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Damage characterization of adhesively-bonded Bi-material joints using 
acoustic emission 

Milad Saeedifar *, Mohamed Nasr Saleh, Sofia Teixeira De Freitas, Dimitrios Zarouchas 
Structural Integrity & Composites Group, Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands   
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A B S T R A C T   

The aim of the present study is to characterize the damage in bi-material steel-to-composite double-lap adhe-
sively-bonded joints using Acoustic Emission (AE). Two different structural adhesives, a ductile (Methacrylate- 
based) and brittle (Epoxy-based), were used to bond CFRP skins to a steel core. The fabricated joints were loaded 
in tension while damage evolution was monitored by AE. Due to the difference in the fracture nature of the 
adhesives “ductile vs. brittle”, different damage mechanisms were observed; including cohesive failure within the 
adhesive layer, steel deformation, failure at the adhesive/adherends interface (adhesive failure) and delamina-
tion in the CFRP skin. To classify these damages by AE, the AE features of each damage mechanism were first 
obtained by conducting standard tests on the individual constituents. Then, these AE reference patterns were 
used to train an ensemble decision tree classifier. The best parameters of the ensemble model were obtained by 
Bayesian optimization, and the confusion matrix showed that the model was sufficiently trained with the ac-
curacy of 99.5% and 99.8% for Methacrylate-based and Epoxy-based specimens respectively. Afterwards, the 
trained model was used to classify the AE signals of the double-lap specimens. The AE demonstrated that the 
dominant damage mechanisms in the case of the Methacrylate-based were cohesive and adhesive failures while 
in the case of the Epoxy-based they were CFRP skin failure and adhesive failure. These results were consistent 
with the Digital Image Correlation, Fiber Optic Sensor and camera results. This study demonstrates the potential 
of AE technique for damage characterization of adhesively-bonded bi-material joints.   

1. Introduction 

The use of adhesively-bonded joints is preferred over conventional 
joining techniques such as bolting, riveting and welding. They offer 
many advantages including, for instance, the ability to join dissimilar 
materials such as steel and fiber reinforced composites, weight savings, 
improved stress distribution along the bond-line and enhancement of the 
corrosion and fatigue resistance characteristics [1–3] which are essen-
tial, especially in maritime applications. 

However, the dominant damage mechanisms in these joints may 
vary based on various factors including: loading conditions, environ-
mental conditions, mechanical properties of adhesive and adherends 
and also the adhesion quality between adhesive and adherends. These 
damage mechanisms include, but are not limited to: interfacial failure 
between the adherends and adhesive layer (i.e., adhesive failure), 
cohesive failure within the adhesive layer and the failure within the 
adherends [4,5]. Heshmati et al. [6–9] did extensive experimental and 
numerical studies to investigate the effect of environmental conditions, 

like moisture, temperature, de-icing salt solution and cyclic loading, on 
the durability and the damage mechanisms of adhesively-bonded 
FRP/steel joints. The results showed that the joint strength is a func-
tion of the dominant failure mode of the joint which varied under 
different environmental conditions. Thus, a deep and thorough under-
standing of the fracture behavior of the bi-material adhesively-bonded 
joints is essential to fully utilize their capabilities in industrial applica-
tions. Thanks to the successful performance of Non-Destructive Evalu-
ation (NDE) techniques for damage assessment in the engineering 
structures, they can be good candidates for damage characterization in 
such joints. 

Among the NDE techniques, Acoustic Emission (AE) provides 
attractive capabilities for online detection, classification and localiza-
tion of damage in engineering structures [10–12], and it is a good 
candidate for the monitoring of the damage process of 
adhesively-bonded structures. However, due to the presence of different 
constituents as well as the interfaces in the adhesively-bonded bi-ma-
terial joints, AE-based detection and classification of different damage 
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mechanisms of these joints is still a challenging task. Lee et al. [13] 
studied the damage evolution in Double-Lap Joint (DLJ) specimens 
fabricated from a CFRP core bonded to two steel skins by three different 

approaches including adhesive bonding, mechanical bonding and 
adhesive/mechanical hybrid bonding. They used a high-speed camera 
and AE to detect the failure of adhesive and mechanical bonding. The 
results showed that AE could distinguish the adhesive bonding failure 
from the mechanical bonding failure. Fotouhi et al. [14] monitored 
different damage mechanisms in a sandwich structure containing a foam 
core adhesively-bonded to two GFRP skins by AE. They managed to 
distinguish and classify four different damage mechanisms in the 
sandwich specimens by analyzing AE data using wavelet packet trans-
form method. These damage mechanisms were: foam core failure, ad-
hesive layer failure, matrix cracking and fiber breakage in the GFRP 
skin. Xu et al. [15] identified damage modes in adhesively-bonded 
composite single lap joints by means of AE and k-Meansþþ unsuper-
vised clustering methods. The results showed that the adhesive layer 
failure, matrix cracking, fiber/matrix debonding and fiber breakage had 
the lowest to highest frequency bands respectively. Kupski et al. [16] 
investigated the fracture of adhesively-bonded CFRP single lap joints by 
AE and Finite Element Modelling (FEM). In their study, AE was 
employed successfully to detect the initiation of damage in the speci-
mens. Nevertheless to the best of the authors’ knowledge there are just a 
few studies on the damage assessment of adhesively-bonded bi-material 
joints by AE, and most of them used the unsupervised clustering and 
signal processing methods to classify damage mechanisms. The perfor-
mance of these methods is not acceptable when the AE signals of dam-
ages are not clearly distinguishable and there are considerable overlaps 
between the AE features of different damages [17,18]. 

This research represents a step towards “Establishing an Structural 
Health Monitoring (SHM) methodology for enabling qualification of bi- 
material joints for lightweight and safe maritime transport”. Fig. 1 
shows the general framework for this research. To achieve this objective, 
SHM methodology needs first to be well-established for the test coupons 
level. It is, then, validated for the subcomponent level and finally, 
implemented for the full-scale structure. Therefore, this study is devoted 
only to the pyramid base tests, i.e. test coupons level and other test levels 

Fig. 1. The general test pyramid.  

Fig. 2. The flowchart of the damage characterization process.  

Table 1 
Mechanical properties of the constituent materials.  

Parameter Steel MMA-based 
adhesive 

Epoxy-based 
adhesive 

Tensile modulus (GPa) 200 0.20 2 
Yield strength (MPa) 350 – – 
Ultimate strength 

(MPa) 
400–550 12–15 37 

Poisson’s ratio 0.26 – – 
Strain to failure (%) – 40–60 10.10  

Fig. 3. Schematic of the DLJ specimen (dimensions in mm).  

M. Saeedifar et al.                                                                                                                                                                                                                              



Composites Part B 176 (2019) 107356

3

are out of the scope. Thus, this paper deals with the damage charac-
terization of a double-lap bi-material joint, bonded with a thick adhe-
sive, by supervised classification of AE signals. The DLJ test coupons are 
designed in a way to simulate the stress condition that the real bi- 
material joint is experiencing in the full-scale ship structure. The flow-
chart of the damage characterization process proposed in the present 
study is shown in Fig. 2. In order to distinguish and classify the different 
damage mechanisms observed in the DLJ specimens, the AE signatures 
of each damage mechanism were obtained by conducting standard tests 
on the individual constituent materials of the joint. These AE signatures 
were then used to train an ensemble decision tree classifier. Finally, the 
trained classifier was employed to classify different damage mechanisms 
in the DLJ specimens and the AE results were validated against results 
obtained from Digital Image Correlation (DIC), Fiber Optic Sensor (FOS) 
and camera images. 

2. Materials and manufacturing 

2.1. Adherends and adhesives 

The steel used in this study is high strength structural shipbuilding 
steel AH36 with the mechanical properties listed in Table 1. The CFRP 
laminates are produced using vacuum infusion. In order to avoid 
galvanic corrosion, a thin layer of chopped glass fiber fabric was used on 
both sides. The lay-up was [glass/0/90/45/-45]S with the 0�-direction 
in the length direction of the final specimen geometry. 

The first adhesive used to bond the steel and CFRP adherends was a 
two-component Methacrylate adhesive (MMA-based) with a mixing 
ratio of 10:1 by volume. The second adhesive used was a two-component 
toughened Epoxy adhesive (Epoxy-based) with a mixing ratio of 2:1 by 
volume. The mechanical properties of the both adhesive types are listed 
in Table 1. 

2.2. Joint design and manufacturing 

The DLJ specimen consists of two steel cores separated by a Teflon 
insert of 1 mm thick and bonded with thick adhesive layers (8 mm) to 
CFRP skins as depicted in Fig. 3. 

3. Experimental procedures 

3.1. Test procedure 

The testing setup shown in Fig. 4, consists of five main data acqui-
sition systems. The Universal Testing Machine (UTM) records the load Fig. 4. The DLJ test apparatus.  

Fig. 5. The FOS path on the CFRP skin.  
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and the cross-head displacement. The corresponding displacement and 
the strain contour measurements are acquired by processing in-situ 
images captured by a 3D Digital Image Correlation (DIC) system from 
one side. A camera continuously monitors the cross-section of the 
specimen during the loading process from the opposite side. A Fiber 
Optic Sensor (FOS), attached on one CFRP skin of specimen, records the 
strain distribution on the specimen skin. Finally, the AE sensor placed on 
the specimen surface is used to capture the AE activities of the specimen 
during the loading process. Tensile testing was conducted in accordance 
with ASTM D3528 standard [19]. Universal Testing Machine (Zwick 
Roell) with 250 kN load cell is used to apply a displacement controlled 
tension with a rate of 1.27 mm/min according to the standard. The 
displacement controlled mode is used to reduce the effect of varying the 
adhesive thickness on the coupons’ response [20]. Three specimens are 
tested for each adhesive type. 

3.2. In-situ monitoring apparatus 

In this section, different in-situ monitoring apparatus used during the 
DLJ tests are presented. 

3.2.1. Acoustic emission 
In order to capture the generated AE signals during the tests, one AE 

sensor was placed on the specimen (see Fig. 4). It is worth mentioning 
that at the beginning of the test, four AE sensors were used to capture the 
AE signals; two were mounted on the CFRP skin and two on the steel. 
However, due to the catastrophic fracture with sudden energy release of 
the Epoxy-based adhesive specimens, only one sensor was used on the 
steel to avoid any damage of the AE sensors for all the consecutive tests. 
For consistency of the analysis, only the AE signals recorded by the 
sensor mounted on the steel is used for all the specimens. Some literature 
[21–23] reported the effect of some parameters like material properties 
and surface roughness on the attenuation of the AE wave. To investigate 
the wave attenuation in the bi-material joint, a pencil lead breakage test 
was performed at the middle of DLJ specimen, and it was found that the 
AE sensor which was placed on the steel core at the distance of 200 mm 
from the AE source could record the AE signal with 20 dB higher 
amplitude in comparison to the AE sensor mounted on the CFRP skin at 
the distance of 100 mm from the AE source. The obtained results showed 
that the attenuation of the wave in CFRP skin is much higher than the 
steel core. This ensures that AE signals originated from the CFRP skin or 
the adhesive layer will not be missed by using only one AE sensor placed 
on the steel core instead of four sensors. 

The AE sensor was a broadband, resonant-type, and single-crystal 
piezoelectric transducer from Vallen Systeme GmbH, AE1045S- 
VS900 M, with external 34 dB pre-amplifier and an operating frequency 

range of [100–900 kHz]. As previously highlighted, this study is the first 
step toward implementation of AE in the real ship structure. Due to the 
existence of environmental noises, usually caused by the sea environ-
ment and propulsion system, setting low threshold values may result in 
capturing a lot of noise signals. Thus, the AE threshold for the DLJ tests 
was set to 50 dB to resemble the same threshold level that the actual 
SHM system has to operate at. An AMSY-6 Vallen, 8-channel acoustic 
emission system with the sampling rate of 2 MHz, was used to record the 
AE signals. Ultrasound gel was applied between the surfaces of the 
sensor and the specimen to ensure good acoustical coupling. A standard 
pencil lead break procedure [24] was used to check the connection 
between the specimen and the AE sensor surface prior to the mechanical 
test. 

3.2.2. Fiber optic sensor 
FOS was employed to measure the strain along the CFRP skin. The 

FOS consisted of three different sections: LC/APC connector, the 
measuring section and the coreless section to minimize back reflections 
and reduces power density at the fiber end. The measuring section is a 
Graded-Index Multimode (GIMM) fiber with core/cladding diameter of 
50/125 μm produced by Plasma Optical Fibre Inc. The end coreless 
section, which was spliced to the measuring section, is a solid silica glass 
rod with an acrylate coating with diameter of Ø125 μm produced by 
THORLABS Inc. An ODiSL-B system from Luna Innovations Inc., which 
works based on the Rayleigh Backscattering theory, was used to measure 
the strain along the fiber length by intervals of 0.65 mm and a sampling 
rate of 23.8 Hz. The FOS was glued to the CFRP skin following the 
desired path (see Fig. 5). Three segments are then specified to capture 
the strain distribution at the CFRP skin along these lines. 

3.2.3. Digital image correlation 
The DIC system used for the full-field strain measurement consists of 

two 8-bit “Point Grey” cameras with “XENOPLAN 1.4/23” lenses. Both 
cameras have a resolution of 5 MP. Vic-Snap 8 software was used to 
record the speckle pattern images from the cameras, and the 3D DIC 
system was calibrated before the testing. The acquisition frame rate was 
set to 3 frames per second (fps) for the uniaxial tensile testing. The 
speckle pattern images acquired by Vic-Snap 8 were then processed 
using Vic-3D 8 software. In processing these images, the subset size was 
set to 21 � 21 pixels with a step size (distance between subsets) of 7 
pixels. The observation window of approximately (600 � 30) mm2 

produced an image with dimensions of (2048 � 102) pixels. Global 
mean values of strains (εxx;εyyεxy) are obtained from DIC analysis using 
Vic-3D 8 software. 

Fig. 6. The load-displacement curve of a) MMA-based, and b) Epoxy-based specimens.  
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Fig. 7. Different damage mechanisms in the fractured specimens a) MMA-based and b) Epoxy-based.  
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4. Ensemble bagged tree classifier 

The unsupervised clustering techniques usually exhibit some level of 
blindness in the clustering process, and accordingly they cannot realize 
the actual intrinsic structure of data [17,18]. Moreover, the output from 
the unsupervised clustering techniques is only the grouped data without 
any labels, which means that assigning the correct label to the grouped 
data will still be a challenge. Therefore, if well-known labeled data is 
available, unsupervised clustering is not an effective tool for meaningful 
discrimination of data sets anymore. In this case, supervised classifica-
tion is an appropriate technique to obtain the meaningful information on 
the data structure [18,25,26]. Generally, there are two steps in the su-
pervised classification: 1) Training, and 2) Prediction. In the first step, 
the classifier is trained by a dataset consisting of n data; d1, d2, …, dn; in 
which each data (di) has m features; p1, p2, …, pm. These data are 
labelled already with the a set of labels (C) consisting of c1, c2, …, ck, 
where ci shows the class number i, and k is the total number of classes. In 
the prediction phase, the classifier assigns a specific class (label) to a 
new fed data. 

Decision tree is one of the most popular classification methods that 
provides good interpretability, acceptable accuracy and low computa-
tional cost. In addition, the performance of decision trees significantly 
increases when they are combined with ensemble methods [27]. The 
ensemble bagged tree classifier used in the present study blends several 
CART decision trees [28] to get a better functionality in comparison with 
one decision tree. It divides the original training dataset to several 
subsets. Then a random combination of some subsets is selected to train 

a specific decision tree and it continues until all trees be trained. In the 
prediction phase, the classifier assigns a specific class (label) to a new 
fed data which the assigned class is one that results in the highest 
weighted average of the posterior probability computed using the 
selected trees. For each class c ∊ C and each tree; t ¼ 1, 2, …, T; the 
posterior probability (ptðcjdÞ) of class c, given data d, using tree t is 
calculated as: 

ptðcjdÞ ¼
ptðdjcÞpðcÞ

pðdÞ
(1) 

If S is considered as the set of indices of selected trees involved in the 
class prediction of data d, the weighted average of the class posterior 
probabilities over the selected trees is then calculated as [29]: 

pBaggedðcjdÞ ¼
PT

t¼1αtptðcjdÞIðt 2 SÞ
PT

t¼1αtIðt 2 TÞ
(2)  

where Iðt 2 TÞ is 1 if t is in the set S, and 0 otherwise, and αt is the weight 
of tree t. Finally, the predicted class (PCBaggedðcjdÞ) for data d is the class 
that yields the largest weighted average [29]: 

PCBaggedðcjdÞ ¼
argmax

�
pBaggedðcjdÞ

�

c 2 C (3)  

5. Results and discussion 

The results are presented in two subsections. The first one presents 
the load-displacement curves of the DLJ specimens and then the in-situ 

Fig. 8. a) The load and AE frequency versus the displacement, and the camera images from the MMA-based specimen at b) the beginning of loading, c) the moment 
of AE activities initiation, and d) the final fracture. 
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monitoring results are discussed in the second. 

5.1. Mechanical results 

The load-displacement curves of the DLJ specimens are depicted in 
Fig. 6. The load-displacement response of the MMA-based DLJ speci-
mens has a nonlinear behavior from the beginning of the test up to the 
final failure with a significant plasticity and damage progression leading 
to a ductile fracture. On the contrary, the load-displacement response for 
the Epoxy-based DLJ specimens is almost linear up to the final failure, 
which can be described as a brittle fracture. It is clear from the load- 
displacement data that there is a trade-off between the strength and 
the ductility “displacement to failure” of the DLJ specimens. In the case 
of the DLJ specimen manufactured by MMA-based adhesive, the 
displacement to failure is approximately 4 times higher than the Epoxy- 
based DLJ specimen; while the strength of the Epoxy-based DLJ spec-
imen is almost 1.6 times higher than the MMA-based one. 

The fractured specimens are shown in Fig. 7. As expected, different 
damage mechanisms can be spotted for the two types of specimens. For 
the MMA-based specimens (see Fig. 7(a)), the dominant damage 
mechanisms are plastic deformation and crack growth in the adhesive 
material (cohesive failure). In addition, some adhesive failure at the 
steel/adhesive interface can be spotted in the middle of the specimen, 
where the notch is, and at the upper and lower free edges. In addition, no 

Fig. 9. a) The load and AE frequency versus the displacement, and the camera images from the Epoxy-based specimen at b) the beginning of loading, c) the moment 
of AE activities initiation, and d) the final fracture. 

Table 2 
The specifications of the individual constituent tests.  

Material Type of 
test 

Standard The corresponding damage in 
the DLJ test 

Steel Tensile ASTM E8 [30] Plastic deformation of steel 
core Shear ASTM B831- 

14 [31] 
Adhesive Tensile ASTM D638 – 

14 [32] 
Plastic deformation of 
adhesive part (Cohesive 
failure) 

Mode I Reference 
[33] 

Crack growth in the adhesive 
under mode I (Cohesive 
failure) 

Mode II Reference 
[33] 

Crack growth in the adhesive 
under mode II (Cohesive 
failure) 

Steel/Steel 
adhesively- 
bonded DCB 

Mode I ASTM D5528 
[34] 

Adhesive failure at steel/ 
adhesive interface 

CFRP/CFRP 
adhesively- 
bonded DCB 

Mode I ASTM D5528 
[34] 

Adhesive failure at CFRP/ 
adhesive interface 

CFRP Tensile ASTM D3039 
[35] 

Damage of the CFRP skins  

M. Saeedifar et al.                                                                                                                                                                                                                              
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Fig. 10. The tensile tests of the steel.  
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Fig. 11. The shear tests of the steel.  
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delamination is observed in the CFRP skin. Finally, there is infinitesimal 
adhesive failure at the CFRP/adhesive interface at the middle of the 
specimen where the crack in the adhesive material reaches the CFRP/ 
adhesive interface. 

In the case of Epoxy-based specimens (see Fig. 7(b)), there is a 
complete adhesive failure at the steel/adhesive interface and also a large 
interlaminar delamination in the CFRP skin. Moreover, some clear 
transverse cracks are seen in the adhesive. In order to deeply understand 
the damage process up to fracture, the in-situ monitoring results are 
detailed in the following subsection. 

5.2. In-situ monitoring results 

The AE activities of the DLJ specimens under tensile loading were 
captured by the AE sensor mounted on the surface of the specimens. 
Figs. 8 and 9 show the load and AE frequency versus the displacement 
for both types of specimens. There is no AE event for both specimens at 
the beginning of loading which indicates there is no damage in the DLJ 
specimens. The camera images taken from the DLJ specimens also do not 
show any detectable damage in the specimens in this region (see Figs. 8 

(b) and 9(b)). The AE events of MMA-based specimen start at the 
displacement of 2.5 mm approximately, where a few AE events were 
captured with a frequency less than 150 kHz. The image of MMA-based 
specimen at the same instant shows the crack initiation in the adhesive 
material (see Fig. 8(c)). At the displacement of 4 mm, considerable AE 
activities start and besides the low-frequency AE signals, some other AE 
events with a frequency up to 250 kHz are captured. The last AE events’ 
group with a frequency range of [300–400 kHz] initiates at the 
displacement of ~4.5 mm. All these AE activities continue to the 
displacement of 11 mm, where the final fracture occurs (see Fig. 8(d)). 
Using the camera images, captured during the test, the damage is started 
by crack nucleation in the adhesive layer at the notch tip which is then 
followed by adhesive failure at the steel/adhesive interface in the vi-
cinity of the notch and at the lower edge of the specimen. Towards the 
end of the test, these two adhesive failures are connected. 

In the case of the Epoxy-based specimens, the first AE activity occurs 
at the displacement of 0.6 mm which corresponds to the crack initiation 
at the adhesive material (see Fig. 9(c)). From this point to just before the 
final fracture of the specimen, limited number of AE events are recorded 
indicating that there is no considerable damage in the specimen, and 
that all the applied work on the specimen is stored in the form of strain 
energy. At the moment of the final fracture, some AE events with 
different frequency ranges, i.e. [100–200 kHz] and [400–500 kHz], are 
captured representing different damage mechanisms activated in the 
specimen at the same time (see Fig. 9(d)). Using the camera images, 
captured during the test, the damage starts first by crack initiation at the 
adhesive layer around the notch and then it propagates rapidly within 
the adhesive layer. At the final fracture, a complete adhesive failure at 
the steel/adhesive interface happens at one side of the specimen. While 
on the other side, delamination and fiber breakage at the CFRP skin are 
observed. 

In order to investigate the evolution behavior of each damage 
mechanism by AE, it is essential to first distinguish and classify the 
different damage mechanisms according to their AE features. To achieve 
that, standard tests on the individual constituents are conducted to 
simulate and capture the AE signatures associated with the damage 
mechanisms that occur in the DLJ specimens. The specifications of the 
individual constituent tests are summarized in Table 2. All the tests are 
done according to the corresponding ASTM standard and the AE activ-
ities are captured by the AE sensor mounted on the specimens’ surface. 

The tensile and shear tests of the steel are shown in Figs. 10 and 11. 
The DIC strain distribution also confirms that the dominant stress 
components for the tensile and shear tests are normal and in-plane shear 
stresses respectively. The load-displacement curve and also the peak 
frequency distribution of the AE events recorded during these tests are 
shown in Fig. 12. These AE signals correspond to the elastic and plastic 
deformation of the steel under tension and shear loading conditions. The 
AE events observed in the initial elastic deformation stage are due to the 
nucleation of a few dislocations at the grain boundary and also local 
yielding around inclusions, while the AE events in the plastic deforma-
tion stage are almost originated from dislocations interlocking, creating 
of new dislocation, stress concentration and extension of Luders bands in 
the steel [36]. As can be seen, regardless of the loading condition, there 
are three groups of AE signals in both specimens consisting of 
[100–200 kHz], [300–400 kHz], and [400–600 kHz]. In addition, 
comparing other AE features like amplitude, duration, rise time, counts, 
extra, showed that there is no considerable difference between the AE 
features of the shear and tensile tests. This fact shows that the originated 
AE signals due to steel deformation are mostly material-dependent not 
loading conditions-dependent. Therefore, all the AE signals collected 
from both tensile and shear tests are labelled as “Steel deformation” 
signals. 

In order to capture the AE signals of plastic deformation and also 
crack growth under tensile and shear stresses in the adhesive material, 
the standard tensile, fracture mode I and mode II tests were conducted. 
To ensure pure mode I and mode II loads on the specimens, the modified 

Fig. 12. The load-displacement and peak frequency distribution of a) Tensile, 
and b) Shear tests of steel. 
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Fig. 13. The tensile tests of the adhesive material.  
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Fig. 14. The mode I tests of the adhesive material.  
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Fig. 15. The mode II tests of the adhesive material.  
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Fig. 17. CFRP tensile test.  

Fig. 16. The load-displacement curves of a) Tensile, b) Mode I, and c) Mode II tests of MMA-based adhesive.  
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Arcan test apparatus [33] was used. The geometry and dimensions of the 
coupons and also the tests apparatus are shown in Figs. 13–15. Only the 
results of MMA-based adhesive are presented here as an example. The 
DIC strain distribution again confirms that the dominant stress compo-
nent for the tensile and mode I specimen is normal stress while the 
dominant stress component for mode II specimen is in-plane shear stress 
concentrated at the crack tip. The load-displacement curves and the 
frequency distribution of the AE signals recorded during the tensile, 
modes I and mode II loading of the adhesive specimens are depicted in 
Fig. 16. It is clear that, regardless of the loading conditions and also the 
specimens’ geometry, the recorded AE signals for the three different 
tests are similar in the sense that two classes of AE signals with the 
frequency of [100–200 kHz] and [300–350 kHz] are captured. There-
fore, all the AE signals collected from these tests are labelled as “cohe-
sive failure” signals. 

In order to obtain the AE signals of the CFRP skin damage, CFRP 
tensile specimens with the same layup of the skin were subjected to 
tensile loading (see Fig. 17) and the originated AE signals were recorded 
by the AE sensor mounted on the specimen surface. The Scanning 
Electron Microscopy (SEM) images of the broken CFRP tensile specimen 
and CFRP skin of DLJ specimen are shown in Fig. 18. As it is clear, the 
dominant damage mechanisms for both specimens are similar and they 
are fiber breakage and delamination and also some matrix cracks. The 
load-displacement and the peak frequency distribution of the recorded 
AE signals are illustrated in Fig. 19. There are some clusters of AE signals 

with different frequency contents that can be related to different damage 
mechanisms observed in the SEM images. According to literature [12, 
37–39], the first cluster with the lowest frequency can be devoted to 
matrix cracking and the cluster with the highest frequency may be 
related to the fiber breakage. The cluster with the medium frequency is 
also associated with the delamination. Regardless the type of 
sub-damages, the AE signals collected during the tension of CFRP are 
labelled as “skin failure”. 

The AE signals for the adhesive failure at steel/adhesive and CFRP/ 
adhesive interfaces were obtained by conducting some Double Canti-
lever Beam (DCB) tests on the steel/steel and CFRP/CFRP adhesively- 
bonded specimens. A pre-crack was made by inserting a Teflon film 
layer between the strips during the bonding process. The DCB test 
apparatus and the load-displacement curves are shown in Fig. 20. The 
signals of DCB tests are labelled as “adhesive failure”. The images from 
the damaged surface of steel/steel and CFRP/CFRP DCB specimens are 
shown in Fig. 21. As it is clear, there is not any adhesive material on the 
steel surface which shows a complete “adhesive failure”. In the case of 
CFRP, although some small adhesive materials remained on the CFRP 
part, it is obviously seen that the dominant damage mechanism is still 
“adhesive failure” not “cohesive failure”. 

The AE signals of individual constituents failure are collected from 
the aforementioned tests, and they are used to train an ensemble deci-
sion tree classifier. Thus, eight commonly used AE parameters consisting 
of amplitude, rise time, duration, counts, energy, RMS, centroid fre-
quency, and peak frequency are extracted for each AE signal and fed into 
the classifier as the data features, and the signal label is defined as the 
response. This parameters are selected such that they have the lowest 
dependency on each other. The specifications of the training data is 
represented in Table 3. 

Ensemble decision tree classifier refers to a hyper-parameter prob-
lem. To obtain the best parameters to create the ensemble model, the 
hyper-parameter optimization was done using a Bayesian optimization 
process with the maximum of 30 iterations. Three parameters consisting 
of number of learning cycles, learning rate and minimum leaf size and 
also three combination techniques consisting of Random Under- 
sampling Boosting, Adaptive Boosting, and Bootstrap aggregation 
(Bagging) were chosen for the optimization process. Based on the min-
imum objective value and the runtime of the model, Bayesian optimi-
zation method finally represented the optimized parameters as follows: 
combination technique: bagging, number of learning cycles: 77, and the 
minimum leaf size: 1 (notice: learning rate is not defined for bagging 
technique). 

Cross-Validation method was used to protect the classification 
against overfitting by partitioning the data set into 5 folds and esti-
mating the accuracy on each fold. To this aim, first, all the data points 
(209638) are randomly divided into 5 groups. Then, 4 groups are 

Fig. 18. The SEM images from the CFRP tensile specimen and CFRP skin of DLJ specimen.  

Fig. 19. The load-displacement curve and the frequency distribution of the AE 
events of the CFRP tensile test. 

M. Saeedifar et al.                                                                                                                                                                                                                              



Composites Part B 176 (2019) 107356

16

Fig. 20. a) Schematic of DCB specimens, DCB test apparatus and load-displacement curves for b) CFRP/CFRP, and c) steel/steel adhesively-bonded specimens.  
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selected for the training of the model. If the ensemble model contains n 
trees, these four groups are then divided into n subgroups. Then, each 
tree is trained by one of these n subgroups. When all the trees are trained 
sufficiently, the only remained group, among 5 initial groups, is used for 
the validation of the trained model. This process is repeated for four 
more times such that each of the other four groups is used as the vali-
dation dataset. The performance of the classifier is evaluated by the 
confusion matrix shown in Fig. 22. The overall accuracy of the classifi-
cation for MMA-based and Epoxy-based training data set is 99.5% and 
99.8% respectively. This indicates that the classifier has been trained 
effectively and ensures its good performance to classify the DLJ 

specimen’s signals. The largest error is associated with the “Steel 
deformation” in MMA-based specimen (25%). 

After training the classifier, the AE signals of DLJ specimens are 
classified and labelled by the trained model. The total cumulative AE 
energy and cumulative AE energy curve of four aforementioned damage 
mechanisms for DLJ specimens is shown in Fig. 23. In the case of MMA- 
based specimen, damage is characterized by a progressive nature and it 
initiates at load levels which are much less than the maximum load. The 
AE accumulative curve (Fig. 23(a)) suggests that the dominant damage 
mechanism is cohesive failure which is consistent with the visually 
inspected results (see Fig. 7(a)). Adhesive failure AE signals represents 
the second highest class of damage featuring the steel/adhesive inter-
facial failure at the lower edges of the specimen as depicted in Fig. 24. As 
some steel deformation signals are also captured, it is important to un-
derstand whether they are due to elastic or plastic deformation. Thus, 
the longitudinal strain (see Fig. 25) obtained by the DIC at the maximum 
load for the steel core (~0.002) is compared with the yield strain of the 
steel. This ensures that the captured signals are due to the elastic 
deformation of steel and there is no concern about any yielding of the 
steel core. Although the AE accumulative curve suggests that there is 
skin failure in the MMA-based specimen, visual inspection (see Fig. 7(a)) 
does not show any visible delamination or fiber breakage in the CFRP 
skin. Thus, this can be due to matrix cracking occurring locally at the 
crack tip singularity in the middle of the specimen’s length. To verify 
this hypothesis, the strain captured by the FOS, at the maximum load, is 
analyzed (see Fig. 26). It is clear from the strain distribution that the 
maximum strain is much less than the failure strain of the CFRP skin 
(~0.006 as opposed to ~0.020). However, according to Fig. 19, AE 
events with the frequency less than 150 kHz can be seen at this strain 
level which could be related to matrix cracking that usually has the 
minimum frequency compared with delamination and fiber breakage 
[37,38]. The strain distribution shows that the strain is minimum at the 
both edges of the specimen and it gradually increases when moving to 
the middle of the specimen where the notch is. Due to adhesive failure at 
the steel/adhesive interface at the lower edge of the specimen, the CFRP 
skin experiences compression due to bending. This is reflected by the 
negative strain values in Fig. 26. 

Unlike the MMA-based specimen, the damage in the Epoxy-based 
specimen (see Fig. 23(b)) occurs instantaneously at the maximum 
load. In this case, the dominant damage mechanisms captured by AE are 
skin failure and adhesive failure. Despite the fact that the strain distri-
bution captured by the FOS on the CFRP skin outer surface is similar to 
the MMA-based specimen, the stress singularity due to the crack tip in 
the case of the Epoxy-based adhesive leads to local fiber breakage and 
delamination initiating from the inner surface (see Fig. 7(b)). This can be 
attributed to the brittle nature of the Epoxy-based adhesive as it does not 
undergo as much plastic deformation as the MMA-based counterpart. 
Consequently, this results in higher stress concentration at the crack tip 
leading to the CFRP skin failure. Again, the steel deformation signals are 
checked to ensure that they are due to the elastic deformation of the steel 
core with no sign of yielding. 

6. Conclusion 

The objective of the present work was damage characterization of 
the bi-material double-lap adhesively-bonded joints using Acoustic 
Emission (AE). Double-Lap Joint (DLJ) specimens were fabricated of a 
steel core bonded to two CFRP skins by two types of adhesive; a ductile 
“MMA-based” and a brittle “Epoxy-based”. The specimens were then 
subjected to the tensile loading while AE was in-situ monitoring the 
damage in the joints. FOS and DIC systems were used to measure the 
strain on the specimens’ surfaces. In order to distinguish and classify 
different damage mechanisms by AE, standard tests were conducted on 
the individual constituents. The AE signals captured during these tests 
were used to train an ensemble bagged tree classifier. The best param-
eters of the ensemble model were obtained by Bayesian optimization, 

Fig. 21. The damaged surface of a) steel made and b) CFRP made 
DCB specimens. 

Table 3 
The specification of the training data for the ensemble decision tree classifier.  

Material Test Label AE signals 
Number 

Adhesive Tension Cohesive 
failure 

11269 
Mode I 
Mode II 

Steel Tension Steel 
deformation 

1771 
Shear 

Steel/Steel and CFRP/CFRP 
adhesively-bonded 

DCB Adhesive 
failure 

3513 

CFRP Tension Skin failure 209638  
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Fig. 22. The confusion matrix of the trained model for training data set of specimens; a) MMA-based and b) Epoxy-based.  
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Fig. 23. The total cumulative AE energy and cumulative AE energy curve of different damage mechanisms for a) MMA-based, and b) Epoxy-based DLJ specimens.  

Fig. 24. (a) and (b) Detected adhesive failure during the loading by DIC, and c) the progressed adhesive failure at the end of the test for MMA-based specimen.  
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and the confusion matrix showed that the model was sufficiently trained 
with the accuracy of 99.5% and 99.8% for Methacrylate-based and 
Epoxy-based specimens respectively. Afterwards, the trained model was 
used to classify the AE signals of the double-lap specimens. The AE 
demonstrated that the dominant damage mechanisms in the case of the 
Methacrylate-based were cohesive and adhesive failures while in the 
case of the Epoxy-based they were CFRP skin failure and adhesive fail-
ure. These dominant damage mechanisms captured by AE were consis-
tent with the DIC, FOS and camera results. This study showed the 
potential of AE technique for damage characterization of adhesively- 
bonded bi-material joints. 
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