

Delft University of Technology

Specializing Scope Graph Resolution Queries

Zwaan, A.S.

DOI
10.1145/3567512.3567523
Publication date
2022
Document Version
Final published version
Published in
SLE 2022

Citation (APA)
Zwaan, A. S. (2022). Specializing Scope Graph Resolution Queries. In B. Fischer, L. Burgueño, & W.
Cazzola (Eds.), SLE 2022: Proceedings of the 15th ACM SIGPLAN International Conference on Software
Language Engineering (pp. 121-133). ACM. https://doi.org/10.1145/3567512.3567523

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3567512.3567523
https://doi.org/10.1145/3567512.3567523

Specializing Scope Graph Resolution Queries

Aron Zwaan
Software Technology

Delft University of Technology
Delft, Netherlands

a.s.zwaan@tudelft.nl

Abstract

To warrant programmer productivity, type checker results
should be correct and available quickly. Correctness can be
provided when a type checker implementation corresponds
to a declarative type system specification. Statix is a type
system specification language which achieves this by au-
tomatically deriving type checker implementations from
declarative typing rules. A key feature of Statix is that it
uses scope graphs for declarative specification of name reso-
lution. However, compared to hand-written type checkers,
type checkers derived from Statix specifications have sub-
optimal run time performance.

In this paper, we identify and resolve a performance bottle-
neck in the Statix solver, namely part of the name resolution
algorithm, using partial evaluation. To this end, we introduce
a tailored procedural intermediate query resolution language,
and provide a specializer that translates declarative queries
to this language.
Evaluating this specializer by comparing type checking

run time performance on three benchmarks (Apache Com-
mons CSV, IO, and Lang3), shows that our specializer im-
proves query resolution time up to 7.7x, which reduces the
total type checking run time by 38 ś 48%.

CCS Concepts: • Theory of computation→ Program se-

mantics; Graph algorithms analysis; Regular languages;
• Software and its engineering → Domain specific lan-

guages; Semantics.

Keywords: scope graphs, graph query resolution, specializa-
tion, partial evaluation, declarative languages

ACM Reference Format:

Aron Zwaan. 2022. Specializing Scope Graph Resolution Queries.

In Proceedings of the 15th ACM SIGPLAN International Conference

on Software Language Engineering (SLE ’22), December 06ś07, 2022,

Auckland, New Zealand. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3567512.3567523

SLE ’22, December 06ś07, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9919-7/22/12.

https://doi.org/10.1145/3567512.3567523

1 Introduction

Developers, whether they use a general-purpose or a domain-
specific language (DSL), use static name and type analysis to
understand and evolve their code. However, implementing a
type checker takes significant time and effort. In particular,
implementing name binding correctly is challenging, as it re-
quires careful staging of program traversals [17]. Therefore,
type checker frameworks that abstract over name resolution
scheduling, such as Pacak et al. [14] (based on Datalog), Van
Wyk et al. [29], Hedin and Magnusson [5] (using attribute
grammars), and Van Antwerpen et al. [25] (using constraint
programming and scope graphs) have been developed. These
frameworks ensure executable type checkers can be devel-
oped with significantly reduced effort.

Interpreting such declarative specifications often requires
intricate logic. Generally, the more a language abstracts from
implementation details, the more complicated an interpreter
or compiler will be. However, this comes with the risk of
introducing significant run time overhead, resulting in sub-
optimal performance compared to low-level approaches.

In this paper, we improve the performance of type check-
ers based on scope graphs [11, 25]. Scope graphs are an es-
tablished approach to modeling name-binding structure. In
this model, the scoping structure and declarations of a pro-
gram are represented in a graph. References can be resolved
using a versatile graph query mechanism. Scope graphs
are embedded in the Statix DSL for type system specifica-
tion [17, 25]. This DSL allows high-level specification of
type systems using declarative inference rules. It has a well-
defined declarative semantics, which allows reasoning over
type-systems while abstracting over operational details. The
Statix solver interprets specifications as constraint programs,
which yields executable type checkers that are sound with
respect to the declarative semantics. Case studies using Statix
have shown that scope graphs are expressive enough to sup-
port type systems with non-lexical bindings (e.g., imports
and inheritance), structural types, and parametric polymor-
phism [11, 25]. In addition, they allow language-parametric
definition of editor services, such as semantic code comple-
tion [15], renaming [9, 10] and inlining [28]. The expressive-
ness, declarativity, and additional services makes it especially
suitable for DSLs and rapid language prototyping.

However, type checkers derived from Statix specifications
are rather slow. For example, type checking the Apache Com-
mons IO library takes 14.7 secondswith the concurrent solver

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

121

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-1818-4245
https://doi.org/10.1145/3567512.3567523
https://doi.org/10.1145/3567512.3567523
https://doi.org/10.1145/3567512.3567523

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Aron Zwaan

using 8 cores and even 73.4 seconds on a single core [26].
On the same machine, a full compilation using javac takes
roughly 3 seconds on 8 cores, and 5 seconds on a single core.
In this paper, we resolve a newly identified performance

bottleneck in Statix’ scope graph query resolution algorithm
using partial evaluation. Our evaluation shows that the ap-
proach ensures query resolution is up to 7.7x faster than
traditional query resolution on average. This improves the
performance of Statix-based type checkers by 38 ś 48% on
Java projects, which is a significant step forward to applying
generated type checkers on larger codebases.
In summary, our contributions are as follows:

• We explain the scope graph query resolution algorithm,
and identify one of its major performance bottlenecks
(section 3).

• We introduce an intermediate language that makes
scope graph traversal order and partial query result
combination explicit (section 4).

• We present a specializer from traditional scope graph
queries to our new intermediate language (section 5).

• We evaluate the correctness and performance of our
approach (section 6).We show that specializing queries
makes scope graph query resolution up to 7.7x faster.

2 Partial Evaluation for DSL Interpreters

In this section, we provide a brief introduction to partial
evaluation (popularized by Futamura [4]), and explain why
we think it is especially beneficial for declarative languages
such as Statix. From the perspective of partial evaluation, a
program can be seen as a function from inputs to an output𝑂 .
Some of these inputs may be known statically (𝑆), while some
of them may vary per invocation (𝐷). Then, the signature of
a program looks as follows:

prog : 𝑆 × 𝐷 → 𝑂

A specializer takes such a program and its static input, and
returns a residual program prog𝑆 : 𝐷 → 𝑂 . When generating
prog𝑆 , it performs the part of the computation that does not
depend on 𝐷 , making prog𝑆 generally faster than prog.

2.1 Partial Evaluation for Interpreters

This pattern can easily be applied to programming languages.
In that case, prog is an interpreter that evaluates the seman-
tics of a program (its static input 𝑆) with respect to some
arguments 𝐷 . The residual program is essentially a compiled
version of 𝑆 . This is called the first Futamura projection.

Specialization is generally only beneficial when a program
is executed multiple times. However, Futamura argues that
specializing an interpreter to a program may already be ben-
eficial when executing the program once, as programs may
repeatedly evaluate a particular piece of code. Specializing
repeatedly executed program fragments removes the inter-
pretation overhead, whichmight outweigh the run time costs

of compilation. This effect becomes stronger when the com-
putational complexity of interpreting particular language
constructs is high. That is, the more overhead an interpreter
introduces, the more beneficial specialization will be.

Declarative languages are languages in which a user spec-
ifies intent rather than procedure. The logic to compute a
result that corresponds to the intent is then implemented in
the interpreter (or compiler) of the language. Thus, a declar-
ative language moves part of the complexity of a problem
from the program or programmer to its interpreter.
Having an interpreter with intricate logic means that

declarative languages are susceptible to introducing rela-
tively more run time overhead compared to non-declarative
languages. Interpreters of declarative languages might have
to execute non-trivial algorithms in order to evaluate a pro-
gram. For that reason, partial evaluation might be particu-
larly beneficial for declarative languages.

2.2 Application to Statix

Applying partial evaluation to Statix introduces a few prob-
lems. In fact, it is as complex as finding a compiler from a
constraint language with an embedded scope graph logic
to an imperative language, such as Java. Such a compiler
should ensure that all internal scheduling of rule selection
and query resolution is handled correctly. We regard this as
an open research challenge that is too complicated to solve in
one step. Instead, in this paper, we specialize only a compu-
tationally complex part of the interpreter, namely the query
resolution algorithm, to a specification. This yields a specifi-
cation in which the query resolution constraints are partially
evaluated, but other constraints are not. This specification
can then be interpreted by a constraint solver without using
the query resolution algorithm, ensuring faster execution.

To characterize this approach, regard a Statix specification
𝐶𝑄 ⊎𝐶𝑂 as a collection of query constraints 𝐶𝑄 and other
constraints𝐶𝑂 . The ⊎ symbol indicates that these groups are
mutually embedded in actual specifications. Our approach
is then summarized in the following functions:

specialize : 𝐶𝑄 ⊎𝐶𝑂 → 𝐶∗
𝑄 ⊎𝐶𝑂

solve : 𝐶∗
𝑄 ⊎𝐶𝑂 × 𝑃 → 𝑇

Here specialize specializes the query resolution algorithm
with respect to particular query constraints, yielding spe-
cialized queries (𝐶∗

𝑄). These constraints are embedded in

the original abstract syntax tree (AST), yielding a partially
specialized specification 𝐶∗

𝑄 ⊎ 𝐶𝑂 . When type-checking a

concrete object program 𝑃 , this specialized specification is
interpreted by an adapted solver solve, returning a typing 𝑇 .
Specialized queries 𝐶∗

𝑄 cannot be represented in Statix,

and only as a verbose shallow embedding in Java (in which
the solver is written). Instead, we express those in an interme-
diate language. For this language, we provide an interpreter,
which Statix uses instead of the name resolution algorithm.

122

Specializing Scope Graph Resolution Queries SLE ’22, December 06ś07, 2022, Auckland, New Zealand

𝑠𝑙 𝑠𝑥 ↦→ x : NVAR

𝑠𝜆

P

𝑠𝑙 ′

P

𝑠𝑓 ↦→ f : N→ N VAR 𝑠𝑦 ↦→ y : N

VAR

let x = 6 in

let f = fun y. x * y

in f 7
x

1

2

3

Figure 1. PCF program with scope graph and query

3 Resolving Queries in Scope Graphs

In this section, we introduce scope graphs and query resolu-
tion. Section 3.1 introduces scope graphs and three parame-
ters of scope graph queries using two examples. After that,
section 3.2 explains how Statix interprets these query param-
eters. Then, we explain that repeated querying of some of
these parameters makes query resolution slow, which moti-
vates the effort to optimize it (section 3.3). Finally, section 3.4
provides the full resolution algorithm, which is required to
understand the remainder of the paper.

3.1 Query Resolution by Example

We consider two examples of queries in scope graphs. These
examples motivate the declarative query language of Statix,
as well as explaining the resolution algorithm that interprets
such queries. Each example discusses the scope graph of a
program, and the resolution of a particular query in that
scope graph. The examples are included in the artifact [31],
and the extended edition of this paper contains their full
derivations [32].

Example 1. In fig. 1, a small program written in PCF (Pro-
gramming Computable Functions) is shown. The program
contains two let-bindings, a function definition and its appli-
cation. Next to the program, the scope graph is depicted. In a
scope graph, each ‘scope’ is modeled by a node. In this case,
𝑠𝑙 and 𝑠𝑙 ′ represent the bodies of the let expressions, while 𝑠𝜆
models the body of the function. The P-labeled edges, such
as the edge from 𝑠𝑙 ′ to 𝑠𝑙 , ensure declarations of outer scopes
will be visible in inner scopes. Nodes 𝑠𝑥 , 𝑠𝑦 , and 𝑠𝑓 model
the declarations of the x, y, and f variables, respectively.
Therefore, these scopes map to a datum (e.g. x : N for 𝑠𝑥)
that indicates the name and type of the declaration.

References are modeled using queries in scope graphs. In
the code, a reference x is highlighted. This reference corre-
sponds to the dashed box in the scope graph. The box points
to 𝑠𝜆 , because x occurs in the body of the function expression.
Eventually, the query resolves to 𝑠𝑥 via 𝑠𝑙 , which is indeed
the declaration of x in the outer let.
For this paper, we are particularly interested in how this

query result was computed. This is indicated by the num-
bered, dashed edges. When starting the query in 𝑠𝜆 , the al-
gorithm first traverses the VAR edge to 𝑠𝑦 . Then it checks
whether 𝑠𝑦 is a valid declaration for the reference. Since this

is not the case, the algorithm continues by traversing the P
edge to 𝑠𝑙 (step 2). From there, the VAR edge to 𝑠𝑥 is traversed.
The algorithm finds that 𝑠𝑥 is a valid declaration, and returns
that as the environment to which the query evaluates.
In Statix, one would not write a resolution procedure as

shown above directly, as Statix is meant to be a declarative
specification language. Instead, Statix interprets a high-level
description of valid query answers using a generic algorithm,
yielding the behavior as shown above. So how can we de-
scribe the query resolution procedure in a high level fashion?

The given example already shows two of the three query
parameters that determine how a query resolves to an en-
vironment. First, the query resolution algorithm decided
that 𝑠𝑦 should not be in the environment, while 𝑠𝑥 should.
That is expressed using a data well-formedness condition D,
which is a unary predicate over datums. A possible decla-
ration is only included in the environment when its datum
matches D. In this case, the predicate only accepts declara-
tions with name x. Second, the algorithm decided to traverse
VAR edges before P edges. This corresponds to the intuition
that local declaration are prefered over (i.e., shadow) more
distant declarations. In Statix, this is modeled using a strict
partial order over labels (refered to as label order). For this
example, the label order VAR < P indicates that VAR edges
should be traversed first.

Example 2. Fig. 2 shows an example program in Language
with Modules (LM, introduced by Néron et al. [11]). In this
scope graph, scope 𝑠 represent the global scope. Scopes 𝑠𝐴, 𝑠𝐵 ,
𝑠𝐶 , 𝑠𝐷 and 𝑠𝐸 have a double role: they model the declaration
of a module as well as its body. Therefore, they have incom-
ing MOD edges and a datum as well as inner declarations.
All modules have a P edge back to their enclosing context.
Finally, the imports are modeled using I edges.

When resolving x in 𝑠𝐸 , the resolution algorithm first tra-
verses the VAR edge to 𝑠𝑦 (step 1). Because that declara-
tion does not match, it continues traversing the I edge to 𝑠𝐵
(step 2). That scope does not contain valid declarations but
it has P and I edges to 𝑠𝐴, and a MOD edge to 𝑠𝐶 . How-
ever, reference resolution should not traverse those. Clearly,
traversing the P edge would be incorrect. After all, module E
only imports A.B, which should not bring declarations from A

in scope. Whether traversing the I edge is valid depends on
the language. Languages with transitive imports would allow
traversing multiple subsequent I edges, while language with
non-transitive imports would not. As LM has non-transitive
imports, we do not traverse the I edge to 𝑠𝐴. Similarly, the
MOD edge to 𝑠𝐶 should not be traversed, as modules should
not be imported implicitly. Instead, the query resolves to dec-
laration 𝑠2 in 𝑠𝐶 via the import edge from 𝑠𝐸 (step 3 and 4).
Now, we still need to consider whether it is necessary to
traverse the P edge to 𝑠𝐷 . When imports shadow the sur-
rounding scope, that is not required, as 𝑠2 would shadow
any result from 𝑠𝐷 . However, for the sake of the example,

123

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Aron Zwaan

module A {

def x = 1

module B {

import A

module C {

def x = 2

}

}

}

module D {

def x = 3

module E {

import A.B

import A.B.C

def y = x

}

}

𝑠𝑠𝐴 ↦→ A MOD

P

𝑠1 ↦→ x VAR

𝑠𝐵 ↦→ B

MODP I

𝑠𝐶 ↦→ C

MODP

𝑠2 ↦→ x VAR

𝑠𝐷 ↦→ DMOD

P

𝑠3 ↦→ xVAR

𝑠𝐸 ↦→ E

MODP

I

I

𝑠𝑦 ↦→ yVAR

x

1

2

3

4

5

6

Figure 2. LM example. Types are omitted for brevity.

we assume that imports and the enclosing scope have equal
priority. Thus, 𝑠3 is resolved as well (step 5 and 6). Hence,
there are multiple declarations the query resolved to, which
means that reference x is ambiguous.
This example shows that there can be additional con-

straints on paths. In Statix, these path-wellformedness condi-

tions are expressed as a regular expression (RE) on path labels.
The query resolution algorithm only traverses paths that are
valid with respect to the given RE. In particular, the regular
expression that describes this query is P∗I?VAR. This regular
expression allows looking in lexically enclosing scopes (P∗),
possibly traversing a single import edge (I?), while ensuring
that only variables are resolved (VAR).

Second, we argued that the reference is ambiguous when
imports and lexical enclosing scopes have equal priority.
This can be modeled by having { VAR < P,VAR < I } as label
order, which has neither I < P nor P < I. Then, the label
order does not indicate priority for a particular environment,
and the resolution algorithm will return them both.

Summary. These examples show how scope graphs can
be used to model the name binding structure of PCF and LM
programs. Resolution of references is done using declarative
scope graph queries. Valid results of a query are described by
three parameters. First, the path well-formedness condition,
expressed as a regular expression over labels, describes valid
paths. Second, the data well-formedness condition ensures
only valid declarations are returned. Finally, the label order
condition describes which declarations shadow each other.
A query resolution algorithm, integrated in the Statix solver,
interprets such parameters to compute the result of a query.

3.2 Query Resolution: Algorithm Outline

When executing a Statix specification, a resolution algorithm
resolves queries. This algorithm performs an advanced depth-
first search, using the aforementioned query parameters to
find correct results. In this section, we explain how each of
the query parameters is used by the algorithm.

Path well-formedness. First, consider the use of the path
well-formedness RE 𝑅. The fact that valid paths need to
adhere to 𝑅 implies that query resolution does not have to
traverse the whole graph, but only edges with labels that do
not violate 𝑅. The labels 𝑙 that require traversal are precisely
those for which the Brzozowski derivative 𝜕𝑙𝑅 [2] is not
equal to the empty language ∅. We call this set the head set
of a regular expression (written as H(𝑅)), defined as:

H(𝑅) ≜ { 𝑙 ∈ L | 𝜕𝑙𝑅 ≠ ∅ }

Moreover, after traversing an edge with label 𝑙 , the resolution
algorithm uses 𝜕𝑙𝑅 for further exploration from the target
node. This retains the invariant that full resolution paths
will adhere to the initial regular expression.

To illustrate this, recall the example in fig. 2. The query
for x has 𝑅2 = P∗I?VAR as initial RE. Because this regular
expression has derivatives with respect to VAR, I and P, all
edges were traversed (step 1, 2, 3 and 5). However, from 𝑠𝐵 ,
the I and P edges were not traversed because 𝜕I𝑅2 = VAR

was used as RE after traversing the I edge (step 2).

Label Order. The label order <
𝑙
is used to model shadow-

ing. This is implemented in the algorithm as follows. The
algorithm traverses edges in topological ascending order
of their labels. Results obtained from a particular edge are
then only included when they are not shadowed by results
obtained from an edge with a smaller label.
As an example, consider the label order used in the LM

example: { VAR < P,VAR < I }. This order indicates that
results over VAR labels shadow results from P and I, but the
latter two do not shadow each other. Thus, the algorithm
first traverses VAR edges. The result of that traversal is then
used to shadow results obtained from P and I edges. That is,
when the VAR traversal returned a non-empty environment,
declarations reached via P and I edges are ignored. However,
as the label order is not necessarily total, some variability
in the order of traversing mutually incomparable labels is
possible. In the above example, it does not matter whether P
edges are traversed before I edges, or the other way around.
However, it is important that neither shadows the other.
Internally, the algorithm determines the label traversal

order using two helper functions:

max<
𝑙
(�̂�) ≜ { 𝑙 ∈ �̂� | �𝑙 ′ ∈ �̂�. 𝑙 <

𝑙
𝑙 ′ }

smaller<
𝑙
(�̂�, 𝑙) ≜ { 𝑙 ′ ∈ �̂� | 𝑙 ′ <

𝑙
𝑙 }

Here, max computes the labels that are highest in the label

order, which are hence traversed last. For each label 𝑙 in the

124

Specializing Scope Graph Resolution Queries SLE ’22, December 06ś07, 2022, Auckland, New Zealand

1 fun TraverseOrdered(�̂�)

2 if �̂� = ∅ then return ∅

3 𝐴 := ∅

4 foreach 𝑙 ∈ max<
𝑙
(�̂�) do

5 𝐴𝐿 := TraverseOrdered(smaller<
𝑙
(�̂�, 𝑙))

6 𝐴𝑙 := Resolve-l̂(𝑙)

7 𝐴 += Shadow(𝐴𝐿 , 𝐴𝑙)

8 return 𝐴

Figure 3. Edge traversal order

1 TraverseOrdered({ VAR, I, P })

2 𝐴 := ∅

3 max<
𝑙
({ VAR, I, P }) = { I, P }

4 smaller<
𝑙
({ VAR, I, P }, I) = { VAR }

5 TraverseOrdered({ VAR }) = ∅

6 Resolve-l̂(I) = { 𝑠2 }

7 Shadow(∅, { 𝑠2 }) = { 𝑠2 }

8 𝐴 := ∅ ∪ { 𝑠2 }

9 smaller<
𝑙
({ VAR, I, P }, P) = { VAR }

10 TraverseOrdered({ VAR }) = ∅

11 Resolve-l̂(P) = { 𝑠3 }

12 Shadow(∅, { 𝑠3 }) = { 𝑠3 }

13 𝐴 := { 𝑠2 } ∪ { 𝑠3 } = { 𝑠2, 𝑠3 }

14 return { 𝑠2, 𝑠3 }

Figure 4. Execution trace of the algorithm in fig. 3 applied
to 𝑠𝐸 in fig. 2. It shows how results obtained over I edges (𝑠2)
and P edges (𝑠3) are not mutually shadowed.

max set, a smaller set is computed. This set contains precisely

those labels that shadow the 𝑙 label. Using these functions,

the actual traversal order and shadowing of a set of labels �̂� is
determined as shown in fig. 3. The TraverseOrdered func-
tion receives a set of labels it must traverse in the correct
order. If the set is empty, an empty environment is returned
(line 2), as no edges need to be traversed. Otherwise, the
algorithm initializes an empty environment 𝐴, which even-

tually will contain all declarations reachable over labels in �̂�.

Then, it iterates over all labels 𝑙 in themax set of �̂�. For each
max label 𝑙 , all declarations that may possibly shadow it are
computed by recursively applying TraverseOrdered on its
smaller set. This ensures labels in the smaller set are tra-
versed before 𝑙 . After that, all 𝑙-labeled edges are traversed.
The result of the latter operation is shadowed against the
result of the former, and the result is added to 𝐴.

An astute reader may ask why we do not simply return𝐴𝐿 ,
and only compute 𝐴𝑙 when the former is empty. This is
caused by an additional query parameter we do not discuss
here. We return to this in sections 3.4 and 5.4.

To illustrate this, consider the execution trace for the exam-
ple in fig. 2, assuming the traversal is in 𝑠𝐸 , which is shown in
fig. 4. Here, the initialmax set is { I, P } (line 3). The algorithm

iterates over these labels in lines 4ś8 (where 𝑙 = I) and 9ś12

(where 𝑙 = P). Each of these iterations computes { VAR } as its
smaller set, and by recursively applying TraverseOrdered

finds that its corresponding environment is empty. Then

the 𝑙 environment is computed, shadowed relative to the
VAR-environment (which leaves it unchanged), and added to
𝐴. The union of the results of both iterations is then returned
(line 13 and 14). This shows how both I and P are shadowed
by VAR, but not by each other.

Data well-formedness. Finally, we select valid declara-
tions using the data well-formedness condition D. This is
simply done by evaluating D on the datum of the current
scope. However, there is a small subtlety that must be ac-
counted for. The resolution algorithm may visit scopes via a
path that does not match the original 𝑅, but is only a prefix
of a sequence of labels matched by 𝑅. We should traverse
these scopes, but not return them as declaration. Full paths
are precisely those on which the language of the derivative
at the targets scope 𝑅′ (written as L(𝑅′)) includes the empty
word 𝜀. Only full paths are considered by D to be included
in the query answer.

Returning to the example in fig. 2 again, this means that D
is not applied to the datum of 𝑠𝐶 (among other scopes), as
the language of the current RE ({ VAR }) does not include 𝜀.
However, after traversing the edge to 𝑠2, the RE becomes
𝜕VARVAR = 𝜀, which obviously matches 𝜀. Therefore, D is
applied to the datum of 𝑠2, selecting it as a valid declaration.

3.3 Performance of the Resolution Algorithm

Recall from the introduction that query resolution is slow.
Analyzing the algorithm outline can give an intuition why
that is the case. First, observe that computing the max and
smaller sets, which is executed per scope the resolution al-
gorithm traverses, is quadratic in the number of labels. Sim-
ilarly, the number of derivatives computed per scope tra-
versal is linear in the number of labels. Therefore, for large
scope graphs and label sets, the overhead of these compu-
tations can be significant. Profiling the Java Commons IO
project shows that 12% of the total query resolution time is
spent on computing derivatives and 35% on checking label
orders [31]. Therefore, we lift these computations to specifi-
cation compile-time, ensuring faster execution.

3.4 The Resolution Algorithm

In order to understand the specialization, we first need to
understand the generic query resolution algorithm in full
detail. Therefore, we present this algorithm now.
For the algorithm, we use the following notation. Scope

graphs G are defined as a three-tuple ⟨𝑆 ⊂ S, 𝐸 ⊂ E, 𝜌⟩ of
scopes 𝑠 , edges 𝑒 and a mapping from scopes to data 𝑑 ∈ D.

125

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Aron Zwaan

1 fun Resolve(G, 𝑠, 𝑅,D, <
𝑙
,≈d) : A

2 fun Resolve-$(𝑝) ≜ if D(𝜌G (tgt(𝑝))) then { 𝑝 } else ∅

3 fun Resolve-l(𝑝, 𝑙, 𝑅′) ≜
⋃

{ Resolve-All(𝑝 · 𝑙 · 𝑠′, 𝜕𝑙𝑅
′) | tgt(𝑝) · 𝑙 · 𝑠′ ∈ 𝐸G, 𝑠

′
∉ 𝑝 }

4 fun Resolve-l̂(𝑝, 𝑙, 𝑅′) ≜ if 𝑙 = $ then Resolve-$(𝑝) else Resolve-l(𝑝, 𝑙, 𝑅′)

5 fun Shadow(𝐴𝐿, 𝐴𝑙) ≜ 𝐴𝐿 ∪ { 𝑝 ∈ 𝐴𝑙 | �𝑝
′ ∈ 𝐴𝐿 . 𝜌G (tgt(𝑝

′)) ≈d 𝜌G (tgt(𝑝)) }

6 fun Resolve-l̂L̂(𝑝, �̂�, 𝑙, 𝑅′) ≜ Shadow(Resolve-L̂(𝑝, �̂�, 𝑅′), Resolve-l̂(𝑝, 𝑙, 𝑅′))

7 fun Resolve-L̂(𝑝, �̂�, 𝑅′) ≜
⋃

{ Resolve-l̂L̂(𝑝, �̂�′, 𝑙, 𝑅′) | 𝑙 ∈ max<
𝑙
(�̂�), �̂�′ = smaller<

𝑙
(�̂�, 𝑙) }

8 fun Resolve-All(𝑝, 𝑅′) ≜ Resolve-L̂(𝑝,H(𝑅′) ∪ { $ | 𝜀 ∈ L(𝑅′) }, 𝑅′)

9 return Resolve-All(𝑠, 𝑅)

Figure 5. Query resolution algorithm (adapted from Van Antwerpen and Visser [27, alg. 5])

Its components can be projected by using G as subscript
(e.g., 𝑆G refers to the scopes of G). An edge 𝑠 · 𝑙 · 𝑠′ consists
of a source 𝑠 , a target 𝑠′ and an edge label 𝑙 ∈ L. We define

path labels 𝑙 to be either an edge label or the end-of-path

label $. 𝐿 denotes a set of edge labels not containing $, and �̂�
is a set of labels that might contain $. A path 𝑝 ∈ P can
be a single scope 𝑠 or a path step 𝑝 · 𝑙 · 𝑠 . The source and
target of a path can be projected using src(·) and tgt(·). An
environment 𝐴 ∈ A is a set of resolution paths.

Algorithm. The full algorithm is shown in fig. 5. It has
six inputs: the scope graph, the scope in which to start the
query, and the three query parameters. The last argument,
called the data equivalence condition (≈d) is a binary predicate
over datums. This argument is used for advanced shadowing,
such as shadowing based on overload resolution. In short, a
declaration 𝑑 is shadowed by another declaration 𝑑 ′ when
the path leading to 𝑑 ′ has priority, but also when 𝑑 ≈d 𝑑 ′.
For a full treatment, we refer to Van Antwerpen et al. [25]
and Rouvoet et al. [17].
The algorithm definition uses a number of inner func-

tions that each have their own arguments. In particular, each
function receives a path 𝑝 , which is the path that the query
resolution algorithm traversed so far. Moreover, most func-
tions have an 𝑅′ argument, which is the derivative of 𝑅 with
respect to the labels in 𝑝 . The algorithm starts by comput-
ing the full environment of the initial scope and 𝑅 using
Resolve-All (line 9). This function computes the labels the
regular expression can follow (H(𝑅′)), and includes $ if the
empty word 𝜀 is in the language described by the regular
expression (L(𝑅′)). As we will see, including $ ensures the
local scope is checked for being a valid declaration.
The actual, correctly shadowed environment for these

labels is computed using Resolve-L̂ and Resolve-l̂L̂. In fact,

Resolve-L̂ resembles TraverseOrdered from section 3.2,
where Resolve-l̂L̂ is the body of its for-loop. Resolve-L̂

computes the max and smaller sets of its �̂� argument. The

environment of the max-label (computed using Resolve-l̂)
is shadowed with respect to the environment of its smaller

labels (recursively computed using Resolve-L̂). Shadowing
is implemented by the Shadow function, which returns the
union of 𝐴𝐿 and the elements of 𝐴𝑙 that are not shadowed
by an element in 𝐴𝐿 . That is, paths in 𝐴𝑙 that are shadowed
by an path from 𝐴𝐿 are removed from the final environment.
Computing an environment for a single label is done us-

ing the Resolve-l̂ function. When the 𝑙 is the end-of-path
label $, the current path is included in the result when its da-
tum matches D (Resolve-$). For an edge label 𝑙 , Resolve-l
retrieves all outgoing edges of the target of the current path.
The 𝑠′ ∉ 𝑝 condition precludes cyclic paths, ensuring termi-
nation. For each edge, Resolve-All is invoked. The given
arguments are the current path, extended with the traversed
edge, and the derivative of the current regular expression 𝑅′

with respect to the current label. This retains the invariant
that the new 𝑅′ is the derivative of 𝑅 with respect to the
labels in the new path. Therefore, the paths returned by the
algorithm are valid according to 𝑅.
Finally, we want to highlight a few characteristics of the

algorithm. First, note that this algorithm does not enforce
local scopes to be considered first. For example, a query
that has label order L < $ will traverse L before checking
the local scope. Second, an invocation of Resolve-All after
traversing an edge in Resolve-l can very well be seen as an
independent query from the target of the 𝑝 argument. We
call these residual queries.

4 An Intermediate Resolution Language

Before we define the specializer for queries, we present the
intermediate language in which the specialized queries are
represented.

4.1 Syntax

The language that allows us to express specialized versions
of name resolution queries is shown in fig. 6. First, the syn-
tax of query parameters as discussed in the previous section
is formalized. Then, there are names for variables (𝑥) and
states (𝑛). Variables can be used in resolution expressions (𝐸).

126

Specializing Scope Graph Resolution Queries SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Query Parameters

𝑅 ∈ ℛ ⊂ L∗ Path well-formedness condition
D ∈ 𝒟 ⊂ D Data well-formedness predicate

<
𝑙

∈ O ⊂ L̂ × L̂ Strict partial order on labels
≈d ∈ ℰ ⊂ D × D Data equivalence condition

Resolution State Machine

𝑥 ∈ X Variables
𝑛 ∈ N State Names
𝐸 ∈ E ::= resolve | subenv 𝑙 𝑛

| merge 𝑥 | shadow 𝑥 𝑥 Expressions

𝑌 ∈ Y ::= state 𝑥 := 𝐸 States

𝑀 ∈ M ::= state machine 𝑛: 𝑌 State Machine

Statix

𝐶 ::= . . . | query 𝑅,D, <
𝑙
,≈d in 𝑠 ↦→ 𝑥 Generic Statix

𝐶∗ ::= . . . | query M,D,≈d in 𝑠 ↦→ 𝑥 Compiled Statix

Figure 6. Syntax of the new query resolution language

There are four possible expressions: resolve resolves the
current path; subenv traverses all edges with label 𝑙 , execut-
ing residual queries in state 𝑛; merge merges a collection
of environments; and shadow computes the union of two
environments, filtering shadowed paths from the second
environment. A sequence of assignments of expressions to
variables constitutes a state (𝑌). A state machine (𝑀) consists
of a sequence of states, which each are identified by a name.
Implicitly, its first state is designated as initial state. Finally,
the figure shows how this language is embedded in Statix.
There is the traditional variant of Statix (𝐶) [17, 25], that has
a generic query constraint, which can be resolved using the
resolution algorithm introduced in the previous section. In
this paper, we define 𝐶∗, which is a variation of 𝐶 with the
generic query removed and a compiled query added. This
compiled query does not have a path well-formedness con-
dition nor a label order as arguments, but a state machine
instead. After discussing the semantics of query resolution
using state machines, we present a compilation scheme from
𝐶 to 𝐶∗ in section 5.

4.2 Semantics

In this section, we explain how queries in our intermedi-
ate language are interpreted (see in fig. 7). Where appropri-
ate, we explain how it relates to the algorithm in fig. 5. We
use the following notation. First, 𝑀 (·) : N ⇀ Y retrieves
the state with a particular name from 𝑀 . Second, we use
init(·) : M → Y to retrieve the initial state of a state ma-
chine. Finally, Σ represents a store that maps variables (𝑥)
to environments (𝐴). 𝜖 represents the empty store, Σ; (𝑥,𝐴)
denotes adding a mapping 𝑥 ↦→ 𝐴 to Σ, and Σ(·) : X ⇀ A
retrieves the value (an environment) of a variable.

Following Rouvoet et al. [17], we define the semantics of
evaluating a compiled query in a small-step style: a solver

state that consists of a scope graph and a set of unsolved

constraints (𝐶∗) steps to a new state. This is shown in the Op-
Query-SM rule, which defines the answer set of the query
to be the result of evaluating the initial state with the ini-
tial scope as path (similar to line 9 of fig. 5). The remaining

constraints𝐶∗ in the output state have the environment sub-
stituted in free positions of the result variable 𝑥 . A state is
evaluated by sequentially executing all its steps (Eval-State).
Initially, it starts with an empty store, and each step extends
the store with a new mapping. The rule returns the value
of the last expression. Exp-Resolve defines that a resolve
expression returns the current path if its target datum is
well-formed according to D. This is similar to the body of
Resolve-$. Next, subenv expressions are evaluated using
the Exp-Subenv rule. This rule defines 𝑃 to be all valid exten-
sions of path 𝑝 with label 𝑙 in G. For each path in 𝑃 , we eval-
uate the new state 𝑌 . The result is the union of the resolved
residual queries. This is similar to Resolve-l. However, in-
stead of computing a derivative of a regular expression, we
pass a new state. As our compilation scheme is designed

to ensure that a state is equivalent to Resolve-L̂ special-
ized to its 𝑅′ argument, the behavior of this rule matches
the Resolve-l function. The merge primitive simply does a
lookup of all variables in the current store, and returns the
union of them. This operation will be a part of the compila-

tion scheme for specializing Resolve-L̂. Finally, the shadow
construct resolves its argument environments, and returns
the first environment, combined with the second environ-
ment with all shadowed paths removed. This is similar to
the Shadow function.

5 Specializing Declarative Queries

Now that we have defined the language in which we can
represent our partially specialized queries, we can define the
specializer. We first discuss a few examples, and then present
its full definition.

5.1 Examples

In fig. 9, a few examples of specialized queries are shown.
The first example shows a state machine that represents a
query that traverses a single label L without shadowing. In
this machine, state 𝑛0 has a single subenv expression that
traverses L labels while transitioning to state 𝑛1. In state 𝑛1,
the current path is resolved. So how was this translation per-
formed? First, each state in the state machine corresponds
to a possible derivative of 𝑅. State 𝑛0 is derived from the
original regex L, while state 𝑛1 is derived from 𝜕LL = 𝜀. Each
derivative has a singleton head set ({ L } and { $ }, respec-
tively). Therefore, each state is implemented by resolving
that label. The subenv expression in 𝑛0 transitions to 𝑛1 be-
cause state 𝑛1 corresponds to the derivative with respect to L
of the regex of state 𝑛0. In the state machine of the second
example, there is only one state, as 𝜕LL

∗
= L∗. However, the

127

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Aron Zwaan

Expression Evaluation Semantics Σ,M,G,𝒟,ℰ ⊢ P, E ⇒ A

Exp-Resolve
𝐴 = { 𝑝 | D(𝜌G (tgt(𝑝))) }

Σ, 𝑀,G,D,≈d ⊢ 𝑝, resolve ⇒ 𝐴
Exp-Subenv

𝑌 = 𝑀 (𝑛) 𝑃 = { 𝑝 · 𝑙 · 𝑠′ | tgt(𝑝) · 𝑙 · 𝑠′ ∈ 𝐸G }
𝐴 =

⋃
{𝐴′ | 𝑝′ ∈ 𝑃, 𝑀,G,D,≈d ⊢ 𝑝

′, 𝑌 ⇒ 𝐴′ }

Σ, 𝑀,G,D,≈d ⊢ 𝑝, subenv 𝑙 𝑛 ⇒ 𝐴

Exp-Merge
𝐴 =

⋃
{ Σ(𝑥) | 𝑥 ∈ 𝑥 }

Σ, 𝑀,G,D,≈d ⊢ 𝑝,merge 𝑥 ⇒ 𝐴
Exp-Shadow

𝐴1 = Σ(𝑥1) 𝐴2 = Σ(𝑥2)
𝐴 = 𝐴1 ∪ { 𝑝2 ∈ 𝐴2 | �𝑝1 ∈ 𝐴1. 𝜌G (tgt(𝑝1)) ≈d 𝜌G (tgt(𝑝2)) }

Σ, 𝑀,G,D,≈d ⊢ 𝑝, shadow 𝑥1 𝑥2 ⇒ 𝐴

State Evaluation Semantics M,G,𝒟,ℰ ⊢ P,Y ⇒ A

Eval-State
Σ0 = 𝜖 ∀𝑖∈1...𝑛 . Σ𝑖−1, 𝑀,G,D,≈d ⊢ 𝑝, 𝐸𝑖 ⇒ 𝐴𝑖 Σ𝑖 = Σ𝑖−1;(𝑥𝑖 , 𝐴𝑖)

𝑀,G,D,≈d ⊢ 𝑝, state 𝑥𝑖 := 𝐸𝑖 𝑖=1...𝑛 ⇒ 𝐴𝑛

Compiled Statix Evaluation Semantics ⟨G | 𝐶∗⟩ → ⟨G | 𝐶∗⟩

Op-Query-SM
𝑌 = init(𝑀) 𝑀,G,D,≈d ⊢ 𝑠, 𝑌 ⇒ 𝐴

⟨G | query 𝑀,D,≈d in 𝑠 ↦→ 𝑥 ;𝐶⟩ → ⟨G | 𝐶 [𝑥/𝐴]⟩

Figure 7. Operational semantics of the intermediate query resolution language

specM : ℛ × O → M

specM (𝑅, <
𝑙
) := state machine 𝑛: 𝑌 where

⟨𝑛, 𝑅′, id⟩ = gen_states(𝑅)

𝑛: 𝑌 = {𝑛: specY (𝑅
′, <

𝑙
, id) | ⟨𝑛, 𝑅′, id⟩ ∈ ⟨𝑛, 𝑅′, id⟩ }

specY : ℛ × O × (L ⇀ N) → Y

specY (𝑅, <𝑙
, id) := state x := E where

⟨x := E, 𝑥⟩ = specL (H(𝑅) ∪ { $ | 𝜀 ∈ L(𝑅) }, <
𝑙
, id)

specL : P(L̂) × O × (L ⇀ N) → 𝑥 := 𝐸 × X

specL (�̂�, <𝑙
, id) := ⟨(⊕ 𝑥 := 𝐸) ⊕ 𝑥𝐿 := merge 𝑥, 𝑥𝐿⟩ where

⟨𝑙, �̂�′⟩ = { ⟨𝑙, �̂�′⟩ | 𝑙 ∈ max<
𝑙
(�̂�), �̂�′ = smaller<

𝑙
(�̂�, 𝑙) }

⟨𝑥 := 𝐸, 𝑥⟩ = unzip({ speclL (�̂�
′, 𝑙, <

𝑙
, id) | ⟨𝑙, �̂�′⟩ ∈ ⟨𝑙, �̂�′⟩ })

𝑥𝐿 = fresh_id()

speclL : P(L̂) × L̂ × O × (L ⇀ N) → 𝑥 := 𝐸 × X

speclL (�̂�, 𝑙, <𝑙
, id) := ⟨𝑥 := 𝐸

′
, 𝑥𝑙𝐿⟩ where

⟨𝑥 := 𝐸, 𝑥𝐿⟩ = specL (�̂�, <𝑙
, id)

𝐸𝑙 = specl (𝑙, id)

𝑥𝑙 = fresh_id()

𝑥𝑙𝐿 = fresh_id()

𝑥 := 𝐸
′
= 𝑥 := 𝐸 ⊕ 𝑥𝑙 := 𝐸𝑙 ⊕ 𝑥𝑙𝐿 := shadow 𝑥𝐿 𝑥𝑙

specl : L̂ × (L ⇀ N) → E

specl ($, id) := resolve

specl (𝑙, id) := subenv 𝑙 id(𝑙)

Figure 8. Specializer that translates a path well-formedness condition (𝑅) and a label order (<
𝑙
) to a state machine (𝑀).

specM (L, ∅)

state machine

n0 :

e0 := subenv L n1

n1 :

e0 := resolve

specM (L∗, ∅)

state machine

n0 :

e0 := resolve

e1 := subenv L n0

e2 := merge e0 e1

specM (L∗, { $ < L })

state machine

n0 :

e0 := resolve

e1 := subenv L n0

e2 := shadow e0 e1

Figure 9. Examples of compiled queries, demonstrating how an RE and a label order are translated to a state machine.

128

Specializing Scope Graph Resolution Queries SLE ’22, December 06ś07, 2022, Auckland, New Zealand

head set of that regular expression is { L, $ }. Thus, state 𝑛0
computes both sub-environments, and combines them with
themerge operator, since there is no ordering between the la-

bels. Compared to Resolve-L̂, the lack of an ordering means
that both labels are in the max set. Therefore, both envi-
ronments are computed by a call to Resolve-l̂L̂ with an

empty �̂� set. This translates to single calls to Resolve-$ and

Resolve-l, of which the union is returned by Resolve-L̂.
In the third example however, there is an ordering between
the labels. Therefore, the sub-environments are combined
using the shadow operator instead. When we compare this

with the execution of Resolve-L̂ again, we see that themax

set is { L }, with a smaller set of { $ }. In Resolve-l̂L̂, this
translates to the result of traversing L being shadowed with
respect to the local environment, which again corresponds
with the behavior of the specialized query. In summary, these
examples show how states correspond with derivatives of
regular expressions, and how merge and shadow are used
to model different label orders.

5.2 Specializer

In this section, we present the specializer that generates
a state machine 𝑀 for a regular expression 𝑅 and a label
order <

𝑙
. We use the following notation. First, the ⊕ infix

operator appends an item to a list. Similarly, its larger variant
flattens a list of lists by concatenating its sublists. In addition,
we assume the following helper functions:

unzip(·) : ∀T1 T2. T1 × T2 → T1 × T2

fresh_id() : () → X

gen_states(·) : ℛ → N ×ℛ × L ⇀ N

The unzip function translates a list of 2-tuples in a tuple of
lists. Next, the fresh_id primitive generates a fresh variable
name at each invocation. Finally, the gen_states function
expands a regular expression into its statemachine. This state
machine is defined as an array of three-tuples, where each
tuple (a state) contains (1) a unique name, (2) the derivative
of the original regular expression that corresponds to current
state, and (3) a partial transition function (defined for the
head set of (2)) that maps labels to the identifier of the state.
The result of gen_states has two invariants. First, the first
state should be the initial state. That is, its second component
should be equal to the original input of the function. Second,
given two states ⟨𝑛, 𝑅, id⟩ and ⟨𝑛′, 𝑅′, id′⟩, and a label 𝑙 such
that id(𝑙) = 𝑛′, then 𝜕𝑙𝑅 = 𝑅′. This invariant ensures the
transitions in the state machine correspond to the original
regular expression. We implemented gen_states as follows.
We construct a DFA for the input regular expression [19],
assign each node in the DFA a name, and then construct an
entry for each node. Each entry contains the generated name,
the regular expression corresponding to the node [2, 13] and
a transition function based on the transitions in the DFA.

e0 := subenv L1 n

e1 := subenv L2 n

e2 := shadow e0 e1

e3 := subenv L1 n

e4 := subenv L3 n

e5 := shadow e3 e4

e6 := merge e2 e5

e0 := subenv L1 n

e1 := subenv L2 n

e2 := shadow e0 e1

e4 := subenv L3 n

e5 := shadow e0 e4

e6 := merge e2 e5

Figure 10. Example of optimization based on CSE

Fig. 8 shows specM, which specializes a regular expression
and a label order into a state machine. In specM, gen_states
generates a DFA, which is then compiled using spec𝑌 on each
state. This function generates a sequence of expressions that
computes an environment for each label in the head set of
the regular expression argument, including the $ label if the
RE matches the empty word (similar to Resolve-All). The
code for this environment is generated using specL, which,

similar to Resolve-L̂, first computes pairs ofmax-labels and
their set. For each entry in this set, code that computes its
shadowed environment is generated. This yields an array
of statement sequences and an array of variables. The first
array is flattened to obtain a sequence of statements that
computes all sub-environments. At the end, a merge opera-
tion is appended that stores the merged environment in the
fresh 𝑥𝐿 variable. This sequence is returned, together with 𝑥𝐿 ,
ensuring callees can refer to the new environment. Code to
compute a shadowed environment is generated using speclL.

This function generates code for the environment of its �̂�
argument, and an expression that creates the environment

of its 𝑙 argument. Then, it appends a statement that stores
the latter in the fresh 𝑥𝑙 variable, and next a statement that
creates a shadowed environment. It returns this sequence
and the result variable 𝑥𝑙𝐿 . Finally, code that resolves single
labels is generated by specl. For the $ label, resolve is re-
turned, while for an edge label 𝑙 , a subenv construct is used.
The id function is used to find the state the query resolution
needs to transition to when traversing 𝑙 edges. The second
invariant on gen_states ensures that id(𝑙) is the state that
implements Resolve-All specialized to 𝜕𝑙𝑅. Therefore, the
behavior of this expression is equal to Resolve-l.

5.3 Eliminating Common Sub-Environments

Having an intermediate language opens up some additional
opportunities for optimization as well. First, consider a case
where the label order is defined as L1 < L2, L1 < L3. Applying
the specializer yields the result from the left side of fig. 10.
However, the values of e0 and e3 are equal. Therefore, we can
eliminate the calculation of e3 , and simply use e0 instead. In
general, this corresponds to applying common sub-expression

elimination (CSE). As this can save redundant computation
of sub-environments, this optimization can have a significant
impact on the total run time.

129

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Aron Zwaan

𝐸 ∈ E ::= . . . | 𝑥 else 𝐸 Expressions

Exp-Else-L
Σ(𝑥) = 𝐴 𝐴 ≠ ∅

Σ, 𝑀,G,D,≈d ⊢ 𝑝, 𝑥 else 𝐸 ⇒ 𝐴

Exp-Else-R
Σ(𝑥) = ∅ Σ, 𝑀,G,D,≈d ⊢ 𝑝, 𝐸 ⇒ 𝐴

Σ, 𝑀,G,D,≈d ⊢ 𝑝, 𝑥 else 𝐸 ⇒ 𝐴

speclL (�̂�, 𝑙, <𝑙
, id) := ⟨𝑥 := 𝐸

′
, 𝑥𝑙𝐿⟩ where

⟨𝑥 := 𝐸, 𝑥𝐿⟩ = specL (�̂�, <𝑙
, id)

𝐸𝑙 = specl (𝑙, id)

𝑥𝑙𝐿 = fresh_id()

𝑥 := 𝐸
′
= 𝑥 := 𝐸 ⊕ 𝑥𝑙𝐿 := 𝑥𝐿 else 𝐸𝑙

Figure 11. Resolution language extension

5.4 Skipping Fully Shadowed Environments

For the second optimization, recall that shadow evaluates to

𝐴1 ∪ { 𝑝2 ∈ 𝐴2 | �𝑝1 ∈ 𝐴1 . 𝜌G (tgt(𝑝1)) ≈d 𝜌G (tgt(𝑝2)) }

where 𝐴1 is the environment that can shadow declarations
in𝐴2. Now consider the case that all declarations can shadow
each other (i.e., ∀𝑑1𝑑2. 𝑑1 ≈d 𝑑2). As we have seen in sec-
tion 3.2, that is the most common situation. In this case, any
element in 𝐴1 will shadow 𝐴2 completely. Thus, the shadow
operator can be simplified to choosing 𝐴1 if it is not empty,
and 𝐴2 otherwise. However, that means that we do not need
to compute 𝐴2 at all when 𝐴1 is not empty.
This optimization is implemented using a small exten-

sion of the query resolution language. An else operator,
as shown in fig. 11, is added, which has a variable and a
sub-expression as operands. When the environment of the
variable is non-empty, it is returned (Exp-Else-L). In this
case, the right-hand expression is not evaluated. When the
variable is empty, that expression is evaluated and its value
returned (Exp-Else-R).

The bottom part of fig. 11 shows an alternative version of
speclL that uses this expression. In our specializer, this ver-
sion is used when ≈d is trivially satisfied. Similar to the other
version, it generates code that computes the environment

of �̂�, an expression that computes the environment of 𝑙 (𝐸
𝑙
),

and a result variable 𝑥𝑙𝐿 . To the sequence of code, it appends
a statement that stores either 𝑥𝐿 or 𝐸

𝑙
in 𝑥𝑙𝐿 . This sequence

and the result variable 𝑥𝑙𝐿 is then returned.
Although not shown in fig. 5, our implementation of the

query resolution algorithm contained this optimization as
well. However, lifting it to specification compile-time re-
moves the overhead of checking whether the data equiva-
lence condition is trivially true.

Table 1. Benchmark summary. The third and fourth column
give the total run times in seconds when using the generic
algorithm versus compiled queries, respectively.

Project #Queries RTgen RTcom Speedup

CSV 1.7 14328 7.3 4.5 39%
IO 2.6 73843 19 12 38%
Lang3 3.11 288883 88 46 48%

6 Evaluation

To evaluate the correctness and performance of our optimiza-
tion, we applied a Statix specification for a subset of Java
with pre-compiled queries on the Apache Commons CSV,
IO and Lang3 projects. We used these projects as evaluation
corpus because they have scope graphs of significant size,
and use queries with complex path well-formedness condi-
tions and label orders. Thus, for these projects performance
problems are most urgent. All benchmarks are executed on
a Linux system with 2 AMD EPYC 7502 32-Core Processors
(1.5GHz, 2 threads) and 256GB RAM. All results should be
reproducible using the artifact accompanying this paper [31].

6.1 Correctness

Essential for the validity of an optimization is its correctness.
This especially holds for Statix, where soundness with re-
spect to its declarative semantics is essential [17, 25]. There-
fore, we validated that for each of the 377054 queries ex-
ecuted by the evaluation projects, the generic algorithm
yielded the same answer as the specialized version. As this
holds for many complex queries in large scope graphs, we
have enough confidence that our approach is correct.

6.2 Performance

In addition, we considered how much our optimization im-
proved performance of query resolution. To this end, we
traced all individual queries of the CSV project. For each in-
dividual query, we separately measured the performance of
the generic and the compiled version. This benchmark used
8 warmup iterations of 500ms, and 5 measurement iterations
of 2000ms with 4 parallel threads in throughput mode. A
summary of the results is shown in fig. 12. As the speedup
distribution is skewed left, but has a relatively heavy tail,
the histogram is plot in log-scale, and the upper fence is
shown. The individual speedups range from 0.52 (a slow-
down) to 1985, with the most weight around the mean of 7.7.
This shows that our approach was able to lift much of the
computation to specification compile time.

Executing a Statix specification entails more than execut-
ing queries. Therefore, these results cannot be interpreted
as speedups for Statix-based type checkers. Thus, we bench-
marked the total speedup of executing the Java specifica-
tion [27], using both generic and compiled queries. We used 5

130

Specializing Scope Graph Resolution Queries SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Min Q1 Q2 Q3 Max Upper fence (Q2 + 1.5IQR)

0.52 5.61 7.7 12.9 1985 17.2

Figure 12.Histogram and five-number summary with upper
fence of individual query speedup factors. The x-axis of the
histogram displays speedup factors in logarithmic scale. In
the table, Q1 ś Q3 represent the quartiles. IQR is the inter-
quartile range (Q3 - Q1).

warm-up iterations and 20 measurement iterations in single-
shot mode on four cores. The results are shown in table 1 as
well. We see that the overall performance of the Java specifi-
cation improved with 38 ś 48%. This is partially due to the
elimination of computing label orders and regular expres-
sion derivatives, but also to the new optimization discussed
in section 5.3, which our intermediate language allowed to
implement. Although this does not attain performance com-
parable to javac, it is a significant step in that direction.

6.3 Compilation

In addition, we need to assess the compile-time overhead
query specialization introduces. Thus, we measured the time
required for specializing queries for the Java specification.
We found that it is responsible for 4.6% of the total compila-
tion time, remaining under 11% for all individual files. We
consider this overhead acceptable.

6.4 Threats to Validity

There are three threats to the validity of the evaluation that
we discuss now. First, regarding the correctness of our ap-
proach (section 6.1), we could not verifywhether the recorded
queries cover all aspects of the algorithm and the intermedi-
ate language interpreter. Although we consider it unlikely,
it might be the case that queries of the Java specification do

not exercise particular important code paths. This limits the
guarantees on correctness we provide.
Second, Statix allows interleaving scope graph construc-

tion and querying [17, 27]. This is required to support type-
dependent name resolution and module systems. To ensure
that query answers are valid, some internal scheduling is
done. In addition, evaluating data well-formedness condi-
tions can be delayed when a datum contains free unification
variables. The benchmarks for individual queries were ex-
ecuted on complete scope graphs, where query scheduling
and unification was not needed. Hence, these benchmarks do
not account for the overhead that causes. This threat does not
concern the type checker benchmarks, thus the conclusion
of a significant speedup on Java programs remains valid.
Third, while our Java benchmark set shows the perfor-

mance characteristics of the approach clearly, it might not
be fully representative. Statix is often used for language pro-
totyping and DSLs, which often give simpler specifications
and smaller codebases. Still, our evaluation shows that our
approach improves the run time of specifications for which
performance problems are most relevant.

7 Related Work

In this section, we discuss related work on scope graphs,
declarative type checkers and partial-evaluation-based ap-
proaches to optimizing interpreters.

7.1 Scope Graphs

Scope graphs were introduced by Néron et al. [11] as a
language-parametric model of name binding for languages
with non-trivial binding structures. This model was embed-
ded in NaBL2, which is a DSL for declarative specification
of type checkers [24]. NaBL2 employed a strict two-phase
approach of constraint generation and solving. To extend
support to structural types and parameterized types, the
scope graph model was generalized and embedded in a new
DSL: Statix [25]. Statix allows the definition of user-defined
constraints, which, unlike NaBL2, allows interleaving of con-
straint solving and introduction of new constraints. Rouvoet
et al. [17] present a formal operational semantics for Statix,
and proved it sound with respect to its declarative semantics.
To prove the correctness of query resolution in incomplete
scope graphs, the concept of critical edges was introduced.
Van Antwerpen and Visser [27] generalized this notion to
the scope states protocol. Using this protocol, they present
an actor-based concurrent semantics for Statix.

As scope graphs provide uniform program representation
model, they have been used to provide language-parametric
editor services, such as semantic completion [15], renam-
ing [9, 10] and inlining [28]. In addition, it has been shown
that scope graphs can be used to describe frames, which
model the structure of run time heaps [16, 30].

131

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Aron Zwaan

7.2 Declarative Type System Specification

In addition to scope graphs, there is other research into
declarative type system specification. Attribute Grammars,
such as JastAdd [5] and Silver [29] allow the definition of
attributes on AST nodes. Functions that compute attribute
values can reference attributes of other nodes, hence ab-
stracting from traditional AST traversal. However, language
implementers need to define the traversal strategy manu-
ally, whereas scope graph query resolution derives that from
declarative queries. To the best of our knowledge, there is
no research about applying partial evaluation to attribute
grammar systems.
Although it is more often used for other types of analy-

sis [20ś22], datalog has been used for the specification of
type systems as well [3, 14]. This research was especially
aimed at leveraging the good incremental performance of
datalog solvers to type checkers. Datalog-based type systems
attain a high level of declarativity and good performance,
although scope graphs allow easier encoding of complicated
name binding patterns. Scholz et al. [18] apply partial evalua-
tion of datalog specifications (targeting C++) to gain efficient
program analyzers. This setup is rather similar to ours, al-
though we targeted a tailored intermediate language.

7.3 Optimizing Interpreters by Partial Evaluation

Kleene’s s-m-n theorem [8] essentially proved partial evalu-
ation possible [7]. Futamura applied this concept on inter-
preters, establishing fundamental relations between special-
izers, interpreters, compilers, source programs and executa-
bles [4]. The first of his three projections was to specialize an
interpreter to a source program, yielding an executable. In
section 2, we generalize over this by introducing partial spe-
cialization that changes a program in another (interpreted)
program of lower complexity. Although they do not name it,
Thibault et al. [23] argue that the first Futamura projection
can be applied at compile-time as well as at run time.
Brady and Hammond [1] show how to use partial evalu-

ation on DSLs embedded in dependently-typed languages,
arguing it is possible to have both correctness and efficiency.
Our paper differs in the fact that our query resolution lan-
guage is (1) not embedded in a dependently-typed language
and (2) has a more complicated interpreter, due to the declar-
ative nature of scope graph queries. In addition, our special-
izer targets a tailored intermediate language, instead of the
host language. This allowed us to carefully consider which
parts of the algorithm we specialize, but makes the approach
harder to transfer to other languages.
Humer et al. [6] introduce Truffle, which is an embed-

ded DSL for self-optimizing interpreters. It allows language
implementers to annotate specialization possibilities on op-
erations, which are dynamically applied when required. This
allows efficient interpretation of (especially) dynamic lan-
guages. Truffle-based interpreters are often executed on the

Graal VM [12], which is an optimizing just-in-time Java com-
piler. However, Vergu et al. [30] argue that meta-interpreting

specifications of dynamic semantics "introduces runtime
overhead that is difficult to remove by using interpreter op-
timization frameworks such as the Truffle/Graal Java tools."
Using scopes and frames however, optimization of meta-
interpreters beyond straightforward application of Truffle
can be done [30]. In general, Truffle is particularly aimed at
optimization of AST interpreters, which have a very syntax-
directed evaluation style. Whether Truffle provides speedup
for more algorithmic interpreters is an interesting question
for future research.

8 Conclusion

In this paper, we have seen how scope graphs can be used to
give high-level encodings of name binding and resolution pat-
terns in programming languages. In addition, we discussed
the algorithm that interprets these declarative queries, yield-
ing actual environments in scope graphs of real programs.
However, this algorithm turns out to impose significant run
time overhead. To eliminate that, we apply partial evaluation
to Statix, yielding a specializer that translates declarative
queries into a more low-level intermediate representation.
These queries can be executed up to 7.7x faster, yielding a
speedup of Statix-based type checkers of 38% ś 48%. This is
a step toward deriving type checkers from declarative speci-
fications that have performance comparable to hand-written
type checkers.
Our work suggests that partial evaluation is a power-

ful technique to optimize execution of programs written
in declarative languages. Because interpreters of such lan-
guages generally perform complex computations on pro-
grams, specialization might reduce run time even more com-
pared to interpreters of more imperative languages. Further
establishing the relation between partial evaluation and in-
terpreters for declarative languages seems a promising topic
for further research.

Acknowledgments

I would to thank the anonymous reviewers for their helpful
feedback, and Casper Bach Poulsen for his extraordinary
support when working towards this publication. This paper
was written in remembrance of Eelco Visser, who with a few
sentences sparked the idea that resulted in this research.

References
[1] Edwin Brady and Kevin Hammond. 2010. Scrapping your inefficient

engine: using partial evaluation to improve domain-specific language

implementation. In Proceeding of the 15th ACM SIGPLAN international

conference on Functional programming, ICFP 2010, Baltimore, Maryland,

USA, September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.).

ACM, 297ś308. https://doi.org/10.1145/1863543.1863587

[2] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J.

ACM 11, 4 (1964), 481ś494.

132

https://doi.org/10.1145/1863543.1863587

Specializing Scope Graph Resolution Queries SLE ’22, December 06ś07, 2022, Auckland, New Zealand

[3] Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and

MiraMezini. 2015. A co-contextual formulation of type rules and its ap-

plication to incremental type checking. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, Jonathan Aldrich and Patrick Eu-

gster (Eds.). ACM, 880ś897. https://doi.org/10.1145/2814270.2814277

[4] Yoshihiko Futamura. 1982. Partial Computation of Programs. In RIMS

Symposium on Software Science and Engineering, Kyoto, Japan, 1982,

Proceedings (Lecture Notes in Computer Science, Vol. 147), Eiichi Goto,

Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori Yonezawa

(Eds.). Springer, 1ś35. https://doi.org/10.1007/3-540-11980-9_13

[5] Görel Hedin and Eva Magnusson. 2003. JastAddśan aspect-oriented

compiler construction system. Science of Computer Programming 47, 1

(2003), 37ś58. https://doi.org/10.1016/S0167-6423(02)00109-0

[6] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß,

and Thomas Würthinger. 2014. A domain-specific language for build-

ing self-optimizing AST interpreters. In Generative Programming: Con-

cepts and Experiences, GPCE’14, Vasteras, Sweden, September 15-16,

2014, Ulrik Pagh Schultz and Matthew Flatt (Eds.). ACM, 123ś132.

https://doi.org/10.1145/2658761.2658776

[7] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Eval-

uation and Automatic Program Generation. Prentice Hall International,

International Series in Computer Science. ISBN number 0-13-020249-5

(pbk).

[8] Stephen Cole Kleene. 1952. Introduction to Metamathemathics. North

Holland.

[9] Phil Misteli. 2021. Renaming for Everyone: Language-parametric Renam-

ing in Spoofax. Master’s thesis. Delft University of Technology. http:

//resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5

[10] Philippe D. Misteli. 2020. Towards language-parametric refactorings.

In Programming’20: 4th International Conference on the Art, Science,

and Engineering of Programming, Porto, Portugal, March 23-26, 2020,

Ademar Aguiar, Shigeru Chiba, and Elisa Gonzalez Boix (Eds.). ACM,

213ś214. https://doi.org/10.1145/3397537.3398476

[11] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth.

2015. A Theory of Name Resolution. In Programming Languages

and Systems - 24th European Symposium on Programming, ESOP 2015,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings

(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer,

205ś231. https://doi.org/10.1007/978-3-662-46669-8_9

[12] Oracle. 2021. Graal project. https://www.graalvm.org/

[13] Scott Owens, John H. Reppy, and Aaron Turon. 2009. Regular-

expression derivatives re-examined. Journal of Functional Program-

ming 19, 2 (2009), 173ś190. https://doi.org/10.1017/S0956796808007090

[14] André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A systematic

approach to deriving incremental type checkers. Proceedings of the

ACM on Programming Languages 4, OOPSLA (2020). https://doi.org/

10.1145/3428195

[15] Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach

Poulsen, and Eelco Visser. 2022. Language-parametric static semantic

code completion. Proceedings of the ACM on Programming Languages

6, OOPSLA (2022), 1ś30. https://doi.org/10.1145/3527329

[16] Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco

Visser. 2016. Scopes Describe Frames: A Uniform Model for Mem-

ory Layout in Dynamic Semantics. In 30th European Conference on

Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,

Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. https:

//doi.org/10.4230/LIPIcs.ECOOP.2016.20

[17] Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Rob-

bert Krebbers, and Eelco Visser. 2020. Knowing when to ask: sound

scheduling of name resolution in type checkers derived from declara-

tive specifications. Proceedings of the ACM on Programming Languages

4, OOPSLA (2020). https://doi.org/10.1145/3428248

[18] Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann.

2016. On fast large-scale program analysis in Datalog. In Proceed-

ings of the 25th International Conference on Compiler Construction, CC

2016, Barcelona, Spain, March 12-18, 2016, Ayal Zaks and Manuel V.

Hermenegildo (Eds.). ACM, 196ś206. https://doi.org/10.1145/2892208.

2892226

[19] Michael Sipser. 2012. Introduction to the Theory of Computation (3rd

ed.). Cengage Learning.

[20] Yannis Smaragdakis and Martin Bravenboer. 2010. Using Datalog for

Fast and Easy Program Analysis. In Datalog Reloaded - First Interna-

tional Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised

Selected Papers (Lecture Notes in Computer Science, Vol. 6702), Oege

de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers (Eds.).

Springer, 245ś251. https://doi.org/10.1007/978-3-642-24206-9_14

[21] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.

2018. Incrementalizing lattice-based program analyses in Datalog.

Proceedings of the ACM on Programming Languages 2, OOPSLA (2018).

https://doi.org/10.1145/3276509

[22] Tamás Szabó, Edlira Kuci, Matthijs Bijman, Mira Mezini, and Sebastian

Erdweg. 2018. Incremental overload resolution in object-oriented pro-

gramming languages. In Companion Proceedings for the ISSTA/ECOOP

2018 Workshops, ISSTA 2018, Amsterdam, Netherlands, July 16-21, 2018,

Julian Dolby, William G. J. Halfond, and Ashish Mishra (Eds.). ACM,

27ś33. https://doi.org/10.1145/3236454.3236485

[23] Scott Thibault, Charles Consel, Julia L. Lawall, Renaud Marlet, and

Gilles Muller. 2000. Static and Dynamic Program Compilation by

Interpreter Specialization. Higher-Order and Symbolic Computation 13,

3 (2000), 161ś178. https://doi.org/10.1023/A:1010078412711

[24] Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco

Visser, and Guido Wachsmuth. 2016. A constraint language for

static semantic analysis based on scope graphs. In Proceedings of

the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22,

2016, Martin Erwig and Tiark Rompf (Eds.). ACM, 49ś60. https:

//doi.org/10.1145/2847538.2847543

[25] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and

Eelco Visser. 2018. Scopes as types. Proceedings of the ACM on Program-

ming Languages 2, OOPSLA (2018). https://doi.org/10.1145/3276484

[26] Hendrik van Antwerpen and Eelco Visser. 2021. Scope States (Artifact).

DARTS 7, 2 (2021). https://doi.org/10.4230/DARTS.7.2.1

[27] Hendrik van Antwerpen and Eelco Visser. 2021. Scope States: Guarding

Safety of Name Resolution in Parallel Type Checkers. In 35th European

Conference on Object-Oriented Programming, ECOOP 2021, July 11-17,

2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194), Anders

Mùller andManu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2021.1

[28] Loek Van der Gugten. 2022. Function Inlining as a Language Parametric

Refactoring. Master’s thesis. Delft University of Technology. http:

//resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f

[29] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.

Silver: An extensible attribute grammar system. Science of Computer

Programming 75, 1-2 (2010), 39ś54. https://doi.org/10.1016/j.scico.

2009.07.004

[30] Vlad A. Vergu, Andrew P. Tolmach, and Eelco Visser. 2019. Scopes

and Frames Improve Meta-Interpreter Specialization. In 33rd European

Conference on Object-Oriented Programming, ECOOP 2019, July 15-19,

2019, London, United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson

(Ed.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. https:

//doi.org/10.4230/LIPIcs.ECOOP.2019.4

[31] Aron Zwaan. 2022. Specializing Scope Graph Resolution Queries (Arti-

fact). Zenodo. https://doi.org/10.5281/zenodo.7189413

[32] Aron Zwaan. 2022. Specializing Scope Graph Resolution Queries:

Extended Edition. (2022). https://doi.org/10.48550/arXiv.2210.06121

133

https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1145/2658761.2658776
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
https://doi.org/10.1145/3397537.3398476
https://doi.org/10.1007/978-3-662-46669-8_9
https://www.graalvm.org/
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1145/3428195
https://doi.org/10.1145/3428195
https://doi.org/10.1145/3527329
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1145/3428248
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3236454.3236485
https://doi.org/10.1023/A:1010078412711
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.4230/DARTS.7.2.1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.5281/zenodo.7189413
https://doi.org/10.48550/arXiv.2210.06121

	Abstract
	1 Introduction
	2 Partial Evaluation for DSL Interpreters
	2.1 Partial Evaluation for Interpreters
	2.2 Application to Statix

	3 Resolving Queries in Scope Graphs
	3.1 Query Resolution by Example
	3.2 Query Resolution: Algorithm Outline
	3.3 Performance of the Resolution Algorithm
	3.4 The Resolution Algorithm

	4 An Intermediate Resolution Language
	4.1 Syntax
	4.2 Semantics

	5 Specializing Declarative Queries
	5.1 Examples
	5.2 Specializer
	5.3 Eliminating Common Sub-Environments
	5.4 Skipping Fully Shadowed Environments

	6 Evaluation
	6.1 Correctness
	6.2 Performance
	6.3 Compilation
	6.4 Threats to Validity

	7 Related Work
	7.1 Scope Graphs
	7.2 Declarative Type System Specification
	7.3 Optimizing Interpreters by Partial Evaluation

	8 Conclusion
	Acknowledgments
	References

