Since the MILP scheduler uses a table to estimate the duration
of completing a task, task durations after path planning can be different than was estimated.
Generating a new schedule with the tasks remaining could result in a better overall schedule.

Dynamic duration table

The duration table used by the scheduler has fixed durations between stations. By making
duration estimates dependent on parameters such as the number of robots, their current
positions and the task set their accuracy could be improved, which could result in a more
accurate schedule. The dynamic duration table could be implemented using a custom model
or by training a model with machine learning.

Path planning objective function with deadlines

The MILP path planner in this thesis minimises the duration for robots to reach their goals,
which can cause some robots to arrive early while others arrive late. By incorporating task
deadlines into the path planner objective function, priority could be given to robots that have
more trouble being on time.
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Vehicle model

The linear vehicle model used by the path planner is a simplified model of a mobile robot.
Other vehicle models could model the vehicle more accurately or provide computational ben-
efits. For example, the force control model could be extended to include friction. Multiple
vehicle models could be used depending on the location of the robot, for example to restrict
maximum speed in certain zones for safety purposes.

Unknown obstacles

In this research, obstacle positions are assumed to be known over the full length of the time
horizon. In reality, obstacles unknown to the path planner may appear an need to be avoided.
The effect of avoidance of unknown obstacles on the integration of task scheduling and path
planning needs to be further investigated.

Model predictive control

Longer time horizons for the MILP path planner result in larger constraint matrices and a
larger number of variables, which can cause computation time to become prohibitively long.
When paths need to planned over long time horizons or distances, model predictive control
can be used to plan paths over a shorter prediction horizon. The first resulting control actions
are applied and a new path is planned with prediction horizon farther into the future, until
the goal is reached. In this way the single optimisation with a long time horizon is split
into multiple optimisations with shorter time horizons, which can reduce computation time.
However, the resulting path is not guaranteed to be globally optimal.

Robot buffers

The integration methods developed in this thesis do not plan manoeuvres for sending robots to
a buffer location after completing a task to clear space at a station. Instead, robots disappear
after unloading and reappear for a new task if the station is free. Research could be done
into developing an efficient strategy for robots that momentarily do not have an assignment.
For example, if there are more stations than robots, a robot could be sent to an unoccupied
station if it needs to make way for another robot at its current station. Another possibility
would be to reserve certain zones in accessible locations in the physical environment as buffer
zones where robots would go after completing a task.

Nonlinear optimisation

Linear formulations were made for both the path planning and the task scheduling prob-
lem. The main reason for this is that these models are adequately accurate and that linear
programming solvers are well-researched and very efficient. An evaluation could be made of
the effect of using a more accurate nonlinear vehicle model, one that takes steering angle
into consideration for example, on computation time and solution quality. Since experiments
with some tasks sets have shown that the MILP scheduler cannot reach an optimal solution
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within an acceptable time frame, other formulations using MINLP (Mixed-Integer Nonlinear
Programming) or other nonlinear optimisation methods such as genetic algorithms, particle
swarm optimisation or ant colony optimisation might be attempted. Even if they do not
guarantee an optimal solution, they may find a better solution under limited computation
time.

Single problem formulation

A final suggestion is the development of a single problem formulation that optimises the
schedule as well as the underlying paths. The integration methods in this thesis exchange
information between the scheduler and the path planner, each optimising for its own objective
function. Instead, a single objective function could be developed to optimise a schedule, while
task durations directly depend on the paths that robots take to complete the tasks. However,
as computation time is an issue for both the path planner and the scheduler in this thesis,
such a combined optimisation is likely to be very computationally expensive.
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Appendix A

Tables

This appendix contains tables with data that are the basis for simulations and figures in this
report.

1 2 3 4 5 6 7 8
1 0 14 23.5 19 27.5 26 28 33
2 14 0 11.5 14.5 18 21.5 23.5 24.5
3 23.5 11.5 0 24 16.5 28 23 23
4 19 14.5 24 0 21 10 14.5 19.5
5 27.5 18 16.5 21 0 20 14.5 10
6 26 21.5 28 10 20 0 7 12
7 28 23.5 23 14.5 14.5 7 0 7
8 33 24.5 23 19.5 10 12 7 0

Table A-1: Minimum durations in seconds between stations of the factory floor map from
Figure 5-1a

1 2 3 4 5
1 0 6.5 7 6.5 11.25
2 6.5 0 7 11.25 6.5
3 7 7 0 7.5 7.5
4 6.5 11.25 7.5 0 6.5
5 11.25 6.5 7.5 6.5 0

Table A-2: Minimum durations in seconds between stations of the corridor map from Figure 5-1b
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1 J1 3556 34035 119 154.7 120.0 13.10 113.8 14.0 59.5
J2 3545 31491 112 145.5 120.0 11.20 110.9 10.5 56
J3 10910 150347 107 259.6 38.6 0.00 112.5 15.6 53.5
J4 3488 31205 107 139.6 87.5 0.00 110.5 12.4 53.5

2 J1 4576 48650 168 218.2 120.0 9.97 193.9 9.0 84
J2 4610 44800 155 202.2 120.0 9.32 159.2 22.0 77.5
J3 15387 231315 151 385.6 55.6 0.00 115.4 32.4 75.5
J4 4444 43207 151 196.3 114.9 0.00 154.3 21.0 75.5

3 J1 3540 35028 159 195.3 53.2 0.00 148.2 16.4 79.5
J2 3566 34535 159 195.3 40.2 0.00 149.8 15.2 79.5
J3 15729 227716 155 386.1 31.8 0.00 152.4 25.3 77.5
J4 3563 34915 155 191.4 31.8 0.00 149.0 17.7 77.5

Table A-3: Simulation results for three cases comparing four objective functions for the path
planner using the factory floor map
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RB 1 336.75 0 0 0 2374.5 313
2 177.72 0 0 0 1221.5 165.5
3 129.33 0 0 0 882.5 120.5
4 111.78 0 0 0 677.5 105
5 80.46 0 0 0 544.5 75
6 72.71 0 0 0 470.5 68
7 72.52 0 0 0 451.5 68
8 42.04 0 0 0 303.5 39

MILP 1 302.1 120 0 0 2360.5 278.5
2 166.98 120 0 0 1198.5 155
3 115.85 120 0 0 834.5 107.5
4 100.44 120 0 0 694.5 93.5
5 87.15 120 0 0 615 81
6 65.23 120 0 0 473.5 60.5
7 55.12 120 0 0 362 51.5
8 35.7 120 0 0 269.5 33

Table A-4: Simulation results comparing rule-based and MILP scheduling using the factory floor
map and task set without deadlines
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RB 1 127.91 0 80 1850 3498 459
2 58.55 0 30 210.5 1574.5 260
3 26.61 0 5 16 955 197
4 16.94 0 0 0 529 157
5 13.98 0 0 0 261 157
6 12.21 0 0 0 122 157

MILP 1 110.16 120 60 2241 3723 472
2 73.13 120 40 723 2020 289
3 31.57 120 10 25.5 864 204.5
4 41.4 120 20 106 847 194.5
5 24.98 120 5 30 705 187
6 18.1 120 0 0 517 157

Table A-5: Simulation results comparing rule-based and MILP scheduling using the factory floor
map and task set with deadlines
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RB-SR 1 0 23.1 432.5 28.7 0 0 2374.5 313 15
2 0 42.6 452.5 31.8 0 0 1277.5 186 15
3 0 44.9 418.7 27.2 0 0 926.5 122.5 14
4 0 27.4 366.9 22.3 0 0 736 105.5 14
5 0 15.9 349.4 32.8 0 0 599 78 15
6 0 19.1 323.6 31.4 0 0 532 76 13
7 0 43.7 370.8 43.7 0 0 532 76 14

MILP-SR 1 60 23.4 367.3 23.4 0 0 2119.5 278 13
2 60 17.1 343.4 23.6 0 0 1101.5 137 13
3 60 16.2 353.8 23.2 0 0 769.5 100.5 13
4 60 11.4 313.6 22.2 0 0 540.5 68 12
5 60 20.7 349.5 23.4 0 0 546 66 13
6 60 14.2 306.6 21.3 0 0 431 54.5 12
7 60 40.5 398.3 35.1 0 0 527.5 66 14

MILP-MR 1 60 23.4 367.3 23.4 0 0 2119.5 278 13
2 60 32.2 343.5 23.6 0 0 1101.5 137 7
3 60 58.8 353.3 22.9 0 0 769.5 100.5 5
4 60 48.2 314 22.3 0 0 538.5 68 4
5 60 80.2 351.6 24.3 0 0 562.5 69 5
6 60 100.9 305.3 20.3 0 0 437 55 3
7 60 177.8 396.8 35.8 0 0 509.5 66 4

Table A-6: Simulation results comparing three path planning and scheduling integration methods for the factory floor map and a task set
without deadlines
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RB-SR 1 0 150.3 679.5 44.7 80 1849.5 3497.5 458.5 20
2 0 145.4 672.1 53 30 211 1578 259.5 19
3 0 135.4 612 55.7 5 16 978.5 196.5 19
4 0 145.3 585.9 57.1 0 0 557 157 18
5 0 205.6 703.1 80.9 0 0 476 157 18
6 0 190.7 468.6 58.8 0 0 187 157 16

MILP-SR 1 120 83.1 592.3 43.6 60 2129.5 3574 451.5 19
2 120 97.3 665.4 48 25 349 1380.5 262.5 19
3 120 101.4 715.8 64.7 15 24 814.5 205 20
4 120 181.8 673.8 58.8 10 59 611 183 19
5 120 168.5 747.3 74.8 5 43.5 468.5 198.5 20
6 120 345.9 691.4 76.9 0 0 438.5 157 19

MILP-MR 1 120 83.1 592.3 43.6 60 2129.5 3574 451.5 19
2 120 233.7 665.8 48.5 25 347 1377.5 262 13
3 120 336.8 717.3 65 5 8.5 784 199.5 9
4 120 563 675.4 59.1 10 41 552 174 10
5 120 686.2 746.6 66.8 5 37 454 196.5 10
6 120 1422.5 690.3 69.3 0 0 300 157 7

Table A-7: Simulation results comparing three path planning and scheduling integration methods for the factory floor map and a task set with
deadlines
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RB-SR 1 0 21.6 213.3 20 0 2633.25 0 253.25 18
2 0 18.6 171.3 14.8 0 1351.5 0 125.5 16
3 0 19.2 159.5 19.8 0 1053.75 0 117.25 15
4 0 25.7 205.4 27 0 1118.25 0 123.5 17
5 0 68.1 249.1 33.7 0 1048.5 0 127.5 19

MILP-SR 1 60 11.7 170.8 16 0 2303.75 0 227.75 17
2 60 25.4 169.1 14.7 0 1529.5 0 151.5 16
3 60 28.7 155 12 0 1182 0 113 14
4 60 29.2 159.9 18.5 0 1016 0 94.5 12
5 60 133.7 229.9 24.5 0 1230.25 0 127 19

MILP-MR 1 60 11.7 170.8 16 0 2303.75 0 227.75 17
2 60 45.7 164 14.5 0 1265.75 0 122 9
3 60 192.8 171.8 16.7 0 964.75 0 99.25 6
4 60 174.4 130.9 14.7 0 833 0 80.75 7
5 60 400.2 229.5 25.4 0 993 0 101.8 10

Table A-8: Simulation results comparing three path planning and scheduling integration methods for the corridor map and a task set without
deadlines
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RB-SR 1 0 13.1 178.6 21.1 890.5 2383.75 65 305.5 19
2 0 12.4 155.5 22.6 174.75 1097 15 206.5 17
3 0 51.9 195.8 24.3 132.75 591.75 15 206.5 18
4 0 62.3 157.7 20.7 74 658.75 5 189 17
5 0 96.8 200 26.1 74 666.25 5 189 19

MILP-SR 1 120 12 161.6 18.5 446.5 1624.75 35 269.5 17
2 120 31.6 191.6 24.3 170 818.75 10 212 19
3 120 38.2 184.5 23.3 158.5 812.25 15 200 19
4 120 77.6 179.5 24.6 72 654.75 15 217.25 17
5 120 390.1 208.7 24.9 0 365.5 0 189 18

MILP-MR 1 120 12 161.6 18.5 446.5 1624.74 35 269.5 17
2 120 64 195.7 25.3 132.25 721.75 5 189.25 12
3 120 51.5 195.1 23.6 146.75 787.75 10 192.75 13
4 120 191.9 186.8 27.6 72 645.25 15 217.25 12
5 120 182.4 187.7 27.6 0 365.5 0 189 11

Table A-9: Simulation results comparing three path planning and scheduling integration methods for the corridor map and a task set with
deadlines
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Appendix B

Figures

Figure B-1: Two-dimensional scan of a factory floor at Prodrive Technologies
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Glossary

List of Acronyms

MPC Model Predictive Control

MILP Mixed-Integer Linear Programming

EDF Earliest Deadline First

RB-SR Rule-based scheduling, single robot path planning

MILP-SR MILP scheduling, single-robot path planning

MILP-MR MILP scheduling, multi-robot path planning

List of Symbols

Ap Robot p in set of robots A, with p = {1, . . . , P}
q Weighting vector for the state vector s in the objective function
r Weighting vector for the control action vector u in the objective function
sk State vector at time instance k
uk Control action vector at time instance k
Ee Event e, with e = {0, . . . , L− 1}
Om Obstacle m in set of obstacles O, with m = {1, . . . ,M}
k Discrete time instance, with k = {1, . . . ,K}
Tn Task n, with n = {1, . . . , N}
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